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ABSTRACT

Automatic Dependent Surveillance-Broadcast
for Detect and Avoid on Small

Unmanned Aircraft

Matthew Owen Duffield
Department of Mechanical Engineering, BYU

Master of Science

Small unmanned aircraft systems (UAS) are rapidly gaining popularity. As the excitement
surrounding small UAS has grown, the Federal Aviation Administration (FAA) has repeatedly
stated that UAS must be capable of detecting and avoiding manned and unmanned aircraft. In
developing detect-and-avoid (DAA) technology, one of the key challenges is identifying a suit-
able sensor. Automatic Dependent Surveillance-Broadcast (ADS-B) has gained much attention in
both the research and consumer sectors as a promising solution. While ADS-B has many posi-
tive characteristics, further analysis is necessary to determine if it is suitable as a DAA sensor in
environments with high-density small UAS operations.

To further the understanding of ADS-B, we present a characterization of ADS-B measure-
ment error that is derived from FAA regulations. Additionally, we analyze ADS-B by examining
its strengths and weaknesses from the perspective of DAA on small UAS. To demonstrate the need
and method for estimation of ADS-B measurements, we compare four dynamic filters for accuracy
and computational speed. The result of the comparison is a recommendation for the best filter for
ADS-B estimation. We then demonstrate this filter by estimating ADS-B measurements that have
been recorded from the National Airspace System (NAS). We also present a novel long-range, con-
vex optimization-based path planner for ADS-B-equipped small UAS in the presence of intruder
aircraft. This optimizer is tested using a twelve-state simulation of the ownship and intruders.

We also consider the effectiveness of ADS-B in high-density airspace. To do this we present
a novel derivation of the probability of interference for ADS-B based on the number of transmitting
aircraft. We then use this probability to document the need for limited transmit range for ADS-B
on small UAS. We further leverage the probability of interference for ADS-B, by creating a tool
that can be used to analyze self-separation threshold (SST) and well clear (WC) definitions based
on ADS-B bandwidth limitations. This tool is then demonstrated by evaluating current SST and
WC definitions and making regulations recommendations based on the analysis. Coupling this tool
with minimum detection range equations, we make a recommendation for well clear for small UAS
in ADS-B congested airspace. Overall these contributions expand the understanding of ADS-B as
a DAA sensor, provide viable solutions for known and previously unknown ADS-B challenges,
and advance the state of the art for small UAS.

Keywords: ADS-B, Automatic Dependent Surveillance-Broadcast, unmanned aircraft systems,
UAS, UAV, detect and avoid, sense and avoid
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The number of applications of unmanned aircraft systems (UAS) is growing at a significant

pace. Consequently the need for UAS in the National Airspace System is compounding at a similar

rate. Governmental institutions are increasingly adopting UAS to perform tasks such as weather

research, search and rescue, wildlife surveillance, law enforcement, wildfire monitoring, and mili-

tary training. A report compiled by the US Department of Transportation on UAS service demands

estimates that by the year 2035 there will be approximately 70,000 UAS operated by federal, state,

and local departments and agencies [2]. This number excludes commercial and hobbyist opera-

tions. In the private sector, the ever growing number of UAS applications includes a wide variety

of industries and tasks ranging from smoke stack inspection to cinematography to crop dusting to

oil exploration to news and traffic reporting. To fill this public and private demand for UAS oper-

ation, a vast number of companies continue to invest in, and build around, UAS technology. The

demand for UAS operations is manifest by the hundreds petitions to allow UAS operations under

Section 333 of the FAA Modernization and Reform Act of 2012 [3].

While UAS operations have increased as a result of the Section 333 exemptions approved

since September of 2014, the overall realized benefit of UAS operations is still a small fraction

of the demand. Additionally Section 333 exemptions are not a long-term solution to supporting

UAS in the National Airspace System. In laying the foundation for a long-term solution for UAS

in the NAS, the Federal Aviation Administration (FAA) has mandated that UAS be capable of an

equivalent level of safety (ELOS) to the see-and-avoid mandate for manned aircraft [4, 5]. As a

result, similar to a pilot’s ability to visually scan the surrounding airspace for possible intruding

aircraft and take action to avoid a collision, a UAS must be capable of monitoring and avoiding

other manned or unmanned aircraft with which it may collide. This mandate has come to be known

as detect and avoid (DAA).
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As a result of the large number of potential UAS applications, the rapidly developing DAA

capability on UAS, and the expected integration of UAS into the NAS, future NAS conditions

will include high-volume UAS operations. Numerous logistics companies such as Amazon, UPS,

and DHL have announced plans to use UAS to deliver packages. Several restaurants and bakeries

have indicated that they plan to use UAS to provide rapid delivery to their customers. Considering

the wide array of other potential UAS applications, it is likely that there may be hundreds, or

even thousands, of small UAS operating over highly populated areas. Such a high volume of

UAS presents a new and unique air traffic control (ATC) challenge. Current ATC definitions of

safe speeds and separation distances between aircraft are based on manned aircraft characteristics,

which are much larger, fly much faster, and operate at higher altitudes than small UAS. To ensure

safe and efficient UAS operation, DAA capability must be capable of handling high-density UAS

operations. Ultimately integrating the anticipated high volume of small UAS into the NAS is a

challenging aspect of both DAA and ATC development.

1.2 Background

The goal of DAA is to ensure that UAS are able to avoid other manned and unmanned

aircraft. This very broad definition can be broken down into two different levels: self-separation

assurance and collision avoidance. In self-separation assurance the objective is to remain well clear

of other aircraft. Well clear is a term used in FAA-defined visual flight rules (VFR) regulations,

and it is a qualitatively-defined safe, comfortable distance from other aircraft [5]. Pilots flying

under VFR regulations determine their own well clear distance for each encounter with another

aircraft. To maintain self-separation, aircraft make small, gradual path adjustments well in advance

of a collision. In the event that an intruder penetrates the well clear volume of an ownship, it is

referred to as a conflict, or in other words an unsafe, but non-catastrophic encounter. In a collision

avoidance scenario, on the other hand, a near-mid-air collision (NMAC) is imminent, and the goal

is to rapidly and aggressively avoid the collision. A collision is typically, although not officially,

defined as two aircraft being within 200 ft in altitude and 500 ft horizontally [6]. Should two

aircraft fail to maintain at least this much distance between them it is referred to as a collision and

is a serious event.

2
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Figure 1.1: DAA volumes that indicate DAA levels.

Figure 1.1 shows the DAA volumes graphically. The figure is not drawn to scale, but it

does show the relationship between the self-separation, or well clear, volume and the collision

volume. Also Figure 1.1 shows the self-separation threshold and collision avoidance threshold.

These thresholds are the point at which the ownship begins to maneuver to maintain the well clear

or collision volume respectively. In other words, an aircraft is not considered to be an intruder

until it crosses the self-separation threshold (SST). When the aircraft does cross the SST, then the

ownship begins to maneuver to maintain well clear (WC). Similarly, an intruder is not considered

to be a threat until it crosses the collision avoidance threshold (CAT). Once it crosses the CAT,

the ownship begins to maneuver to prevent the intruder from entering the collision volume of the

ownship. This set of volumes and thresholds creates an important framework for determining

sensor requirements, collision prediction methods, and collision avoidance ability.

To allow UAS to successfully achieve an ELOS to manned aircraft operations, UAS must

be capable of maintaining well clear from all other aircraft in a similar way to that of manned air-

craft. By emphasizing self-separation and constantly maintaining well clear from other aircraft, the

ability and probability of a UAS preventing collisions increases dramatically. Focusing exclusively

on collision avoidance, results in the UAS having to make aggressive, reactive, and last-minute ma-

neuvers. In many cases these types of maneuvers push the computational, and physical limits of
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the UAS. By focusing on self-separation, there is a much longer reaction time available for a UAS

to identify an intruder, predict its path, and execute an avoidance maneuver. This results in a much

higher level of safety.

Focusing on self-separation highlights several challenges associated with maintaining well

clear. The sensor capabilities necessary to detect intruders at long ranges can be difficult to achieve

on board a small UAS. Long-range path planning can pose a significant computational challenge,

especially for a power and space-limited small UAS. Finally autonomous self-separation capability

requires that there be a quantitative definition of well clear, which does not currently exist. Each

of these challenges poses an exciting opportunity in the development of small UAS.

1.2.1 Current Sensor Technologies

For small UAS, those weighing less than fifty-five pounds, the algorithms and hardware

necessary for DAA make up a notable portion of the size, weight, and power (SWaP) resources

available. Traditional aircraft-detecting sensors are designed for manned aircraft that offer a sig-

nificantly larger payload and much more powerful electrical system than those available on small

UAS. Scaling traditional sensors down to small UAS sizes often requires compromises in range,

accuracy, field of view, or processing speed. Such compromises can reduce the overall capability

of the DAA system and consequently decrease the assurance of collision prevention. Significant

efforts have gone into overcoming these challenges and identifying sensors suitable for DAA on

small UAS.

Radar

Radar is one sensor that is widely used for air-to-air detection in manned aircraft. One of

the primary strengths of radar is the ability to detect all objects regardless of cooperative sensor

equipage or functionality. Recent radar developments have resulted systems suitable for large

UAS [7]. This is evidenced by recent testing of radar-based DAA systems on the General Atomics

MQ-9 Predator B. In applying radar to small UAS, SWaP constraints impose restrictions on the

hardware that result in significant trade offs between radar range, bearing accuracy, and field of

view. At a set transmit power, improving the range requires a narrower beam, which also improves
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the bearing accuracy. Narrowing the beam, however, reduces the field of view and consequently

requires additional antennas or a method to steer the beam. Demonstrated hardware that falls

within the SWaP limitations of small UAS is not currently suited to support a feasible set of range,

bearing accuracy, and field of view requirements [8–10].

Cameras

Cameras are another set of candidate sensors for DAA on small UAS. A significant amount

of development has gone into image processing methods and overall systems to make them suit-

able for small UAS. Similar to radar, vision-based intruder detection methods do not require co-

operative communication from intruders. Flight testing of visual methods has achieved intruder

detection at 0.54 nmi from a small UAS [11], and ground-based testing has resulted in detection

up 4.3 nmi [12]. Several challenges still face visual methods in relation to DAA including range,

range accuracy, and weather conditions. The flight tested range of 0.54 nmi is promising, but

not sufficient to provide enough avoidance time for high-speed intruders. Even with sufficient

range, visual methods inherently have low range accuracy. Adverse weather conditions such as

fog, clouds, precipitation, and sun glare can reduce overall visibility and significantly limit visual

intruder detection. Overall recent developments have improved visual intruder detection, but such

methods are not yet suitable for DAA implementation on small UAS.

ADS-B

Automatic Dependent Surveillance-Broadcast (ADS-B) is a cooperative sensor that is a

promising option for DAA on small UAS. It has been demonstrated in small UAS flight testing

to have an omni-directional range of 20 nmi [13], and due to the fact that the cooperative infor-

mation is shared over radio waves it is relatively unaffected by adverse weather conditions. An

omni-directional antenna and low power requirements for both transponder and receiver hardware

contribute to the promising characteristics of ADS-B. Two major drawbacks of ADS-B are its fun-

damentally cooperative nature and its bandwidth limitations. The cooperative aspect of ADS-B

requires widespread adoption of ADS-B technology to ensure detect and avoid reliability. While

the Federal Aviation Administration does not yet require all aircraft to be equipped with ADS-B
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transponders, the 2020 mandate requiring all aircraft in A, B, C, and some E class airspace to equip

with ADS-B [14] is a significant step. Due to the fact that ADS-B messages are sent using a finite-

capacity multiple access protocol, there is limited bandwidth. If too many aircraft are transmitting

on ADS-B at the same time, then the transmissions may interfere with each other and become

unusable. While this is not likely to be a concern for current NAS conditions, a future environment

with many small UAS operating in close proximity may encounter bandwidth limitations. Even

with its cooperative nature and possible bandwidth limitations, ADS-B is a promising sensor for

self-separation DAA efforts.

1.2.2 Long-Range Planning Methods

Long-range path planning is fundamental for UAS to maintain self-separation. It allows

for the long-range intruder information available through ADS-B, or another long-range sensor, to

inform the waypoint path of a UAS. This combination of intruder detection and planning essen-

tially provides the UAS with the foresight necessary to plan a conflict/collision free path rather

than reactively adjust its path to avoid encounters. UAS path planning methods such as rapidly-

exploring random trees (RRT) and tree branching algorithms have been demonstrated in relatively

short-range environments with great success [15, 16]. In long-range applications, however, the

computational resources necessary to plan a long-range path with these methods grows exponen-

tially. Jointly optimal collision avoidance (JOCA) is another proposed path planning method for

DAA on UAS [17]. While it is capable of planning a path that maintains self-separation, it only

plans 30 s into the future. In the case of a small UAS moving at approximately 20 kt, this may only

be approximately 1000 ft or less than a sixth of a mile. Thus JOCA does not take advantage of

the long-range information available through ADS-B. The method does have a way to increase the

look ahead distance, but it comes with exponentially increasing cost. Airborne Collision Avoid-

ance System X (ACAS-X) is an FAA-funded research effort to provide conflict/collision avoidance

logic for manned aircraft [18]. The research will likely result in a system that can be modified for

small UAS, but this system is not ready for implementation. Some estimates indicate that it will

be approximately ten years before the system is fully implemented and operational.

Optimization-based paths can be formulated to achieve long-range path planning with lim-

ited computational resources. Foo, Knutzon, Oliver, and Winer presented a three-dimensional path
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planning optimizer for UAS using a particle swarm algorithm [19]. This method used a hybrid

objective function that had user-defined weights for fuel minimization and threat avoidance. While

the work demonstrated avoidance of ground threats, it did not address dynamic aerial threats. Addi-

tionally, it relied on an operator to select the final weighting distribution between fuel minimization

and threat avoidance.

A linear programming, three-dimensional path planning method for UAS is presented by

Chen, Han, and Zhao [20]. This research is particularly applicable to the separation assurance path

planning challenge. It presented a linear programming method to plan a path in the presence of

dynamic obstacles. The reported execution time is suitable for real-time applications. The overall

goal of the algorithm was to find the optimal path along which a UAS could pursue a moving target

and avoid obstacles. This work is relevant to separation assurance path planning, but the goal and

scenario are different. The scenarios demonstrated in the article have distances on the order of

7.5 nmi. This is significantly less than the 15-50 nmi range expected in a separation scenario.

Ultimately, it is likely that Chen, Han, and Zhao’s work could be transformed into a separation

assurance path planning method, but further work is necessary to accomplish and demonstrate

this.

Optimization-based path planning has been successfully demonstrated, but an opportunity

remains to apply it to a self-separation DAA context. An optimization-based path planner that takes

advantage of long-range ADS-B information, mitigates imperfect knowledge of intruder positions,

and accounts for the time-varying nature of intruder positions is necessary.

1.2.3 The Need To Define Well Clear

To allow UAS to autonomously maintain self-separation, a quantitative well clear definition

is necessary. In addition to a well clear definition, a quantitative self-separation threshold is also

necessary to identify the point at which the ownship should initiate a maneuver to maintain self-

separation.
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SST and WC Metrics

Typically SST and WC definitions are defined in one of three ways: the distance between

the ownship and intruder, the time to collision or closest point of approach, or a combination

of both distance and time metrics. Joint definitions are the most common. The distance-based

definitions are quite intuitive. Each aircraft is surrounded by a safety volume, typically a cylinder,

such that any intruder that penetrates that volume is said to have lost self-separation. The time-

based definitions are also intuitive, but more difficult to visualize. For each intruder, the ownship

calculates a time metric, such as the time to closest point of approach. If this time is less than a

given threshold then self-separation, or well clear, has been lost. The primary metrics that can be

used to define SST and WC are relative range r, distance to closest point of approach dCPA, time to

closest point of approach tCPA, time to collision τ , modified time to collision τDMOD, and time to

entry point tep [21]. The first three metrics, r, dCPA, and tCPA, are intuitive. They indicate the norm

of the relative position vector, the distance to the closest point of approach, and the time to the

closest point of approach respectively. τ is calculated by dividing the range by the range rate. For

aircraft that are on a collision course, this metric accurately indicates the time to collision, but for

aircraft that will only approach each other without colliding, τ can become numerically unstable

as the aircraft approach their closest point. At that instant the range rate is zero, and τ becomes

infinite. τDMOD seeks to mitigate the numerical instability in τ by introducing a distance buffer.

Essentially τDMOD serves as a numerically stable approximation of tCPA. tep is the time to entry

point. This is the time to loss of horizontal separation. All of these time metrics are similar in

that they strive to estimate when two aircraft will collide. Thus values of each of the metrics are

typically similar, especially for long-range targets. For a given self-separation assurance method,

the metrics are selected based preference and the information available from the sensors.

Proposed SST and WC Definitions

Recent literature contains several proposed self-separation threshold and well clear defini-

tions [22–26]. Many of these definitions are similar. Typically they are based on a combination

of a time and a distance metric. For the SST, if the time metric is less than approximately 90 s or

the distance metric is approximately 4000 ft and the altitude separation is less than approximately
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500 ft, the ownship begins to maneuver. For WC, if the time metric is less than approximately

35 s or the distance metric is approximately 4000 ft and the altitude separation is less than approxi-

mately 500 ft, then self-separation has been lost. Many time-based SST and WC definitions include

a horizontal miss distance (HMD) filter. This filter calculates the closest point of approach for the

intruder aircraft. If the closest point of approach is larger than some threshold, then SST/WC

are maintained even if the time-based metric drops below its threshold. Johnson, Mueller, and

Santiago detail and compare several of these different definitions [22].

Johnson, Mueller, and Santiago also provide a valuable insight into the application of SST

and WC definitions by using recorded VFR traffic and simulated UAS to map time-based well

clear definitions onto a distance-from-ownship plot [22]. Such a mapping demonstrates the range

at which the time-based SST and WC definitions are enacted. Interestingly in the majority of cases,

the time-based definition was reached long before the distance-based definition. The result of their

simulations led them to recommend that DAA sensors be capable of sensing intruders 12 nmi in

front of and 5 nmi behind an ownship to achieve the proposed SST and WC definitions. This

contribution is particularly valuable to small UAS in that the majority of their simulations were

conducted below 6000 ft.

