
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-06-01

Non-Schmid Effects and Criteria for Dislocation
Nucleation on Different Slip Systems at Grain
Boundaries
Richard Durtschi Wyman
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Wyman, Richard Durtschi, "Non-Schmid Effects and Criteria for Dislocation Nucleation on Different Slip Systems at Grain
Boundaries" (2016). All Theses and Dissertations. 6423.
https://scholarsarchive.byu.edu/etd/6423

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6423?utm_source=scholarsarchive.byu.edu%2Fetd%2F6423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Non-Schmid Effects and Criteria for Dislocation Nucleation

on Different Slip Systems at Grain Boundaries

Richard Durtschi Wyman

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Eric R. Homer, Chair
David T. Fullwood
Oliver K. Johnson

Department of Mechanical Engineering

Brigham Young University

June 2016

Copyright © 2016 Richard Durtschi Wyman

All Rights Reserved



ABSTRACT

Non-Schmid Effects and Criteria for Dislocation Nucleation
on Different Slip Systems at Grain Boundaries

Richard Durtschi Wyman
Department of Mechanical Engineering, BYU

Master of Science

Criteria for grain boundary dislocation nucleation are developed. A bicrystal containing
two grain boundaries is placed under varying triaxial stress states using molecular dynamics. The
local resolved shear, normal, and co-slip stresses needed for grain boundary dislocation nucleation
are found. A framework is developed to detect the slip system grain boundary dislocation nucle-
ation occurs on. A survey of the different ways grain boundary dislocation nucleation occurs in the
sample shows a single grain boundary can nucleate dislocations in a rich variety of ways. Using
the nucleation system and resolved stress values, criteria for grain boundary dislocation nucleation
on different slip systems are developed. The proposed form of nucleation criterion suggests the
activation stress has a linear dependence one the resolved shear, normal, and co-slip stresses. A
residual analysis largely validates the efficacy of the proposed linear model. We show that the
nucleation slip system cannot be predicted by a maximum Schmid factor analysis due to the non-
Schmid resolved normal and co-slip terms. We show that a system’s global pressure generally fails
to predict nucleation; a local stress in the grain being nucleated into should be used. Using the
nucleation criteria for each slip system, a yield surface for dislocation nucleation is built for the
grain boundary used in this work.

Keywords: grain boundaries, grain boundary dislocation nucleation, plasticity, triaxial stress,
molecular dynamics
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CHAPTER 1. INTRODUCTION

Almost all consumer metal products are polycrystalline metal. Polycrystalline metal con-

sists of small crystals known as grains that are fused together. The seams between the grains are

known as grain boundaries (GBs). Grain boundaries are extremely important in governing material

strength, ductility, and many other material properties.

This thesis is mainly focused on a particular type of GB plasticity mechanism known as

Grain Boundary Dislocation Nucleation in which a dislocation (a 1D crystalline defect [1]) grows

from a GBs surface to relieve local stress. This section will explain, in some depth, the relevant

physics and governing principles of grains, GBs, and dislocations that serve as background to the

main topic. It will also cover some of the mathematical and computational tools that were used to

perform the research.

1.1 Dislocations

Dislocations are 1D irregularities in crystals. They are the primary unit of plasticity in

single crystal systems. Dislocations possess stress fields whose interactions lead to work harden-

ing [2]. This work is concerned primarily with a particular subset of dislocations known as partial

dislocations which are the main way GB nucleate dislocations [3–5]. In a partial dislocation,

atoms exhibit a lattice distortion (quantified by a Burger’s vector) that does not restore the crys-

talline stacking sequence [6]. Partial dislocations are always accompanied by a two-dimensional

crystalline defect which, in this work, is a stacking fault in the crystalline material.

When a partial dislocation nucleates from a GB, it leaves behind a stacking fault. The

stacking fault breaks the stacking sequence in a perfect crystal. For instance, in FCC metals, atomic

planes are stacked on top of each other following an ABCABC... pattern; however, a stacking fault

will create a stacking sequence like ABCABABCABC... [2]. The ABA stacking fault is a small
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region where an HCP stacking sequence occurs. We will use these stacking faults to determine the

types of partial dislocations a GB nucleates.

1.2 Grain Boundaries

Grain boundaries form the divisions between grains. They have a complex structure that

generally positions the atoms such that the net potential energy of all atoms is minimized. At one

point in time, the atoms composing a GB were believed to be amorphous; however, it is now known

that the GB has a complex atomic structure.

The GB energy is calculated by drawing a box around a GB and summing the potential

energy of all the atoms in the box. The cohesive energy (potential energy of an atom in a perfect

crystal) of each atom is then subtracted. Finally, the energy value is divided by the area of the

GB in the box. This leaves a value of energy per unit GB area. This value is always positive for

single element systems (and generally positive for alloys, unless the structure attacts solute atoms

in a way that drammatically lowers the energy), which is not surprising as GBs are high energy

structures. Measuring the evolution of the GB energy relative to the system energy can show when

GB dislocation nucleation occurs [7].

Grain boundaries can be specified by the orientation of their surrounding grains relative to

each other. Grain boundaries are categorized by their coincidence site lattice (CSL) number [8].

This number represents the mismatch between two grains by quantifying the number of atoms that

would lie on top of each other if the two grains were superimposed on top of each other. It is

always an odd number. A CSL value of 1 would correspond to a perfect lattice with no GB in it.

1.3 Atomistic Modeling

Atomistic modeling is a computational method that allows researchers to model systems

of atoms. Atomistic modeling is less accurate than methods such as density functional theory that

account for electron interactions but more accurate than finite element methods that do not model

atoms and rely on constitutive models to account for any atomic level effects.

Molecular statics is an atomistic technique that can measure the energy of a system. It can

also be used to take a high energy system and move atoms around until a local energy minimum
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is found. By considering thousands of slightly different atomic configurations containing a grain

boundary and using molecular statics to find the system’s local energy minimum, a physically

realistic GB can be developed. This technique was employed by another reseracher to build the

grain boundary system used in this research [9, 10]. In this project, molecular statics is used to

convert a only partially periodic system into a fully periodic system.

Molecular dynamics is an atomistic technique in which atoms move under Newtonian

physics. The method tracks the position and velocity of each atom. A simulation consists of

multiple time steps. For each time step, the acceleration on each atom is calculated by finding the

force on each atom (using a potential the same way as done in molecular statics) and then using

Newton’s 1st law F = Ma to find the acceleration. While specific techniques vary, the program

modifies the velocities on each atom based on the acceleration and then changes the position of

each atom based on its velocity. The process is then repeated over and over again, each step mov-

ing the system forward in time. More sophisticated implementations (such as Velocity-Verlet [11])

use a half time step and ensure the system is time reversible [12, Sec 9.3.1]. Molecular dynamics

will be used in this project to simulate grain boundary dislocation nucleation.

1.3.1 Potentials

An integral part of atomistic modeling is a potential that allows forces on atoms to be

calculated. The potential allows the determination of an atom’s potential energy based on its

surroundings. By taking the gradient of the potential energy, a force acting on an atom can be

obtained [12, Sec 5.8.2].

Potentials can be fit to experimental data (the Lennard-Jones [13] potential is fit against

experimentally determined bond length and strength), developed using quantum mechanics (the

ReaxFF force field potential is fit using quantum chemistry [14]), or using combinations of the

two. Care must be taken when choosing a potential. Potentials are developed to fit specific material

properties and may fail to reproduce phenomena a user desires to model [15] [12, Sec 5.8.2]. The

nickel potential used in this research was fit against the stacking fault energy of nickel [16]. The

stacking fault energy (as well as other parameters) is known to affect dislocation slip [17] meaning

this potential should work well for the current research. The potential has been used in other grain

boundary dislocation nucleation research [18].
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While atomistics can use many types of potentials to determine the forces acting on the

atoms, perhaps the most popular potential used for modeling metal systems is the embedded atom

model (EAM) potential [19]. The EAM potential computes the energy of each atom by considering

an atom’s neighbors as well as an embedding term which models the density of the surrounding

electrons (as captured by the density of atoms) [20]. An EAM potential is used in this work to

model Nickel.

1.3.2 LAMMPS

LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator) is the molecular

dynamics software used in this project [21]. It is developed by Sandia National Laboratories and

has found wide use in the computational materials science committee. It is released under the GNU

public license making it free for educational and commercial use, although restrictions are placed

on commercializing the software itself. The program is under active development and is available

from http://lammps.sandia.gov/.

LAMMPS is written in C++ and is heavily optimized using neighbor lists [12, Sec 6.4.1]

to reduce an O(N2) problem to an O(N) problem (at least for the EAM potential). It comes with a

wide suite of built in metrics and is very easy to add new features to. For instance, we added code

to compute the slip vector [22] metric for this project. The program is highly modular and can run

on conventional hardware or graphical processing unit (GPU) accelerated hardware [23–25].

1.3.3 Super Computing

Given the computationally expensive nature of atomistic simulations, molecular dynamics

simulations performed in this work were performed on Brigham Young University’s super com-

puter [26]. The super computer allows a user to submit jobs to a scheduler [27]. An individual job

is submitted as a shell script. The super computer will put the job into a queue. When resources

become available for the job, the scheduler will allocate the resources and start the job. When the

job finishes, the resources will be returned and the scheduler will use them for another job. This

process allows thousands of jobs to be queued or running at the same time.

4
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A typical super computing work flow for this project consisted of a shell script submitting

hundreds of jobs with slightly different parameters to the job scheduler. Each of these jobs would

make an output folder directory and then run a LAMMPS stress simulation. After all simulations

completed, the results could be copied to a local computer for post processing.

1.4 Grain Boundary Dislocation Nucleation

Grain boundaries (GBs) play an important role in strength and can govern material proper-

ties as grain size shrinks to nano-crystalline dimensions [28–31]. GBs are barriers to dislocation

motion, and act as sources and sinks for dislocations. Additionally, GBs can accommodate stress

through GB sliding, GB void growth, and GB migration. Of primary interest in this work is the phe-

nomenon of GB dislocation nucleation, which is a form of heterogeneous dislocation nucleation

where a GB relieves local stress by emitting dislocations in one or both of the grains it separates.

The GB dislocation nucleation is generally a non-reversible plastic mechanism that permanently

deforms the material with few exceptions. The nucleation event results in a drop in GB interfacial

energy [7, 18] and stress relaxation [32–35].

Much like homogeneous dislocation nucleation in the absence of a GB [36–38], dislocation

nucleation at a GB is known to have non-Schmid dependence [32, 39]. In particular, the critical

resolved shear stress, τcrss, for dislocation nucleation is also a function of resolved normal stress,

σrns, which is the stress normal to the dislocation’s slip plane, as shown in Figure 1.1. When the

resolved normal stress is compressive, it is harder for atoms to glide over each other; when tensile,

it is easier for atoms to glide. Although appearing to be less important, the resolved co-slip shear

stress, τrco, which is the shear stress perpendicular to the slip plane normal and slip direction as

shown in Figure 1.1, may also affect dislocation nucleation from GBs [32].

Several theories have been proposed to predict the conditions associated with dislocation

nucleation. Spearot, et. al. investigated the phenomenon by applying uniaxial tension to a number

of 〈100〉 and 〈110〉 tilt GBs [32]. By using a least squares fit, they built an equation to predict the

uniaxial stress required to cause GB dislocation nucleation. They found that dislocation nucleation

from 〈100〉 tilt GBs is governed primarily by the resolved shear stress while 〈110〉 tilt GBs are gov-

erned primarily by resolved normal stress. Additional work by Spearot et al. found that increasing

nanoporosity in a GB led to nucleation at relatively low stresses [40]. Beyerlein, et. al. proposed
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Figure 1.1: Schematic illustration of the stress components τrss, σrns, τrco on a dislocation with
Burger’s vector~b

that dislocation nucleation is favored on slip systems well aligned with intrinsic dislocations inside

the GB. The likelihood of nucleation on some slip system is then proportional to the driving stress

multiplied by a structure factor quantifying the favorability of some slip system [33]. Sangid, et.

al. developed a method of measuring energy barriers to dislocation nucleation and found that the

energy barrier for nucleation is inversely proportional to the static GB energy [18]. The current

consensus is that GB dislocation nucleation is tied to GB structure and that resolved shear alone

cannot predict when nucleation will occur.

Other factors surrounding the moment and location of GB dislocation nucleation have also

received attention. Wu, et. al. showed that the point of nucleation within a GB is correlated

with high Von Mises stress [34]. Similarly, Zhang, et. al. showed that the point of nucleation

tends to occur at points with the most intense interface distortion [41]. Burbery, et. al. correlated

the nucleation point with atoms whose virial stress has a large component normal to the GB and

noted that per atom potential energy fails to predict the location of nucleation [42]. None of these

observations are mutually exclusive as all suggest nucleation occurs at points of high stress.

In the present work, we examine a single GB under many different triaxial stress states.

This approach enables us to better understand how different stress states influence dislocation nu-

cleation on different slip systems. Using the stress states measured near the GB at the time nucle-

ation occurs, we are able to determine the relative influence of shear, normal, and co-slip stresses.

The analysis produces unique nucleation criteria for different slip systems that we combine to give

an effective yield surface for dislocation nucleation.
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CHAPTER 2. METHODOLOGY

2.1 Bicrystal Sample

The present work is focused on simulating an atomistic model of a Nickel GB subjected to

a range of triaxial stress states and measuring the response on GB dislocation nucleation. The GB

of interest is a Σ21b [211] 44.415° symmetric twist GB and is one of two GBs in a fully periodic

bicrystal containing two grains of differing widths. The bicrystal is shown in Figure 2.1 with atoms

colored by their common neighbor analysis [43] value. The smaller middle grain, labeled grain

A, is 126 Å wide, the larger outer grain, labeled grain B, is 234 Å wide. Note that since the GB

is periodic, the two side regions are part of the same grain, namely grain B. The dimensions in

the y and z directions are 33 Å and 32 Å respectively. In total, the system contains 31,500 atoms.

The bicrystal is derived from one of the GBs prepared by Olmsted, et. al. [9, 10], which is made

fully periodic by copying the grain boundary, flipping the copy upside down, and merging the

two GBs into a bicrystal with additional matrix material. Molecular dynamics is performed with

LAMMPS [21] utilizing GPU accelerated hardware [23–25]. The Foiles-Hoyt Nickel embedded

atom potential [16] is used throughout this work. Visualization of the bicrystal is performed with

OVITO [44]. The GB is simulated at 0.1 Kelvin to minimize the contributions of thermal energy,

as has been done in other work [39]. The GB is equilibrated at 0.1 Kelvin and zero pressure for

100 ps prior to subjecting the GB to any mechanical loading.
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Figure 2.1: The Σ21b [211] 44.415° symmetric twist GB bicrystal used in this work. The grain
boundaries are shown in red, FCC matrix material is shown in blue

2.2 Triaxial Stress States

To induce GB dislocation nucleation, the bicrystal will be placed under many different tri-

axial stress states. These triaxial stress states are specified by a unit vector, λ , with each component

of the vector representing a relative stress magnitude in the x̂, ŷ, and ẑ dimensions. For instance, the

unit vector λ =
(

1 −2 3
)
/
√

14 would represent a triaxial state where the normal stress in the x̂

dimension would be tensile, the normal stress in the ŷ dimension would be compressive and dou-

ble the magnitude of the normal stress in the x̂ direction, and the normal stress in the ẑ dimension

would be tensile and triple the magnitude of the normal stress in the x̂ direction.

The λ vectors are chosen by picking 386 points approximately equidistributed about a unit

sphere [45]. The Cartesian coordinates of each vertex become the λ unit vectors. Points were

chosen by starting with a cube and subdividing each face into four squares. Each vertex is then

projected onto a unit sphere [45]. The subdivision process is repeated a total of three times. The

progression of the subdivision/projection method is shown in Figure 2.2 with the 386 vertices

(which became the 386 λ vectors) shown in the final sub figure.
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Figure 2.2: The subdivision process to choose triaxial stress states. Each vertex is a λ vector

2.3 Simulation

For each triaxial stress state, molecular dynamics is used to simulate the GB with the inten-

tion of inducing GB dislocation nucleation. The Nose-Hoover NPT ensemble is used to maintain

the temperature at 0.1 Kelvin and ramp the applied pressure in the three orthogonal directions from

0 GPa while attempting to keep the relative applied pressures in conformance with the simulation’s

λ vector. The ramp rate of the applied pressures is such that the geometric norm of the applied

stresses (
√

σ2
x +σ2

y +σ2
z ) increases at a rate of 100 MPa/ps. The simulation is terminated shortly

after GB dislocation nucleation occurs.

Since the simulation cell is forced to maintain orthogonality, the shear stresses are not

barostatted and are non-zero. Thus, while only orthogonal normal stresses are applied to the

bicrystal, these stresses are not in a principal stress state reference frame. This is problematic

because it means shears are applied on the GB which could lead to undesirable GB sliding or mi-
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gration. However, in this work, the conditions surrounding GB dislocation nucleation are analyzed

in terms of the local stresses near the GB rather than the global pressure. As a result, even though

the bicrystal is not placed under true triaxial stress, the applied stress still meets the primary ob-

jective to place the GB under many different stress states. In practice, almost all of the simulations

exhibited the GB dislocation nucleation mechanism.

2.4 Post Processing

2.4.1 Measurement of Grain Boundary Dislocation Nucleation Slip System

For the Nickel GB analyzed here, partial dislocations are the primary dislocation observed,

so dislocation nucleation is analyzed in terms of the twelve {111}〈112〉 partial dislocation slip

systems. A partial dislocation leaves a stacking fault behind it [46]; this stacking fault is analyzed

to determine the slip system of the partial dislocation. Partial dislocations, instead of full dislo-

cations, are expected in short atomistic experiments using Nickel because of the ratio between

Nickel’s unstable and stable stacking fault energies [47]. When a full dislocation occurs, it is al-

ways via a partial dislocation being emitted, followed by a stacking fault, followed by a trailing

partial dislocation. Such full dislocations are analyzed as partial dislocations by looking at the

intermediate stacking fault in the same way done with partial dislocations.

For each snap shot of the simulation, the slip system that nucleated is obtained by analyzing

the atoms in stacking faults, which are identified as those atoms having a non-FCC structure, as

obtained by common neighbor analysis [43]. Atoms are grouped into what we term colonies: a

seed atom is added to a new group and atoms within a specified cutoff distance of the seed atom

who have a similar slip vector [22] are admitted to the group. Each of these atoms is then analyzed

for neighbors with similar slip vectors (previously admitted atoms are not revisited). This process

is carried out recursively on all admitted atoms until no more atoms can be added to the group.

