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ABSTRACT

Error Propagation Dynamics of PIV-based Pressure Field Calculation

Zhao Pan
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Particle Image Velocimetry (PIV) based pressure field calculation is becoming increasingly
popular in experimental fluid dynamics due to its non-intrusive nature. Errors propagated from PIV
results to pressure field calculations are unavoidable, and in most cases, non-negligible. However,
the specific dynamics of this error propagation process have not been unveiled. This dissertation
examines both why and how errors in the experimental data are propagated to the pressure field
by direct analysis of the pressure Poisson equation. Error in the pressure calculations are bounded
with the error level of the experimental data. The error bounds quantitatively explain why and how
many factors (i.e., geometry and length scale of the flow domain, type of boundary conditions)
determine the resulting error propagation. The reason that the type of flow and profile of the
error matter to the error propagation is also qualitatively illustrated. Numerical and experimental
validations are conducted to verify these results. The results and framework introduced in this
research can be used to guide the optimization of the experimental design, and potentially estimate
the error in the reconstructed pressure field before performing PIV experiments.

Keywords: PIV, pressure calculation, error propagation, error bound
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CHAPTER 1. INTRODUCTION

1.1 Overview

Pressure and velocity measurements are essential to the experimental investigation of fluid

dynamics. Perhaps the most capable method for measuring the velocity field of a fluid flow is

particle image velocimetry (PIV). The non-intrusive nature of PIV is fundamental to its popularity.

As PIV quality increases, PIV-based pressure calculations (using either Naiver-Stokes or the pres-

sure Poisson equation) are under growing investigation to establish a non-invasive pressure field

measurement technique. However, the error inherent in PIV measurement is unavoidable and these

experimental errors will inevitably propagate from the velocity field measurements to pressure field

calculations, leading to potentially unreliable pressure calculations.

In this dissertation, I discuss the error propagation dynamics of PIV-based pressure cal-

culation, how velocity field error propagates to the pressure field through the pressure Poisson

equation, and the factors that affect this error propagation dynamics including: boundary condi-

tions, domain shape and scale, etc. Additionally, I provide suggestions regarding the optimization

of experimental PIV settings to minimize propagated error.

1.2 Summary

This dissertation focuses on particle image velocimetry (PIV) based pressure calculations,

with particular emphasis on the error propagation from the velocity field to the pressure field

through the calculation scheme. This dissertation will be organized chronologically as a summary

of the Ph.D studies of the author.

PIV-based pressure calculations are popular techniques for non-intrusive pressure measure-

ments [1]. Literature related to PIV-based pressure calculation techniques are briefly reviewed in

Chapter 2 to provide background for this work. Studies on calculating pressure fields from ve-
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locity field data date back to Schwabe’s work in 1935 [2], and is drawing increasing attention

recently [1], in spite of its unreliable tendencies (e.g. sensitive to boundary conditions, flow type

and calculation schemes) [3].

In Chapter 3, a calculation scheme based on a Poisson solver is developed. The first order

finite difference method is used to create a Poisson solver capable of solving Poisson equations

in the 2D Cartesian domain with either Neumann or Dirichlet boundary conditions. By taking

advantage of the scalar property of the pressure field, a multipath strategy, similar to the method

proposed by Dabiri et al. [4] is implemented and applied to a laminar glottal flow (flow between

synthetic vocal folds). Error analysis in terms of spatial and temporal resolutions is conducted by

comparing the results to a two dimensional computational fluid dynamics (CFD) simulation. This

initial study inspires the remainder of this dissertation.

Chapter 4 reports the error propagation dynamics of the PIV-based pressure field calcula-

tion. I clearly specify the error-contaminated Poisson problem raised by the pressure field calcu-

lation from noisy PIV experiments. This engineering problem is then translated into an applied

mathematical problem, specifically by obtaining bounds on solutions of a Poisson equation. Rig-

orous bounds on the error in the pressure calculation, relative to the error inherent from the PIV

measurements, are also presented. Several typical examples are shown, and I discuss the limita-

tions and practical uses of this work.

In Chapter 5 I present an example that illustrates how to use the results in Chapter 4 to

design and optimize experiments. For the sake of simplicity, a Taylor-Green vortex field is used as

a synthetic flow to discuss how factors such as: boundary conditions, length scale of the flow field,

nondimensionalization, etc., affect the error propagation from the velocity field to the pressure

field. This section also serves as a more detailed numerical validation to the results in Chapter 4.

Chapter 6 summarizes an experimental validation based on a two dimensional oscillating

flow in a diffuser (data from PIV and pressure ports can be found in works by King and Smith [5]).

Due to data limitations, I only test how the aspect ratio and length scale of the domain affect the

error propagation for cases with Neumann boundary conditions.

Chapter 7 lists two open problems raised by this dissertation to be considered for future

studies.
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CHAPTER 2. BACKGROUND

In this section, I briefly review the studies of the PIV-based pressure calculations to pro-

vide background for my research regarding the error propagation dynamics of PIV-based pressure

calculations, which has not been widely studied.

Accurate pressure and velocity measurements are critical for experimental fluid dynam-

ics. Historically, flow velocity has been measured using various techniques including hot wire

anemometry [6] and laser doppler velocimetry [7, 8]. More recently, digital imaging techniques

such as Particle Image Velocimetry (PIV) [9] and Particle Tracking Velocimetry (PTV) [10] have

proven to be effective techniques that are continually improving. Perhaps the most attractive fea-

ture of PIV techniques is their noninvasive nature. In contrast, pressure measurements are still

primarily based on the probe or port methods [11, 12]. These point-wise measurements typically

disturb the flow and only provide pressure information at a limited number of specific points.

One category of field measurement techniques for pressure acquisition employs pressure

sensitive particles or materials. For example, Ran and Katz [13] were able to measure pressure

distribution within water jets using microscopic air bubbles as pressure sensors because the size

of the bubble changes with ambient pressure. Recently, pressure sensitive paint (PSP) has been

widely applied in flow diagnostic techniques [14]. When exposed to laser light, a surface covered

with PSP emits illumination with different intensity under pressure differences. For example, Fu-

jii et al. [15] fabricated Anodized-Aluminum PSP and captured the pressure distribution around

a cylinder as it was traversed by a shock wave. The frequency response of the PSP they used is

fast enough to clearly catch both the Mach stem and the triple point. PSP can also be used to

generate micro-particles to be used as PIV tracers. Kimura et al. [16] employed pressure sensitive

micro-spheres in a PIV setting to measure the pressure and velocity distribution in an air-filled

syringe chamber with the plunger moving in and out. This technique enabled simultaneous and

non-intrusive collection of pressure and velocity field data. However, the pressure-sensitive micro

3



beads used in this technique actually measure oxygen content changes more readily than pressure

changes making its application limited to experimental flows with relatively low values of dis-

solved oxygen. Moreover, the fabrication of PSP or pressure sensitive tracers, and the complex

calibration required, make this application significantly more inconvenient than traditional PIV.

A more straightforward method for non-intrusive pressure field measurement is a natural

extension of PIV. It involves a non-intrusive quantification of the pressure field using the Navier-

Stokes equation and the velocity field from standard PIV measurements.

Early efforts at noninvasive pressure estimates can be traced back to Schwabe (1935) [2].

In his early work, tracer particles flowing around a cylinder were photographed with long exposure

times. The lengths of the resulting streaklines were used to estimate the velocity field. The pres-

sure field was calculated by integrating along the streamlines on gridded paper and utilizing the

unsteady Bernoulli equation to estimate the corresponding values. This pioneering work was ac-

complished using calculations made by Prandtl nearly 80 years ago, when digital images and com-

puters were not available (as mentioned by van Oudheusden [1]). In 1983, Imaichi and Ohmi [17]

used a computer to process similar streakline images to obtain the velocity field for the flow around

a cylinder. The velocity field was interpolated for computational analysis and a finite difference

method was employed to integrate the Navier-Stokes equation to obtain the pressure distribution in

the flow field. However, due to the technical limitations of their imaging technique (i.e., low spatial

and temporal resolution, etc.) and consequently large error in the velocity field measurement, the

pressure calculations were not accurate enough to ensure quantitative confidence.

After more than 20 years of development, PIV has become a standard non-invasive velocity

field measurement technique [18]. Continual improvement has led to high temporal and spatial

resolution for modern PIV techniques and even time resolved volumetric PIV [19, 20]. Several

groups have revisited velocity field based pressure calculation techniques and applied them to many

different areas. De Kat and Van Oudheusden reported their work on applying high-speed PIV to

planar pressure calculations in a turbulent flow field. Stereoscopic and tomographic PIV systems

were used to measure out-of-plane velocity components in a flow passing over a square extrusion

(Re=9,500) [21]. For the turbulent case, they recommended that the interrogation window be 5

times smaller than the flow structures, and that the sampling frequency (acquisition frequency) of

the PIV system be 10 times smaller than the flow frequency. Van Oudheusden et al. extended
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the previous work to compressible flows [22, 23]. PIV data from an airfoil in a supersonic flow

and shock wave boundary layer interactions were used to successfully estimate the corresponding

pressure field.

Other examples include works by Lignarolo et al. [24] and Villegas and Diez [25] who

used PIV data to calculate the pressure in a wind turbine. In water, PIV data was used to obtain

the wall pressure of a wedge slamming into the water by both Panciroli and Porfiri [26] and Nila

et al. [27], independently. The aero-acoustics community has also employed PIV-based pressure

measurements; acoustic analogies are often utilized to estimate sound fields using PIV data [28–

30].

Unfortunately, uncertainties in the PIV-based velocity field measurement will always prop-

agate to contaminate the resulting pressure field calculation. Researchers have noticed this issue

and several techniques have been developed to reduce the errors in the resulting pressure field. One

popular strategy is to average several pressure calculations along different integral paths by taking

advantage of the scalar property of the pressure field (the integrated pressure value at an arbitrary

location in the flow field is independent of the integral path). Baur and Köngeter directly integrated

a simplified Navier-Stokes equation with an explicit scheme [31]. They utilized time-resolved PIV

data to determine the pressure of a turbulent flow passing over a wall. At each nodal point, four in-

tegrals were calculated from neighboring nodes and averaged to formulate the pressure estimation.

However, they only commented on the accuracy of the PIV, not that of the pressure estimation.

A further reduction in the error accumulation from the uncertainties in PIV data was imple-

mented by Liu and Katz [32]. They proposed an omni-directional integration scheme to directly

integrate the pressure gradient from a virtual boundary outside the flow field. For an M×N mesh,

the pressure value at each nodal point is integrated along 2(M +N) different paths, and the mean

value of these 2(M +N) integrals is used as the estimation of the local pressure. This approach

leads to significant cancelations if the error is truly random. This method was validated using a

synthetic flow and then applied to a cavity flow. This approach is likely the most capable of re-

moving the most significant portion of the random error. Dabiri et al. proposed an algorithm that

used the median of the pressure calculated by integrating the pressure gradient along eight paths to

estimate the local pressure at each point in the field [4]. To reduce the uncertainties in the velocity

field from the PIV, a temporal filter was utilized to cancel the inherent noise, and this approach
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was applied to the flow around free swimmers (e.g., jellyfish and lamprey). Taking advantages of

the scalar property of the pressure field improves the accuracy of the pressure calculation, how-

ever, these studies provide little insight into how the error propagates from the velocity field to the

pressure field.

In order to better understand the performance and error properties in the PIV-based pressure

calculation, Charonko et al. reviewed and evaluated different factors (i.e., integral method, gov-

erning equations, spatial and temporal resolutions, and velocity field smoother etc.) of calculation

schemes used in the PIV-based pressure acquisition [3]. Two unsteady synthetic flows with exact

solutions and a set of PIV and pressure data from experiments were employed for benchmarking

the pressure solvers with various error levels in the velocity fields. In their paper, the authors re-

ported that the Poisson solvers are sensitive to all the aforementioned factors, but to varying levels

(the resulting error can vary from less than 1% to more than 100%). They also report that the

error in the pressure calculation is highly dependent on the flow type, which implies that there is

no optimal method for all flow types. Their study provides several significant contributions to the

community (e.g., pressure solver can be very sensitive to the error in the velocity field and the

boundary), but it does not provide much rigorous physical or mathematical insight into the error

propagation.

In a recent work by Azijli et al., the uncertainty propagation of the PIV-based pressure

calculation is discussed in a Bayesian estimation framework [33]. The statistical error profile of

the pressure field is estimated based on certain prior knowledge of the velocity field (e.g., diver-

gence free or maximum/minimum of the velocity field), and an assumption that the distribution is

Gaussian. Numerical and physical experiments were conducted to validate this Bayesian method,

which provide a practical solution for error quantification. However, this method requires prior

information of the flow field, and does not provide insight into how the error propagates from the

flow field to the pressure calculation.