Currently, one of the primary small-UAS-suitable sensors capable of the recommended

range is ADS-B. While ADS-B does offer a promising sensor for self-separation, it is susceptible

to frequency congestion. In environments with a large number of ADS-B-equipped aircraft it is

possible for transmitted information to interfere with other ADS-B transmissions. The develop-

ment and validation efforts used to define the currently proposed SST and WC definitions do not

take into account congestion of the ADS-B frequency. It is necessary to investigate the effects of

ADS-B congestion on the self-separation threshold and well clear definitions and propose a well

clear definition for small UAS in congested ADS-B airspace.

1.3 Contributions

Because of the many excellent characteristics of ADS-B, the approaching 2020 mandate

for ADS-B, and the opportunity to explore and vet ADS-B as a DAA sensor beyond the current

literature, this thesis will focus on challenges and opportunities associated with ADS-B-equipped

small UAS. The primary contributions of this thesis include:
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• A statistical characterization and model of ADS-B measurement error and a trade study of

the viability of ADS-B as a DAA sensor.

• A comparison of three estimators to estimate both simulated and recorded ADS-B measure-

ments and a recommendation for the most suitable one.

• An optimization-based path planner for self-separation assurance in the presences of dy-

namic obstacles given ADS-B as a sensor.

• An analysis of the bandwidth limitations of ADS-B.

• An analysis of current proposed SST and WC definitions based on ADS-B bandwidth limi-

tations and the associated maximum achievable SST and WC thresholds.

• A recommendation for well clear for small UAS in congested ADS-B airspace with slow-

moving manned aircraft.

1.4 Document Outline

The research presented in this thesis is organized into five major chapters beyond the in-

troduction. Chapter 2 provides an explanation of the characteristics of ADS-B, a derivation of

an ADS-B error characterization, and a discussion of the strengths and limitations of ADS-B as

a DAA sensor. Next, Chapter 3 contains a comparison of a Kalman filter, particle filter, and

interacting multiple models filter for estimating ADS-B measurements. Chapter 4 presents the

formulation, implementation, and results of an optimization-based path planner for self-separation

assurance. Chapter 5 provides an analysis of the bandwidth limitations of ADS-B and their impact

on the visibility of intruders via ADS-B. Chapter 6 explores the viability of proposed SST and WC

definitions for high-density, ADS-B-equipped small UAS operations. It also makes a well clear

recommendation for small UAS. Finally Chapter 7 summarizes the presented work, details policy

recommendations based on the presented work, and identifies opportunities to extend the research.
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CHAPTER 2. ADS-B CHARACTERISTICS AND ERROR

ADS-B is rapidly becoming a major tool in the air traffic management system. In 2010

the FAA issued a final rule for the implementation of ADS-B on manned aircraft [14]. This ruling

mandated ADS-B Out in key parts of the NAS. The FAA Modernization and Reform Act of 2012

further directed the FAA to make plans for the adoption of ADS-B In technology [3]. As a result

of the level of adoption and capability of ADS-B technology, ADS-B is an attractive sensor for

detect and avoid efforts on UAS.

This chapter provides a description of ADS-B and the associated regulations as they relate

to detect and avoid on small UAS. A statistical characterization of ADS-B error and drop out is

derived from the current FAA regulations. Further, we explore the capability of ADS-B as a DAA

sensor by examining key characteristics and limitations of ADS-B.

2.1 Characteristics and Regulations of ADS-B

ADS-B is a cooperative sensor that supports the exchange of a wide variety of informa-

tion over long ranges. Information that is typically exchanged includes aircraft state information,

state error estimates, aircraft identifiers, and aircraft operating indicators. This exchange occurs

approximately once per second [27]. To exchange this information, two sets of hardware are nec-

essary, ADS-B In and ADS-B Out. As the names suggest, ADS-B In allows for information to

be received, and ADS-B Out supports the broadcasting of information. The hardware performing

these two functions can be sold separately or as a single unit. In addition to the In or Out capa-

bility of ADS-B hardware, ADS-B transmissions can occur over one of two different frequencies,

1090 MHz or 978 MHz [14]. The 1090 MHz Extended Squitter (ES) frequency is an internation-

ally recognized ADS-B frequency. It is intended that this frequency be used for most commercial

and high-performance aircraft. The 1090 MHz frequency is the same frequency used for current

Mode S transmissions. The Extended Squitter designation indicates a message packet that is much
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longer than the standard Mode S packet. This allows for the transmission of much more infor-

mation than what is exchanged via secondary surveillance radar (SSR). The 978 MHz Universal

Access Transceiver (UAT) frequency is unique to United States airspace. It is primarily intended

for private and low-altitude aircraft. ADS-B Out hardware is specific to one of these two frequen-

cies. The airspace class in which an aircraft will operate dictates the required frequency. ADS-B

In hardware also is specific to a particular frequency, but dual-link hardware that is capable of

receiving transmissions on both frequencies is becoming increasingly available.

FAA regulations set forth in the 2010 Final Rule dictate most aspects of ADS-B operation.

The message elements, airspace class, transmit power, latency, and error characteristics are all

among the aspects of ADS-B that are regulated by the FAA. While these regulations do add com-

plexity to the implementation and operation of an ADS-B system, they also provide a consistent

basis upon which ADS-B can be evaluated for DAA on small UAS.

Table 2.1: Required set of message elements for ADS-B Out.

State Elements Identification Elements Error Elements Other Elements

Latitude Mode 3/A Transponder Code NACp Emitter Category
Longitude Call Sign NACv Emergency Code
Barometric Altitude IDENT NIC TCAS II Equipped
Geometric Altitude ICAO 24-bit address SDA TCAS II Advisory
Velocity Length and Width SIL ADS-B In Equipped

2.1.1 Message Element Requirements

The message elements exchanged by ADS-B transmissions provide a view of the trans-

mitting aircraft’s status. Table 2.1 shows a list of these elements that is arranged by functional

category. The state elements transmitted are the latitude and longitude, barometric altitude, geo-

metric altitude, and velocity. A certified position source must be used for latitude and longitude

information. Typically a Satellite Based Augmentation System (SBAS), otherwise known as a

Wide Area Augmentation System (WAAS) in the US, source is used. The barometric altitude is

provided as the primary altitude as it is typically more accurate than the GPS-derived geometric
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altitude. The velocity transmitted is a ground reference velocity in knots and can be given as a

combination of north and east velocity or speed and heading depending on whether the aircraft is

on the ground or airborne [5] [28]. If the aircraft is airborne, then the vertical velocity is given in

feet per minute. On the other hand if the aircraft is on the ground, then the length and width of the

aircraft is given instead of the vertical velocity.

The identification information provided by ADS-B permits simple identification of the

transmitting aircraft. While a detailed explanation of each of the identification elements listed

in Table 2.1 is beyond the scope of this thesis, it is useful to note that each of these elements

provides a unique identifier for the aircraft.

The message elements detailing the error in the state information are also shown in Ta-

ble 2.1. Navigation Accuracy Category for Position (NACp) is a value that correlates to an Esti-

mated Position Uncertainty (EPU) bound. The EPU bound used is defined as the “radius of a circle,

centered on the reported position, such that the probability of the actual position being outside the

circle is 0.05.” [28] The FAA requires that the NACp must be greater than 8 which corresponds

to an EPU < 303.8 ft [28] [5]. The Navigation Accuracy Category for Velocity (NACv) is similar

in that it is a value that corresponds to a error bound on the transmitted velocity. This bound is a

95% bound in that there is less than 0.05 probability that the error between the true velocity and

the transmitted velocity exceeds the NACv bound. The FAA requires the NACv value to be greater

than or equal to 1 which corresponds to the transmitted velocity error being less than 19.4 kt. Nav-

igation Integrity Category (NIC) is a value that corresponds to an integrity containment radius, Rc.

It signifies the maximum position error such that the probability that no integrity alert is indicated

is less than the Source Integrity Level (SIL). In other words this radius is the value where there is

an SIL probability that the measurement has been identified as a low integrity (possibly erroneous)

measurement. This value must be greater than 7 which corresponds to Rc < 1215.2 ft. The SIL

probability assumes no avionics faults, and the FAA mandates that SIL=3 which corresponds to

probability ≤ 1×10−7 per sample or per hour. The distinction between a per sample or per hour

probability is made in an ADS-B message field known as SILsupp. To account for errors due to

avionics faults, the System Design Assurance (SDA) is a value that corresponds to the “...probabil-

ity of an ADS-B system fault causing false or misleading information to be transmitted.” [28] “The

ADS-B system includes the ADS-B transmission equipment, ADS-B processing equipment, posi-
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tion source, and any other equipment that processes the position data transmitted by the ADS-B

system.” [28] This information includes latitude, longitude, velocity, accuracy metrics, or integrity

metrics. The FAA mandates that the SDA value be 2 which corresponds to a probability≤ 1×10−5

per flight hour [28] [5]. While both the SDA and the SIL report a probability of exceeding the NIC,

it is important to note that the SIL assumes no avionics fault, but the SDA is the probability that an

avionics fault is the cause of the reported error.

Elements in the fourth column, labeled as Other Elements, provide information concerning

the operational status of the aircraft. The first field specifies the emitter category of the transmitting

aircraft. The emitter category indicates the type of aircraft and gives some indication of aircraft

weight, size, and maneuverability. The emergency code is the second item in the fourth column.

This code indicates if there is an emergency on-board the transmitting aircraft such as a medical

emergency, minimum fuel, unlawful interference, or a downed aircraft. Such information is useful

both to identify aircraft that need special attention from air traffic control services and for search

and rescue efforts in a downed aircraft situation. The last three fields listed in column four of Ta-

ble 2.1 indicate the equipage and activity of cooperative sensors. The third field indicates whether

Traffic Collision Avoidance System (TCAS) is operable on the transmitting aircraft. Field four

extends this and reports whether a traffic advisory or resolution advisory is in effect. The fifth field

indicates whether the transmitting aircraft has ADS-B In capability.

2.1.2 Airspace and Power Requirements

The 2010 Final Rule on ADS-B mandated that by the year 2020 all aircraft in A, B, C, and

some E class airspace be equipped with ADS-B Out. There is no mandate for ADS-B In. The

FAA further mandated airspace where each of the two frequencies of ADS-B Out, 1090 MHz and

978 MHz, can be used. Class A airspace requires 1090 MHz. Where ADS-B is required below

18,000 ft, either 1090 MHz or 978 MHz is acceptable. Both B and C class airspace require ADS-B.

ADS-B is also required within 30 nmi of a Class B airport reaching from the surface up to 10,000 ft

mean sea level (MSL). Above B and C class airspace extending up to 10,000 ft MSL, ADS-B is

required. E class airspace requires ADS-B from 10,000 ft MSL and above with the exception of the

surface to 2,500 ft above ground level (AGL). In other words, if 0 ft AGL is above 10,000 ft MSL

then there is a 2,500 ft region above ground level where ADS-B is not required. Finally ADS-B
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Figure 2.1: Airspace where ADS-B Out is required [1].

is required above 3,000 ft MSL over the Gulf of Mexico within 12 nmi of the coast of the United

States [5]. Figure 2.1 summarizes the airspace requirements for ADS-B Out [1].

The range of ADS-B transmissions is largely dependent on the transmit power of the ADS-

B transponder. FAA regulations mandate different levels of transmit power for 1090 MHz and

978 MHz. For the 978 MHz frequency, there are three transmit power levels. Each level cor-

responds to a minimum transmit power and consequently a transmission range. The 1090 MHz

frequency also has three levels which correspond to a minimum transmit power and range. While

transmit ranges vary as a result of frequency congestion, antenna differences, and other external

factors, estimated, air-to-air ranges for the 978 MHz frequency extend from 10 nmi to 90 nmi and

for the 1090 MHz frequency estimated ranges extend from 10 nmi to 140 nmi [28] [29]. Air-to-

ground or ground-to-air transmissions have a much longer anticipated range as a result of more

sensitive receivers and more powerful transponders that are available for ground-based equipment.

2.1.3 Supplementary ADS-B Transmissions

Due to the fact that ADS-B exchanges cooperative information over one of two possible fre-

quencies, air-to-air ADS-B transmissions are supplemented by three additional transmissions from

Ground Based Transceivers (GBT). The first, Automatic Dependent Surveillance-Rebroadcast

(ADS-R), is a cross link between the 1090 MHz and 978 MHz frequency. Essentially the GBT re-

ceives ADS-B signals on one frequency and rebroadcasts that same signal on the other frequency.
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This provides ADS-B In-equipped aircraft with visibility to all ADS-B Out-compliant aircraft

regardless of transmission frequency. Second, Traffic Information Service-Broadcast (TIS-B) pro-

vides a more complete traffic picture by rebroadcasting radar-derived traffic over both ADS-B data

links [30]. Current TIS-B relies on secondary surveillance radar to create a traffic picture. This

means that only transponder equipped aircraft will be visible on TIS-B [27]. Also of note is that

TIS-B and ADS-R are enabled by compliant ADS-B Out and are received by ADS-B In. Thus to

receive TIS-B and ADS-R aircraft must be both ADS-B Out and In equipped [31]. Third, Flight

Information Service-Broadcast (FIS-B) provides weather and flight information (i.e., NOTAMs)

to 978 MHz UAT equipped aircraft. This broadcast is available to all ADS-B In 978 MHz UAT

aircraft. There is no requirement for ADS-B Out [31]. These transmissions will help to create a

more complete traffic picture for small UAS and manned aircraft that may be ADS-B-equipped on

only one frequency.

2.2 Error Characterization

In addition to the error metrics outlined in Table 2.1, ADS-B is subject to several additional

sources of error namely latency error, resolution error, and message success rate (MSR) error.

These additional sources of error, along with those previously defined in Table 2.1, play a role in

defining an error characterization of ADS-B.

Due to processing needs, data latency is inherent in the ADS-B system. This latency falls

into two categories. Total latency is the time from measurement to transmission and must be less

than 2.0 s. Of those 2.0 s, all but 0.6 s must be compensated for by the ownship. In compensat-

ing for latency the transmitting aircraft must “[extrapolate] the geometric position to the time of

message transmission.” [5] The uncompensated 0.6 s of the total latency is referred to as uncom-

pensated latency (UL) [5]. It is the uncompensated latency that is the primary source of latency

error.

Resolution error results from encoding state information into an ADS-B message where

the information is represented by discrete bits. Table 2.2 shows the resolution limits for an ADS-B

message [28].

ADS-B regulations require that receivers are capable of supporting a given message success

rate. For messages on the 978 MHz frequency this is 10%, and for messages on 1090 MHz, this
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Table 2.2: Resolution limits for ADS-B message information.

Message Element Resolution

Latitude 0.5 deg
Longitude 0.5 deg
Barometric Altitude 25 ft
Geometric Altitude 45 ft
Horizontal Velocity 1 knot
Vertical Velocity 64 feet/min

is approximately 15%. These success rates imply that one out of every 10 or 3 out of every 20

messages is not received, thus resulting in message success rate error.

The NACp, NACv, NIC, SIL, SDA, latency error, resolution error, and MSR error provide

a basis from which to derive an error characterization to model ADS-B. The error characterization

presented here will focus on state information and will use statistical methods to model the error of

the actual measurements rather than the accuracy of individual bits. Given the NACp and NACv,

the horizontal position and velocity can be modeled as a Rayleigh random process. From the

Rayleigh process, the 95% bound on both the position and velocity error can be used to derive

the variance for a Gauss-Markov process with zero-mean Gaussian noise for the north and east

position and velocity [32] [33]. For the derivation of the variation of a Gauss-Markov process in

accordance with FAA requirements we use, NACp=303.8 ft and NACv=19.4 kt. Let X and Y

each represent a Gauss-Markov process with zero-mean Gaussian noise such that X ∼ N(0,σ2)

and Y ∼ N(0,σ2). R is a Rayleigh distributed variable such that R ∼ Rayleigh(σ) where σ is

derived from the 95% NAC bound. The NAC variance is considered generally for both NACp and

NACv. Thus it can be shown that the variance is given by

σ
2 =
−NAC2

2ln(0.05)
. (2.1)

Substituting values for NACp and NACv respectively results in σx = σy = 124 ft and σvx = σvy =

8 kt. From this analysis, it is determined that the horizontal north and east position error can be

modeled as a zero-mean Gaussian distribution with a standard deviation of 124 ft and the north
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and east velocity can be modeled as a zero-mean Gaussian distribution with a standard deviation

of 8 kt.

Correlation of errors in the position are accounted for by the Gauss-Markov model. Since

the error correlation is a result of the correlation of GPS errors, the time constant used to simulate

GPS errors is used to simulate ADS-B error correlation also. In the following equation, Ts =1 s

and kGPS =1/1100 s [16]. Using position north, X , as an example

X [n+1] =e−kGPSTsX [n]+N(0,σ2
u ).

It is necessary to calculate σ2
u from the variance of X . Mohleji and Wang put forth a method to do

this [32]. Given that Tc is the time of correlation,

σ
2
u =(1− e−2/Tc)σ2

x .

In the particular case of ADS-B where σx =σy = 124 ft and Tc = 1100 s, σu =
√
(1− e−2/1100)σ2

x =

5.28 ft. This is the variance of the Gaussian noise necessary for the zero-mean Gaussian random

variable in the Gauss-Markov process with standard deviation σ = 124 ft.

FAA regulations require that ADS-B pressure altitude reporting equipment must report

an altitude that is within 125 ft of the true altitude with 95% confidence [5] [34]. Let the pressure

altitude error, Apres, be a zero-mean Gaussian random variable such that Apres∼N(0,σ2
Apres). It can

then be shown that σApres = 75.9 ft. For geometric altitude reports the error is typically less than

147.6 ft with 95% certainty [28] [29]. Assuming that the geometric altitude error, Ageo, is a zero-

mean Gaussian random variable such that Ageo ∼ N(0,σ2
Ageo), it can be shown that σAgeo = 89.8 ft.

In addition to the noise of the pressure reporting sensors, the encoding of barometric altitude

information has a resolution of 25 ft and geometric altitude information has a resolution of 45 ft.

This resolution introduces some additional error.

The error in the ADS-B reported vertical velocity varies with increasing vertical rate. For

vertical rates between ±500 ft/min the vertical rate tolerance is ±46 ft/min. For rates outside that

range, the tolerance is 5% of the vertical rate [35] [36]. Given the assumption that these tolerances

are 95% bounds, it can be shown that the standard deviation of the climb rate is 27.96 ft/min for
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vertical rates of ±500 ft/min. Additionally the vertical rate error is effected by the resolution of

the ADS-B message encoding which is 64 ft/min.