This group is then termed a colony. A new seed atom is picked and the process continues until all

stacking fault atoms have been added to a colony.

A slip system is assigned to each colony by fitting a normal vector to the atoms in the

colony: of the four possible partial slip plane normal vectors, the slip plane normal vector that is

most aligned with the fit vector is chosen as the slip plane normal vector of the colony. A slip
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direction for the colony is found by averaging the slip vectors of every atom in the colony: of

the three possible partial slip directions, the slip direction that is most aligned with the colony slip

direction becomes the slip direction of the colony. The slip plane normal and slip direction are then

combined to form a slip system for the colony. In some cases, the software reported an unrealistic

slip system in which the dot product between the independently determined slip plane normal and

slip direction is not zero. This generally occurs on very small colonies of only a couple atoms and

are computational artifacts. Such colonies make up an insignificant portion of the entire stacking

fault content of a simulation and are ignored.

Once a slip system has been assigned to each colony, conglomerated slip system content is

calculated by adding the number of atoms for each colony that nucleated on the same slip system.

The slip system with the largest number of stacking fault atoms on it is chosen as the primary GB

dislocation nucleation slip system for that particular snap shot in that grain.

After this process has been repeated on each snap shot in a simulation, the slip system that

the simulation nucleated on is determined by considering each snap shot in turn. It is common

for a simulation to have multiple nucleation events; this research is only concerned with the first

nucleation event (see [7] for precedent). Subsequent nucleation events are in a heavily deformed

bicrystal and are outside the scope of this paper. Although only the first nucleation event is con-

sidered, many simulations nucleate on two slip systems simultaneously; in these cases, both slip

systems are considered as nucleation slip systems for the simulation.

The above process is repeated for both grains for each simulation resulting in an index of

what type of grain boundary dislocation nucleation each simulation experiences. Fourteen and ten

simulations in grain A and grain B respectively do not exhibit categorizable grain boundary dislo-

cation nucleation from the GB of interest. These simulations are dropped from further analysis.

2.4.2 Local Stress

To determine the conditions that lead to GB dislocation nucleation on a particular slip

system, the GB local stress is found as a function of time. The local stress is considered to be of

greater interest than the global bicrystal pressure because the GB exhibits a back stress. This back

stress alters the stress state under which GB dislocation nucleation is initiated and this back stress

is only captured by a local stress definition. The local stress is calculated by averaging the virial
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stress [48] of all atoms within 2.5 Å of the position X Å away from the middle GB where X is what

we term the standoff distance.

Choosing the correct standoff distance requires a balance between two competing factors:

a standoff too close to the GB is heavily influenced by the disordered structure of the GB [49, 50]

and will make the measurement of the stress challenging. A distance too far from the GB will

measure a stress different than that actually causing the dislocation to nucleate. Standoff distances

ranging from 0 to 12.5 Å are considered as well as the global system pressure. The width of atoms

is always 5 Å wide (2.5 Å on either side of the standoff), of which the group of atoms for a standoff

of 7.5 Å is illustrated in Figure 2.3a.

The volume averaged von Mises stress for the various standoff distances is plotted in Fig-

ure 2.3b as a function of time for a uniaxial tensile simulation (λ = [1,0,0]). When nucleation

occurs, we expect a sudden drop in the von Mises stress as the GB dislocation nucleation mecha-

nism accommodates the built up stress. It can be seen that for the 0 Å standoff, the stress inside the

GB starts off high because of the GBs inherently high stress. As the system is placed under higher

stress, the local stress doesn’t evolve significantly even though the global stress is ramped up (as

indicated by the slightly increasing pressure). The 2.5 Å case starts at a somewhat reduced stress

but also still has a significant initial value, presumably from the GB atoms in the group. By the

5 Å standoff, the von Mises stress ramps from near zero and reaches a maximum before dropping

at the point of nucleation, which drop could be mistaken for noise in the curve. The 7.5 Å standoff

is similar though the stress drop at nucleation is now clearly a departure from the loading. The

10 Å and 12.5 Å standoffs appear to overshoot the maximum stress, because they are so far offset

from the point of nucleation that they exceed the stress while waiting for the dislocation to arrive.

The global pressure is insensitive to the nucleation event because it considers all the atoms in the

simulation. We take the 7.5 Å standoff as the ideal local stress definition because it is insensitive

to initial GB stress and captures the GB dislocation nucleation event. Stresses reported from this

point on will be calculated using the local 7.5 Å stress definition in the grain of interest.

12



(a)

(b)

Figure 2.3: (a) The local stress in a grain is captured by averaging the virial stress of all atoms
within a 2.5 Å window of a particular standoff from the center of the GB

(b) Von Mises stress as a function of time for different standoffs in a uniaxial tensile test. The
7.5 Å standoff is the closest to the GB that is not affected by the GB core

2.4.3 Resolved Stress Calculations

Foundational to this work is the ability to calculate resolved stresses on different slip sys-

tems. Consider the slip system

(nxnynz)[dxdydz] (2.1)

13



where n is the slip plane normal and d is the slip direction. We define v = cross(n,d) which is a

vector perpendicular to the slip plane normal and slip direction. We define a stress in its own frame

as

σ =


σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

 (2.2)

To compute the resolved stress components of σ we need to find a transformation matrix

that changes from the stress frame into the slip system’s frame. The stress frame’s axes expressed

in the lab frame are xstress = [1,0,0], ystress = [0,1,0], and zstress = [0,0,1]. The slip system’s axes

as expressed in the lab reference frame are xslip = [nxnynz], yslip = [vxvyvz], and zslip = [dxdydz].

The transformation matrix, T , between the stress frame and the slip system frame is then

T =


nx ny nz

vx vy vz

dx dy dz

 (2.3)

Once T is known, we can transform the stress in the stress frame into the slip system frame

by computing σR = T ∗σ ∗T ′ where σR is the resolved stress. The resolved shear stress, τrss, is

component σR(1,3). The resolved normal stress, σrns, is component σR(3,3). The resolved co-slip

stress, τrco, is component σR(2,3). By computing σR = T ∗σ ∗T ′, we find the resolved shear stress

to be

τrss = nx ∗ (dx ∗σxx +dy ∗σxy +dz ∗σxz)

+ny ∗ (dx ∗σxy +dy ∗σyy +dz ∗σyz)

+nz ∗ (dx ∗σxz +dy ∗σyz +dz ∗σzz)

(2.4)

The resolved normal stress is

σrns = nx ∗ (nx ∗σxx +ny ∗σxy +nz ∗σxz)

+ny ∗ (nx ∗σxy +ny ∗σyy +nz ∗σyz)

+nz ∗ (nx ∗σxz +ny ∗σyz +nz ∗σzz)

(2.5)
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The resolved co-slip stress is

τrco = nx ∗ (vx ∗σxx + vy ∗σxy + vz ∗σxz)

+ny ∗ (vx ∗σxy + vy ∗σyy + vz ∗σyz)

+nz ∗ (vx ∗σxz + vy ∗σyz + vz ∗σzz)

(2.6)

Although not considered in this work, the components σR(1,1), σR(2,2), and σR(1,2) are

other resolved stress quantities.

2.4.4 Nucleation Stress

Once the slip system GB dislocation nucleation occurred (section 2.4.1) on and local stress

is known for each simulation in both grains (section 2.4.2), the stress that causes GB dislocation

nucleation to occur can be calculated. A nucleation time step is defined at the time the resolved

shear stress on the nucleation slip system is maximal (for the simulations that nucleate on two

slip systems simultaneously, the nucleation time step is taken as the earlier of the two maximal

values. In practice, the maximal time steps were close to each other meaning either time step

would work). The maximum shear correlates very well with the GB dislocation nucleation event.

The nucleation stress (stress needed to activate GB dislocation nucleation) is taken as the stress

just prior to this time step. The nucleation stress is not taken at the same time as the maximal shear

because large stress fluctuations in the resolved shear and other stress components are expected

to occur around the maximal shear time step (due to the GB accommodating stress via the GB

dislocation nucleation mechanism). Taking the stress just prior allows us to avoid these expected

fluctuations. The nucleation stress is defined separately for each grain.

The resolved shear stress (τrss), resolved normal stress (σrns) and resolved co-slip stress

(τrco) at the nucleation time step for each of the twelve slip systems is stored for future analy-

sis. These values constitute the resolved stress quantities that were present when GB dislocation

nucleation occurs.

The final output of the process explained in this section is a database of the slip system

of the GB dislocation nucleation event and the resolved stresses just prior to that event for every

simulation and in each grain.
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CHAPTER 3. RESULTS

3.1 Survey of Grain Boundary Dislocation Nucleation Responses

Representative GB dislocation nucleation responses for the 386 different triaxial stress

states are presented in Figure 3.1. The right hand figures (3.1a, 3.1c, 3.1e) are snap shots of three

different simulations at the point the stress was measured. The left hand figures (3.1b, 3.1d, 3.1f)

are corresponding images after the nucleation event has progressed. Figure 3.1b shows a case

where each grain nucleates partial dislocations on a single slip system. This accounts for about

50% of the simulations. Figure 3.1d shows a case where two different slip systems exhibit dis-

location nucleation at the same time, or the two events occur so close together as to be nearly

indistinguishable. This case accounts for about 45% or the simulations. Figure 3.1f is a special

case of Figure 3.1d, where dislocation nucleation occurs on two different slip systems but the two

slip systems share a common slip plane. In the structure that emerges from the GB in Figure 3.1f,

the top slip plane has one Burgers vector and the bottom slip plane has another Burgers vector.

Since the slip planes come in pairs, the middle plane acquires a full Burgers vector in between the

two partial slip vectors. This occurred in about 40% of the simulations. Of this 40%, over 90%

of the simulations could be categorized as initially starting on one of the two partials. The other

simulations were analyzed in terms of nucleating on both slip systems. Finally, just under 4% of

the simulations exhibited plasticity of some sort that was not readily categorizable onto one of the

partial slip systems, these cases are excluded from the remaining analysis.

3.2 Nucleation System and Resolved Shear

Over the full range of 386 triaxial stress states, GB dislocation nucleation is observed on

only six of the twelve possible slip systems in each grain. To show the full range of responses

and the influence of the imposed stress states, the nucleation slip system for each stress state is
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Some of the different nucleation events observed in simulations. The left column shows
3 simulations at the time the stress is measured. The right column shows the same simulations after
the nucleation event has progressed
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represented schematically in Figure 3.2. Since the target triaxial stress state is given by the λ

vector, which resides on a unit sphere, the data is presented on stereographic maps for each grain

(Figure 3.2a for grain A, and Figure 3.2b for grain B). The left map is for simulations with σx ≥ 0,

that is, tensile or zero σx. The right map is for simulations with σx < 0, that is, compressive σx. It

is smaller than the left map because it omits the σx = 0 simulations, which are already present on

the perimeter of the left map. The colors on the maps represent the different slip systems for GB

dislocation nucleation, as given by the legend for each grain. The map has regions that are thatched

with two colors for simulations that exhibited simultaneous nucleation on two slip systems. The

black tiles represent simulations that are dropped from the analysis as mentioned in section 3.1.

Comparing the two figures shows that there are complimentary slip systems likely due to

the symmetry of the GB. For instance, if grain A nucleates on its red slip system, grain B will (with

few exceptions) also nucleate on its red slip system (note that the red slip system in grain A is not

the same slip system in grain B, colors have been chosen such that complimentary nucleation

systems are the same color). Figures 3.3a and 3.3b show the magnitude of the resolved shear

stress on the nucleation slip system just prior to nucleation. The variation of the resolved shear

stress correlates well with the regions of same slip systems in Figures 3.2a and 3.2b. However,

it is clear that different slip systems have different criteria for the required resolved shear stress.

For instance, one slip system might require very high resolved shears to activate while another

might require low shears. Also noteworthy is that even within a single nucleation system there is a

gradient of resolved shear strengths needed for dislocation nucleation.

3.3 Resolved Stress Needed to Activate Grain Boundary Dislocation Nucleation

The variation of the resolved shear stresses, τrss, within a single slip system indicates that

GB dislocation nucleation has non-Schmid behavior since a single critical resolved shear scalar

does not predict nucleation. Other factors, such as the resolved normal, σrns, and co-slip, τrco,

stresses are influencing the nucleation event as has been proposed and reported in literature [32,39].

Figure 3.4a plots τrss, σrns and τrco for grain A resolved on to the (111)[211] slip systems for

each analyzed triaxial stress state, regardless of whether the simulation actually nucleates on the

(111)[211] slip system. Those simulations that did nucleate on the (111)[211] slip system are

marked in closed circles, while those that did not are marked as open circles. When two slip
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(a)

(b)

Figure 3.2: (a) The nucleation system for each triaxial stress state in grain A

(b) The nucleation system for each triaxial stress state in grain B

systems nucleate simultaneously, both slip systems are specified with a second ring for the other

slip system. The slip system colors match those used in Figure 3.2a.

In examining Figure 3.4a further, it can be seen that the closed circles are almost always

the highest points, and are clustered along what appears to be a plane. To demonstrate and quantify
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(a)

(b)

Figure 3.3: (a) The resolved shear needed for nucleation for each triaxial stress state in grain A

(b) The resolved shear needed for nucleation for each triaxial stress state in grain B

the normal and co-slip stress dependencies, a plane of the form 1 = τrss
τcrss

+ σrns
σcrns

+ τrco
τcrco

is fit to the

closed circle points. The stresses of these closed circle points are the stresses needed to cause

GB dislocation nucleation on the (111)[112] slip system. This is analogous to the way a critical

20



resolved shear stress is needed to activate slip in Schmid’s law [51], except that the values needed

for nucleation are predicted by a function instead of a single scalar quantity. The parameters τcrss,

σcrns, and τcrco are fitting parameters and correspond to the intercepts of the plane on the τrss, σrns

and τrco axes, respectively.

This process is repeated for all slip systems on which nucleation occurs in both grains.

Similar figures for the other 5 slip systems in grain A are presented in Figure 3.4b-f, while those

for grain B are omitted for space. The planar fitting parameters for all nucleation slip systems

in both grain A and grain B are shown in Table 3.1 and Table 3.2, respectively. These tables

also contain the number of sample points, N, number of points above the plane that nucleate on

some other slip system, Nbad , and the R2 statistic for the planar fitting (note that this metric, while

useful, should be interpreted with caution as it depends on the N value). Despite the visually

appealing fit, the planar model does not always account for all variability (this is discussed further

in section 4.3). Nonetheless, there are a small number of critical values that can describe the local

stress dependence for nucleation on a given slip system.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: τrss, σrns and τrco for each nucleation slip system for GB dislocation nucleation into
grain A. Points marked with a solid circle represent simulations that nucleated on the graph’s slip
system. A plane is fit to these points and represents the stress needed to activate grain boundary
dislocation nucleation
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Table 3.1: Coefficients found for each slip system’s planar fit for GB dislocation
nucleation into grain A. The coefficients quantify the normal and co-slip

pressure dependence on the critical resolved shear stress

Slip System τcrns σcrns τcrco N Nbad R2 statistic

(111)[211] 4.38 GPa 44.3 GPa 7.7 GPa 12 8 0.986
(111)[121] 3.42 GPa 35.6 GPa -16.3 GPa 17 0 0.97
(111)[112] 5.68 GPa 41.5 GPa 18.3 GPa 44 0 0.679
(111)[211] 3.38 GPa 62.7 GPa -42.3 GPa 106 0 0.616
(111)[121] 3.88 GPa 49.7 GPa 8.19 GPa 62 1 0.875
(111)[112] 1.58 GPa 117 GPa 6.79 GPa 154 2 0.654

Table 3.2: Coefficients found for each slip system’s planar fit
for GB dislocation nucleation into grain B

Slip System τcrns σcrns τcrco N Nbad R2 statistic

(111)[211] 4.57 GPa 44.8 GPa -9.82 GPa 17 5 0.981
(111)[211] 3.17 GPa 50.5 GPa 209 GPa 90 1 0.736
(111)[121] 1.7 GPa 132 GPa 24.5 GPa 153 2 0.298
(111)[112] 3.07 GPa 76.2 GPa -11.1 GPa 74 12 0.482
(111)[121] 5.93 GPa 42.1 GPa -37.9 GPa 44 2 0.896
(111)[112] 2.86 GPa 35.5 GPa 11.7 GPa 20 0 0.931
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CHAPTER 4. DISCUSSION

4.1 Nucleation Criteria

The values of τcrss represents the resolved shear stress needed for nucleation if both the re-

solved normal and co-slip stresses are zero. Likewise, σcrns and τcrco represent nucleation thresh-

old values if the other two resolved quantities are zero. Since resolved shear stress is known to

be the main factor in dislocation glide [52], it is unsurprising that the τcrss fitting parameters are

substantially smaller than the σcrns and τcrcs values. Initiating GB dislocation nucleation without

any resolved shear stress is very hard. Intriguingly, the values of τcrss vary dramatically from slip

system to slip system. What is a large resolved shear stress for one slip system might be a small

stress on another. This suggests that GB dislocation nucleation is favored on some slip systems

over others.

As previously mentioned, Figure 3.4 shows that almost all simulations that nucleated on

a slip system other than the graph they are plotted on (the asterisks) lie below the planar fit. The

planar fit constitutes a nucleation criterion for a GB to nucleate a dislocation on the slip system the

criterion is formulated for. As the stress in a simulation is ramped upwards, the magnitudes of τrss,

σrns, and τrco grow on each slip system until their values satisfy one of the plane equations. The

nucleation criterion is captured in the binary inequality

1≤ τrss

τcrss
+

σrns

σcrns
+

τrco

τcrco
(4.1)

When this inequality is true for any set of τrss, σrns, and τrco, GB dislocation nucleation is expected

to occur on the slip system the inequality is formulated for.

With simple algebraic manipulation, equation (4.1) is changed into the functional form

τrss = τcrss +
∂τcrss

∂σcrns
σrns +

∂τcrss

∂τcrco
τrco (4.2)
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where
∂τcrss

∂σcrns
=
−τcrss

σcrns

∂τcrss

∂τcrco
=
−τcrss

τcrco
(4.3)

The coefficients ∂τcrss
∂σcrns

and ∂τcrss
∂τcrco

explain how the resolved shear stress needed to nucleate a dis-

location varies with resolved normal and co-slip stress. We have used a linear fitting equation so

these partial derivatives are scalars. The value of ∂τcrss
∂σcrns

is expected to be negative (meaning larger

compressive normal stresses raises the needed resolved shear stress) because compressive normal

stresses should make it harder for the atoms on that slip system to glide past each other [32, 39].

