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ABSTRACT

Associative CAD References
in the Neutral Parametric Canonical Form

Daniel Robert Staves
Department of Mechanical Engineering, BYU

Master of Science

Due to the multiplicity of computer-aided engineering applications present in industry to-
day, interoperability between programs has become increasingly important. A survey conducted
among top engineering companies found that 82% of respondents reported using 3 or more CAD
formats during the design process. A 1999 study by the National Institute for Standards and Tech-
nology (NIST) estimated that inadequate interoperability between the OEM and its suppliers cost
the US automotive industry over $1 billion per year, with the majority spent fixing data after trans-
lations. The Neutral Parametric Canonical Form (NPCF) prototype standard developed by the NSF
Center for e-Design, BYU Site offers a solution to the translation problem by storing feature data
in a CAD-neutral format to offer higher-fidelity parametric transfer between CAD systems. This
research has focused on expanding the definitions of the NPCF to enforce data integrity and to
support associativity between features to preserved design intent through the neutralization pro-
cess. The NPCF data structure schema was defined to support associativity while maintaining
data integrity. Neutral definitions of new features was added including multiple types of coordi-
nate systems, planes and axes. Previously defined neutral features were expanded to support new
functionality and the software architecture was redefined to support new CAD systems. Complex
models have successfully been created and exchanged by multiple people in real-time to validated
the approach of preserving associativity and support for a new CAD system, PTC Creo, was added.

Keywords: interoperability, heterogeneous CAD, CAD Features, neutral format, design history,
multi-user CAD, collaboration, collaborative CAD, Neutral Parametric Canonical Form, client-
server architecture, associativity, design intent
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CHAPTER 1. INTRODUCTION

Iterative engineering processes have long been integral to engineering design. Before com-

puter technology assisted with the design process, designers and engineers gathered around the

drafting table to coordinate their work on products. Detailed drafting standards were employed to

ensure accurate interpretation of drawings when transferred to other designers and manufacturers.

Even with these standards, however, close personal contact between the designer and manufacturer

was usually necessary [1]. With advances in CAD and communications via the Internet, comput-

ers are now a recognized necessity in the design process. While E-mail has allowed designers and

manufacturers to be geographically separated, mutual and interactive communication of design in-

formation is no less vital now than in the past [2]. Part models and drawings must be frequently

exchanged, translated, and checked between designers and manufacturers at each iteration of the

design.

While many methods of the design process have remained the same during the transi-

tion from the drafting tables of the past to the modern computer aided engineering processes of

today, the tools of engineering have changed dramatically. A wide variety of CAD tools are avail-

able which specialize in the many different aspects of design, like finite element analysis (FEA),

computational fluid dynamics (CFD), and solid or surface modeling. Companies, engineers, and

designers choose these tools based on their strengths, ease of use, and familiarity. A 2010 study

performed by the Aberdeen Group surveyed best-in-class companies and found that 82% of re-

spondents reported using 3 or more CAD formats in their design process. Included with the study

was a list of reasons varying from keeping aligned with supply chain, supporting legacy data, to

user preference [3].

Translation processes and standards have been developed for designers and engineers to

work with the multiplicity of file types in order to carry out their work. The translation process,

however, often strips the original model of its design intent, or intelligence embedded into the
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model. Translating also slows the design process and hinders meaningful collaboration between

designers working in separate systems.

1.1 The Cost of Poor Interoperability

Due to a shift in production practices in the 1980’s, U.S. automakers increased their market

share and became more competitive in the US automotive market [4]. A large part of this increase

in production is due to a move toward concurrent engineering and design outsourcing. This shift

resulted in the sharing of design data between a greater number of people and organizations, both

within the company, and between the company and its suppliers. While overall productivity in-

creased, the move highlighted many difficulties related to using heterogeneous CAD packages.

Estimates found that imperfect interoperability, or model transfer between CAD packages, during

this time cost between $1.02 billion and $1.05 billion within the US Automotive supply chain

alone [4]. The vast majority of this cost is due to the time spent fixing data resulting from poor

CAD model translations between both the OEM and suppliers. Interaction with Industry Advisory

Board (IAB) members of the National Science Foundation (NSF) Center for e-Design has revealed

a similar trend in the U.S. aerospace industry.

Difficulties in the translation process arise because of differences in the way each CAD

system represents the part model. Because there is no standard, modern CAD packages store fea-

ture and design data in proprietary formats, even though each system represents the same type of

data: three-dimensional geometric models. These systems often only support interoperability by

translating geometric Boundary REPresentation (BREP) data through formats such as IGES and

STEP. While these translation methods have been extensively and successfully used in industry,

the variances in the translation process between applications can cause geometric errors amongst

transferred models. In addition, by only translating BREP data, crucial design intent stored within

feature data is lost which greatly hinders meaningful collaboration. Any modifications or adjust-

ments to the model must either be made on the originating system and re-translated, or completely

redesigned in a new system. On top of these limitations, this method inherently follows a serial,

single-user work-flow; only allowing one user at a time to design or update the model. Before

a design can be shared, it must be exported in a neutral format and sent to the end-user. This

significantly impedes the advantages of concurrent engineering.
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Design intent captures the purpose of the modeling order and geometry chosen by the de-

signer. In modern parametric-based CAD, this is often stored within CAD features, such as axis

systems, planes, sketches, extrudes, revolves, and sweeps. It is also stored in the associations relat-

ing the CAD features together. By selecting features during the modeling process, an experienced

designer implicitly defines the important parameters of the model, which is extremely important to

manufacturing and future updates to the design. Because these parallel design processes are often

utilized to facilitate collaboration between geographically dispersed designers, these implicit defi-

nitions set by the designer are especially important to preserve. When a CAD model is translated

into neutral formats such as IGES and STEP, this design intent is lost as all features are replaced

by geometric representations. Without post-processing, engineers, designers, and manufacturers

are unable to identify the important parameters set by the original designer.

The principles of iterative design call for a constant update process between various groups

in the supply chain. Dealing with poor interoperability, however, significantly increases the number

of feedback loops required to ensure high-fidelity CAD models as models must be fixed each time

the design is passed between groups. These feedback loops extend the design time and can be

extremely costly.

Figure 1.1 depicts a simplified design process to illustrate this challenge. Arrows in the

figure represent the flow of the design as it is passed between designers and groups, both within

a company and between company and suppliers. Part fidelity checks and conflict resolution steps

are performed when models created by different designers are merged and before the design is

passed to a different group. If the different group uses a different CAD system, the model must

be translated and checked again. The red arrows represent the feedback loops through which the

design must pass if any of these tests are failed. As the number of designers and CAD systems used

increases, the time spent resolving conflicts in the feedback loops increases, which can significantly

delay the product launch and increase costs.

1.2 Proposed Solution

By investigating the needs of its industrial members and implementing solutions, the BYU

Site of the NSF Center for e-Design has sought to reduce the design cycle time by developing

synchronous, multi-user collaborative design tools. The most notable development is the NX Con-

3



Figure 1.1: A typical serial design process requires feedback loops to correct poorly translated CAD data
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nect multi-user prototype, a thin-server, thick-client system which supports cooperative modeling

between geographically dispersed clients running Siemens NX. NXConnect aims to reduce the

feedback loops in the design cycle by promoting awareness between different modelers working

on the same model. This work has paved the way for recent work developing the Neutral Para-

metric Canonical Form (NPCF), which seeks to solve the interoperability problem by formulating

neutral standards for representing CAD features [5]. While still supporting the multi-user ob-

jectives of the site, this neutral format enables simultaneous design among heterogeneous CAD

systems. A complete neutral format will greatly aid in the translation of both geometry and design

intent.

A product development process supported by an interoperable design environment, as il-

lustrated in Figure 1.2, enables users working with a variety of CAD formats to collaborate. This

figure depicts an engineering design process where designers, both within the same group and

between groups, can simultaneously contribute to a model. Because data is neutralized and acces-

sible in real time between all systems, model awareness between clients in promoted and conflicts

are able to be caught sooner in the design process. This has the potential to eliminate the costly

feedback loops illustrated in Figure 1.1.

Current work into the NPCF standards have focused on developing neutral formats for the

basic geometry used in 2D sketches - point, line, arc, and spline. Standards for the extrude by limit

feature and the revolve by limit feature have also been defined [5]. Neutralizing features is the first

step in creating a neutral format which preserves design intent. These features have been used to

successfully design a variety of part models and assemblies to study its effectiveness at promoting

awareness amongst heterogeneous CAD users. The NPCF functionality is limited, however, and

further research is needed to expand the NPCF standards to better support associativity. While

designers express, to some extent, design intent though their choice of features and the parame-

ters used to define them, the design intent is more often implicitly stored within the associative

relationships between CAD features. This occurs whenever a designer chooses between different

feature creation methods. Though they will both result in the same geometry, differences in the

definitions will cause the geometry to update differently during an edit. The choice of feature used

implicitly defines how the model should update during future edits.
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Figure 1.2: The ideal interoperable environment, when applied to a product development process,
allows users in different groups and different systems to work in parallel.

Associativity in CAD systems is one of the most powerful ways for a designer to express

design intent. By building a 2D sketch feature on a datum plane, the designer implicitly signifies

to others that the sketch, and any child features of the sketch, are associated with the location of

the plane. Any updates or edits to the part model must preserve this original association. Any

neutral format used to translate CAD features from one CAD system to another must retain these

associations to preserve design intent.
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Figure 1.3: Siemens NX employs a variety of feature creation methods for the datum plane feature
to enable designers to express critical design intent.

