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SUMMARY

Trajectory optimization is an important part of launch vehicle design and

operation. With the high costs of launching payload into orbit, every pound that can

be saved increases affordability. One way to save weight in launch vehicle design and

operation is by optimizing the ascent trajectory.

Launch vehicle trajectory optimization is a field that has been studied since the

1950’s. Originally, analytic solutions were sought because computers were slow and

inefficient. With the advent of computers, however, different algorithms were devel-

oped for the purpose of trajectory optimization. Computer resources were still limited,

and as such the algorithms were limited to local optimization methods, which can

get stuck in specific regions of the design space. Local methods for trajectory opti-

mization have been well studied and developed. Computer technology continues to

advance, and in recent years global optimization has become available for application

to a wide variety of problems, including trajectory optimization.

The aim of this thesis is to create a methodology that applies global optimization

to the trajectory optimization problem. Using information from a global search, the

optimization design space can be reduced and a much smaller design space can be

analyzed using already existing local methods. This allows for areas of interest in the

design space to be identified and further studied and helps overcome the fact that

many local methods can get stuck in local optima.

The design space included in trajectory optimization is also considered in this

thesis. The typical optimization variables are initial conditions and flight control

variables. For direct optimization methods, the trajectory phase structure is currently

chosen a priori. Including trajectory phase structure variables in the optimization

xiv



process can yield better solutions.

The methodology and phase structure optimization is demonstrated using an

earth-to-orbit trajectory of a Delta IV Medium launch vehicle. Different methods

of performing the global search and reducing the design space are compared. Local

optimization is performed using the industry standard trajectory optimization tool

POST. Finally, methods for varying the trajectory phase structure are presented and

the results are compared.
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CHAPTER I

INTRODUCTION

The launch vehicle market is driven by both commercial and military space applica-

tions. In 2012, as in 2011, there were 80 launches worldwide [3]. While this may not

seem like a lot, a cost estimate for a launch is on the order of $100 million. Total

revenues in the commercial launch vehicle market in 2012 were estimated at $2.2 bil-

lion [3]. The commercial market forecasts predict an overall increase in commercial

launch demand over the next 10 years [2]. In addition, military space applications

are constantly being launched from various countries. In the United States, the U.S.

Space Transportation Policy from 2005 states

“Access to space through U.S. space transportation capabilities is essential

to: (1) place critical United States Government assets and capabilities into

space; (2) augment space-based capabilities in a timely manner[...]; and

(3) support government and commercial human space flight.” [1]

Space launch vehicles are in demand in both commercial and government sectors.

They are the “key to space”, and therefore strategically important to both businesses

and government entities [46].

Launch vehicles are designed, built, and operated with the express purpose of

transporting payload from earth’s surface to a specified orbit. At the surface of the

earth a payload will be at 0 km in altitude and moving less than 1 km/s due to

the rotation of the earth. A typical Low Earth Orbit (LEO) mission will transfer a

payload from earth’s surface to an altitude of 500 km and accelerate it to more than

1



7 km/s. A simple calculation shows the difference in energy between the states.

∆E = ∆KE + ∆PE = 1
2m(v2

2 − v2
1) +mg(h2 − h1) =

1
2m(70002) +m(9.81)(500000) ≈ 30MJ/kg

(1)

For every kg of payload about 30 MJ of energy needs to be imparted. This is roughly

equivalent to the kinetic energy of a loaded 18-wheeler moving 40 miles/hour. This

estimate does not take into account any losses incurred during the vehicle launch.

Because of the high acceleration involved in space launch, launch vehicle designers

have a measure of launch vehicle performance known as ∆V , or simply put, change

in velocity.

∆V = g0Ispln

(
mi

mf

)
(2)

Where g0 is the gravitational acceleration at Earth’s surface, 9.81 m/s, Isp is the

specific impulse, and mi and mf are initial and final mass respectively [71]. The term
mi

mf
is sometimes referred to as the mass ratio MR. Specific impulse is a measure

of the propulsion system efficiency. It quantifies how much thrust is produced for

a given amount of mass flow. The higher the specific impulse, the more thrust is

produced for a given mass flow rate, and therefore the more efficient the propulsion

system. In terms of overall launch vehicle performance, ∆V is linearly proportional

to specific impulse.

The natural-log term is a measure of the structural system efficiency. The final

mass term is essentially the initial mass minus the propellant-used mass. By mini-

mizing structural mass, the final mass term is minimized, and thereby the natural-log

term is maximized. In terms of overall launch vehicle performance, ∆V is exponen-

tially related to the mass ratio. The total mass of a launch vehicle can be broken down

into propellant mass, structural mass, and payload mass. Increases in structural mass

directly affect the payload weight. In conceptual design a decrease in upper stage in-

ert mass (or structural mass) has a 1 to 1 relationship to payload mass. Every pound

2



saved is a pound gained for payload mass [71]. Once the vehicle is built, increases

in fuel weight required will decrease the payload weight. In general launch vehicle

design is driven largely by weight, because any increase in weight has an exponential

effect on system performance.

Equation 2 above is sometimes referred to as the ideal ∆V equation, because it

measures the maximum total velocity a vehicle can impart if there are no losses during

the launch process. However, the ideal velocity change is never achieved. During a

launch trajectory there are three types of losses, shown in Equation 3 below.

∆Vactual = ∆Videal −∆Vthrust vector losses −∆Vdrag losses −∆Vgravity losses (3)

The three types of losses are categorized as thrust vector losses, drag losses, and

gravity losses [71]. Thrust vector losses are due to thrust vector and velocity vector

misalignment. Basically, the thrust is being used for a purpose other than to accel-

erate the vehicle. This can occur due to steering or imprecision in the thrust angle

measurements of different engines. In trajectory optimization, the thrust vector losses

due to steering are most relevant. Drag losses are due to drag the vehicle experiences

as it moves through the atmosphere. Drag is proportional to atmospheric density,

which decreases exponentially with altitude. Trajectories that minimize drag losses

will gain altitude as quickly as possible to get out of earth’s atmosphere. Gravity

losses are due to imparting velocity against the acceleration of gravity. When thrust

is perpendicular to gravity there are no gravity losses, because no thrust is being used

to counteract gravity, and therefore all the thrust is imparting a change in velocity.

Obviously, gravity losses are minimized by thrusting horizontally.

The three types of losses are all functions of the vehicle trajectory. Trade-offs exits

between minimizing drag losses by gaining altitude and minimizing gravity losses

by thrusting horizontally, all the while keeping steering angles small to minimize

thrust vector losses. In real world applications, it is impossible to bring all these

terms to zero, but the object of trajectory optimization is to find the trajectory that

3



minimizes the sum of all these losses while not violating any vehicle constraints,

such as maximum acceleration or maximum dynamic pressure (used as a measure of

aerodynamic loads.)

It is important to note a difference in perspective between launch vehicle design

and launch vehicle operation when it comes to trajectory optimization. In launch

vehicle design the actual ∆V , sometimes called the required ∆V , is set by the required

mission(s). This is the change in velocity that the vehicle needs to be able to impart,

including all the losses. The vehicle is then design with a higher ideal ∆V than

required, taking into account the ∆V losses incurred during the mission trajectory. In

launch vehicle operation the ideal ∆V is fixed; the vehicle has a certain propulsive and

structural efficiency. In this case different trajectories can be developed to maximize

the actual ∆V given different missions. In either case, the goal is to have the vehicle

perform as close to the ideal as possible, and therefore the losses should be minimized.

This leads to an important observation: Optimizing the launch trajectory allows

the vehicle to perform closer to its ideal; hence, trajectory optimization is

a critical part of both launch vehicle design and operation.

Allowing a vehicle to perform closer to its ideal is important when one consid-

ers typical launch costs. For the Space Shuttle it was estimated that it cost around

$10,000 per lb to LEO [58]. The Atlas and Delta launch vehicles operate at a lower

cost somewhere between $3,000 and $5,000 per lb to LEO [58]. The least expensive

estimate is for Russian and Ukrainian launch vehicles, at around $2,000 per lb to

LEO [58]. From a simplistic perspective, every pound saved on fuel because of tra-

jectory optimization can be translated to additional payload, worth between $2,000

and $10,000 per lb in orbit. Trajectory optimization is a very important problem and

has direct effects on launch vehicle design and operations.

An interesting side note is that as the launch vehicle market grows and demand

increases, entrepreneurs are finding ways to cut costs and design, build, and launch
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spacecraft in more affordable ways. Elon Musk, for example, at Space Exploration

Technologies believes that through manufacturing and process optimization the cost

of launching to LEO can be decreased to less than $500 per lb [52]. Even with this

drastically reduced cost, trajectory optimization is still required, as each pound of

fuel is still significantly costly [65].

The goal of this research is to develop a trajectory optimization method for launch

vehicles that is robust, explores all the design space, and does not require a significant

amount of human interaction. Chapter 2 will discuss how the current optimization

methods are not always robust, generally require cases to be run manually, and do

not always take into account the entire design space.
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CHAPTER II

LITERATURE REVIEW

2.1 Optimization
2.1.1 General Optimization Problem

The general optimization problem can be formulated mathematically as (as seen in

Multidiscipline Design Optimization) [68]

Minimize:F (x) objective function

Subject to:

gj(X) ≤ 0 j = 1,m inequality constraints

hk(X) = 0 k = 1, l equality constraints

X l
i ≤ Xi ≤ Xu

i i = 1, n side constraints

Where

X =



X1

X2

X3

.

.

.

Xn



(4)

The design variables are parameters in the user’s control that determine the out-

come of the objective function. The objective function may be evaluated analytically,

numerically, or even experimentally. For the purposes of this discussion, the term

performance index is used interchangeably with objective function. Inequality con-

straints are constraints where some function of the design variables must be less than
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zero. Equality constraints are similar, except that the function must equal zero. Side

constraints are direct upper and lower bounds on the design variables themselves. In

this formulation there are m inequality constraints, l equality constraints, and n side

constraints.

An optimal control problem is a type of optimization problem where the goal is

to determine “the inputs to a dynamical system that optimize (i.e., minimize or max-

imize) a specified performance index while satisfying any constraints on the motion

of the system.”[57] The dynamical system is defined by a set of ordinary differential

equations (ODE’s). The state of the system at any time is found by solving the set of

differential equations given initial conditions and control parameters. The state may

be subject to path constraints, which limit how the system can behave, and boundary

conditions, which determine the state of the system at the initial and final times. In

this case the control is not a single parameter, but a function. Stated mathematically

(as formulated in Betts [16])

ẏ = f [y(t),u(t),p, t] system equations

ψ0l ≤ ψ [y(t0),u(t0),p, t0] ≤ ψ0u initial boundary conditions

ψfl ≤ ψ [y(tf ),u(tf ),p, tf ] ≤ ψfu final boundary conditions

gl ≤ g [y(t),u(t),p, t] ≤ gu path constraints

yl ≤ y(t) ≤ yu ul ≤ u(t) ≤ uu bounds on state and control variables

(5)

Where y(t) is the state vector, u(t) is the control vector, p is the static parameter

vector, and t0 and tf are the initial and final times respectively.

For optimal control problems the control vector is a function, rather than a set

of design variables. This is known as an infinite dimensional control problem [20].

A non-linear optimization problem or non-linear programming problem (NLP) is one

where there are a finite number of input parameters that are used to optimize the

system [36]. An infinite dimensional control problem can be approximated by an

NLP using a process called transcription [57] [25]. This process will discussed in
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more detail in Section 2.2.2.

It is sometimes convenient to divide an optimal control problem into a series of

phases. For each of these phases there exist initial and final boundary conditions and

path constraints. In addition, there are constraints that link one phase to another.

This is used to ensure state vector continuity between phases.

Most real world dynamical systems are complex, and analytic solutions to the

system equations are impossible [65]. Because of this the systems of equations are

solved numerically [57]. Different methods exist for numerically solving ordinary

differential equations, and will be discussed in Section 2.2.1.

2.1.2 Approaches to Optimization

There exist several optimization approaches that have been implemented. The choice

of optimization approach is very problem dependent, and the wrong choice can lead

to long run-times and poor results. Below are given two broad optimization method

categorizations.

2.1.2.1 Global vs. Local Optimization

The global optimum is defined as the set of inputs which yields the best (either

maximum or minimum) performance index over the entire design space [67]. In other

words, of all the feasible combinations of design variables, the globally optimal set

yields the best performance index. A local optimum is a set of inputs which yields

the best performance index within a certain subsection of the design space [72] [55].

Figure 1 illustrates the difference between a global and local optimum. An input

value of x ≈ −1.1 for example is a local optimum while x ≈ −0.2, circled in green,

is the global optimum. An important observation is that a global optimum is a local

optimum, but not all local optima are the global optimum [68].

The function to be optimized can be categorized as convex or non-convex [11].

Practically speaking, an optimization problem is convex if the local optimum is also
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Figure 1: Example of global vs. local optimum [72]

the global optimum [47]. Figure 1, for example, is not a convex problem. If the input

variable x were subject to the constrains −0.3 ≤ x ≤ 0, the problem would be convex.

Determining if a function is convex or not, however, is not always straightforward,

and for many real world problems, convexity cannot be assumed [67]. This means

there exists more than one local optimum in the region of interest; these problems

are referred to as multimodal problems [67].

Local optimization, sometimes referred to as gradient-based optimization [57], is

a method that finds local optimum. As its name implies, it relies on information from

the gradient to determine the optimum. The simplest example of a local optimization

technique is the line search [68]. In one dimension, a starting point is selected, and

steps are taken in a certain direction. At each step the objective function is evaluated.

If the objective function improves, another step is taken; if not, a step is taken in

the opposite direction. If steps in either direction worsen the objective function, the

step size is reduced and the process is repeated. There are many ways to modify

direction selection and step size, and this leads to many different algorithms. Some

of the more common ones included Steepest Descent Methods, Conjugate Direction

Method, Simplex Method, and Sequential Quadratic Programming [68].
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Local optimization techniques can be very powerful and are used in many opti-

mization problems. By using gradient information, they are able to hone in on optima

without wasting function calls exploring the entire area. For convex problems, local

optimization methods are the best option [47]. For non-convex problems, however,

local optimizers may get stuck in local minima [8]. For example, referring again

to Figure 1, if the starting point was chosen to be x = −1, and the step size was

small, a local optimizer would output x ≈ −1.1 as the optimum. This is the main

disadvantage of local optimization methods.

Global optimization methods attempt to solve this problem by performing a search

not entirely based on gradient information. They are designed to be able to find the

global minimum even in highly multimodal problems [55]. A grid search, for example,

would partition the design space in some meaningful way and evaluate the objective

function at each grid point. For discrete design variables, there exists the option to

evaluate every feasible point. For continuous variables this is not possible (although a

continuous space can be discretized). Global optimizers have the advantage that they

explore the design space more exhaustively than a gradient based optimizer [47]. The

opposite side of the coin, however, is that these methods generally require a much

higher number of function calls. Recent advances in the area of computing have made

global optimization methods more feasible and have lead to a recent surge of research

in this area [47]. Another disadvantage of global techniques is the inability to quickly

find local optimum. Returning to the grid search example, an algorithm may pick the

best performing points from an initial grid search and perform a smaller subsequent

grid search around these. As one can imagine the number of function calls using this

method can quickly become prohibitively large.

A difference to note between local and global optimization techniques is that

generally local optimization works with a single point at a time. The optimizer

modifies one candidate solution until it cannot improve further. Global methods
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usually work with populations of solutions. At each iteration in a global method

anywhere between 10 and 1000 candidate solutions may be evaluated, and information

from all of those may be used to determine the candidates for the next population.

The output, then, of a local optimization method is a single solution, while the output

of a global method can be either a single solution or a family of solutions.

2.1.2.2 Deterministic vs. Stochastic Optimization

Another categorization of optimization methods is based on the use of random num-

bers. An algorithm is categorized as deterministic if for a given set of inputs, the

output is always the same. The term deterministic is defined more formally in Lib-

erti [47], but the above definition will suffice for the purposes of this discussion.