The loss of valid ADS-B signal can be modeled using SIL, SDA, and MSR error. FAA

regulations stipulate that position measurements outside the reported NIC can only be transmitted

once per 107 transmissions. The SDA requirements permit values outside the NIC with a probabil-

ity of 10−5. MSR error requirements allow for a 10% or 15% message loss rate. These probabilities

of erroneous or lost messages provide a method with which to model ADS-B signal dropout.

The error characteristics detailed above make it possible to model the error in ADS-B

reported horizontal position, altitude, horizontal velocity, and vertical velocity. This results in a

method capable of simulating ADS-B messages. It also provides a basis for estimating ADS-B

messages and developing conflict detection, collision detection, separation assurance and collision

avoidance methods.

2.3 ADS-B as a DAA Sensor

The characteristics and requirements of ADS-B make it a capable sensor for DAA on small

UAS in the National Airspace System. One key aspect of ADS-B that makes it feasible for use

on small UAS is the availability of ADS-B receivers that meet the (SWaP) constraints of a small

UAS. The Clarity ADS-B receiver provides a dual-link ADS-B receiver that is 2.5 in by 2.5 in by

1.5 in, weighs 0.344 lbs, and consumes 2.4 Watts of power. Freeflight Systems has also recently

introduced the RANGR RXD which is a dual-link ADS-B receiver. While slightly larger at 5 in

by 5.75 in by 1.7 in, it still weighs less than one pound and consumes approximately 2.4 Watts of

power. These hardware options both provide a suitable ADS-B In solution for small UAS.

Another key advantage of ADS-B is the long range at which information is available. While

there is a significant amount of variation in the range of ADS-B signals, the shortest expected range

is 10 nmi. Flight tests of ADS-B units suitable for small UAS have demonstrated reliable ranges

of up to 80 nmi [13]. Additionally the long range of ADS-B is advantageous in that the quality of

information transmitted over ADS-B does not degrade with range. Thus the accuracy of ADS-B is

not dependent on the size, power, or range of the transmitter and receiver units. This is a significant

advantage over radar and optical sensors, and makes conflict detection and separation assurance

path planning possible at long ranges.
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Table 2.3: Time to loss of separation and time to collision for ADS-B given 10 nmi detection
range.

Ownship
RQ-11B Raven

(43 kn)
ScanEagle

(80 kn)
DJI Phantom 1

(19 kn)

In
tru

de
rs

Model
Max. 
Speed

(kn) Head-on
Scenario 

Over-Taking
Scenario

Head-on
Scenario 

Over-Taking
Scenario

Head-on
Scenario 

Over-Taking
Scenario

F-35 1042 31.0/32.3 33.2/34.6 30.0/32.2 34.3/35.7 31.7/33.0 32.8/34.2

Boeing 747 533 58.4/60.9 66.8/69.6 54.9/57.2 71.2/74.2 60.9/63.5 65.3/68.0

Cessna 
TTX 240 119.3/124.3 160.2/166.9 105.5/109.9 188.0/195.9 130.1/135.5 151.8/158.1

Cessna
SkyHawk 126 198.9/207.1 346.0/360.4 163.2/170.0 508.8/530.0 230.7/240.3 308.9/321.8

Scan
-Eagle 80 274.6/286.0 665.4/693.1 211.0/219.8 1730.1/1802.0 339.2/353.3 540.7/563.1

RQ-11B
Raven 43 393.2/409.5 2471.5/2574.3 274.6/286.0 - 540.7/563.1 1330.8/1386.2

Time to Loss of Separation (s) / Time to Collision (s)

A compelling result of the long range availability of ADS-B messages is the time to loss

of separation (TLOS) and time to collision (TC). Table 2.3 shows the TLOS and TC for head-on

and over-taking scenarios given different intruder aircraft and various small UAS ownships. The

detection range is set to the FAA required minimum of 10 nmi, and the separation distance is

0.66 nmi [23]. For this table a collision is defined as a violation of a 500 ft collision radius. The

speeds listed are the maximum speeds for each aircraft. To identify a true worst-case scenario in

the over-taking intruder configuration, the speed used for the ownship is a cruising speed rather

than a maximum speed. The figure demonstrates the value of the long-range detection available

through ADS-B. Even for a worst-case scenario where an F-35 type aircraft is flying directly at a

small UAS, the minimum TLOS is 30.0 s. This provides a sufficient amount of time for the UAS

to perform an avoidance maneuver.
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ADS-B is a very capable sensor for DAA on small UAS, but it is not without limitations.

One notable limitation of ADS-B is that it is a cooperative technology. This means that to have

visibility of other aircraft they also must be equipped with ADS-B. Given the FAA mandate that

only some aircraft need to be ADS-B compliant, there certainly will be aircraft in lower altitudes

that are not ADS-B equipped. While these lower altitudes are prime locations for small UAS

operations, the capability of ADS-B presented in this paper provides motivation to implement

an ADS-B equipage requirement for all aircraft. An additional technology that could be used to

account for uncooperative aircraft, birds, and ground based obstacles is ADS-B radar. This tech-

nology is essentially a phase modulated ADS-B signal that is used as a radar and traditional ADS-B

transmission simultaneously [37]. This would allow for visibility of uncooperative intruders. The

method does require additional processing of the ADS-B signal and some additional hardware, but

it could be practical for UAS. While an in-depth discussion of this technology is outside the scope

of this thesis, it is promising.

It is interesting to note that the current air traffic control (ATC) system is built on coopera-

tive secondary surveillance radar (SSR) technology. Unlike conventional radar, SSR transmits an

interrogation from a ground station. Any aircraft with a transponder that hears that interrogation

replies with its call sign and altitude. Over several interrogations the position of the responding

aircraft can be determined. Thus current ATC methods are cooperative, and the cooperative aspect

of ADS-B is not a new challenge.

Another limitation of ADS-B is that it is heavily dependent on line-of-sight availability

of GPS and ADS-B transmissions. Without GPS information, ADS-B transponders are unable to

transmit usable position information. Air-to-air ADS-B transmissions also require line-of-sight

visibility for reliable exchange of information. One demonstrated solution to the line-of-sight

limitation is the use of satellite-based ADS-B repeaters. This system uses ADS-B transceivers

on satellites to gather and re-transmit ADS-B signals. This system allows for over-the-horizon

visibility of other aircraft and could be particularly valuable in mountainous or heavily contoured

terrain.

Bandwidth constraints of ADS-B may also be a limitation. Due to the fact that all ADS-B

Out-capable aircraft must transmit a message at least once per second on the same nominal fre-

quency, the ADS-B protocol specifies a multiple access scheme. While the scheme is different for
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the 978 MHz frequency and 1090 MHz frequency, all multiple access schemes have a finite number

of transmitters that they can support. Particularly applicable to small UAS are the limitations of the

time-division multiple access (TDMA) scheme used for the 978 MHz frequency. A more in-depth

analysis of this TDMA scheme is included in Chapter 5, but bandwidth congestion is a potential

limitation of ADS-B. Recommendations presented in Chapters 5 and 6 suggest modifications to

current NAS regulations that can largely mitigate the effects of ADS-B frequency congestion for

small UAS on the 978 MHz frequency.

The cost of ADS-B equipage may pose a limitation. Certified ADS-B Out hardware costs

typically range from $1,500 to $25,000 USD. ADS-B In hardware costs range from $400 to $3,000

USD. While these costs are not necessarily prohibitive, they are significant especially for many of

the small-to-medium-sized companies that plan to use UAS for commercial purposes. For ADS-B

to be a fully viable, accessible technology, hardware costs need to decrease. As the FAA 2020

mandate approaches an increasing number of companies are producing ADS-B hardware, and the

cost of hardware is trending downward.

Ultimately the message elements, airspace and range requirements, hardware availability,

and error characteristics of ADS-B make it a viable sensor for detect and avoid on small UAS

in the NAS. While there are limitations to ADS-B sensors, development of promising solutions

is reducing the impact of those limitations. As a DAA sensor, ADS-B offers all the information

necessary to detect conflicts, maintain self-separation, and detect and prevent collisions.
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CHAPTER 3. ADS-B ESTIMATION

Estimation of ADS-B messages is capable of mitigating much of the error in the transmit-

ted measurements. This chapter details the estimation and processing of ADS-B measurements.

Included in the chapter is a comparison of a two Kalman filters, an interacting multiple models

filter, and a particle filter to identify the most suitable filter to estimate ADS-B messages on-board

a small UAS. The chapter also includes a discussion of the methods and challenges associated with

estimating real ADS-B measurements recorded from air traffic in the NAS.

3.1 The Need for ADS-B Estimation

The primary goal of ADS-B estimation is to account for missed measurements that result

from signal dropout or frequency congestion. Additionally, by filtering and estimating ADS-B

measurements, it is possible to account for grossly erroneous measurements, smooth measurement

noise that is typical of any real sensor, and estimate the transmitting aircraft state at a rate greater

than the 1 Hz measurement rate [38]. Due to the fact that ADS-B messages contain an aircraft

identifier such as the call sign or International Civil Aviation Organization (ICAO) address, there

is no need for data association methods. This greatly simplifies the tracking task.

3.2 An ADS-B Estimator Comparison on Simulated Measurements

To identify the most suitable estimator for ADS-B measurements, this section contains a

comparison of four filters: a nearly-constant-velocity Kalman filter, a constant-jerk Kalman filter,

an interacting multiple models filter, and a particle filter. One characteristic of ADS-B messages

that makes the estimation problem nontrivial is that aircraft do not necessarily follow linear dynam-

ics. Small UAS, particularly multirotors, are very maneuverable and can fly in highly nonlinear

ways. With perfect knowledge of the command inputs to the aircraft and well established mod-

els of aircraft dynamics, it would be possible to model the motion of the intruder aircraft exactly.
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ADS-B, however, does not provide such information. Thus it is necessary to use approximate mod-

els of the aircraft motion to estimate the states of the aircraft such as the four filters listed above.

Another aspect of ADS-B messages that makes estimation difficult is that the measurements are

transmitted in limited-resolution bins. Thus the measurement error is not continuously distributed

over a probability density function, but rather the measurement values are rounded into discrete

values as shown in Chapter 2. This discretization and the possibility of high maneuverability com-

plicates the estimation task. The goal of this section is to determine which estimator addresses the

needs for ADS-B estimation while providing accurate estimates.

3.2.1 Key Estimator Characteristics

Several key estimator characteristics form a basis upon which to evaluate the estimators. In

accordance with the need for ADS-B estimation, one of foremost key characteristics of an ADS-B

estimator is the ability to overcome missed measurements. Thus a suitable estimator must be able

to provided accurate estimates even when measurements are missed in one or more successive time

steps. Two other important characteristics are the ability to reject gross errors and the degree to

which the filter can smooth the measurements. Although unlikely, the SIL and SDA probabilities

allow grossly erroneous ADS-B measurements to be transmitted. If the estimator is not robust to

such gross errors the estimate will be compromised, and the filter may diverge. Due to the fact that

the estimates will be used for conflict/collision prediction, the estimates need to be as smooth as

possible. Noisy estimates will lead to false alarms and missed detections in the conflict/collision

prediction algorithm. Due to the fact that the estimator will run on a computationally-limited small

UAS, the computational run time of the estimator is significant.

To measure these key characteristics, we examine the root mean square (RMS) error in the

estimate, the 95th percentile error in the estimate, the estimate error standard deviation, and the

estimator run time. The RMS error and 95th percentile error indicate the accuracy of the estimate

and its robustness to gross errors. The standard deviation of the error is a good indicator of the

smoothness of the estimate, and the run time indicates the computational speed of the estimator.

Additionally we plot the estimate, measurements, and truth data for each estimator to examine the

estimates visually. These five metrics and the visual verification provide a basis for comparing the

filters’ ability to estimate ADS-B signals on small UAS.
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3.2.2 Filter Implementations

Each filter was implemented in MATLAB. The process covariance for each filter was hand-

tuned for the best aggregate performance over several data sets. The measurement covariance was

taken from the error derivation presented in Chapter 2.

Kalman Filter Implementation

A Kalman filter is a linear, dynamic state estimator [16]. Given a linear state-space model

of a system, knowledge of the accuracy of the model, and knowledge of the accuracy of incoming

measurements, a Kalman filter can estimate the true states of the system. Using an initial esti-

mate and estimate covariance, the Kalman filter first propagates the estimate into the future using

the linear state-space model. It also updates the estimate covariance to reflect uncertainty in the

predicted estimate. To do this it takes into account both the uncertainty of the previous estimate

and the uncertainty in the state-space model representation of the true dynamics of the system.

Once a measurement is received, the Kalman gain for that measurement is calculated taking into

account to the uncertainty of the predicted estimate and the uncertainty in the measurement. With

the Kalman gain and the measurement, the estimate and estimate covariance can be updated to

create the state estimate for that time step. If no measurement is available for a given time step, the

measurement update step can be omitted. If no measurement is available for an extended number

of time steps, however, the estimate covariance grows larger and larger, and the estimate becomes

less and less meaningful. Algorithm 1 outlines the Kalman filter equations and method for a one

second cycle [16].

In Algorithm 1, x̂k represents the state estimate at time step k, and the superscript − in-

dicates that the estimate has not been updated with a measurement at the given time step. Pk

represents the estimate covariance at time step k. Q is the uncertainty in the state-space model of

the system represented by A and C. R is the measurement covariance, and zk is the measurement at

time step k.

In our comparison we implement a Kalman filter with a nearly-constant-velocity model

and a Kalman filter with a constant-jerk model. The nearly-constant-velocity model (KF-NCV) is

a six-state model that models the dynamics of a system that has constant velocity. For aircraft the
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Algorithm 1 Kalman filter method for one second.
1: Initialize: x̂k−1 = x0
2: Initialize: Pk−1 = R
3: Select estimate rate Tout that is less than or equal to the 1 Hz measurement rate
4: for k = 1 to 1

Tout
do

5: [Predict Step]
6: x̂−k = Ax̂k−1
7: P−k = APk−1AT +Q
8: if A valid measurement has been received then
9: [Update Step]

10: Kk = P−k CT (CP−k CT +R)−1

11: x̂k = x̂−k +Kk(zk−Cx̂−k )
12: Pk = (I−KkC)P−k
13: end if
14: end for

assumption of constant velocity is not true. By adding a relatively large process covariance, the

requirement of constant-velocity dynamics is relaxed, and the result is a nearly-constant-velocity

model. The states in the KF-NCV are position north, position east, altitude, velocity north, velocity

east, and climb rate.

The constant-jerk model Kalman filter (KF-CJ) is a twelve-state filter that models the dy-

namics of a system with constant jerk. Due to the fact that only the jerk is assumed to be constant,

both the velocity and acceleration can vary. This allows the KF-CJ filter to model the dynamics of

maneuvering targets without the need for a large process covariance [39]. The states of the filter are

position north, position east, altitude, velocity north, velocity east, climb rate, acceleration north,

acceleration east, vertical acceleration, jerk north, jerk east, and vertical jerk.

Interacting Multiple Models Filter Implementation

The interacting multiple models (IMM) filter is an estimator that is capable of modeling

movement that is characterized by different dynamics at different times. It is essentially a bank

of estimators running in parallel. Each estimator creates a state estimate of the target. Using the

received measurement, the likelihood of each estimate is calculated. These likelihoods are then

normalized into a weighting factor with which the estimates and covariances from all the filters are

combined. At the next time step, each filter is initialized with the previous combined estimate and
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covariance, and the process is repeated. Throughout a maneuver or change of dynamics, different

estimates from the bank of filters can be weighted more or less heavily. In this way an IMM filter

can account for many different sets of dynamics. Algorithm 2 shows the equations for a one second

cycle of an IMM filter [40].

Algorithm 2 IMM filter method for one second.
1: Initialize: x̂k−1 = x0
2: Initialize: Pk−1 = R
3: Initialize: µk−1 = [.5, .25, .25]
4: Select estimate rate Tout that is less than or equal to the 1 Hz measurement rate
5: Let j = i = the number of models
6: [Model-Conditioned Reinitialization]
7: µ

i−
k = ∑ j π jiµ

j
k−1

8: µ
j|i

k−1 =
π jiµ

j
k−1

µ
i−
k

9: x̄i−
k−1 = ∑ j x̂ j−

k−1µ
j|i

k−1

10: P̄i−
k−1 = ∑ j[P

j−
k−1 +(x̄i−

k−1− x̂ j−
k−1)(x̄

i−
k−1− x̂ j−

k−1)
T ]µ

j|i
k−1

11: [Model-Conditioned Filtering]
12: x̂i−

k = Aix̂i−
k−1

13: Pi−
k = AiP̄i−

k−1(A
i)T +Qi

14: if A valid measurement has been received then
15: [Update Step]
16: z̃i

k = zk−Cix̂i−
k

17: Si
k =CiPi−

k (Ci)T +R
18: Ki

k = Pi−
k (Ci)T (Si

k)
−1

19: x̂i
k = x̂i−

k +Ki
kz̃i

k
20: Pi

k = Pi−
k −Ki

kSi
k(K

i
k)

T

21: [Model Probability Update]
22: Li

k = N (z̃i
k;0,Si

k)

23: µ i
k =

µ
i−
k Li

k

∑ j µ
j−

k L j
k

24: else
25: µ i

k = µ
i−
k

26: x̂i
k = x̂i−

k
27: Pi

k = Pi−
k

28: end if
29: [Estimate Fusion]
30: x̂k = ∑i x̂i

kµ i
k

31: Pk = ∑i[Pi
k +(x̂k− x̂i

k)(x̂k− x̂i
k)

T ]µ i
k
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In Algorithm 2, π ji is the Markov transition likelihood between each of the models. µ
j

k−1

is the probability of each model for the previous time step. The − superscript indicates that the

variable has not been updated with the current measurement. The A, C, Q, R matrices are state

space and error covariances, respectively, as indicated in the description of Algorithm 1.

Our implementation of an IMM filter contains a bank of three estimators. A nearly-

constant-velocity Kalman filter accounts for straight and level flight. We also use two coordinated

turn models, one with a turn rate of 45 deg
s and one with a turn rate of −45 deg

s , to account for

maneuvering targets [41]. The states in each of the filters are position north, position east, altitude,

velocity north, velocity east, and climb rate. While this set of filters does not account for all pos-

sible types of maneuvers, a relatively large process covariance allows the IMM filter to adapt to

track a wide array of intruder dynamics.