Here in the following studies, we directly analyze the pressure Poisson equations to unravel

the inherent error propagation dynamics of PIV-based pressure calculations: why and how the error

in the PIV measurement propagate to the pressure field calculation.
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CHAPTER 3. PIV-BASED PRESSURE CALCULATION: IMPLEMENTATION IN A
VOCAL FLOW

3.1 Background

Although there have been studies utilizing PIV to resolve the pressure fields of various

flows, as described in Chapter 2, very few have applied the technique to voice and glottal flow

research. This particular application is intriguing because of the role of airflow in driving vocal

fold vibration as well as in the production of audible sound. Oren et al. [34] conducted high-speed,

time-resolved PIV on the flow inside canine glottal channels to observe the vortices of the flow in

the larynges.

In a follow up study they calculated the pressure field from the velocity fields [35]. To

the best of our knowledge, this is the first paper that applied a PIV-based pressure calculation to

vocal flow studies. They found that flow separation on the glottal walls happens during closure and

creates negative pressure proportional to the subglottal pressure near the folds.

We propose that the error from such a method can be large and that PIV-based pressure

measurements require thoughtful consideration before being applied such that errors are reduced

sufficiently. The performance of PIV-based pressure calculations are affected by many factors as

outlined by Charonko et al. [3] (e.g., pre-processing filters, numerical method, velocity field uncer-

tainties, and temporal/spatial resolution). They emphasize that PIV-based pressure calculations are

flow dependent, meaning that each flow type studied may require different methodologies, spatial

and temporal resolution, etc.

Thus, in the context of glottal flows, it is necessary to discuss the implications of vari-

ous conditions and parameters on PIV-based pressure field measurements to ensure that future

voice/glottal flow studies utilize the proper settings in experimentation. In this study, recommen-

dations for spatial and temporal resolution as well as best practices are given for performing ex-

periments in the context of glottal folds, with validation from numerical simulations.
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3.2 Pressure solver development

3.2.1 Pressure solver

The pressure calculation method involves solving the pressure field from the 2D Navier-

Stokes equations supplied with velocities from PIV results. Taking the divergence of the 2D

Navier–Stokes equations and assuming the flow is incompressible, the pressure Poisson equation

reads,

∇
2 p =−ρ∇ · (uuu ·∇)uuu, (3.1)

where p is the pressure field, uuu the velocity field, and ρ the density of fluid. To solve the Pois-

son equation, Neumann boundary conditions (BCs) are applied by rearranging the Navier-Stokes

equations,

∇p =−ρ

{
∂uuu
∂ t

+(uuu ·∇)uuu−ν∇
2uuu
}
, (3.2)

where ν is the kinematic viscosity. One advantage of the Neumman BCs is that the viscous effects

can be considered by keeping the viscosity term in equation (3.2). Thus, it could provide better

results when the viscous force in the flow field is not negligible (e.g., the shear layer of the glottal

jet and the air flow within the glottis).

In practice, the Poisson equation with Neumann BCs is solved by the second order finite

difference method (five-point scheme discretization in the flow field), and the boundary conditions

are evaluated by first order extrapolation. Temporal terms are evaluated by first order forward

difference in time. Then the Poisson solver can numerically perform the spatial integration over an

M×N flow field to obtain the pressure field by solving an MN-dimensional linear system, typically

AAAppp = fff , where, AAAMN×MN = Ai, j. pppMN×1 = pi, j and fff MN×1 = fi, j are the pressure and the driving

force at each nodal point (i, j), gained by rearranging the nodal points in the domain according to

some rearrangement law (for example, the blue arrowhead in figure 3.1 illustrates equation (3.3)):

pppMN×1 = [p1,1, . . . p1,M, p2,1, . . . p2,M, . . . , pM,1, . . . pM,N ]
T

= [p1, p2, . . . , pk, . . . , pMN ]
T .

(3.3)
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The linear system can then be solved by LU decomposition

AAAppp = LLLUUU ppp = fff , (3.4)

where LLL and UUU are lower and upper triangular matrices, respectively. With UUU ppp = LLL−1 fff , and taking

advantage of the triangle property of UUU , one can solve the pressure at each nodal point one by one,

but in the order pMN , pMN−1, . . . p1 (as shown by the green integrating path of figure 3.1, which

corresponds to the rearrangement law denoted by the blue arrowhead) 1.

One may note that LU decomposition may not be the fastest numerical method, however, it

gives clear physical meaning of how the integral is conducted over the whole domain. The solution

at one nodal point, pi, j = pk, sums the values of pMN , pMN−1, . . . pk−1 as calculated previously

on the integral path. This explains the propagation and accumulation of error and/or uncertainty

from each PIV data point due to the summation of the error along the path of integration, which

can undermine the pressure field estimation.

To overcome this challenge, a common solution is to take advantage of the scalar property

of the pressure field, that the pressure values at each location are independent of the integration

path. Thus, pressure at each nodal point can be evaluated along multiple arbitrary paths and aver-

aged to remove error. Liu and Katz [32] presented a method that evaluates 10N2 paths on an N×N

grid for every pressure point in the flow field, which reduced error. They suggested that 10 paths

were necessary for acceptable error levels. Dabiri et al. [4] proposed a more efficient method, us-

ing the pressure median of only eight integration paths passing through the point of interest, which

yielded relatively accurate results.

In the present research, we use four different integral paths initiating from the four corners

of a rectangular flow field by changing the rearrangement law as described in equation 3.3. Two of

the four integral paths, which determine the pressure value at the same nodal point, are shown as

examples in figure 3.1. The mean calculated pressure value from the four integral paths is treated

as the pressure estimation at each nodal point.

The effectiveness of this multi-path estimation technique is validated by a simulation of an

unsteady eddy with an analytical solution using a cylindrical tank (r = 1 in radius) that initially

1 pMN must be assigned to a constant (e.g., pMN = 0) to make sure an unique solution to UUU ppp = LLL−1 fff exist.

9



Nodal pointsRearrangement law 1

Integral path 1 Integral path 2

p
2
(p

1,2
)p

1
(p

1,2
)

p
k
( p

i,j
) p

k+1
( p

i,j+1 
)

Figure 3.1: Multi-path integration. The pressure at one nodal point, highlighted in orange, is
integrated from two of the four different paths.

contains still water. At τ0 the tank suddenly spins at a constant rotation rate (ω = 1). The velocity

and pressure in the flow field then build up gradually from zero until reaching a steady state (i.e.,

linear velocity profile and parabolic pressure profile along the radius). In polar coordinates, the

velocity profile and pressure profile along the radius are

Vθ (r,τ) = r+
∞

∑
n=1

2J1(λnr)
λnJ0(λn)

e−λ 2
n (τ−τ0), (3.5)

p(r,τ) =
∫ r

0

Vθ (ξ ,τ)
2

ξ
dξ , (3.6)

where r ∈ [0,1] and τ ∈ [t0,∞), ξ is the integral variable, J0 and J1 are the Bessel functions of the

first kind of zero and first order, respectively, and λn are the eigenvalues such that J1(λn) = 0 [36].

All the variables in equations 3.5 and 3.6 are dimensionless, and the density of the fluid is unity.

3.2.2 Pressure solver validation

The unsteady eddy in the tank described above (section 3.2, equation (3.5) and (3.6)) is

utilized to validate the Poisson pressure solver. To study the noise sensitivity of the pressure solver,
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the exact solution of the velocity field from equation 3.5 (with or without artificial noise added in

the velocity field) is input into the pressure solver to calculate the pressure field and compared

with the exact solution of the pressure field (3.6). Noise in the velocity field is modeled by white

noise with an amplitude less than 2.5% of the maximum velocity in the flow field. In practice, an

inscribed square window is used as the calculation domain inside the cylindrical tank, such that the

calculation domain is Ω ∈ [−
√

2/2,
√

2/2]× [−
√

2/2,
√

2/2]. A quiver plot of the flow velocity

with zero noise is shown over a color-coded pressure field at a non-dimensional time (τ = 0.5, as

defined in equation (3.5) and (3.6)) in figure 3.2.
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y p
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Figure 3.2: Analytical validation: velocity quiver plotted over the pressure field at τ = 0.5. Three
locations marked as A, B and C are used as sampling points (see figure 3.3 for the pressure profile
vs. time at each location). The entire pressure field is offset to ensure the lowest pressure in the
field is zero, which is considered as the reference pressure for convenience.

Three locations (A-C) in the flow domain were selected to show velocity and pressure

profiles vs. time in figure 3.3. The simulations show that without added noise in the velocity field,

the pressure estimation is nearly identical to the exact solution (approximated by the first 200 terms

in the series presented in equation 3.5). This implies that the Poisson solver is reliable. When white

noise with less than 2.5% of the amplitude of the local flow velocity was used to model the PIV

uncertainties, the Poisson solver propagates and accumulates the error at each nodal point in the

flow field. However, the multi-path method reduces the error amplification in the pressure field

11



calculation indicating that the multi-path method provides a more robust estimate of the pressure

field than the single-path method as expected.
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Figure 3.3: Pressure estimation at three locations marked in figure 3.2 as A, B and C. The blue and
red lines represent the pressure calculation with and without multi-path integration when a noisy
velocity field is applied. The green line indicates the pressure estimation without noise and the
black line shows the analytical solutions. As expected the multi-path pressure estimation perform
better than the single path integral.

3.3 CFD of 2D Glottal flow

To explore the effectiveness of the Poisson solver in predicting the pressure field in a glot-

tal jet, the solver was applied to the simulated flow field generated by a self-oscillating vocal fold

model. The simulation was performed using the commercial finite element software package AD-

INA using separate but fully-coupled fluid and solid domains to represent the airway and vocal

folds, respectively. A summary of the simulation is here presented, noting that other very similar
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simulations have been described and reported elsewhere in greater detail [37,38]. Figure 3.6 shows

one frame of the CFD result and zoomed view of a region close to the vocal folds.

The fluid domain, representing the airway extending from the subglottic region to the sup-

graglottic region, is shown in figure 3.4. The flow was two-dimensional, laminar, unsteady, and

slightly compressible, the latter to allow for acoustic effects to be included [39]. Time marching

was accomplished using a 2nd-order, composite method with an integration parameter of 0.7071

and a time step size of 25×10−6 sec. The fluid domain consisted of 681,152 4-node flow-condition

based interpolation elements (683,838 nodes total). The solution was accomplished using a sparse

solver with direct coupling between fluid and solid domains and convergence criteria of 10−4.
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Figure 3.4: Simulation geometry and airway boundary conditions (entrance and exit lengths not to
scale).

The solid domain, representing the vocal folds, is illustrated in figure 3.5. Each vocal

fold consisted of four layers, representing the epithelium, superficial layer of the lamina propria

(SLLP), ligament (intermediate and deep layers of the lamina propria), and body (muscle). The

solver allowed for large strain and large deformation. The solid domain consisted of 24,031 9-

node quadrilateral elements (97,262 nodes total). Rayleigh damping, with constants ζ = 19.8943

(mass-proportional damping coefficient) and η = 1.25323×10−4 (stiffness-proportional damping
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coefficient), was applied to all layers. Each layer had a density of 1070 kg/m3. The layers were

defined using separate Ogden material models with constants obtained by 6th-order curves fit to

stress-strain data. The epithelial layer utilized stress-strain data that yielded a constant Young’s

modulus of 50 kPa. The other three layers’ stiffnesses were defined using stress-strain data accord-

ing to the relationship

σ = K
(

e10.5ξ −1
)
, (3.7)

where ξ and σ denote strain and stress, respectively, and K is a layer-specific constant that governs

SLLP

Ligament

Epithelium

Body

8
.4

 m
m

10.75 mm

Flow

Figure 3.5: Solid domain (vocal fold) geometry.

stiffness, chosen to yield a tangent modulus at 5% strain for each layer (see Table 1, which also

includes bulk modulus values for each layer). To prevent the opposing vocal folds from completely

closing off the airway, contact planes enforced a minimum gap of 5×10−5 m. The initial, pre-

vibratory distance between opposing vocal fold models was 1×10−5 m.

The unstructured grid from the CFD is then fitted to a regular mesh, a requirement for the

pressure solver. The spatial resolution (SR, denoted as ∆ x) is set to 0.1 mm by an interpolation

routine. The temporal resolution (TR, denoted as ∆t) of the velocity field is 0.05 ms, also called

the sampling rate. The unstructured CFD output are used to provide synthetic PIV results. Figure

3.6 shows one frame of the CFD result and a zoomed-in view of a region close to the vocal folds.
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Table 3.1: Vocal fold model material properties.

Layer Tangent Modulus
at 5% strain (kPa)

Constant K (Pa) Bulk Modulus (kPa)

Epithelium 50 N/A 833
SLLP 0.4 22.535 6.67
Ligament 2 112.677 33.3
Body 25 1408.465 416
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Figure 3.6: Flow field at one time step of the glottal flow simulation, and the zoomed-in view of
the area used as calculation domain in this paper (marked by the red box). The red dashed lines
marked the profile of vocal folds.