Stochastic algorithms, however, use random numbers to generate the output. This

means for a given input, the output may vary. At first glance this may seem of little

value, but stochastic methods have been used extensively in optimization. A more

in depth discussion of how stochastic methods are used in trajectory optimization is

included in Section 2.2.4. An interesting note is that computer algorithms are inher-

ently deterministic. Therefore, to generate random numbers, pseudo-random number

generators are used to simulate randomness [47].

One matter of importance regarding stochastic algorithms is the issue of conver-

gence. For a global optimization method, convergence refers to how well the method

finds global optimum [67]. Stochastic algorithms are based on probability, and there-

fore convergence is not guaranteed for anything less than an infinite number of cases.

This is obviously not feasible, so these algorithms must be generated in such a way

as to maximize the probability of convergence. One way to do this is simply to run

a specific case multiple times [54].

These two categorizations, global vs. local and deterministic vs. stochastic, are

independent and can be combined in any way. A global method, for example, can
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be either deterministic or stochastic, and there exist both local and global stochastic

methods. However, most local methods are deterministic, and global methods are

generally stochastic [47]. This is because local methods inherently have a path to

follow based on gradient information, which is defined by the system equations, not

the optimization method. Global methods, while trying to explore the whole space,

attempt to spread out and look at areas that may not seem promising, and random

numbers can be used to achieve this.

2.2 Trajectory Optimization

Trajectory optimization is an infinite dimensional control problem. Recall from Sec-

tion 2.1.1 that the solution to an infinite dimensional control problem is a function.

There are several ways to approach these infinite dimensional trajectory optimization

problems. As with most real world optimal control problems, trajectory problems are

solved numerically [57]. In literature, the terms trajectory optimization and optimal

control problem are used interchangeably. However, there exists a practical distinc-

tion between the two that arises from the way trajectory problems are optimized. If

the inputs to the system are static parameters, the appropriate term is trajectory

optimization. The term optimal control is used to refer to problems where the inputs

to the system are themselves functions [57] [16]. At first glance this seems contra-

dictory. After all, trajectory problems are optimal control problems. However, the

most common approach to solving trajectory problems is to divide the problem into

phases [57] and approximate the controls as constants or polynomials [37], which can

be expressed as a set of parameters. This reduces the optimal control problem to an

NLP and is known as a direct method. Another method is the indirect method. Both

these methods will be discussed in this section.

As mentioned before there are several methods that have been successfully im-

plemented to optimize trajectories. Trajectory optimization problems are categorized
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both by how they approach the optimization problem and how they solve the dynamic

system of equations. In this section an overview of the current trajectory optimiza-

tion techniques and the mathematical tools required is provided. Because complicated

optimal control problems require numerical simulation, optimization methods can be

categorized by numerical simulation method. For trajectory optimization there are

two main methods used for solving the ODE’s: shooting and collocation.

2.2.1 Numerical Integration Methods

Regardless of how the trajectory optimization problem is solved, whether via direct or

indirect methods or local or global methods, the differential equations must be solved

[37]. As stated earlier, analytic solutions for the differential equations of problems

of this complexity do not exist, so numerical methods must be employed [65]. In

trajectory optimization, the first of two main methods is called shooting, or time-

marching.

2.2.1.1 Shooting Method

Shooting calculates the current state based on information from either current or

previous state information. Essentially, at each time step the system equations are

calculated, and the resulting derivatives are used to update the state to the next time

step. There are several techniques on how the derivatives are used to update the

state. Euler methods are shown in equation 6

xk+1 = xk + hk [θfk + (1− θ)fk+1] (6)

Where fk = ẋ and hk is the time step. When θ is 1, the method is called Euler

forward, because the next state is dependent entirely on the information from the

previous state. This type of numerical integration is called explicit integration [13].

When θ is 0, the Euler backward method is used [12]. In this case the next step is

dependent on the previous state values but derivatives from the next state. These
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methods are called implicit integration methods because the state xk+1 is on both

sides of the equation [13]. Because of this, the equations must be solved iteratively. In

general, explicit methods are easier to implement and more computationally efficient,

but not as accurate as implicit methods.

Euler methods are the simplest form of shooting methods [66]. Probably the most

common numerical integration method, however, is an explicit fourth order Runge-

Kutta method [57]. This method is shown in Equation 7 below.

k1 = hif(xi, ti)

k2 = hif(xi + hi

2 k1, ti + hi

2 )

k3 = hif(xi + hi

2 k2, ti + hi

2 )

k4 = hif(xi + hik3, ti + hi)

xi+1 = xi + 1
6(k1 + 2k2 + 2k3 + k4)

(7)

The two methods discussed thus far, Euler and Runge-Kutta, are single-step meth-

ods, because only one point is used to compute the second point (even though implicit

methods require the current and previous point). There are several other types of

single-step methods, such as Heun and Taylor methods [49]. Another class of numeri-

cal methods use several of the previous steps (once the algorithm has been started) to

compute the next step. These are known as Predictor-Corrector methods. Predictor-

Corrector methods are generally more complex, but can be more accurate. One

example used in spaceflight trajectory optimization is the Adams-Bashforth-Moulton

method [14]. For this study, single-step methods are used because those are the

methods implemented in current trajectory optimization tools, as will be discussed

in Section 2.2.3. The reader is referred to Mathews and Atkinson for a more in depth

discussion on these numerical methods [13] [49].
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2.2.1.2 Collocation Method

In literature collocation is sometimes referred to as transcription [16] [38]. Note,

the word transcription is used differently when speaking in the context of direct

optimization methods, discussed in Section 2.2.3. For the purposes of this discussion,

transcription will be used only in the context of direct methods, and collocation will

be used to refer to the method of numerically solving differential equations.

Collocation employs an interpolating function to approximate the state of the

system. Usually the interpolating function is a polynomial. At collocation nodes,

constraints are used to compare the derivative of the approximating function to the

solution of the system of equations at that point. These constraints are called defect

constraints and are shown in equation 8.

ξ = X(tj)− f(x(tj), tj) (8)

Figure 2 below illustrates the collocation method. Frank [31] summarizes the collo-

cation method as construction of “a polynomial that passes through y0 and agrees

with ODE at s nodes on [t0, t1]. Then [...] let the numerical solution be the value

of this polynomial t1.” In this context the time step between t0 and t1 is broken up

into s nodes referred to as c1, c2, ..., cn. The red lines in Figure 2 represent the slope

of the polynomial, which is compared to the numerical solution of the system equa-

tions. Because of the way the collocation method solves differential equations, namely

solving for all the variables at once, it is considered an implicit method.

Now that the solution method to a set of ODE’s has been discussed, different local

optimization techniques will be explored.

2.2.2 Local Optimization Methods

Before the 1990’s local trajectory optimization methods were the only feasible meth-

ods due to lack of the computational resources to make global optimization a real-

istic option [16]. Local methods of numerical optimal control fall into two distinct
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Figure 2: Collocation method [31]

branches: direct and indirect methods.

2.2.2.1 Direct Methods

Direct optimization methods solve the infinite dimensional optimal control problem

by converting it into a finite dimensional non-linear programming problem. Direct

methods break up the control function in a process called transcription [57]. Note

that the term transcription here is different from transcription in the context of

collocation. In this paper, the term transcription will only be used in the context of

direct optimization methods. The transcription process involves the discretization of

the problem into phases. A phase starts and ends at phase events or nodes. Equation

9 shows how the control function could be discretized [65]. In this case there are n
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phases.

u = u(t) = f(t)→ u = u(t) =



u1, ti1 ≤ t < tf1

u2, ti2 ≤ t < tf2

.

.

.

un, tin ≤ t < tfn

(9)

The parameters u1, ..., un may be constants themselves or they may be functions

defined a finite set of parameters. For example, u2 = u2,0 + t× u2,1. In this case the

control u2 is described by a constant term u2,0 and a rate u2,1. In general, any function

can be employed. The parameters required to define the function become the design

variables in the optimization problem. Figure 3 is a pictorial depiction of trajectory

and control discretization [28]. In both Equation 9 and Figure 3 the trajectory was

discretized using time. However, this is not required. A trajectory may be discretized

using any variable and even different variables in the same trajectory. Complications

may arise when using different variables, and in general time is a common variable

to use.

When a problem is transcribed, the resulting non-linear programming problem

inherently has fewer degrees of freedom than the optimal control problem. In fact, this

is the very reason problems are transcribed. However, by doing this, solutions become

sub-optimal [43]. The control function is being approximated by some function,

and hence this approximation leads to sub-optimal solutions to the optimal control

problem, even if the non-linear programming problem solution is itself optimal.

Direct methods have the advantage of being relatively robust (compared to other

local methods) and relatively simple to implement [25]. However, they are less accu-

rate [63] than the second branch of local optimization methods: indirect methods.
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Figure 3: Trajectory and control discretization [28]

2.2.2.2 Indirect Methods

Indirect methods solve the optimal control problem using calculus of variations. A

solution is obtained by deriving necessary conditions. An augmented performance

index is created using Lagrange multipliers or costates to include the constraints

[43]. This results in a boundary value problem [65]. An optimal control function is

derived based on the dynamic system and the constraints. Indirect methods solve

for a control at each point in time by defining a function for the control that can

be solved at any point. Guidance algorithms are derived by solving optimal control

problems indirectly [33].

Indirect methods are very powerful, and yield very accurate results. However,

deriving the necessary conditions for complex systems can be very difficult. In addi-

tion, these necessary conditions are unique to each problem, so developing a tool for

general trajectory optimization is challenging to say the least. Finally, because the

costates are included as part of the optimization process, the number of optimization

variables increases. Initial guesses for costate values are difficult to obtain as well,
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because they have no physical meaning. One solution is to randomly guess different

initial values for the costates until a solution is found [33]. However, this can lead

to long run-times. Indirect methods have been studied significantly, and the general

consensus on these methods is summed up in the following quote, as referenced in

Betts [16]:

“The main difficulty with these methods is getting started; i.e., finding

a first estimate of the unspecified conditions at one end that produces a

solution reasonably close to the specified conditions at the other end. The

reason for this peculiar difficulty is the extremal solutions are often very

sensitive to small changes in the unspecified boundary conditions... Since

the system equations and the Euler-Lagrange equations are coupled to-

gether, it is not unusual for the numerical integration, with poorly guessed

initial conditions, to produce “wild” trajectories in the state space. These

trajectories may be so wild that values of x(t) and/or λ(t) exceed the

numerical range of the computer!” [7]

Because of this, indirect methods have not been widely implemented in many general

trajectory optimization problems [16] [25].

2.2.3 Local Trajectory Optimization

In local trajectory optimization the combination of the optimization methods and

numerical integration methods leads to four main methods. A fifth method is also

considered, even though it is only an extension of two of the four main methods.

Table 1 shows the four main methods.

A brief discussion of each method is included to investigate benefits and challenges

of each method as well as discuss any tools have have implemented these methods.
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Table 1: Summary table of local optimization methods

Optimization Method

Direct Indirect

D
iff

er
en

ti
al

E
qn

.
M

et
ho

d

Sh
oo

ti
ng

Direct Shooting:
• approximates optimal control

problem as NLP

• employs explicit or implicit
integration

Indirect Shooting:

• solves necessary conditions to
obtain control values

• employs explicit or implicit
integration

C
ol

lo
ca

ti
on

Direct Collocation:

• approximates optimal control
problem as NLP

• approximates system states
with polynomials

Indirect Collocation:

• solves necessary conditions to
obtain control values

• approximates system states
with polynomials

2.2.3.1 Direct Shooting

Direct shooting is the easiest of these methods to understand and visualize. As a

direct method, the control function is represented by a finite set of parameters [25].

A cost function, including path and final constraints, is evaluated by numerically

integrating the equations of motion, given initial and ending conditions. The control

parameters are then modified based on gradient information to improve the cost

function [57]. Optimization algorithms are techniques on how to modify the control

parameters, and there are many different algorithms that exist [68].

Direct shooting methods work well when the control function can be approxi-

mated by a small number of parameters. Because gradients are calculated for each

parameter, as the number of parameters increases the process becomes computation-

ally expensive. Gradient calculation can be another problem for the direct shooting

method. Numerical issues can lead to inaccurate gradient calculations. In addition,
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small changes in control parameters can lead to extremely non-linear behavior in sys-

tem constraints. This makes it very difficult for an optimizer to solve the problem

[16].

Despite all these difficulties, direct shooting is the most common method in tra-

jectory optimization. Program to Optimize Simulated Trajectories (POST) is a tool

developed by NASA Langley Research Center and Lockheed Martin Astronautics in

the 1970’s. It is used to calculate trajectories for air-breathing or rocket ascent and

reentry in arbitrary environments [19]. POST has three optimization algorithms built

in. The first two are the un-accelerated and accelerated projected gradient method

(PGA) [56]. These only use first order gradient information. The third algorithm

is an optimization package NPSOL developed by the Systems Optimization Lab at

Stanford University [56]. NPSOL employs second order gradient information, which

can be more accurate, but generally takes longer. For more information about the

formulation of POST the reader is referred to the POST Formulation Manual [18] or

to Brauer [19].

Since the original version, there have been several upgrades to POST. Some of the

notable ones include adding 6 degrees of freedom as well as the capability to simulate

multiple vehicles at once.

2.2.3.2 Indirect Shooting

Like direct shooting, indirect shooting uses numerical integration, either explicit or

implicit, to solve the set of ODE’s. However, instead of discretizing the control

function, the necessary optimality conditions are derived based on a cost function

augmented with Lagrange multipliers and constraints [33]. This leads to a set of op-

timization variables including simulation time and Lagrange multipliers, or costates.

If path constraints are included, they are dealt with by discretizing the trajectory

into phases based on whether they are constrained or unconstrainted and solving the
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individual phases [16]. This will increase the number of design variables.

There are several complications that arise when using indirect shooting. As with

all indirect methods, the necessary conditions must be derived. This can become very

complicated. A program like POST allows the user to select from multiple reference

frames and different environment models. Deriving the necessary conditions while

allowing different reference frames and environment models would be an arduous

task. Because of that most indirect shooting tools are considered somewhat inflexible

[37], and only useful for a small set of specific problems. There is work being done to

overcome these challenges [16].

2.2.3.3 Direct Collocation

Collocation methods were first implemented in indirect optimization, but then applied

to direct methods to remove the requirement of deriving the necessary conditions. In

direct collocation the set of ODE’s is replaced by a set of defect constraints at grid

points. When formulating a problem in this way the number of variables increases

dramatically. The set of optimization variables includes state and control variables

at each grid point as well as initial and final conditions. A problem may have on the

order of thousands of optimization variables. Calculating the required matrices in the

NLP problem proves costly. However, for direct collocation problems, about 99% of

the entries of these required matrices are 0, and therefore algorithms are used to take

advantage of the matrix sparsity to reduce computational costs [16].

When set up correctly, direct collocation can be a very powerful method for opti-

mizing trajectories. For this approach to be efficient, however, matrix sparsity must

be taken advantage of, and this can be difficult to implement. The method of direct

collocation has been implemented in a tool called Optimal Trajectories by Implicit

Simulation (OTIS). OTIS was developed in the mid 1980’s by NASA Glenn Research

Center and The Boeing Corporation. OTIS was designed to optimize trajectories
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for many types of vehicles, including launch vehicles, satellites, and aircraft. While

OTIS has an option to use the shooting method to solve the ODE’s its power lies in

the collocation method. The goal of OTIS was to produce a general purpose trajec-

tory simulation and optimization analysis tool. Like POST, OTIS is integrated with

optimizer packages. One of the original ones was Boeing’s Chebyshev Trajectory Op-

timization Program (CTOP) [37]. In the latest version a more powerful optimizer

is used: SNOPT 7. SNOPT 7 is a sparse non-linear programming optimizer devel-

oped at the Systems Optimization Lab at Stanford University. It is designed to take

advantage of the matrix sparsity of these type of problems [51]. A more complete

description of OTIS is given by Hargraves [37].