Particle Filter Implementation

A particle filter (PF) is a nonlinear filter that is capable of estimating highly nonlinear sys-

tems with nongaussian process and measurement convariances. The particle filter is fundamentally

different from the Kalman filter in that it uses a set of particles to sample the estimate space and

builds its estimate from the probability of each particle given the measurement [42]. With an ini-

tial state estimate and the probability density function of the error in the system model, the particle

filter creates a set of particles that represent the estimate space. Each particle is then predicted

into the future using state-space equations that model the system. It is important to note that this

state-space model does not need to be linear. Using the received measurement and the probabil-

ity density function of the measurements, the probability of each of the predicted particles given

the measurement is calculated. This set of probabilities is normalized into a set of weights. The

weighted particles are then resampled so as to concentrate the particles on the highest-probability

estimates. The resampled particles then are combined to form the state estimate for that time step.

These same resampled particles become the initial set of particles for the next time step. In this way

the particle filter is capable of accounting for highly nonlinear motion with nongaussian process

and measurement noise. A single iteration of the particle filter is given in Algorithm 3.

The notation used in Algorithm 3 is similar to that of Algorithms 1 and 2. x̄k represents the

set of m particles used in the filter.
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Algorithm 3 Particle filter method for one second.
1: Initialize: x̂k−1 = x0
2: Initialize: Pk−1 = R
3: Initialize: x̄k−1 = m samples of N (x̂k−1,Pk−1)
4: for n = 1 to m do
5: [Predict Particles]
6: x̄n−

k = Ax̄n
k−1 +N (0,Q)

7: z̃n
k = zk−Cx̄n−

k
8: wn = N (z̃n;0,R)
9: end for

10: if A valid measurement has been received then
11: [Resample Particles]
12: w = w

∑n wn

13: x̄k = m samples of x̄n− weighted by w
14: else
15: x̄k = x̄−k
16: end if
17: x̂k =

∑n x̄k
m

In our implementation of the particle filter, we estimate position north, position east, alti-

tude, velocity north, velocity east, and climb rate. To do this we use 250 particles. More particles

would better sample the six-dimensional estimate space and significantly improve the estimates.

A larger number of particles, however, results in a more computational demand. In predicting the

particles forward in time, we used a constant-velocity state-space model. To create the state esti-

mate for each time step, we use a simple average of all of the particles. When measurements are

missed, we skip the resampling step and use the set of initial, predicted particles to create our state

estimate. This set of initial, predicted particles is then used as the particles for the next time step.

3.2.3 Measurement Updates

The measurements used to update the estimator states are the position north, position east,

altitude, and climb rate. In updating the states, the transmitted horizontal velocities are ignored

as a result of transmission errors. Recorded ADS-B data sets from the NAS have revealed that on

rare occasions the north and east velocities are transmitted in reverse order resulting in an apparent

velocity that is perpendicular to the actual direction of travel of the transmitting aircraft. Updating

the filters with only a subset of measurements mitigates this problem and results in equally accurate
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estimates after a brief transient period of several measurements. To provide a better comparison of

filters for the ultimate goal of estimating true ADS-B measurements, the filters described here are

updated without horizontal velocities.

3.2.4 Measurement Gating

A set of measurement gates is necessary to account for message dropout and grossly er-

roneous measurements. If at a given time step there is no measurement, only the filter prediction

occurs for each filter. The update step occurs only when there is a valid measurement. For the

KF-CV, KF-CJ, and IMM filters a measurement is determined to be valid only if the innovation

falls with in a 5 Mahalinobis distance bound [43]. Essentially the Mahalinobis distance bound

ensures that the measurement is within 5 standard deviations from the estimate while taking into

consideration the uncertainty of the measurement and estimate. Due to the fact that the PF does not

compute an estimate covariance directly, the gating for gross errors is set to reject any measure-

ment for which the associated particle likelihoods are all less than 10−200. This effectually ignores

measurements that are very far from the predicted particle locations. These gross-error-rejection

methods are key in maintaining the integrity of the ADS-B estimates.

3.2.5 Comparison Results

To compare the KF-CV, KF-CJ, IMM, and PF estimators quantitatively and qualitatively,

we used each one to estimate the same three data sets. From these data sets and the resulting sets

of estimates, were were able to calculate the statistics for each of the key estimator characteristics.

Additionally we plotted the estimates against the measurements and truth data for each estimator

to provide a visual evaluation of the estimates.

The data sets used in the estimator comparison were derived from a twelve-state simulator

of a fixed-wing UAS. To generate the truth data, the simulated UAS was set to fly a collision avoid-

ance path through a city environment. This scenario was chosen so as to include a combination of

straight and level flight and multiple maneuvers. During the course of this flight, we recorded the

true states of the aircraft. Using the ADS-B simulator outlined in Chapter 2, the true states were

transformed into a global coordinate frame and corrupted to simulate ADS-B measurements. We
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then modified the simulated measurements to reflect the proper update rate of 1 Hz for ADS-B.

This process was completed for all three of the data sets used in the comparison.
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Figure 3.1: Performance of the nearly-constant-velocity Kalman filter for simulated ADS-B mea-
surements.

Figure 3.1 shows the plotted estimate results from the nearly-constant-velocity Kalman

filter. The red lines are the estimates. The blue lines are truth, and the green lines are the measure-

ments. In all of the plots, the green lines fill in the area between the truth and the horizontal axis.

This is indicative of two things. First it illustrates that fact that the estimator is running at 100 Hz

and the measurements are only coming in at 1 Hz. Also it demonstrates that at some of the time

steps the measurements are missed, and thus the measurement is all zeros.
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From the plots in Figure 3.1, it is clear that the KF-NCV accurately estimates the truth

data and significantly smooths the noise in all measurements. It is further significant to note, that

even without velocity measurement updates, the velocity estimates are quite accurate especially

considering the abrupt step changes seen in the both velocity north and velocity east.
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Figure 3.2: Performance of the constant-jerk Kalman filter for simulated ADS-B measurements.

Figure 3.2 demonstrates the performance of the constant-jerk Kalman filter for estimation

of ADS-B measurements. The position north, position east, and altitude estimates in Figure 3.2 are

very similar to those from the KF-NCV in Figure 3.1. Interestingly the velocity estimates from the

KF-CJ are much noisier than those seen in Figure 3.1. This is a result of the constant-jerk model.

Due to the fact that the model allows the velocity, acceleration, and, to some degree, the jerk to
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change, the model is much less stable when there is no measurement. In the ADS-B scenario where

measurements occur only at 1 Hz, there is approximately 1 second for the acceleration and jerk

terms to alter the estimate. In terms of an estimator running at 100 Hz, this is a long time. Another

important consideration in the noisiness of the velocity estimates is that since only the positions

are used to estimate velocity, acceleration, and jerk, the position information is effectually differ-

entiated three times. This will result in progressively noisier estimates for velocity, acceleration,

and jerk. These two factors play a major role in the noisiness of the estimates for velocity north,

velocity east, and climb rate.
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Figure 3.3: Performance of the interacting multiple models filter for simulated ADS-B measure-
ments.
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The estimation results for the IMM estimator are shown in Figure 3.3. From Figure 3.3 it

is clear that the IMM estimates the ADS-B measurements well. Its performance is much less noisy

than the KF-CJ and closely resembles that of the KF-NCV. Both the KF-NCV and IMM filters

estimate the north and east velocity from the position with the same level of accuracy. Due to the

fact that the one of the filters in the IMM is a nearly-constant-velocity Kalman filter, this similarity

of results is expected.
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Figure 3.4: Performance of the particle filter for simulated ADS-B measurements.

The particle filter estimation results are shown in Figure 3.4. Even with using a relatively

low number of particles, the PF is able to fairly accurately estimate the states of the UAS. The

position north, position east, and altitude estimates are similar to the KF-NCV, KF-CJ, and IMM.
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The velocity estimates much less noisy than the KF-CJ shown in Figure 3.2, but they are slightly

noisier than the velocity estimates from the KF-NCV and IMM. As previously mentioned, a larger

number of particles would result in a better estimate, but would also be much more computationally

expensive. The number of particles in the particle filter was tuned to be the maximum number of

particles possible for the estimator to run in real time at 100 Hz.
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Figure 3.5: Error plots of the estimates from each of the four estimators.

A graphical assessment of the estimators is shown in Figure 3.5. In Figure 3.5 the red line

is the KF-NCV error. The blue line is the KF-CJ error, and the green line is the PF error. The

IMM error is shown in black. While the plots clearly show that there is error in all of the estimates,
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it is clear that the some of the estimates are much smoother than others especially in the velocity

estimates.

Table 3.1: Estimator comparison statistics.

State Estimator RMS Error 95th Percentile Error Error Standard Deviation

Pn (ft)

KF-NCV 91.91 193.96 76.47
KF-CJ 93.32 200.99 77.67
IMM 92.97 198.21 77.28
PF 92.03 198.84 76.38

Pe (ft)

KF-NCV 79.06 139.30 52.43
KF-CJ 79.06 138.12 52.37
IMM 78.87 140.46 52.66
PF 79.33 140.96 54.02

Alt (ft)

KF-NCV 12.27 24.52 10.06
KF-CJ 11.94 24.55 10.02
IMM 14.04 28.99 12.72
PF 15.58 29.80 13.46

Vn (kt)

KF-NCV 5.61 13.88 5.61
KF-CJ 8.31 17.98 8.31
IMM 5.68 11.95 5.68
PF 6.18 14.54 6.18

Ve (kt)

KF-NCV 7.13 17.37 7.13
KF-CJ 9.82 20.44 9.82
IMM 6.43 13.36 6.43
PF 7.60 17.82 7.60

Climb Rate (ft/min)

KF-NCV 34.43 70.88 34.41
KF-CJ 45.27 99.33 45.25
IMM 39.30 83.08 39.10
PF 37.46 78.80 37.28

A quantitative assessment of the performance of each of the estimators is shown in Ta-

ble 3.1. This table shows the RMS error, 95th percentile error, and error standard deviation for

each of the states and each of the filters. The results in Table 3.1 support the observations from the

plots in Figures 3.1 through 3.4. All of the filters perform similarly in estimating position north,

position east, and altitude. In estimating the velocities, the KF-NCV and IMM consistently have
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the most accurate and smoothest estimates. The KF-CJ has the worst velocity estimates of the

group. At a first glance the position estimates from all the filters seem to have a very large RMS

error. In terms of aircraft in the NAS, however, 92 ft is not an excessive amount of error. A Boeing

737 has a wingspan of 94 ft, and thus an RMS error of 92 ft results in an estimate that less than

one wingspan of a large aircraft.

One important result of the statistics shown in Table 3.1 is that the filters smooth the mea-

surements considerably. As derived in Chapter 2, the standard deviation of the north and east

position measurements is 124 ft. The standard deviation of the barometric altitude measurements

is 75.9 ft. The horizontal velocity measurements have a standard deviation of 8 kt, and the vertical

velocity standard deviation is 27.96 ft/min. Each of the filters smooths the position measurements

significantly, and all but the KF-CJ smooth the horizontal velocities. The error standard deviations

of the climb rate estimates initially seem to be larger than the measurement standard deviation, but

the climb rate measurements are discretized into 64 ft/min bins. This means that the 27.96 ft/min

climb rate measurement standard deviation is deceiving. The smoothing of the estimates can be

readily seen in comparing the red and green lines in Figures 3.1 through 3.4.

Table 3.2: Estimator run time comparison.

Estimator Run Time (s)

KF-NCV 3.57e−5

KF-CJ 3.93e−5

IMM 1.96e−4

PF 9.16e−3

Table 3.2 shows the average run time for one iteration of each filter. The speed tests were

executed in MATLAB on a CORE i5 processor. Each of the filters runs faster than real time at

100 Hz in MATLAB and, as such, would run much faster than real time in a compiled programming

language such as C++. The KF-NCV was the most computationally efficient estimator. The IMM

filter was three times slower than the KF-NCV. Due to the fact that the IMM filter is made up

of three Kalman filters this is expected. While the particle filter does run in real time, it is three

hundred times slower than the Kalman filters.
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3.2.6 Comparison Conclusions

In testing and comparing the performance of the KF-NCV, KF-CJ, IMM, and PF, it is clear

that all of the filters are capable of satisfactorily estimating ADS-B measurements. With regards to

performance, the KF-NCV and IMM are the best estimators. In terms of computational efficiency,

the KF-NCV and KF-CJ estimators achieved the best results. Overall the KF-NCV was the most

suitable estimator for ADS-B measurements on a small UAS.

3.3 Notes on Estimating Recorded ADS-B Measurements

Due to the fact that truth information is not available for recorded ADS-B measurements,

we use the results from the estimator comparison for simulated measurements to choose our esti-

mator for recorded ADS-B data. Based on those results, we implement a nearly-constant-velocity

Kalman filter to estimate recorded ADS-B measurements from the NAS. Estimation of multiple

real ADS-B tracks adds a degree of complexity to the tracking task. Although no data association

is necessary for multiple ADS-B measurements, track management is a challenge. Methods are

necessary to determine how and when to initialize and terminate tracks. For our implementation

a track is formed when two measurements are received within close enough succession that the

Kalman filter Mahalinobis gate does not discard the more recent measurement as an outlier. A

track is terminated when the estimate covariance grows so large that the track is unreliable. In our

implementation this value is set to the maximum NIC value of 1215.2 ft. If an aircraft reappears

after its track has been terminated, a new track is initialized from the new measurements.

3.3.1 Data Gathering Methods

To record ADS-B from the NAS, a Clarity dual-link ADS-B receiver is used. The Clarity

unit is capable of receiving ADS-B on both 978 MHz and 1090 MHz frequencies. The received

ADS-B messages are then passed to a laptop via a WiFi connection. A manufacturer-supplied SDK

decodes the received ADS-B packets into a usable form. With some modifications to the SDK, we

are able to record ADS-B measurements from the Clarity receiver in real time.
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3.3.2 Processing Measurements for Estimation

After recording the ADS-B measurements, some post processing is necessary to prepare

them for estimation. The primary modification is converting the latitude and longitude measure-

ments into a position north and position east reference frame. This conversion from latitude and

longitude can be done using a spherical earth model and an arbitrary reference latitude and longi-

tude as the origin. Given φr as the latitude reference point and λr as the longitude reference point

and φ and λ as the latitude and longitude measurements respectively,

Pn =Re(φ −φr) (3.1)

Pe =Re(λ −λr)cos(φ). (3.2)

Re is the radius of the earth. This method transforms the latitude and longitude measurements into

a position north and position east reference frame. In addition to transforming the latitude and

longitude measurements, it is necessary to convert the other state measurements into a coherent

set of units. Altitude measurements are reported in feet. Velocity measurements are in knots,

and climb rate measurements are in feet per minute. For our post processing, we convert all

measurements to be in meters and meters per second.

3.3.3 Recorded Data Incongruities

In estimating recorded ADS-B measurements, there are three data incongruities that must

be mitigated. First, depending on the receiver proximity to an ADS-B ground station, ADS-B

measurements can be recorded twice in close succession. This is a result of ground-based ADS-R

transmissions that repeat ADS-B on the other frequency. To prevent the estimator from updating

with the same measurement twice, we gate incoming measurements to ensure that they were not

identical to the previous position measurement. Second, 1090 MHz ADS-B transmissions do not

transmit all of the required information in a single broadcast. Several different broadcasts over the

course of one second are necessary to transmit all of the required message elements. As a result

it is necessary to update the estimates with whatever information is most current. For example, if

the horizontal position information is received in the first half of the second, then the filter updates
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with only the horizontal position information as soon as it receives it. When the altitude and climb

rate information are received later on in that second, the estimate is updated with the altitude and

climb rate information only. This creates a more complex, but ultimately more accurate estimator.

Third, as previously mentioned, recorded ADS-B measurements occasionally have the horizontal

velocities switched. Thus the north velocity is transmitted in the east velocity element field and

vice versa. To mitigate this, the estimator is updated with the horizontal positions, altitude, and

climb rate only. As can be seen in the previous sections, the horizontal velocity estimates are still

accurate even without velocity measurement updates.

3.3.4 Recorded Data Estimation Results

Figure 3.6 shows the results of the estimation for one of the ADS-B tracks recorded from

the NAS. The green lines show the measurements, and the red line shows the estimates. It is clear

from Figure 3.6 that the KF-NCV estimates the position north, position east, altitude, and climb

rate measurements very well. The velocity north and velocity east estimates are slightly noisier

than the other estimates, but they are still accurate. It is important to note that there is a brief

initialization period for each of the estimates. This occurs in the first seconds of the track as the

estimator receives more and more measurements with which to refine the estimate. After the brief

transient period, the filter is able to provide very accurate estimates.

Due to the fact that the recorded data was gathered using an ADS-B receiver on the ground,

the measurements were not received as regularly as would be expected of an airborne receiver. Al-

though an effort was made to find an obstruction-free area to gather data, there were still buildings

and trees that obscured ADS-B measurements. In the data this is particularly evident in the first and

last few measurements for a given track. Thus to efficiently initialize the track, it was necessary

to increase the Mahalinobis gate considerably to be 15 standard deviations. This gate size allowed

the track to initialize even while receiving only sporadic measurements as the aircraft came into

view.

With regards to run time, the KF-NCV estimated 261 s of ADS-B messages in 25.78 s.

Thus with the track initialization and termination additions, the KF-NCV is capable of running

approximately ten times faster than real time in MATLAB. Such fast computational speed achieves
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Figure 3.6: Performance of the nearly-constant-velocity Kalman filter for recorded ADS-B mea-
surements.

the estimation goal and allows a significant amount of time for the computational demands of other

algorithms such as conflict/collision detection and avoidance.

3.4 Estimation Conclusions

In conclusion, estimating the state information included in ADS-B messages overcomes

much of the error in those messages. The results from the estimator comparison show that a

nearly-constant-velocity Kalman filter is capable of mitigating ADS-B dropout and noise while

providing accurate, real-time estimates. Furthermore, the results of the recorded ADS-B estimation

demonstrate that with modifications to account for track initialization and termination a KF-NCV

41



is capable of providing real-time estimates of true ADS-B data at 100 Hz. Overall the KF-NCV

presented in this chapter is an accurate and efficient estimator for both real and simulated ADS-B

measurements. Furthermore, the accuracy of the estimates from the KF-NCV provides a good

foundation on which to build DAA algorithms for conflict/collision detection and avoidance for

small UAS.
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CHAPTER 4. AN ADS-B-BASED SELF-SEPARATION PLANNER

One key strength of ADS-B that sets it apart from other currently available sensors is the

long range over which ADS-B information is available. This information can be used to main-

tain self-separation rather than solely relying on close-range information from radar or cameras to

achieve collision avoidance. Thus long-range, accurate measurements from filtered ADS-B mea-

surements have the capacity to increase the level of safety for small UAS operations.