Fitting parameters for each slip system are shown in Table 4.1 and Table 4.2. As expected, ∂τcrss
∂σcrns

is negative for each slip system. We do not attempt to theoretically motivate the sign of the ∂τcrss
∂σcrco

term because positive co-slip and negative co-slip should behave quite similarly.

Table 4.1: Functional fitting parameters for grain A

Slip System τcrns
∂τcrss
∂σcrns

∂τcrss
∂σcrco

(111)[211] 4.38 GPa -0.0989 -0.569
(111)[121] 3.42 GPa -0.0962 0.21
(111)[112] 5.68 GPa -0.137 -0.311
(111)[211] 3.38 GPa -0.054 0.08
(111)[121] 3.88 GPa -0.078 -0.474
(111)[112] 1.58 GPa -0.0135 -0.233

Table 4.2: Functional fitting parameters for grain B

Slip System τcrns
∂τcrss
∂σcrns

∂τcrss
∂σcrco

(111)[211] 4.57 GPa -0.102 0.466
(111)[211] 3.17 GPa -0.0628 -0.0151
(111)[121] 1.7 GPa -0.0128 -0.0695
(111)[112] 3.07 GPa -0.0403 0.278
(111)[121] 5.93 GPa -0.141 0.156
(111)[112] 2.86 GPa -0.0806 -0.245
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4.2 Yield Surfaces

By combining the GB dislocation nucleation criteria developed in the Results chapter, a

single yield criterion for GB dislocation nucleation is formed for the GB. If the yield criterion is

known for a particular GB, it becomes trivial to know under what stress states and on what slip

systems GB dislocation nucleation is expected to occur. A yield surface is built for the GB using

principal stresses oriented in the x̂, ŷ, and ẑ directions. Note that the yield surface is not independent

of orientation because of the presence of the GB. Yield surfaces for GB dislocation nucleation are

shown in Figures 4.1 and 4.3 for both grains. Biaxial yield surface slices are included in Figures 4.2

and 4.4 to better show the structure of the yield surface. A line of hydrostatic stress is included

for reference. The yield surface does not account for GB plasticity mechanisms other than the GB

dislocation nucleation; however, if other plasticity mechanisms activation could be formulated as

a function of stress state they could also be included.

Figure 4.1: Theoretical yield surface for GB dislocation nucleation in grain A
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(a) (b)

(c)

Figure 4.2: (a-c) Biaxial yield slices to illustrate the shape of the yield surface for grain A

The GB dislocation nucleation yield surface is reminiscent of a Mohr-Coulomb yield sur-

face [53]. The yield surface is well oriented with the line of hydrostatic stress suggesting yield is

largely a function of deviatoric stress, though not independent of other factors. Not surprisingly,

the GB is particularly strong under triaxial compression; triaxial compression means there are large

compressive resolved normal stresses which make it difficult for atoms to glide over each other. In

Mohr-Coulomb, each face of the yield surface arises from changes in what two principal stresses

control yield [53]; in our yield surface each face corresponds to GB dislocation nucleation on a
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Figure 4.3: Theoretical yield surface for GB dislocation nucleation in grain B

different slip system. Note that while there where 6 nucleation criterion in grain A, there are only

5 faces on the yield surface. This is because in principal stress space one of the nucleation crite-

rion was always activated before the unrepresented criterion was. The prior criterion essentially

masked the latter. Unlike the Mohr-Coulomb yield surface, the GB dislocation nucleation yield

surface does not end in a sharp point exactly on the line of hydrostatic stress. Instead, the tip is

blunted with the individual faces not converging to a point. This is likely because each nucleation

criterion has a different normal and co-slip stress dependence but may be due to noise in the data

set.

4.3 Residual Analysis

The efficacy of using a planar GB dislocation nucleation criterion is analyzed using residual

analysis. Residuals are defined as the error between a data point and a theoretical fit [54]. A model
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(a) (b)

(c)

Figure 4.4: (a-c) Biaxial yield slices to illustrate the shape of the yield surface for grain B

is efficacious if its residuals are randomly dispersed. If there is a strong underlying pattern, then it

means the model is failing to capture the shape of the data set.

A residual analysis is performed for each slip system. The residual error for the (111)[121]

slip system is shown in Figure 4.5 with a polynomial surface of degree 2 fit to the data points.

Note that the data points have a slight curve to them suggesting that the linear model used herein

might be incorrect; however, looking at Figure 3.4 again, one will note that the curvature is very

slight compared to the overall spread in the data. As such, we believe that using a planar nucleation
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criterion model is acceptable. It is possible that a curved fit such as a paraboloid or ellipsoid would

better model GB dislocation nucleation. This is left for future research.

Figure 4.5: Residual error for the (111)[121] slip system. A polynomial surface of degree 2 is fit
to the residual data

4.4 Stress Dependence and Grain Boundary Geometry

By plotting the values of τcrss for each slip system as a function of the angle of the slip

plane normal forms with the GB normal, we can attempt to find rules relating nucleation criteria

(as captured by τcrss) with the angular geometry of the GB. This is done for various angles in

Figure 4.6 plotting τcrss. The top right plot shows τcrss as a function of the angle between an

activated slip system’s slip plane normal and GB normal (the x̂ direction). The top left plot shows

τcrss as a function of the angle between slip plane direction and GB normal. The bottom two graphs

do the same except the angle is formed with the GB’s tilt axis (the ŷ direction).
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Figure 4.6: The shear intercept, τcrss as a function of various angles the different nucleation slip
systems form with the GB. There are no discernible patterns.

As is apparent, there appears to be no patterns in these graphs. This suggests that each

slip system’s τcrss value cannot be found solely as a function of GB geometry (for example, the

(111)[121] slip system’s value of τcrss cannot be geometrically correlated with the (111)[112] slip

system’s value of τcrss); however, comparable slip systems from slightly different GB orientations

(for example, the (111)[121] slip system’s value of τcrss for a 30° tilt GB can be correlated with the

(111)[121] slip system’s value of τcrss for a 31° tilt GB) likely can be. Spearot, et. al. has already

correlated maximum uniaxial stress (perpendicular to the GB) for GBs of differing tilt [32]. Graphs
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are also made expressing ∂τcrss
∂σcrns

and ∂τcrss
∂τcrco

as a function of angle with the GB yet are omitted for

brevity. These graphs are similarly disordered.

4.5 Applicability to Other Systems and Phenomena

Besides GB dislocation nucleation, other GB plasticity mechanisms are known to exist

(GB sliding, GB migration, etc.). Some of these mechanisms are known to activate under applied

shear. Stress states in this paper are chosen to induce GB dislocation nucleation and suppress other

plasticity mechanisms; specifically, stress states are chosen such that shear stresses are minimal.

Incorporating shears into a unified GB plasticity yield criterion may be easy. For instance, GB

sliding may have its own yield criterion, by Combining GB sliding’s yield criterion with the GB

dislocation nucleation criterion developed in this paper would likely produce a yield criterion that

predicts GB sliding as well as GB dislocation nucleation. An exhaustive, five dimensional survey

of the possible ways to ramp normal and shear stresses on a GB is needed.

We do not know if this work will transfer to more complex systems containing high en-

ergy GB structures including non-equilibrium interfaces [42], GB ledges [3, 55], and triple junc-

tions [34]. Of necessity, this paper has taken the limited scope of analyzing a single, idealized

planar GB under the large but not exhaustive set of possible triaxial stress states. It is quite possi-

ble that non-equilibrium systems would conform to the planar GB dislocation nucleation criterion

formulated herein and would simply have different values for τcrss, σcrns, and τcrco. It is also possi-

ble that the high energy structures nucleate based on a different set of relevant physics that would

make this work inapplicable to such systems. In one example, Tucker, et. al. showed that by

adding non-equilibrium content to a GB, its primary nucleation mechanism changed from GB dis-

location nucleation to GB migration [35]. We have no reason to believe that these findings should

not generalize to GB dislocation nucleation from most other planar equilibrium GBs. Exceptions

could include GBs with abnormal structures such as extremely high nanoporosity [40], GBs known

to shear couple [56], or GBs with dissociated structure [49, 50].
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4.6 Nucleation System and Schmid Factor

The Schmid factor has been proposed as a useful metric in determining what slip system

GB dislocation nucleation occurs on [42, 57]. The metric is clearly important in uniaxial tension;

however, many have found cases where nucleation occurs on a slip system other than would be

predicted by a Schmid factor analysis [33, 41, 50]. The yield criterion developed herein shows

that Schmid factor does not predict nucleation system as the activated GB dislocation nucleation

system is also a function of normal and co-slip stresses. Figure 4.7a shows the slip system that is

actually nucleated on in grain A. Figure 4.7b shows the expected slip system based on a maximal

Schmid analysis using the local stress for grain A. Some regions of the stereographic plot show

that the system predicted by maximal Schmid match the actual nucleation system but the regions

for each slip system are generally too small or too large. More importantly, the maximum Schmid

treatment suggests nucleation should occur on slip systems that are never actually nucleated on

in the simulations. We believe that maximum Schmid theories to predict nucleation system are

inaccurate.

4.7 Effect of Stress Definition

In the 2.4.2 section, we used a local stress defined only using atoms close to the GB to

get the stress the GB was under. Due to the GB back stress, the stress at the GB compared to the

pressure the bicrystal is under can vary considerably. Here, we repeat the analysis using different

stress definitions to see what effect the chosen stress definition has on the nucleation criteria. We

calculate τcrss, σcrns, and τcrco for each slip system using virial stresses averaged over a 5-10 Å band

(the same used originally, which corresponds to a standoff of 7.5 Å), a 15-20 Å band (standoff of

17.5 Å), a 25-30 Å band (standoff of 27.5 Å), and a 35-40 Å band (standoff of 37.5 Å) where

the time nucleation occurs is tied to the maximal shear stress on the nucleation system. A global

stress using the pressure the bicrystal is under is also included; however, the time of nucleation is

kept at the same time as the 5-10 Å band. This was done because when using the global stress,

the expected drop in resolved shear stress at the point of nucleation is very small because the

nucleation event is averaged out over every atom in the simulation.

33



(a)

(b)

Figure 4.7: (a) the actual nucleation system that activated in grain A (b) the theoretically predicted
slip system according to a max Schmid treatment. Note that the graphs do not match up very well
showing that maximum Schmid theories to predict nucleation system are inaccurate

Comparisons of these different stress definitions are shown in Figure 4.8 for grain A. Note

that the 15-20 Å band, 25-35 Å band, and 35-40 Å band predict similar fitting parameters to the

original 5-10 Å band. This suggests that the methodology developed herein is relatively insensitive

to local stress definition; however, the global pressure only matches the others some times. For
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instance, the global fitting parameters for the (111)[121] slip system (green) consistently match the

fitting parameters for the local stress definitions as seen in the green graphs; but the global fitting

parameters for the (111)[211] slip system (red) vary substantially from the other stress definitions

as seen by the global bar not matching the other bars in the red graphs. It appears that a global

stress definition may work for GB dislocation nucleation on some slip systems and not for others.

We recommend using a local stress taken from within the grain dislocations are being nucleated

into.

Figure 4.8: Comparison of different stress definitions on the fitting parameters τcrss, σcrns, and τcrss.
Each row of graphs is for a different fitting parameter. Each column of graphs is for a different slip
system. Bars are for different stress definitions as defined in the text
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CHAPTER 5. CONCLUSION

5.1 Summary of Work

Molecular dynamics is used to measure grain boundary dislocation nucleation under con-

tinuously variable triaxial stresses. This allows us to quantify the resolved shear, normal, and

co-slip stresses needed for a GB to nucleate dislocations. A summary of this thesis is as follows:

• Applying triaxial stresses to a bicrystal activates the GB dislocation nucleation plasticity

mechanism

• The slip system GB dislocation nucleation occurs on can be found by analyzing the stacking

fault left behind a nucleated partial dislocation

• The threshold stress that leads to GB dislocation nucleation is taken as the stress when re-

solved shear on the nucleation system is maximal. From this, the resolved stresses that lead

to GB dislocation nucleation are calculated

• We use a linear function of resolved shear, normal, and co-slip stresses to predict GB dislo-

cation nucleation

• Criteria for each nucleation system are formulated. Each criteria is found to have different

fitting parameters

• An algebraic manipulation of the nucleation criterion allows us to verify the fitting parame-

ters are consistent with theory

• A residual analysis suggests the linear form of the nucleation criteria fits reasonably well;

however, better non-linear forms may be possible

• By combining criteria for each slip system together, a theoretical yield surface for GB dislo-

cation nucleation can be generated
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• Finding fitting parameters for different local stress definitions as well as a global stress defi-

nition shows that the fitting parameters should be taken using a local stress within the grain

dislocations are nucleated into

The theoretical yield surface is reminiscent of the Mohr-Coulomb yield surface. Each face of

the surface corresponds to GB dislocation nucleation on a different slip system. By analyzing

simulated slip system and comparing with the slip system that would be predicted by Schmid

Factor, it is shown that Schmid factor poorly predicts nucleation system.

5.2 Future Work

The criteria developed herein will allow others to predict GB dislocation nucleation without

having to resort to expensive computational simulations. By formulating GB dislocation nucleation

yield constitutive laws, we hope that finite element crystal plasticity models [58] might be able to

incorporate GB dislocation nucleation effects. Before this can be done, nucleation criteria for many

different GBs must be determined.

We have demonstrated that applying many different triaxial stress states to a GB allows us

to build criteria for GB dislocation nucleation. Beyond GB dislocation nucleation, it is attractive

to formulate yield criteria for other types of GB plasticity mechanisms such as GB sliding and

GB migration. This work specifically attempted to suppress such mechanisms; however, these

mechanisms could be studied by applying shears and normal stresses to a bicrystal system.

5.3 Major Findings

To our knowledge, this work constitutes the first time that criteria for GB dislocation nucle-

ation activation have been formulated under triaxial stress. A nucleation criterion exists for each

slip system the GB might nucleate on. Each criterion has a different set of fitting parameters. Use

of the criteria allows prediction of what stresses and on what slip systems GB dislocation nucle-

ation is expected to occur on. Using the nucleation criteria, we build theoretical yield surfaces for

GB dislocation nucleation.

We have definitively demonstrated that GB dislocation nucleation depends on resolved

shear, resolved normal, and resolved co-slip stresses further validating work done by Spearot, et.
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al. [32]. We show that the slip system GB dislocation nucleation occurs on cannot be determined

by maximum Schmid factor alone.
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APPENDIX A. CODE

A.1 Triaxial Stress States: MATLAB

The following will print triaxial stress states (λ unit vectors) to the terminal. These lines

can be saved to a file called quadCubeSubdivide_4.txt and are then used in the super computing

BASH script launch.sh. It uses a suite of functions from Anton Semechko [45] which is avail-

able on line at https://www.mathworks.com/matlabcentral/fileexchange/37004-suite-of-functions-

to-perform-uniform-sampling-of-a-sphere as of 23-May-2016.

1 close all

2 clear all

3 clc

4
5 addpath('./S2 Sampling Toolbox/')

6
7 % Generate a quad cube mesh

8 fv=QuadCubeMesh;

9 for i=2:4

10 fv=SubdivideSphericalMesh(fv,1);

11 end

12
13 % print the verticies that will be the Lambda vectors

14 fv.vertices

A.2 Super Computing Code: BASH Scripting

The super computing code presented here is current as of 24-May-2016.

A.2.1 Thermalization

The following code will thermalize the bicrystal and write it out as a restart file (consumable

by LAMMPS) and a dump file (consumable by OVITO).

thermalize.sh:
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1 #!/bin/bash

2
3 JOB_MSG=`

4 sbatch <<SBATCH_EOF

5 #!/bin/bash

6
7 #SBATCH −−ntasks=24
8 #SBATCH −−time=10:00:00 # walltime

9 #SBATCH −−mem−per−cpu=2048M # memory per CPU core

10 #SBATCH −−output=./tmp/thermalize.$1.slurm
11 #SBATCH −−gres=gpu:4
12
13 time mpirun /path/to/lammps/executable/lmp_gpu_exe <<THERMALIZE_EOF −log ./tmp

/thermalize.log −sf gpu −pk gpu 4 −nocite
14
15 units metal

16 boundary p p p

17 atom_style atomic

18 pair_style eam/alloy

19
20 read_data ./ni.81.data

21 pair_style eam/alloy

22 pair_coeff * * ./ni1.set Ni Ni Ni Ni Ni

23 neighbor 2 bin

24
25 replicate 1 $1 $1

26
27 velocity all create 0.2 54321 dist gaussian

28 fix ensemble all npt temp 0.1 0.1 0.3 x 0 0 5 y 0 0 5 z 0 0 5 nreset 1

29 run 100000

30
31 write_data ./thermalized/ni.81.thermo.0p1.size.$1.data

32 THERMALIZE_EOF

33
34 SBATCH_EOF

35 `

36
37 JOB_ID=${JOB_MSG##* }

38
39 sbatch <<SBATCH_EOF

40 #!/bin/bash

41
42 #SBATCH −−ntasks=1
43 #SBATCH −−time=10:00:00 # walltime

44 #SBATCH −−mem−per−cpu=2048M # memory per CPU core

45 #SBATCH −−output=./tmp/orig.$1.slurm
46 #SBATCH −−depend=afterok:$JOB_ID
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47
48 time mpirun /path/to/lammps/executable/lmp_exe <<DUMP −log ./tmp/orig.$1.log

49
50 units metal

51 boundary p p p

52 atom_style atomic

53 pair_style eam/alloy

54
55 # set up stress calculations

56 read_data ./thermalized/ni.81.thermo.0p1.size.$1.data

57 pair_style eam/alloy

58 pair_coeff * * ./ni1.set Ni Ni Ni Ni Ni

59 neighbor 2 bin

60
61 compute sv all slip/atom 0.01 3.52

62 compute cna all cna/atom 3.0046

63 dump dump_dislocations all custom 500 ./thermalized/ni.81.thermo.0p1.size.$1.

dump id type x y z c_sv[1] c_sv[2] c_sv[3] c_cna

64
65 run 0

66
67 DUMP_EOF

68
69 SBATCH_EOF

A.2.2 Simulation

launch.sh: The following will submit jobs to run each simulation on the super computer.

Serial or GPU accelerated submission scripts are possible.