Currently OTIS and POST, discussed previously, are the two main trajectory

optimization tools used in industry. Opinions regarding which tool provides better

results are generally based on which tool the user is more familiar with. The underly-

ing physics in both tools, however, is the same. It has been shown, that there is little

numerical difference in the results calculated by POST and the results calculated by

OTIS for a given problem [53].

It is interesting to observe that both major tools used in industry apply direct

optimization techniques. This is no coincidence. The inherent issues with indirect

optimization make it difficult to easily apply to general trajectory problems. There-

fore, the tools that have been adopted by industry as standard all employ direct

techniques. For this reason, in this thesis, only direct tools were considered to gener-

ate results.

2.2.3.4 Indirect Collocation

Indirect collocation was developed to solve necessary conditions for boundary value

problems using a different numerical solution technique. Indirect collocation methods

have been used in many different applications. However, these methods suffer from
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Figure 4: Schematic of direct multiple-shooting method [57]

many of the same problems as indirect shooting methods, and therefore have not been

implemented for general purpose trajectory tools.

2.2.3.5 Multiple Shooting

When shooting methods are employed, small changes in control variables early in

the trajectory have a large effect on the trajectory’s ending state. This is due to

long simulation times. A solution to this is to employ a multiple shooting method.

Essentially, the idea is to perform a shooting based optimization, either direct or

indirect, for segments of the total trajectory, and enforce continuity constraints at

the phase boundaries. It is similar to the collocation method, in that the equivalent

to a defect constraint is introduced to ensure the simulation is physically feasible.

Figure 4 shows the direct multiple shooting method as an example.

Multiple shooting does increase the number of variables needed to solve the sys-

tem. However, even with this increase in number of variables, multiple shooting

methods can be an improvement to single shooting methods. In general, each phase
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of a multiple shooting method will have the disadvantages associated with the single

shooting method employed, either direct or indirect [57].

2.2.3.6 Local Methods Summary

In summary, local methods are powerful tools that are widely used in trajectory

optimization and when computational resources are limited, they are the best option.

However, there are certain drawbacks: namely the requirement for a good initial guess

(especially important for indirect methods) which comes from a user and the fact that

local methods can get stuck in local minima [8] [65]. This information leads to an

important observation: Using local methods alone for trajectory optimization

requires significant user input and does not lead to a robust optimization

process.

2.2.4 Global Methods

Global methods have not always been popular in trajectory optimization. In a pa-

per published in 1998, a detailed review of the then current trajectory optimization

techniques referred to global methods as simply not worth it. In a discussion about

genetic algorithms specifically, the author states

“Unfortunately, because they do not exploit gradient information, they

are not computationally competitive with the methods in Sec. IV. [local

methods].” [16]

In the late 1990’s, however, there was a significant increase in state-of-the-art compu-

tational performance. This led to a surge of research in the area of global optimization

methods [47]. Global techniques have the advantage of being able to fully explore the

design space without getting caught in local minima.

When global techniques are employed, they are usually coupled with a local opti-

mizer to fine tune candidate solutions. The global technique is used to exhaustively
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Figure 5: Grid vs. random search

explore the design space and find a family of candidate solutions. Once solutions of

interest are found, the local technique is used to refine the solutions [47] [21]. The

integration of the local and global methods can take many forms [8]. The simplest

way may be to run the global method, then evaluate top candidate solutions using the

local optimizer. More sophisticated approaches, however, may yield better results.

Grid searches and random searches are two simple global methods. Whether

they are optimization methods or search methods is a matter of debate, and will

not be explored here. For the purposes of this discussion they will be referred to

as optimization methods. Grid searches allocate a certain number of points to each

variable in the design space and evaluate the objective function at each combination

of points. Random searches randomly select points inside the design space to evaluate

the objective function at. Figure 5 below illustrates grid vs. random search.

As far as the author can tell, only one tool, QuickShot, has been developed specif-

ically for trajectory optimization using global methods. Global methods have been

employed for trajectory optimization problems, but no tool developed. QuickShot is

a tool that has been developed by SpaceWorks Enterprises, Inc. with the purpose

of decreasing the number of trajectory assumptions, decreasing the need for a good
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initial guess, and avoiding the need for an expert user in the loop [34]. Global meth-

ods provide all these advantages at the cost of increased computational requirements.

QuickShot was validated against POST to show similarity of optimized trajectories.

The global search methods employed in QuickShot are the grid and random searches.

The best results from the global search are then input into a local search to find the

local optimum. A schematic of QuickShot is shown in Figure 6.

Figure 6: QuickShot optimization method [34]

In the following sections an overview of some of the most common global methods

is given. This is a relatively new field in trajectory optimization, and many methods

are being employed and updated. This discussion by no means includes all the op-

tions, but briefly describes some of the more well-known methods. One note before

continuing is that global methods can use either collocation or shooting to numerically

integrate the trajectories.

2.2.4.1 Genetic Algorithm

Genetic Algorithm (GA’s) were developed to model the theory of evolution. They are

inherently designed to work with discrete design variables, but can be easily modified

to accommodate continuous variables [68]. They way GA’s work is by representing

a point in the design space by a binary string. Operations, such as reproduction,

crossover, and mutation, are performed to modify the binary string, which leads to
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a new point in the design space. The operations performed are designed to only let

the best solutions survive (survival of the fittest).

A basic GA search is performed in the following way. A number of random points

are chosen to initialize the algorithm. The set of current solutions is known as the

population, and a single solution is called a member. A new population is generated

every iteration. The series of populations are termed generations. The performance

index is evaluated for all members. Members of the population are randomly chosen

to perform crossover (exchange binary information) based on the performance index.

The better the performance index, the higher the probability that a member will be

selected for crossover. Additionally, a mutation process is performed by randomly

flipping some of the binary bits [68]. There are many ways to introduce randomness

into a process like this. The idea is to have a higher probability of converging on the

best solution, but still have a chance of exploring other parts of the design space.

GA’s have been applied to many launch vehicle design and launch vehicle trajec-

tory design problems [21] [60] [15].

2.2.4.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is the inherently continuous version of GA’s [68].

They are modeled after a flock of birds swarming around food. Each member of the

population is represented by a position (the design variables) and a velocity. At every

iteration in the algorithm, each member is updated in the following way:

X l
k = X l

k−1 + vl
k−1δt (10)

Where X l
k is the l member of the k population, and vl

k−1 is its corresponding velocity.

δt is an arbitrary step size parameter. The velocity is updated each iteration as well

based on an inertia parameter (basically how much is the new velocity dependent

on the previous velocity), and two trust parameters that weight the best solution

among all the members at the current iteration and the best solution of the member
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in question throughout all the iterations [68].

A PSO search is performed by initializing a population and updating the position

of each member according to Equation 10. After evaluating all the performance

indices, the velocity of each member is updated, and the algorithm is repeated [68].

A PSO algorithm was implemented in a study for Reusable Launch Vehicle tra-

jectory optimization [22]. The study concluded that PSO algorithms work will even

with small population sizes, which cuts down on computational costs.

2.2.4.3 Differential Evolution

Differential evolution (DE) is based off GA’s but like PSO, is designed for continuous

variables. It is arguably one of the most powerful stochastic global optimizers cur-

rently used [26]. Like GA’s a population is seeded to start the optimization process.

Each member is represented by a vector of design variables. To understand the al-

gorithm some terminology is required. A current, or parent vector, is updated into

a trial vector (in the new generation) via a donor vector. The donor vector is cre-

ated by using the parent vector and a weighting from two other vectors. Sometimes

both other vectors are selected at random, while other times the best vector from the

current generation is included with another random vector. The donor vector can

be created on a vector by vector basis (i.e. for each donor vector, information from

two other vectors are used), or on a variable by variable basis (i.e. each design vari-

able in each donor vector uses information from two other vectors). In addition, the

weighting between the two vectors can itself be a random number, again on a vector

by vector or variable by variable basis. At this point the trial vector is created by

randomly selecting the design variables from either the donor or parent vector. After

all this the trail vector performance is compared to the parent vector performance

and the best solution is kept. There are several variations of DE’s and the parame-

ters that control how the algorithm behaves can themselves be design variables in an
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optimization process [26].

DE algorithms have been applied to aerospace problems. Specifically, it was ap-

plied to the ascent launch trajectory optimization of a hypersonic vehicle, and was

shown to outperform the equivalent NLP problem [35].

2.2.4.4 Global Methods Summary

There are several challenges associated with global searches. The most obvious is the

computational requirements. Global methods are able to explore large design spaces,

but the number of cases required can lead to infeasible run-times, even with state-of-

the-art hardware. Another big challenge is termination criteria; i.e. when to stop the

algorithm. There are several ways to terminate a global algorithm. The simplest is a

hard limit on number of generations. More sophisticated methods involve looking at

how much improvement has occurred over a certain amount of time, or how clustered

the population is in the design space, or how much the current “best” point moves

vs. how much the performance index changes. Because relevant global algorithms

are stochastic, convergence (recall from Section 2.1.2.2 that convergence refers to

finding the global minimum) is not guaranteed without an infinite number of cases

[47]. Finding termination criteria that leads to good solutions without excessive

run-time is challenging. Finally, because relevant global algorithms are stochastic,

solving the same problem twice will yield different results. For each problem it is

important to determine how to best allocate computational resources, whether to run

one search for a long time, or multiple shorter searches. An important observation can

be determined from this research on global methods: Using global methods alone

for trajectory optimization will allow for full design space exploration, but

may not lead to the most efficient use of computational resources.
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2.2.5 Phase Discretization Methods

As discussed in Section 2.2.3, the two industry standard trajectory tools use direct

methods. In fact, any general purpose trajectory optimization tool based on current

methods will employ direct methods. Direct methods rely on a discretization of the

trajectory, in most cases based on time. This temporal discretization is done a priori

[10]. In other words, when the problem is set up, a control discretization is chosen,

often without analysis. In optimal control problems across several industries it has

been shown that the choice of discretization plays a key role in the computational

requirements as well as accuracy of the solution method [9].

Adaptive grid methods are used in transcribed optimal control problems to find

the best grid, or discretization, for solving the resulting NLP problem. When using

adaptive grid methods there is a tradeoff between computational effort and improve-

ment of the solution [9]. If only solution accuracy was considered, an infinite number

of grid points would be used, and the NLP problem would approach the optimal

control problem.

Three general types of adaptive grid methods exist. In h-refinement extra nodes

are added at strategic points to increase accuracy in critical areas. In p-refinement a

different numerical method is used to solve the equations of motion in critical areas.

Finally in r-refinement a fixed number of nodes are moved around to find the best

distribution. Historically, grid methods have been applied to node distribution in the

spatial domain [10]. In trajectory optimization, however, most node distribution is

in the time domain.

In 2006 a paper was published that stated that “utilizing adaptive node distribu-

tion [...] and on-line trajectory optimization has not been considered elsewhere [10].”

This is an important observation. The optimal control method is approximated as

a NLP problem. If the approximation is not accurate, it can lead to poor results.

Finding a good way to include the required temporal discretization of direct method
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Figure 7: Computational cost vs number of nodes [10]

trajectory problems in the optimization process could yield improved solutions. There

is a tradeoff between number of NLP design variables and computational time. Fig-

ure 7 shows how run-time increases for a specific problem as the number of nodes

increases.

There can be seen a significant increase in computational time vs. number of

nodes, and as the number of nodes increases, the rate at which the CPU time increases

as well, leading to what appears to be an exponential growth trend. However, the

question remains, for example, if it is better to include 10 design variables with a

fixed grid placement or 5 design variables and 5 phases, but include the phase event

placement parameters as design variables. The number of variables would be the

same, so run-times would be similar (because the problems are inherently different,

the run-times will not necessarily match). Significant improvement may be seen by

including a combination of traditional variables and grid placement variables.

The effect of adaptive node placement is shown in Figure 8. The control error
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Figure 8: Control error for different grid methods [9]

is plotted against the number of nodes used for adaptive and uniform methods. It

is interesting to note that increasing the number of nodes does not always increase

the accuracy of the result. The source noted that this was because a local optimizer

was used, and global optimality was not guaranteed [68]. In theory, increasing the

number of nodes will always decrease the error of the NLP solution when compared

to the optimal control solution. It becomes a question, however, of computational

effort, and a small improvement may not be worth the added expense.

It is concluded then, that node placement should be investigated in

trajectory optimization, and for a general purpose trajectory optimization

tool, “node distribution should be a part of the optimization process.” [10]

The results shown here were published in 2006 [10] [9] and no other references were

found since then. As far as the author can tell, there have been no other publications

dealing with control node distribution in trajectory optimization, and the results here
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have not been referenced in any more recent work.

An important point is made here that significant effort has gone into determining

how to place the nodes for numerical integration for the solution of ODE’s [61], both

for optimal control problems in general [23] [29] [44] and specifically for trajectory

optimization problems [59] [36]. The work cited here deals with the numerical integra-

tion. This thesis is dealing with the node placement required in the transcription of

the optimal control problem to an NLP that is currently not part of the optimization

process.
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CHAPTER III

METHODOLOGY DEVELOPMENT AND HYPOTHESES

In this chapter a case study is performed to exemplify some of the observations from

Chapter 2. In addition, based on the observations in Chapter 2 and the results of the

case study in Section 3.1, several research questions and corresponding hypotheses are

formulated. Finally, experiments are developed to answer the research questions. It is

helpful to keep in mind the overall objective of this research when reading the following

sections. Recall the goal of this research is to develop a trajectory optimization

method for launch vehicles that is robust, explores all the design space, and does not

require a significant amount of human interaction.

3.1 Case Study

Several of the observations made throughout this discussion can be easily seen in a

sample trajectory optimization problem set up in POST. As stated earlier, POST

and OTIS are very similar numerically. So while this case study was not repeated in

OTIS, similar behavior can be expected [53].

The case study was taken from a rocket-back trajectory study [32]. In a rocket-

back trajectory the concept is for a launch vehicle to fly to some staging point, release

a second stage, and then return to the launch pad via a rocket burn and aerodynamic

maneuvers. For this simplified case study, only the launch to staging point was

considered. Figure 9 shows the entire rocket-back trajectory, with the section in red

being the case study considered.

The vertical launch simulation was initiated at Cape Canaveral launch site. The

vehicle gross weight was 820, 000 lb plus a payload weight of 223, 731 lb, and sea level

thrust and ISP were approximately 1.26 × 106 lb and 305 s respectively. Propulsion
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Figure 9: Case study trajectory [32]

and aerodynamic data was included to simulate motion through the atmosphere.

Terminal conditions were a velocity of 5500 ft/s, a flight path angle of 20◦, and a

dynamic pressure of 25 psf . Several constraints on variables such as wing loading

and dynamic pressure were included. This optimal control problem was transcribed

into 10 phases based on time and one based on velocity. A control variable was

assigned to each phase but the first. The control variables in this simulation were

pitch rates. Figure 10 shows the trajectory broken down into phases. Each of the

brackets represents a phase.

Several experiments were done to illustrate some of the challenges of trajectory

optimization. A first experiment was done to show that while direct methods, such as

the ones employed in POST, are more robust than indirect methods, they still are not

always able to find a solution unless initial guesses are close to the optimal solutions.

To illustrate this, Monte Carlo (MC) analysis was done on the initial guesses for the

10 pitch rates. Three Monte Carlo sets were run of 300 cases each. The first MC

selected cases within ±0.05◦/s of the baseline pitch rate value. The second and third
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Figure 10: Trajectory discretization graph

had pitch rates ranges of ±0.25◦/s and ±0.5◦/s respectively. Figure 11 shows the

respective distributions of a sample pitch rate for the MC sets. Table 2 shows the

number of successful cases for each MC set. It is interesting to note that from the

first to the second MC set the ranges increased by a factor of 5, but from the second

to the third only by a factor of 2. From the results, however, a dramatic change in

the number of successful runs is seen between the second and third set. As the initial

guesses become more varied, direct optimization will have more difficulty finding a

solution.