A designer’s ability to express design intent can be seen, for example, in the case of a

creating plane feature. Most CAD systems support a variety of methods that a designer can use

when creating a plane. Figure 1.3 shows the different feature variations that Siemens NX supports

when creating a datum plane. Other major CAD systems support a similar list of feature creation

options. A designer may signify design intent by creating a plane that runs parallel and equidistant

from two CAD surfaces, often called a bisect plane. When any of the surfaces are moved, this

plane is moved automatically to support the constraint. This plane could be translated to other

CAD systems as a fixed 3D plane in space. The translation, in this case, preserved the plane

feature, its location, and modeling history of the part. It did not, however, transfer design intent as

when the surface are moved, the plane would no longer bisect the two faces.
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1.3 Objectives

The main objective of this research is to enhance the neutral data structure of the NPCF with

methods to better support feature associativity within an interoperable CAD modeling session. A

secondary objective was to research and develop a system to ensure the data integrity of the neutral

format. Both of these objectives drove the selection and order of development for the processes

found in Table 1.1.

Table 1.1: The main objectives of this research drove the development of key processes

Key Processes
1 Support multiple definitions of features
2 Enable Interface-like CAD references
3 Structure Client software to support new systems
4 Support PTC Creo CAD System
5 Support Coordinate System Features
6 Support Plane Features
7 Support Axis Features
8 Extend Support for Extrude Features
9 Support Revolve Features

As a part of this research, the structure of the neutral format was redesigned to enable

multiple definitions of features to be utilized during the modeling process. This, for example,

enables a designer to either generate a blind extrude to a limit, or extrude up to a plane. The

NPCF neutral definition for features have also been updated to support inter-feature references,

allowing features to reference other features, or other types of features. This redesign was critical

in supporting associativity between neutral CAD features as well as preserving the referential

integrity of the neutral data.

Additionally, as part of this research, the number of supported CAD systems was increased

from Dassault CATIA and Siemens NX to include PTC Creo at the request of research sponsors.

This enabled testing of the NPCF with all three top-tier CAD systems widely used in industry.

During the implementation process of all previously implemented NPCF features for Creo, the

format was again tested to ensure the neutralization was valid for all systems.

8



Finally, the new features chosen to be supported serve as a key test to ensure the objectives

of this research have been met. Three of the new features are datum features which are extensively

used to define the position and orientation of geometry and are key to a parametric CAD model.

Multiple feature definitions will be implemented for the 3D features of extrude and revolve.
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CHAPTER 2. RELATED WORK

2.1 Multi-User CAD Solutions

Multi-user CAD implementations seek to reduce time spent during the modeling process by

enabling collaboration amongst designers and engineers at separate workstations. Users are able

to simultaneously interact with and edit the same part model or assembly in an attempt to reduce

design time as modeling processes can be performed as parallel tasks. An important principle of a

multi-user CAD solution is an awareness of where other users are working.

2.1.1 Thick Server - Thin Client

Research in collaborative CAD solutions have been ongoing since the mid-90s and has

focused primarily on two architectures: centralized and replicated. A centralized architecture,

where a central server executes and performs modeling operations received from remote clients,

enables consistency among clients as there is only one copy of the model. After the server has

generated the geometry described by the modeling operation, only visualization data is transmitted

to the clients. With only one copy of the model, each client remains at all times in the same state

as the others. WebSPIFF [6], NetFeature [7], CADDAC [8], CollFeature [9] and WebCOSMOS

[10] [11] are all examples of this central architecture. A downside to this architectural approach is

that a large amount of data needs to be sent over the network [12].

In addition, this approach isn’t easy to implement with existing commercial CAD systems

because most commercial CAD systems API’s are single threaded [13]. CAD data is most often

divided into parts and assemblies. A true multi-user approach must allow clients to perform CAD

operations in any model, or multiple models, simultaneously. A single-threaded API significantly

limits the ability to interact with multiple models as operations must be performed serially. For

this reason, this architecture isn’t ideal for a heterogeneous CAD approach.
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2.1.2 Thin Server - Thick Client

In a replicated collaborative CAD system, each client has a copy of the model data which

is required to stay in sync. As each client performs an operation, the data is sent to other clients

via a network architecture. ARCADE [14], CSCW-FeatureM [15], CollIDE [16] and RCCS [12]

are examples of replicated CAD systems built at the kernel level. Because these systems have been

designed with multi-user processes in mind, they are very capable of handling the parallel nature of

collaborative CAD. Because they have been developed from the kernel level, however, they aren’t

compatible with the commercial CAD systems currently used today and are unable to improve the

state of CAD interoperability.

There are examples of systems that interface with commercial single user systems. These

include TOBACO [17], CallabCAD [18], and COCAD [19]. In addition, multi-user systems devel-

oped at the NSF Center for e-Design, BYU site are built as direct plugins to major commercial sin-

gle user systems including Siemens NX, Dassault Systemes CATIA and Autodesk Inventor. These

plugins are respectively named NXConnect, CATIAConnect and InventorConnect [20] [21] [13].

The replicated approach is easier to implement with existing commercial CAD systems because

each command can be applied the the model serially, however data consistency can be a major chal-

lenge. While these systems enable collaboration between commercial CAD systems, they don’t

support translations between heterogeneous systems.

2.2 Heterogeneous CAD Solutions

Due to the multiplicity of CAD applications available commercially, companies often inter-

face with a wide variety of CAD file formats through interactions with their supply chain. To open

and use these formats, CAD applications must translate part model and assembly files between

heterogeneous CAD systems. Translation inconsistencies arise because different CAD systems

generate different features, or may represent similar features differently. For example, a line seg-

ment can be represented either as two endpoints, or as one endpoint, a direction vector, and a line

length. The data formats are not always minimized, for reasons of feature associativity. Consider

the example of a 2D Arc. This feature in Siemens NX is defined using a center point, a radius,

and a start and end angle, and is represented in 3D coordinates. An arc is expressed in PTC Creo
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using the same parameters, but expressed in 2D coordinates. The same feature in Dassault CATIA

is defined using a center, start and end point in 2D coordinates. Due to the different definitions,

translating data between programs is non-trivial. There are a variety of methods which have been

developed attempting to solve this problem, though further work is needed to address limitations.

The International Graphics Exchange Standard (IGES) format was first developed in 1980

to facilitate the translation between heterogeneous CAD systems [22]. IGES was the first attempt

at resolving the data exchange challenge between CAD systems. It works by translating the CAD

model of each system to its basic geometric data and is the most widely used neutral format used

today. While IGES has been very successful in allowing models developed in different systems

to be exchanged, it falls short in that only BREP data is translated. All associative links between

features are broken, and design intent is lost.

Created in 1984, the Standard for the Exchange of Product Model Data (STEP) is a redesign

of IGES, aiming at a more advanced, database-oriented, and integrated solution based on product

lifestyle data [23]. It fixes some shortcomings of IGES, including standardizing the processors

and uses a formal language to define the data structure to avoid ambiguities during interpretation,

which could result in as much as 50% failure rates [24]. Work has continued on the STEP stan-

dard, most recently by the Solid Model Construction History (SMCH) group which is seeking to

preserve design intent through the translation process by recording the history of the model as it is

created. SMCH adds an implicit, or history based, representation of the model to the explicit BREP

data. This effectively creates solids that maintain their original relationships with other solids after

the translation process, preserving design intent and allowing them to be edited and manipulated

accordingly [25]. A drawback of SMCH is that the file size is large due to both the B-rep and

construction history data being stored, making it difficult for collaborative, multi-user applications

in which data is transmitted frequently between clients.

Many commercial CAD companies have developed their own format for compressing and

representing models. JT by UGS, U3D by Intel and HP, 3DXML by Dassault are examples of these

open formats, which are the preferred open formats for exporting from each respective system [26].

These formats can be licensed to other systems for import. JT, for example, differs from IGES and

STEP standards by storing multiple Levels Of Detail (LOD) of tessellated geometry, as well as

product structure information of parts and assemblies like texture, color, and surface quality [27].
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Like STEP and IGES, however, these formats don’t preserve feature information, and therefore

lose design intent.

A 2010 concept to integrate feature information into the JT open data format has been put

forth by Eigner et al in an effort to enhance the product development process through the semantic

interpretation of the features [27]. The features of the model are classified by type and procedural

description regarding its usage scenarios. This feature meta-information is collected and stored in

an XML format alongside the JT model representation and PLM data while maintaining a neutral

format and compact file size. While this method does transfer feature information which helps

support many more operations in the development cycle that non feature-based formats, it does not

transfer parametric data, limiting applications to post-modeling processes.

The Macro-Parametric Approach, described by Choi et al [28] in 2002, preserves design in-

tent through CAD translation by utilizing each CAD system’s built-in macro functionality. During

the modeling process, the macro file records and saves each modeling command. During trans-

lation, this file passes through a pre-processor, which outputs a standard, or neutral, macro file.

In the event where a CAD system doesn’t record enough data in the macro file, the pre-processor

uses the program’s API to extract the required information. This standard macro file created by

the pre-processor is then translated into the target system’s native format by the post-processor

which the CAD system is able to interpret to reconstruct the model. This approach was continued

and extended by Mun, et al by defining a set of standard modeling commands [29]. Using this

approach, the team successfully translated simple parts from SolidWorks to CATIA while keeping

the feature trees intact. This method is not able to be used for multi-user CAD, however, because

of the need of an external program to perform the pre and post processing to translate the macro

files to and from the standard format. It is also limited because not every CAD system records

macro files which are accessible to the user.

The Neutral Modeling Command method addresses the need for a collaborative heteroge-

neous CAD solution through the use of each CAD system’s application programming interface

(API) [30]. Each client runs an add-on program which translates system modeling operations

(SMO) into neutral modeling commands (NMC) in real time and synchronized between clients

through a thin server [31]. The database of supported modeling commands is a super-set of all

modeling commands in each supported CAD system. While this method supports real-time edit-
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ing of models by geographically dispersed users, it does so on a turn-by-turn basis which signifi-

cantly limits collaboration. Like the Macro-Parametric approach, this method focuses on modeling

commands, rather than feature data which prevents it from defining a neutral format.

While the approaches described previously to enhance interoperability between CAD pack-

ages have greatly improved the data transferred during the heterogeneous translation, they do not

address the problem of collaboration between these systems. Prior work performed developing

the Neutral Parametric Canonical Form sought to address this limitation by enabling synchronous,

multi-user modeling between heterogeneous CAD systems by neutralizing feature data in real time.