1 #!/bin/bash

2
3 # this string specifies what to name the root folder and sub folders for the

simulations

4 prefix=quad4_s1

5
6 script=./script.in

7 data_in=./path/to/inputfile/ni.81.thermo.0p1.size.1.data

8
9 cp $script /path/to/compute/staging/scripts/$prefix.in

10 cp $data_in /path/to/compute/staging/datafiles/$prefix.data

11
12 mkdir /path/to/compute/output/$prefix

13
14 # 'serial' can be changed to 'gpu' to use GPU accelerated hardware

15 awk −v exe_type=serial −v prefix=$prefix −v stress=−1000000 '{
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16 vectx=$1*stress

17 vecty=$2*stress

18 vectz=$3*stress

19 vectx_pos=−1*$1*stress
20 vecty_pos=−1*$2*stress
21 vectz_pos=−1*$3*stress
22 name= prefix _ vectx_pos _ vecty_pos _ vectz_pos

23 cmd_line_args=-output=/path/to/comute/staging/slurms/ name .slurm
-job-name= name ./submit_ exe_type .sh name vecty vectz
vectx prefix

24 system(sbatch cmd\_line\_args)

25 } ' /path/to/triaxial/stress/states/quadCubeSubdivide\_4.txt

submit_serial.sh: This submission script will run a single simulation serially (on a single

processor). It can be used by setting the ’exe_type’ variable in ’launch.sh’ to ’serial’.

1 #!/bin/bash

2
3 #SBATCH −−ntasks=1
4 #SBATCH −−time=48:00:00 # walltime

5 #SBATCH −−nodes=1
6 #SBATCH −−mem−per−cpu=2048M # memory per CPU core

7
8 name=$1

9 vecty=$2

10 vectz=$3

11 vectx=$4

12 prefix=$5

13
14 mkdir /path/to/compute/output/$prefix/$name

15 mkdir /path/to/compute/output/$prefix/$name/dumps/

16 mkdir /path/to/compute/output/$prefix/$name/thermovals/

17 mkdir /path/to/compute/output/$prefix/$name/others/

18
19 DIR=$( cd $( dirname $BASH_SOURCE[0] ) && pwd )

20 FILE=`basename $0`

21 DIRFILE=DIR/FILE
22 cp −a $DIRFILE /path/to/compute/output/$prefix/$name/others/submission_script.

sh

23 cp −a /path/to/compute/staging/scripts/$prefix.in /path/to/compute/output/

$prefix/$name/others/script.in

24 cp −a /path/to/compute/staging/datafiles/$prefix.data /path/to/compute/output/

$prefix/$name/others/datafile.data

25
26 time /path/to/lammps/executable/lmp_exe \

27 −log /path/to/compute/output/$prefix/$name/others/lammps.log \

28 −in /path/to/compute/output/$prefix/$name/others/script.in \

29 −var NAME $name \
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30 −var FORCE_X $vectx \

31 −var FORCE_Y $vecty \

32 −var FORCE_Z $vectz \

33 −var PREFIX $prefix

submit_gpu.sh: This submission script will run a single simulation on GPU accelerated

hardware. It can be used by setting the ’exe_type’ variable in ’launch.sh’ to ’gpu’.

1 #!/bin/bash

2
3 #SBATCH −−ntasks=24
4 #SBATCH −−gres=gpu:4
5 #SBATCH −−time=3:00:00 # walltime

6 #SBATCH −−exclusive
7 #SBATCH −−mem−per−cpu=2048M # memory per CPU core

8
9 name=$1

10 vecty=$2

11 vectz=$3

12 vectx=$4

13 prefix=$5

14
15 module load cuda/6.5.14

16
17 mkdir /path/to/compute/output/$prefix/$name

18 mkdir /path/to/compute/output/$prefix/$name/dumps/

19 mkdir /path/to/compute/output/$prefix/$name/thermovals/

20 mkdir /path/to/compute/output/$prefix/$name/others/

21
22 DIR=$( cd $( dirname $BASH_SOURCE[0] ) && pwd )

23 FILE=`basename $0`

24 DIRFILE=DIR/FILE
25
26 echo Look Here

27 echo $DIR

28 echo $FILE

29
30 cp −a $DIRFILE /path/to/compute/output/$prefix/$name/others/submission_script.

sh

31 cp −a /path/to/compute/staging/scripts/$prefix.in /path/to/compute/output/

$prefix/$name/others/script.in

32 cp −a /path/to/compute/staging/datafiles/$prefix.data /path/to/compute/output/

$prefix/$name/others/datafile.data

33
34 time mpirun /path/to/lammps/executable/lmp_gpu_exe \

35 −log /path/to/compute/output/$prefix/$name/others/lammps.log \

36 −in /path/to/compute/output/$prefix/$name/others/script.in \
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37 −sf gpu −pk gpu 4 \

38 −var NAME $name \

39 −var FORCE_X $vectx \

40 −var FORCE_Y $vecty \

41 −var FORCE_Z $vectz \

42 −var PREFIX $prefix

This LAMMPS input file instructs LAMMPS how to run a triaxial simulation. It calculates

local stress and prints snap shots of the simulation periodically so we can later determine the slip

system the GB nucleates on. It requires a LAMMPS executable with the optional VORONOI

package and the custom compute_slip_atom.h and compute_slip_atom.cpp files (see A.2.3).

1 # initialization

2 units metal

3 boundary p p p

4 atom_style atomic

5 pair_style eam/alloy

6
7 # atom definition

8 read_data /path/to/compute/output/${PREFIX}/${NAME}/others/datafile.data

9 pair_style eam/alloy

10 pair_coeff * * ./ni1.set Ni Ni Ni Ni Ni

11 neighbor 2 bin

12
13 ###########################################################################

14
15 variable lat equal 3.52

16 variable cnaparam equal 0.8536*v_lat

17
18 ###########################################################################

19 # set up dump

20
21 compute cna all cna/atom ${cnaparam}

22 compute sv all slip/atom 0.01 ${lat}

23
24 variable isdefect atom (c_cna==2||c_cna==3||c_cna==4||c_cna==5)

25 group defect_atoms dynamic all var isdefect every 100

26
27 dump dump_dislocations defect_atoms custom 100 /path/to/compute/output/${

PREFIX}/${NAME}/dumps/dump.* id type x y z c_sv[1] c_sv[2] c_sv[3] c_cna

28
29 ###########################################################################

30 # set up kill criteria

31
32 variable ndefect equal count(defect_atoms)

33 variable natoms equal count(all)
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34
35 variable stepNumber equal step

36
37 ###########################################################################

38 # this computes the standoff stress for 5−10 Angstroms away from the GB

39
40 region standoff_atoms_a5_region block $(63−10) $(63−5) INF INF INF INF

41 group standoff_atoms_a5 region standoff_atoms_a5_region

42 compute peratom_a5 standoff_atoms_a5 stress/atom NULL

43 compute p_a5 standoff_atoms_a5 reduce sum c_peratom_a5[1] c_peratom_a5[2]

c_peratom_a5[3] c_peratom_a5[4] c_peratom_a5[5] c_peratom_a5[6]

44 compute vol_a5 standoff_atoms_a5 voronoi/atom

45 compute v_a5 standoff_atoms_a5 reduce sum c_vol_a5[1]

46 variable pxx_a5 equal 0.0001*c_p_a5[1]/c_v_a5

47 variable pyy_a5 equal 0.0001*c_p_a5[2]/c_v_a5

48 variable pzz_a5 equal 0.0001*c_p_a5[3]/c_v_a5

49 variable pxy_a5 equal 0.0001*c_p_a5[4]/c_v_a5

50 variable pxz_a5 equal 0.0001*c_p_a5[5]/c_v_a5

51 variable pyz_a5 equal 0.0001*c_p_a5[6]/c_v_a5

52
53 fix print_a5 all print 100 $stepNumber $pxx_a5 $pyy_a5 $pzz_a5 $pxy_a5 $pxz_a5

$pyz_a5 file /path/to/compute/output/${PREFIX}/${NAME}/thermovals/
thermovals.a.5 screen no title

54
55 region standoff_atoms_b5_region block $(63+5) $(63+10) INF INF INF INF

56 group standoff_atoms_b5 region standoff_atoms_b5_region

57 compute peratom_b5 standoff_atoms_b5 stress/atom NULL

58 compute p_b5 standoff_atoms_b5 reduce sum c_peratom_b5[1] c_peratom_b5[2]

c_peratom_b5[3] c_peratom_b5[4] c_peratom_b5[5] c_peratom_b5[6]

59 compute vol_b5 standoff_atoms_b5 voronoi/atom

60 compute v_b5 standoff_atoms_b5 reduce sum c_vol_b5[1]

61 variable pxx_b5 equal 0.0001*c_p_b5[1]/c_v_b5

62 variable pyy_b5 equal 0.0001*c_p_b5[2]/c_v_b5

63 variable pzz_b5 equal 0.0001*c_p_b5[3]/c_v_b5

64 variable pxy_b5 equal 0.0001*c_p_b5[4]/c_v_b5

65 variable pxz_b5 equal 0.0001*c_p_b5[5]/c_v_b5

66 variable pyz_b5 equal 0.0001*c_p_b5[6]/c_v_b5

67
68 fix print_b5 all print 100 $stepNumber $pxx_b5 $pyy_b5 $pzz_b5 $pxy_b5 $pxz_b5

$pyz_b5 file /path/to/compute/output/${PREFIX}/${NAME}/thermovals/
thermovals.b.5 screen no title

69
70 ###########################################################################

71
72 compute mypress all pressure thermo_temp

73 variable pxx equal −0.0001*c_mypress[1]
74 variable pyy equal −0.0001*c_mypress[2]
75 variable pzz equal −0.0001*c_mypress[3]
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76 variable pxy equal −0.0001*c_mypress[4]
77 variable pxz equal −0.0001*c_mypress[5]
78 variable pyz equal −0.0001*c_mypress[6]
79
80 fix print_global all print 100 $stepNumber $pxx $pyy $pzz $pxy $pxz

$pyz file /path/to/compute/output/${PREFIX}/${NAME}/thermovals/thermovals.
global screen no title

81
82 ###########################################################################

83
84 fix ensemble all npt temp 0.1 0.1 0.3 x 0 ${FORCE_X} 5 y 0 ${FORCE_Y} 5 z 0 ${

FORCE_Z} 5 nreset 1

85
86 # this will kill the simulation when 35% of atoms are in non FCC

configurations. That will be well after the relevant GB dislocation

nucleation event has occurred.

87 variable nkill equal 0.35*v_natoms

88 run 1000000 start 0 stop 1000000 every 1000 if ’nde f ect >nkill’ then ’quit’

A.2.3 Slip Vector Compute Code

The following code implements a compute in LAMMPS to calculate the slip vector as

proposed in [22]. It was emailed to me by Doctor Homer on 13-April-2015. For help compiling

LAMMPS with a custom compute, see lammps.sandia.gov/doc/Section_modify.html (current as

of 24-May-2016).

compute_slip_atom.h:

1 /* −*− c++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 LAMMPS − Large−scale Atomic/Molecular Massively Parallel Simulator

3 http://lammps.sandia.gov, Sandia National Laboratories

4 Steve Plimpton, sjplimp@sandia.gov

5
6 Adapted from compute_displace_atom and compute_centro_atom

7 Written by Eric Homer and Garritt Tucker.

8 Based on slip vector by J. A. Zimmerman, C. L. Kelchner, P. A. Klein,

9 J. C. Hamilton, and S. M. Foiles. PRL, 2001, vol 87, 165507.

10
11 Copyright (2003) Sandia Corporation. Under the terms of Contract

12 DE−AC04−94AL85000 with Sandia Corporation, the U.S. Government retains

13 certain rights in this software. This software is distributed under

14 the GNU General Public License.

15
16 See the README file in the top−level LAMMPS directory.

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
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18
19 #ifdef COMPUTE_CLASS

20
21 ComputeStyle(slip/atom,ComputeSlipAtom)

22
23 #else

24
25 #ifndef LMP_COMPUTE_SLIP_ATOM_H

26 #define LMP_COMPUTE_SLIP_ATOM_H

27
28 #include compute.h

29
30 namespace LAMMPS_NS {

31
32 class ComputeSlipAtom : public Compute {

33 public:

34 ComputeSlipAtom(class LAMMPS *, int, char **);

35 ~ComputeSlipAtom();

36 void init();

37 void init_list(int, class NeighList *);

38 void compute_peratom();

39 double memory_usage();

40
41 private:

42 int nmax;

43 double cutsq,btol;

44 class NeighList *list;

45 double **slip;

46 char *id_fix;

47 class FixStore *fix;

48
49
50 };

51
52 }

53
54 #endif

55 #endif

56
57 /* ERROR/WARNING messages:

58
59 E: Illegal ... command

60
61 Self−explanatory. Check the input script syntax and compare to the

62 documentation for the command. You can use −echo screen as a

63 command−line option when running LAMMPS to see the offending line.

64
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65 E: Could not find compute displace/atom fix ID

66
67 Self−explanatory.
68
69 */

compute_slip_atom.cpp:

1 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 LAMMPS − Large−scale Atomic/Molecular Massively Parallel Simulator

3 http://lammps.sandia.gov, Sandia National Laboratories

4 Steve Plimpton, sjplimp@sandia.gov

5
6 Adapted from compute_displace_atom and compute_centro_atom

7 Written by Eric Homer and Garritt Tucker.

8 Based on slip vector by J. A. Zimmerman, C. L. Kelchner, P. A. Klein,

9 J. C. Hamilton, and S. M. Foiles. PRL, 2001, vol 87, 165507.

10
11 Copyright (2003) Sandia Corporation. Under the terms of Contract

12 DE−AC04−94AL85000 with Sandia Corporation, the U.S. Government retains

13 certain rights in this software. This software is distributed under

14 the GNU General Public License.

15
16 See the README file in the top−level LAMMPS directory.

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

18
19 #include math.h

20 #include string.h

21 #include compute_slip_atom.h

22 #include atom.h

23 #include update.h

24 #include group.h

25 #include domain.h

26 #include modify.h

27 #include fix.h

28 #include fix_store.h

29 #include memory.h

30 #include error.h

31 //#include stdlib.h

32 #include neighbor.h

33 #include neigh_list.h

34 #include neigh_request.h

35 #include force.h

36 #include pair.h

37 #include comm.h

38
39 using namespace LAMMPS_NS;

40
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41 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

42
43 ComputeSlipAtom::ComputeSlipAtom(LAMMPS *lmp, int narg, char **arg) :

44 Compute(lmp, narg, arg)

45 {

46 if (narg < 4) error−>all(FLERR,Illegal compute slip/atom command);

47
48 btol = force−>numeric(FLERR,arg[3]);
49
50 //Set cutoff

51 if (narg == 5) {

52 cutsq = force−>numeric(FLERR,arg[4]);
53 cutsq = cutsq * cutsq;

54 }

55 else cutsq = −1;
56
57 peratom_flag = 1;

58 size_peratom_cols = 4;

59
60 // create a new fix STORE style

61 // id = compute−ID + COMPUTE_STORE, fix group = compute group

62
63 int n = strlen(id) + strlen(_COMPUTE_STORE) + 1;

64 id_fix = new char[n];

65 strcpy(id_fix,id);

66 strcat(id_fix,_COMPUTE_STORE);

67
68 char **newarg = new char*[5];

69 newarg[0] = id_fix;

70 newarg[1] = group−>names[igroup];
71 newarg[2] = (char *) STORE;

72 newarg[3] = (char *) 1;

73 newarg[4] = (char *) 3;

74 modify−>add_fix(5,newarg);
75 fix = (FixStore *) modify−>fix[modify−>nfix−1];
76 delete [] newarg;

77
78 // calculate xu,yu,zu for fix store array

79 // skip if reset from restart file

80
81 if (fix−>restart_reset) fix−>restart_reset = 0;

82 else {

83 double **xoriginal = fix−>astore;
84
85 double **x = atom−>x;
86 int *mask = atom−>mask;
87 int nlocal = atom−>nlocal;
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88
89 for (int i = 0; i < nlocal; i++)

90 if (mask[i] & groupbit)

91 for (int j = 0; j < 3; j++)

92 xoriginal[i][j] = x[i][j];

93 else xoriginal[i][0] = xoriginal[i][1] = xoriginal[i][2] = 0.0;

94 }

95
96 // per−atom slip array

97
98 nmax = 0;

99 slip = NULL;

100 }

101
102 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

103
104 ComputeSlipAtom::~ComputeSlipAtom()

105 {

106 // check nfix in case all fixes have already been deleted

107
108 if (modify−>nfix) modify−>delete_fix(id_fix);
109
110 delete [] id_fix;

111 memory−>destroy(slip);
112 }

113
114 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

115
116 void ComputeSlipAtom::init()

117 {

118 // set fix which stores original atom coords

119
120 int ifix = modify−>find_fix(id_fix);
121 if (ifix < 0) error−>all(FLERR,Could not find compute slip/atom fix ID);

122 fix = (FixStore *) modify−>fix[ifix];
123
124 // check details of pair_style and copies of this compute style

125
126 if (force−>pair == NULL)

127 error−>all(FLERR,Compute slip/atom requires a pair style be defined);

128
129 int count = 0;

130 for (int i = 0; i < modify−>ncompute; i++)

131 if (strcmp(modify−>compute[i]−>style,slip/atom) == 0) count++;

132 if (count > 1 && comm−>me == 0)

133 error−>warning(FLERR,More than one compute slip/atom);

134
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135 //check the cutoff value and set default if necessary

136 if (cutsq > force−>pair−>cutforce * force−>pair−>cutforce)
137 error−>all(FLERR,Compute slip/atom: invalid cutoff value);

138 if (cutsq < 0) {

139 cutsq = force−>pair−>cutforce * force−>pair−>cutforce;
140 }

141
142 // need an occasional full neighbor list

143
144 int irequest = neighbor−>request((void *) this);

145 neighbor−>requests[irequest]−>pair = 0;

146 neighbor−>requests[irequest]−>compute = 1;

147 neighbor−>requests[irequest]−>half = 0;

148 neighbor−>requests[irequest]−>full = 1;

149 neighbor−>requests[irequest]−>occasional = 1;

150 }

151
152 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

153
154 void ComputeSlipAtom::init_list(int id, NeighList *ptr)

155 {

156 list = ptr;

157 }

158
159 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

160
161 void ComputeSlipAtom::compute_peratom()

162 {

163
164 int i,j,k,ii,jj,inum,jnum;

165 double xtmp,ytmp,ztmp,delx,dely,delz,rsq;

166 int *ilist,*jlist,*numneigh,**firstneigh;

167
168 invoked_peratom = update−>ntimestep;
169
170 // grow local slip array if necessary

171
172 if (atom−>nlocal > nmax) {

173 memory−>destroy(slip);
174 nmax = atom−>nmax;
175 memory−>create(slip,nmax,4,slip/atom:slip);
176 array_atom = slip;

177 }

178
179 // invoke full neighbor list (will copy or build if necessary)

180
181 neighbor−>build_one(list);
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182
183 inum = list−>inum;
184 ilist = list−>ilist;
185 numneigh = list−>numneigh;
186 firstneigh = list−>firstneigh;
187
188 // dx,dy,dz = slip of atom from original position

189 // original unwrapped position is stored by fix

190 // for triclinic, need to unwrap current atom coord via h matrix

191
192 // compute slip vector for each atom in group

193 // use full neighbor list

194
195 double **xoriginal = fix−>astore;
196
197 double **x = atom−>x;
198 int *mask = atom−>mask;
199 imageint *image = atom−>image;
200 int nlocal = atom−>nlocal;
201
202 double del0[3],delf[3];

203
204 int ns;

205
206 for (ii = 0; ii < inum; ii++) {

207 i = ilist[ii];

208 for (k = 0; k < 4; k++) slip[i][k]=0.0;

209 ns = 0;

210 if (mask[i] & groupbit) {

211 jlist = firstneigh[i];

212 jnum = numneigh[i];

213
214 // loop over list of all neighbors within force cutoff

215
216 for (jj = 0; jj < jnum; jj++) {

217 j = jlist[jj];

218 j &= NEIGHMASK;

219
220 for (k = 0; k < 3; k++)

221 del0[k] = xoriginal[i][k] − xoriginal[j][k];

222 domain−>minimum_image(del0);
223
224 rsq = 0;

225 for (k = 0; k < 3; k++)

226 rsq += del0[k] * del0[k];

227
228 if (rsq < cutsq) {
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229
230 for (k = 0; k < 3; k++)

231 delf[k] = x[i][k] − x[j][k];

232 domain−>minimum_image(delf);
233
234 double slipmag = 0;

235 double slipcheck[3];

236
237 for (k = 0; k < 3; k++) {

238 slipcheck[k] = del0[k] − delf[k];

239 slipmag += slipcheck[k] * slipcheck[k];

240 }

241
242 if (slipmag > btol) {

243 ns++;

244 for (k = 0; k < 3; k++)

245 slip[i][k] += slipcheck[k];

246 }

247 }

248 }

249
250 if (ns > 0) {

251 //calculate final division and magnitude

252 for (k = 0; k < 3; k++) {

253 slip[i][k] /= −ns;
254 slip[i][3] += slip[i][k] * slip[i][k];

255 }

256 slip[i][3] = sqrt(slip[i][3]);

257 }

258 }

259 }

260 }

261
262 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
263 memory usage of local atom−based array

264 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

265
266 double ComputeSlipAtom::memory_usage()

267 {

268 double bytes = nmax*4 * sizeof(double);

269 return bytes;

270 }
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A.3 Post Processing Code: MATLAB

Post processing was performed in MATLAB. It was developed under MATLAB 7.12.0

(R2011a) on a Linux machine. This code is as it existed on 23-May-2016.