Table 2: Monte Carlo results for case study

MC Set 1 2 3
Cases 300 300 300
Passed 293 274 165

Pass Rate 98% 91% 55%
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(a) Set 1 (b) Set 2 (c) Set 3

Figure 11: Parameter distribution ranges

One note of interest is that this experiment was run varying only pitch rates. Once

phase discretization criteria were included in the optimization process, the percentage

of successful run decreased to about 20% for MC set 3.

A second experiment was done to show that local optimizers can get stuck in

local optima without actually finding the global optimum. A 2000 case MC was run,

letting phase event criteria and initial guess values on pitch rates vary. Only about

20% of the cases run found a trajectory that met the constraints. The altitude vs.

velocity plot, and flight path angle and velocity vs. time plots are shown in Figure

12. The green trajectories reached the termination criteria with more weight than

the baseline, meaning they flew the trajectory more efficiently. Red trajectories were

less efficient. The blue trajectories were within 10 lb of the baseline weight at the

termination criteria.

The main result from these graphs is to show that there are a significant number

of not only feasible but “optimum” trajectories. This case study used a relatively

simple vehicle and mission, so all the trajectories followed a similar path. However,

for more complicated trajectories multiple areas of the design space could include

these feasible and “optimum” trajectories.

In addition, a significant amount of these trajectories out-performed the baseline
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Figure 12: Trajectory plots for MC cases 12(a) Altitude vs. Velocity; 12(b) Flight
Path Angle (FPA) vs. Time (note: FPA starts at 85 deg because of oblate spheroid
earth model); 12(c) Dynamic Pressure vs. Time
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Figure 13: Distribution of weight from 2000-case MC

trajectory. Figure 13 shows the weight distributions. The dashed red line represents

the baseline weight. This goes to show that even when a solution is found using a

local optimizer, it may not be the global optimum. In fact, there may be a significant

amount of better solutions. A global optimizer is important to include in the process,

then, to at least increase the probability of finding the best of these local minima.

With the data from the 2000 case MC set, a screening test, or effects screening,

was performed. A screening test determines the variability of the response with

respect to the variability of the inputs [50]. In other words, which inputs have the

greatest effect on a certain output. In a sensitivity analysis multiple order effects are

considered. This means that the effect of the initial pitch rate is considered as well

as the combined effect of the initial and second pitch rates, for example [41]. The

sensitivity study results are displayed in a tornado plot, shown in Figure 14.

As can be seen, the top 5 effects contain mostly phase discretization parameters

(i.e. the phase times). This is a very interesting result, because trajectory optimiza-

tion has historically focused on the vehicle control variables and initial conditions.

Here it is shown that discretization variables are important. Any trajectory optimiza-

tion process should include phase discretization variables in order to fully explore the
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Figure 14: Sensitivity analysis for final vehicle weight

design space.

3.2 Proposed Methodology

In Chapter 2 three observations were made.

1. Using local methods alone for trajectory optimization requires significant user

input and does not lead to a robust optimization process.

2. Using global methods alone for trajectory optimization will allow for full design

space exploration, but may not lead to the most efficient use of computational

resources.

3. Phase discretization variables should be included in the trajectory optimization

process.

Based on these observations and the case study, a methodology for trajectory

optimization is proposed. Three main aspects of the methodology are as follows:
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1. Leverage the design space exploration characteristics of global design methods.

2. Leverage the speed and gradient-based searching capabilities of local methods.

3. Include phase discretization values to explore the entire design space.

Each of these aspects will be discussed in the following sections. Including phase

discretization will ensure the entire design space is covered, and combining a global

method with a local method will help reduce the human-in-the-loop requirement

and increase robustness while still attempting to optimize trajectories in an efficient

manner. The hypothesis is that if these three aspects are included in a trajectory

optimization methodology, the process will be robust, fast, and not require human-

in-the-loop. Recall from Chapter 1 that this is the research objective.

3.2.1 Trajectory Evaluation Approach

Whether a global or local method is used, and whether or not phase discretization

parameters are included, a method to evaluate trajectories is required. As with any

numerical evaluation, the expense is desired to be as small as possible for the given

analysis. The following sections discuss some ways decrease the run-time of the

methodology being developed here.

3.2.1.1 Rapid Trajectory Propagator

Because run-time is an issue, it is beneficial to use a very fast light-weight trajectory

propagator as the evaluation tool. The trajectory propagators available are POST

and OTIS, discussed in Section 2.2.3. These tools involve calculations in several

coordinate frames, therefore requiring rotations between the coordinate frames. In

addition, path constraints are evaluated at each step, and path constraint values like

maximum dynamic pressure and angle of attack are compared to current values at

each time step in the process. The number of runs in global methods can be on the

order of hundreds of thousands or more, and even saving a small amount of time on
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each trajectory propagation could save significant time. The idea of a light-weight

propagator is to have a propagator that first does the minimal calculations required

to propagate the trajectory and evaluate the ending conditions. Then, trajectories

that meet the ending conditions can be reevaluated to determine path constraints.

This two-tier filter technique could improve overall run-time for global methods by

eliminating a significant number of calculations that are being done on trajectories

that will not be used. The improvement will depend on the total number of runs

as well as how many trajectories have to be reevaluated. The trajectories can be

reevaluated in a global tool to be created, or in a current local tool, as will be discussed

later. This leads to the first and second hypotheses.

Hypothesis 1 - In order to perform global optimization on launch vehicle trajectories,

a rapid propagator needs to be developed specifically for that purpose.

Hypothesis 2 - Evaluating trajectories without considering trajectory path constraints

will significantly speed up the trajectory analysis.

The exact metrics for testing these hypotheses will be discussed in Section 3.3.

3.2.2 Global Optimization Approach

Global methods have the ability to exhaustively explore a design space and provide

a robust way of generating feasible trajectories. A good initial guess is not required

and global methods do not get stuck in local minima. A robust method that does

not require a good initial guess allows trajectory optimization to be performed with
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less human-in-the-loop. With local methods humans are required to make the initial

guess.

Currently global methods take a significant amount of time because of the required

number of cases to be run. This is the cost of design space exploration and robustness.

There are several methods, however, that can be employed to try to make the global

methods efficient. The goal is to yield information about areas of the design space

where trajectories are likely to be feasible and perform well.

3.2.2.1 Sampling Method

When a trajectory design space is considered, there are several ways to initially explore

the space. Grid searches and random searches have been discussed previously in

this document. However, Latin-hyper cubes and other space filling designs may be

more efficient. Determining the right method to select cases for an initial case set is

important, as choosing the right sampling method can decrease computational costs.

For a given number of cases, more information can be determined from one design

over another for a given problem. Studying different design of experiment options will

show if there is a significant difference in performance based on sampling method.

3.2.2.2 Design Space Reduction

The trajectory design space can be quite large. There will be areas in the design

space that are infeasible, and therefore those areas should not be explored. After an

initial set of cases, a reduction of the design space based on the feasible cases can be

implemented. The simplest method would be to take the ranges of all the variables

for the cases that passed. For example, if each column in a matrix contained the

design variables of a feasible case and all the cases that passed are included in the

matrix, simply take the maximum and minimum of each row. That becomes the new

ranges for the next global search. This method will not necessarily exclude the entire

infeasible region, but it will cut down on infeasible space. Using this method, the
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initial set of cases must explore the edges of the design space to ensure no areas of

feasible design space are excluded.

A second more involved method that can be investigated involves principal com-

ponent analysis (PCA). PCA is a method that determines linear correlation between

data, and finds the minimum number of variables required to express the data [45].

For example, for the data in Equation 11, there exists a pattern where the second

column is simply twice the first column. In this case the information in the second

column is redundant. The entire set can be obtained using only information from the

first column.

DATA =



1 2

2 4

3 6

4 8


(11)

Any real world problem will be more complex than this, but the principle of the

method is the same. Traditionally, PCA is used to reduce the original number of

design variables. PCA has been applied in several simulations, including a Vortex

Panel Code and Numerical Propulsion System Simulation (NPSS) [45]. Reducing

the number of variables, however, is not applicable to the trajectory optimization

problem.

Another way PCA could be used by ”rotating” the set of design variables to match

the shape of the feasible design space. Consider Figure 15. The data points represent

the feasible design space, determined after an initial set of cases is run. If the first

design space reduction method based only on maximum and minimum values for the

design space (x1 and x2) were to be used on the data, the dotted green box would

be the new design space. There is a significant amount of infeasible design space

included (i.e. space where designs are not feasible). However, if the maximum and

minimum values of variables v1 and v2 are used, the dotted red box results. While
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Figure 15: PCA example [45]

there is still some infeasible design space, the total space is much smaller than in the

first case, and with a given set of cases, the feasible design space will be explored

more thoroughly.

The initial sampling method and design space reduction method both fall under

the overall global optimization approach and the hypothesis is given below.

Hypothesis 3 - If an initial sampling of the global design space is performed, the

resulting information can be used to create a smaller design space where random

cases are more likely to be feasible.

3.2.3 Fine-Tuning Solutions using a Local Optimizer

Local approaches are more efficient at finding locally optimal trajectories than global

methods. This means that while the global search is used to explore the space, a local
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search should be used to refine the search. Strategically combining global and local

approaches will maximize results for a given computational effort [47]. This leads to

the next hypothesis.

Hypothesis 4 - If a local search optimization process is applied to the results from the

global search, better solutions will be found.

Using local optimization after a global search has been done before in several other

fields, including orbit transfer trajectories for spacecraft [8] [63]. There are several

options for integrating global and local approaches; two of these options are discussed

below.

3.2.3.1 Single Iteration

Perhaps the simplest global/local integration option is to perform a global search,

including weeding out those trajectories that do not meet path constraints, and eval-

uate the resulting best solutions in the local optimizer. This single iteration between

global and local methods is in fact straight forward. However, there exists a trade-off

between how much the design space is explored before introducing the solutions to

the local optimizer. If the search is handed off to the local optimizer too soon there

is a risk of missing out on feasible design space because the local optimizer may get

stuck in local minima. On the other hand if the global search is performed for too

long, computational resources are wasted. A local optimizer may be able to yield the

same improvement as a global optimizer in a fraction of the time.

3.2.3.2 Multiple Iteration

Another global/local integration option is to have a feedback between the local and

global optimizers. In this case while a random search is being performed, local
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searches are refining the best solutions. These can then be handed off to the global

method to perform global searches centered on the local optima. It is possible that a

local optimizer can significantly improve candidate solutions in much less time than

a global optimizer. In a method like this care must be taken to not reevaluate the

same design space multiple times. The interplay between global and local can hap-

pen continuously as feasible solutions are found or on an iteration-based method. In

either case there are many trade-offs between how the methods can be combined.

3.2.4 Phase Discretization

As far as the author can tell, there are no example in literature of trajectory design

tools that include phase discretization as part of the optimization process. However,

from literature [9] [10] and from the case study, including phase discretization vari-

ables in the optimization process is important. As the global and local methods are

employed it is important to explore the entire design space. Optimal trajectories from

NLP problems are in reality sub-optimal because the trajectory space is broken up

into phases [48]. If the manner in which this trajectory is broken up is not explored,

a significant amount of the design space is being ignored, without valid justification.

Adding phase discretization into the optimization problem does in fact increase the

number of design variables, which will lead to longer run-times. However, better

results may be found if the problem is run with fewer control variables and more

discretization variables. This leads to the final hypothesis.

Hypothesis 5 - If phase structure variables are included in the optimization process,

better solutions will be found.
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3.2.5 Summary

The trajectory design space will include control variables, such as pitch rates, as well

as phase discretization variables. The global search will select a set of cases. These

will be evaluated via the rapid trajectory propagator and filtered based on the results.

Finally the cases that pass the filter will be optimized via a local method. As discussed

in the immediately preceding sections, there are many trade-offs to consider, some

of which will be discussed in the following Section 3.3. Figure 16 gives a flow chart

representation of the proposed methodology.

Trajectory Design 
Space 

Global search 

Rapid Trajectory 
Propagator 

Trajectory Filter Local Optimizer 

Figure 16: Methodology flow chart

3.3 Experimental Plan

The methodology proposed above raises some questions as to how it can be best

implemented. Several research questions are listed below.

1. Can an existing tool be used to evaluate trajectories for a global search?

2. Should path constraints be evaluated during the global search for all the trajec-

tories or at the end of the global search for trajectories that meet the required

ending conditions?

3. How can the global search be carried out?

4. Will using local optimization on the results from the global search yield better

solutions?
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5. Do phase structure variables make a difference in the trajectory optimization

outcome?

3.3.1 Experiment 1

The first experiment is proposed to answer the question of what to use as the rapid

trajectory propagator (Research Question 1). The rapid propagator is used to deter-

mine where trajectories end given initial conditions and controls. There are essentially

two options: use a legacy code in propagator mode only or develop a new trajectory

propagator. Current tools would be used by essentially running the tool without the

optimization process (i.e. as a simple propagator). While this will cut down on the

development time, this option may not be the best because the current tools were

not designed as pure propagators. It is expected that a tool designed and developed

as a simple propagator will perform much faster, and thereby lead to a faster over-

all trajectory optimization process. In order for global searches to be feasible, it is

expected that the tool should be able to run on the order of 100, 000 cases overnight.

3.3.2 Experiment 2

The second experiment will determine when trajectories should be filtered (Research

Question 2). This experiment will compare evaluating the constraints during the

global search vs. at the end of the global search. The comparison will lead to deter-

mining which method is appropriate given the total number of cases and the expected

number of cases that meet the final conditions. (If all cases are expected to pass, there

is no benefit to running the cases a first time to determine ending conditions and then

running them again to evaluate path constraints.) Like Experiment 1, the results of

this experiment will determine the best option to speed up the overall optimization

process.
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3.3.3 Experiment 3

The third experiment will consider how to initialize the global search and reduce the

design space as needed (Research Question 3). There are two parts to this experi-

ment. The first part is investigating how to initialize the global search. As discussed

previously in this study, there are many options, including grid search, random search,

Latin-hypercube, etc. These can be compared and evaluated based on run-time and

quality of results. In light of scoping this problem, only two types of designs will be

compared. This will be discussed in detail in Section 4.4.

The second part deals with reduction of the design space during the global search.

It may result that the design space reduction strategies in fact afford no benefit and

that a larger initial global search is a better option. This could be for one of two

reasons. The first would be if the design space is too large given the initial set of

cases. In this case the feasible design space will not be well defined, and any reduction

in the total design space may be excluding significant amounts of feasible design space.

The second reason would be if the design space was small enough to where most of the

design space is feasible. In this case a smaller initial case set would be recommended.

Comparing which, if any, design space reduction method is more effective will afford

the overall trajectory optimization process speed and better results.

3.3.4 Experiment 4

The fourth experiment will answer the question of how to integrate the local and global

optimizer (Research Question 4). A comparison will be made between an integrated

local method (i.e. feedback between local and global method) and a simple global to

local single iteration approach. The goal of the local optimizer is to find areas of the

feasible space that contain the best performing trajectories. Figure 17 shows a flow

diagram of a single iteration integration scheme vs. a feedback or multiple iteration

integration scheme.
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Figure 17: Integration of global and local optimization

3.3.5 Experiment 5

The fifth and final experiment answers the question of whether or not phase discretiza-

tion affects the outcome of the optimization or search process (Research Question 5).

The experiment will be to essentially re-run some of the cases sets from Experiment

4 while changing some of the phase discretization variables, such as number of phases

and the times those phases occur, and see if the results are better or worse. It should

be noted that while benefits may be seen, the cost of those benefits must be con-

sidered. If adding a phase doubles the time it takes the local optimizer to run, for

example, it may not be worth the improved performance.

3.4 Methodology and Experiments Summary

This chapter validated the observations from Chapter 2 using the case study in Section

3.1. Based on the observations and the case study, research questions and hypotheses

were developed, and an experimental plan to test the methodology was implemented.