While this long-range intruder information is very valuable, much of the benefit is lost if

there is no suitable method to utilize the information to inform the ownship path planning. As

a result long-range path planning methods capable of avoiding dynamic obstacles are necessary.

Some of the challenges that accompany long-range separation path planning are the computational

expense of long-range path planning, uncertainty in intruder aircraft positions, and unpredictability

of intruder aircraft future maneuvers. To develop a path planning method that offers the benefits of

ADS-B-based separation assurance and to mitigate the associated challenges, this chapter presents

a convex optimization-based path planner for self-separation assurance on UAS in a dynamic en-

vironment.

4.1 Problem Formulation

The approach for this research is to use convex, constrained optimization techniques to op-

timize the position of waypoints, or nodes, along a path so as to find the minimum length path. The

problem formulation, robustness measures, and underlying assumptions are detailed in this section.

The overall problem formulation uses a squared Euclidean distance as the objective function. The

Cartesian coordinates of each node are the design variables, and the self-separation criterion serves

as a linear constraint. This formulation is given formally as
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Minimize :
n−1

∑
i=1

(xi− xi+1)
2 +(yi− yi+1)

2 +(zi− zi+1)
2 (4.1)

With respect to : x1,x2, ...,xn,z1,z2, ...,zn (4.2)

Subject to : ||[xi,yi,zi]− [xi−1,yi−1,zi−1]||2 ≤ Threshold (4.3)

xmin ≤ xi ≤ xmax or (4.4)

zmin ≤ zi ≤ zmax.

4.1.1 Objective Function

The squared Euclidean distance formula shown in Equation (4.1) provides an intuitive

choice for a path-length-minimization objective function. Excluding the square-root operation

from the typical Euclidean distance formula simplifies the objective function and reduces it to a

second-order function. While the output of the objective function no longer represents the length

of the path, and consequently is less intuitive, the overall optimization is more efficient. More

importantly the second-order formulation of the distance formula is convex, where as the standard

Euclidean distance is not.

4.1.2 Design Variables

The design variables for the optimization are the x and z coordinates of each of the path

nodes in the local frame where the x axis lies perpendicular to the nominal path in the horizontal

plane and z axis points upward. The y coordinate for each node lies along the nominal path and is

excluded to reduce the dimensionality of the problem. This exclusion does not significantly reduce

the flexibility of the solution due to the fact that prior to optimization the positions of the start and

end node can be linearly transformed to both lie on the y axis. In such an orientation, the most

impactful coordinate variation will occur orthogonal to the y axis. Thus, the y coordinate is an

unnecessary dimension. Figure 4.1 shows the orientation of the x-y-z local coordinate frame.

Another key consideration in selecting the design variables is the number of nodes between

the start and end node. A greater number of nodes adds more degrees of freedom to the solution,
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and increases the computational requirements of the optimizer. Fewer nodes requires less compu-

tational expense, but also reduces the conformability of the path. A brief analysis of the effect of

the number of nodes is shown in Section 4.3 of this chapter.

4.1.3 Constraints

The constraints are designed to ensure that at every time step the ownship maintains self-

separation from each intruder aircraft. Additionally the constraints are designed to be linear so as

to ensure the convexity of the problem [44]. The constraint in Equation (4.3) is straightforward. It

requires that two nodes not be separated by more than a given distance. This prevents the nodes

from being so far apart that an intruder can be between two nodes without violating the bound

constraint in Equation (4.4). Although the constraint in Equation (4.3) is not linear, it is a convex

formulation of a sphere. The constraints in Equation (4.4) are formulated such that the nodes

must be between an upper and lower bound constraint, min and max respectively. The value of

these constraints is determined by the position of the intruders. Using the speed of the ownship,

it is possible to calculate the time when the ownship will arrive at each node. With the position

and velocity estimates of the intruder, it is also possible to linearly extrapolate the states of the

intruders into the future to determine their positions when the ownship arrives at each node. The

intruder positions at the appropriate time become the bound constraints for each path node. The

constraint is offset from the nominal position of each intruder so as to provide the recommended

buffer for self-separation. A set of heuristics is applied to determine whether each intruder should

be considered an upper or lower bound. The heuristics are necessary to allow for a broader feasible

region than would be available with only one set of linear constraints by systematically determining

whether each constraint should be an upper or lower bound. A detailed description of the heuristics

is included Section 4.2 of this chapter.

Figure 4.1 provides a graphical example of how the constraints are determined. The way-

point at time t3 is constrained to be above the line created by the position of intruder A. This

constraint is offset from the nominal position of the intruder by Rbuffer and results in a lower-bound

constraint. At the node for t7, the position of intruder B creates an upper bound constraint which

constrains the position of the corresponding path node. By combining the upper and lower bound

constraints for each path node, the feasible optimization space becomes a channel or corridor be-
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Figure 4.1: An example of how the upper and lower constraints are formed.

tween the two sets of constraints. While this method does require preprocessing of the intruder

positions and velocities, it results in a set of convex, linear constraints.

4.1.4 Robustness

The nature of long-range, time-based path planning requires extrapolation of intruder po-

sitions over long time horizons. This necessity introduces two forms of error: state error and

model error. State error results from the growing uncertainty as imperfect state information is

propagated into the future. Model error also grows as it is predicted into the future, but it re-

sults from uncertainty in the model by which the information is propagated. To mitigate these

two types of error, we use a successive replanning method. Successive replanning robustness is

a method by which the path is re-planned at regular intervals. While this is not a new method, it

does significantly contribute to the overall applicability of the path planner. Velocity uncertainty,

unpredictable maneuvers, and environmental factors such as changes in wind can be addressed by

regularly replanning the optimized path. This is a major reason that the computational expense of

the optimization routine is of interest. With a more rapid path planning method, new plans can be

generated more quickly and more often.

4.1.5 Assumptions

For this problem formulation several assumptions are necessary. The assumed sensor with

which intruder information is gathered is ADS-B. This sensor provides latitude, longitude, altitude,
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ground speed, heading, and climb rate. The intruder positions and velocities used to propagate in-

truder positions into the future are derived from this information. Furthermore the propagation

method for intruder positions is a constant-velocity method. Thus, it is assumed that the intruders

are not maneuvering. While this assumption may not be entirely correct, successive path replan-

ning can alleviate much of the error in the assumption. The distances used in the intruder buffer,

Rbuffer, are proposed well clear definitions from the Sense and Avoid Science and Research Panel

(SARP) [22,23]. In the horizontal plane Rbuffer = 4000 ft, and in the vertical plane Rbuffer = 500 ft.

4.2 Optimization Implementation

While the formulation of the optimization is rather straightforward, the implementation

leverages several key aspects that lead to the success of the optimization. One of the primary

goals of the implementation is to achieve and maintain a convex problem formulation. In Equa-

tion (4.4), only one set of upper and lower bound constraints must be satisfied, either the vertical

or the horizontal. While each individual set of constraints is convex, the “either-or” formulation

is not convex. An “and” formulation of the horizontal and vertical constraints would be convex,

but such a formulation would result in avoidance paths that are not representative of true aircraft

behavior which rarely combines vertical and horizontal maneuvers. To mitigate this we address

each direction, vertical and horizontal, separately. Essentially we run separate optimizations in the

same sequential planning iteration. In the first run, we allow the z coordinates to vary, and we

impose the vertical set of constraints. For the second run, we allow the x coordinates to vary, and

we impose the horizontal set of constraints.

As mentioned previously a set of heuristics is necessary to determine whether an intruder

should be represented as an upper or lower bound constraint. In our implementation we use nine

heuristics, four in the vertical direction and five in the horizontal direction. This results in nine

separate optimization runs. While this does require multiple optimization runs, the efficiency of

convex optimization allows for this sequential optimization without imposing too great a compu-

tational cost. It is important to note that while none of the heuristics is individually valid for all

intruder scenarios, the collective set is designed to find at least one feasible path for a wide range

of intruder configurations.
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4.2.1 Constraint Heuristics
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Figure 4.2: A diagram showing hypothetical path results from each of the first five heuristics.

Figure 4.2 shows the hypothetical resultant paths for each of the first five heuristics. The

first heuristic is horizontal and categorizes the intruders based off of the straight-line path between

the start and end node. Essentially if an intruder has a position on the positive x axis then the

constraint will be an upper bound constraint. Alternatively, if the intruder’s position is on the

negative x axis then the constraint will be a lower bound constraint. This heuristic is intended

to identify the straight-line path between the start and end node. The second heuristic is also

horizontal. It seeks to find a path to the right of all intruders. Simply put this method identifies all

intruders as lower bound constraints. If all intruders are moving on the left side of the ownship,

then this method will find a feasible path. The third heuristic is an analog to the second in that it

seeks to find a path to the left of all intruders. All intruders are viewed as an upper bound. Thus,

if all of the intruders are to the right of the ownship, this heuristic will lead to a feasible path. The

fourth heuristic also seeks a path to the right of the ownship, but is looks for a gap in the traffic. In

other words, instead of trying to fly either along the straight-line path or to the right of all of the

intruders, it looks for a gap between the intruders on the right hand side. This allows the ownship

to find a path that is much shorter than going around all intruders. If there is not gap available, this
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heuristic results in a path that is identical to the path around the right of all of the intruders. The

fifth heuristic is identical to this method except that it looks for a gap to the left.

The sixth, seventh, eighth, and ninth heuristics are vertical heuristics. They are direct

analogs to the second, third, fourth, and fifth heuristics shown in Figure 4.2 in that they look to

fly above all the intruders, below all of the intruders, through a gap above the straight line path,

and through a gap below the straight-line path respectively. After all of the optimization runs

have been completed, the final path is selected based on the length of the path. Thus, the shortest

overall path from all nine of the optimization runs is selected as the path. Overall, this set of

nine heuristics significantly increases the feasible optimization space. It also allows for a convex

“either-or” formulation for the horizontal and vertical formulation.

4.2.2 Convex Solver

To solve the convex optimization we used CVX, a package for representing and solving

convex programs [45, 46]. Due to the fact that this tool was designed to run with MATLAB, it

was very useful for our development. For implementation on a small UAS platform, however, we

would use a solver that is compatible with C++ or some other compiled language. Implementation

in a compiled language would result in much greater computational efficiency.

4.3 Results

Testing of the convex optimization-based path planner for self-separation included single

iteration feasibility testing, an analysis of the number of nodes and run time, and a simulation-based

test of the sequential path planning robustness.

4.3.1 Single Iteration Testing

The goal of the single iteration feasibility testing was to determine how the optimizer re-

sponds in scenarios with a high number of intruders. To test this, the optimizer had to find a feasible

path between a start and end node in the presence of ten intruders. The start and end point of the

path were placed at (0, 0, 8200) and (0, 91141, 8200) feet respectively. The path between the start

and end nodes had 78 evenly spaced intermediate nodes.
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(a) Top View (b) Side View

Figure 4.3: Initial positions and velocities of the intruders.

Table 4.1: Initial intruder positions and velocities.

Intruder Px (ft) Py (ft) Pz (ft) Vx (kt) Vy (kt) Vz (ft/min)

A -82021 16404 8200 97.1 0 0
B 16 82021 8200 0 -19.4 0
C 65617 0 8215 -29.2 29.2 0
D -95144 62336 7940 77.8 0 0
E -82021 26247 10266 97.2 0 0
F 0 32808 6234 0 0 984.3
G 0 -32808 8038 0 97.2 0
H 0 98425 14764 0 -55.4 -787.4
I 65617 98425 7710 -58.3 -58.3 0
J -65617 98425 7710 149.7 -233.3 0

Figure 4.3 shows the initial intruder states for the scenario. The circles in the figure repre-

sent the self-separation volume of the intruders. The red triangle is the ownship, and the nodes of

the path are represented by the crosses along the black ownship path. The arrows in the figure show

the direction of travel for each of the intruders. From the figure it is clear that there are crossing

intruders from both sides, a head-on intruder, an overtaking intruder, a descending intruder, and

a climbing intruder. Each of the intruders are positioned so as to interact with the ownship either

by crossing the ownship’s path or by flying near to the path so as to increase the complexity of

the solution space. To provide a quantitative perspective, Table 4.1 lists all of the initial intruder
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positions and velocities. The alphabetical labels in the table correspond to the labeled intruders in

Figure 4.3. Ultimately this set of intruders represents a very complex self-separation scenario.

With the intruder configuration shown in Figure 4.3, we ran the convex optimization-based

path planner for self-separation. The results of the optimization are shown in Figure 4.4. To pro-

vide a three dimensional, time-variant perspective of the results, Figure 4.4 includes subfigures that

show the ownship progress along the optimized path. Figures 4.4(a)-4.4(c) show a top, end, and

side view, respectively, of the optimized path while the intruder is at the initial node. The subse-

quent rows show a similar perspective when the ownship is at node #20, #50, and #80 respectively.

A video of the path optimization result is available at https://youtu.be/-xjgWVy27Q0.

Figure 4.5 shows the closest point of approach by any intruder over the course of the sim-

ulation shown in Figure 4.4. The blue line is the the distance from the ownship to the closest

intruder, and the red line is the vertical separation threshold. The key takeaway from the plot is

that the vertical separation threshold is not violated at anytime through out the simulation.

From Figure 4.4 and 4.5 it is clear that the optimizer maintains self-separation from all

of the intruders throughout the entire path. This is the primary goal of the optimization. It is

interesting to note that the optimizer selected a vertical avoidance path. This results from the fact

that the self-separation definition requires 4000 ft of separation in the horizontal plane, but only

500 ft of separation in the vertical plane. Thus, it is reasonable that the optimizer nearly always

finds a vertical avoidance path [47]. Another reason that the optimizer typically finds a vertical

avoidance path is that the ownship is moving slowly compared to the intruders. The ownship is

designed to resemble a small UAS, and it is only moving at 29 kts. This is slower than all but

one of the intruders. Thus, the ownship is unable to outrun the intruders. In finding a horizontal

avoidance path with linear constraints, this means that it is very easy for intruders crossing from

different directions to pinch off the channel through which the ownship might fly. Thus, there is

a greater likelihood that a vertical path will be feasible than there is that a horizontal path will be

feasible.

To determine the limitations of the planner, we identified and tested several conditions

where the planner fails to find a feasible solution. If the self-separation volumes are excessively

large, the optimizer is unable to find a viable solution. We tested the optimizer with collision vol-

umes equivalent to the FAA ATC-separation volumes for manned aircraft. These volumes require
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(a) Top View at Node #0. (b) End View at Node #0. (c) Side View at Node #0.

(d) Top View at Node #20. (e) End View at Node #20. (f) Side View at Node #20.

(g) Top View at Node #50. (h) End View at Node #50. (i) Side View at Node #50.

(j) Top View at Node #80. (k) End View at Node #80. (l) Side View at Node #80.

Figure 4.4: Self-separation path as time progresses.
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Figure 4.5: The closest point of approach amoung all intruders over the course of the simulation.

5 nmi of separation horizontally and 500 ft of separation vertically. While the optimizer is able to

find a feasible path for some of these scenarios, it fails to find a feasible path for scenarios with

more than approximately 5 intruders. This is a result of the solution space being overwhelmed by

the large separation volumes. Another condition where the path optimizer fails is when there is an

intruder on top of, or very near to, either the start or end node. This prevents the ownship from

approaching the end node, to which it is constrained. Thus, a feasible path cannot be found.

In extended testing the optimizer successfully found a feasible self-separation path in the

presence of up to 19 intruders on a collision path with the nominal path of ownship. This scenario

included multiple crossing, climbing, and descending intruders from all directions. The ability of

the optimizer to successfully plan a path in the presence of 19 intruders converging on the ownship

is a testament to the viability of the planner and the robustness of the nine heuristics.
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Table 4.2: Change in run time and path length as a function of the number of nodes.

# of Nodes CPU Time (s) Path Length (ft)

60 3.45 94411.90
80 3.82 94411.54

100 4.50 94412.61
120 4.74 94412.08

Table 4.2 shows an analysis of the CPU time verses the number of nodes along the path.

The optimization runs for this table were executed in MATLAB on a 3.1 GHz CORE i5 processor.

One very interesting correlation in the results is that as the number of nodes increases, the run time

increases slightly and the path length remains essentially unchanged. This correlation indicates

that when choosing the number of nodes it is reasonable to err on the side of fewer nodes.

Another important observation from Table 4.2 is that all of the CPU times shown are slower

than the 1 Hz measurement rate of ADS-B. While this initially seems to be a serious downfall of

the path planning method, it is not a significant drawback. Any implementation of this path planner

on a UAS would require a conversion from MATLAB to C++ or a another compiled language. In

converting from MATLAB to a compiled language, such as C++, the computational expense of

the planner will significantly decrease. An additional factor that reduces the impact of slower-

than-real-time computation is that since the resulting path of the planner is time-based, it does not

lose validity over time in the same way that a non-time-based method does. A time-based path is

computed using future positions of both the ownship and intruders. Thus, it is theoretically always

valid. There is uncertainty in the propagated intruder positions and the timing associated with the

path nodes, but this uncertainty is less impactful than the uncertainty associated with considering

the intruders to be static. Thus, as a result of using an interpreted language for testing, and the

increased validity period associated with a time-based path, the seemingly slow run times are not

a significant concern.

4.3.2 Successive Path Planning Testing

The robustness testing was done using a full simulation to capture effects of the successive

path planing robustness. The simulation executes the full dynamics of a 12-state ownship and
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three 12-state intruders. In the simulation, the ownship is flying between two waypoints that are

separated by 18.6 nautical miles. One intruder is overtaking the ownship from behind at a closing

speed of 29.2 kts. Another intruder is approaching head-on at a closing speed of 77.8 kts, and

a third intruder is crossing the path of the ownship from the right. All intruders are at the same

altitude as the ownship. To generate ADS-B messages, the truth data from each of the intruders

is corrupted using the error characterization based on FAA regulations for ADS-B error. Every 10

seconds the path optimizer plans a new path for separation assurance. The planner first checks the

old path to determine whether it is still valid. If it is valid the optimizer outputs the previous path

and no new optimization is performed. If the path is no longer valid, then the planner reoptimizes

the waypoints. In light of the fact that the optimization occurs in the local frame of ownship as

described in Section 4.1, it is necessary to linearly transform the global frame coordinates of the

start waypoint, end waypoint, and intruder states into the ownship local coordinate frame. After

the optimization the optimized path is transformed back into the global reference frame for the

path following algorithm. Figure 4.6 shows the initial simulation scenario and the path flown by

the ownship.