A.3.1 Data Structures

The Dump class is used to parse and store a LAMMPS dump file. The SetUp and getStan-

dard classes build a structure that specifies things such as color and data layout. Both files are used

throughout the other code.

1 classdef Dump < handle

2 %DUMP Summary of this class goes here

3 % Detailed explanation goes here

4
5 properties (GetAccess = public, SetAccess = immutable)

6 location

7 timestep

8 xmin

9 xmax

10 ymin

11 ymax

12 zmin

13 zmax

14 numatoms

15 atomproperties

16
17 % made public for HOPEFULLY rare cases that some one needs

access

18 % to this due to performance reasons.

19 data_GENERALLY_PRIVATE

20 end

21
22 methods (Access = public)

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 % constructors

25
26 function [ this ] = Dump(location)

27 if nargin==0

28 warning('Warning:Ricky:no_params',['No

parameters were passed to Dump constructor

. '...

29 'It must be passed a ''location''

parameter!']);

30 return
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31 end

32
33 this.location=location;

34
35 d=readdump_all(location);

36
37 temp=textscan(strrep(d.atomheader,'ITEM: ATOMS ',''),'

%s');

38 this.atomproperties=temp{1};

39
40 this.timestep=d.timestep;

41 this.numatoms=d.Natoms;

42 this.xmin=d.x_bound(1);

43 this.xmax=d.x_bound(2);

44 this.ymin=d.y_bound(1);

45 this.ymax=d.y_bound(2);

46 this.zmin=d.z_bound(1);

47 this.zmax=d.z_bound(2);

48
49 this.data_GENERALLY_PRIVATE = d.atom_data;

50 end

51
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

53 % methods

54
55 function [ output ] = select(this,opperandProperties,

booleanTest,requestedProperties)

56 % select − returns properties for rows that pass a

boolean test

57 %

58 % opperandProperties − these are the names of

properties that

59 % will be passed to the boolean test. They must be

values

60 % that exist in the class's atomproperties property.

61 %

62 % booleanTest − this is a function handle that

performs a

63 % boolean test on each row of atom data. It will be

passed

64 % the each row's opperandProperties in an array. For

65 % instance, if the booleanTest was

66 % @(arg) arg(1)>5 && arg(2)<7

67 % and the opperandProperties were

68 % {'x' 'c_sym'}

69 % then the method call would
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70 % return all requesetedProperties (see below) for

rows that

71 % had an x value greater than 5 and a c_sym value

less than 7

72 %

73 % requestedProperties − these are the names of

properties that

74 % will be returned. A row will be returned with a

column for

75 % each property

76 %

77 % output − an [N,M] array where N = the number of rows

that

78 % passed the booleanTest and M = the number of

requested

79 % properties

80
81 % get the properties that are to be opperated on

82 opperandInds=this.getColIndicies(opperandProperties);

83 d=this.data_GENERALLY_PRIVATE(:,opperandInds);

84
85 % get the row indicies that passed the function's test

86 ind=pass~=0;

87
88 % get the requested properties for each row

89 requestedInds=this.getColIndicies(requestedProperties)

;

90 output=this.data_GENERALLY_PRIVATE(ind,requestedInds);

91 end

92
93 end

94
95 methods (Access=private)

96 function [ indicies ] = getColIndicies(this,colnames)

97 indicies = [];

98 for index=1:length(this.atomproperties)

99 [found,loc]=ismember(this.atomproperties(index

),colnames);

100 if found

101 indicies(loc)=index; %#ok<AGROW>

102 end

103 end

104 if length(indicies) ~= length(colnames)

105 error('Cannot find one or more requested

properties in dump file')

106 end

107 end
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108 end

109 end

This is a wrapper for the get_activation_SYSTEMS.m code

1 function [s graphic_info]=SINGLE_ParseSimulation(criteria,dump_loc,letter,

do_show)

2
3 if ~exist('do_show')

4 do_show=false;

5 end

6
7 snap_shot_dump=Dump(dump_loc);

8 s=[];

9 [s graphic_info]=ParseGrainLetter(s,criteria,letter,snap_shot_dump,do_show);

10
11 end

12
13 function [s graphic_info]=ParseGrainLetter(s,criteria,grainLetter,

snap_shot_dump,do_show)

14
15 % determine the dislocation content of the simulation after it nucleated

16 % Only use atoms within user defined ranges

17
18 if grainLetter=='a'

19 evaluation_ids=criteria.orig.select({'x'},@(args) args(1) < 60 && args

(1) > 50,{'id'});

20 else

21 evaluation_ids=criteria.orig.select({'x'},@(args) args(1) > 66 && args

(1) < 76,{'id'});

22 end

23
24 [mymap,~,~,graphic_info]=get_activation_SYSTEMS(snap_shot_dump,evaluation_ids,

criteria.orig,criteria.pid,grainLetter,do_show,criteria);

25
26 % format mymap for better consumption

27 keys=mymap.keys;

28 for ii=1:length(mymap.keys)

29 key=keys{ii};

30 val=mymap(key);

31 entries(ii,:)=[str2num(key) val]; %#ok<ST2NM>

32 end

33 entries=sortrows(entries,−7);
34 entries=[standardizeSlipSystem(entries(:,1:6)) entries(:,7)];

35
36 tmp=NaN;

37 primary_slip_sys=entries(1,1:6);

38 percent_primary=100*entries(1,7)/sum(entries(:,7));
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39 for kk=1:size(criteria.slip_systems,1)

40 if all(criteria.slip_systems(kk,:)==primary_slip_sys)

41 tmp=kk;

42 break

43 end

44 end

45 if isnan(tmp)

46 warning('WARNING:RICKY:UNKNOWN_SLIP_SYSTEM',['UNKNOWN SLIP SYSTEM

ENCOUNTERED! ' num2str(primary_slip_sys) ' PLEASE ADD IT TO THE

SetUp.m FILE!'])

47 tmp=−1;
48 end

49 primary_nucleation_system_ind=tmp;

50
51 s.nucleation_content=entries;

52 s.primary_nucleation_system_ind=primary_nucleation_system_ind;

53 s.percent_content_on_primary=percent_primary;

54
55 end

This code will analyze a submitted Dump file object and determine the slip systems that

have been activated within it. The program groups atoms by the dislocation they are on and then

fits a plane normal to them. This is the slip plane. It also analyzes the atom’s slip vector’s [22] to

determine each dislocation’s slip direction. The slip plane and slip direction together constitute a

slip system. The code does not respect periodic boundaries; however, was sufficiently robust for

the program’s needs.

1 function [ mydata colonyinfo fig graphic_info ]=get_activation_SYSTEMS(dump,

dislocationids,referencedump,pid,grain_letter,doplot,criteria)

2
3 fig=[];

4
5 warning ('off','all');

6
7 [lab2grain grain2lab]=get_lab2grain_matrix(pid,grain_letter);

8
9 slipdirectioninfo_full=setup_slipdirectioninfo(grain2lab,true,true);

10 slipdirectioninfo_part=setup_slipdirectioninfo(grain2lab,false,true);

11
12 slipdirectioninfo=[slipdirectioninfo_full slipdirectioninfo_part];

13
14 slipplaneinfo=setup_slipplaneinfo(grain2lab);

15
16 dislocationids=sort(dislocationids);
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17 atoms=dump.select({'id'},@(args) ismember(args(1),dislocationids),{'x','y','z'

,'c_sv[1]','c_sv[2]','c_sv[3]','id'});

18
19 if ~isnumeric(referencedump)

20 s=[(dump.xmax−dump.xmin)/(referencedump.xmax−referencedump.xmin) (dump

.ymax−dump.ymin)/(referencedump.ymax−referencedump.ymin) (dump.

zmax−dump.zmin)/(referencedump.zmax−referencedump.zmin)];
21 for ii=1:size(atoms,1)

22 aa=atoms(ii,:);

23 atoms(ii,:)=[aa(1)*s(1) aa(2)*s(2) aa(3)*s(3) aa(4)*s(1) aa(5)

*s(2) aa(6)*s(3) aa(7)];

24 end

25 end

26
27 slipdirectionindicies=get_slipdirections(atoms(:,4:6),lab2grain,

slipdirectioninfo);

28 % % if doplot

29 % % fig=figure;

30 % % [ax1 ax2]=show_slipdirections(atoms,slipdirectionindicies,

slipdirectioninfo);

31 % % end

32
33 [colonies colonyslipdirectionindicies colonyatoms]=get_colonies(atoms,

slipdirectionindicies,3,4);

34 % % if doplot

35 % % disp(['NUM COLONIES ' num2str(numel(colonies))])

36 % % ax3=show_colonies(colonyatoms,colonies);

37 % % end

38
39 colonyslipplaneindicies=get_colony_slipplanes(atoms,colonies,lab2grain,

slipplaneinfo);

40
41 % % if doplot

42 % % axs=[ax1,ax2,ax3,ax4];

43 % % % % arrayfun(@(handle) view(handle,[0 −1 0]),axs);

44 % % Link=linkprop(axs,{'CameraUpVector','CameraPosition','CameraTarget'});

45 % % setappdata(gcf,'StoreTheLink',Link);

46 % % else

47 % % fig=NaN;

48 % % end

49
50 % format data

51 colony_sizes=cellfun(@(args) length(args),colonies)';

52 colony_slipplanes=cell2mat(arrayfun(@(args) slipplaneinfo(args).grain.integer,

colonyslipplaneindicies,'UniformOutput',false));

53 colony_slipdirections=cell2mat(arrayfun(@(args) slipdirectioninfo(args).grain.

integer,colonyslipdirectionindicies,'UniformOutput',false));

64



54
55 val=standardizeSlipSystem([colony_slipplanes colony_slipdirections]);

56 colony_slipplanes=val(:,1:3);

57 colony_slipdirections=val(:,4:6);

58
59 graphic_info.atoms=atoms;

60 graphic_info.colonies=colonies;

61 graphic_info.colonyslipdirectionindicies=colonyslipdirectionindicies;

62 graphic_info.colonyslipplaneindicies=colonyslipplaneindicies;

63 graphic_info.slipdirectioninfo=slipdirectioninfo;

64 graphic_info.slipplaneinfo=slipplaneinfo;

65 graphic_info.colony_slipplanes=colony_slipplanes;

66 graphic_info.colony_slipdirections=colony_slipdirections;

67
68 figure

69 if doplot

70 ax4=show_processeddata(atoms,colonies,colonyslipdirectionindicies,

colonyslipplaneindicies,...

71 slipdirectioninfo,slipplaneinfo,criteria,...

72 colony_slipplanes,colony_slipdirections);

73 end

74
75 dat=[colony_slipplanes colony_slipdirections colony_sizes];

76 dat=sortrows(dat,7);

77
78 dat=[dat dot(dat(:,1:3),dat(:,4:6),2)];

79
80 % bin data into slip systems

81 mydata=containers.Map('KeyType','char','ValueType','double');

82 for ii=1:size(dat,1)

83 slipsystem=num2str(dat(ii,1:6));

84 if ~mydata.isKey(slipsystem)

85 mydata(slipsystem)=0;

86 end

87 mydata(slipsystem)=mydata(slipsystem)+dat(ii,7);

88 end

89
90 colonyinfo.colony_sizes=colony_sizes;

91 colonyinfo.colony_slipplanes=colony_slipplanes;

92 colonyinfo.colony_slipdirections=colony_slipdirections;

93
94 % DO NOT RETURN THIS!!! THEY ARE INDEXES WITHOUT MEANING!!!

95 % % colonyinfo.colonies=colonies;

96
97 colony_ids=cell(1,length(colonies));

98 for ii=1:length(colonies)

99 colony_ids{ii}=atoms(colonies{ii},7)';
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100 end

101
102 colonyinfo.colony_ids=colony_ids;

103
104 end

105
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

107
108 function [colonies colonyslipdirectionindicies atoms]=get_colonies(atoms,

slipdirectionindicies,minatomsperplane,shellsize)

109
110 ind=1;

111 activatedslipdirectionindicies=unique(slipdirectionindicies);

112
113 colonyslipdirectionindicies=[];

114 colonies=[];

115
116 for ii=1:length(activatedslipdirectionindicies)

117
118 candidates=find(slipdirectionindicies==activatedslipdirectionindicies(

ii))';

119 % % length(candidates)

120
121 while ~isempty(candidates)

122 target=candidates(1);

123 [colony candidates]=findcolony(atoms,target,candidates,target,

shellsize);

124
125 if length(colony)>=minatomsperplane

126 colonies{ind}=colony;

127 colonyslipdirectionindicies(ind)=

activatedslipdirectionindicies(ii);

128 ind=ind+1;

129 end

130 end

131
132 end

133
134 colonyslipdirectionindicies=colonyslipdirectionindicies(:);

135
136 end

137
138 function [curcolony candidates]=findcolony(atoms,target,candidates,curcolony,

shellsize)

139
140 shellindicies=findallinshell(atoms,target,candidates,shellsize);

141
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142 curcolony=[curcolony shellindicies];

143 candidates=setdiff(candidates,shellindicies);

144
145 % recurse, break condition will be met when there are no shell indicies

146 for ii=1:length(shellindicies)

147 [curcolony candidates]=findcolony(atoms,shellindicies(ii),candidates,

curcolony,shellsize);

148 end

149
150 candidates=setdiff(candidates,curcolony);

151
152 curcolony=unique(curcolony);

153
154 end

155
156 function shellindicies=findallinshell(atoms,target,candidates,shellsize)

157 target_pos=atoms(target,1:3);

158
159 shellindicies=[];

160 for ii=1:length(candidates)

161 if pdist([target_pos ; atoms(candidates(ii),1:3)])<shellsize

162 shellindicies=[shellindicies candidates(ii)];

163 end

164 end

165
166 end

167
168 function colony_slip_indices=get_colony_slipplanes(atoms,colonies,lab2grain,

slipplaneinfo)

169
170 colony_slip_indices=zeros(length(colonies),1);

171 for ii=1:length(colonies)

172 colonypositions=atoms(colonies{ii},1:3);

173 slipplane=fitNormal(colonypositions,false);

174 slipplane=lab2grain*slipplane(:);

175 slipplane=slipplane/norm(slipplane);

176
177 angs=zeros(1,length(slipplaneinfo));

178 for jj=1:length(slipplaneinfo)

179 slipplane2=slipplaneinfo(jj).grain.normalized;

180 ang=acosd(dot(slipplane,slipplane2));

181 ang=abs(ang);

182 ang=min(abs([ang ang−180]));
183 angs(jj)=ang;

184 end

185 [~,colony_slip_indices(ii)]=min(angs);

186 % % min(angs)
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187 end

188
189 end

190
191 function [ slip_direction_indicies ] = get_slipdirections(

atom_slip_directions_lab,lab2grain,slipdirectioninfo )

192
193 slip_direction_indicies=zeros(length(atom_slip_directions_lab),1);

194 for ii=1:length(atom_slip_directions_lab)

195
196 slipdir=atom_slip_directions_lab(ii,:);

197 slipdir=lab2grain*slipdir(:);

198 slipdir=slipdir/norm(slipdir);

199
200 angs=zeros(1,length(slipdirectioninfo));

201 for jj=1:length(slipdirectioninfo)

202 slipdir2=slipdirectioninfo(jj).grain.normalized;

203 ang=acosd(dot(slipdir,slipdir2));

204 ang=abs(ang);

205 % % ang=min(abs([ang ang−180]));
206 angs(jj)=ang;

207 end

208 [~,slip_direction_indicies(ii)]=min(angs);

209 end

210
211 end

212
213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

214 % visualization functions

215
216 function [ax1 ax2]=show_slipdirections(atoms,slipdirectionindicies,

slipdirectioninfo)

217
218 % plot the raw data

219 ax1=subplot(2,2,1);

220 hold on

221 scatter3(atoms(:,1),atoms(:,2),atoms(:,3));

222 quiver3(atoms(:,1),atoms(:,2),atoms(:,3),atoms(:,4),atoms(:,5),atoms(:,6));

223 hold off

224 axis equal

225
226 % plot the data with standardized slip directions

227 ax2=subplot(2,2,2);

228 uu=unique(slipdirectionindicies);

229 cc=jet(length(uu));

230 hold on

231 for ii=1:length(uu)
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232 goodindicies=find(slipdirectionindicies==uu(ii));

233
234 scatter3(atoms(goodindicies,1),atoms(goodindicies,2),atoms(

goodindicies,3),40,cc(ii,:));

235 slipdirectionlab=slipdirectioninfo(uu(ii)).lab;

236 slipdirs=[ones(length(goodindicies),1)*slipdirectionlab(1) ones(length

(goodindicies),1)*slipdirectionlab(2) ones(length(goodindicies),1)

*slipdirectionlab(3)];

237 quiver3(atoms(goodindicies,1),atoms(goodindicies,2),atoms(goodindicies

,3),slipdirs(:,1),slipdirs(:,2),slipdirs(:,3));

238 end

239 hold off

240 axis equal

241
242 end

243
244 function [ ax1 ]=show_colonies(atoms,colonies)

245
246 figure

247 cc=hsv(length(colonies));

248 for ii=1:length(colonies)

249 subplot(4,4,ii)

250 scatter3(atoms(colonies{ii},1),atoms(colonies{ii},2),atoms(colonies{ii

},3),40,cc(ii,:));

251 view([0 −1 0])

252 end

253 ax1=123;

254
255 end

256
257 function [ax1]=show_processeddata( atoms,colonies,colonyslipdirectionindicies,

...