This earlier research focused on developing processes to neutralize feature data. Further work is

required to ensure the neutralized feature data retains its associations with other features and CAD

parameters, thus preserving design intent between CAD systems.

14



CHAPTER 3. METHODS FOR INTEROPERABILITY

The methods described in this chapter facilitate heterogeneous, multi-user CAD and are

used to improve associativity methods and capture design intent in the Neutral Parametric Canoni-

cal Form (NPCF) data structures. The interoperability of the NPCF is tested using the CAD Interop

prototype developed by the BYU Site of the NSF Center for e-Design, which is built on the foun-

dation of a client-server architecture. Plug-in software packages, written for each supported CAD

system, capture CAD events and translate resulting CAD features into the neutral format defined by

the NPCF. This neutral data is transmitted to other clients via the server. The server is also respon-

sible for saving a persistent copy to the database to facilitate other clients loading after geometry

has been created.

These methods enable modern, commercially available CAD packages to work in a het-

erogeneous environment. The reasons for supporting existing CAD packages become clear when

considering the various reasons companies select a CAD system. Companies often choose a CAD

system for its strengths in certain modeling areas, its support for the company’s legacy data, or its

familiarity and ease of use with designers. While a completely new CAD system could be devel-

oped to meet the simultaneous modeling needs of a company, it would not address the concerns

which drive a company to choose a specific CAD system. By developing methods to synchronize

models within different CAD packages, companies can retain a certain program used for its ad-

vantages toward their application, while being able to collaborate with other companies or groups

who have chosen other programs.

Improvements enhancing the associativity between neutral CAD features has been chosen

as the first upgrade to the original standards defined by the NPCF due to feedback given by indus-

try sponsors of the Center for e-Design. Associativity in a CAD system is the foundation of design

intent, through which a designer can parametrically define features that, when edited, continue to

meet the design requirements. This is especially important for multi-user CAD, where designers
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may be geographically dispersed but still need to communicate design intent to facilitate meaning-

ful collaboration. This research focused on developing and designing the method and processes

for storing neutral feature data within a database to preserve CAD associations. In addition to

developing these methods, the NPCF neutral database schema and client software were updated to

utilize the new methods.

3.1 Determining a Feature Set

Table 3.1: Most used CAD features in BYU Senior Capstone project using NXConnect

Feature Count
Spline 3011
Datum Plane 1842
Mirror 447
Datum Csys 364
Offset Curve 326
Thru Curve 295
Point 255
Sketch 229
Extrude 220
Thru Curve Mesh 194
Sew 193
Trim Body 187
Section Curves 141
Skin 125
Blend 110
Absolute Datum Plane 74
Subtract 39

The order of feature additions to the Neutral Parametric Canonical Form are derived from

data collected from a Boeing sponsored, BYU senior capstone project listing the most used CAD

features in the project. A list of these features and their use count can be seen in Table 3.1. The

original set of supported features were the 2D sketch features of point, line, arc, circle, and spline.

Extrudes and Revolves were also supported with limited functionality. As part of this research,

these features were implemented into a plug-in application for PTC Creo following the standards
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set by the NPCF. The neutral definitions 3D features of sketch, extrude, and revolve were also

expanded to include functionality for associative references.

In addition to upgrading the initial features defined by the NPCF, neutral definitions of

coordinate system features, plane features, and axis features were developed. These datum features

are particularly important to associative modeling processes because they are used to define the

locations of curves, faces, and solid bodies in part models or assemblies. They also are included in

the list of most common features used by the BYU senior capstone team.

3.2 Defining a Neutral Format

Figure 3.1: Local CAD features and operations are converted to a parametric, neutral format which
is accessed by remote clients and incorporated into their respective
models

An important distinction between the way the Neutral Parametric Canonical Form enables

interoperability between heterogeneous CAD systems, and methods employed by previous CAD

interoperability formats are the principles of neutralization versus translation. An interoperability

process that uses a neutralization method is illustrated in Figure 3.1 showing how a CAD feature

can be represented by it’s neutral parameters. Software utilizing this method will convert CAD

17



data from an originating system to a neutral format after a CAD process is performed. The neutral

format, illustrated in the center of the figure, completely defines the feature by its parameters and

stored within a database. It is then converted to the CAD format of the destination system and

constructed in a local part model for interaction by the other user. The neutral file remains as the

master copy of the model from which all systems load data. This single neutral file ensures model

consistency between clients and sessions.

A major advantage of this method is its support for multi-user processes. This is because

all data is stored in an open format easily accessible and readable by any interested party with

the proper access credentials. When support for new CAD systems is to be integrated into the

neutralization method, software is required only to convert the CAD specific data to the neutral

format, and from the neutral format to the CAD specific format, without any need for consideration

of the other supported CAD systems. Access to only one CAD system’s API is required to perform

these conversions, eliminating the need for a company to hold costly CAD licenses for every format

their suppliers may use.

This is in contrast to the translation method. When CAD data is translated from one system

to another, methods convert data from the original format directly to the destination format. In this

method, the original CAD file is the master copy of the model and must be converted to every other

system type. While this method reduces the number of steps required to support interoperability,

it doesn’t readily support multi-user processes as all CAD features must be translated each time

a new format is used. This conversion process also requires access to all involved CAD system’s

API’s which could be very expensive.

An important part generalizing the Neutral Parametric Canonical Form was the addition

of a third tier-one CAD system, PTC Creo. When a new feature was added to the NPCF, the

creation methods for that feature were compared between Siemens NX, Dassault CATIA, and

PTC Creo to determine which methods were functionally identical and would therefore map with

minimal conversion. This process is vital in determining the neutral format because it ensures

that the feature can be neutralized from any of its creation methods without being converted and

potentially losing valuable design intent information.

With a set of features and associated creation methods identified, the parameters required

for each creation method were compared between CAD systems to determine the minimum ideal
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set which fully defined the feature. With the multitude of CAD systems used today, there are many

ways to represent the same feature. In this architecture, each CAD system’s feature representation

must be neutralized to a single format. This architectural choice ensures that single neutral feature

is represented by one neutral data structure. Mun, et al utilized a method for accomplishing a

similar goal when formulating a set of standard modeling commands between CAD systems [29].

In this process, feature parameters were determined by journaling a modeling command, as was

the case with the previous NPCF paper [5]. Then, because Creo lacks journaling functionality,

its API was compared with the results of each journal file to determine crucial parameters. An

ideal neutral format is determined by selecting the minimum number of parameters required to

completely represent the feature.

3.3 Client-Server Architecture

The multi-user aspects of the Neutral Parametric Canonical Form interoperability prototype

require constant communication between clients to ensure model accuracy and consistency. As

shown in Figure 3.2, this communication is facilitated via a client-server architecture in which

each CAD client routes all messages about CAD operations through a central server. The server

is responsible for maintaining a list of active clients and the models that each client has open.

As messages are sent to the server, they are forwarded to all other clients associated with the

corresponding model. The messages are also saved in a SQL database ordered by time-stamp

for later access. When a client first opens a model, all modeling operations associated with the

model are sent to the client to ensure the client’s local model is up-to-date before new messages

are received.

The messages sent by the clients to the server contain the neutral data about CAD features

and operations. Each message contains information about the client that sent it, the corresponding

part model it is associated with, and a neutral class object containing the feature data. The server

is able to save this object to the database using an Object Relational Modeler which automatically

converts the object to SQL code. The relationship between the server, ORM, and database can

been seen in Figure 3.3, where the multi-user, heterogeneous prototype is divided into 5 major

layers. The client layer, at the bottom of the figure, consists of the user and the CAD package. The

business layer functionality is written into software plug-in for the CAD package to neutralize and
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Figure 3.2: Client-Server Architecture employed to facilitate the multi-user capabilities of the
NPCF

transfer CAD operations from the client to the server for distribution to other clients. The ORM

acts as the communication layer between the server and the database. Finally the database, or the

data storage layer, acts as the persistent storage for all CAD operations which enables modeling

between sessions.

This client-server architecture helps maintain model consistency by keeping track of oper-

ational order between all clients in all models. This consistency ensures that as the number of users

working in a model increases, models are synchronized between users. This is especially impor-

tant during assembly operations which may affect multiple part models. Timestamps on each CAD

operation sent to the server are used to set operational priority when being performed on remote

clients. Conflicts are resolved by ignoring lower priority operations that result in failed geometry.

Server consistency management, as described by Hepworth et al, can be implemented to further

prevent conflicts [32] [33].
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Figure 3.3: The client-server architecture of the Heterogeneous CAD prototype is part of a 5-tier
structure in which data is passed from the user at the client level up to the server and database for
storage and distribution

3.4 Database

During the multi-user, collaborative modeling process, CAD operation data is passed be-

tween clients through a central server which tracks operation order. As CAD operations are re-

ceived by clients, the geometric calculations defined by the operations are performed in order, and

the geometry is incorporated into the local model. Part models are created and remain synchro-

nized because these remote operations happen concurrently with the local operations. When a

client first enters an previously-existing model, however, operation data performed before entering

the model must be applied before any local modeling operations are performed.

A database is used to record CAD operations as they are performed by clients and routed

through the server. The database acts as a persistent storage for the assembly and part models

because it stores all operations used to create the model. During the initial load of a model by a
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client, the server loads all stored operations pertaining to the model from the database and sends

them to the client to be performed locally. The database is only accessed during this initial loading

event. All other remote operations are directly forwarded by the server from remote clients to

increase the transfer rate of modeling messages.