(a) Top View (b) Side View

Figure 4.6: Initial intruder configuration and the avoidance path flown by the ownship during the
sequential planning simulation.

In Figure 4.6 a top view is shown in the left plot and a side view is shown in the right

plot. The red triangle is the ownship. The red line shows the actual path flown by the ownship
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over the course of the approximately 40 minute simulation with successive path replanning every

10 seconds. Each of the intruders is surrounded by both a blue circle indicating the separation

volume and a red circle indicating the collision volume. Their positions in the figure show their

initial positions and trajectories at the beginning of the simulation. Table 4.3 shows the maximum

ownship elevation change, the maximum ownship climb angle, and the number of seconds in a loss

of separation (LOS) state.

Table 4.3: Key metrics for the fully simulated path optimizer.

Metric Value

Max Ownship Elevation Change 592.70 ft
Max Ownship Climb Angle 0.75 deg
Number of Seconds of LOS 7.06 s

The value of the optimization path planner is illustrated by Figure 4.6 and Table 4.3. The

maximum elevation change and maximum climb rate listed in Table 4.3 demonstrate that the path

planner can avoid a loss of separation with gradual maneuvers over a long time horizon. These

gradual maneuvers are beneficial in that they support minimal deviations from peak efficiency op-

erating conditions such as airspeed. They also present a relatively small variation from the original

path and mission goals. Table 4.3 does indicate that there are short periods of time where the

separation thresholds are not preserved. These violations are a result of the error in the intruder

estimates. Due to the fact that each of the violations occurs at the top outer bound of the separation

volume, the violation of the thresholds is of minimal concern. Additionally improved estimation of

the intruder states would result in less error and thus the path planner could entirely prevent LOS.

The small climb rate, reasonable maximum altitude change, loss of separation results, and robust-

ness effectiveness combine to demonstrate the value of the optimization path planner presented.

4.4 Path Planning Conclusions

In conclusion, the convex, time-based path optimizer presented in this chapter is capable of

long-distance path planning for separation assurance in an environment with dynamic obstacles.

The convex optimization formulation allows for a large number of nodes which leads to high
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resolution long-range planning without excessive computational cost. The incorporated robustness

measures result in a path planner that is viable in the presence of uncertainty in intruder positions,

velocities, and future maneuvers.

Additionally the ability to maintain separation assurance in the presence of head-on, over-

taking, and crossing intruders illustrates the value of ADS-B information. In scenarios with in-

truders traveling much faster than the ownship, the combination of ADS-B information and the

time-based path optimizer allows the ownship to maintain separation with gradual maneuvers. Ul-

timately the time-based path optimizer presented in this research is a capable, long-range path

planner. As such it is a valuable path planner for separation assurance and a key step toward a

DAA solution for UAS in the NAS.
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CHAPTER 5. ADS-B BANDWIDTH LIMITATIONS

Given the vast number of applications for small UAS, future airspace conditions are likely

to contain a large number of drones operating in close proximity to each other. In such a high-

density environment, the need for small UAS to autonomously maintain self-separation from other

aircraft, manned and unmanned, is particularly urgent and difficult. ADS-B is an off the shelf

sensor that provides all the information necessary for small UAS to detect and avoid other aircraft.

Due to the capability and accessibility of ADS-B, it is rapidly becoming one of the leading sensors

for DAA. While ADS-B has many characteristics that make it excellent for DAA applications, it

is susceptible to interference. If too many aircraft are transmitting on ADS-B in too small of an

area, the individual messages will interfere with each other and become unintelligible to ADS-B

receivers. Such a condition would severely inhibit the ability of small UAS to detect and avoid

other aircraft. This chapter will provide an analysis of ADS-B bandwidth limitations and their

effect on the ability of ADS-B to detect other aircraft.

5.1 ADS-B Bandwidth Limitations

The analysis of ADS-B bandwidth limitations presented here will focus on the 978 MHz

frequency. As specified in Chapter 2, this frequency is intended for aircraft operating under

10000 ft. As such it is reasonable that the vast majority, if not all, small UAS will equip with

the 978 MHz frequency.

5.1.1 ADS-B Multiple Access Scheme

To support ADS-B messages from multiple transmitters in the same second, the 978 MHz

ADS-B frequency uses a time-division multiple access (TDMA) scheme. In other words, each

ADS-B message is intended to be transmitted in its own time slot. The UAT message is divided

up into two major time sections: the ground uplink message portion and the traffic transmission
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portion. The combination of these two sections is referred to as a UAT frame. Each frame has a 6

ms buffer at the beginning, a 176 ms ground uplink message portion, another 12 second buffer, an

800 ms traffic transmission portion, and a final 6 ms buffer. This consumes one second [28].

The ground uplink portion of the UAT frame is intended for broadcasts of weather infor-

mation, airspace notices (such as NOTAMS), and limited general traffic information. Due to the

fact that these messages have a time slot separate from the traffic slot they neither contribute to nor

detract significantly detract from the overall congestion of the air-to-air ADS-B transmissions.

The aircraft message portion is intended for traffic transmissions such as air-to-air ADS-

B, ADS-R, and TIS-B. This portion of the UAT frame is 800 milliseconds long and is divided

into 3200 message start opportunities (MSO) spaced every 250 µs. Each transmitting aircraft

transmits exactly one message each second. The MSO at which each aircraft transmits its message

is determined based on a pseudo-random selection of one of the 3200 MSOs. The pseudo-random

selection is made without receiving or sharing any information as to when other transmitters are

transmitting their messages. While this does permit some interference, the goal of the method is to

prevent two aircraft from systematically interfering with each other. For a large number of aircraft,

however, it is possible that ADS-B messages will interfere with each other much more than was

intended.

5.1.2 Probability of Interference at a Single Time Step

For the TDMA structure of the 978 MHz frequency, it is possible to calculate a probability

of interference. Given a uniform distribution of the selection of the MSO, the probability that

a given transmitter selects a given MSO can be simply determined. For two transmitters, the

probability that the two transmitters select the same frequency can also be determined. Since

each transmitter selects an MSO without any knowledge of other transmitter’s selection, the two

selections are independent. Thus the probability that they both select a given frequency is the

product of the two probabilities that they individually select that frequency. Given 3200 MSOs the
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probability that transmitters A and B simultaneously select MSOi is

P(A = MSOi) =
1

3200

P(B = MSOi) =
1

3200

P(A = B = MSOi) =

(
1

3200

)
×
(

1
3200

)
=

1
32002 . (5.1)

Thus the probability that two transmitters simultaneously transmit on a given frequency is one over

the number of MSOs squared. This, however, is only for a given MSOi. For the probability of in-

terference at any MSO for a given second, we need P(A=B=MSO1
⋃

A=B=MSO2
⋃
...
⋃

A=

B = MSO3200). This can be calculated by using the equation for a union [33]. Due to the fact that

the events P(A = B = MSOi) and P(A = B = MSO j) are mutually exclusive for all i and j, the

intersection of any and all of these events is equal to zero. Thus we are left with the summation

P(A = B = MSO1
⋃

A = B = MSO2
⋃

...
⋃

A = B = MSO3200)

=P(A = B = MSO1)+P(A = B = MSO2)+ ...

+P(A = B = MSO3200)

=3200× 1
32002

=
1

3200
(5.2)

This is then the probability that two transmitters transmit on the same MSO at a given second,

P(A = B). This is the probability that one transmitter interferes with another transmitter.

Now consider a third and fourth transmitter, C and D, where P(A = B) = 1
3200 and P(A =

C) = 1
3200 and P(A = D) = 1

3200 . To find the probability that A interferes with either B or C or

D, we need the union of all the individual probabilities, P(A = B
⋃

A = C
⋃

A = D). This is also
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given by

P(A = B
⋃

A = C
⋃

A = D)

=P(A = B)+P(A = C)+P(A = D)

−P(A = B)P(A = C)−P(A = B)P(A = D)−P(A = C)P(A = D)

+P(A = B)P(A = C)P(A = D) (5.3)

Since each of these probabilities is equal, we let x = P(A = B) = P(A = C) = P(A = D) = 1
3200 .

Then Equation (5.3) can be given by 3x−3x2 + x3. This is then the expression for the probability

that transmitter A is interfered with at one time-step for an environment with four transmitters.

Extending this result to more transmitters, it becomes apparent that the pattern continues.

For n transmitters, T, given that the event T0 = Ti is stated as Ei

P(I) =P(E1
⋃

E2
⋃

...
⋃

En−1)

=

(
n−1

1

)
x−
(

n−1
2

)
x2 + ...+(−1)n−1

(
n−1
n−2

)
xn−2 +(−1)n

(
n−1
n−1

)
xn−1 (5.4)

where
(n−1

i

)
is a combination. This is then the probability that a transmitter T0 will be interfered

with for an environment with n transmitters for a given second, P(Iti).

Using this formula, however, poses a computational challenge. The combination formula(n
k

)
reaches a maximum when k = n

2 . Thus for a large number of transmitters,
(n−1

n−1
2

)
is a very large

number. For numbers near to this value, computers are unable to represent the value accurately.

Additionally it is also possible that the numbers cannot be represented at all. For example
(56

28

)
is

one of the largest combinations that MATLAB can represent accurately, and
(1029

515

)
is one of the

largest combinations that MATLAB can represent at all. Any combination larger than this value is

recognized as infinity. Thus if the number of transmitters is greater than 1030 MATLAB cannot

compute the probability.

We developed a method to mitigate this using Sterling’s approximation for factorials to cal-

culate the combination of large values. Given the combination formula as
(n

r

)
= n!

r!(n−r)! , Sterling’s
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approximation can be applied to rewrite it as

(
n
r

)
≈

√
2πn(n

e )
n

(
√

2πr( r
e)

r)(
√

2π(n− r)(n−r
e )(n− r))

(5.5)

Taking the logn reduces the formula to be

logn

(
n
k

)
≈1

2
+n−n logn(e)−

1
2

logn(r)− r logn(
r
e
)

− 1
2

logn(2π(n− r))− (n− r) logn(
n− r

e
) (5.6)

Using this formula the computation of very large combinations is possible. Due to the fact that

Sterling’s approximation is most accurate for large factorials, smaller factorials are best calculated

by traditional methods. Also, at very large factorials, there is still some numerical instability in the

method. Thus, it should be used with caution. That being said, the numerical instability is notably

less than that of traditional combination methods. As a result it is sufficient for our calculations.

With Equations (5.4) and (5.6) it is possible to calculate the probability that a given trans-

mitter is interfered with at single time step for a given number of transmitting aircraft.

5.1.3 Probability of Trackability

Using the probability of interference for a given transmitter at a single time step and several

key characteristics of tracking/estimating methods, it is possible to determine the probability of

starting and maintaining a track for any given aircraft. We refer to this probability as the probability

of trackability.

Prior to presenting the method to calculate the probability of trackability, it is necessary

to identify several terms. To initialize a track with any estimator, it is necessary to receive a set

number of measurements in a set amount of time. Since ADS-B messages do not require data

association, a track can be formed from just two measurements. The maximum set size is the

maximum number of measurements that can be missed between two received measurements and

allow them to still form a track. In other words, if four measurements can be missed between two

good measurements and the two good measurements can still be used to form a track, then the

maximum set size is six. Thus two out of six messages must be received to form a track. For the
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KF-NCV described in Chapter 3, this value can be determined using the initial value of the process

covariance, the measurement covariance, the Mahalinobis gate size, and the maximum expected

speed of an intruder.

Another key term is the number of missed measurements to terminate a track. This is the

maximum number of measurements, after a track already exists, that can be missed before the track

is declared as invalid. This value is dependent upon the covariance of the track, but a nominal value

can be determined by taking the initial track covariance and propagating it forward without mea-

surement updates until the covariance becomes so large that the track is terminated. The number

of times that the track was propagated into the future is the number of missed measurements to kill

a track.

Due to the fact that the MSO for a given transmitter is selected on a psuedo-random basis

each second, the probability of interference for a given second is independent from the probability

of interference for a different second. Using this fact, the probability that consecutive measure-

ments are interfered with is P(It1 ∩ It2) = P(It1)P(It2). Assuming that the number of transmitting

aircraft remains the same between the two consecutive seconds, the probability remains the same,

and thus the probability simplifies to P(It1 ∩ It2) = P(It1)
2. This can be extended to more than just

two consecutive seconds. In the case of tracking/estimation of intruders, the maximum set size and

the number of missed measurements to terminate a track dictate how many measurements can be

missed before tracking becomes unreliable. For the case of the maximum set size, if two measure-

ments are not received in that set then the track cannot be formed. Thus the probability of forming

a track is P(Tform) = 1−P(It1)
MaxSetSize−1. For the number of missed measurements to kill a track,

at least one measurement must be received in the set. Thus the probability of maintaining a track

is P(Tmaintain) = 1−P(It1)
NumMissMeastoKillTrack.

These two probabilities, the probability to form a track and the probability to maintain a

track, determine the robustness to missed measurements of a given tracker for a given number of

transmitting aircraft. The overall probability of trackability is the lesser of these two probabilities.

If either a track cannot be formed reliably or a track cannot be maintained reliably then the tracker

is unable to track reliably. Thus P(T ) = min(P(Tform),P(Tmaintain)). The metric that leads to the

minimum probability is referred to as the limiting tracking variable (LTV).
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5.1.4 Key Parameters

As previously shown the probability of trackability is a function of many variables, but

it can be reduced to a function of two variables. The full list of fundamental variables for the

probability of trackability are as follows:

• Range

• Density

• Intruder speed

• Mahalinobis gate size

• Track covariance gate size

• Time between measurements

• Filter matrices (A,C,P,Q,R)

Varying any of these parameters results in a change in the probability of trackabaility. These vari-

ables, however, can be formulated into two variables that fully describe the probability of tracka-

bility. The range and density combine to determine the total number of aircraft with in the visible

region. The speed of the intruder, time between measurements, filter matrices, the Mahalanobis

gate size, and track covariance gate size are necessary only to determine the maximum set size and

the number of measurements necessary to kill a track. As previously stated, the smaller value be-

tween maximum set size and the number missed measurements to kill a track is the LTV. Thus the

probability of trackability is actually a function of only the number of aircraft and the probability

of trackability.

5.1.5 Simulations

To test and demonstrate the probability of interference and the probability of trackability,

we created several key plots and simulations. The first three plots show the relationships between

key variables and the probability of interference and the probability of tracking. The fourth plot
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Figure 5.1: Probability of interference as a function of the number of transmitting aircraft.

shows the results of a simulation in which we simulate the interference of individual intruders as

we gradually increase the ADS-B transmit range of the intruders.

The first plot, shown in Figure 5.1, shows the probability of interference as a function of

the number of transmitting aircraft. This plot provides important perspective on the number of

ADS-B-equipped aircraft that would lead to significant levels of interference. While the values

represented on the horizontal axis of Figure 5.1 are large, it is not impossible that future airspace

conditions would have several thousand aircraft operating at the same time in the same region.

Figure 5.2 provides a different perspective on the probability of interference. Each of the

lines on the plot corresponds to a transmit range. The horizontal axis represents increasing density.

With the density and transmit range, the number of transmitting aircraft can be calculated. It is

important to note that in calculating the number of aircraft from the density and transmit range we
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Figure 5.2: Probability of interference for different transmit ranges as a function of the density of
aircraft.

use the cube of the the transmit range. Thus an increase in transmit range impacts the number of

transmitting aircraft much more than an increase in the density does. This fact alludes to an im-

portant trade off between ADS-B transmit range and the level of interference that will be explored

more thoroughly in subsequent plots.

Figure 5.3 demonstrates the relationship between the number of transmitting aircraft, the

limiting tracking variable, and the probability of trackability. The black line shown in Figure 5.3

is the point on the graph where the probability of trackability dips below 0.999999. This line is

a threshold at which any intruder can be tracked with great reliability. It is important to note in

the figure the relationship between the number of transmitting aircraft and the LTV. For a small

LTV, the estimator can only tolerate a low level of interference. For a larger LTV, the estimator can

tolerate a much higher level of interference. Thus an important takeaway from Figure 5.3 is that

66



Figure 5.3: Probability of trackability as a function of the number of intruders and the limiting
tracking variable.

a robust estimation scheme significantly increases the amount of ADS-B interference that can be

tolerated while still maintaining effective intruder tracking.

Figure 5.4 presents the results of a simulation that highlights the importance of estimating

intruder states and the limitations that increased transmit range imposes on intruder visibility. To

create Figure 5.4, we generate a large set of intruders uniformly distributed over a cube with a set

density. Then we vary the ADS-B transmit range linearly. For each transmit range, we determine

the number of intruders that are within range and calculate the probability of interference. With

the probability of interference we sample a uniform distribution to determine which intruders have

been interfered with and are thus invisible at that time step. We also calculate which intruders we

are tracking. With the list of total intruders, intruders in range, visible intruders, and the tracked

intruders, we calculate key statistics to determine the visibility and trackability of the intruders.
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Figure 5.4: How the probability of interference and the probability of trackability change with
increasing range. It also demonstrates the impact of those metrics on the overall detectability of
intruders.

In Figure 5.4 there are five lines. The red line shows the percentage of targets that are

within range that are also visible at a given transmit range. The green line shows the percentage of

targets that are in range and trackable for a given transmit range. It is interesting to note that the

green line is always less than one, even for very short transmit ranges. This is a result of intruders

moving into and out of the visible region. As an intruder enters the visible region, it takes several

time steps to initialize a track. During that initialization period the aircraft is in range, but it is

not trackable. To determine a range at which all intruders should be trackable, we define a region

slightly smaller than the visible region by which point all tracks should have been able to initialize.

The pink line shows the percentage of intruders within the smaller region that are trackable. As

would be expected the pink line remains a 100% until the interference becomes very high. The
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blue and black lines show the percentage of total intruders that are in the simulation, within range

and outside the range, that are visible and trackable respectively.