Chapter 4 will show and discuss the results of the experiments.
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CHAPTER IV

RESULTS

In this chapter, a sample problem is developed on which to perform the experiments

and test the methodology. The reason the problem from Section 3.1 was not used

again was because it did not go to orbit, only to a staging point. In addition, the

problem in the case study was for Reusable Booster system. The problem in Section

4.1 was developed as a more representative problem for generic launch systems (i.e.

not reusable). Also in this chapter, the experiments are performed and discussed.

4.1 Example Problem Trajectory Formulation

Evaluating the methodology and generating results requires a sample vehicle and

mission. The objective of this thesis is to show that the methodology developed

can show improved results in terms of finding feasible trajectories for new problems

without requiring significant human-in-the-loop. The sample vehicle and mission,

then, must be complex enough to capture the challenges of trajectory optimization.

However, choosing a trajectory that is too complex will complicate the analysis process

without contributing to the objective of this thesis.

With that in mind, the Delta IV Medium vehicle was chosen as an example prob-

lem for the experiments. The mission was selected directly from the LEO Capability

plot for the Delta IV Medium [39]. It is important to note that for the purposes

of this discussion, no information about the trajectory was input into the problem.

The methodology is designed to optimize the trajectory for a new vehicle; i.e. no

information about the trajectory is known.

The Delta IV Medium was developed by Boeing as an upgrade of the Delta II. The

first stage of the Delta IV Medium, known as the Common Booster Core (CBC), is a
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liquid oxygen (LOX) hydrogen stage powered by a single RS-68 Rocketdyne engine.

The Delta IV family was designed in a modular fashion around the CBC to service

different missions and payloads. This is achieved by strapping on up to 4 solid rocket

motors for variations on the Delta IV Medium or by attaching 3 CBC’s together for

the Delta IV Heavy. The second stage is different for the Delta IV Medium and its

variants and the Delta IV Heavy. In both cases, the upper stage is a LOX hydrogen

stage powered by a single Pratt & Whitney RL10B-2 engine [39].

The Delta IV Medium was selected because it was the simplest of these vehicles,

while still representing a typical earth to orbit vehicle. The mission selected is to a

400km circular orbit. The CBC burns until no propellant remains, throttling only to

control max acceleration, and the upper stage lights and burns until orbital velocity is

reached. While this may not be the best way to achieve this orbit (a two burn upper

stage trajectory may be better), it serves its purpose as a test bed for the trajectory

optimization methodology.

Following is a breakdown of the vehicle and trajectory definition used in this

sample problem. It is important to remember that testing this methodology does

not require that the model used perfectly reflects the Delta IV Medium. What is

required is a vehicle and mission that capture the challenges associated with trajectory

optimization, namely the large non-linear design space. The values used to model the

Delta IV Medium and its sample mission were gathered from publicly available data.

Table 3 gives the weight breakdown used to model the vehicle. The vehicle propulsion

parameters are given in Table 4.

Aerodynamic data for the Delta IV Medium is not publicly available. However,

some form of aerodynamic data is necessary to simulate any earth to orbit trajec-

tory. The Air Force Research Laboratory (AFRL) has developed a semi-empirical

design tool (Missile DATCOM) to calculate aerodynamic data for a wide variety of

different vehicle configurations and flight conditions [69]. MDATCOM is intended as
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Table 3: Delta IV Medium vehicle weights [39]

Vehicle Element Weight (kg) Weight (lb)
Core Burnout 26760 58996
Core Propellant 181074 440042
Upper Stage Burnout 2850 6283
Upper Stage Propellant 20400 44974
Payload Fairing 6300 3697
Payload 8500 18800

Table 4: Delta IV Medium vehicle propulsion parameters [39]

Propulsion Element First Stage Second Stage
Engine RS-68 RL10B-2
Vacuum Thrust (lb) 751000 24750
Vacuum ISP (s) 409 462.4
Exit Area (ft2) 49.9 48.9

a preliminary design tool for missiles [17]. However, many launch vehicles, includ-

ing the Delta IV Medium, are similar in shape to missiles. Using non-dimensional

aerodynamic coefficients allows scaling between smaller missile size and larger launch

vehicles. MDATCOM has been used for launch vehicle aerodynamic calculations [64],

and can be used to estimate the aerodynamic data necessary to model the Delta IV

Medium.

MDATCOM takes as input a set of points that represent distance along an axis and

the corresponding distance from that axis. The vehicle profile is represented by this

set of points, and the profile is rotated around the axis to generate an axisymmetric

representation of the launch vehicle. The Delta IV Medium was modeled using Vehicle

Sketch Pad (VSP), a NASA open source parametric geometry tool. Figure 18 shows

the layout.

Figure 18: Delta IV Medium model
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Figure 19: Delta IV Medium lift coefficients at varying flight conditions

MDATCOM outputs coefficients of lift and drag for each of the input flight condi-

tions. The flight conditions of interest for this problem are angle of attacks between

−20◦ and 20◦ and Mach numbers between 0 and 15. The vehicle will experience

Mach numbers higher than this during its trajectory, but only when it has reached an

altitude where aerodynamic forces become negligible (less than 1 lb). Figure 19 and

Figure 20 show the aerodynamic data for the Delta IV Medium model at relevant

flight conditions.

After defining the vehicle using component weights, propulsion parameters and

aerodynamic data, the sequence of events for the mission is input. Figure 21 depicts

the sequence of events for the selected mission.

The trajectory is controlled using inertial pitch rates. The vehicle launches from

Florida’s east coast. After vertical rise of 3500 ft to clear the launch structure, the

first pitch rate is used to initialize the gravity turn. After the gravity turn is started,

the vehicle flies at 0◦ angle of attack and sideslip angle. The second pitch rate occurs
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Figure 20: Delta IV Medium drag coefficients at varying flight conditions

after the dynamic pressure has reached its peak and been reduced to 20 lb/ft2. These

two pitch rates control the vehicle until the first stage burns the available propellant

and is jettisoned. Two seconds after the first stage is jettisoned the upper stage ignites

and has 3 pitch rates available to control its flight until it reaches orbital velocity. The

payload fairing is jettisoned 10 seconds after the first stage is jettisoned. Normally the

payload fairing is jettisoned when the free molecular heating rate, given in Equation

12, is equal to 0.1Btu/ft2s and decreasing [4]. For this vehicle and mission, though,

that point occurs before the first stage is jettisoned. Thus, the payload fairing jettison

was modeled based on time.

FMHR = c× q × vrel

where c = 0.00128593
(12)

The phases and their specific values of the trajectory are given in Table 5, where

Time is measured in seconds, Alt (altitude) in feet, q (dynamic pressure) in psf ,

wprp1 (first stage propellant) in lb, and Velocity (inertial) in ft/s. An important note
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regarding the “Control” column is that control here is used to refer to a parameter that

the optimization process is in control of. In Phase 4, for example, there is guidance

occurring to keep the angle of attack at zero, but the optimizer has no control over

this parameter, and therefore it is not a control. For this study, the parameters of

concern are the controls, not the guidance variables.

Table 5: Phase structure for trajectory of sample problem

Phase Description Start End ControlCriteria Value Criteria Value

1 Initialization and
vertical rise Time 0 Alt 3500 None

2 Gravity turn Alt 3500 q 150 u1
3 Reduce alpha q 150 Timei 10 None

4 Max dynamic pres-
sure Timei 10 q 20 None

5 First stage guid-
ance q 20 prop1 0 u2

6 First stage burnout prop1 0 Timeii 2 None

7 Upper stage guid-
ance Timeii 2 Timeiii 200 u3

8 Upper stage guid-
ance Timeiii 200 Timeiii 500 u4

9 Upper stage guid-
ance Timeiii 500 Velocity 25548.8iv u5

This concludes the formulation of the vehicle and mission model. Again, it is

important to remember that the purpose of this example problem is not to perfectly

reflect the Delta IV Medium’s performance or characteristics. Instead this example

will be used as a baseline model to test the various elements of the trajectory search

and optimization methodology being investigated in this thesis.

i Time here is measured from the beginning of the phase
ii Time here is measured from first stage burnout

iii Time here is measured from 2 seconds after first stage burnout
iv The velocity required for circular orbit
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4.2 Experiment 1: Evaluation of Trajectories

Once a vehicle and mission have been formulated the next step is to evaluate the tra-

jectory. As discussed in Section 2.2.4 there are many options. Recall that evaluating

a trajectory and optimizing a trajectory are very different processes. The evaluation

of a trajectory requires only a numerical integration method, whereas optimizing a

trajectory requires some optimization algorithm in addition to the numerical integra-

tion method. Research Question 1, repeated below for clarity, is answered in this

section.

Research Question 1 - Can an existing tool be used to evaluate trajectories for a

global search?

The only existing tool available to the author for this thesis was POST, discussed

in Section 2.2.3.1. Originally the author hypothesized that creating a light-weight

Rapid Trajectory Propagator would drastically outperform a tool like POST. POST

requires the writing and reading of large input and output files every run, and be-

cause the author does not have access to the source code there was no way to tell

how much overhead POST requires in the way of setting up each problem for trajec-

tory evaluation. POST was designed as an optimization tool, not a mere trajectory

propagator [19]. In light of all that, it was expected that the author could construct

a propagation tool that would perform better.

However, based on the research objective of this thesis, and upon recommendation

of the committee, the decision was made to determine if POST was a viable option for

this study, and if so to use it without creating a trajectory propagator from scratch

and comparing it to POST. There were two main reasons for this. The first is that

the research objective can be achieved without a new propagation tool. The goal
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is to determine a methodology for feasible trajectories to be found and improved

upon without human-in-the-loop and in a timely fashion. Once a methodology that

achieves this is created, any software advances can be plugged in to the different parts

of that methodology to increase its speed or efficiency. However, the methodology

can and should be created by comparing how given methods in the methodology

perform. The second reason is that the creation of a tool would required a significant

investment for the software development, debugging, and validation. All this while

there is no guarantee that it will outperform the current tool. Keeping the scope of

the problem in mind, it was determined that if POST is a viable option, which will

be discussed in the following paragraphs, it should be used.

Whatever tool is used to evaluate trajectories, the experiments require a large

number of cases to be run, which requires the tool to be automated. This automation

must be able to input desired cases into the tool, run the tool, and gather any outputs

that are required. Originally POST was automated using MATLAB. Each case took

about 2 s to run. Much of this was the overhead required by MATLAB to write the

input files for POST. The author decided to implement the POST automation in the

Python language to speed up the run-time. Python was chosen because of familiarity

with the language. Another language may be more efficient for this automation, but

that study is outside of the scope of this thesis. Running the cases in Python lead

to a six-fold increase in run-time, with each case taking about .33 s. Obviously more

complicated POST trajectories will require a longer run-time per case. For this study,

a run-time of .33 s is sufficient. Three other metrics of a process automation that

were considered were repeatability, consistency, and scalability.

The test for repeatability will be discussed first. This test involved running the

same set of cases multiple times and comparing the outputs. As expected, the results

were exactly the same.
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Table 6: Run-times for consistency test

Case Set Number of Cases Total Run-time (s) Average Case Run-time (s)
1 1000 137.91 0.14
2 1000 136.59 0.14
3 1000 137.11 0.14
4 1000 137.28 0.14
5 1000 137.94 0.14
6 1000 140.57 0.14
7 1000 139.09 0.14
8 1000 137.98 0.14
9 1000 137.37 0.14
10 1000 137.84 0.14

Average 1000 137.97 0.14

The test for consistency is essentially to see if different sets of the same number

of cases are run, how consistent the overall time required for the runs is. Each case

is for the same vehicle and same mission, but with a different initial guess on the

control vector. Evaluating the consistency of the run-time will help with planning

out experiments and determining how many cases can be run. It is not necessary, but

it is expected and desirable. In order to test consistency, 10 different sets of 1000 cases

were evaluated, and the run-time per case for each of the 10 sets was compared. Table

27 shows the results of testing for consistency and it can be seen that the run-time is

consistent.

Finally, scalability is a discussed. It is necessary that the automation process and

run-time be scalable to allow for a large number of cases to be run, possibly over

a weekend or an entire week. At .33 s it is possible to run over 1.8 million cases

in a week. If the code slows down as it runs more cases, it can lead to very long

run-times for the final cases of large case sets. To test scalability, 5 different sets of

cases were run. The sets had 10, 100, 1000, 10000, and 100000 cases respectively. It

is expected that each set will take about 10 times longer than the previous set. Some

small differences are expected, regarding how long it takes to read in the cases to be

run and how long it takes to compile all the results after running all the cases. Based
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Table 7: Run-times for scalability test

Number of Cases Total Run-time (s) Average Case Run-time (s) Run-time Ratio
10 2.76 0.17 –
100 15.37 0.14 5.6
1000 138.09 0.14 9.0
10000 1382.17 0.14 10.0
100000 14167.02 0.14 10.2

on the results shown in Table 7 it can be assumed that running a set of 10000 cases

for example will be representative of any set of 10000 cases for that specific vehicle

and mission.

Table 7 shows the results of the scalability experiment. As mentioned earlier, there

is some overhead required each time a set of cases is run. This overhead included

setting up any necessary folders and files as well as making sure any old files are

removed. As more cases are run this overhead required will be a smaller percentage

of the overall run-time. For the sets with a higher number of cases it can be seen, as

expected, that the run-time ratio approaches 10, which is the ratio of the number of

cases. As the number of cases increases, the run-time increases linearly with number

of cases. This trend can be seen in Figure 22, plotted using log-log scale for easier

visualization.

Based on the results of these experiments, POST is indeed a valid option for

evaluating these trajectories. The answer to Research Question 1 is yes. Hence, there

is no need to create another trajectory propagator, and the other experiments can be

conducted using POST.

After evaluating POST as an option for the evaluation of trajectories, the automa-

tion code and the POST input files themselves were modified to increase the run-time

(for example, comments were removed from the POST input files that got written

every run). For this reason, the run-times used in later experiments are slightly better

than the run-times here.
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Figure 22: Run-time vs. number of cases from scalability test

4.3 Experiment 2: Filtering Trajectories

Once the method for evaluating trajectories has been determined, testing the differ-

ent options for the methodology can begin. Research Question 2, repeated below,

addresses how the trajectory evaluation tool should be used to find feasible cases, or

feasible sections of the design space. Evaluating path constraints at each time step

during the trajectory evaluation may be expensive, and it could be of benefit to only

evaluate path constraints for cases that actually meet the ending constraints.

Research Question 2 - Should path constraints be evaluated during the global search

for all the trajectories or at the end of the global search for trajectories that meet the

required ending conditions?

This question is essentially asking if it is more computationally efficient to evaluate

path constraints for all the cases run, knowing that in the global search there will be
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many infeasible cases, or should only the trajectories that meet the ending criteria be

re-evaluated to determine path constraint values.

Experiment 2 was set up to test how path constraints should be evaluated. A

set of 100, 000 cases was created. The set of cases was run the first time evaluating

constraints for each trajectory, and the second time without evaluating constraints.

Because of run-time differences due to the computer condition, the whole experiment

set up was executed twice for a total of 4 set runs, 2 evaluating path constraints and

2 without evaluating path constraints.

It is worth noting this Research Question was tied to Hypothesis 1, which pre-

dicted that an in-house developed trajectory propagator would perform faster. The

source code would obviously be available for this tool, and modifications could be

made to optimize how the trajectories are propagated. It was in this context that a

faster trajectory evaluation was expected by not including path constraints. However,

because a legacy tool was used to evaluate the trajectories (see Section 4.2), the author

does not know how path constraints are handled from a programming perspective,

and it is assumed that the legacy code is not optimized to run without evaluating

path constraints. Accordingly, a major difference in run-time between trajectories

with path constraints and trajectories without path constraints is not expected.