Figure 3.4: Modeling operations received by the server for distribution are recorded in the database
for persistent storage. During part model loading, the server accesses modeling operation data from
the database for part model synchronization of new client

An example of how database transactions are used during the multi-user modeling process

is illustrated in Figure 3.4. In this example, clients 1 and 2 are working collaboratively in a part

model. As client 1 performs operation 1, operation data is sent to the server to be forwarded to

client 2. While the server is forwarding the operation data, it also writes that data to the database

for persistent storage. This work flow enables quick response times between operations because

the model synchronization doesn’t need to wait on the database save operation. This process

is repeated when client 2 performs operation 2. When client 3 joins the part modeling session

some time later, before they are able to perform any modeling commands, the server queries the

database for all modeling operations associated with the part model and sends them to be applied

to the local model. In this manner clients models are synchronized while keeping database queries

at a minimum.
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Figure 3.5: Inheritance structure for an extrude feature in Siemens NX 8.0 API

For this heterogeneous CAD, multi-user application, the database is designed to store CAD

data at its most basic level. In addition, the database must enforce referential integrity to reject

invalid data. Modern CAD utilizes feature operations to build parametric models. Features in a

CAD system are defined using various parameters, and depending on the function of the feature,

may accept different types of parameters. In the CAD system’s API, these features, and variations

of features, are arranged in a hierarchical order. Figure 3.5 shows an example of the hierarchical

structure for the NX 8.0 API, where an extrude feature is a child object of other CAD objects.

Features that share similar characteristics and parameters are grouped together. To facilitate this

kind of data storage while enforcing data integrity in the database, parameters relating to each

CAD feature are distributed between database tables of varying generality. These tables are shared

by other features which use the same parameters. For example, both a 2D sketch feature and a

plane feature have a feature name and time stamp.

Figure 3.6 depicts the hierarchy of sketch feature and plane feature variations. All first-

order features reference the top CAD feature table, which contains basic parameters such as feature

name, owning CAD part, and time stamp. First-order features are features which are not variations

of another object. This includes sketch features and plane features. Each of these first-order feature

tables contains unique parameters used to define that feature. The feature variations of the plane

feature reference the first-order plane feature to gain access to the normal vector parameter. The

fixed plane feature, for example, references the plane feature table and adds a 3D point parameter

for defining location in 3D space, while the offset plane and angled plane features add reference

parameters and offset values. Using this hierarchy, a feature or feature variation at the bottom of
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Figure 3.6: Parameters of feature variaitons are divided amongst a hierarchy of tables which groups
variations by similarities

the hierarchy is fully defined when it combines the parameter values contained in its table with all

those it references. The offset plane table when combined with the parameters of the plane feature

table and the CAD feature table contains all parameters required to define an offset plane feature.

Table 3.2 describes the process used to incorporate new features into the neutral database.

When a new feature is to be added, feature creation methods are identified and compared be-

tween CAD systems to identify commonalities. For example, both a blind extrude in Creo, and

an extrude-by-values in NX expect a sketch feature on which the operation is to be performed and

numerical limits to identify the start and end points of the extrude. Though these feature varia-

tions are given different names, and treat the limits differently, both can be neutralized into the
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same format without loss of data or semantic meaning. Contrasting this feature variation with an

extrude-to-plane operation, both methods utilize the same sketch parameter, but accept different

objects to define limits. When splitting parameters between common tables, as described in Table

3.2, a generic extrude table will be created which stores the referenced sketch parameter, and two

feature variation tables will be created to hold the parameters required by the blind extrude and

planar extrude respectively.

Table 3.2: Process used to distribute feature parameters between tables when adding new features
to database

NPCF Database Feature Addition Process
Identify feature variations on all systems
Identify commonalities between systems
Determine neutral format for all feature variations
Split parameters between common tables
Add associations representing inheritance relationships
Save database

When arranged in this manner, each variation of a feature will share parameters with other

features but will have a table containing the parameters which make it unique. As shown in Fig-

ure 3.6, a plane feature can be divided into feature variations, with both an offset plane feature

and a fixed plane feature sharing parameters defining normal direction. Both features also have

parameters which make them unique. An offset plane feature, for example, has an offset distance

parameter and an offset object, while a fixed plane has a 3D point defining its location. By ar-

ranging the database tables in this manner, data integrity is enforced because only the parameters

used to define a feature variation are stored in a table. This allows the database designer to en-

force all parameters as required with a defined data type. Invalid database save operations will

automatically be rejected.

Besides enforcing data integrity, the arrangement of database tables into a CAD feature

hierarchy also enables database parameters to store a variety of feature references. Designers

use this type of reference to signify important relationships in a CAD model, implicitly defining

design intent. A single parameter used to define a feature can be used to reference a wide variation

of features. For example, A 2D sketch feature requires a Datum Plane as a parameter to define its
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location in space. Using this hierarchical method, the parameter in the sketch database table can

reference the more general plane table, which contains parameters used by both the offset plane

and fixed plane tables. This effectively allows a sketch to reference any of these features.

3.5 Object Relational Manager

To facilitate reading from and writing to the database, an Object Relational Manager (ORM)

is used to convert data between programming objects and the database. It is most often used as a

familiar method in which software developers can interact with a SQL database. The ORM gen-

erates programming class code based on the database schema, effectively defining a neutral data

structure in which CAD feature parameters are stored. When the proper methods are called, the

ORM saves the parameters stored in the neutral data structure to their corresponding tables and

columns in the database. These data structures defined by the ORM make up the foundation of the

messages sent between the clients and server.

Because the ORM data structure is based on the database schema, it automatically captures

all parameters and associations defined in the database tables. Since many of the associations in the

database are used to define the hierarchical nature of CAD features and objects, these associations

are modified within the ORM to represent inheritance relationships for the neutral data structure.

Inheritance is a principle often employed in object oriented programing to define instances where

one object derives methods and properties from another object. In the API of a typical CAD

system, CAD feature objects derive certain methods and properties from a base Feature class. In

our dispersed representation of CAD features in the database, where feature parameters for a single

feature may be distributed throughout multiple tables, a feature variation inherits from a base class

of that feature. By modifying the associations of the database tables imported by the ORM to

represent inheritance, single programming objects are created which contain all the parameters of

the features from which it is derived.

The ORM, as shown in Figure 3.7, converts the features and feature variations distributed

through the various database tables into single CAD objects which contain all the parameters re-

quired to define each feature or feature variation in a neutral format. The database tables for sketch

feature and for the plane feature variations are combined into their own data structures. These

structures retain their relationships with the corresponding database parameters from which they
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Figure 3.7: The Object Relational Manager converts the database tables and schema into program-
ming data structures

are derived, and are used for accessing and writing data within the database. The hierarchy es-

tablished within the database between tables is also retained in the data structures created by the

ORM as object inheritance.

Apart from combining feature parameters into a single feature object, inheritance is used

to define data types. Since each feature variation is represented in the database as a separate table

and modified by the ORM to be represented as separate objects inheriting properties from the base

feature class, each feature variation object is of the same type as the base feature object. This is an

important principle which enables feature references. A 2D sketch feature in CAD, for example,
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references a plane feature to define location. A plane feature has multiple feature variations from

which it can be defined. Using the method describe above, the ORM will generate feature objects

for each feature variation. However, since each plane feature variation inherits the base plane

feature, the parameter used to reference a plane feature in the sketch feature object needs only to

be of type plane object, and any variation of the plane object can be stored. This method both

simplifies development and helps to preserve data integrity because only one reference parameter

is needed to reference multiple feature definitions.

3.6 Interface Inheritance

While the method described above enables multiple feature definitions to be referenced,

many CAD features can reference completely different types of objects in a single parameter. This

is best illustrated by the example in Figure 3.8. A revolve feature revolves a two dimensional

sketch around an axis to generate three dimensional geometry. The axis of the revolve could be

an axis feature, defined by a 3D point and vector, or could be a line object in a 2D sketch. These

two objects in no way share an inheritance structure but must be able to be referenced in a single

parameter to maintain data integrity. Further modifications to the ORM are necessary to support

this functionality.

This is accomplished by modifying the code generated by the ORM to implement an inter-

face system. Interfaces are a commonly used paradigm in object oriented programming to declare

functional similarities between different object types. In essence, it allows unrelated objects in

code to interact with other objects in the same way. In the case of the revolve feature example,

both the axis feature and the 2D line object implement an interface which denote that both objects

can be used as a reference for an axis. In this case, the revolve feature axis parameter does not

require a specific feature type, but instead requires an object which implements an axis interface.

This is done by modifying the part of the ORM which automatically generates the neutral data

structure to include the interface code.

Database tables and data structures which reference an interface rather than a feature need

to be modified as well. Because each association in the database requires a single table to represent

to represent the association, any feature table using a parameter to reference an interface must

create the association with the most basic database table from which all feature tables associate.
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(a)

(b)

Figure 3.8: A revolve feature can revolve a 2D sketch around (a) an axis of a coordinate system or
(b) a line in the sketch
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The parameter used for the reference is given a reserved name which represents the type of interface

used. For the case of an axis reference, the reserved name is ReferencedAxis while other reserved

names can be seen in Table 3.3. The ORM is modified to identify these reserved names and

replace all associated references to the basic CAD object data structure with the interface type

corresponding to the reserved name.

Table 3.3: List of reserved names for database columns used to define parameters which reference
interfaces

Reserved Name Function
ReferencedAxis Declare an object can be used as an Axis
ReferencedPlane Declare an object can be used as a Plane
ReferencedDirection Declare an object can be used as a Direction
ReferencedPoint Declare an object can be used as a Point

While creating a database association with the most basic database table lowers the data

integrity of the database by allowing any feature, including invalid features, to be referenced;

invalid data is prevented from being added to the database by the modified ORM data structures.

The data structures allow only features which implement the correct interface to be referenced. All

read/write operations to the database are abstracted as far away from the user as possible to reduce

the risk of data corruption. The ORM is as close a possible to the database that it ensures future

developers aren’t able to make any errors and corrupt the data.

3.7 Client Plug-in Software Packages

To simultaneously support multiple CAD packages within the heterogeneous environment,

a client program is integrated as a plug-in to each supported system. This plug-in software is

responsible for identifying when new operations are performed, converting information about the

operation into the corresponding neutral format, and then packaging the neutral operation data to a

format used by the ORM to fill the corresponding database tables. The client then sends this data

to the server to be distributed to other clients and to the database.