3.4 Results and discussion

3.4.1 Pressure field estimation of intraglottal flow

This section applies the multi-path pressure Poisson solver to a numerically simulated in-

traglottal flow. One oscillation cycle during the numerical simulation is shown in figures 3.7–3.9

(presented in section 3.3). In this section, the pressure data is normalized by the inlet pressure

(pin = 900 Pa), the temporal data by the oscillation period of the vibrating vocal folds (T = 4.2

ms), and the spatial data by the glottal width at maximum flow rate (L = 0.896 mm). All the

non-dimensional variables are denoted by superscript (∗).
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Figure 3.7 shows the 2D flow rate (q∗ = qT/L2, where, q is the flow rate calculated from

the CFD model) though the vocal folds versus non-dimensional time (t∗ = t/T ) with time-stamp

(t∗ = 0.512) marked by a red circle (2.15 ms from the beginning of the cycle).
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Figure 3.7: 2D flow rate though vocal folds in one cycle. Red circle marks t∗ = 0.512 reported in
figure 3.8.

Limitations of the present method include an inability to estimate reasonable data at the

solid-fluid boundary. The Poisson solver is sensitive to the boundary conditions with a high un-

certainty level in the velocity field near any boundary, which would ruin the pressure calculation

throughout. It is reasonable to avoid involving walls in common PIV practice because reliable PIV

measurements close to the wall are naturally challenging due to the large flow gradient near the

wall and complicated particle seeding techniques [40]. Therefore, we chose a fixed window (4

cm×4 cm) within the supra-glottal channel as the calculation domain (outlined in figure 3.6). This

domain is as close as possible to the vocal folds but without contacting the vocal folds during the

oscillation cycle.

Figure 3.8 shows the velocity, pressure fields from the CFD simulation of glottal flow at

t∗ = 0.512 in the cycle shown in figure 3.7, and the pressure estimation as well as the errors.

The velocity field from the CFD simulation is used as the input (shown in figure 3.8(a)) to the

Poisson solver. The non-dimensionalized gauge pressure field (p∗ = (p− p̄)/pin) is shown in

figure 3.8(b), where, p is the pressure field from CFD simulation, p̄ the mean pressure in the

domain; and the length scales are normalized as y∗=Y/L and z∗= Z/L. The multi-path integration

is used to estimate the pressure field (denoted as p̂). The normalized pressure field estimation

p̂∗ = (p̂− ¯̂p)/p̄in is shown in figure 3.8(c), where ¯̂p is the mean estimated pressure.
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the input for the pressure estimation. b) Normalized pressure field obtained from CFD. c) Normal-
ized pressure estimation, p∗, from the Poisson solver. d) Relative error map of normalized pressure
field. e) Relative error map of normalized pressure larger than 1% (9 Pa).

To calculate the relative error map, the absolute pressure error is divided by the constant

inlet pressure as presented in figure 3.8(d). Figure 3.8(e) shows the error map where the relative

error is larger than 1%, which corresponds to 9 Pa.

Figure 3.9 shows the pressure values from the CFD simulation compared with our estimated

values versus time at nine locations marked as A-I in figure 3.8. Pressure estimations agree with the

pressure values from CFD at each location, but errors are relatively larger at location A, especially

after t∗ = 0.5. These pressure errors may be due to errors propagated from the velocity field

through the Poisson solver, which is introduced by interpolation, typically, in the area nearest to

the fluctuating walls (the mesh in the area close to the vocal folds is much finer than the grid spacing

used for interpolation). The pressure estimation generally responds faster than the pressure from

CFD in time. This may stem from the fact that the sampling rate is not high enough to resolve

the flow field. However, we note that these temporal fields are already as high as state-of-the-art

high-speed time resolved PIV systems (∆t = 0.05 ms).
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Figure 3.9: Nondimensional pressure versus nondimensional time at nine locations (A-I as marked
in figure 3.8)

3.4.2 Practical recommendations for PIV resolutions

We now present practical estimations for PIV spatial and temporal resolutions needed

for estimating pressure. The error in the pressure estimation versus temporal and spatial reso-

lutions are shown in figure 3.10. This computation is accomplished by interpolating the CFD

simulation velocity data with different step sizes as inputs to the synthetic PIV data with dif-

ferent spatial resolution (SR, ∆x = 0.05, 0.1, 0.3, 0.5, 1 mm) and time resolution (TR, ∆t =

0.05, 0.1, 0.2, 0.4, 0.8, 1.6 ms); the non-dimensionalized SR and TR are ∆x∗ = ∆x/L and

∆t∗ = ∆t/T , respectively. To evaluate the performance of the pressure estimation, the spatial-

averaged non-dimensional mean error (e∗, termed hereafter as mean error) measured at t∗ is ,

e∗(t∗) =
1
|Ω|

∫
Ω

|
(

p̂∗− ˆ̄p∗
)
− (p∗− p̄∗) |dΩ, (3.8)

where |Ω| is the area of the domain Ω (presented as box plots in figure 8). This area can be the

whole flow domain (e.g. figure 3.10(O)), or a small window (1 mm × 1 mm) at specific locations

(e.g figure 3.10 (A, C, and D)).

Figure 3.10(O) shows the normalized mean error in the whole flow field covering the 4 cm

× 4 cm calculation window. The red bar inside each box marks the median of the data set. The cir-
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Figure 3.10: Grouped boxplot of mean error at different SR and TR. (O) mean error of whole flow
field. (A, C and D) mean error in a 1 mm × 1 mm window at locations A, C and D (figure 3.8

cles mark the time-averaged mean error, which is e∗ = 1
T
∫ T

0 e∗(t)dt. The upper and lower whiskers

confine the data set within a 99.7% confidence interval. The upper and lower limits of the boxes

are the 75% and 25% percentile, respectively. Each box contains 83 to 36 data points (time aver-

aged mean error) depending on the TR. For the whole flow field ∆x∗ ≥ 0.558∪∆t∗ ≥ 0.048 yields

relatively higher upper whisker and higher mean value than other SR and TR settings.

The mean error at location A in the flow field (marked in figure 3.8) covers a 1 mm × 1

mm window, as shown in figure 3.10(A). At location A (see figure 3.9) the pressure changes can

be extremely fast from about 0 to -0.4 in 0.012 dimensionless time units; thus location A can be

considered a typical high frequency area of the flow. In practice, we suggest that plots similar to
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figure 3.10 be used as look-up tables to determine appropriate resolution settings to balance the

cost of PIV setup and quality of pressure estimation. For example, based on the simulations in

this research ∆x∗ ≤ 0.335∩∆t∗ ≤ 0.012 is recommended to ensure normalized mean error is less

than 0.1 when the flow field fluctuates rapidly near the vocal folds. However, we have limited our

estimation of reasonable normalized mean error to no larger than 0.1 which for the pressures within

the simulation (Pin = 900 Pa) is 90 Pa. This may not be acceptable in some practical estimations

and may therefore necessarily need to be set lower.

Figure 3.10(C) shows results similar to 3.10(A) but sampled at location C in the flow field

(figure 3.8(A)). Location C is only 1 cm away from A; but the results differ significantly. The

jet has dissipated in this area, such that the flow has lower frequency, and consequently a higher

tolerance in TR and SR. We consider location C and further places from the base of the glottal jet

(e.g., location D in figure 3.8(a)) as low frequency areas. It is evident that some refinement must be

applied to get the fidelity necessary for these specific cases, however, as the fluctuations decrease

in frequency the TR necessary to gather reasonable pressure data increases. In addition, when the

SR is large (∆x∗ ≥ 1.116), the mean error at C increases significantly. This may be due to the

low-pass-filter-like properties of the Poisson solver, [21, 41]. While the high frequency dynamics,

although important, are filtered out substantially.

Figure 3.10(D) presents results at location D, which is in the middle of the flow field (see

figure 3.8). In this region, the mean error is small in general compared to other locations (i.e.

A and C). For example, even the coarsest resolution we tested (∆x∗ ≤ 1.116∩∆t∗ ≤ 0.38) led to

normalized mean error less than 0.06.

We noticed that sometimes a fine resolution (either TR or SR) did not always lead to lower

error. For example, in (O) and (A) of figure 3.10, ∆x∗ = 0.112 yields the best performance in terms

of time averaged error, rather than finer meshes. This non-intuitive phenomena may be caused

by over-sampling of the noise by fine meshes and/or amplification of noise due to small grid-

spacing used in the difference scheme. A similar phenomenon is discovered by [3] with numerical

simulation, and also analyzed by several papers such as [1, 21].

In previous studies based on pressure calculation from PIV data, we find that the spatial

and/or temporal resolutions of the PIV experiments may not be enough to accurately resolve an

accurate pressure field. For example, Oren et al. [34, 35] operated the camera at a 5 kHz sampling
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rate, with each image pair separated by 3.0 µs. The high-speed images had a spatial resolution

of 83 pixel/mm and were processed using an adaptive interrogation window (64×64 to 32×32)

with 75% overlap. Outliers in the velocity vectors were filtered such that the spatial resolution was

reported as 0.2892 mm. In addition, the minimum particle displacements of 1/4 of a pixel were

removed as well as maximum displacements of 1/4 of the window size, which could introduce

systematical bias to the PIV results. Even if the error in the experiments by Oren et al. [35] is as

low as the synthetic flow used in our studies, which is mainly from interpolation, the resolution

used by Oren et al. [35] is barely enough to obtain results with reasonably small errors. As a side

reference, a PIV-based pressure calculation of a jet in a diffuser with fixed walls (which could be

considered as a similar but less challenging flow than vocal flow) with high quality PIV reported

by Charonko et al. [3] shows that even when a conservative pressure Poisson solver is used, the

error on the wall can be as high as 75% compared to the inlet kinetic pressure. However, the mixed

boundary conditions used by Oren et al. [35] may improve the tolerance of the pressure solver

to the PIV resolution as well as the uncertainties near the walls, and lead to acceptable pressure

field estimations (refer to chapter 4 for the detailed discussion of the influence of the boundary

conditions on the error propagation). Nevertheless, we still recommend using high resolution PIV

settings and multi-path integral methods (e.g. [32] and [4]) to reduce the error in the pressure

calculation, especially when validation is not available.

3.5 Discussion

As Charonko [3] suggested, for PIV-based pressure estimations, proper temporal and spa-

tial resolution, specific to the flow field, are vital to obtain meaningful data. Herein, specific

considerations for vocal fold flow field pressure estimations are presented. Not surprisingly, it is

shown that coarser resolutions (e.g. ∆x∗ ≥ 0.558∪∆t∗ ≥ 0.048 for overall acceptable performance

in the whole flow field) yield larger error in pressure estimations due to the loss of flow information

from the low resolution. In reality, however, PIV systems have limitations, especially with regards

to spatial resolution (e.g., our in-house system yields SR=0.3 mm and TR=0.2 ms, ∆x∗ = 0.335

and ∆t∗ = 0.0476 if normalized). These limitations may decrease confidence in obtaining reliable

pressure estimates using this method. For instance, the fast changing flow in a glottal channel (po-

sition A in figure 3.8 which is very close to the vocal folds) may require time and spatial resolution
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beyond the capabilities of a common PIV system. In order to relax the SR and TR requirements,

we suggest either to pay attention to PIV experiments, such as proper lighting, particle seeding, and

filters in post-processing to reduce the uncertainties of velocity field; and/or use a pressure solver

that averages pressure values calculated from many different integral paths (e.g. [32]) to take fully

advantage of the scalar property of the pressure field and consequently reduce the sensitivity to the

noise in the velocity field.

However, too fine of a mesh may amplify the noise through the numerical algorithm; for

example, the viscous term of equation (3.2) is evaluated numerically as

∇
2ui, j =

ρν

∆x2

(
ui+1, j +ui−1, j +ui, j+1 +ui, j−1−4ui, j

)
. (3.9)

Thus, ∇2u ∼ ∆x−2. The velocity data at each nodal point could be contaminated by noise from

experiments (i.e., ui, j actually has experimental error in it ). Fine resolution (small ∆x and/or ∆t)

could reduce numerical error from the numerical scheme, however, it may increase the experimen-

tal error by amplifying the noise in the velocity field. For example, ∆x∗ = 0.056∩∆t∗ = 0.012 is

not the best resolution setting, although it is the finest mesh we examined herein, as shown in the

first three groups of box-plots in figure 3.10(O) and the third group in figure 3.10(D).

Positions A, C, and D in the flow field (figure 3.8) are spaced 1 to 3 cm apart downstream

of the vocal jet, however, the pressure estimation in these locations is significantly different. More-

over, the error boxes in figure 3.10 are tall in general. These observations are not surprising, given

that the PIV-based pressure estimation is flow dependent and sensitive to the error in the velocity

field as argued by Charonko et al. [3].