Table 8 shows the results of Experiment 2. These results reflect run-times based

on trajectories that are not optimized. It is expected that comparing the optimization

of trajectories with and without path constraints would show a larger run-time differ-

ence. However, this endeavor would be for academic purposes, because an optimized

trajectory without relevant path constraints would be of no value.

There is not a major difference in run-times between evaluating the trajectories

with or without constraints. The difference is on the order of 5min. At 0.11 sec per

case, however, over 2, 500 cases can be evaluated in 5min. This becomes a question,

then, of how many cases are expected to pass. Essentially, if 2.5% or fewer cases
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Table 8: Path constraint evaluation comparisons for non-optimized trajectories

Without Path Constraints With Path Constraints
Repetition Total

Run-time (s)
Average Case
Run-time (s)

Total
Run-time (s)

Average Case
Run-time (s)

1 10684 0.11 11132 0.11
2 11034 0.11 11101 0.11

are expected to pass, it becomes worth it to evaluate trajectories without constraints

first, and then only evaluate the ones that meet the ending criteria with constraints.

The question of how much benefit is realized by doing this is of importance. If

100, 000 are being run, as in the case, a few minutes can be saved. However, if

10, 000, 000 cases are run, this approach could save hours. It may be beneficial to run

a small number of cases, say 1000, to get an approximate percentage of how many

cases will pass. This will allow the user to make an educated guess on the pass rate

and set up the run accordingly.

As a follow-on to this experiment, it was observed that if the same set of cases was

run in the optimization mode (i.e. optimizing each case), only the cases that reached

the trajectory ending criteria, in this case inertial velocity (see Section 4.1), were able

to be optimized. The way POST works requires an initial trajectory that reaches the

ending condition and passes through all the defined phases before it can optimize it.

This observation will be important in future discussions of how to combine global and

local approaches.

The conclusion to Research Question 2 is that the path constraints should be

evaluated in the global search. The amount of time it would take to go back and

rerun the cases that did pass is on the order of the time saved, and therefore the

extra effort is not worth it. A future tool, however, designed to run without path

constraints may be able to significantly decrease run-time for cases run without path

constraints.

66



4.4 Experiment 3: Global Search Methodology Formulation

The first part of the proposed methodology is a global search of the relevant design

space. As a reminder, the relevant design space is composed of trajectory control

variables, such as pitch angles or rates. Phase discretization variables are not included

until Experiment 5. Vehicle variables, such as engine thrust or propellant mass, are

not considered here.

There are a number of ways to initialize a global search. Research Question 3

is the question addressed in this section. Based on the discussion in Section 3.3.3,

Research Question 3 has been split into two subquestions to address two different

aspects of the global search.

Research Question 3a - How can the global search be initialized?

Research Question 3b - What is an effective strategy to reduce the design space?

Research Question 3a addresses the first step in the global search. The goal with

a global search is to consider the entire design space. While this is not possible with

a continuous design space, there are methods that are designed to cover more of the

relevant design space. The discussion in section 4.4.2 will help clarify this point.

Research Question 3b relates to why a global search is being run. The goal is to

pass information on to a local search. Ideally, the design space will be reduced so the

local search can be performed over a much smaller design space. From this perspec-

tive, it is desired that a high number of cases from the global search be candidates

for a local search so the feasible space can be defined.
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4.4.1 Local Search Candidate Trajectories

A set of criteria must be developed to determine if a case from the global search is a

candidate for the local search. The way POST works, only the cases that meet the

trajectory ending condition, based on inertial velocity for this problem, will have a

chance of being optimized by POST (recall this was observed in Section 4.3). This

leads to a very simple way of determining whether or not a case has passed: did it

reach the ending condition. The cases that reach the ending condition in POST and

have a possibility of being optimized by POST will be referred to as feasible cases.

A small experiment was performed to confirm this. A set of 100, 000 cases was

run without using the optimization tool in POST. The trajectories were initialized

and propagated. Of these 100, 000 cases, only 134 reached the ending condition.

Originally, it was expected that the final altitude and flight path angle, the two other

conditions used to define the final orbit, would have to be within a certain tolerance

of the target values for POST to be able to optimize the trajectory. However, after

running the same 100, 000 cases using the optimization tool in POST, only the 134

cases that reached the ending condition were able to be optimized by POST.

Not all of these 134 cases, however, were able to reach the target orbit. It may

be of interest to determine if there are any limitations on the altitude or flight path

angle reached during the non-optimization propagation for cases that reached the

target orbit when run with the optimization option.

Figure 23 shows the distribution of gdalt (altitude) and gammai (inertial flight

path angle) for the 134 cases that reached the ending condition when run without

the optimization option. If limitations exist on the altitude or flight path angle for

a case to reach the target orbit when run in POST with the optimization option, a

distribution with a smaller range would be expected for the cases that passed.

Figure 24 shows the same distributions of the original ending altitude and flight

path angle values for cases that reached the ending condition and also reached the
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Figure 23: Cases that reached the ending condition when run in POST without
optimization

Figure 24: Cases that reached the ending condition when run in POST without
optimization and reached the target orbit when run in POST with optimization

target orbit when run in POST with optimization. The ranges on the distribution are

for all practical purposes the same, and by inspection the distributions are of similar

shape. This implies that there is not a particular range of altitudes or flight path

angles that would make it more likely for a case to reach the target orbit given it

reaches the ending condition. This can be confirmed in Figure 25 by looking at the

distribution of the cases that did not reach the target orbit after being optimized,

but did reach the ending criteria in the global search. Again, the ranges are the same

and the distributions are of similar shape.
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Figure 25: Cases that reached the ending condition when run in POST without opti-
mization and did not reached the target orbit when run in POST with optimization

From this it can be concluded that any case that reaches the ending condition

when run without optimization is possibly a case that will reach the target orbit

when run with optimization. In terms of global and local searches, any case that

reaches the ending condition in the global search should be evaluated using a local

method (the optimization option in POST). It can also be concluded that there is no

hard limit on the constraint values, in this case altitude and flight path angle, that

will determine whether or not the cases that reached the ending conditions without

optimization will reach the target orbit when run with optimization.

4.4.2 Design Space Coverage

When conducting a series of experiments, a decision has to be made as to which

experiments to run. A field of study known as Design of Experiments has been

researched and developed by statisticians. The goal of Design of Experiments is to

maximize the amount of information obtained about the system in question for a

given number of experiments [27]. For example, running Set A of 10 experiments

may yield much more information than running Set B, even though it may also

have 10 experiments. There are many other advantages to be gained from Design of

Experiments. For a more complete discussion on the subject refer to Dieter [27].
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There are several options to choose from when designing an experiment. Following

is a discussion of several of these options. This discussion is based of the lecture notes

from the Advanced Design Methods class taught by Dr. Mavris at Georgia Institute

of Technology in the Fall of 2010 [50]. In general, there are two types of experiments.

One type is a structured type, where the design will look like a structured pattern.

The other type is random, where points are chosen randomly, but with some overall

goal in mind. The following discussion will clarify this distinction.

Possibly the most intuitive design is known as a full-factorial design. This design

is a structured design and involves discretizing the continuous variables and running

every possible combination at each variable level. For example, if variables A1 and A2

are discretized into two levels each, a full-factorial design would involve 4 experiments:

A1 high with A2 high and low and A1 low with A2 high and low. The number of

experiments in a full factorial is given by Equation 13

# of Experiments = # of Levels# of V ariables (13)

This design does cover the design space, but with a lot of variables the number

of experiments required can become infeasible. For the example problem described

in Section 4.1 there are 5 variables. Two levels would not be enough to adequately

map the design space. If 20 levels are used, the full factorial design would require

3.2million experiments. One hundred levels would require 10 billion experiments. If

20 levels are used with 6 variables, 64million experiments are required. While the full

factorial design is good at covering the entire design space, it suffers from the “curse

of dimensionality”, where the number of experiments required becomes infeasible as

the number of variables and levels increases. It is worth noting there exist fractional

factorial designs, where not all the possible combinations are run. These, however,

do not cover all the corners of the design space, and are not discussed any further in

this document.

Central composite designs are another type of structured design that combine a 2
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level full factorial with a series of points at the midpoint of each variable range as well

as a series of points with each variable but one at the midpoint of each variable range

and the excluded variable set to its high or low value. Central composite designs are

good at covering the corners of the design space, but may leave large areas of the

interior empty.

There is a set of experimental designs known as space-filling designs. These designs

are set up randomly. The first of these is known as sphere packing. The experiments

are designed so as to be as far away from any other experiment as possible. This

leads to a good coverage of the interior of the design space, but a lack of experiments

in the corners.

Uniform designs are another type of space-filling designs. The goal of a uniform

design is to have equal separation between all the points. Again, there is good coverage

in the interior of the design space, but there can exist regions of the design space that

have poor coverage.

The last type of space-filling designs discussed here is the Latin hypercube (LHC).

This design splits each variable into a number of bins equal to the number of exper-

iments required. Then it guarantees that each bin of each variable will have a point

in it. This method covers the interior of the space very well, but may not have points

in the corner of the design space.

It is worth mentioning the concept of orthogonality at this point. An orthogonal

set of experiments is one where the variables are linearly independent. With linearly

independent variables there is no linear correlation between the variables. This is

important in the design of experiments to ensure that any dependence seen in the

outputs comes from the behavior of the system and not from what set of inputs were

run. Fractional factorial and central composite designs are inherently orthogonal.

Space-filling designs are not, but can be set up in such a way as to minimize the

linear dependence between the variables.
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4.4.3 Global Search Initialization

4.4.3.1 Initialization Options

Based on the discussion above, and considering the scope of this study, a comparison

was done between 2 different ways to initialize the global search: full factorial and

Latin hypercube. These two designs were chosen as representatives of the two main

types of designs discussed. The full factorial was set up using 20 levels, resulting in

3.2million experiments. The Latin hypercube was run with 3.2million experiments

as well.

The comparison of these two methods will be conducted based on total number

of cases passed (discussed in Section 4.4.1) and coverage of the design space. The

coverage issue has already been discussed in the description of the methods. This can

be verified by comparing plots of each input variable by each input variable (known

as a scatter-plot matrix) and see if any of the design space is empty.

Figures 26 and 27 show the scatter-plots for the two methods compared here. The

variables u1 through u5 are the control variables for the trajectory. A case is run at

each of the dots shown in the plot. For every point on the plot, there may exist

points behind it as well that represent points with the same values for the variables

plotted on the graph but different values for the variables not in that particular graph.

The fractional factorial design shown in Figure 26 covers the design space in a very

structured way, while the Latin hypercube in Figure 27 seems random. At first glance

it looks like the Latin hypercube actually covers much more of the design space, but it

is important to remember these plots are 2-D representations of a multi-dimensional

design space.

A natural question is whether all these points are required to cover the design

space. It would be desirable to obtain the same information about the design space

with fewer points. The fractional factorial is limited in terms of the flexibility it has

with regard to the number of points in the design. Equation 13 defines what values
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Figure 26: Scatter-plot for full factorial run

are available. Table 9 shows the number of experiments required for different number

of levels.

Each of the full factorial designs in Table 9 was run for the example problem.

Because the full factorial design was set up to cover the same range each time, the

corners of the design space will be covered for each of the designs. However, the

interior of the design space will be more and more sparse as the number of levels

decreases. For example, Figure 28 shows the cases for a full factorial design with

5 levels compared to 20 levels used in Figure 26. The 5 level design is much more

sparse.

The goal of the initial global search is to get information about what areas of the
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Figure 27: Scatter-plot for LHC run

design space are feasible. Recall, the design space is composed of the initial guesses

on the control variables. There will be areas of the design space that do not yield

cases that pass. Recall as well that cases that pass are cases that reach the trajectory

termination criteria. With this in mind, the two experimental designs are compared.

4.4.3.2 Initialization Options Comparison

The goal of this section is to discuss how large the initial global search should be.

Obviously, this will depend on the number of variables and the ranges of the variables.

This will also depend on the type of trajectory that is being modeled. Determining

75



Table 9: Number of experiments for FF designs with 5 variables for different levels

# of Levels # of Experiments
2 32
4 1024
5 3125
6 7776
7 16807
8 32768
9 59049
10 100000
11 161051
12 248832
15 759375
20 3200000

a rule set for any number of design variables or any trajectory is outside the scope

of this problem. However, a general approach to determining whether more cases are

needed or not can be developed.

The first step is consider where in the design space are the cases that passed. A

scatter-plot of the feasible cases (Figure 29) clearly shows that not the entire designs

space considered is feasible. For example, the control variable u1 only had values

between −0.3 and 0.3 for any of the cases that passed.

Including values of u1 outside of the range from −0.3 to 0.3 in future cases is not

advisable, as those cases will fail. Now it should be noted that because the design

space is continuous and a finite amount of cases were run, it cannot be guaranteed

that all cases not included in the range being discussed will fail. However, for the

purposes of this study it will be assumed that the 6.4 million cases from the LHC

and FF global initialization runs are a sufficient picture of the design space. Table 10

gives the design variable ranges for the feasible design space based on the LHC and

FF global initialization runs.

An obvious way of cutting down on the number of failed cases is simply to decrease

the range on the design variables. Figure 30 shows the scatter-plot for variables u1
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Figure 28: Scatter-plot for 5 level FF design

and u4 with red lines representing a new range for u1 to reduce the design space.

This can be done for all the design variables, and the scatter-plot for all the variables

can be seen in Figure 31. Clearly, there is much less infeasible space included in the

ranges.

The question becomes how can the ranges be reduced without running 6.4million

cases. Ideally, a small global study would be performed, the design space reduced,

and then a larger study would be performed to explore the feasible space in detail.

It is impossible to determine a priori how many cases will be needed to ensure the

whole feasible space is captured. However, if the feasible region stops expanding, even

as more cases are run, it can be assumed that the ranges for the input variables have
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Figure 29: Scatter-plot for all cases that passed from LHC and FF designs

been determined.

To this end several FF and LHC designs were executed to compare how well

defined the ranges were vs. the number of cases run. The LHC designs have the same

number of cases as the FF designs to allow for comparison between the two types of

designs. Because FF designs are have predefined number of cases, only those number

of cases were initially considered. Table 11 shows the number of cases run, number

of cases passed, and feasible design space range for each of the design variables for

the FF designs. The ranges should converge as the number of cases goes up.

It is interesting to note that the FF design at 20 levels actually has a smaller range

78



Table 10: Feasible design variable range based on LHC and FF global initialization
designs

Design Variable u1 u2 u3 u4 u5
max 0.2963 2 2 2 1.2575
min -0.2989 -2 -2 -2 -1.2417

Figure 30: Scatter-plot example with reduced ranges to exclude infeasible design
space

for some of the variables than the FF design at 15 levels. This can be for two reasons.

The first is simply that the discrete values for the variables are preset. For example,

for the overall range considered, −2 to 2, the value closest to 0.3 for the 20 level FF

design is 0.315 and for the 15 level FF design is 0.286. If the feasible design space limit

for the design variable u1 is around 0.3, as can be seen from Table 10, then a value

of 0.315 will fail, while a value of 0.286 will not. The next value below 0.3 for the 20

level FF design is 0.105, which is the limit for u1 in the 20 level design. Because of the

step values for the variables, it is difficult to precisely define the boundary between

feasible and infeasible space. This is an important observation. A FF design alone is

not enough to capture the boundaries of the feasible design space.

The second reason for the ranges becoming larger is related to the first. Whether

the case fails or passes is not determined by the value of a single variable, but by all
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Table 11: Passed cases and variable ranges for different FF designs
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Figure 31: Scatter-plot with reduced ranges to exclude infeasible design space

the design variables. Therefore, because each FF design has different levels to which

the variables are set, it is not impossible that the combination of variable settings

lead to pockets of the design space that are not feasible. This effect may not be as

noticeable with the higher level designs, but can be seen in FF designs with fewer

levels. For example, a FF design with 4 levels has no passed cases. If 5 levels are

used, 9 cases pass. If 6 levels are used, which would imply a better picture of the

design space because higher resolution is used, no cases passed. This confirms the

earlier conclusion that a FF design alone is not enough to capture the design space.