To facilitate the wide variety of APIs associated with CAD programs the original client-side

architecture was modified. As a result of this research, each client now consists of two different
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Figure 3.9: The software for the client is split into two sections. A plug-in interacts directly with the CAD program to identify and
capture CAD operations, while the MUObject class neutralizes and transmits the data to the server
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parts, as seen in Figure 3.9. The multi-user object (MUObject) classes are responsible for handling

communications with the server and for neutralizing CAD data. These MUObject classes are all

written in the C# programming language. These objects contain the code that was generated by the

ORM to read from, and write to the database. When a CAD operation is performed, the MUObject

classes convert the operation data to a neutral format and fill the ORM-generated classes. A mes-

sage is then sent to the server containing the neutral data along with information pertaining to the

originating user, the part model that the message is associated with, and a time stamp to be used

with ordering operations. The MUObject classes also receive and deserialize messages from the

server. Since all clients perform these same basic functions, the MUObject classes can be identical

for all CAD packages.

The second part of the client interacts directly with the CAD system’s API, and is written

in the language best supported by the system. For the case of NX and CATIA, the client plug-

in is written the the C# programming language for simplicity of interacting with the MUObject

classes. This is possible for these systems because their respective CAD API’s fully support the

.NET framework. The client plug-in for Creo, however, is written in the C++ programming lan-

guage because its .NET API lacks important functionality required to support interoperable CAD.

The C++ API, however, is complete, fully functional, and able to support the CAD functionality

required for interoperability.

The plug-in section of the client utilizes event methods within each CAD system to deter-

mine when feature data needs to be synchronized between clients, such as in the case of a feature

creation, edit, or delete event. The plug-in then collects information about the updated feature and

formats the parameters in a way readable by the MUObject class. When data is received from the

server from remote clients or the database, the plug-in calls the proper methods within the API

of the CAD system to create, edit, or delete a feature, or perform a part model or assembly level

command.

By separating the client software package into two parts, developers working on integrating

new CAD packages into the interoperable software are, in essence, further abstracted away from

the communication aspects of the multi-user program. Instead, developers are only concerned

about translating between the CAD specific data and the neutral format defined in the MUObject
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class. This work flow has significantly accelerated development time as new features are supported

in an incremental process between CAD systems.

3.8 Neutral Reference Verification

After each referential addition to the NPCF was completed, the newly supported features

and methods were tested to validate the approach and verify that the method worked between all

three systems. For multi-user CAD modeling to be effective, users must be able to create and edit

features on all systems. For the heterogeneous CAD environment, this means that each system

must support each feature and define the geometry in the same way. To ensure this happened,

testing occurred incrementally as new features were added to each system.
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CHAPTER 4. IMPLEMENTATION AND RESULTS

The Neutral Parametric Canonical Form is a set of prototype standards for representing

CAD features and other CAD data in a neutral format that supports multi-user, simultaneous CAD.

The NPCF has been implemented and tested using Interop, a client-server application utilizing

plug-in software to interface with commercial CAD systems. Interop is developed by the BYU

Site of the NSF Center for e-Design to understand the requirements necessary to support multi-user

CAD processes between these heterogeneous CAD systems. The objective of this research is to

extend the NPCF format and the Interop prototype to support associativity and enforce referential

integrity during the modeling process in an effort to preserve design intent.

The sections in this chapter detail the implementation process and results for the methods

described in chapter 3.

4.1 SQL Database Implementation

The Neutral Parametric Canonical Form defines a set of parameters and relationships which

express CAD features in a neutral format. To test their viability, the NPCF was implemented in a

SQL database, with a database table for each feature variation, and a database column within the

tables for each neutral feature parameter. A SQL database is an ideal format to store neutral CAD

data because it is optimized for basic data types. The main objective for neutralization is to convert

CAD specific data to a set of these basic data types which are then able to be read and interpreted

by any other system.

In this implementation, each table contains a Globally Unique IDentifier (GUID) database

column which is used to uniquely identify neutral CAD features stored in the database. It is

generated by the client from which the feature originated using the Microsoft Windows API to

guarantee uniqueness between all clients with a high-degree of certainty. A flowchart detailing the

order of operations after a new feature is created is shown in Figure 4.1. After a new feature is
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Figure 4.1: Order of operations after a new feature is created in the Interop multi-userprototype

created in the CAD system, a GUID is generated by the plug-in software and stored with both the

neutral data in the MUObject class and with the CAD feature in the CAD system. The GUID is

used to identify features on all clients, update feature data in the database when edits are performed

in the CAD system, and link feature data in the database.

Because the GUID is unique between all clients, it can be used to allow a single feature

to be partially represented by multiple database tables in a hierarchical format, similar to the way

CAD features would be represented in a CAD system’s API. For example, data for a coordinate

system plane feature is stored in four separate tables as seen in Figure 4.2. The figure shows both

the database schema (a) which describes how the database tables relate to each other as well as

a representation of the data stored within each table (b). A GUID and time-stamp for the feature

are stored in the InteropObject table. The same GUID, feature name, tree order, and feature type

is stored in a Feature table. The GUID and plane type is stored in the DatumPlane table and the

GUID, associated coordinate system, and plane type is stored in the DBCsysPlane table. Each

table is linked together using a primary-key/foreign-key reference which automatically matches

the correct data when querying the database for a feature.

Data integrity is enforced by ensuring each table contains the largest set of parameters not

shared with other features or feature variations. This ensures the greatest number of unique feature

variations and all columns of each variation table must be completely filled in order to be valid. In

order to accomplish this, features must be grouped according to similarities when determining the

neutral format. For example, to define a coordinate system plane, the associated coordinate system

must be referenced. Since this is not required for an offset plane, the CsysGUID and CsysPlane

parameters are included within the DBCsysPlane table, and not the DBPlane table. The resulting
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(a)

(b)

Figure 4.2: (a) Neutral data for a single feature is partially represented by multiple tables. (b)
GUIDs are used to link partial data in each table together to completely define a neutral feature.
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table hierarchy is mirrored during the development of the MUObject classes so each MUObject is

responsible for extracting the data required to fill its associated table.

This SQL database implementation also allows feature references to be stored as parameters

within the database tables. Since features are represented as database tables, these CAD references

are stored in the SQL database as primary-key/foreign-key associations between tables, with the

primary-key being the feature table being referenced, and the foreign-key being the feature table

containing the reference parameter. Any feature variation which requires a feature reference will

store the GUID of the referenced feature in the associated parameter database column. In Figure

4.2 this occurs in the DBCsysPlane table in the CsysGUID column. The data stored within the

CsysGUID column is the unique identifier of the coordinate system feature that is referenced by the

coordinate system plane. When querying the database for a feature that utilizes a feature reference

done in this manner, information about the referenced feature is also automatically returned with

the query.

4.2 Object Relational Manager Implementation

The main purpose of the object relational manager in the CAD Interop prototype is to

provide an effective interface with the database. The ORM generates programming classes based

on the database schema. To write to the database, the developer writes to the properties of the

ORM class. When querying the database, the ORM fills the ORM class properties based on the

values stored in the database. In the Interop implementation, the majority of the ORM processes

occur server-side. When geometry is created in the CAD system, the client software populates the

neutral feature parameters in the associated ORM class and serializes the ORM class to be sent to

the server. The server uses the ORM to save the feature parameters stored in the ORM class to

write to the database.

A secondary purpose of the ORM specific to this implementation of the CAD Interop soft-

ware is to enable an interface-like structure when interacting with the database. A typical SQL

database only supports associations between two tables when using a single database column to

hold the foreign key. While multiple columns could be used to support associations between mul-

tiple tables, this would violate the principle of referential integrity for a CAD system because only

one parameter should be filled out at a time while the database could potentially fill out multiple
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parameters. To support associations between multiple tables while only allowing one association

at a time to be utilized, thus supporting referential integrity of the data, the classes generated by

the ORM are modified implement an interface.

(a) (b)

Figure 4.3: Table hierarchy data automatically generated by ORM (a) is modified to form an
inheritance structhre (b)

Microsoft’s Entity Framework 6.1.3 was chosen to be the ORM for the CAD Interop pro-

totype because it is customizable and is closely integrated with the C# programming language.

Entity Framework has a visual interface which is used to set most properties of the objects that

represent database tables. After each feature table is added to the SQL database, the Entity Frame-

work model representing the tables of the database is updated to incorporate the new feature and
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all associated references. Basic table schema and associations are automatically downloaded and

incorporated into the entity framework model. Associations made to other tables are called navi-

gation properties which store the object that they reference.

For example, the OffsetPlane object defined by the ORM is based off of the InteropObject,

Feature, DatumPlane, and OffsetPlane tables described previously. The associations between these

tables are changed in the ORM to inheritance relationships on the GUID property. This instructs the

ORM to combine all parameters defined in the four tables together when creating the OffsetPlane

data structure. The FixedPlane data strucuture is created in a similar manner - combining the

parameters defined in the InteropObject, Feature, and DatumPlane tables with the FixedPlane table.

Figure 4.3(a) shows the datum plane objects generated by the ORM immediately after im-

port from the database. Microsoft’s Entity Framework GUI represents database table associations

with dotted lines between objects. While some of these associations will be used to represent

feature reference parameters, most need to be converted to form inheritance relationships. Af-

ter post-processing, the ORM GUI looks like Figure 4.3(b). During post-processing, associations

are replaced with inheritance relationships, represented by solid arrows pointing to the base class.

GUID parameters are deleted from derived members to signify that the single GUID parameter of

the base class is used for all derived members. When uploading data to the database, the proper

GUID database columns are filled with the correct data.