Thus, in addition to considering the complicated characteristics of the PIV-based pressure

calculation, and the resolution recommendations based on the 2D simulation we have presented,

we also suggest that for each experimental data set, simulations related to the experiments be used

to find reasonable PIV parametric settings before starting.
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CHAPTER 4. ERROR PROPAGATION DYNAMICS

4.1 Introduction

The work presented in chapter 3 is not only an example of an application of the PIV-

based pressure solver using vocal flow, it is also a numerical validation and support to the work

of Charonko et al. [3]. We confirmed that the PIV-based pressure calculation, specifically the

pressure Poisson equation based method, is potentially unreliable and can be affected by several

factors including:

• Error level and grid resolution of PIV data

• Flow type

• Calculation scheme (including filters, governing equations etc)

• Boundary condition settings

It is not intuitively difficult to accept that the factors listed above affect the pressure calcu-

lation, however, why and how these factors matter remains unclear. Very little research has been

done to investigate the dynamics of error propagation from PIV-based velocity measurements to

the pressure field calculation.

In this chapter, the dynamics of the error propagation are investigated by examining the

Poisson equation directly, rather than through experimental means. The error bound in the pressure

field is analytically quantified and the mathematical roots of why and how the Poisson equation

based pressure calculation propagates error from the PIV data is illustrated.

First, the error-contaminated Poisson problem raised by the pressure field calculation from

noisy PIV experiments is clearly specified. In section 4.2 and 4.3 this engineering problem is

translated into an applied mathematical problem, specifically by obtaining bounds on solutions of

the Poisson equation. In section 4.4, rigorous bounds are presented on the error in the pressure
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calculation relative to the error inherent from the PIV measurements. Several typical examples are

provided. In section 4.5, the limitations and practical uses of this work are discussed.

4.2 Problem statement

In general, there are two classes of schemes used to calculate a pressure field from velocity

field: i) directly integrating the pressure gradient derived from the Naiver-Stokes equation (e.g., Liu

and Katz [32]); ii) solving the pressure Poisson equation (e.g., de Kat and van Oudheusden [21]),

which is more commonly used. Here, I focus on how the error in the velocity data propagates to

the pressure field through the latter scheme.

Rearranging the incompressible non-dimensionalized Naiver-Stokes equation and applying

divergence on both sides, the pressure Poisson equation reads

∇
2 p =−∇ ·

(
∂uuu
∂ t

+(uuu ·∇uuu)− 1
Re

∇
2uuu
)
= f (uuu) in Ω, (4.1)

where p is the pressure field, uuu denotes the velocity field, Ω is the flow domain, and Re is the

Reynolds number. When Re is large, the viscous term can be neglected [1,21]. The vector function

( f ) of the velocity field (uuu) is called data (to avoid confusion, in this dissertation “data” is used as

the term for the right hand side of a Poisson equation and its boundary conditions). With certain

boundary conditions, for example,

p =
1
2
(
uuu2−uuu2

∞

)
= h(uuu) on ∂Ω, (4.2)

and/or

∇p ·nnn =−∂uuu
∂ t
− (uuu ·∇uuu)+

1
Re

∇
2uuu = g(uuu) on ∂Ω, (4.3)

the pressure field can be found by solving (4.1). Here h and g are the data on the Dirichlet boundary

(typically applied to the steady irrotational region of a flow with Bernoulli’s equation, especially

in the far field) and Neumann boundary (commonly used on a wall boundary), respectively, which

are both functions of the velocity.

In engineering practice, experiments always introduce systematic bias and/or random er-

rors, which are usually unknown and thus called uncertainties in the PIV community. These uncer-
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tainties will lead to a contaminated pressure calculation (denoted by p̃). The uncertainties in the

pressure calculation are also unknown, which can cause even more frustration. Regardless of the

physical meaning, this dissertation will refer to uncertainties as error for convenience. If the error

in the data of the pressure Poisson equation is denoted as ε f , then p̃ solves the equation with the

error included

∇
2 p̃ = f (uuu)+ ε f in Ω. (4.4)

Similarly, p̃ satisfies the error-contaminated boundary conditions:

p̃ = h(uuu)+ εh on ∂Ω, (4.5)

and/or

∇p̃ ·nnn = g(uuu)+ εg on ∂Ω, (4.6)

where, εh and εg are the error on the Dirichlet and Neumann boundaries, respectively.

Based on this problem statement, we aim to answer a question rising from engineering

practice — Question 1: How do the errors from the experimental results ε f , εh and/or εg affect the

errors in the contaminated pressure field p̃?

4.3 Modeling the error propagation

We now present how to translate from an engineering problem (Question 1) to a tractable

applied mathematical question (Question 3, see below).

We consider ε f , εh and εg as perturbations to the data of the Poisson equation. Perturbing

the data ( f ,g, and/or h) is mathematically equivalent to propagating error from the data to the

pressure field. This means that Question 1 can be rewritten as — Question 2: Does the solution p

continuously depend on the data f (uuu), g(uuu), and/or h(uuu), and if so, then how?

Assuming the uncertainty contaminated pressure field can be separated as p̃= p+ εp, where

εp is the error in the calculated pressure field, and taking advantage of the linear property of the

Laplace operator and subtracting equation (4.1) from (4.4) leads to

∇
2 εp=ε f in Ω, (4.7)
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which is a Poisson equation with respect to the error in the pressure field. Similarly, the boundary

conditions read

εp=εh on ∂Ω, (4.8)

and/or

∇ εp ·nnn =εg on ∂Ω. (4.9)

Since the error in the data (ε f , εh, and εg) are unknown, it is not expected to calculate the

error at every specific location in the pressure field (εp). However, it is possible to estimate the

average error level of the pressure field over the entire domain with equation (4.7), (4.8) and (4.9).

To measure the level of the error, we define the L2 norm in a domain, for example the error level

in the pressure field as

|| εp ||L2(Ω) =

√∫
ε2

p dΩ

|Ω|
, (4.10)

where |Ω| is the length, area or volume of the domain, depending on the dimension of the flow

field. In physical terms, the L2 norm defined in equation (4.10) measures the power of the errors

per unit space, and thus is given the term “error level” hereafter. In addition to the L2 norm, the L∞

or sup norm is also used here and defined by:

‖ f‖L∞(Ω) = sup
x∈Ω

| f (x)|. (4.11)

With the defined error level, Question 2 can be transformed into — Question 3: Whether

and how || εp ||L2(Ω) is bounded by || ε f ||L2(Ω), || εg ||L2(∂Ω), and/or || εh ||L2(∂Ω) for the Poisson

problem given by equation (4.7), (4.8), and/or (4.9)?

From Question 1, to 2, and then 3, we have been able to transform a typical engineering

problem to a well defined applied mathematical one: estimate the bounds of the solution to a

Poisson boundary value problem (BVP) with respect to εp, which is actually a measure of the error

in the pressure field.
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4.4 Bounds on error

In this section it is shown that the error level can be bounded in the pressure field, given

the i) geometry and ii) scale of the domain, iii) type of the boundary conditions, as well as the

iv) error level in the data (in the field and on the boundary) utilizing the Poincare and Cauchy-

Schwartz inequalities (see A for details). The results are independent of the numerical scheme of

the Poisson solver, i.e. the choice of the numerical scheme may introduce additional errors not

accounted for in the present analysis. The results are general and thus work for any dimension of

the domain (i.e., two-dimensional(2D) or three-dimensional(3D) flow).

Bounds on the error for several cases with different boundary condition settings are dis-

cussed. These cases are not only typical in engineering practice but also convenient for unveiling

the mathematical insights of the error propagation dynamics. Within each case study, the analyti-

cal results will be validated with numerical simulations first. Then the dynamics of the uncertainty

propagation through the pressure Poisson equation will be discussed based on analysis from a flow

field with more general geometry (i.e., rectangular). Finally, the physical interpretation of the

mathematics and suggestions for engineering practice are addressed.

4.4.1 Dirichlet boundary case

Consider a domain with pure Dirichlet boundary condition, the error in the pressure field

can be bounded as

|| εp ||L2(Ω) ≤CD|| ε f ||L2(Ω)+ || εh ||L∞(∂Ω), (4.12)

where CD is the Poincare constant, which is related to the minimum positive eigenvalue of the

Laplace oprator in the specified domain. Specifically, in engineering practice, the value of the

Poincare constant is determined by the dimension, size, and shape of the domain, as well as the

type of boundary conditions (A.3).

To validate inequality (4.12), we consider a steady 2D potential vortex in an L×L domain in

Cartesian coordinates. The nondimensionalized velocity field is u = −y, y ∈ (−L/2,L/2); v = x,

x ∈ (−L/2,L/2), where u and v are the two components of the velocity field uuu in the x and y

direction, respectively (see figure 4.2). Thus the pressure field is p = (x2 + y2)/2. The Dirichlet
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boundary conditions are defined as p = (y2 + L2/4)/2, x = ±L/2, and p = (x2 + L2/4)/2, y =

±L/2.

Artificial errors are constructed for the data. To test the reliability of the underlying esti-

mate, we consider a uniformly constant error, ε f= 2−4, and εh= 2−4. The error level in the domain

and on the boundary is specified identically (|| ε f ||L2(Ω) = || εh ||L∞(∂Ω) = 2−4). Assuming the

uncertainty in the data is constant is beneficial in two ways. First, in a physical sense, constant un-

certainty is associated with systematic error (i.e., ε f= 2−4 could be equivalent to u =−(1−2−6)y

and v = (1−2−6)x for the steady potential vortex used here). The systematic error is most likely

from slightly inaccurate calibration in real experiments, and can introduce considerable error in the

data and consequently accumulate even more error in the pressure field. Second, a constant error

field will lead to a constant error level, which will make the later analyses explicit.

We numerically solve the pressure Poisson equation with artificial error introduced (4.4),

using an accurate second order (five point scheme with point-wise numerical error less than 8.2×

10−12) finite difference Poisson solver (similar to Reimer et al. [42]). The error in the pressure field

from the simulation is then compared with the analytical results inequality (4.12). We expect that

the error from numerical simulations will be less than the prediction in (4.12), but generally follow

similar trends. If the errors from the numerical simulations are close to the analytical prediction

(i.e., slope and value), we say inequality (4.12) is validated and the bound is sharp.

For the 2D square Dirichlet domain, the Poincare constant is CD = L2/2π2, and inequality

(4.12) becomes

|| εp ||L2(Ω) ≤
1

2π2 L2|| ε f ||L2(Ω)+ || εh ||L∞(∂Ω). (4.13)

Figure 4.1 shows the comparison of numerical simulations and the analytical prediction.

The numerical simulations are conducted based on equations 4.4 and 4.5, with the 2D potential

vortex as the flow field and the constant artificial errors (introduced in the pressure Poisson equa-

tions in the field only (blue squares); on the boundary only (red triangles); and both in the field and

on the boundary (black open circles)). Inequality (4.13) is represented by a black solid line and is

the upper bound of the error. Clearly inequality (4.13) fits well with the simulation results when

error is introduced to both the field and boundary.
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In figure 4.1, when the length scale of the domain is large the uncertainty level in the

pressure field is dominated by the error of the data in the field (blue squares are collapsed on

black open circles), and proportional to the area of the domain (|| εp ||L2(Ω) ∼ L2). When the

domain is small, the error in the pressure field is dominated by the error on the boundary (red

triangles are collapsed on black open circles), and independent of the length scale of the domain

(|| εp ||L2(Ω) ∼ L0). Intuitively this makes sense as smaller domains will be more influenced by

their boundaries.

slope = 2

slope = 0

Figure 4.1: Error level in the pressure field versus the width of the flow field for the Dirichlet case.
The data points illustrate the error level when artificial error is introduced in the field only (blue
square), on the boundary only (red triangle), and both in the field and on the boundary (black open
circle). The black solid line is the bound of the error of the pressure field based on inequality
(4.13).

When conducting PIV experiments, if the frame rate of the camera is fixed, one can cus-

tomize the aspect ratio of the video, but the area of the interrogation windows is usually about the

same due to best practices and the limitations of lighting and magnification (e.g., best practices of

particles per pixel, particles per interrogation window, number of pixels of motion per time step,

etc.). Thus, from an engineering perspective, it is important to discuss how to choose the aspect
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ratio when the number of pixels of the video is fixed. In order to study this physically, we vary the

shape of the domain (alter the aspect ratio of only a rectangular shape due to physical restraints of

the camera) to see how the error propagation dynamics is affected when the area of the domain is

fixed.

Considering a 2D N×M rectangular domain (Fig.4.2), inequality (4.12) leads to:

|| ε ||L2(Ω) ≤
α

π2(1+α2)
A|| ε f ||L2(Ω)+ || εh ||L∞(∂Ω), (4.14)

where α is the aspect ratio (α = N/M) of the domain, and A is the area of the domain (A = MN).

Given the error level in the data, one can use inequality (4.14) to estimate the error level in the

pressure field. If necessary, one can also adjust the parameter settings (aspect ratio and/or area of

the domain) to reduce the error propagation.