The designer should not rely on an ability to guess the right number of levels to use

to ensure the right variable values are sampled.

A similar analysis is done for the LHC designs. Table 12 shows the number of
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feasible cases as well as the feasible design variable ranges for different LHC designs.

Unlike the FF designs, as the number of runs increases for the LHC designs, so

does the number of cases passed. This is expected. Even though the LHC designs are

random and more run cases will not always mean more passed cases, it is intuitive that

the number of passed cases will be proportional to the total number of cases. This

will be more and more evident as the number of cases run increases. The feasible

design space is some fraction of the total design space, and if cases are randomly

seeded, the expected result is that the percentage of cases passed would approximate

the percentage of the design space that is feasible. Once the number of run cases gets

to around 50, 000 the percentage of cases that will pass is consistently about 0.13%.

There are two important observations that should be noted in Table 12. The first

is that few of the range limits for any of the variables are equal to the limit of the

initial LHC design. This is due to how the design is set up. However, looking back to

Table 11, after 16807 runs from a FF design, the ranges for u3 and u4 have reached

their limits, and it can be determined that they do not need to be reduced. These

limits are not determined until after over half a million cases are run using the LHC

designs. It is clear then, that there is a benefit to running a FF design, because it

does cover the edges of the design space. However, for determining boundaries that

are not at the limit of the design space, LHC designs are more efficient.

The second observation is that the FF designs do not consistently capture the

variable limits when those limits are inside the ranges sampled. Consider the control

variable u1. The maximum value seen by a FF design for u1 is 0.2857. The maximum

value seen by a LHC design for u1 is 0.2963. The FF factorial comes reasonably close.

However, a 20 level FF design sees 0.1053 as the maximum value for u1 and a 12

level FF design sees 0.1818. Because of discrete nature of FF designs, it is difficult

to capture variable limits when these limits do not correspond to one of the levels

sampled.
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Table 12: Passed cases and variable ranges for different LHC designs
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4.4.3.3 Initialization Conclusions

Based on the results from this test, it is concluded that the global search should

be initialized using LHC designs. The FF design does allow for greater coverage at

the edges of the design space. However, LHC designs will explore the interior of

the design space. Based on the results showing in Tables 11 and 12, there are two

possibilities for the design variables. The first is that the feasible region defined by

the input variables reaches the limits imposed by the initial design. This is the case

for variables u3 and u4. The second option is that there are limits in the design

variables within the original limits defined by the experimental set up.

The results in Table 11 show that FF designs can find the variables that reach the

limits imposed by the initial design more quickly than corresponding LHC designs.

However, there is no way of knowing before hand which level to use for the FF design.

For example, running an 8 or 10 level FF design would not give the correct limits

for variable u4. Therefore LHC designs are used. The results in Table 12 show that

around 250000 cases are required for the LHC designs to find the limits on the design

variables. This is not an exact figure, and it will obviously change with different

problems and different numbers of variables, but a strategy can be developed based

on the results obtained. This is the number of cases where the percentage of passed

cases becomes clearly defined and consistent. Once the percentage of passed cases

is consistent, it is reasonable to conclude that the design space has been adequately

sampled for the purposes here.

The conclusion for the initialization of the global search is to use a LHC design of

250000 cases. In addition, to confirm the limits have been found, several repetitions

of a 50000 LHC design should be run. This is useful for several reasons. The first is

that a 50000 case design is enough to find the limits, as can be seen in Table 12. The

second is that LHC designs are random, and there is a chance that the limits will not

be found by any of the designs. The more designs, however, the greater the chance
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of finding the limits. The third reason is that by running separate designs, instead of

a large single run, the limits can be compared. If there is no consistency at all in the

limits, it may be useful to consider more runs. The last reason has to do with how

the LHC designs are set up. More cases in a LHC leads to the LHC having a higher

resolution, to use the term loosely. By having multiple different designs, the edges of

the design space are sampled separately by the different designs.

This method for the global initialization is carried out and discussed subsequently

in section 4.4.4.1.

This resulting method requires 500000 cases if 5 repetitions are used for the re-

peated LHC designs. This is more than an order of magnitude fewer cases than were

originally run for the large LHC and FF designs. On a Dell Optiplex 790 machine

with Intel i7 processor this run would take about 16 hrs. If this test is set up before

leaving work on a typical work day, the cases will be completed when the work day

begins the next day.

It should be noted that other designs may work better for this initialization set

of cases. However, considering the scope of this document, these other designs have

not been explored.

One additional note before this section on the global search initialization is com-

pleted is that of margins. It would not be completely amiss to add a margin on the

limits found to help ensure the feasible region of the design space is captured. Adding

a 5% or 10% margin on the design variable limits may be a good option, especially if

few cases were run to find the limits. Testing what margin level is used is outside the

scope of this problem, so for the purposes of this discussion a 10% margin is used.

4.4.4 Reducing the Design Space

The purpose of the global search initialization is to find the bounds and define the fea-

sible region of the design space. As a reminder, the feasible region of the design space,
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Table 13: Design variable ranges from proposed initial global run of 250000 cases

Design Variable u1 u2 u3 u4 u5
max 0.2619 1.8349 1.9933 1.9742 0.9842
min -0.2888 -1.4481 -1.9624 -1.9597 -1.1421

defined by the input variables, is the region where the trajectories meet the ending

criteria. This translates directly into POST being able perform an optimization pro-

cess on the trajectory. POST does not have a method of dealing with trajectories

that do not meet the ending criteria.

Two methods (and several variants) to reduce the design space will be developed

and tested. The first has already been discussed in the Section 4.4.3.2. The second

method was introduced in Section 3.2.2.2. This method involves using Principal

Component Analysis (PCA) to “align” the design space in such a way as to fit the

feasible space as closely as possible, as depicted in Figure 15.

4.4.4.1 Reducing the Design Space by Reducing the Design Variable Ranges

The strategy presented in Section 4.4.3.3 was implemented assuming nothing was

known about the design space. The first suggested run of about 250000 was be

substituted with the 248832 case run since it was previously completed. The ranges

based on this run are given in Table 13. The results from the 5 repetitions are given

in Table 14. The results from all these experimental designs are combined, and a 10%

margin is added. The limits are constrained to the original range of the experiments.

The resulting ranges are given in Table 15.

The percent differences shown in Table 15 are positive if the 10% margin range

encompasses the “truth” range, based on the 6.4 million cases from the initial LHC

and FF designs. The only range that is not encompassed is the maximum value for

u5. However, this is only off by 1.1%. Considering the fact that this is a stochastic

problem dealing with a global search, this result is satisfactory.
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Table 14: Design variable ranges from repeated LHC runs of 50000 cases

Repetition Design Variable u1 u2 u3 u4 u5

1 max 0.2561 1.4212 1.7267 1.9924 0.7077
min -0.2506 -1.3397 -1.8621 -1.9801 -1.1048

2 max 0.2689 1.1637 1.9464 1.9131 1.1305
min -0.2444 -1.2128 -1.8861 -1.9281 -0.8435

3 max 0.29576 1.0135 1.9049 1.7499 0.7146
min -0.2516 -1.9432 -1.9681 -1.8641 -0.7879

4 max 0.2546 1.291 1.9738 1.9396 0.6005
min -0.2845 -1.5674 -1.9914 -1.7282 -0.6437

5 max 0.2833 0.8905 1.9111 1.5343 1.0672
min -0.2801 -1.1829 -1.9869 -1.9323 -0.7316

Table 15: Design variable ranges from combined initialization results

Design Variable u1 u2 u3 u4 u5

Without Margin max 0.2958 1.8349 1.9933 1.9924 1.1305
min -0.2888 -1.9432 -1.9914 -1.9801 -1.1421

10% Margin max 0.3254 2 2 2 1.2436
min -0.3177 -2 -2 -2 -1.2563

“Truth” Limits max 0.2963 2 2 2 1.2575
min -0.2989 -2 -2 -2 -1.2417

% Difference max 9.8 0 0 0 -1.1
min 6.3 0 0 0 1.2

A sanity check is performed as a way of confirming the proposed global initializa-

tion strategy. This check consists of comparing the scatter-plot shown in Figure 31 to

the scatter-plot generated from the proposed initialization runs shown in Figure 32.

As can be seen, the patterns are all clearly visible, even though the borders are some-

what less defined because fewer points were available. However, this does confirm

that the design space is being captured with a lot fewer points. The question arises

if even fewer points can be used to generate these patterns. This is a very interesting

questions, but lies outside the scope of the problem. What is important is that the

ranges found are satisfactory and a visual inspection of the feasible space serves as a

confirmation that the methodology is adequate.

After the ranges were found a set of 100000 cases was created using a LHC design
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Figure 32: Scatter-plot of proposed global initialization results

with the new ranges. Running experiments with the new ranges should yield a much

higher pass rate. It is important to note that the pass rate is not expected to be

100%. Referring back to Figure 31, it can be seen that even with the new ranges

defined and the appropriate limits set, there are still areas with no feasible points.

However these areas are much smaller than in Figure 30. The number of cases for this

test was chosen based on the pass rates for the different experiments, seen in Table

12. In addition, the experiment was repeated to confirm the result.

The results indeed show that the pass rates increase significantly. Almost an order

of magnitude improvement is seen. For the two designs, 1.20% and 1.18% of the cases

passed. This may not seem like a good result, but recall that the best previous pass
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rate was 0.13%.

Looking at Figure 31 it seems like a much higher number of cases should be

feasible. After all more than 1.2% of the area in those plots is covered. The scatter-

plots, however, can be misleading. While scatter-plots do give a good indication of

where the feasible design is, it should be noted that there may exist multi-dimensional

effects that are not captured. Within the cluster of points there may be regions of

infeasible space that are masked by the points in front or behind it. Additionally,

just because a point lies within the cluster of feasible points does not mean it will be

feasible. The trajectory design space is very non-linear. The method here is based

on never sampling an area where no points are feasible, not attempting to sample an

area where all points are feasible.

Running another global search with reduced design variable ranges after the initial

global search is not necessarily the best strategy for the overall methodology. Using

a local search method at this point may be more effective. Before moving onto the

integration of the local and global search methods, discussed in Section 4.5, other

ways of reducing the design space are explored.

4.4.4.2 Reducing the Design Space using Principal Component Analysis

The previous section discussed the simplest way of reducing the design space with

the data on hand. Another way is to employ Principal Component Analysis (PCA).

PCA was discussed previously in Section 3.2.2.2.

A quick caveat is discussed before proceeding. The motivation of this section

is not to find the best way to reduce the design space, or to compare all ways of

reducing the design space. The motivation is to consider a way using PCA. This

study will pave the path for future studies to develop and refine these and other

methods related to trajectory design space exploration. The goal here is to show that

this kind of trajectory search methodology is possible and beneficial and should be
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explored further.

With that in mind, a discussion on the use of PCA to reduce the design space is

included. The first step is to understand how PCA is useful. After performing PCA

on the feasible points from the initial global search, the PCA inputs are uncorrelated.

This means that picking a value for the first PCA variable gives you no information

about the values of the other variables. This is not the case for the original design

variables. Consider Figure 33. This is the same scatter-plot as Figure 31 except that

the points with a value of variable u1 between about −0.2 and −0.3 are colored blue.

This can be clearly seen the far left column of plots labeled u1. In column labeled

u2, the points colored blue are on the right side of the plots. The divide between the

blue and green points is not as clear as in the u1 column, but it is still there. This

means that if a u1 value between −0.2 and −0.3 is selected, then the u2 value must

fall somewhere on the right side of the u2 range for the point to be feasible. Knowing

the value of u1 gives information about the value of u2.

This means there is correlation between variables u1 and u2; i.e. u1 and u2 are

not independent [70]. The Pearson product-moment correlation is a measure of how

much a variable depends on another [41]. There are other ways to measure correlation,

but those methods are not discussed or used here. Figure 34 gives the correlation

between the 5 input variables. If variable values are chosen at random between the

limit ranges of the design variables, this will not take into account the correlation

between the variables. This is essentially what was done on Section 4.4.4.1.

A better method would be to apply PCA and generate an uncorrelated space.

Then a LHC or Monte Carlo can be generated using the uncorrelated variables, and

these points can be translated back to the original design variables. This enables

choosing design variable points at random without having to take into account the

correlations. The correlations are not ignored, they just do not exist in the design

space generated by applying PCA. Note that PCA only operates on linear correlations.
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Figure 33: Scatter-plot with specified range of u1 colored blue

Figure 34: Correlation values for design variables
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While non-linear patterns may exist in the feasible design space, they are not dealt

with in this discussion.

Using the data from the method proposed in Section 4.4.3.3, this strategy em-

ploying PCA was applied. The first step was to perform PCA and this was done

using MATLAB. MATLAB is a mathematical software package that includes a func-

tion (princomp) to perform PCA [5]. Without going into much detail, the principal

components were found and a mapping function was created to transform the design

variables into principal component variables and vice versa. For more information

how exactly how this was done the reader is referred to Jolliffe [42]. A LHC design

was then be created using the ranges from the principal components. After the LHC

design was mapped back to the original design space, the result was an experimental

design that took into account the correlations of the feasible region of the original

design.

Two different LHC designs were created, each of 100000. Again, the number of

cases was chosen based on the pass rates for the different experiments, seen in Table

12. When the principal component design space was created, there exist corners of

the new space that do not have any feasible points in them. Figure 35 is the scatter-

plot of the feasible points in the principal component space from the proposed global

initialization runs. While patterns can still be seen between some of the variables,

Prin3 and Prin4 for example, most of the plots approximate points distributed in a

circle. In addition, the correlation between all of these points is 0. However, returning

to the original point of this paragraph, there are corners of the principal component

design space that do not have any points in them. This means if an experiment

design is set up within the ranges of the points given, there will exist points where

no feasible points are. When this experiment design is mapped back to the original

design space, some of the points will be outside the original ranges of the feasible

points in the original design space.
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Figure 35: Scatter-plot of feasible points in principal component space

Figure 36 shows the LHC design in the original design space. The ranges on design

variable u1, for example, are from about −0.55 to 0.5 instead of about −0.3 to 0.3.

The ranges for the other variables increase as well.

Even with this increase in the design ranges, some of the corners in the original

space that had no feasible points are excluded using this method. Referring back to

Figure 31 the shapes of the patterns are matched more closely than a LHC design

created in the original design space, an example of which can be seen in Figure 27.

The results of running the LHC designs designed using this method yield a pass

rate of 3.25% and 3.33%. It is obvious that this method significantly increases the

pass rate more than merely reducing the ranges in the original design space. However,
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Figure 36: Scatter-plot of LHC design generated in principal component space and
mapped to original space

a better method exists to reduce the design space.

As discussed earlier the LHC design created in the principal component space and

mapped backed to the original leads to ranges of the original design variables outside

what is known to be feasible. If the LHC design cases are scaled to fit within the

known ranges for the feasible region in the original design space, a higher percentage

of the cases will be feasible. The LHC design looks exactly like the scatter-plot shown

in Figure 36 except that the ranges are equal to the 10% margin values shown in Table

15.

Using this strategy does have the disadvantage that some of the corners of the

feasible space are not well covered. After running all these cases, the percentage
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Figure 37: Distributions of feasible points in the PCA design space

of passed cases increases. Again, because these designs are stochastic, 2 different

designs were created to ensure the result was not an outlier. The resulting pass rates

are 9.62% and 9.26%. This is almost a 2 order of magnitude increase from the original

pass rates, seen in Tables 11 and 12.

There is another strategy that can be implemented using the principal component

space. Instead of using a LHC design in the principal component space, a Monte

Carlo can be generated using the distributions of the principal components. Consider

Figure 35. These points represent the feasible region of the design space, and are

visualized in the principal component space. It is obvious that the distributions of

these variables are not uniform. In fact, Figure 37 shows the distributions, and they

are far from uniform.