The final modifications to the ORM code enable the objects to implement and reference

interfaces. Classes are automatically generated from the database schema through the use of a

t4 text template which is included with entity framework. This template is modified to identify

navigation properties with the reserved names in Table 3.3. The names of the navigation properties

are set by the database columns they are associated with. Any matches to the names are replaced

with the associated interface type using the following code:

i f ( navProp . Name == ” R e f e r e n c e d P l a n e ” )

{

navPropType = ” I P l a n a r R e f e r e n c e ” ;

}

e l s e i f ( navProp . Name == ” R e f e r e n c e d A x i s ” )

{
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navPropType = ” I A x i s R e f e r e n c e ” ;

}

Partial classes are then created for each object which is to implement an interface. For example,

the heading of the partial class for a DBLine2D object is:

namespace Connec tData

{

p u b l i c p a r t i a l c l a s s DBLine2D : I A x i s R e f e r e n c e

{

. . .

Utilizing partial classes ensures that any code implemented within them will not be overwritten

when new ORM code is auto-generated.

4.3 Datum Features

A major focus of this research was to improve the way the NPCF captures and preserves

design intent through associativity within and between features. As a result, this research produced

an expanded definition of the NPCF schema which allows the associative references to be stored.

While the definitions of the defined neutral features are captured within the database schema as

the table structure and associations, interactions with the NPCF occur in code through the data

structures generated by the ORM.

To further test the ability of the NPCF definitions for preserving design intent through

associativity, new features were supported. Because datum features are used by designers and

engineers to define important locations and parameters of a CAD part model or assembly, they are

ideal for this test. The datum features of coordinate system, axis, and plane were implemented as

associative features within the NPCF database schema and incorporated into each supported client

CAD system. Figure 4.4 shows how these features are used to define position and orientation in

PTC Creo 3.0. The layouts of the data structure used to neutralize these features are contained in

this section.
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Figure 4.4: Datum Features in PTC Creo 3.0 are used to define the position and orientation of solid
models.

4.3.1 Coordinate System Features

A coordinate system is often the first CAD feature in a part or assembly, and is used to de-

fine the directions and positions of the axes in the model. It is so commonly used that many CAD

systems have a default setting to automatically include this feature when a new model is created.

Even with its common use in all major CAD systems, however, they are defined in very different

ways. Figure 4.5 shows coordinate system features from all three supported CAD systems. Coor-

dinate systems in both Siemens NX and Dassault Systemes CATIA contain a 3D point for defining

location, 3 axis systems for defining orientation, and 3 planes for construction of geometry. In PTC

Creo, however, coordinate systems have only a 3D point and 3 axes.
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(a) (b) (c)

Figure 4.5: Coordinate systems in default orientations as represented in Siemens NX (a), Dassault
Systemes CATIA (b), and PTC Creo (c)

Because the planes are automatically included with the coordinate systems for NX and CA-

TIA, it is necessary to support these planes on Creo as well. To mirror functionality on all systems,

they must be created in Creo when a coordinate system is created. This is important because dur-

ing the neutralization process, any feature which has a reference to one of these coordinate system

planes, must be able to reference the same plane on a remote CAD system to be created correctly.

When a coordinate system feature is created in Creo while using the Interop prototype software,

three planes are automatically created to mirror the planes which are created by default on NX and

CATIA when the neutral feature is Incorporated into their respective part models. When opening

neutral models containing a coordinate system in Creo, these planes are also created.

Furthermore, part models and assemblies in Creo are automatically created with a coor-

dinate system and three separate planes as default features. They are used to define the global

coordinate system of the model, and don’t have any parameters definable by the user. These fea-

tures are necessary because they are used to define locations and orientations for new features.

Though this default coordinate system is identical to coordinate systems created later by the user,

it is defined using different parameters and is entered into the NPCF as a feature variation of the

neutral coordinate system feature. As discussed in Chapter 3, supporting these two feature types

as variations maintains the referential integrity of the database by only requiring each parameter in

feature table to be filled completely.

Figure 4.6 shows the complete schema for a neutral coordinate system feature in the NPCF.

The schema accounts for both feature variations of the coordinate system: a coordinate system

with parameters set by the user and a coordinate system found at the origin of the part. Both of

42



Figure 4.6: Database schema used to define the neutral parametric canonical form for a coordinate
system feature contains associations with the axis table and plane table for a complete definition

these variations share an association with the DBBaseCsys table which maps to an inheritance

relationship in the classes generated by the ORM. This DBBaseCsys table is referenced by the

DBCsysAxis table and the DBCsysPlane table enables the axes and planes of the coordinate system

feature to be referenced independently of the coordinate system but still be associated with it for

identification on all systems. The ability to reference these sub features independently of the

coordinate system is important because each sub feature has very different properties. The planes,

for example, are used in very different ways from the axes. By keeping them separated in the

database allows each to be referenced by other features. This would not be possible if, for example,

all parameters were contained in a single DBCsys table.

Though not always expressed as a separate feature, all part models in all CAD systems

reference a global coordinate system. Because some CAD systems, like Creo, create a feature to

define this global coordinate system, it is necessary to include it in the neutral format so that when it

is referenced, it can be referenced in any CAD system. To support this, all neutral part files created
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using the NPCF must include, as its first feature, an origin coordinate system with its associated

planes and axes. When a new part is created using the Interop prototype, a DBOriginCsys object

is created and associated with three DBCsysAxis objects and three DBCsysPlane objects. Since

the creation of neutral parts happen independently of a CAD system, this process is located within

the MUObject portion of the client software. This ensures that the same part definition occurs

on any system without any involvement from future developers, thus reducing the chance of data

consistency errors.

4.3.2 Plane Features

Figure 4.7: Database schema illustrating the two variations of the plane feature that were imple-
mented into the Interop prototype software

Because datum planes were among the top used features in the BYU Senior Capstone

project, a considerable amount of attention was given to them to support their required functional-
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ity. Datum planes are often used to define the location of sketch features or the limits of extrude

and revolve features. The implementation of this feature was divided amongst the two supported

feature variations, coordinate system plane and offset plane. Both of these variations are associated

with a base plane database table which, after translated by the ORM, becomes a base plane class

implementing the IPlanarReference interface. This interface signifies that the base plane, and all

feature variations of the plane, can be referenced by other feature objects as a planar reference.

The implementation of the coordinate system plane, illustrated in Figure 4.7 by the DBC-

sysPlane database table, includes a reference to the associated coordinate system and a property

to represent the type of plane. This reference is made by a one-to-many association between the

DBBaseCsys table and the DBCsysPlane table with the CsysGUID column of the DBCsysPlane

table being used to store the foreign key. This type of association allows one coordinate system to

associate with multiple coordinate system planes. To identify each of these planes, the DBCsys-

Plane table contains a CsysPlane column which stores an enumeration detailing the type of plane

the data represents. The values of the enumeration stored in this property are described in Table

4.1.

Table 4.1: Coordinate System Plane Type Enumeration

Value Enumeration Description
0 xyPlane Plane defined by the X and Y axes of the coordinate system
1 yzPlane Plane defined by the Y and Z axes of the coordinate system
2 zxPlane Plane defined by the Z and X axes of the coordinate system

An offset plane feature describes a plane which is parallel to another planar object sepa-

rated by a finite offset. This feature, implemented in the NPCF definitions in the DBOffsetPlane

database table, contains an offset property for storing a floating point value for the offset and a

ReferencedPlane property to enable the reference with the parallel planar object. Because a planar

object could be a variety of features, rather than associate with a plane feature, it must associate

with the PlanarReference interface described in chapter 3. To support this interface method, the

ReferencedPlane property stores the foreign key for its one-to-many association with the generic
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DBInteropObject table. ReferencedPlane is a reserved name which triggers the custom code in the

ORM to associate the property with the PlanarReference interface.

The MUObject portion of the client was written specifically to handle the hierarchical for-

mat of the plane feature variations. In an effort to reduce future development time and to minimize

potential errors, only the MUPlane class is publicly accessible from other code within the MUOb-

ject structure. Both the MUOffsetPlane and MUCsysPlane are child classes of the MUPlane class

and are marked private. When a remote plane feature operation is sent from the server, it is passed

to the MUPlane class to determine the type of plane. The MUPlane class then passes the data to

the respective MUObject class for the feature variation which converts it a format readable by the

plug-in portion of the client software.

4.4 Feature Extensions

Continued research and development on the Neutral Parametric Canonical Form has ex-

panded the definitions and capabilities of features previously overlooked [5]. In this case, the

expansions served two purposes. First, the features are more complete and more closely resem-

ble definitions employed by typical CAD systems. Secondly, and most importantly, the extended

features better capture the design intent of the modelers as they support associativity with other

features. Both the extrude and revolve features received these expansions.

4.4.1 Sketch Features

In modern 3D CAD, sketches are used for defining 2D geometry that, when associated

with other CAD features like extrudes and revolves, defines 3D geometry. Figure 4.8 illustrates

the sketch referenced during a revolve operation in Creo. Is this example, the sketch location and

orientation is defined by the part coordinate system. In the previous NPCF implementation, the

sketch positioning data was dis-associated from the coordinate system. As a result of this research,

the sketch plane of the neutral sketch feature definition references the plane feature. Updates to the

location and orientation of the plane automatically propagate to the sketch.

The neutral database schema for a sketch feature is shown in Figure 4.9. To make a refer-

ence to a planar object, the ReferencedPlane parameter is associated with the generic InteropObject
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Figure 4.8: A revolve feature in PTC Creo 3.0 references a sketch feature and an axis to generate
3D geometry

table. This association, as well as the reserved name, signifies to the ORM to create a PlanarRef-

erence interface parameter. The HAxis and VAxis parameters are used to define the horizontal and

vertical axes of the sketch respectively. These axes define how the sketch geometry lies on the

plane.