258 colonyslipplaneindicies,slipdirectioninfo,slipplaneinfo,criteria,

planeStuff,dirStuff )

259
260 cc=[

261 31,120,180

262 51,160,44

263 227,26,28

264 255,127,0

265 106,61,154

266 177,89,40

267 166,206,227

268 178,223,138

269 251,154,153

270 253,191,111

271 202,178,214
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272 255,255,153

273 ]/256;

274
275 ax1=figure('Position',[100 100 600 600]);

276 hold on

277 for ii=1:length(colonies)

278
279 slip_sys=[planeStuff(ii,:) dirStuff(ii,:)];

280
281 [a,b]=ismember(slip_sys,criteria.slip_systems,'rows');

282 if a==0

283 continue

284 end

285
286 cur=atoms(colonies{ii},1:3);

287
288
289
290 center=mean(cur);

291
292 uvw1=slipdirectioninfo(colonyslipdirectionindicies(ii)).lab;

293 quiver3(center(1),center(2),center(3),uvw1(1),uvw1(2),uvw1(3));

294
295 uvw2=slipplaneinfo(colonyslipplaneindicies(ii)).lab;

296 quiver3(center(1),center(2),center(3),uvw2(1),uvw2(2),uvw2(3));

297
298 scatter3(cur(:,1),cur(:,2),cur(:,3),40,cc(b,:));

299 view([0 −1 0])

300
301 end

302 hold off

303 axis equal

304
305 end

306
307 function [ slipdirectioninfo ] = setup_slipdirectioninfo(grain2lab,full,

keepsign)

308 %SETUP_SLIPDIRECTIONINFO Summary of this function goes here

309 % Detailed explanation goes here

310 if full

311 rawslipdirections=[

312 0 1 1

313 0 1 −1
314 1 0 1

315 1 0 −1
316 1 1 0

317 1 −1 0
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318 ];

319 else

320 rawslipdirections=[

321 2 1 1

322 2 −1 1

323 2 1 −1
324 1 2 1

325 −1 2 1

326 1 2 −1
327 1 1 2

328 −1 1 2

329 1 −1 2

330 −2 1 1

331 −2 −1 1

332 −2 1 −1
333 1 −2 1

334 −1 −2 1

335 1 −2 −1
336 1 1 −2
337 −1 1 −2
338 1 −1 −2
339 ];

340
341 end

342
343 if keepsign

344 rawslipdirections=[rawslipdirections ; −rawslipdirections];
345 end

346
347 for ii=1:length(rawslipdirections)

348 curdir=rawslipdirections(ii,:);

349 slipdirectioninfo(ii).grain.integer=curdir;

350 slipdirectioninfo(ii).grain.normalized=curdir/norm(curdir);

351 slipdirectioninfo(ii).lab=(grain2lab*slipdirectioninfo(ii).grain.

normalized(:))';

352 end

353
354 end

355
356 function slipplaneinfo=setup_slipplaneinfo(grain2lab)

357
358 rawslipplanes=[

359 1 1 1

360 −1 1 1

361 1 −1 1

362 1 1 −1
363 ];
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364
365 for ii=1:length(rawslipplanes)

366 curdir=rawslipplanes(ii,:);

367 slipplaneinfo(ii).grain.integer=curdir;

368 slipplaneinfo(ii).grain.normalized=curdir/norm(curdir);

369 slipplaneinfo(ii).lab=(grain2lab*slipplaneinfo(ii).grain.normalized(:)

)';

370 end

371 end

This code changes slip systems into a standardized format. Specifically, it changes the slip

direction in such a way that the slip system’s that were nucleated on in this project would have a

positive resolved shear stress. Slip systems that needed modification were determined by hand.

1 function slip_systems=standardizeSlipSystem(slip_systems)

2
3 slipplanes=slip_systems(:,1:3);

4 slipdirections=slip_systems(:,4:6);

5
6 signThing=sign(slipplanes(:,1));

7 for ii=1:length(signThing)

8 if signThing(ii)==0

9 signThing(ii)=sign(slipplanes(ii,2));

10 end

11 end

12 slipplanes=[signThing signThing signThing].*slipplanes;

13
14 signThing=sign(slipdirections(:,1));

15 for ii=1:length(signThing)

16 if signThing(ii)==0

17 signThing(ii)=sign(slipdirections(ii,2));

18 end

19 end

20 slipdirections=[signThing signThing signThing].*slipdirections;

21
22 slip_systems=[slipplanes slipdirections];

23
24 for ii=1:size(slip_systems,1)

25 if all(slip_systems(ii,4:6)==[2 1 −1])
26 slip_systems(ii,4:6)=[−2 −1 1];

27 end

28
29 if all(slip_systems(ii,4:6)==[2 −1 1])

30 slip_systems(ii,4:6)=[−2 1 −1];
31 end

32
33 if all(slip_systems(ii,4:6)==[1 1 −2])
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34 slip_systems(ii,4:6)=[−1 −1 2];

35 end

36
37 if all(slip_systems(ii,4:6)==[2 −1 −1])
38 slip_systems(ii,4:6)=[−2 1 1];

39 end

40 end

41
42 end

1 function criteria=SetUp()

2
3 prefix='quad_s1';

4
5 criteria.pid=81;

6
7 criteria.folder_pattern= ['/path/to/where/files/to/analyze/are/

winning_slipMeasure_a/*'];

8 criteria.file_name_format= ['/path/to/supercomputer/output/' prefix '/%s/

dumps/dump.%i'];

9 criteria.thermoval_pattern= ['/path/to/supercomputer/output/' prefix '/%s/

thermovals/'];

10
11 criteria.orig_loc='/path/to/bicrystal/ni.81.thermo.0p1.size.1.dump';

12
13 criteria.dumpsteps=0:100:1000000;

14
15 criteria.rel_slip_sys_inds_a=[ 8 9 10 11 12];

16 criteria.rel_slip_sys_inds_b=[12 11 7 9 8 1];

17
18 % for full version

19 % % criteria.rel_slip_sys_inds_a=[criteria.rel_slip_sys_inds_a setdiff(1:12,

criteria.rel_slip_sys_inds_a)];

20 % % criteria.rel_slip_sys_inds_b=[criteria.rel_slip_sys_inds_b setdiff(1:12,

criteria.rel_slip_sys_inds_b)];

21
22 criteria=getStandard(criteria);

23
24 end

1 function criteria=getStandard(criteria)

2
3 PROPS=containers.Map;

4 PROPS('id')=1;

5 PROPS('type')=2;

6 PROPS('x')=3;

7 PROPS('y')=4;

8 PROPS('z')=5;
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9 PROPS('c_sv[1]')=6;

10 PROPS('c_sv[2]')=7;

11 PROPS('c_sv[3]')=8;

12
13 criteria.PROPS=PROPS;

14
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16
17 orig=Dump(criteria.orig_loc);

18 criteria.orig=orig;

19 orig_dat=orig.data_GENERALLY_PRIVATE;

20 criteria.orig_dat=orig_dat;

21
22 gb_midpoint=63;

23
24 measure_system_x_bounds=[7 11];

25
26 criteria.measureSlipSystemIds_b=sort(orig_dat(...

27 orig_dat(:,PROPS('x'))<gb_midpoint−measure_system_x_bounds(1)&...
28 orig_dat(:,PROPS('x'))>gb_midpoint−measure_system_x_bounds(2),...
29 PROPS('id')));

30 criteria.isTimeToMeasureSlipSystem_b=sort(orig_dat(...

31 orig_dat(:,PROPS('x'))<gb_midpoint−measure_system_x_bounds(2)&...
32 orig_dat(:,PROPS('x'))>gb_midpoint−measure_system_x_bounds(2)−5,...
33 PROPS('id')));

34
35 criteria.measureSlipSystemIds_a=sort(orig_dat(...

36 orig_dat(:,PROPS('x'))>gb_midpoint+measure_system_x_bounds(1)&...

37 orig_dat(:,PROPS('x'))<gb_midpoint+measure_system_x_bounds(2),...

38 PROPS('id')));

39 criteria.isTimeToMeasureSlipSystem_a=sort(orig_dat(...

40 orig_dat(:,PROPS('x'))>gb_midpoint+measure_system_x_bounds(2)&...

41 orig_dat(:,PROPS('x'))<gb_midpoint+measure_system_x_bounds(2)+5,...

42 PROPS('id')));

43
44 criteria.slip_systems=[

45 1 1 1 2 −1 −1 % 1

46 1 1 1 1 −2 1 % 2

47 1 1 1 1 1 −2 % 3

48 1 −1 −1 2 1 1 % 4

49 1 −1 −1 1 2 −1 % 5

50 1 −1 −1 1 −1 2 % 6

51 1 −1 1 −2 −1 1 % 7

52 1 −1 1 1 2 1 % 8

53 1 −1 1 1 −1 −2 % 9

54 1 1 −1 −2 1 −1 % 10

55 1 1 −1 1 −2 −1 % 11
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56 1 1 −1 1 1 2 % 12

57 ];

58 criteria.slip_systems=standardizeSlipSystem(criteria.slip_systems);

59
60 % Color scheme from: http://colorbrewer2.org/

61 % see http://colorbrewer2.org/?type=qualitative&scheme=Paired&n=12

62 % gathered 16−May−2016
63
64 criteria.slip_colors_a=[

65 31,120,180

66 51,160,44

67 227,26,28

68 255,127,0

69 106,61,154

70 177,89,40

71 166,206,227

72 178,223,138

73 251,154,153

74 253,191,111

75 202,178,214

76 255,255,153

77 ]/256;

78 criteria.slip_colors_b=criteria.slip_colors_a;

79
80 end

This code specifies how the lab frame and each crystal frame relate to each other. It is

specific to the bicrystal used in this project.

1 function [ lab2grain grain2lab ] = get_lab2grain_matrix( pid, crystal )

2
3 if pid~=81

4 error('This code only works for PID=81')

5 end

6
7 grainB2lab=[0.8165 0.4082 0.4082

8 0.5345 −0.2673 −0.8018
9 −0.2182 0.8729 −0.4364];

10 lab2grainB=grainB2lab';

11
12 grainA2lab=[0.8165 0.4082 0.4082

13 0.5345 −0.8018 −0.2673
14 0.2182 0.4364 −0.8729];
15 lab2grainA=grainA2lab';

16
17 if strcmpi(crystal,'a')

18 lab2grain=lab2grainA;
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19 else

20 lab2grain=lab2grainB;

21 end

22 grain2lab=lab2grain';

23
24 end

A.3.2 Check Utility

The following code was used to choose the correct simulation snap shot to determine the

primary slip system.

1 % the grain to analyze

2 grain_letter='b';

3
4 % paths

5 folder_base='/path/to/supercomputer/output/';

6 winning_base=['winning_slipMeasure_' grain_letter '/'];

7 loser_base=['loser_slipMeasure_' grain_letter '/'];

8 twinned_base=['twinned_slipMeasure_' grain_letter '/'];

9 multi_base=['multi_slipMeasure_' grain_letter '/'];

10
11 % get folders

12 folders=dir(folder_base);

13 orig_loc='/path/to/bicrystal/ni.81.thermo.0p1.size.1.dump';

14 orig=Dump(orig_loc);

15
16 criteria=SetUp();

17
18 for ii=1:length(folders)

19
20 folder=folders(ii);

21
22 if strcmpi(folder.name,'.')||strcmpi(folder.name,'..')

23 continue

24 end

25
26 checkUtility(folder.name,criteria,grain_letter);

27
28 end

1 function s=checkUtility(folder_name,criteria,letter)

2
3 [~,~,m]=regexp(folder_name,'_(−?\d+)_(−?\d+)_(−?\d+)');
4 m=m{1};
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5 s.setx=str2num(folder_name(m(1,1):m(1,2))); %#ok<*ST2NM>

6 s.sety=str2num(folder_name(m(2,1):m(2,2)));

7 s.setz=str2num(folder_name(m(3,1):m(3,2)));

8 s.folder_name=folder_name;

9 s.short_name=[num2str(s.setx/100) '|' num2str(s.sety/100) '|' num2str(s.setz

/100)];

10
11 entry=['thermovals.' letter '.5'];

12
13 name=entry;

14 bads=entry=='.';

15 name(bads)='_';

16
17 cur=load([sprintf(criteria.thermoval_pattern,folder_name) entry]);

18 vons=1/sqrt(2)*((cur(:,2)−cur(:,3)).^2+(cur(:,2)−cur(:,4)).^2+(cur(:,3)−cur
(:,4)).^2+3*(cur(:,5).^2+cur(:,6).^2+cur(:,7).^2));

19
20 rel=vons;

21 adaptive_cutoff=0.1*max(rel(1:end/2));

22 [maxima,prominence]=getprominence(rel);

23 inds=find(prominence>adaptive_cutoff);

24 max_von_ind=maxima(inds(1));

25
26 % % cases=[−50 −3 0 3 5 10 50 0.25 0.5 0.75];

27 cases=[0 3 5 0.125 0.25 0.5 0.75 0.85];

28
29 sims=cell(size(cases));

30 parfor ii=1:length(cases)

31 try

32 % get dislocation content

33
34 if cases(ii)<1&&cases(ii)~=0

35 nuc_ind=ceil(max_von_ind+(length(cur)−max_von_ind)*
cases(ii));

36 else

37
38 nuc_ind=max_von_ind+cases(ii);

39 end

40
41 try

42 dump_step=cur(nuc_ind,1);

43 catch

44 dump_step=cur(end);

45 end

46
47 dump_loc=sprintf(criteria.file_name_format,folder_name,

dump_step);
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48 [tmp graphic_info{ii}]=SINGLE_ParseSimulation(criteria,

dump_loc,letter,true);

49
50 sims=s;

51 sims.(['nucleation_content_' letter])=tmp.nucleation_content;

52 sims.(['percent_content_on_primary_' letter])=tmp.

percent_content_on_primary;

53 sims.(['primary_nucleation_system_ind_' letter])=tmp.

primary_nucleation_system_ind;

54 sims.(['thermovals_' letter])=cur;

55 sims.(['success_' letter])=true;

56 graphic_info{ii}.dump_step=dump_step;

57
58 dump_locs{ii}=dump_loc;

59
60 catch err %#ok<NASGU>

61 err

62 sims=NaN;

63 graphic_info{ii}=NaN;

64 dump_locs{ii}=NaN;

65 end

66
67 if isstruct(sims)

68 [~,slip_dat{ii}]=GetAnswer(sims,criteria,letter)

69 else

70 slip_dat{ii}=NaN;

71 end

72
73 mySims{ii}=sims;

74
75 end

76
77 f=figure('Name',folder_name,'Position',75+[0 0 1400 1400/2]);

78
79 ax1=subplot(2,8,1);

80 ax2=subplot(2,8,2);

81 ax3=subplot(2,8,3);

82 ax4=subplot(2,8,4);

83 ax5=subplot(2,8,5);

84 ax6=subplot(2,8,6);

85 ax7=subplot(2,8,7);

86 ax8=subplot(2,8,8);

87 ax9=subplot(2,8,9);

88 ax10=subplot(2,8,10);

89 ax11=subplot(2,8,11);

90 ax12=subplot(2,8,12);

91 ax13=subplot(2,8,13);
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92 ax14=subplot(2,8,14);

93 ax15=subplot(2,8,15);

94 ax16=subplot(2,8,16);

95
96 checkUtility_plot(ax1,graphic_info{1},criteria);

97 checkUtility_plot(ax2,graphic_info{2},criteria);

98 checkUtility_plot(ax3,graphic_info{3},criteria);

99 checkUtility_plot(ax4,graphic_info{4},criteria);

100 checkUtility_plot(ax5,graphic_info{5},criteria);

101 checkUtility_plot(ax6,graphic_info{6},criteria);

102 checkUtility_plot(ax7,graphic_info{7},criteria);

103 checkUtility_plot(ax8,graphic_info{8},criteria);

104 checkUtility_graph(ax9,slip_dat{1},criteria);

105 checkUtility_graph(ax10,slip_dat{2},criteria);

106 checkUtility_graph(ax11,slip_dat{3},criteria);

107 checkUtility_graph(ax12,slip_dat{4},criteria);

108 checkUtility_graph(ax13,slip_dat{5},criteria);

109 checkUtility_graph(ax14,slip_dat{6},criteria);

110 checkUtility_graph(ax15,slip_dat{7},criteria);

111 checkUtility_graph(ax16,slip_dat{8},criteria);

112
113 num=inputdlg('GIVE NUMBER');

114 close(f);

115 try

116 num=str2num(num{1});

117
118 % copy correct snapshots to local storage

119 system(['cp ' dump_locs{num(1)} ' ./winning_slipMeasure_' letter '/'

folder_name])

120 if length(num)>1

121 system(['cp ' dump_locs{num(2)} ' ./secondary_slipMeasure_'

letter '/' folder_name])

122 end

123
124 catch %#ok<CTCH>

125
126 % track failed attemtps

127 system(['touch ./loser_slipMeasure_' letter '/' folder_name])

128 end

129
130 end

1 function s=ParseSimulation(non_global_id,folder_name,criteria,letter)

2
3 [~,~,m]=regexp(folder_name,'_(−?\d+)_(−?\d+)_(−?\d+)');
4 m=m{1};