Figure 4.3 illustrates how the aspect ratio and area of the domain affect the error propaga-

tion (assuming the uncertainty level of data is || ε f ||L2(Ω) = || εh ||L∞(∂Ω) = 2−4). For each curve

(fixing domain area A), the maximum appears at α = 1, which means a square PIV window is the

worst case scenario if a Dirichlet boundary condition is applied. When the domain is elongated

(e.g., α → 0) and pressure on the boundary is known, the pressure field is mainly determined by

the Dirichlet boundary conditions on the longer edges, and the contribution of the error in the

field and the shorter edges becomes negligible. Thus, using an elongated flow field (α far from

1) is encouraged when precise boundary conditions (accurate measurements on boundaries) are

accessible, especially on the long edges.

N

M

Ω 
x

A=MN

α=N/M

O

y

∂Ω

Figure 4.2: N×M Domain Ω with aspect ratio α and area A.
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Figure 4.3: Error level in the pressure field versus aspect ratio of rectangular flow domains with
various areas. The lines are plotted from inequality (4.14), with || ε f ||L2(Ω) = || εh ||L∞ = 2−4; and
A = 1/4,1,4,16, where the lines mark the upper bound of the inequality.

To compare the contributions of the uncertainty in the field and on the boundary, one can

define a nondimesional number (R f b) which is the ratio of the coefficient of the errors in the field

(|| ε f ||L2(Ω), inequality (4.14)) and on the boundary (|| εh ||L∞(∂Ω), inequality (4.14)). For a 2D

rectangular Dirichlet domain, R f b reads

R f b =
αA

π2(1+α2)
. (4.15)

When R f b� 1, the error on the boundary tends to dominate the error in the pressure field, with

limited budget or experimental accessibility, the best way to reduce the error in the pressure field

would be to improve the error on the boundary. As an example, for small areas when A ∼ 1, then

R f b ∈ (0,1/2π2]� 1, this relatively narrow interval implies that for a domain with nearly unit area,

most error in the pressure field is likely contributed by the error on the boundary, while changing
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the aspect ratio will not significantly affect the error in the pressure. However, because R f b ∼ A,

the contribution of the error in the flow field increases quickly with larger domain areas.

One more comment on the Dirichlet boundary condition is that the error in the pressure

field is due to the L∞ norm of the uncertainties on the boundary, which is the largest error on

the boundary, rather than the average error level measured by the L2 norm. It suggests that one

sharp and high error peak on the boundary may significantly increase the error propagation in

the pressure field. Thus, one should try to avoid outliers on the boundaries if Dirichlet boundary

conditions are applied.

4.4.2 Neumann case

For a domain with Neumann boundary conditions, we can obtain the error in the pressure

field using similar analyses to section 4.4.1. Here, a zero mean error of the data in the field (
∫
εg

dΩ = 0; see A.2 for more details) is assumed, which is the compatibility condition of the Poisson

equation with pure Neumann boundary conditions. The error in the pressure field can then be

bounded as

|| εp ||L2(Ω) ≤CN || ε f ||L2(Ω)+
√

CNCNB|| εg ||L2(∂Ω), (4.16)

where CN and CNB are the Poincare constants for the Neumann domain and the Neumann boundary,

respectively.

We now validate the bound introduced by inequality (4.16), similar to section 4.4.1, by

considering a steady 2D potential vortex in an L×L domain. Inequality (4.16) becomes:

|| εp ||L2(Ω) ≤
1

π2 || ε f ||L2(Ω)L
2 +

4
π3/2 || εg ||L2(∂Ω)L. (4.17)

We construct the same flow as in the Dirichlet case, of which the nondimensionalized ve-

locity field is u =−y,y ∈ (−L/2,L/2); v = x,x ∈ (−L/2,L/2), where u and v are the two compo-

nents of the velocity field uuu in the 2D Cartesian system. Thus, f (uuu) =−2, and the pressure field is

p=(x2+y2)/2. To satisfy the compatibility condition of the Neumann boundary Poisson equation,

the Neumann boundary conditions are ∇p ·nnn =−1,x = y =−L/2, and ∇p ·nnn = 1,x = y = L/2.
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Similar to section 4.4.1, a constant artificial error is constructed: ε f= 2−4, and εg= 2−4, the

error level in the domain and on the boundary are constants (|| ε f ||L2(Ω) = || εh ||L∞(∂Ω) = 2−4).

Introducing the error to the field only, on the boundary only, and both in the field and on the

boundary, simulations agree with the theoretical analyses (figure 4.4). Error in the pressure field

scales as the square of the domain length (∼ L2) for large scale flow fields; however, for smaller

flow fields, error scales by the domain length (∼ L).

slope = 2

slope = 1

Figure 4.4: Error level in the pressure field versus the length scale of the flow field for the Neumann
case. The data points illustrate the error level when artificial error is introduced in the field only
(blue square), on the boundary only (red triangle), and in both field and on boundary (black open
circle), respectively. The black solid line presents the bound of the error of the pressure field.

We also consider the more general case of a rectangle, 2D N×M field with area A, and

aspect ratio α . Inequality (4.16) then becomes

|| εp ||L2(Ω) ≤
1

π2 Aα
sgn(α−1)|| ε f ||L2(Ω)+

2
π3/2

√
A(αsgn(α−1)+1)|| εg ||L2(∂Ω), (4.18)

Figure 4.5 shows an illustration of the error bound in the pressure field when the Neumann bounday

conditions are applied. For a domain with fixed area, the square domain with α = 1 leads to

33



minimum error propagation. However, when an elongated domain is used, the error in the pressure

may not be bounded when α → 0 or ∞, because the error in the pressure field is dominated by the

error on the longer boundaries. Thus, in engineering practice, a square domain is recommended for

Neumann boundary conditions. If an elongated domain must be used, precise Neumann boundaries

should be applied to the longer boundaries, or a smaller domain should be used to reduce the error

accumulation.
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Figure 4.5: Error level in the pressure field versus aspect ratio of rectangular flow domains with
various areas. The lines are plotted from equation 4.14, with || ε f ||L2(Ω) = || εh ||L∞ = 2−4; and
A = 1/4,1,4,16.

Similar to section 4.4.1 we compare the coefficients of inequality (4.18) and formulate the

contribution ratio as

R f b =

√
π

2
αsgn(α−1)

αsgn(α−1)+1

√
A. (4.19)

A fixed domain area, for example A∼ 1, yields a relatively wide interval compared with the Dirich-

let case (R f b ∈ [
√

π/4,1)). The implication is that the aspect ratio can be easily used to control the

contribution from the field and boundary, depending on the specific practices of the experiments.
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On the other hand, R f b ∼
√

A, meaning that the contribution ratio is proportional to the length

scale of the domain, and thus not as sensitive as Dirichlet boundary conditions to the scale of the

domain.

The last comment on the pure Neumann boundary case is about the derivation of the error

bound in the pressure field, and more details can be found in the appendix. The inequality (4.16) is

obtained based on a weak or unrealistic assumption (i.e., the mean value of error in the data field

is zero). Systematic error in the experiments is not necessarily a mean zero field (e.g., Gaussian

errors). This could conflict with the compatibility condition and eventually render the Poisson

solver intractable. Once the compatibility condition is not satisfied by the data, the solution to the

Poisson equation does not even exist. One can usually get some results (we would rather not call

them solutions) from a numerical Poisson solver even if the compatibility condition is not satisfied,

however, the results highly depend on the numerical scheme, resolution, and convergence criteria

of the numerical solver. Thus, pure Neumann boundary conditions should be avoided if possible,

unless the PIV experiments have reasonably high accuracy, or the engineering application allows

Neumann boundaries only. This tricky message is brought up by very few in the literature (e.g.,

Neeteson and Rival [43] mention this but don’t explain why it happens). This may be the reason

why most researchers use Dirichlet or mixed boundaries; although, technically, if one can use

Dirichlet BCs, Neumann BCs are also an option. We did an exhaustive literature review for the

related papers published in major journals and conferences in the last five years, and found that by

default the community by and large utilized Dirichlet BCs whenever possible and shied away from

Neumann BCs (see table 4.1). Two studies used pure Neumann BCs, however, they either have

no accessibility to Dirichlet boundaries (e.g., internal flows of Löhrer et al. [44]), or a relatively

small domain is used for an external flow without a confident far field assumption (e.g., Villegas et

al. [45]).
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Table 4.1: Types of boundary conditions used in recent studies

Type of BCs Papers a

Dirichlet BCs Neeteson and Rival [43] b;

Neumann BCs Löhrer et al. [44], Villegas et al. [45];

Mixed BCs

Jalalisendi et al. [46], Oren et al. [35], Lignarolo et al. [24];

de Kat et al. [47], Novara and Scarano [48], Pröbsting et al. [49];

Albrecht et al. [50], Nila et al. [27], Ghaemi and Scarano [51];

Ghaemi et al. [52], Koschatzky et al. [53], Moore et al. [28];

Violato et al. [54], and many more c

a We only count the papers that utilize the pressure Poisson approach.
b This paper tested both Dirichlet and Neumann boundaries for comparison.
c We apologize that we cannot list the many more informative papers that used mixed boundary

conditions, but we cannot have all of them listed in this table.

4.4.3 Mixed boundary conditions

We see complicated and distinctly different error propagation dynamics simply from the

boundary conditions even for these simple 2D domains. However, in engineering practice, mixed

boundary conditions are more common due to the limitations and/or applications of the experi-

ments (table 4.1). We now focus on the coupled dynamics of how the geometry and boundary

conditions impact the error propagation in more complicated situations (e.g., a rectangular domain

with two Dirichlet boundaries, and two Neumann boundary conditions on the opposite edges of

the domain, respectively).

Consider a flow in a 2D rectangular domain (N×M), with mixed boundary condition (p =

h, y = ±N/2; and ∇p · nnn = g, x = ±M/2). This physically means that the aspect ratio can be

viewed as the relative amount of the boundary dictated by a Neumann condition to that given by

a Dirichlet condition. The mixed boundary condition case can be decomposed into three parts,

one that incorporates the error in the bulk of the domain, one for the error on the Neumann part

of the boundary, and a third that accounts for the error on the Dirichlet part of the boundary. The

analysis of the the error from the boundary terms is inherently difficult to estimate. However,
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for a sufficiently large convex domain one would expect the error in the interior of the domain

to dominate the boundary error, and the analysis of the contribution of the error from the field is

already enough to lend itself rich physical insight. We again estimate the error in the pressure field

using our previous analysis:

|| ε ||L2(Ω) .
Aα

π2 || ε f ||L2(Ω). (4.20)

The inequality is plotted in figure 4.6 and shows that for a domain with constant area a larger

aspect ratio (i.e., more influence from Neumann boundaries) results in large error propagation with

a trend that is as fast as the pure Neumann case. This implies that if a mixed boundary condition

is utilized in a rectangular domain, Dirichlet conditions should be used on the longer sides of the

boundary to mitigate the error propagation.
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Figure 4.6: Error level in the pressure field versus aspect ratio of rectangular flow domains with
various areas. The lines are plotted from inequality (4.20), with || ε f ||L2(Ω) = 2−4; and A =
1/4,1,4,16.
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4.5 Discussion

We have shown that the upper bound of the error in the pressure field is related to the type

of boundary conditions, geometry and the scale of the flow domain. The results include the explicit

dependence on the geometry (the shape and boundary of the domain is incorporated in the Poincare

constant), dimension (2D or 3D), and numerical scheme of the Poisson solver. One can use these

results to design and minimize the error in an experiment before it is performed. For example, one

can adjust the aspect ratio, area of the domain, and the type of boundary conditions to reduce the

error propagation from the velocity field to the pressure field based on the reasoning outlined in

section 3.4.

We can illustrate how one might use this information by using a simple example to present

how to choose boundary conditions. Assume a square domain is used in a PIV experiment and

the error level in the data and on the boundary is given and plotted in figure 4.7. We introduce

the same error to the data in the field and the boundary for the pure Dirichlet and pure Neumann

cases (|| ε f ||L2(Ω) = 2−3, || εh ||L2(∂Ω) = || εg ||L2(∂Ω) = 2−3), and compare them to cases where the

error on the boundary is smaller (|| ε f ||L2(Ω) = 2−3, || εh ||L2(∂Ω) = || εg ||L2(∂Ω) = 2−4) as shown

in figure 4.7 to illustrate the effect of lowering the error on the boundaries for both pure cases.

We can now use figure 4.7 to illustrate how to choose boundary conditions when both Neumann

and Dirichlet BCs are accessible. When the domain is large (e.g., L > 10) and the error on the

boundaries is large (|| εh ||L2(∂Ω) = || εg ||L2(∂Ω) = 2−3, solid lines in figure 4.7), the Neumann

boundary conditions yield about twice the error of the Dirichlet boundary. Thus, choosing Dirichlet

boundary conditions is best when the the domain is large. However, when the domain is small

(e.g., L < 10), the Neumann BCs yield smaller error. If Neumann BCs are the only choice, one

can either improve the experiments with more accurate boundary conditions (e.g., green dashed

line, L < 3.8, comparing with the red solid line), or use a smaller domain (e.g., blue solid line,

L < 1.3). However, in practice, the scale of the non-dimensionalized flow field is usually large

(L > 1), thus the best choice is accurate Dirichlet BCs with a small flow domain (purple dashed

line). Even for these very simple cases it is complicated to choose the proper BC settings, thus we

suggest that users plot their own figure like figure 4.7 to design/optimize their own experiments.