4.4.2 Extrude Features

An extrude feature creates three dimensional geometry by expanding a two dimensional

sketch and was one of the top used features in the BYU Senior Capstone project. Like most

CAD features, there are often a variety of extrude definitions that can be used to capture design

intent. These variations, however, are not implemented in the same way as the features previously

discussed. An example illustrates this point. A blind extrude is created when the two dimensional

sketch is expanded a specified, finite distance. If the sketch plane is moved, the extrude is moved

as well, but the extrude distance remains the same. A planar extrude, however, expands the sketch

to meet a planar object. If the sketch plane is moved, the extrude is moved but is expanded to the

same plane. The two types of extrudes can, however, be used together, with one side of the sketch

being expanded to a planar object while the other is expanded a set distance.
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Figure 4.9: Neutral sketch features in the NPCF reference plane features to define sketchlocation

To capture both types of extrude limits while maintaining the referential integrity of the

database, two associations with the DBLimit table are employed which store data for each side of

the extrude feature, as seen in Figure 4.10. The DBLimit table, in turn is associated with both the

DBBlindLimit table and the DBPlanarLimit table to store values and planar references respectively.

This database schema allows for mixed limit types to be used when creating an extrude feature.

4.4.3 Revolve Features

A revolve feature, like an extrude feature, expands a two dimensional sketch into three

dimensional geometry. It does so by revolving the sketch about a user-defined axis by certain

values. Because multiple CAD objects can be used as an axis for the revolve, the DBRevolve

table, seen in Figure 4.11, is associated with the DBInteropObject table with the foreign key being

stored in the AxisGUID property. After being processed by the ORM, a property is created which
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Figure 4.10: Multiple limit objects are associated with the DBExtrude database table

implements the AxisReference interface. This interface is also used by each of the three axes in

coordinate systems and by 2D line features in sketches.

4.5 Feature Capabilities and Limitations

Each feature supported by the NPCF can be created, edited, and deleted in NX, CATIA,

and Creo during the modeling process. During the implementation process, each feature is tested

individually and all features collectively during regular team-modeling sessions. During these

sessions, errors that arise are recorded and investigated to determine the cause. Most are due to

bugs and architecture limitations, and can be categorized into three underlying causes.

1. Some bugs are caused by programmer error. When implementing a new feature into three

different CAD systems, crucial information is sometimes omitted causing a feature to be

created incorrectly or not at all. The majority of these bugs are located in the plug-in portion
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Figure 4.11: The DBRevolve table employs an association with the DBInteropObject table to
employ the AxisReference interface

of the client code when extracting or setting CAD feature information. These types of bugs

are given the highest priority during the modeling sessions and fixed immediately.

2. Some bugs arise because of limitations or errors within the CAD system’s API. An exam-

ple of this bug type occurred when implementing the revolve feature into PTC Creo. In the

plug-in implementation for Creo, the integrity of local feature operations are preserved by

ensuring remote operations don’t conflict. This is done by subscribing to button events. Dur-

ing a team-modeling session, unexpected behavior was observed around the revolve feature

and was traced to an API bug dealing with the revolve button event. The issue was reported

to PTC 17 June 2015 and is currently under investigation. Workarounds are developed for

these bugs to address the lost functionality. In the case of the example above, a new button
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was placed in the user interface of Creo that must be pressed by the user after performing a

revolve operation - simulating the functionality that was lost from the API bug.

3. Sometimes a single feature can pass all tests but, when used during a team-modeling session,

can cause the program to crash. Often this is because of the lack of an overall consistency

manager to ensure multiple operations aren’t performed on the same feature. To limit the

effect of this architecture limitation, methods were implemented in each client plug-in to

queue remote operations when a local operation is performed. This fix has greatly reduced

the amount of reported bugs during team-modeling sessions. This solution, however, does

not prevent potential conflicts that may arise when multiple users are editing the same feature

or feature tree. In it’s current implementation, Interop avoids these conflicts because the only

features supported don’t remove geometry. An edge blend feature, for example, removes

an edge during its operation. If another user were to, at the same time, create a feature

which uses that edge, a conflict would arise. A server-level consistency manager should be

implemented to make the software more robust and handle this type of conflict, though the

existing solution is effective.

The current process for identifying, prioritizing, and fixing errors that arise has been ef-

fective in rapidly improving the state of the software. Future work into expanding the capabilities

of the NPCF software should continue categorizing these types of errors to maintain the level of

progress.

4.6 Modeling Demonstrations

As a result of this research, associations between features and methods for preserving de-

sign intent have been incorporated into the multi-user interoperability program utilizing the NPCF

prototype standard. Neutral definitions for coordinate systems and datum planes, as well as ex-

tended definitions for extrude and revolve features have been defined and included in the hetero-

geneous system. Additionally, support for PTC Creo has been added to enable multi-user syn-

chronous modeling between NX, CATIA, and Creo CAD systems. The capabilities of the software

and NPCF prototype standard are demonstrated by modeling two separate assemblies. The assem-

bly models were selected to utilize the features and test the methods developed and implemented
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as a result of this research. Both assemblies were modeled by multiple users simultaneously. All

users were co-located and allowed to collaborate prior to beginning modeling. While users in these

sessions were co-located, the same process could occur between geographically separated clients

by using a video conferencing service.

4.6.1 Water Pump Thrust Bearing

The first multi-user assembly presented was designed to showcase the associativity meth-

ods developed during this research. Three clients, using NX, CATIA, and Creo respectively, were

given instructions prior to modeling which included the basic dimensions of each component of the

assembly and the order of operations employed by a single user to model the part. Instructions for

each model can be found in Appendix A. During modeling, clients simultaneously modeled within

the same parts, collectively working to complete the design before moving to the next component.

The absence of any conflict resolution implementations in this architecture, however, necessitated

that clients communicate to avoid interfering with others’ operations. This method was illustrated

early in the modeling session as is displayed in Figure 4.12. After the initial cylinder was extruded

to define location and size, each client simultaneously modeled geometry based off of the initial

feature, albeit in relative isolation.

The plane and coordinate system features were used extensively to define the location of

features in relation to other geometry. Planes, as seen in Figure 4.13, were used to define the

locations of sketches and the limits of extrudes. Coordinate systems defined the axis of revolution

of revolve features. Because of the associative nature of these features, when mistakes were made

during the modeling session as to the limits or locations of new features by any client, the model

could be edited to correct the mistake. Edits could be performed by any user, regardless of which

client initially created the feature. Updates to the model were automatically propagated to all

remote clients and stored within the database.

Figure 4.14 shows the finished pump bearing housing part model on all three CAD clients.

Collaboration between clients enabled each user to work on portions of the model to collectively

complete the model. A process, similar to the one employed in this session, not only enables users

to work with the CAD system in which they are most comfortable, but also enable users with

different specialties to access and contribute to the part model during the design stage.

52



(a) (b)

(c)

Figure 4.12: Interoperable Modeling Session between clients using the Creo (a), NX (b), and
CATIA (c) CAD systems

Table 4.2: Comparison of model parameters of exported stereolithography files from each CAD
system

Stereolithography File Comparison
NX CATIA Creo

X-Dimension 100.000 mm 100.000 mm 99.990 mm
Y-Dimension 82.500 mm 82.478 mm 82.495 mm
Z-Dimension 60.000 mm 60.000 mm 60.000 mm
Volume 114612.7 mmˆ3 114721.5 mmˆ3 114666.0 mmˆ3
Surface Area 35687.9 mmˆ2 35663.1 mmˆ2 35665.4 mmˆ2
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(a) (b)

(c)

Figure 4.13: Associative planes were used to define the location of features while modeling in
Creo (a), NX (b) and CATIA (c)

To test the software’s ability to exactly replicate models between CAD systems, the finished

part model from each system was converted to a stereolithography (.stl) file often used for rapid

prototyping. When exporting to this file type, each CAD system represents the part model by a

triangular tessellation covering all surfaces of the model. The .stl files from each respective CAD

system was then imported into a 3rd party analysis tool to extract the important model parameters

found in Table 4.2. Though there are slight variations between the parameters, these are extremely

minimal, with the largest percent difference coming from the volume calculation which is less than

.095%. Even so, the differences in these parameters is most likely due to variations in how each

CAD system creates the tessellations.
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(a) (b)

(c)

Figure 4.14: Finished Water Pump Bearing Housing modeled using multi-user heterogeneous CAD
as seen in Creo (a), NX (b) and CATIA (c)

4.6.2 Guided Model Rocket Assembly

The second multi-user assembly presented with this research tests the system’s handling of

multiple users ad multiple parts within an assembly. The challenge of this situation is to handle the

constant stream of remote CAD operations from other users in a way as to not interfere with the

local user’s modeling process. In this example, a total of six users, two in CATIA, two in NX, and

two in Creo, model a model rocket retrofitted with a simple guidance system. Components were

divided amongst users in each system prior to modeling. Additionally, instructions for modeling

were given to each user found in Appendix A. The model rocket assembly is actually an assembly

made up of 10 unique parts seen in Table 4.3. Due to current architecture limitations in assembly

component instance functionality, each component was modeled separately, ie. the servo motors

were modeled four times in four configurations.
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Table 4.3: Guided Model Rocket Components list

Guided Model Rocket Assembly
Component Quantity

Motor Sub-frame 1
Servo Motor 4
Guidance System 1
Nose Cone 1
Lower Fin 3
Upper Fin 4
Motor 1
Battery 1
Nozzle 1
Skin 1
IMU 1

Figure 4.15: Interoperable Modeling Session between Six Heterogeneous CAD Clients
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Figure 4.16: Components were modeled in place according to the rocket global coordinatesystem

While each client modeled their respective components, geometry created by remote users

were automatically integrated into the local assembly. Figure 4.15 shows each client early in the

modeling session. As users alternate between creating sketches and constructing geometry, remote

user’s work can be referenced and checked. This kind of awareness, akin to the collaboration

around the drafting table, fosters interaction between designers to help and check each other where

needed. While clients could see the operations performed by remote clients, each client worked

alone on any particular component. This was important because it resulted in no operational con-

flicts - necessitated because of the lack of a conflict management implementation.