5 s.setx=str2num(folder_name(m(1,1):m(1,2))); %#ok<*ST2NM>

6 s.sety=str2num(folder_name(m(2,1):m(2,2)));
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7 s.setz=str2num(folder_name(m(3,1):m(3,2)));

8 s.folder_name=folder_name;

9 s.short_name=[num2str(s.setx/100) '|' num2str(s.sety/100) '|' num2str(s.setz

/100)];

10
11 entry=['thermovals.' letter '.5'];

12
13 name=entry;

14 bads=entry=='.';

15 name(bads)='_';

16
17 cur=load([sprintf(criteria.thermoval_pattern,folder_name) entry]);

18 vons=1/sqrt(2)*((cur(:,2)−cur(:,3)).^2+(cur(:,2)−cur(:,4)).^2+(cur(:,3)−cur
(:,4)).^2+3*(cur(:,5).^2+cur(:,6).^2+cur(:,7).^2));

19
20 rel=vons;

21 adaptive_cutoff=0.1*max(rel(1:end/2));

22 [maxima,prominence]=getprominence(rel);

23 inds=find(prominence>adaptive_cutoff);

24 max_von_ind=maxima(inds(1));

25
26 figure

27 hold on

28 plot_index=maxima(inds(1));

29 plot(criteria.dumpsteps(1:length(vons)),vons)

30 plot(criteria.dumpsteps(max_von_ind),vons(plot_index),'*')

31 title(s.folder_name)

32 hold off

33
34 s.non_global_id=non_global_id;

35 s.(['nuc_content_' letter])=NaN;

36 s.(['primary_nucleation_system_ind_' letter])=NaN;

37 s.(['percent_content_on_primary_' letter])=NaN;

38 s.(['numatomsused_' letter])=0;

39 s.(['success_' letter])=false;

40
41 dump_loc=['winning_slipMeasure_' letter '/' folder_name];

42
43 tmp=SINGLE_ParseSimulation(criteria,dump_loc,letter);

44 primary_slip_system=tmp.primary_nucleation_system_ind;

45 percent_content_on_primary=tmp.percent_content_on_primary;

46 nuc_content=tmp.nucleation_content;

47 num_atoms_used=sum(nuc_content(:,end));

48
49 s.(['nuc_content_' letter])=nuc_content;

50 s.(['primary_nucleation_system_ind_' letter])=primary_slip_system;

51 s.(['percent_content_on_primary_' letter])=percent_content_on_primary;
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52 s.(['numatomsused_' letter])=num_atoms_used;

53 s.(['success_' letter])=true;

54
55 end

1 function checkUtility_graph(ax,data,criteria)

2
3 if ~isstruct(data)||length(data.rel)==1

4 return

5 end

6
7 dumpsteps=criteria.dumpsteps;

8
9 axes(ax)

10 hold on

11 plot(dumpsteps(1:length(data.rel)),data.rel)

12 plot(dumpsteps(data.nuc_ind),data.rel(data.nuc_ind),'*')

13 hold off

14
15 end

1 function checkUtility_plot( ax,graphicStuff,criteria )

2
3 if ~isstruct(graphicStuff)

4 return

5 end

6
7 atoms=graphicStuff.atoms;

8 colonies=graphicStuff.colonies;

9 colonyslipdirectionindicies=graphicStuff.colonyslipdirectionindicies;

10 colonyslipplaneindicies=graphicStuff.colonyslipplaneindicies;

11 slipdirectioninfo=graphicStuff.slipdirectioninfo;

12 slipplaneinfo=graphicStuff.slipplaneinfo;

13 planeStuff=graphicStuff.colony_slipplanes;

14 dirStuff=graphicStuff.colony_slipdirections;

15
16 cc=[

17 31,120,180

18 51,160,44

19 227,26,28

20 255,127,0

21 106,61,154

22 177,89,40

23 166,206,227

24 178,223,138

25 251,154,153

26 253,191,111

27 202,178,214
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28 255,255,153

29 ]/256;

30
31 axes(ax) %#ok<MAXES>

32 hold on

33 for ii=1:length(colonies)

34
35 slip_sys=[planeStuff(ii,:) dirStuff(ii,:)];

36
37 [a,b]=ismember(slip_sys,criteria.slip_systems,'rows');

38 if a==0

39 color=[0.1 0.1 0.1];

40 else

41 color=cc(b,:);

42 end

43
44 cur=atoms(colonies{ii},1:3);

45
46 center=mean(cur);

47
48 uvw1=slipdirectioninfo(colonyslipdirectionindicies(ii)).lab;

49 quiver3(center(1),center(2),center(3),uvw1(1),uvw1(2),uvw1(3));

50
51 uvw2=slipplaneinfo(colonyslipplaneindicies(ii)).lab;

52 quiver3(center(1),center(2),center(3),uvw2(1),uvw2(2),uvw2(3));

53
54 scatter3(cur(:,1),cur(:,2),cur(:,3),40,color);

55 view([0 −1 0])

56
57 end

58 hold off

59 axis equal

60 title(num2str(graphicStuff.dump_step))

61
62 end

A.3.3 Post Processing

This code will compute the nucleation slip system and resolved shear stresses needed for

nucleation. It will produce many of the figures found through this thesis.

1
2 % main script

3
4 close all

5 drawnow
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6 clearvars −except simulations_1 b_sims a_sims b_fits

7 clc

8
9 font_name='arial';

10
11 set(0,'DefaultAxesFontSize',18);

12 set(0,'defaultUicontrolFontName',font_name)

13 set(0,'defaultUitableFontName',font_name)

14 set(0,'defaultAxesFontName',font_name)

15 set(0,'defaultTextFontName',font_name)

16 set(0,'defaultUipanelFontName',font_name)

17
18 % the grain to analyze. This can be changed to 'b'

19 letter='a';

20
21 criteria=SetUp();

22
23 system(['rm slipMeasure_dump_' letter '/*']);

24 system(['rm nucleation_dump_' letter '/*']);

25
26 winning_folder_pattern=['/home/rdw53/Documents/week_20160516/

winning_slipMeasure_' letter '/*'];

27 loser_folder_pattern=['/home/rdw53/Documents/week_20160516/loser_slipMeasure_'

letter '/*'];

28 anomolous_folder_pattern=['/home/rdw53/Documents/week_20160516/

anomolous_slipMeasure_' letter '/*'];

29
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31
32 % find slip systems

33 if ~exist('simulations_1','var')

34 winning_folders=dir(winning_folder_pattern);

35 winning_folders=winning_folders(3:end);

36
37 parfor ii=1:length(winning_folders)

38 folder_name=winning_folders(ii).name;

39 fprintf(['1 Working on: ' folder_name '\n'])

40
41 % % simulations_1{ii}=ParseSimulation(ii,

folder_name,criteria);

42 simulations_1{ii}=ParseSimulation_vetted(ii,folder_name,

criteria,letter);

43
44 fprintf(['\tFinished: ' folder_name '\n'])

45 end

46
47 loser_folders=dir(loser_folder_pattern);
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48 loser_folders=loser_folders(3:end);

49 anomolous_folders=dir(anomolous_folder_pattern);

50 anomolous_folders=anomolous_folders(3:end);

51 bad_folders=[loser_folders anomolous_folders];

52 for ii=1:length(bad_folders)

53
54 folder_name=bad_folders(ii).name;

55
56 [~,~,m]=regexp(folder_name,'_(−?\d+)_(−?\d+)_(−?\d+)');
57 m=m{1};

58
59 s_bad.folder_name=folder_name;

60
61 s_bad.setx=str2num(folder_name(m(1,1):m(1,2))); %#ok<*ST2NM>

62 s_bad.sety=str2num(folder_name(m(2,1):m(2,2)));

63 s_bad.setz=str2num(folder_name(m(3,1):m(3,2)));

64 s_bad.(['success_' letter])=false;

65
66 simulations_1{end+1}=s_bad;

67 end

68
69 end

70
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72
73 % load thermoval data

74 if ~exist('simulations_2','var')

75 simulations_2=simulations_1;

76 thermoval_pattern=criteria.thermoval_pattern;

77 parfor ii=1:length(simulations_2)

78 s=simulations_2{ii};

79 fprintf(['2 Working on: ' s.folder_name '\n'])

80 s.thermovals_a=load([sprintf(thermoval_pattern,s.folder_name)

'thermovals.a.5']);

81 s.thermovals_b=load([sprintf(thermoval_pattern,s.folder_name)

'thermovals.b.5']);

82 fprintf(['\tFinished: ' s.folder_name '\n'])

83 simulations_2{ii}=s;

84 end

85 end

86
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

88
89 % load thermoval data

90 if ~exist('simulations_3','var')

91 simulations_3=simulations_2;

92 % % for ii=26%length(simulations_3)
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93 parfor ii=1:length(simulations_3)

94 s=simulations_3{ii};

95 fprintf(['3 Working on: ' s.folder_name '\n'])

96 s=GetAnswer(s,criteria,letter);

97 fprintf(['\tFinished: ' s.folder_name '\n'])

98 simulations_3{ii}=s;

99 end

100 end

101
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

103
104 simulations=simulations_3;

105 f_nucSystem=plot_system_map(simulations,letter,'color_',['Nucleation System in

grain ' upper(letter)],false,false,['nucSystem_' upper(letter)]);

106 return

107 f_trssAtNuc=plot_system_map(simulations,letter,'trssAtNuc_',['*\tau_{rss}^''

in grain ' upper(letter)],false,false,['trss_' letter],'GPa');

108
109 good_simulations=simulations(cellfun(@(s) s.(['success_' letter])&&ismember(s

.(['primary_nucleation_system_ind_' letter]),criteria.(['

rel_slip_sys_inds_' letter])),simulations));

110 [fits_normAndCoslip fig_handles statistics]=PlotCriticalTauVsNormAndCoslip(

good_simulations,criteria,letter,['slipFits_' letter]);

111
112 print_coeffs(fits_normAndCoslip,statistics,letter,criteria,['./figures/params_

' letter '.txt'])

113
114 f_yield=plot_theoreticalYieldSurface(criteria,fits_normAndCoslip,letter,['

yield_' letter]);

115
116 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

117
118 % these lines compare actual nucleation against theoretical nucleation

119 % based on all slip systems. To use them, SetUp.m should be modified to

120 % consider all 12 slip systems instead of just the ones known to nucleate.

121 % getStandard.m should also be modified to have more colors for each slip

122 % system

123 simulations=simulations_3;

124 f_actual=plot_system_map(simulations,letter,'color_',['Actual Slip System in

Grain ' upper(letter)],false,false,['schmidIsBad1_' letter]);

125 f_schmidTheory=plot_system_map(simulations,letter,'

theoreticalSystemBasedOffOfMaxSchmidFactor_color_setStress_',sprintf(['

Slip System according to Max Schmid Factor in Grain ' upper(letter)]),

false,false,['schmidIsBad2_' letter]);

This code will compute resolved shear, normal, and co-slip stresses on a submitted stress

tensor for requested slip systems

85



1 function [ resolvedTrss resolvedNorm resolvedCoslip ] = get_trss( SIG_crystal,

slipsystems )

2 %GET_TRSS Summary of this function goes here

3 % Detailed explanation goes here

4
5 % Archival code to derive sp13:

6 %{

7 syms dx dy dz yx yy yz nx ny nz

8 syms sxx sxy sxz syy syz szz

9 l=[dx dy dz;yx yy yz;nx ny nz]

10 s=[sxx sxy sxz;sxy syy syz;sxz syz szz]

11 lt=[dx yx nx;dy yy ny;dz yz nz]

12 sp=l*s*lt

13 sp(1,3)

14 sp(3,3)

15 %}

16
17 resolvedTrss=zeros(1,size(slipsystems,1));

18 resolvedNorm=zeros(1,size(slipsystems,1));

19 for slipsystemindex=1:size(slipsystems,1)

20
21 slipsystem=slipsystems(slipsystemindex,:);

22
23 n=[slipsystem(1) slipsystem(2) slipsystem(3)];

24 n=n/norm(n);

25 nx=n(1);

26 ny=n(2);

27 nz=n(3);

28
29 d=[slipsystem(4) slipsystem(5) slipsystem(6)];

30 d=d/norm(d);

31 dx=d(1);

32 dy=d(2);

33 dz=d(3);

34
35 y=cross(n,d);

36 yx=y(1);

37 yy=y(2);

38 yz=y(3);

39
40 sxx=SIG_crystal(1,1);

41 sxy=SIG_crystal(2,1); syy=SIG_crystal(2,2);

42 sxz=SIG_crystal(3,1); syz=SIG_crystal(3,2); szz=SIG_crystal(3,3);

43
44 % sp13=abs(nx*(dx*sxx + dy*sxy + dz*sxz) + ny*(dx*sxy + dy*syy +

dz*syz) + nz*(dx*sxz + dy*syz + dz*szz));
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45 sp13=nx*(dx*sxx + dy*sxy + dz*sxz) + ny*(dx*sxy + dy*syy + dz*syz) +

nz*(dx*sxz + dy*syz + dz*szz);

46 sp33=nx*(nx*sxx + ny*sxy + nz*sxz) + ny*(nx*sxy + ny*syy + nz*syz) +

nz*(nx*sxz + ny*syz + nz*szz);

47 sp23=nx*(sxx*yx + sxy*yy + sxz*yz) + ny*(sxy*yx + syy*yy + syz*yz) +

nz*(sxz*yx + syz*yy + szz*yz);

48
49 resolvedTrss(slipsystemindex)=sp13;

50 resolvedNorm(slipsystemindex)=sp33;

51 resolvedCoslip(slipsystemindex)=sp23;

52
53 end

54
55 end

1 function [X,Y]=cart2stereo(x,y,z,plane)

2 % original from Doctor Eric Homer, sent to Ricky Wyman in an email on 20160516

3
4 % cartesian to stereographic

5 %assuming x,y,z input is already normalized

6 if nargin < 4

7 plane=3;

8 end

9 if plane==1 %projection of the y−z plane at x=0

10 X=y.*(1./(x+1));

11 Y=z.*(1./(x+1));

12 elseif plane==2 %projection of the x−z plane at y=0

13 Y=x.*(1./(y+1));

14 X=z.*(1./(y+1));

15 elseif plane==3 %projection of the x−y plane at z=0

16 X=x.*(1./(z+1));

17 Y=y.*(1./(z+1));

18 else

19 error('plane must be equal to 1,2,3')

20 end

21 end

1 function [X,Y]=cart2stereo(x,y,z,plane)

2 % original from Doctor Eric Homer, sent to Ricky Wyman in an email on 20160516

3
4 % cartesian to stereographic

5 %assuming x,y,z input is already normalized

6 if nargin < 4

7 plane=3;

8 end

9 if plane==1 %projection of the y−z plane at x=0

10 X=y.*(1./(x+1));

11 Y=z.*(1./(x+1));
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12 elseif plane==2 %projection of the x−z plane at y=0

13 Y=x.*(1./(y+1));

14 X=z.*(1./(y+1));

15 elseif plane==3 %projection of the x−y plane at z=0

16 X=x.*(1./(z+1));

17 Y=y.*(1./(z+1));

18 else

19 error('plane must be equal to 1,2,3')

20 end

21 end

This code analyzes each simulation after slip content and the primary nucleation slip system

has been determined. It determines the resolved shear, normal, and co-slip stresses at the point of

nucleation.

1 function [simulation dataToPlot]=GetAnswer(simulation,criteria,letter)

2 [simulation dataToPlot]=getAnswer(simulation,criteria,letter);

3 end

4
5 function [simulation dataToPlot]=getAnswer(simulation,criteria,grain_letter)

6
7 if ~simulation.(['success_' grain_letter]);

8 nuc_ind=1;

9 dataToPlot.rel=NaN;

10 dataToPlot.nuc_ind=nuc_ind;

11 return

12 end

13
14 lab2grain=get_lab2grain_matrix(criteria.pid,grain_letter);

15 primary_slipsys_ind=simulation.(['primary_nucleation_system_ind_' grain_letter

]);

16 rel_slipsys_inds=criteria.(['rel_slip_sys_inds_' grain_letter]);

17
18 thermovals=simulation.(['thermovals_' grain_letter]);

19 for ii=1:size(thermovals,1)

20
21 entry=thermovals(ii,2:7);

22
23 STRESS_lab=[

24 entry(1) entry(4) entry(5)

25 entry(4) entry(2) entry(6)

26 entry(5) entry(6) entry(3)

27 ];

28 STRESS_grain{ii}=lab2grain*STRESS_lab*lab2grain';

29 [sp13s(ii,:) sp33s(ii,:) sp23s(ii,:)]=get_trss(STRESS_grain{ii},

criteria.slip_systems(rel_slipsys_inds,:));

30
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31 vonMises_stress(ii)=1/sqrt(2)*sqrt(...

32 (entry(1)−entry(2))^2+...
33 (entry(1)−entry(3))^2+...
34 (entry(2)−entry(3))^2+...
35 6*(entry(4)^2+entry(5)^2+entry(6)^2));

36
37 end

38
39 nucleation_system_index=rel_slipsys_inds==primary_slipsys_ind;

40
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

42 % change these if wanted

43
44 if all(nucleation_system_index==0)

45 simulation.(['success_' grain_letter])=false;

46 nuc_ind=1;

47 dataToPlot.rel=NaN;

48 dataToPlot.nuc_ind=nuc_ind;

49 else

50 rel=sp13s(:,nucleation_system_index);

51 adaptive_cutoff=0.2*max(rel(1:end/2));

52 [maxima,prominence]=getprominence(rel);

53 inds=find(prominence>adaptive_cutoff);

54 nuc_ind=maxima(inds(1));

55
56 dump_step=criteria.dumpsteps(nuc_ind);

57 dump_loc=sprintf(criteria.file_name_format,simulation.folder_name,

dump_step);

58 system(['cp ' dump_loc ' nucleation_dump_' grain_letter '/' simulation

.folder_name '__' num2str(dump_step)]);

59
60 dataToPlot.rel=rel;

61 dataToPlot.nuc_ind=nuc_ind;

62
63 end

64
65 simulation.(['nucInd_' grain_letter])=nuc_ind;

66 simulation.(['trss_dat_' grain_letter])=sp13s(:,nucleation_system_index);

67
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 try

70 setStressAtNuc_lab=350000*nuc_ind/numel(criteria.dumpsteps)*[

simulation.setx 0 0;0 simulation.sety 0;0 0 simulation.setz];

71 catch

72 setStressAtNuc_lab=350000*1/numel(criteria.dumpsteps)*[simulation.setx

0 0;0 simulation.sety 0;0 0 simulation.setz];

73 end
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74 setStressAtNuc_grain=lab2grain*setStressAtNuc_lab*lab2grain';

75 actual=get_trss(setStressAtNuc_grain,criteria.slip_systems(rel_slipsys_inds,:)

);

76 [~,tmp]=max(abs(actual));

77 simulation.(['theoreticalSystemBasedOffOf'...