A detailed users guide is beyond the scope of this chapter and we will give more discussion in the

next chapters.
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Figure 4.7: Bounds of the L2-norm of error in a pressure field. The red and blue curves indicate the
highest possible uncertainty level in the pressure field with the same level of error introduced in
the data (2−3 on boundary and in field) for Dirichlet and Neumann cases, respectively. The purple
and green dashed lines show Dirichlet and Neumann case with the same uncertainty level as other
cases in the flow field, but with less error (2−4) on the boundaries.

In this dissertation, we limited the discussion of the error propagation from the data to the

pressure field (denoting as || f (uuu)|| → ||p||), but the error propagation from the velocity field to

the data (denoting as ||uuu|| → || f (uuu)||) was not covered. To bound || f (uuu)|| with ||uuu|| is not an easy

task due to the nonlinear terms in the Navier-Stokes equation (e.g., uuu ·∇uuu) making the 2D solution

inherently complicated. The 3D version of the propagation of error from the velocity field to the

data is related to the well-posedness of the 3D Navier-Stokes equation, which is a Millennium

Prize Problem. For this reason we do not expect to make significant progress in this area, at least

in 3D.

Instead of a full solution to ||uuu|| → || f (uuu)||, we can attempt to calculate the error propa-

gation from the velocity vector field to the data field. These first steps of calculation can provide
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qualitative intuition of the error propagation in the whole pressure calculation process:

ε f= f (uuu+++ εεεuuu)− f (uuu), (4.21)

where εεεu is the error vector in the velocity field. Depending on the dimension and non-dimensional

numbers in the Navier-Stokes equations (e.g., Reynolds number Re, etc.), equation (4.21) can

be very long, however, the 2D convection term alone should be enough to illustrate the physics.

Assuming that εu is sufficiently small, we can neglect the second order terms in the error (e.i.,

(∂ εu /∂x)2, and (∂ εv /∂y)2) to approximate (4.21) as:

ε f≈−2
(

∂u
∂x

∂ εu

∂x
+

∂v
∂x

∂ εu

∂y
+

∂u
∂y

∂ εv

∂x
+

∂v
∂y

∂ εv

∂y

)
, (4.22)

where u and v are the velocity components, and εu and εv are the velocity error in the x and

y direction, respectively. Recalling that ‖ ε f ‖L2(Ω) is the source of the error from the velocity

field that appears as data in the pressure field calculation (e.g., inequalitites (4.12) and (4.16)),

|| ε f ||L2(Ω) is calculated by integrating ε2
f over the whole domain. Utilizing the Cauchy-Schwarz

inequality and applying index notation to (4.22) we arrive at

‖ ε f ‖L2(Ω) ≤ 2
∥∥∥∥∂ui

∂x j

∥∥∥∥
L2(Ω)

∥∥∥∥∂ ε j

∂xi

∥∥∥∥
L2(Ω)

. (4.23)

Noticing that the first term,
∥∥∂ui/∂x j

∥∥
L2(Ω)

, in (4.23) is actually the gradient of the velocity field,

we are be able to obtain some qualitative sense of the reason why the type of the flow affects the

error propagation. Physically this means that the velocity gradient directly influences the error

level, so for spatially accelerating flow fields the error will inherently be larger. This preliminary

discussion is supported by experimental results and physical intuition outlined by Charonko [3].

We have intentionally made the results of this work unrelated to any specific numerical

scheme. The error bound derived here may be saturated by the worst case scenario with the best

numerical implementation. This means that if we solve the pressure equation perfectly with an

exact numerical scheme, given a certain level of error in the velocity field, the error in the pressure

field will be below the error bound. On the other hand, the numerical error is not considered
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here, and one may expect larger error than the bounds if the numerical solver is not implemented

properly.

One more note on the the non-dimensionalization of the problem may help with practical

implementation. The characteristic length scale of the flow field is exactly the characteristic length

(L0)) of the Reynolds number, Re = ρuuuL∗/µ , where ρ and µ are the density and viscosity of

the fluid. The pressure can also be related to the characteristic length scale through the non-

dimensionalization. For instance, the pressure or error in the pressure can be non-dimensionalized

by either a dynamic pressure (P0 = 1/ρU2
0 , useful for large Re flows), or by a length scale and

viscous stresses (P0 = L0/µU0, useful for viscous flows), where U0 is the characteristic velocity

of the flow. Thus, the predicted absolute error in the pressure field with real units should be

Ep = || εp ||L2(Ω)P0. If we define relative error as Ep/P0× 100%, we will see that || εp ||L2(Ω)

actually has physical meaning as a measurement of the relative error of the pressure field. Finally,

it isn’t necessary to work with the non-dimensionalized Navier-Stokes equation and the pressure

Poisson equation as we did here, rather one could re-derive these error bounds dimensionally, but

the conclusions would remain the same yet be more difficult to interpret.

At last, under the framework proposed in this work, we try to connect two popular cat-

egories of methods for PIV-based pressure field calculation: i) pressure Poisson equation based

methods, which work with Laplacian of the pressure field derived by applying divergence on a

rearranged Navier-Stokes equation (e.g., de Kat and van Odheusden [21]); and ii) Navier-Stokes

equation based methods, which directly integrate the pressure gradient in the Navier-Stokes equa-

tion (e.g., Dabiri et al. [4], as well as Liu and Katz [32]). One may notice that the derivation from

the incompressible Navier-Stokes equation to (4.1) according to the statement of the problem is not

based on any additional assumptions. This implies that the analysis and the results of the pressure

Poisson equation (4.1) in this dissertation should hold for the Navier-Stokes equation based meth-

ods too. For example, a large domain accumulates more error in the pressure field from inaccurate

velocity measurement, and Dirichlet BCs tends to yield less error than Neumann BCs, etc. The

rigorous validation of this point is beyond the scope of this dissertation research, and we sincerely

welcome discussion and collaboration on this topic in future studies.
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4.6 Summaries

In this chapter, we have analyzed the error propagation dynamics inherent in the calcula-

tion of the pressure Poisson equation from velocity data common to many PIV experiments. We

emphasize that this work sets up a framework for analyzing the power/level of the error in the

pressure field. The framework is based on a natural idea that the error in the pressure estimation

is a combination of the true value and the error; and the measure of this error can be well de-

fined with the L2 & L∞ norm. Under this framework, we directly analyze the error in the data as

non-negligible perturbations to the pressure Poison equation, and have been able to unravel the

dynamics that affect error propagation, namely: the shape, area/volume, and boundary conditions

of the flow domain.

This work lays out guidelines for designing experiments (velocity field measurements) that

can be used to calculate the pressure field via the pressure Poisson equation. In engineering prac-

tice, the techniques presented can be used to develop a priori error estimations of the pressure

field to inform the practical side of experiments and minimize the error propagation inherent in

calculating pressure fields from velocity fields.
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CHAPTER 5. USERS’ GUIDE: ONE SIMPLE EXAMPLE

5.1 Introduction

In Chapter 4, the error bounds are derived based on the non-dimensional Navier Stokes

equation, thus all the results are also non-dimensional (e.g. inequalities (4.12) and (4.16) et al.).

Examples in this chapter will illustrate how to use the results in chapter 4 to design and optimize

an experimental data collection. Again, a synthetic flow that has an exact solution for both the

velocity and pressure field as a benchmark is used. These calculations are dimensional and units to

improve insight into the actual application. This section can also be considered a further validation

of chapter 4 and an introduction to some open problems (see chapter 7) that will be addressed

hereafter.

5.2 Synthetic experiments and artificial error

5.2.1 Design of experiments

Consider experimentalist Mrs. Randi H. Pan who is aiming to study the transition and

decay in a Taylor-Green vortex array. Although this is difficult and expensive in practice, it is

assumed that Randi was successful in creating a two-dimensional Taylor-Green vortex array with

water in a pool.

The target of Randi’s experimental research is to investigate the interaction and develop-

ment of a Taylor-Green vortex, similar to the research of Brachet et al. [55]. Time resolved 2D PIV

and PIV based pressure calculations will be used to observe the physics of the vortex array. The

first step of this research is to use a steady state inviscid flow to validate the experimental setup.

Based on her research goals, Randi has some preferences regarding the experiments, which are

listed below:
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P-i) At least two vortex cells, or vortex centers, and one boundary between cells should be

visible in a single frame to investigate the interaction between the cells;

P-ii) The more vortex cells covered in one PIV domain the better;

P-iii) The size of the vortex cells will preferably be on the order of 0.5 m.

However, due to the financial and physical restrictions of Randi’s experimental setup, she

has some limitations:

L-i) Resolution of the 2D PIV cannot be higher than 512×512 per 1m×1m domain;

L-ii) The water pool is square, and the length of the edge cannot be larger than 5 m. Because the

wall effect should be avoided, a 5m× 5m pool is barely enough to set up a small vortex

array (e.g. 2m×2m) in the center of the pool.

Based on the conclusions of chapter 4, some basic rules should be followed to minimize

the error propagation from the velocity field to the pressure field, which are listed below:

R-i) Small domains should be used to reduce error propagation;

R-ii) Pure Neumann boundary conditions should be avoided if possible;

R-iii) If Neumann boundary conditions are used, a square domain (aspect ratio α = 1) is recom-

mended;

R-iv) Large velocity gradients should be avoided in the domain and on the boundary if possible;

Comprehensive consideration of the listed research preferences, experimental limitations,

and rules introduced in chapter 4 leads to preliminary experimental design profiles as shown in

figure 5.2 (more mathematical details can be found in section 5.2.2). The flow of the preliminary

design process is shown in figure 5.1 and Randi’s pathway is highlighted by the green arrows. The

figure also provides a convenient graphical representation guide for future user.

D-i) Bernoulli’s principle, or far field assumptions, do not apply in the vortex array, thus Neu-

mann boundary conditions have to be applied;
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D-ii) According to the analysis in chapter 4 (e.g. inequalities 4.16), the smallest square domain

that covers more than one vortex cells is a domain that can cover 2×2 cells. It is expected

that this domain yields the least error propagation;

D-iii) The boundary of the domain will be placed at an area where the velocity gradient is small

(e.g. the boundaries of the domain overlap the boundary of the cells).

Pool

U [m/s]

x [m]

y
 [

m
]

x

y

Figure 5.2: Preliminary experimental design. The quiver plot over the amplitude of the velocity
shows the flow field in the center of the water pool. The flow in the red dashed box is the domain
that will be used for PIV-based pressure calculation.

For this steady-state laminar flow, the characteristic length (L0 = 0.5m) that makes the

most physical sense is the length scale of a vortex cell. Thus the the non-dimensional geometry of

the domain is indeed a 2× 2 square with Neumann boundary conditions, which corresponds to a

1m× 1m) domain (the red dashed box in figure 5.2). Thus inequality 4.17 gives the error bound
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in the pressure calculation:

|| εp ||L2(Ω) ≤
4

π2 || ε f ||L2(Ω)+
8

π3/2 || εg ||L2(∂Ω). (5.1)

It is worth mentioning again that || ε f ||L2(Ω) and || εg ||L2(Ω) are the error level of the data

(not the velocity field) in the field and on the boundary, respectively. These two terms are not

easy to evaluate. However, the specific value of these terms do not affect the experimental design,

because the error distribution in the PIV results are indeed priori information, and thus unknown.

In other words, it’s fair to assume one already gets the best he/she can get in terms of experiments

(e.g. particle density, interrogation window choice of PIV, etc.), and cannot do much to improve

the PIV quality. Then, the design summarized by D-i) to D-iii) should give the best result.

However, Randi is not sure that the experimental design described above is the best choice.

Fortunately, by using a synthetic Taylor-Green vortex flow, it is not difficult to examine this hy-

pothesis.

5.2.2 Synthetic flow and artificial error

The 2D Taylor-Green vortex array has exact solutions. The velocity field reads

u =U0 sin
(

π
x

L0

)
cos
(

π
y

L0

)
v =−U0 cos

(
π

x
L0

)
sin
(

π
y

L0

)
,

(5.2)

where L0 = 0.5m is the wave length of the vortex array, and U0 = 0.1m/s is the maximum velocity

in the flow field. The pressure distribution reads

p =
ρU2

0
2

cos
(

π
x+ y
L0

)
cos
(

π
x− y
L0

)
, (5.3)

where ρ = 1×103 kg/m3 is the density of water.