Figure 5.3 illustrates several important principles of ADS-B interference. As previously

mentioned tracking of intruders significantly increases the amount of interference that an ADS-

B-based DAA system can tolerate. This can be seen in the disparity between the red and green

lines. The red line drops below 90% visibility at approximately 2.5 nmi. The green line, however,

is able to maintain 90% trackability until 6 nmi. This is a significant increase in the ability of an

ownship to detect intruders. Essentially at a transmit range of 2.5 nmi, a DAA system without

intruder tracking is only capable of knowing the position and velocity of 90% of intruders with in

the 2.5 nmi range. A DAA system with intruder tracking, on the other hand, is capable of knowing

the position and velocity of 90% of the intruders upto a transmit range of 6 nmi.

Another key takeaway is that once an intruder enters the visible range, there is an ini-

tialization period before that intruder can be accurately tracked. This fact is seen in the difference

between the pink and green lines. While the initialization distance for new tracks is very small com-

pared to the transmit range, the difference between the transmit range and the tracking range has

important implications for analyses of the necessary transmit range to allow for conflict/collision

avoidance. These implications will be explored later on in this chapter.

One of the most important takeaways from Figure 5.4 is the distinctive peak in both the

blue and black lines. Initially, it seems that as the transmit range increases the number of visi-

ble/trackable targets should also increase. Stated otherwise, the farther that the ownship can see

the more intruders it can see. The peak in the blue and black lines indicate that this is not the

case. As the transmit range increases, the number of transmitting aircraft in range also increases.

Thus there is in reality a point at which the number of aircraft in range becomes so large that the

interference rises to a level that actually reduces the visibility/trackability of the targets in range.

Thus if all aircraft are transmitting ADS-B too far, then the overall visibility/trackability is reduced

to levels below that of shorter transmit ranges. This is a very significant result, and it shows that

too much ADS-B transmit power can reduce the capability of a DAA system.
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5.2 ADS-B Congestion Conclusions

In summary of the presented analyses and results, the probability of interference is a func-

tion of the number on transmitting aircraft. It can also be expressed as a function of transmit range

and aircraft density. In such a formulation, the probability of interference is significantly more

sensitive to changes in the transmit range than the density. The probability of trackability is the

probability that a track for an intruder can be maintained, and it can be expressed as a function of

the number of transmitting aircraft and the limiting tracking variable. A larger limiting tracking

variable allows a DAA to accommodate a much higher level of interference and thus improve the

probability of trackability. In the probability of interference and probability of trackability simula-

tion, we illustrated three key takeaways. The importance of tracking intruders rather than simply

relying on the regularity of ADS-B measurements was demonstrated. Also it was clear that there is

a track initialization range for intruders wherein they are in the visible range but are invisible to the

DAA system. Finally we demonstrated that there is a point of diminishing returns with regards to

transmit range. It is possible to transmit so far that the visible range includes enough transmitting

aircraft that the DAA has less visibility of the surrounding intruders than it would if the transmit

range was smaller. The results are important conclusions and represent a basis for evaluating the

viability of proposed self-separation threshold and well clear definitions.
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CHAPTER 6. DEFINING MAXIMUM SELF-SEPARATION THRESHOLD AND WELL
CLEAR DEFINITIONS

For high-density airspace with a large number of small UAS, the possibility of ADS-B

interference presents a unique challenge to maintaining well clear. As explained in Chapter 1,

maintaining WC requires detection of intruders at long-ranges. In Chapter 5 we demonstrated

that long-range ADS-B transmissions can cause an excessively high level of message interference

that limits the capability of ADS-B to detect intruders. Thus it is necessary to examine the the

proposed self-separation threshold and well clear definitions from a system-design perspective to

determine whether such definitions are suitable and achievable for current airspace regulations and

anticipated small UAS densities.

The objective of this chapter is to provide a maximum achievable SST and WC definition

for high-density airspace with ADS-B-equipped small UAS. The methodology presented here also

represents a tool with which proposed SST and WC definitions can be evaluated. Additionally, this

chapter couples the proposed tool with equations that specify the minimum necessary detection

range to avoid NMAC for small UAS. These two tools result in an upper and lower bound for WC

definitions. Thus the chapter concludes with a recommendation for WC for small UAS.

6.1 Upper WC Bound Analysis Method

Figure 6.1 shows the method and variables to evaluate the viability of SST and WC defi-

nitions in high-volume airspace. In the figure the green blocks are the design variables. The tan

blocks are intermediate calculations, and the blue blocks are key results. Given a desired proba-

bility of trackability and the number of measurements necessary to maintain a track, the LTV, the

probability of interference at any time step can be calculated. From the probability of interference,

the number of transmitting aircraft can be determined. Since the formula for the probability of

interference shown in Equation (5.4) does not have an explicit solution for the number of aircraft,
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Figure 6.1: Variables and method by which SST and WC definitions can be evaluated.

we use a root-finding method to determine this value. The total number of aircraft, the number of

manned aircraft, and the maximum expected UAS density can be used to determine a maximum

acceptable ADS-B transmit range. By identifying the maximum expected intruder speed and the

amount of time needed to initialize a track, the trackable range can be determined. The trackable

range is the maximum distance at which all intruders can be tracked with the desired probability

of trackability, and thus it is the maximum possible distance-based SST definition. This definition

can be mapped into a time-based definition using the maximum expected intruder speed and a time

metric. We then assume that the ownship maneuvers as soon as the intruder is detected. With
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the minimum turn radius of the ownship, the ownship speed, and the intruder maximum speed,

it is possible to determine the closest distance and time that the ownship and intruder will ever

come. This distance and time are then the maximum achievable well clear distance and time re-

spectively. The SST and WC definitions determined in this model are the maximum achievable

definitions. Definitions larger than these are unreasonable in that the ownship cannot detect intrud-

ers at distances greater than the calculated SST and that the ownship cannot maneuver sufficiently

to maintain larger distance or time WC definitions.

Airspace conditions for high-density small UAS operations are unknown. To build the

model in Figure 6.1, it is necessary to make several assumptions about future airspace conditions.

The methods and reasoning for key model details and assumptions are laid out in the following

sections.

6.1.1 Estimating Future UAS Density

One of the first estimates necessary for the maximum SST/WC model is the density of

future airspace. To determine this density, we estimated the number of small UAS that will be

employed in a given region for each of the various small UAS applications. For this estimate, we

selected Chicago, Illinois as our region based on the high volume of manned aircraft operations

and the high population density. According to yellowpages.com, there are approximately 1000

pizza shops in Chicago. We assume that at any one time 10% of them will use UAS for deliveries.

Additionally there are approximately 500 take-out Chinese restaurants, and 300 other sandwich or

food delivery restaurants in Chicago. We assume that at any one time 1
8

th
of them will use UAS for

deliveries. To account for anticipated package delivery operations, we assume that there are ap-

proximately 200 UAS operations for package delivery at one time. This includes Amazon, Google,

USPS, FedEx, UPS, DHL, and other courier type activities. Aerial photography applications will

also contribute to the density of small UAS. We assume that during peak times 200 small UAS will

be employed for aerial photography applications such as real estate advertising, sporting events,

follow-me applications, and news agencies. Finally, we project that there will be 200 UAS opera-

tions for law enforcement, traffic monitoring, and infrastructure monitoring applications. The sum

of these estimates results in 800 small UAS operating over Chicago at peak times.
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It is also necessary to estimate the number of manned aircraft operations due to the fact

that these aircraft will contribute to the ADS-B congestion. Between O’Hare International Airport

(ORD) and Midway Airport (MDW), there were approximately 1,131,185 aircraft operations in

2014 [48, 49]. Even though many of the aircraft operating out of ORD and MDW will be trans-

mitting on the 1090 MHz ADS-B frequency, they will require bandwidth on 978 MHz frequency

due to TIS-B and ADS-R. Thus all aircraft operations from both O’Hare and Midway airports will

be reflected on 978 MHz ADS-B. The average rate of departure and arrival of aircraft between the

two airports is 128 per hour. Assuming a 100 nmi transmit range for each manned aircraft and a

250 knot average speed, at any one time there are approximately 45 aircraft in range of the city.

The combination of UAS and manned aircraft results in 845 transmitting aircraft in Chicago. Of

those 845 aircraft, 45 are manned aircraft and 800 are UAS.

To complete the air traffic density calculations, several additional facts and assumptions

are necessary. First we assume that the UAS are flying below 400 ft. This is an altitude that will

meet or exceed the needs for almost all small UAS applications, and it is the current focus range

for the UAS Traffic Management (UTM) System [50]. We further assume that the operating UAS

are spread out uniformly over the city and that the UAS operate within the limits of the city. It is

necessary to note that the area of Chicago is 176.6 nmi2. With this information, we can calculate

a UAS density. Given the area of the city and the operational altitude, the volume of operation is

58.1 nmi3. With that volume and the number of transmitting aircraft, the anticipated density of

transmitting aircraft becomes 14.5 aircraft/nmi3, and the density of small UAS is 13 aircraft/nmi3.

6.1.2 Determining an Appropriate Transmit Range

Another important aspect of the model in Figure 6.1 is the method used to determine an

appropriate ADS-B transmit range for small UAS. In this method we first look to the probabil-

ity of trackability and the limiting tracking variable. The probability of interference for a given

probability of trackability can be calculated with the relationship given in Section 5.1.3 by

P(Interference) = LTV
√
(1−P(Trackability))
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where LTV is the limiting tracking variable. With the probability of interference, it is necessary

to determine the number of transmitting aircraft that lead to this probability of interference. Due

to the lack of an explicit equation for the number of aircraft from the probability of interference,

we determine the number of transmitting aircraft with a bisection root-finding method. With the

number of aircraft and the previously determined density, the transmit range can be identified.

Since the number of manned aircraft is assumed to be constant regardless of UAS transmit range,

we subtract the number of manned aircraft from the total number of transmitting aircraft. This

results in the number of UAS that can be transmitting within range of the ownship. Due to the fact

that the UAS are assumed to operate below 400 ft, the transmit range is determined by calculating

the radius of a disk that is 400 ft thick. This transmit range is then the maximum acceptable range

for ADS-B transmissions that will result in the desired probability of trackability.

It is important to note that this transmit range is only intended to apply to small UAS.

Current FAA regulations dictate the transmit power, and consequently nominal range, of manned

aircraft. Furthermore, the transmit range of small UAS will not significantly affect the ability

of manned aircraft to track intruders. Provided that manned aircraft also have an efficient track-

ing method with parameters similar to those assumed for small UAS, the probability with which

manned aircraft can track intruders will be very similar to the probability of trackability specified

for small UAS.

6.1.3 Calculating a Maximum Self-Separation Threshold

The maximum self-separation threshold can be determined from the maximum tracking

range. The maximum tracking range can be determined by taking the maximum acceptable trans-

mit range and reducing it by the distance, and implicitly the time, required to initialize a track of

the fastest expected target. Furthermore, the maximum tracking range is the maximum range at

which tracking of all intruders can be guaranteed to the desired probability of trackability. Since

this is the range at which essentially all targets can be tracked, it is reasonable to make this range

the maximum self-separation threshold distance. Larger definitions of the SST are superfluous in

that the ownship cannot reliably detect intruder small UAS at that range. In detailing the value for

the maximum self-separation threshold, a time-based definition must also be considered. Using

the ownship speed, the maximum speed of an intruder, the maximum tracking range, and an ap-
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propriate time metric, a time-based SST definition can be calculated from the distance-based SST

definition.

6.1.4 Calculating a Maximum Well Clear Definition

With a maximum possible distance and time-based SST definition, it is possible to define a

maximum possible WC definition. The maximum WC definition can be determined by calculating

the minimum distance and time between the ownship and intruder over the course of an evasive

maneuver by the ownship. If the WC definition is smaller that this minimum distance or time, then

the ownship will not be able to maintain WC.
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θ φ
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Figure 6.2: A parameterized maneuver by an ownship to maintain self-separation from a head-on
intruder.

Figure 6.2 shows the geometry of an evasive maneuver in a head-on collision scenario.

The ownship, represented by a multirotor, turns as tightly as possible and then continues on in a

straight line. The intruder maintains a straight path as though it were oblivious to the multirotor.

In Figure 6.2, dinit is the distance between the two aircraft at the time of the maneuver. φ is the

degree by which the ownship changes course, and Rmin is the minimum turn radius achievable by

the ownship. dn and de are the distance between the intruder and ownship at the closest point of
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approach in the n and e directions respectively. Pi and Po are the positions of the intruder and

ownship. Finally, Rs and θ are the closest point of approach and the angle as shown in the figure.

Determining the Minimum Distance Between an Intruder and Maneuvering Ownship

In identifying the minimun distance between the ownship and the intruder, the starting

distance between the two aircraft, dinit, is the maximum SST from the previous section. The initial

positions and velocities of the ownship and intruder are also known by virtue of using ADS-B as

the sensor. As a result of these known values,the first step in determining the minimum distance

between the ownship and the intruder is to identify the minimum turn radius of the ownship. To do

this we assume that the multirotor has an intial forward velocity going into the turn. The velocity is

maintained while also ensuring that the north axis of the body frame of the multirotor is pointing in

the direction of travel of the multirotor throughout the turn. We further assume that the multirotor

does not change altitude over the course of the turn thus the flight path angle is zero.

𝑚𝑚𝑉𝑉𝑜𝑜2

𝑅𝑅
mg

φ

Fθ

e axis

d axis

Figure 6.3: A free body diagram of a turning multirotor. The multirotor is pitched forward θ for
level flight such that Fθ = Fthrust cosθ .
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Following the same methodology given by Beard and McLain [16] to derive the minimum

turn radius, the force balance for Figure 6.3 is

Fθ sinφ =m
V 2

o
R

Fthrust cosθ sinφ =m
V 2

o
R

=mVoχ̇ (6.1)

for the east axis and

Fθ cosφ =mg

Fthrust cosθ cosφ =mg (6.2)

in the negative down axis. Dividing Equation (6.1) by Equation (6.2) and solving for χ̇

yields

Fthrust cosθ sinφ

Fthrust cosθ cosφ
=

mVoχ̇

mg

χ̇ =
g

Vo
tanφ . (6.3)

Since

R =
Vo cosγ

χ̇
(6.4)

and γ = 0,

g tanφ

Vo
=

Vo

R
. (6.5)

Solving Equation (6.5) for R results in
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Rmin =
V 2

o
g tanφ

. (6.6)

Thus Equation (6.6) shows that the minimum turn radius for a multirotor is identical to the

coordinated turn equation for fixed-wing aircraft where Vo is the initial velocity of the ownship.

The rest of the analytic solution to the minimum closest point of approach is an extension of work

done to determine the necessary sensing range for a small UAS.

Taking Pi cpa as the origin, the closest point of approach between the two aircraft shown in

Figure 6.2 is

0 =
(Rs cosθ ,Rs sinθ)− (0,0)
||(Rs cosθ ,Rs sinθ)− (0,0)||

− [(−Vo sin
(

π

2
−φ

)
,Vo cos

(
π

2
−φ

)
)− (Vi,0)]. (6.7)

Solving for tanθ results in

tanθ =
Vo cosφ +Vi

Vo sinφ
(6.8)

=cotφ +
Vi

Vo sinφ
. (6.9)

Using the relationships shown in Figure 6.2,

tarc =
φRmin

Vo
(6.10)

tl =
L1

Vo
(6.11)

tanθ =
de

dn
(6.12)

dn =dinit− (tarc + tl)Vi−Rmin sinφ −L1 cosφ (6.13)

de =Rmin(1− cosφ)+L1 sinφ . (6.14)

Using these equations and Equation (6.8),
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Vo cosφ +Vi

Vo sinφ
=

Rmin(1− cosφ)+L1 sinφ

dinit− (φRmin +L1)
Vi
Vo
−Rmin sinφ −L1 cosφ

. (6.15)

Solving for L1 yields

L1 =

(
Vo cosφ+Vi

Vo sinφ

)
(dinit−φRmin

(
Vi
Vo

)
−Rmin sinφ)−Rmin(1− cosφ)(

Vo cosφ+Vi
Vo sinφ

)(
Vi
Vo

)
+
(

Vo cosφ+Vi
Vo sinφ

)
cosφ + sinφ

. (6.16)

By using in the value for L1 to solve for dn and de using Equations (6.13) and (6.14), the

closest point of approach between the two aircraft can be calculated with the Euclidean distance

formula,

Rs =
√

d2
n +d2

e . (6.17)

This result, Rs, is then the minimum distance between a straight-line intruder and a maneu-

vering ownship that maintains its speed and changes is course by φ .

Determining the Minimum Time Between an Intruder and Maneuvering Ownship

With the minimum distance between an intruder and maneuvering ownship, it is necessary

to determine how close the intruder will come to the ownship in terms of time. The time metric that

we use is τDMOD. This is the metric used in TCAS and it is a robust time metric. As the formula

for calculating τDMOD is non-differentiable there is no analytical solution to the minimum time

metric. We assume that the ownship maneuvers as shown in Figure 6.2. As previously stated, this

is a function of the intruder speed Vi, the ownship speed Vo, the maximum detection distance Rinit,

the course change φ , and the ownship minimum turn radius Rmin. To calculate the minimum time

between the ownship and intruder, we use a simulation-based method to model the motion of both

aircraft over the course of the encounter. Figure 6.2 illustrates the worst-case, head-on scenario
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considered in this simulation. The intruder position, (pi n, pi e), is modeled by

ṗi n =vi n

ṗi e =vi e.

The ownship position, (po n, po e), can be modeled by

ṗo n =vo n

ṗo e =vo e

where

vi n =−Vi

vi e =0

vo n =

Vo sin(θ) 0≤ θ ≤ π

2

Vo
π

2 < θ

vo e =

Vo cos(θ) 0≤ θ ≤ π

2

0 π

2 < θ

θ̇ =
Vo

Rmin
.

From the intruder and ownship positions and velocities, it is possible to calculate a relative

position and velocity at a given time step. These are given by

pr =(pi n, pi e)− (po n, po e)

vr =(vi n,vi e)− (vo n,vo e).

The minimum time between the two aircraft over the course of the maneuver is the minimum

value of time metric from the set of time metrics calculated over the course of the simulation. This

value is then the maximum possible well clear time definition. The maximum possible well clear
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distance is the minimum distance between the intruder and ownship in this worst-case scenario.

Thus the maximum achievable well clear distance is the distance calculated in Equation (6.17).

6.2 Lower WC Bound Analysis Method

The minimum WC boundary for small UAS is key to determining a WC boundary for

small UAS. The methodology to determine the minimum WC boundary is similar to that used to

determine the maximum boundary.