During this modeling session, coordinate systems were used extensively to define both

location of objects and axes of rotation. Each part was modeled according to the rocket global

coordinate system, so coordinate system features were often the first feature created and offset to

the correct locations to define geometry. This can be seen in Figure 4.16 and is a common practice

57



Figure 4.17: Image of finished rocket assembly modeled in a heterogeneous CAD system

with large assemblies in industry. A screen shot of the finished model rocket assembly is seen in

Figure 4.17.

To handle the steady stream of remote CAD operations sent to the local client from the

server, as was the case in this demonstration, remote operations are stored within a modeling

queue. When the software determines it is ’safe’ to apply the commands without interfering with

the local user, the operations are performed in time-stamp order and the geometry is incorporated

into the local CAD model. This happens when the user is no longer actively working on a feature.

The modeling process described by this assembly demonstrates the software’s ability to handle

these messages without corrupting the local assembly model.
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CHAPTER 5. SUMMARY AND CONCLUSION

The main objective of this research was to expand the neutral parametric canonical form

(NPCF) developed by the NSF Center for e-Design, BYU Site to maintain the associativity of

features while enforcing the data integrity of the format. The current implementation supports

multi-user modeling and includes creation, editing, and deletion functionality between NX, CA-

TIA, and Creo CAD Systems. Associative methods within the NPCF architecture now enable the

design intent, implicitly defined by the designer, to be transferred between CAD systems. This

is an important improvement to the previous implementation because many design parameters

are incorporated directly into a CAD model during creation. With multi-user, collaborative CAD

technologies enabling design sharing between people or groups geographically separated, these

important parameters need to be shared for the proper interpretation of models.

Design intent was preserved in the NPCF standards by defining a schema allowing multiple

definitions, or variations, of feature types. This allows modelers to select the feature creation type

which will best define the part. Furthermore, an interface structure was designed and implemented

to allow the NPCF standard to handle feature references like CAD software. These enhancements

were implemented into Interop to support all previously defined features, as well as new datum fea-

tures which were specifically chosen to test and showcase the added functionality. These methods

enabled new CAD features to be incorporated into the NPCF neutral database. Coordinate system

features, plane features, axis features, and extrude and revolve features were added to the system.

Part model edits performed in any client maintain the feature associations set during fea-

ture creation. This approach has achieved more unrestricted multi-user interaction than previous

implementations because the design intent implicitly defined by the modeler is stored within the

neutral format and translated to remote systems. This enhances model awareness between active

clients within the collaborative session because CAD operations are performed in real-time on all

users’ screens. This improves the design process by reducing or eliminating the costly feedback
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loops that occur when models are transferred between modelers or engineering groups. The solu-

tion developed in this research would be useful for a company such as Pratt & Whitney, whose US

division uses NX and Canada division uses CATIA. Raytheon, which primarily uses Creo, could

better interact with their suppliers using other systems.

The focus of this research has been to continue the original NPCF approach of defining

a neutral standard instead of simply translating the data between CAD systems. This approach

proved useful because data is stored in a database, easily accessible by other clients and facilitating

multi-user collaborative processes. The NPCF approach, and the enhancements at the focus of this

research, were funded by several industry leaders and its effectiveness been validated in many tests

and demonstrations.

While the software resulting from this research is much improved over its predecessor in

both the number of supported CAD systems, features, and functionality, further research is needed

to neutralize other areas where design intent is implicitly stored. Sketch and assembly constraints

are used to define the size locations of geometry. In the current implementation, these constraints

are ignored and only the geometric data resulting from the constraints are neutralized and sent to

other clients. Research into defining a neutral constraint will continue to improve transfer of design

intent. Finally, referencing Boundary REPresentations (BREPs) such as bodies, faces, and edges

has not yet been implemented and is a requirement for new features to be supported into the NPCF

definitions. Each CAD system names and identifies these objects differently and a neutralized form

is non-trivial. In spite of these limitations, the existing solution is effective and should continue to

be improved and expanded.
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APPENDIX A. MODELING INSTRUCTIONS

A.1 Water Pump Thrust Bearing Instructions

A.1.1 Thrust Bearing Housing

1. Create a plane offset 6” along z-axis

2. Create a sketch on Base XY Plane

3. Create plane offset .75” from base XY

plane along z-axis (Plane2)

4. Create plane offset .75” from plane 1

along negative z-axis (Plane3)
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5. Create sketch on Plane2

6. Extrude sketch to Plane3

7. Create sketch on Base XZ plane

8. Revolve sketch around part z-axis on bot-

tom half only

9. Create sketch on base XY Plane

10. Extrude holes through part (subtract)

11. Create plane offset 2.5” from base YZ-

Plane along positive x-axis (Plane4)

12. Create sketch on Plane4

13. Extrude sketch .75”

14. Create same sketch and extrude on oppo-

site side

15. Create sketch on Plane4

16. Extrude sketch out (subtract)

17. Create plane offset 2.5” from base XZ-

Plane along positive y-axis (Plane5)
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18. Create sketch on Plane5 19. Extrude sketch .75”

A.1.2 Mechanical Seal

1. Create a sketch on Base YZ-Plane

2. Revolve sketch around Part Z-Axis

3. Sketch on Base YZ-Plane

4. Extrude along positive X-Axis through

part (Subtract)
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A.1.3 Labyrinth Seal Cover

1. Create a sketch on base YZ-Plane 2. Revolve sketch around part Z-Axis

3. Create sketch on base XY-Plane

4. Extrude sketch through part (subtract)

A.1.4 Rotating Labyrinth Seal

1. Create sketch on base YZ-Plane 2. Revolve sketch about part Z-Axis

3. Create sketch on part XY-Plane

4. Extrude along part Z-Axis through part

(subtract)
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A.1.5 Fixed Labyrinth Seal

1. Create sketch on base YZ-plane 2. Revolve sketch about part Z-Axis

3. Create sketch on base XY-plane

4. Extrude sketch through part (subtract)

A.1.6 Ball Bearing

1. Offset plane 2.5 from base XY-plane

along positive z-axis (PLANE 1)

2. Create sketch on base XY-plane

3. Extrude sketch to PLANE1

4. Create sketch on base XY-plane

5. Extrude .5 along positive z-axis

68



6. Create same sketch and extrude from

PLANE 1

A.2 Guided Model Rocket Assembly Instructions

A.2.1 Servo Motors

1. Create Datum CSYS

Datum CSYS Coordinates

X Y Z

Servo 1 7.6 mm 392.6 mm 0 mm

Servo 2 0 mm 392.6 mm -7.6 mm

Servo 3 -7.6 mm 392.6 mm 0 mm

Servo 4 0 mm 392.6 mm 7.6 mm

2. Create Sketch

3. Extrude Sketch 16.64 mm

4. Create Datum Plane offset 12.86 mm
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5. Create Sketch

6. Extrude Sketch 1.0 mm

7. Create Datum Plane offset 16.64 mm

8. Create Sketch
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9. Extrude Sketch 3.3 mm

10. Create Datum Plane offset 19.94 mm

11. Create Sketch

12. Extrude Sketch 3.3 mm
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13. Create Datum Plane offset 23.24

14. Create Sketch

15. Extrude Sketch 3.3 mm

A.2.2 Motor Subframe

1. Create Datum CSYS offset 75.0 mm

along Y-Axis
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2. Create Sketch

3. Extrude Sketch 2.5 mm

4. Create Datum Plane offset 2.5 mm

5. Create Sketch

6. Extrude Sketch 66.55 mm

7. Create Sketch
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8. Extrude Sketch -2.5 mm

9. Create Datum Plane offset 66.55 mm

10. Create Sketch

11. Extrude Sketch 2.5 mm

12. Create Sketch

13. Extrude Sketch -2.5 mm
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A.2.3 Motor

1. Create Datum CSYS offset 72.5 mm

along Y-Axis

2. Create Sketch

3. Extrude sketch 69.05 mm

4. Create Datum Plane offset 4.0 mm

5. Create Sketch

6. Extrude Sketch 61.72 mm

7. Create Sketch

8. Extrude Sketch (subtract) 30 mm
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A.2.4 Upper Fins

1. Create Datum CSYS

Datum CSYS Coordinates

X Y Z

Fin 1 32.44 mm 359.0 mm 0 mm

Fin 2 0 mm 359.0 mm -32.44 mm

Fin 3 -32.44 mm 359.0 mm 0 mm

Fin 4 0 mm 359.0 mm 32.44 mm

2. Create Sketch

3. Extrude Sketch 1.28 mm in both direc-

tions

A.2.5 Lower Fins

1. Create Datum CSYS

Datum CSYS Coordinates

X Z About Y

Fin 1 32.44 mm 0 mm 0 degrees

Fin 2 -16.22 mm 28.09 mm 30 degrees

Fin 3 -16.22 mm 28.09 mm -30 degrees
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2. Create Sketch 3. Extrude Sketch 0.94 mm in both direc-

tions

A.2.6 Rocket Skin

1. Create Sketch on Top plane 2. Extrude Sketch 450 mm
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A.2.7 IMU

1. Create Datum CSYS offset 429.8 mm

along y-axis

2. Create Sketch

3. Extrude Sketch 22.0 mm

4. Create Datum Plane offset 22.0 mm

5. Create Sketch

6. Extrude Sketch 2.0 mm (subtract)

7. Create Sketch
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8. Extrude Sketch 2.0 mm

A.2.8 Battery

1. Create Datum CSYS offset 374.6 mm

along y-axis

2. Create Sketch

3. Extrude Sketch 23.5 mm in both direc-

tions

A.2.9 Guidance System

1. Create Datum CSYS offset 499.48 mm

along y-axis

2. Create Sketch
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3. Extrude Sketch 2.5 mm

4. Create Sketch

5. Revolve Sketch about y-axis 360 degrees

A.2.10 Nozzle

1. Create Sketch 2. Revolve Sketch about y-axis 360 degrees
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A.2.11 Nose Cone

1. Create Datum CSYS offset 450 mm along

y-axis

2. Create Sketch

3. Revolve Sketch about y-axis 360 degrees
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