L0 = 0.5m is chosen as the characteristic length of the flow, which is an inherent physical

property of the flow. More explicitly, it is the length scale of the vortex cells. The kinetic pressure

P0 = ρU2
0 /2 is chosen as the characteristic pressure since the Reynolds number is large (Re =
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5.0×104 when U0 = 0.1m/s is chosen as the characteristic velocity, and the viscosity of water is

1.0×10−3 Pa · s). With u∗ = u/U0, xxx∗ = xxx/L0, and p∗ = p/P0, and by dropping the superscript (∗),

the non-dimensionalized governing equations with respect to the velocity field are described as

u = sin(πx)cos(πy)

v =−cos(πx)sin(πy) ,
(5.4)

and pressure field

p = cos [π (x+ y)]cos [π (x− y)] . (5.5)

The quantities of the synthetic flow are summarized in table 5.1.

Table 5.1: Values and dimensions of the variables used in the Green-Taylor vortex flow.

Char. Len. Char. Velo. Char. Press. Viscosity Density Re #

Notation L0 U0 P0 µ ρ Re

Value 0.5 0.1 5 1×10−3 1×103 5×104

Dimension a [L] [L][T ]−1 [M][L]−1[T ]−2 [M][T ]−1[T ]−1 [M][L]−3 –

a SI unites are applied to all the dimensions.

To model the potential error introduced by the PIV experiments in a more realistic way,

two types of error are added to the velocity field (but not the data field). i) systematic error:

εuuu1=ε1 uuu, (5.6)

where ε is a small constant. εuuu1 will thus lead to the velocity components amplified by 100(1+ ε1

)%, which can be considered as error introduced by inaccurate calibration. ii) random error

εuuu2=ε2 Uni(−1,1)nnn, (5.7)

where ε2 is a constant, and Uni(−1,1) denotes variables that have a uniform distribution in [−1,1],

and εuuu2 leads to a simple model of random error in the PIV results.

48



2.2

1.6

B

Figure 5.3: A). Error versus the length scale of the domain. The box plot indicates the error in a
calculated pressure field with a synthetic velocity field (5.2), but contaminated by artificial error (
5.6 and 5.7). The upper and lower edges of the solid blue boxes indicate 25th and 75th percentile,
respectively. The target-like symbol (�) on each box indicates the median of the data. The error
in the pressure field has units of [Pa]. The orange dash-dot line shows the error level in the field
(|| ε f ||L2(Ω)). The blue dashed line is the error on the boundary || εg ||L2(∂Ω). The black solid line
is the error bound calculated based on inequality (5.1). Units of the variables are shown in the
legend. B). Zoomed-in view of one error box.

5.2.3 Validation of experimental design

Let ε1 and ε2 be small constants (for example, ε1= 2× 10−2 and ε2= 2
√

3× 10−3)1, and

introduce these errors in the velocity field (equation 5.2). Figure 5.3 examines how the length scale

of the domain affects error propagation.

In figure 5.3 A, the orange dash-dot line is the calculated error level inside the domain

(|| ε f ||L2(Ω)) by comparing the synthetic flow with and without artificial error introduced in the

velocity field; similarly, the blue dashed line is the calculated error on the boundary of the domain

(|| εg ||L2(∂Ω)). With these two calculated errors (|| εg ||L2(∂Ω) and || ε f ||L2(Ω)) Randi calculated

the error bound based on inequality (4.16), or more specifically, (5.1). The box-plot shows the

error in the pressure field calculated with an artificial error contaminated velocity field. Each box

1ε1 and ε2 are chosen so that || εuuu1 ||L2(Ω) = || εuuu2 ||L2(Ω) = 1×10−3. This choice of constants gives a measure of
the error in the velocity components and forces them to have the same power level.
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contains 100 data points (from 100 simulations). The open dashed blue, red and magenta boxes

contains 10, 10 and 5 boxes around L = 1,1.5,&2 respectively. It is shown that all the boxes in

the box-plot are all lower than the black solid line, and this implies that the error in the calculated

pressure field is strictly bounded by the the theoretical error bound, as expected. The envelope

of the box-plot follows the trend of the error bound fairly well, for example the top of the open

dashed boxes generally follows a line with slope = 2 (see the green arrow in figure 5.3 A), which

is also expected by the theoretical bound (black line). Note that in this case error level in the field

is about 10 times larger than the error level on the boundary (|| ε f ||L2(Ω) ∼ ||10 εg ||L2(Ω)), for a

domain with length scale L ∈ [1,2], although not typically big, the error in the flow field already

dominates the error propagation, and error in the pressure field should be proportional to the area

of domain (|| ε f ||L2(Ω) ∼ L2 ).

The yellow patch in figure 5.3 A indicates the experimental domain with the length of

edges L ∈ [0.5,1), which covers more than 1× 1 vortex cell, but less than 2× 2 cells. Although

this region generally yields the smallest error compared to the other two regions (indicated by the

green and red patches) of interest, it is not sufficiently large to resolve the potential physics. The

red patch region (L > 1.5) covers more than 3×3 vortex cells, which is nice for the large field of

the observation, however, this may lead to the domain being too close to the wall of the pool, which

may introduce large errors and disturb the structure of the vortex array. Also, the error propagation

is inherently enhanced by the large area of the flow domain and long perimeter of the boundary.

The green region (L ∈ [1,1.5]) is a feasible region that the domain can cover 2×2 to 3×3 vortex

cells, that satisfy Randi’s experimental requirements; and the error in the pressure field is generally

small. In the green region, the least error in the pressure field is achieved at around L = 1. This is

indeed Randi’s original design based on the principles indicated in chapter 4.

Figure 5.3 can be also considered as a further validation to the theory in chapter 4. The

errors (box-plots) are smaller and follow the trend of the theoretical prediction (black solid line),

which agrees with the main conclusions based on inequality (4.16).

One may notice that the height of the error boxes is quite varied, even for nearby data

sets which have the same amount of artificial error in the field and on the boundary, and a similar

domain length scale. This implies that the pressure calculation is sensitive to the boundary (at least
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for the Neumann boundary case). This phenomenon can be explained intuitively by examining the

boundary condition equation (4.3), similar to the analysis in section 4.5.

The error on the Neumann boundaries is described by

εg= g(uuu+ εuuu)−g(uuu), (5.8)

where εuuu is the error vector in the velocity field. Again, the 2D convection term is examined to

illustrate the physics. Assuming that εuuu is sufficiently small, we can neglect the small terms in the

error (e.g., εu ∂ εu /∂x and εv ∂ εu /∂y) to approximate equation (5.8). The x component of the

error, for example, on the boundary is

εg≈−
(
εu

∂ εu

∂x
+u

∂ εu

∂x
+ εv

∂u
∂y

+ v
∂ εu

∂y

)
, (5.9)

where u and v are the velocity components, and εu and εv are the velocity errors in the x and y

direction, respectively. Utilizing the Cauchy-Schwarz inequality and applying index notation to

(5.9), it becomes

‖ εg ‖L2(∂Ω),i ≤ε j

∥∥∥∥∂ui

∂x j

∥∥∥∥
L2(∂Ω)

+u j

∥∥∥∥∂ εi

∂x j

∥∥∥∥
L2(∂Ω)

, (5.10)

where ‖ εg ‖L2(∂Ω),i is the component i (i = 1,2) of the error on the boundary of the data field.

Inequality (5.10) shows that the error of the data on the boundary is related to the velocity and

velocity gradient, as well as the error and the gradient of the error, which is even more complicated

than the case for the error inside the domain (4.23).

On the other hand, even for a fixed domain (constant error level in the velocity field, and

constant length scale of the domain), the error level in the pressure field varies significantly. For

example, figure 5.3 B provides a zoomed-in view of one data set that contains 100 simulations for

a small domain (L≈ 0.6). The error in the calculated pressure varies from approximately 1.6 Pa to

2.2 Pa. Considering that the maximum pressure for this domain is roughly 5 Pa without introduced

artificial error, the variation of the error in the calculated pressure is fairly large. Also, noticing

that this large variation is from a uniformly distributed random error with the constant statistical

parameters (i.e., distributed in [− ε2,ε2] and thus mean zero and constant power), this implies
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that a different profile of the error in velocity field leads to a different level of error in pressure

calculation. This is expected, if one recalls the inequalities (4.23, and 4.23).

It is also worth mentioning that the theoretical error bound overestimates the error propa-

gation in in this synthetic experiment. I have to admit that it is not as favorable as Randi expected,

however, the error bound overestimation is expected from the physics point of view. The profile

of the error in the data field affects error propagation, but some error fields are less powerful. A

related result is addressed by De Kat and Van Oudheusden [21]. They discovered that the Poisson

solver based pressure calculation behaves like a low pass filter for both a velocity field input and

the error in the velocity field, meaning that low frequency error propagates to the pressure calcu-

lation more effectively. One may ask why and how the error profile or type matters for the error

propagation dynamics, which can raise some open problems that will be discussed in chapter 7.

If the imaginary Mrs. Randi H. Pan is offended, I apologize.
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CHAPTER 6. EXPERIMENTAL VALIDATION

6.1 Introduction

In this section, we present an experimental validation to the theory introduced in chapter 4.

PIV experiments of an oscillating flow in a 2D diffuser by King and Smith [5] will be used as input

data. Pressure calculations from the PIV results will be compared with the experimental pressure

measurements of a similar fashion used by Charonko et al. [3].

6.2 Method

As a data source in this chapter we use an oscillating flow in a 2D diffuser with a diffuser

angle of 30◦ opening from a 1.66 cm diameter to 6.70 cm and driven by eight speakers (USU Os-

cillating Flow Facility [56,57]). The oscillating flow has a frequency of f = 8.5Hz and a Reynolds

number of approximately Reδ = 580 based on maximum velocity and viscous penetration depth

(δ = 8.3×10−4 m). Simultaneous pressure at six locations on the diffuser wall is obtained by

pressure transducers (see figure 6.3 for three of them on the left wall). For more explicit details,

refer to [5]. Phase averaged, 2D volume flow rates and pressure measurements at port 4 and 6 (P4

and P6) over time in a single period are shown in figure 6.1.

Due to the limitations of the current theoretical solution (see chapter 4) and Poisson solver,

which only apply to 2D rectangular domains, the in-house Poisson pressure solver requires that

the direction of the structured mesh grid be either orthogonal or parallel to the boundary of the

domain. To apply the pressure Poisson solver to the PIV results, the original velocity vector field is

rotated 15◦ counterclockwise around the origin in the original coordinate system (see figure 6.2),

and re-meshed by 2D triangulation-based cubical interpolation (from the original coordinate to the

rotated system).
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Figure 6.1: Phase averaged pressure measurement at P4 and P6 (dashed lines) and flow rate (black
solid line with open marks) are plotted against time. The red circle denotes the frame shown in
figure 6.3.
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Figure 6.2: Coordinate transformation representation. The solid black coordinate frame corre-
sponds to the original PIV data (see figure 6.3A for one frame of the real flow). The dashed purple
coordinate systems is the result of the transformation (see figure 6.3B for one frame of the flow
field after transformation).

54



After post-processing the original PIV data, three varying domains, with a single edge along

the left wall of the diffuser, are used for validation (figure 6.3B, domain I is a 31.7mm×31.7mm

square, domain II is a 45.0mm×45.0mm square, and domain III is a 31.7mm×63.5mm rectan-

gle). Because the pressure measurements in the experiment are only available at three locations on

the left side of the diffuser wall, the phase averaged pressure difference between pressure ports over

one cycle is used as a benchmarking variable, rather than the L2 norm used previously. However, it

is still expected that for the case of the Neumann boundary condition, a small square domain will

produce the least error, even for this point-wise error measurement.

6.3 Results

Neumann boundary conditions are implemented on domains I, II and III to calculate the

pressure fields. The pressure difference between P4 and P6 is used as a benchmarking to compare

with the experimental results and pressure calculations, see figure 6.4. Pressure calculation in

domain I (blue dashed line) generally follows the trend of the experimental result (purple line),

although the error is typically large. Domain II gives a similar amount of error in the pressure

calculation, but the trend is fallacious. Domain III leads to the largest error, with a result that

differs significantly from the experimental data. Although these calculations are inaccurate, the

performance is what is expected in terms of the error level in the pressure calculation; The pressure

calculated from domain I yields more accurate results than domain II, which is more accurate than

domain III. Based on the conclusions in chapter 4, one can easily derive the error bounds for each

domain and see why domain I is the best choice and why domain III is the worst. Domain I has

the smallest area and an aspect ratio of 1, while domain III has the same area as domain II (twice

the area of domain I) but an aspect ratio 2. I would like to comment on the large error as shown in

this simulation. First, if the pressure on the wall is influenced by the Stokes layer thickness, then

(δ = 8.3×10−4 m) is the proper characteristic length, which leads to a non-dimensionalized area

A = 1.45×103 for domain I, and A = 1.45×103 for domain II and III. Remember that the error in

the velocity field from many different sources (e.g. calibration, random noise of PIV, out of plane

vector, etc.) could lead to large error in the data. Specifically in the simulations contained in this

research, coordinate transformations and interpolation introduce additional error, with the exact

amount unknown yet non-negligible. For this reason, the error level in the data || ε f ||L2(Ω) and
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Figure 6.4: Comparison of pressure calculations in different domains (dashed lines) and experi-
mental results (solid purple line).

|| εg ||L2(∂Ω) could be even larger than the error in the original experimental data. Remembering

that the error level propagated to the pressure field is scaled by A|| ε f ||L2(Ω) when the area of

the domain is large, it is expected to have large error for typically large error in data || ε f ||L2(Ω)

and domain area A. For example, for the pressure calculation in the domain I, the relative error

comparing to the inlet kinematic pressure (1/2ρU2
max = 88.6Pa) ranges from 0.5% to 170%. As a

reference, the performance achieved by Charonko [3] gives around 33% to 75% error, but does not

match the time history of the pressure transducer record. It is not fair to compare the result in this

thesis to Charonko’s [3] paper because of several differences including: domain sizes and shapes,

post processing methods and governing equations. However, the large error yielded from both

of these calculations implies that significant error propagation is inherent in the pressure Poison

solver, rather than the details of the implementation.