Ownship

Intruder
Collision Avoidance 

Path
Separation 
Assurance 

Path

NMAC

WCmax
SST

Wcmin

Figure 6.4: The methodology used to determine both the upper and lower WC bounds.

Figure 6.4 shows the methodology used to determine both the upper and lower WC bounds.

As previously explained the upper bound is determined by the maximum distance that a maneu-

vering ownship can maintain from an intruder in the presence of ADS-B frequency congestion.

The lower WC bound is determined by assuming that the ownship does not manuever when it first

detects the intruder. Rather the ownship waits to manuever until it is just barely able to avoid the

intruder NMAC volume through its maneuver. In other words the minimum WC boundary is clos-
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est that two aircraft can get before an NMAC is guaranteed. This section focuses on calculating

the lower WC boundary.

In calculating the lower WC boundary there are two cases to consider. The first case occurs

when Rmin < RNMAC, and the second case occurs when Rmin > RNMAC. These two cases each yield

different equations. The minimum WC for case one is

dminWC =
1

Vo

(
V 2

o (Vo +(π/2−1)Vi

g tanφ
+RNMAC

√
V 2

o +V 2
i

)
. (6.18)

The equation for case two is

dminWC =
√

RNMAC sinθ(2Rmin−RNMAC sinθ)

+
Vi

Vo

(
Rmin cos−1

(
Rmin−RNMAC sinθ

Rmin

))
+RNMAC cosθ (6.19)

where θ is calculated using a bisection method on

0 =
Vo sinθ

√
RNMAC sinθ(2Rmin−RNMAC sinθ)

Rmin
−
(

Vo(Rmin−RNMAC sinθ)

Rmin
+Vi

)
cosθ . (6.20)

Equations (6.18) and (6.19) calculate the distance necessary to ensure that an ownship can

maneuver sufficiently to avoid the NMAC volume of an intruder. Thus, dminWC is the minimum

WC distance for small UAS. The time-based minimum WC definition is determined in the same

way as the maximum WC definition, but RNMAC is used in the τDMOD equation rather than the

maximum WC definition.

6.3 Simulation Results

This section shows the results of a series of calculations/simulations wherein we determine

the maximum and minimum acceptable SST and WC definitions for a given set of parameters.

We start by demonstrating and exercising the model presented in Figure 6.1. Then we couple the
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minimum WC definitions from Section 6.2 to create a well clear recommendation for small UAS.

In both the maximum and minimum WC analysis we use τDMOD as the time metric. This is the

metric used by both TCAS and other leading WC recommendations for larger aircraft [23]. τDMOD

is a modified time to collision and is given by

τDMOD =

−
(r2−HMD2)

rṙ CPA≤ HMD

∞ CPA > HMD
. (6.21)

In Equation 6.21 r and ṙ are the range and range rate between the intruder and ownship respectively.

Additionally both the maximum and minimum WC definitions rely on a set of several parameters.

These parameters are given in Table 6.1.

Table 6.1: Key parameters for SST and WC definition evaluation.

Parameter Value

Intruder Speed 250 kt
Probability of Trackability 0.999999
Message Start Opportunities 3200
UAS Density 13.77 UAS/nmi3

UAS Type Multirotor
Ownship Bank Angle 40 deg
Ownship Course Change 90 deg
Lift-to-Weight Ratio 1.5
HMD Value 0.65 nmi
Max UAS Altitude 0.0658 nmi (400 ft)
Limiting Tracking Variable 11

The initial values of the parameters in Table 6.1 are designed to closely match the opera-

tional characteristics of current airspace. This scenario serves as a baseline with which all other

calculations can be compared. Table 6.1 shows the baseline values of the key parameters. The

upper group of parameters in Table 6.1 are those parameters that will be varied in the subsequent

analysis, and the lower group of parameters are those parameters that are not expected to change.
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6.3.1 Maximum WC Model

To demonstrate the maximum SST and WC method in Figure 6.1, we analyzed a WC

definition proposed by the Sense and Avoid Science Research Panel (SARP) based on a rigorous

set of simulations and testing [23]. The method defines the distance threshold and HMD to be

0.6583 nmi (4000 ft) and the time-based threshold to be τDMOD = 35 s. The SST that we examine

in our analysis was proposed by NASA Ames Research Center and is τDMOD = 90 s and distance

and HMD of 0.6583 nmi (4000 ft) [22].

To provide perspective on the ability of all types of UAS to maintain the proposed SST and

WC definitions, we sequentially the compute the model for several different ownship speeds. Ad-

ditionally we explore the sensitivity of key parameters by varying them individually and observing

the effect on the maximum SST and WC definitions. The initial scenario uses the parameter values

shown in Table 6.1 which are designed to closely match the operational characteristics of current

airspace.

Figure 6.5 shows the minimum achievable SST and WC definitions. The red line in each

plot represents the nominal value of the definition [22, 23]. The top left plot shows the maximum

SST distance definition. As is clear from the figure, the ownship is able to detect intruders far

before they cross the distance-based SST. As the speed of the ownship increases, the detection

range decreases slightly due to the increased distance necessary to initialize a track. The top right

plot shows the value of τDMOD when the intruders are detected. From this plot it is very clear that

the 90 s time-based SST is much too large. For all ownship speeds greater than approximately

35 kts, the maximum achievable time-based SST is less than the nominal SST definition. Thus

when the intruders are detected they will already have crossed the time-based SST. The bottom left

plot shows the maximum achievable distance-based WC definition. From the plot it is clear that

nearly all ownship speeds are able to maintain the nominal WC distance, but ownships moving at

20 kts are unable to maneuver in time. The bottom right plot reinforces this. Ownships moving at

20 kts are unable to maneuver sufficiently to achieve the required horizontal miss distance. Thus

the aircraft comes too close in terms of both time and distance.

Overall Figure 6.5 indicates that the current airspace regulations are not suitable for high-

density small UAS operations. Small, relatively slow-moving UAS, such as the DJI Phantom 1, are

unable to maneuver fast enough to maintain the proposed SST and WC definitions. Furthermore,
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Figure 6.5: Minimum achievable SST and WC definitions for current airspace conditions.

from the top right plot it is clear that the maximum time-based SST that is viable for all ownship

speeds is τDMOD =46 s. For a WC time-based definition that is τDMOD =35 s, this is very little

maneuver time. Interestingly the same high-speed ownships for whom the time-based SST must be

lowered to τDMOD =46 s are able to maintain the τDMOD =35 s time-based WC definition. Thus the

time-based SST definition is too small for the slow UAS and too large for the fast UAS. Changing it

would result is an equally unacceptable solution regardless of the direction of change. This shows

that the time-based SST definition is not to blame. It is reasonable to deduce that the underlying

problem is not the SST and WC definitions, but rather that the airspace regulations and conditions

are unsuitable to high-density small UAS operations.
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Figure 6.6: Achievable SST and WC definitions as a result of alterations to several airspace condi-
tions and regulations.

Figure 6.6 shows the maximum achievable SST and WC definitions as a result of alter-

ations to airspace conditions and regulations. The track marked by circles shows the base line

values from Figure 6.5. All of the other lines indicate that the achievable SST and WC definitions

increase significantly. The triangle track shows the results from conditions where the maximum

intruder speed is 160 kts rather than the currently regulated 250 kts. The box track explores the

possibility of having only 400 aircraft operating at one time rather than the anticipated 800. Thus

the UAS density would only be half of what is shown in the base line scenario. The plus sign

track illustrates the maximum achievable SST and WC definitions if the bandwidth is doubled by

increasing the number of MSOs from 3200 to 6400. Finally, the diamond track shows the results
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if the probability of trackability were reduced to be 0.999 rather than 0.999999. While this change

would significantly reduce the ability of the DAA system to reliably detect intruders, the maximum

achievable SST and WC definitions would also increase significantly.

Ultimately the reduction in the probability of trackability results in the largest increase in

the maximum achievable SST and WC definitions, and the reduction of the intruder speed changes

the definitions the least. Interestingly, none of the regulations or airspace condition changes results

in a maximum time-based SST that is greater than the nominal definition, but all of the changes

satisfy the distance-based SST, distance-based WC, and time-based WC definitions.

It is important to note that the results shown in Figure 6.6 are for an ownship that maneu-

vers as aggressively as possible as soon as the intruder comes into view. Such a demand on the

ownship undermines much of the intent behind self-separation. Maintaining well clear is typically

understood to imply a gradual change in flight path to ensure a safe distance between aircraft.

Demanding that a small UAS turn as sharply as physics will allow from its original path and fly

perpendicular to that path as fast as it can is much more indicative of a collision avoidance ma-

neuver. Such maneuvers would seriously interfere with the intended mission of a small UAS, and

may, frankly, be intolerable. Additionally it is very unlikely that small, slow-moving UAS will be

operating in the same vicinity as manned aircraft that are traveling at 250 kts. In accordance with

Google’s1 and Amazon’s (amazon.com/primeair) published vision for small UAS operation, it

is reasonable to expect that small UAS will only encounter relatively slow manned aircraft such

as police and medical helicopters. In Amazon’s plan they envision a ”High-Speed Transit” region

that is between 200 ft and 400 ft above ground level. It is in this region where small UAS would

encounter manned aircraft. In such a region, very slow moving aircraft such as the DJI Phantom 1,

which has a max speed of 20 kts, would not be permitted.

As a result of these expectations, the maximum WC model is adjusted to have a maximum

intruder speed of 140 kts and an ownship course change of 40 degrees. Figure 6.7 shows the maxi-

mum achievable SST and WC definitions for this scenario. From the figure it is clear that while the

slowest UAS are not able to maintain WC, almost all UAS are able to maintain WC from intruders

traveling at 140 kts. Furthermore both the distance and time-based SST definitions are achievable.

As a result of Figure 6.7, the maximum SST definition for small UAS in congested airspace should

1Google Inc., 2015. Google UAS Airspace System Overview.
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Figure 6.7: Achievable SST and WC definitions as a result of alterations to several airspace condi-
tions and regulations in accordance with Amazon and Google UAS integration vision.

be 7.56 nmi in distance or τDMOD=96.5 s. The maximum WC definition under the same conditions

should be 0.658 nmi of distance and τDMOD=95.7 s. Thus the definition recommended by SARP is

achievable under the proposed low-speed, low-altitude airspace.

6.3.2 Minimum WC Model

The maximum SST and WC definitions provide valuable insight on what is achievable

for small UAS. To make a recommendation for WC for small UAS, however, a minimum WC

criterion is also necessary. The modified equations for the minimum detection range discussed in
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Section 6.2 provide that lower bound. As before the minimum WC definition was calculated for

multiple ownship speeds to show the WC definition for a range of ownship types.
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Figure 6.8: Minimum and maximum WC definitions.

Figure 6.8 shows both the upper and lower WC bound as the ownship speed varies. The

red lines are the upper bound. Although the upper bound varies at different ownship speeds, the

true upper bound is the minimum point on the red line. This ensures that the maximum WC bound

is viable for all ownships across the range of speeds. The blue line is the lower bound. In terms of

distance the maximum point on the blue line is the true lower bound for all ownship speeds. For

time, however, the minimum point on the blue line is the lower WC time bound. The true bounds

are shown by the black dotted line.

The figure provides several key insights. First, low speed ownships require the most dis-

tance to maneuver. This is because they are moving sufficiently slowly that they are unable to clear

the path of the intruder before an NMAC or loss of WC occurs. Secondly, the figure indicates

that appropriate WC distance definitions for small UAS in the presence of slow-moving manned
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aircraft are on the order of 0.5 nmi (3038 ft). This is larger than anticipated, and it is a valuable

anchor point to inform the discussion of WC for small UAS. Third, and most importantly, the com-

bination of an upper and lower WC bound is a basis for recommending a WC definition for small

UAS.

On that basis we recommend that the WC definition for small UAS be 0.527 nmi (3200 ft)

or τDMOD=25 s. This definition falls between the boundaries shown in Figure 6.8. As additional

data, such as small UAS flight patterns, become available, these bounds and consequently the

recommendation can be refined. In the current absence such data, this recommendation is a key

step to understanding operationally feasible SST and WC definitions for small UAS.

6.4 ADS-B SST and WC Definition Conclusions

In conclusion, the analysis presented in this chapter determines the maximum and mini-

mum achievable SST and WC definitions in both a distance and time-based context. Furthermore

it provides a tool with which SST and WC definitions can be evaluated with respect to their fea-

sibility for future high-density, ADS-B-equipped airspace. Most importantly the recommendation

for well clear for small UAS is a key step to integrating small UAS into the national airspace.

Overall the approach, methods, and recommendations here are a key contribution to defining well

clear and self-separation thresholds for future small UAS-dense airspace.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

In conclusion, the demand for small UAS is increasing almost daily. First-responders and

governmental agencies are turning to small UAS to accomplish tasks faster and more efficiently

than ever before. Private companies are planning to deploy small UAS to open new markets and

offer services that were previously unavailable. Individual citizens are using UAS to explore and

document their surroundings in previously unimaginable ways. Ultimately small UAS are a driving

force in revolutionizing all that we formerly knew about aviation, aircraft, and the world around

us.

At the heart of this rapid development is a need to maintain the high level of safety that

the aviation community has achieved for so many years in the past. Detect-and-avoid systems for

UAS are a fundamental piece of such a level of safety. As the FAA 2020 mandate draws nearer,

Automatic Dependent Surveillance-Broadcast is gaining more and more attention as a key sensor

in DAA systems on both small UAS and manned aircraft. In the excitement surrounding UAS

applications, it is important that ADS-B is vetted and understood as a DAA sensor. High-density

small UAS operations may stress a DAA systems to its limits. In such an environment, ADS-B

transmissions may interfere with each other at an unacceptable level.

7.1 Conclusions

To anticipate the possibility of high-density small UAS operations in the NAS, this thesis

provides several key contributions to the understanding of ADS-B as a DAA sensor on small UAS.

Chapter 2 provides an error characterization for ADS-B messages. This error characterization can

be used to simulate ADS-B messages for testing of DAA systems. It also provides a basis for

the development of probabilistic intruder tracking, detection, and conflict/collision avoidance path

planning. Chapter 2 also contains a review of ADS-B strengths and weaknesses in the context

of DAA on small UAS. Chapter 3 presents a comparison of four different dynamic filters for the
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estimation of ADS-B-transmitted measurements. In evaluating a nearly-constant-velocity Kalman

filter, constant-jerk Kalman filter, interacting multiple models filter, and particle filter, the results

demonstrate that the KF-NCV is the most accurate and efficient filter. Furthermore, the KF-NCV

was used to accurately estimate the position of an intruder from recorded ADS-B measurements

in the NAS. The estimator comparison and tracking demonstration, show that a KF-NCV is fully

capable of overcoming much of the error inherent in ADS-B measurements. Chapter 4 presents a

novel long-range, convex optimization-based path planner for a small UAS. This path planner is

capable of planning a 15 nmi path in the presence of 10 intruders in 5.5 s in MATLAB. The com-

bination of long-range self-separation assurance planning and computational speed is a significant

contribution the the ability of small UAS to maintain well clear. Chapter 5 presents an analysis of

the interference limitations of ADS-B. This analysis shows the importance of ADS-B estimation

as a method to increase the feasible range of the transmissions. It furthermore demonstrates that

transmitting ADS-B messages too far has a negative impact on the overall ability of individual UAS

to detect intruder aircraft. The derivation of the probability of interference and the probability of

trackability is a novel and significant contribution to ADS-B-based DAA research efforts. Finally,

Chapter 6 provides a recommendation for well clear for small UAS in ADS-B congested airspace.

It also presents an analysis of the leading self-separation threshold and well clear definitions with

respect to ADS-B interference. The methods presented in Chapter 6 also represent a tool with

which all SST and WC definitions may be evaluated. The results of the analysis show that changes

must be made to NAS regulations before high-density small UAS operations are feasible. Overall

these results and contributions are valuable additions toward DAA on small UAS.

7.2 Recommendations

Based on the results presented in this thesis, several key actions can be taken to implement

the presented work. First, ADS-B should continue to be pursued as a valuable sensor for DAA on

small UAS. That being said, the susceptibility of ADS-B to interference should not be forgotten.

ADS-B is a promising sensor based on its long range, low power, omni-directional transmission of

a wealth of information. If other sensors become available the offer that same set of characteristics

and are less vulnerable to interference, then they should be seriously considered as a replacement to

ADS-B. Second, an intruder tracking method, such as the KF-NCV described in this thesis, should
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be implemented as a standard, integral part of any ADS-B-based DAA system for either manned

or unmanned aircraft. Although at first glance, ADS-B seems to not need estimation methods,

the KF-NCV is capable of reducing measurement noise, overcoming measurement dropout, and

providing state estimates much faster than the 1 Hz measurement rate. Thus it is an important

part of any ADS-B-based DAA system. Third, the convex optimization path planner presented in

Chapter 4 is a valuable self-separation algorithm for ADS-B equipped small UAS. It fills a need

for computationally efficient, long-range conflict avoidance path planning. It should be tested in

a compiled programming language to demonstrate real time operation. Once FAA regulations

allow, it should be implemented on an small UAS to test it in a true conflict scenario. Fourth,

the work on ADS-B interference should be taken into careful consideration in defining a transmit

power regulation for ADS-B on small UAS. Current regulations lead to transmit ranges that are

unsustainable for high-density small UAS operations. Thus to properly ensure that small UAS can

detect intruders, the presented probability of interference and probability of trackability must be

considered. Although not as applicable to small UAS, the work on ADS-B interference should be

extended to 1090 MHz and 4G-LTE technology. Both of these protocols have intricate multiple

access schemes, and both have likely application to intruder detection for UAS. Fifth, as a result

of the presented analysis and well clear recommendation for small UAS, a ”High-Speed Transit”

zone should be implemented below 400 ft and above 200 ft. Such a zone would ensure that small

UAS would only encounter slow-moving manned aircraft. This would open the door to allow

a wide array of UAS applications that are currently not permitted. Additionally the well clear

recommendation should be tested in simulation and human-in-the-loop scenarios to verify it. As

additional information becomes available the recommendation should be refined. As it stands,

however, the proposed well clear recommendation for small UAS fills the pressing need for such a

definition. Overall, extending the results achieved through the research presented in this thesis can

significantly expand the state of the art. Ultimately, the combination of analyses and developments

included in this thesis represent a significant and timely contribution to ADS-B research and larger

DAA research efforts to integrate small UAS into the National Airspace System.
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