78 'MaxSchmidFactor_color_setStress_' grain_letter])=criteria.(['slip_colors_'

grain_letter])(tmp,:);

79
80 try

81 stressAtNuc_grain=STRESS_grain{nuc_ind};

82 actual=get_trss(stressAtNuc_grain,criteria.slip_systems(

rel_slipsys_inds,:));

83
84 [~,tmp]=max(abs(actual));

85 simulation.(['theoreticalSystemBasedOffOf'...

86 'MaxSchmidFactor_color_actualStress_' grain_letter])=criteria.(['

slip_colors_' grain_letter])(tmp,:);

87 catch

88 simulation.(['theoreticalSystemBasedOffOf'...'

89 'MaxSchmidFactor_color_actualStress_' grain_letter])=NaN;

90 end

91
92 simulation.(['trss_' grain_letter])=sp13s;

93 simulation.(['norm_' grain_letter])=sp33s;

94 simulation.(['cosl_' grain_letter])=sp23s;

95
96 simulation.(['trssAtNuc_' grain_letter])=sp13s(nuc_ind,nucleation_system_index

);

97
98 color=criteria.(['slip_colors_' grain_letter])(primary_slipsys_ind==

rel_slipsys_inds,:);

99 if isempty(color)

100 color=[NaN NaN NaN];

101 end

102 simulation.(['color_' grain_letter])=color;

103
104 end

This code plots a requested simulation property on a stereographic image as a function of

λ vector components. It was used to generate Figures 3.2 and 4.7

1 function f=plot_system_map(simulations,grain_letter,property,title_str,

doannotate,specify_color,name,include_colorbar)

2
3 if ~exist('doannotate','var')

4 doannotate=true;

5 end
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6
7 if ~exist('specify_color','var')

8 specify_color=true;

9 end

10
11 if ~exist('include_colorbar','var')

12 axis_offset=[0 0 0 0];

13 else

14 axis_offset=[0 0.2 0 0];

15 end

16
17 bar2gpa=0.0001;

18
19 bads=[];

20 for ii=1:length(simulations)

21 s=simulations{ii};

22
23 label{ii}=s.folder_name;

24
25 xset(ii)=s.setx*bar2gpa;

26 yset(ii)=s.sety*bar2gpa;

27 zset(ii)=s.setz*bar2gpa;

28
29 try

30 tmp=s.([property grain_letter]);

31 if any(isnan(tmp))

32 THROW_ERROR;

33 end

34 c(ii,:)=tmp;

35 catch %#ok<CTCH>

36 if specify_color

37 c(ii,:)=[0.4 0.4 0.4];

38 else

39 c(ii,:)=0;

40 end

41 bads=[bads ii];

42 end

43 end

44 xval=xset(:)/max(abs(xset));

45 yval=yset(:)/max(abs(yset));

46 zval=zset(:)/max(abs(zset));

47
48 figure_size=[3.25 2];

49 middle_x_offset=[figure_size(1)/2 0 0 0];

50
51 f=figure('Units','Inches','Resize','off','Position',[2 2 0 0]+[0 0 figure_size

],'Color',[1 1 1]);
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52
53 font_size=12

54 x_margin_offset=[(font_size+2)/72.272 0 0 0];

55 % % y_margin

56
57 outer_multiplier=1.2;

58 for isfront=[true false]

59
60 good=xval>=0;

61 if ~isfront

62 good=~good;

63 end

64
65 curx=xval(good);

66 cury=yval(good);

67 curz=zval(good);

68 curc=c(good,:);

69 [cury,curz]=cart2stereo(cury,curz,abs(curx));

70
71 dt=DelaunayTri([cury(:) curz(:)]);

72 circumcenters=dt.circumcenters;

73 ti=dt.vertexAttachments;

74
75 if isfront

76 axis_side=(figure_size(1)−9*x_margin_offset(1))/2;
77 axes('Units','Inches','Position',axis_offset+4*x_margin_offset

+[0 0 axis_side axis_side])

78 scaling=1/(outer_multiplier*max(max(circumcenters)));

79 else

80 axes('Units','Inches','Position',axis_offset+9*x_margin_offset

+[axis_side 0 0 0]+[0 0 axis_side axis_side])

81 scaling=1/(outer_multiplier*max(max(circumcenters)));

82 end

83
84 adaptive_max=max(sqrt(cury.^2+curz.^2));

85
86 hold on

87 for ii=1:length(cury)

88
89 cur_ti=ti{ii};

90
91 x=circumcenters(cur_ti,1);

92 y=circumcenters(cur_ti,2);

93 if norm([cury(ii) curz(ii)])>0.95*adaptive_max

94 [th,R]=cart2pol(x,y);

95 [supx,supy]=pol2cart(th,outer_multiplier*R);

96
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97 x=[x ; supx];

98 y=[y ; supy];

99
100 K=convhull(x,y);

101 x=x(K);

102 y=y(K);

103
104 end

105 patch(scaling*x,scaling*y,curc(ii,:));

106
107 end

108 hold off

109
110 if isfront

111 title('Tensile \sigma_x','FontSize',font_size)

112 else

113 title('Compressive \sigma_x','FontSize',font_size)

114 end

115 xlabel('\lambda_y','FontSize',font_size)

116 ylabel('\lambda_z','FontSize',font_size)

117 xlim([−1 1])

118 ylim([−1 1])

119 axis square

120
121 end

122
123 saveas(f,['./figures/' name])

124
125 end

This code makes scatter plots of the resolved shear, normal, and co-slip stresses on each

slip system at the point of nucleation. It fits a plane to the simulations that nucleated on each plot’s

slip system. It returns these fitting parameters for future use. It was used to generate the sub figures

in Figure 3.4

1 function [fits_normAndCoslip fig_handles statistics]=

PlotCriticalTauVsNormAndCoslip(simulations,criteria,grain_letter,base_name

)

2
3 target_slip_indicies=criteria.(['rel_slip_sys_inds_' grain_letter]);

4
5 for ii=1:length(target_slip_indicies)

6 cur_slip_index=target_slip_indicies(ii);

7 fits_normAndCoslip{ii,1}=cur_slip_index;

8 [fits_normAndCoslip{ii,2} fig_handles(ii) statistics(ii)]=doPlotThing(

criteria,simulations,grain_letter,ii,cur_slip_index,base_name);
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9 end

10
11 end

12
13 function [fit_normAndCoslip fig_handle statistics]=doPlotThing(criteria,

simulations,grainLetter,ind,cur_slip_index,base_name)

14
15 cur_slip_system=criteria.slip_systems(cur_slip_index,:);

16 cur_slip_system_printer=num2str(cur_slip_system,'%i');

17 cur_slip_system_latex=['(' num2str(cur_slip_system(1:3)) ')_{<' num2str(

cur_slip_system(4:6)) '>}'];

18
19 cur_slip_system_color=criteria.(['slip_colors_' grainLetter])(ind,:);

20
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % find out what simulations nucleated on what slip systems and group

23 % accordingly. Gather nucleation point information

24 xval=[];

25 yval=[];

26 zval=[];

27 for ii=1:length(simulations) %#ok<FORPF>

28
29 s=simulations{ii};

30
31 if cur_slip_index==s.(['primary_nucleation_system_ind_' grainLetter])

32 good(ii)=true;

33 nucleation_marker_size=600;

34 else

35 good(ii)=false;

36 nucleation_marker_size=50;

37 end

38
39 trss=s.(['trss_' grainLetter])(:,ind);

40 norms=s.(['norm_' grainLetter])(:,ind);

41 cosls=s.(['cosl_' grainLetter])(:,ind);

42
43 nuc_ind=s.(['nucInd_' grainLetter]);

44
45 xval(ii)=norms(nuc_ind);

46 yval(ii)=cosls(nuc_ind);

47 zval(ii)=trss(nuc_ind);

48
49 nucleation_marker_sizes(ii)=nucleation_marker_size;

50
51 nuc_color(ii,:)=s.(['color_' grainLetter]);

52
53 label{ii}=s.folder_name;
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54 end

55
56 fig_handle=figure('Name',cur_slip_system_latex,'Position',100+[0 0 500 500],'

Color',[1 1 1]);

57
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 % plot and get fit for normal and coslip stress

60
61 hold on

62 scatter3(xval(~good),yval(~good),zval(~good),nucleation_marker_sizes(~good),

nuc_color(~good,:),'*');

63 scatter3(xval(good),yval(good),zval(good),nucleation_marker_sizes(good),

nuc_color(good,:),'.');

64
65 try

66 [fit_normAndCoslip G]=fit([xval(good)' yval(good)'],zval(good)','

poly11');

67 h=plot(fit_normAndCoslip);

68 set(h,'FaceAlpha',0.5,'FaceColor',0.5*cur_slip_system_color,'EdgeColor

','None');

69 title(sprintf([cur_slip_system_latex '\nR^2=' num2str(G.rsquare)]),'

Color',cur_slip_system_color)

70 statistics.R=G.rsquare;

71 catch %#ok<CTCH>

72 title('Could not do a fit')

73 fit_normAndCoslip=[];

74 statistics.R=NaN;

75 end

76
77 statistics.N=sum(good);

78
79 xlabel('\sigma\prime_{rns} (GPa)')

80 ylabel('\tau\prime_{rco} (GPa)')

81 zlabel('\tau\prime_{rss} (GPa)')

82 set(gca,'XColor',cur_slip_system_color);

83 set(gca,'YColor',cur_slip_system_color);

84 set(gca,'ZColor',cur_slip_system_color);

85 view(115,10)

86 axis tight

87 zoom(0.8)

88
89 hold off

90
91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

92
93 saveas(fig_handle,['./figures/' base_name '_' cur_slip_system_printer]);

94
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95 end

This code prints the coefficients that are used in tables [?], [?], [?], and [?].

1 function print_coeffs(fits_normAndCoslip,statistics,grain_letter,criteria,

file_loc)

2
3 fid=fopen(file_loc,'w')

4
5 fprintf(fid,['Fitting parameters for Grain ' upper(grain_letter) ': (version

1)\n'])

6 for ii=1:size(fits_normAndCoslip,1)

7 ss=criteria.slip_systems(fits_normAndCoslip{ii,1},:);

8 try

9 str=[' Slip System=(' num2str(ss(1:3)) ')<' num2str(ss(4:6))

'>\ttau_crss=' num2str(fits_normAndCoslip{ii,2}.p00) '\

tsigma_crns=' num2str(−fits_normAndCoslip{ii,2}.p00/
fits_normAndCoslip{ii,2}.p10) '\ttau_crcs=' num2str(−
fits_normAndCoslip{ii,2}.p00/fits_normAndCoslip{ii,2}.p01)

'\tR=' num2str(statistics(ii).R) '\tN=' num2str(

statistics(ii).N) '\n'];

10 catch %#ok<CTCH>

11 str=[' Slip System=(' num2str(ss(1:3)) ')<' num2str(ss(4:6))

'>\tNO FIT POSSIBLE\t\n'];

12 end

13 fprintf(fid,str)

14 end

15 fprintf(fid,['Fitting parameters for Grain ' upper(grain_letter) ': (version

2)\n'])

16 for ii=1:size(fits_normAndCoslip,1)

17 ss=criteria.slip_systems(fits_normAndCoslip{ii,1},:);

18 try

19 str=[' Slip System=(' num2str(ss(1:3)) ')<' num2str(ss(4:6))

'>\ttau_crss=' num2str(fits_normAndCoslip{ii,2}.p00)...

20 '\ttau_crss/sigma_crns=' num2str(fits_normAndCoslip{ii

,2}.p10) '\ttau_crss/tau_crcs=' num2str(

fits_normAndCoslip{ii,2}.p01)...

21 '\tR=' num2str(statistics(ii).R) '\tN=' num2str(

statistics(ii).N) '\n'];

22 catch %#ok<CTCH>

23 str=[' Slip System=(' num2str(ss(1:3)) ')<' num2str(ss(4:6))

'>\tNO FIT POSSIBLE\t\n'];

24 end

25 fprintf(fid,str)

26 end

27
28 fclose(fid);

29
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30 end

This code uses the fitting coefficients to build a yield surface in principal stress space (with

the principal stresses oriented on x̂, ŷ, and ẑ. It was used to generate Figure 4.1

1 function f=plot_theoreticalYieldSurface(criteria,nucleation_criteria,

grain_letter,save_name)

2
3 ind=1;

4
5 targets=1:length(nucleation_criteria);

6
7 for ii=1:length(targets);

8
9 targ=targets(ii);

10
11 nucleation_slip_ind=nucleation_criteria{targ,1};

12 nucleation_criterion=nucleation_criteria{targ,2};

13
14 if isempty(nucleation_criterion)

15 continue

16 end

17
18 slip_system=criteria.slip_systems(nucleation_slip_ind,:);

19
20 % build a function handle that reports if a particular stress state

21 % would nucleate on the current fit

22 yieldCriterion=@(ps) did_nucleate(...

23 criteria.pid,ps,nucleation_criterion,slip_system,grain_letter)

;

24
25 % find three points on the surface of each nucleation constraint. Do

26 % this by searching in three different directions (if going forward on

27 % one direction fails, then look backwards. One of the two should

28 % always work)

29 p1=getPrincipalsAndActivation(yieldCriterion,0,0);

30 if any(isnan(p1))

31 p1=getPrincipalsAndActivation(yieldCriterion,0,0+pi);

32 end

33 p2=getPrincipalsAndActivation(yieldCriterion,0,pi/2);

34 if any(isnan(p2))

35 p2=getPrincipalsAndActivation(yieldCriterion,0,pi/2+pi);

36 end

37 p3=getPrincipalsAndActivation(yieldCriterion,1,0);

38 if any(isnan(p3))

39 p3=getPrincipalsAndActivation(yieldCriterion,1e5,0+pi);

40 end
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41
42 % build a matrix of three points lying on the surface of the current

43 % nucleation criterion

44 point_table=[p1';p2';p3'];

45
46 % find the normal to the plane

47 abc=fitNormal(point_table,false);

48
49 % find the intercept of the plane

50 d=dot(abc,p1);

51
52 % solve for the plane equation. This represents an algebraic equation

53 % of the current nucleation criterion

54 planeeqs(ind,:)=[abc(:)' d];

55 plane_colors(ind,:)=criteria.(['slip_colors_' grain_letter])(criteria

.(['rel_slip_sys_inds_' grain_letter])==nucleation_slip_ind,:);

56 ind=ind+1;

57 end

58
59 % see http://www.mathworks.com/matlabcentral/answers/82901−how−to−plot
60 % −feasible−space−in−3d−after−subtracting−multiple−inequalities
61 % answer by Steven Grob gathered on 2−May−2016
62
63 % density

64 n=0.25;

65 low=−50;
66 high=70;

67 vals=low:n:high;

68
69 % create coordinates

70 [xx,yy,zz] = meshgrid(vals,vals,vals);

71
72 region3=boolean(ones(size(xx)));

73 for ii=1:size(planeeqs,1)

74 rr=planeeqs(ii,1)*xx+planeeqs(ii,2)*yy+planeeqs(ii,3)*zz;

75
76 what_side=0<planeeqs(ii,4);

77
78 if what_side

79 reg{ii}=rr < planeeqs(ii,4);

80 region3 = rr < planeeqs(ii,4) & region3;

81 else

82 reg{ii}=rr > planeeqs(ii,4);

83 region3 = rr > planeeqs(ii,4) & region3;

84 end

85 end

86
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87 f=figure;

88 hold on

89 fv=isosurface(vals,vals,vals,region3,0.5);

90 for ii=1:length(reg)

91 my_fv=isosurface(vals,vals,vals,reg{ii},0.5);

92 points=intersect(my_fv.vertices,fv.vertices,'rows');

93
94 if isempty(points)

95 continue

96 end

97
98 conv_inds=convhull(points(:,1),points(:,2));

99 h=patch(points(conv_inds,1),points(conv_inds,2),points(conv_inds,3),

plane_colors(ii,:));

100 set(h,'FaceAlpha',0.5)

101 end

102 hold off

103 xlim([−50 50])

104 ylim([−50 50])

105 zlim([−50 50])

106
107 % plot a line of hydrostatic stress

108 extreme_max=max([xlim ylim zlim]);

109 extrema=[0 extreme_max];

110 h=line(extrema,extrema,extrema);

111 set(h,'Color','k')

112 view(50,50)

113 xlabel('\sigma_x (GPa)')

114 ylabel('\sigma_y (GPa)')

115 zlabel('\sigma_z (GPa)')

116 hold off

117 grid on

118
119 % % print(f,['./figures/' save_name],'−dpng');
120 saveas(f,['./figures/' save_name]);

121
122 end

123
124 function [principals r]=getPrincipalsAndActivation(yield_criterion,pidist,

theta)

125 % finds what principal stresses would cause nucleation to occur searching

126 % outwards from the piplane at particular pi coordinate (specified by

127 % pdist) and direction (specified by theta).

128 %

129 % This is a brute force model. There are many ways it could be improved

130 % including computational (use a binary search instead of searching

131 % outwards in increments) and analytical (algebraic intersection of the
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132 % search direction with the yield criteria)

133
134 r=0;

135 ind=0;

136
137 rot2piSpace=[

138 1 1 1

139 1 −1 1

140 1 0 −2
141 ];

142
143 while ind<1000

144
145 principals=rot2piSpace*[pidist;r*sin(theta);r*cos(theta)];

146
147 did_nucleate=yield_criterion(principals);

148 if did_nucleate

149 return

150 end

151 r=r+1e−1;
152 ind=ind+1;

153 end

154
155 % nucleation did not occur. Return NaN values to communicate this

156 principals=NaN(3,1);

157
158 end

159
160 function bool_did_nuc=did_nucleate(pid,ps,nucleation_criterion,slip_system,

grain_letter)

161
162 SIG_crystal=[ps(1) 0 0;0 ps(2) 0;0 0 ps(3)];

163
164 lab2grain=get_lab2grain_matrix(pid,grain_letter);

165 SIG_crystal=lab2grain*SIG_crystal*lab2grain';

166
167 [trss normal_stress cosl]=get_trss(SIG_crystal,slip_system);

168
169 try

170 theory_trss=feval(nucleation_criterion,normal_stress,cosl);

171 catch %#ok<CTCH>

172 theory_trss=feval(nucleation_criterion,normal_stress);

173 end

174
175 deviation=theory_trss−trss;
176
177 bool_did_nuc=deviation<0;
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178
179 end
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