It is also interesting that in Charonko’s paper [3] comparing pressure calculation methods

(Omni-direction integral and multi-path line integral method), the Poisson method gives largest er-

ror. This might be because the compatibility condition is not satisfied with pure Neumann boundary

conditions, and the calculated error is intrinsically large with a relatively coarse mesh, and a low

accuracy numerical scheme (a high accuracy numerical scheme might overwhelm the solver since

the solution does not exist). Thus, we highly recommend applying Dirichlet boundary conditions

on the domain if possible, unless the PIV results are very accurate. If pure Neumann boundaries
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have to be employed, methods like the Omini-directional integral method [32] could be better

candidates.

In future PIV-based pressure calculation research, It is recommended to use pressure trans-

ducers with point-wise validation (similar to the implementation in this chapter or in Charonko’s

paper [3]), especially when pure Neumann boundary conditions are used.
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CHAPTER 7. OPEN PROBLEMS

In this section, two open problems rising from this dissertation study are introduced. These

two problems can direct the future research efforts.

7.1 || εu || → || ε f ||

The problem studied in chapter 4 refers to the error propagation from the data of the pres-

sure Poisson equation ( f (uuu),g(uuu), and h(uuu)) to the solution, which is the pressure field (p). With

f as the representative of the data, this error propagation problem can be denoted as

|| ε f || → || εp ||. (7.1)

Similarly, the manner in which the error in the velocity field propagates to the data can be denoted

as

|| εuuu || → || ε f ||. (7.2)

Expression 7.1 and 7.2 together splice an entire problem: || εuuu || → || ε f || → || εp ||, so that the

error propagation from the velocity field to the pressure field problem reads

|| εuuu || → || εp ||. (7.3)

Chapter 4 has essentially provided a complete solution to the problem 7.1. In section 4.5,

problem 7.2 is qualitatively analyzed, and it implies the reason why the profile of the flow matters

when calculating a pressure field from PIV results. However, a quantitative error bound is still

desired and an open problem is presented here:
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Whether and how the data of the pressure Poisson equation f (uuu) and g(uuu) continuously

depends on the velocity field uuu, when equation 4.1 and 4.3 is satisfied, if L2 or L∞ norm can be

used as a measure of the variables?

I tried to solve this problem with my committee, however, the problem may relate to the

well-posedness of the Navier-Stokes equations and Euler equations, which is generally difficult

due to the nonlinearity and unbounded property of the differential operators. A full solution to this

problem is beyond my current knowledge and the scope of this research; I will give more effort to

this problem in future work.

7.2 Worst case error problem

In this dissertation, we offer a preliminary explanation of the complexity of the PIV-based

pressure calculation. The whole problem (error propagation of PIV-based pressure calculation) is

like a Tangram puzzle whose seven pieces comprise a square (figure 7.1).

Type of boundary

 conditions

Geometry

Error in 

field 
Error on 

boundary
Dimension

Error

profile

Type 

of flow 

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Figure 7.1: Overview of the whole ntire problem: solved (colored) and unsolved (gray) problems
(pieces).

The colored pieces represent the pieces of the problem that are solved in chapter 4: why and

how these factors (puzzle 1-5 : type of the boundary conditions, geometry of the domain, dimen-

sion of the domain, error level in the field and on the boundaries) dominate the error propagation

dynamics in PIV-based pressure calculation. The two gray pieces represent problems that have
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not been solved, in addition to the problem described in section 7.1 (how exactly the type of flow,

or profile of the velocity field affects the error propagation). A simpler, yet important problem is

understanding how the profile of the error in the velocity field affects the error level in the pressure

field. A more specific statement of this problem is:

What type of error (or profile of error field) that has finite constant error level leads to the

largest error in the pressure field? This type of error is called the “worst case error”.

The opposite side of this problem is to figure out the “best case error”, which consists of

high error level in the velocity field but leads to relatively low error level in the pressure field after

error propagation through the calculation. The solution to this problem can potentially guide ex-

perimental design: one should avoid the worst case error, and look for the best case error situations.

A more important application is to design the synthetic flow field and corresponding worst case

artificial error to test the performance of the PIV-based pressure calculation schemes.

I believe that the simplest of the two remaining problems is puzzle piece 7 (rather than 6),

because it can be translated into a more tractable optimization problem (This is why the darker

gray color is used for puzzle 6):

max
εp
.
|| εp ||2L2(Ω)

||∇2 εp ||2L2(Ω)

sub.
∫

Ω

||∇2 εp ||dΩ = 1,

(7.4)

which can be solved with optimal control or calculus of variations with some boundary conditions.
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APPENDIX A. DERIVATION OF ERROR BOUNDS

A.1 Inequalities and notation

We only require three inequalities for the results obtained here, i.e. for bounds on the L2

norm of the error. Similar calculations can be performed to obtain bounds on the L∞ norm of

the error, but the analysis is far more complicated and hence is omitted. We also point out that

these inequalities are valid only when both sides are finite, i.e. the relevant functions live in the

appropriate function spaces. For further details on such inequalities, we refer to standard textbooks

such as [58].

1. Cauchy-Schwarz: ∣∣∣∣∫
Ω

f (x)g(x)dS
∣∣∣∣≤ |Ω|‖ f‖L2(Ω)‖g‖L2(Ω). (A.1)

2. Poincare:

‖ f‖L2(Ω) ≤C‖∇ f‖L2(Ω), (A.2)

where C is the Poincare constant that depends both on the boundary conditions and the

geometry of the domain. C can also be thought of as the square of the reciprocal of the

smallest eigenvalue of the Laplace operator acting on the domain Ω with the same boundary

conditions as those prescribed to f .

3. Minkowski (triangle inequality):

‖ f +g‖L2(Ω) ≤ ‖ f‖L2(Ω)+‖g‖L2(Ω). (A.3)
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A.2 Error bounds in L2 space

A.2.1 Dirichlet case

Using the principle of superposition and the linearity of the Poisson pressure equation, we

can rewrite the solution to equation (4.7) and (4.8) as εp=εp(L ) + εp(P), where

∇
2 εp(L )= 0 in Ω

εp(L )=εh on ∂Ω,
(A.4)

and

∇
2 εp(P)=ε f in Ω

εp(P)= 0 on ∂Ω.
(A.5)

Equation (A.4), which is harmonic, satisfies the maximum principle:

|| εp(L ) ||L2(Ω) ≤

√∫
Ω
‖ εh ‖2

L∞(∂Ω)
dS

|Ω|
= || εh ||L∞(∂Ω), (A.6)

where |Ω| refers to the area or volume of the region Ω.

Now multiplying (A.5) by εp(P) and integrating over the entire domain, we have

∫
Ω

εp(P) ∇
2 εp(P) dS =

∫
Ω

εp(P)ε f dS. (A.7)

Integrating by parts equation A.7 yields

∮
∂Ω

εp(P) ∇ εp(P) ·ndL−
∫

Ω

∇ ε2
p(P) dS =

∫
Ω

εp(P)ε f dS. (A.8)

Substituting homogeneous BCs to equation (A.8), we have

∫
Ω

∇ ε2
p(P) dS =−

∫
Ω

εp(P)ε f dS. (A.9)
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This can be rewritten as

‖∇ εp(P) ‖2
L2(Ω) =−

1
|Ω|

∫
Ω

εp(P)ε f dS. (A.10)

Applying Poincare and Cauchy–Schwarz inequalities (A.10) yields

|| εp(P) ||2L2(Ω) ≤CD|| εp(P) ||L2(Ω)|| ε f ||L2(Ω), (A.11)

where, CD is the Poincare constant for the Dirichlet boundary value problem.

Combining (A.6) and (A.11), and using the Minkowski inequality we have

||εp||L2(Ω) = ||εp(P) + εp(L )||L2(Ω) ≤CD||ε f ||L2(Ω)+ ||εh||L∞(∂Ω). (A.12)

A.2.2 Neumann BCs

Similar to the Dirichlet case, the Poisson equation with nonhomogeneous Neumann BCs

4.7 and 4.9 can be solved by superimposing a Poisson equation with homogeneous BCs

∇
2 εp(P)=ε f in Ω

∇ εp(P) ·n = 0 on ∂Ω,
(A.13)

and a Laplace equation with nonhomogeneous BCs

∇
2 εp(L )= 0 in Ω

∇ εp(L )=εg on ∂Ω.
(A.14)

Solutions of (A.13) exist only when the compatibility condition

∫
Ω

ε f dS = 0 (A.15)

is satisfied, which means the mean value of the error in the data is assumed zero. With this in mind,

we multiply A.13 with εp(P) and integrate over the entire domain, integrating by parts and using
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the homogeneous boundary conditions to arrive at:

||∇ εp(P) ||2L2(Ω) = |Ω|
−1
∫

Ω

|∇ εp(P) |2dS =−|Ω|−1
∫

Ω

εp(P)ε f dS. (A.16)

Applying the Cauchy–Schwarz and Poincare inequalities, we see that

1
CN
||εp(P) −ε̄p(P)||2L2(Ω) ≤ ||∇ εp(P)||2L2(Ω) ≤ ||εp(P)||L2(Ω)||ε f ||L2(Ω), (A.17)

where CN is the Poincare constant for these boundary conditions and ε̄p(P) =
∫

Ω
εp(P) dS, the

mean of the pressure field. The compatibility condition on the boundary condition allows us to

assume that ε̄p(P) vanishes, and thus ||εp(P)||L2(Ω) can be bounded as

|| εp(P) ||L2(Ω) ≤CN ||ε f ||L2(Ω). (A.18)

A similar approach to (A.14) yields

‖∇ εp(L )‖2
L2(Ω) = |Ω|

−1
∫

Ω

|∇ εp(L ) |2dS = |Ω|−1
∮

∂Ω

εp(L )εg dL. (A.19)

Using the Poincare inequality twice on the domain and boundary, respectively,

1
CN
||εp(L ) −ε̄p(L )||2L2(Ω) ≤ ||∇ εp(L )||2L2(Ω) ≤

|∂Ω|
|Ω|
||εp(L )||L2(∂Ω)||εg||L2(∂Ω)

≤CNB
|∂Ω|
|Ω|
||∇ εp(L )||L2(∂Ω)||εg||L2(∂Ω)

=CNB
|∂Ω|
|Ω|
||εg||2L2(∂Ω).

(A.20)

Assuming ||ε̄p(L )||L2(Ω) vanishes, and combining (A.18) and (A.20) we have

||εp||L2(Ω) = || εp(P) + εp(L ) ||L2(Ω) ≤CN ||ε f ||L2(Ω)+
√

CNCNB||εg||L2(∂Ω)

√
|∂Ω|
|Ω|

, (A.21)

where, CNB is the Poincare constant for the specified boundary conditions. We note that the con-

stant on the boundary is due to the compatibility condition, i.e. the error on the boundary is mean

zero.
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A.3 Calculation of the Poincare constants

For a smooth and bounded domain, the optimal (minimum) Poincare constant for the

Laplace operators is the reciprocal of the first eigenvalue of the BVP problem. As examples, we list

the exact Poincare constant for the simple cases illustrated in the paper. For the pure Dirichlet BC

case in M×N domain, the first eigenvalue is λ1 = π2/M2+π2/N2, and thus the Poincare constant

is CD = λ
−1
1 = π2(MN)2/(M2+N2). Similarly, for the pure Neumann boundary case, the optimal

Poincare constant is CN = max
(
M2/π2,N2/π2), and for the boundary, CNB = 2(M+N)/π . The

exact optimal Poincare constant calculation is generally difficult for an arbitrary domain, how-

ever, Rayleigh quotient and Rayleigh quotient iteration can be employed to numerically estimate

the optimal Poincare constant. See [59] for one approach to estimating the eigenvalues of such

operators.
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