Instead of applying a uniform distribution then, as a LHC design essentially does,

a Monte Carlo can be generated using the distributions of the principal components.

Without going into much detail, an open-source MATLAB script based on MATLAB’s

function to fit distributions (fitdist [5]) was used to find distributions that approximate

the data representing the feasible points [62]. No discussion is included here as to

what is the best way to match distributions or how is “best” measured when it comes

to comparing distribution fits. That is not the goal of this study. The goal of this

study is to show that this approach, i.e. a global search and design space reduction,

is useful in trajectory optimization. This study will hopefully pave the way for future

studies to optimize different ways to do this.
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Figure 38: Approximated distributions of feasible points in the PCA design space

Once a distribution to match the data was found, points were randomly seeded

using that distribution, and an experimental design was created. In this case the

designs are not LHC designs, instead they are Monte Carlo designs using specific

distributions based on the feasible points data. The distributions of this Monte Carlo

design is shown in Figure 38. The distributions do not exactly match those shown

in Figure 37, but they are closer than uniform distributions. Mapping these points

back to the original design space shows that the patterns in the scatter-plot in Figure

39 reasonably match the patterns seen in the feasible design space. Obviously the

matches are not perfect, but it is the best approximation seen thus far.

Two such Monte Carlo designs were created and run, and the results yielded a

23.30% pass rate both times. This is a dramatic improvement on the original 0.13%

pass rates seen in the original runs. Almost 200 times more cases pass when this

methodology is employed.

It is concluded then that this design space reduction strategy, employing PCA

and matching distributions, should be used to generate random sets of experiments

if feasible points are desired.

4.4.5 Global Search Summary

In summary, there were 2 main answers to this Research Question. The first is that the

global search should be initialized using LHC designs; 1 large design combined with

several smaller repeated designs to try to ensure that the design space is captured.
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Figure 39: MC points generated using approximated distributions of feasible points
in the PCA space

After this, PCA should be used on the feasible points to reduce the design space.

At this point there exists a design space where a larger percentage of cases will be

feasible, and the information can be passed onto the local optimization part of the

methodology.

4.5 Experiment 4: Integrating Global Search and Local Op-
timization

The global search was focused on finding feasible regions of the design space. Global

optimization methods exist to fine tune candidate solutions, but in general local

optimizations methods are better suited to this task [16]. For this reason, a local

optimizer is included in the methodology. When performing local optimization the

goal is no longer to find feasible space, but to find the best performance. The feasible
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space has been found, and now in the feasible space, the best solution is desired. The

reason the feasible space had to be determined first was because performing local

optimization on the entire design space is computationally expensive. In fact running

the same set of cases with and without the optimization option in POST takes about

40% longer, even when the time it took to optimize the cases that were feasible was

taken into account. It is expected that a trajectory propagation tool can be developed

with the express purpose of determining feasibility, and the time difference would be

even greater. However, this effort is outside the scope of this project.

Once the design space has been reduced, local optimization can be performed.

This section addresses Research Question 4.

Research Question 4 - Will using local optimization on the results from the global

search yield better solutions?

Research Question 4 will be answered with two experiments. The first is whether

to create a new experiment design and run a set number of cases or simply use the

passed cases from the global search. These two designs will be compared not on

number of passed cases, but based on the performance metric, in this case weight.

The second will address the issue of iterations. After local optimization is run it

may be worth while to reduce the design space again based on the cases that passed

and were able to be optimized. The concept of a passed case will be revisited here

to avoid confusion. A case that passed is a case that reached the ending criteria,

therefore allowing it to be operated on by the local optimization methods available in

POST. An optimized case is a case that, after being operated on by POST, achieves

the desired orbit while minimizing or maximizing a specified parameter, in this case

maximizing the weight it ends with. After all the cases have been optimized the
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design space can be reduced using the optimized cases, instead of cases that merely

pass. Running a design of experiments in this space may yield better solutions. For

this problem about 53% of the feasible cases are optimized by POST, meaning they

meet the constraints and have converged [56].

4.5.1 Experimental Setup for Local Optimization

A comparison is made here between running the cases that were feasible from the

global initialization run and running a random set of cases set up using the PCA

method, described in Section 4.4.4.2. Unlike the global search, the goal is perfor-

mance, not a pass rate. Having said that, it is logical to assume that higher perfor-

mance would be achieved with a higher number of optimized cases, so a high pass rate

is still desirable. Using the PCA method, about 23% of the cases are feasible, and

after running all the feasible cases, only 53% of the cases were optimized. Therefore,

if a new design is set up using the PCA method for local optimization, it can be

expected that about 12% of the cases will be optimized.

A histogram of the results from optimizing all of the feasible cases from the global

initialization is shown in Figure 40. Of the 632 cases 340 were able to be optimized,

hence the 53% optimization rate of feasible cases. As can be seen, all the cases show

negative propellant remaining. The example problem was set up so that it would be

difficult to find the best solution. In this case, the best solution was −1888 lbs of

propellant remaining. This means that of the 44974 lbs of propellant in the upper

stage, the trajectory required 1888lbs more. This is about 4% more fuel than is quoted

in the Delta IV User’s Guide [4]. Even though the propellant required does not match

perfectly, the method for local optimization can still be studied and developed.

A comparison is made between running the feasible cases and setting up a new

set of experiments using the PCA method. There were 632 feasible cases after the

global initialization. Ten new sets of experiments, each of 632 cases, were set up
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Figure 40: Histogram of propellant remaining after optimization of the feasible cases
from the global initialization

using the PCA method. As the method is random in nature, ten repetitions were

used to ensure consistency. The optimized rates are somewhat inconsistent, but that

is expected given the low number of cases. The average optimized rate is 12.7%, which

is as expected. The histograms of the ten repeated experiment sets are included in

Appendix A and it can be seen that the histograms are all very similar.

It is interesting to note that the best solution did come from running the already

feasible cases. However, it is important to recall that the set of feasible cases had 340

optimized cases to choose from, whereas the repeated sets had only about 80. There

is no reason to believe that running the feasible cases vs. a new set would make any

difference other than that as the number of optimized cases to choose from increases,

better solutions will result.

To show this, two sets of 1000 cases were set up and optimized. The optimized rate

for these were 10.6% and 12.2% and the best solutions were −1874 lbs and −1955.4

lbs respectively. These two results are different, both in optimized rate and the best

solutions. In addition, the set with fewer optimized cases found the better results. It

shows that this process is random in nature, and repetitions are required to increase

the probability of finding the best result.
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Table 16: Results from 10 repetitions of experimental setups for local optimization
using the PCA method

Experiment Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 69 10.9 -1897.7
2 85 13.4 -1888.4
3 87 13.8 -1901.9
4 86 13.6 -1888.7
5 87 13.8 -1891.3
6 80 12.7 -1904.9
7 95 15.0 -1894.0
8 75 11.9 -1910.4
9 70 11.1 -1888.4
10 68 10.8 -1892.9

This same experiment was done again with 10000 cases. In this case the optimized

rates were 12.2% for both and the best results were −1888.3 lbs and −1887.2 lbs.

These results are definitely more consistent, but are not the best found. For all these

experiment sets, the histograms are similar and are shown Appendix A.

From these results, the recommendation is to run as many cases as possible within

the feasible space. While this method does not guarantee the best solution, it does

give the best change. Because the experimental setup method is completely random

(as opposed to a LHC setup), there is no difference between setting up 1 design of

10, 000 or 10 sets of 1000.

Another method for the local optimization is presented and tested in the next

section to see if better solutions are found.

4.5.2 Reducing the Optimized Space using Principal Component Analy-
sis

A data set of optimized trajectory control variables is available after running the

feasible cases from the global initialization. The optimized control variables can be

compared to the input control variables for all the optimized cases. This is shown in

Figure 41, where the green points are optimized and the black points are from the

experiment set up.
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Figure 41: Scatter-plot of input control variables with overlaid optimized control
variables

It can be seen that there is very little difference between input space and the

output space. In other words, there would be little or no benefit in using information

from the “optimized” space vs. the “guess” space to develop a new space to sample

from to try to find better solutions. Recall that the “guess” space already exists and

is used to generate the cases.

However, the goal here is performance. Not all the optimized solutions are equal.

Some have better performance than others. Consider Figure 42. This plot shows

all the optimized points for one of the 10000 case experimental setups from Section

4.5.1. A color scale is applied to the cases based on propellant remaining, where blue
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Figure 42: Scatter-plot of output control variables with color scale representing pro-
pellant remaining values

represents highest values and red represents lowest vales. The goal is to have the

most propellant remaining possible.

There is obviously a pattern where the best performing cases are appearing. For

the control variable u out4, for example, there is a very thin band around about −0.2

where all the best performing cases lie. Earlier in this study, PCA was performed

on feasible cases to create a design space that would increase the number of feasible

cases in a design set. The same method can be applied to any set of cases. If this

method is applied to the top 10% (for example) of the cases based on performance,

the odds of finding better solutions may be increased. Here the criteria for selecting
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the cases is performance rather than feasibility.

The actual percentage does not matter. The idea is to generate a design based on

the best performing cases, whether this is the top 1% or the top 25% is irrelevant,

as long as there are enough cases to perform the PCA. Determining the number of

cases required is not discussed here. The reason, as will be seen in the following

paragraphs, is that this method works. When using PCA to define the feasible space,

it was important to completely capture the feasible space. If there were regions of the

feasible space that were not captured, the best solution may be overlooked. In this

case, however, the feasible region has already been sampled and those sample points

have been optimized. The goal is to continue sampling to find the best possible

solution. It is acceptable at this point to cut off regions of the feasible space. Using

PCA in this case is merely trying to intelligently seed points where it is most likely

to find the best solutions.

This was tested by taking the top 10%, again this value was chosen arbitrarily, and

applying the method described in Section 4.4.4.2. As a review, PCA was performed on

the cases of interest and a transformed design space was generated. The distributions

of the PCA variables were approximated using the data. Then random points were

selected using the approximate distributions to generate Monte Carlo sets that lie

in the desired space. Recall the desired space is the region defined by the top 10%

of cases based on propellant remaining after optimization. Because this process is

inherently random, repetitions are used to ensure consistency. Four sets are run, two

of 1000 cases and two of 10000 cases.

The results of the experimental sets are shown in Table 17. The first observation

comes from examining a histogram of the results. Figure 43 shows a histogram for

the first case set, which is representative of the other histograms as well (included in

Appendix A). Obviously most of the cases are on the upper end of the histogram.

In fact, for the first case set, over 90% of the case end their trajectories with −2200
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Figure 43: Histogram of propellant remaining after optimization of the “top-
performing” cases after initial optimization run

lbs or greater. Compare this with the histogram shown in Figure 40, where only

about 10% of the cases are −2200 lbs or greater. It is clear, then, that more cases

are performing better using this method.

The second observation is that the results for the 1000 case sets are not consistent,

either in optimized rate or in the best solution. The 10000 case sets, sets 3 and 4, are

consistent in terms of optimized rate, but not in terms of the best result. Even after

running 2 sets of 10000 cases in the most promising areas in terms of performance,

different best solutions are found. However, they are better than anything found so

far.

Table 17: Results of experimental sets created using the best performing cases after
optimization

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 623 62.3 -1874.4
2 1000 429 42.9 -1867.1
3 10000 4052 40.5 -1825.3
4 10000 4002 40.0 -1768.8

To see if it is possible to reach consistent results, two more case sets were run, each

of 100000 cases. Whether or not consistent results are achieved, it is clear that taking
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into account the best performing cases to sample more cases in promising regions is

of great benefit.

Running the two sets of 100000 yielded significantly better results. The optimized

rates were very similar at 40.5% for both of them. The best solutions were −1730.2lbs

and −1718.5 lbs. This is a significant improvement from the results in Table 17. This

improvement comes at the cost of an order of magnitude higher number of cases.

This is an expected result. The more cases are run, the more likely to find the actual

global optimum. However, the return on investment decreases as the number of cases

increases. Running 1000000 cases will likely give a better result, but maybe only a

20 lbs improvement instead of the 50 lbs improvement seen here.

4.5.3 Local Optimization Integration Summary

The results of the local optimization integration tests show that using the feasible

cases from the global initialization is a good idea only because the cases have already

been found to be feasible. More experimental sets can be run to get a better picture of

the design space using the PCA methodology described in Section 4.4.4.2. After a set

of optimized cases is found, the best performing of these can be selected. Performing

PCA on these cases will isolate a region of high performance and increase the chances

of finding the best solution. The number of cases run at this point is determined by

how much performance is desired and how much computational expense is acceptable.

4.6 Applying the Methodology to Generic Optimization Prob-
lems

The methodology presented in Sections 4.4 and 4.5 can be tested using benchmark

optimization problems to see if this method is applicable to generic optimization

problems. Many such problems exist and a list of these problems has been compiled

by Jamil et al [40]. The methodology will be tested using two of these problems. The

first is known as the helical valley function.
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Figure 44: Surface plot for the helical valley function with x3 = 0

4.6.1 Helical Valley Test Problem

The helical valley objective function is defined in Equation 14 [30].

f(x1, x2, x3) = 100×
{

(x3 − 10θ(x1, x2))2 +
(√

x2
1 + x2

2 − 1
)2
}

+ x2
3

2πθ(x1, x2) =


arctan(x2/x1), x1 > 0

π + arctan(x2/x1), x1 < 0

subject to − 10 ≤ xi ≤ 10

(14)

For the helical valley problem, the global minimum is located at x = (1, 0, 0) and

has a function evaluation of 0. Figure 44 shows a surface plot of the function with

x1 and x2 being varied and x3 held constant at a value of 0. Even though this figure

only represents 2 dimensional data, it gives an idea of what the function looks like.

The trajectory optimization problem has a significant amount of infeasible space

where a function evaluation will not return any information. This was discussed

in Section 4.4. In order to simulate that with this objective function, a hard limit

was put on objective function values greater than 100. In other words, if the inputs
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Table 18: Pass rates for different case sets using the helical valley test function with
a cutoff at 100

Cases 1000 5000 10000 20000 40000 60000
Cases Passed 4 10 17 36 94 142

Pass Rate (%) 0.40 0.20 0.17 .18 0.24 0.24

Figure 45: Feasible cases for the helical valley objective function

result in an objective function value greater than 100, the function will not return a

numerical value. A set of LHC cases was run to sample the space. As discussed in

Section 4.4.3.3, the pass rate can be used to determine how many cases are sufficient

to adequately sample the space. From Table 18 it can be seen that around 60000

cases the pass rate is consistent. The user may choose to run more cases, but for this

example 60000 cases will be used. Figure 45 shows the feasible cases from the initial

60000.

The next step in the method is to reduce the design space by using PCA to

generate an uncorrelated design space, matching the distributions of the variables in
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Figure 46: MC cases for the helical valley problem

the principal component space, using the distributions to generate a set of random

cases, and finally mapping the cases back to the original design space. This process is

explained in detail in Section 4.4.4.2. The resulting set of cases is shown in Figure 46.

Overlaying the feasible data and the Monte Carlo points, seen in Figure 47, shows

that the feasible space is indeed covered. If the MC cases are evaluated, 16.4% of the

cases are feasible. This is a dramatic increase from the 0.24% pass rate seen in Table

18. The increase in feasible points seen in the trajectory optimization problem in

Section 4.4.4.2 is greater. This is because every optimization problem is different, so

the optimization algorithm will perform differently for each problem. This example,

however, shows that the method presented in Section 4.4 works for the helical valley

objective function.

The next step in the methodology involves local optimization using the Monte

Carlo points. For the trajectory optimization problem, the local optimizer used was
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Figure 47: Overlay of feasible data and MC points for the helical valley problem

built into POST. For this problem, the MATLAB function fmincon [6] was used as

the local optimizer. Running local optimization on the MC cases resulted in a 16.4%

optimized rate. This is exactly the feasible rate for this set of data. In fact, every

case that was feasible was able to be optimized. The 1639 feasible points in the MC

set were all optimized to have a function evaluation of less than 2 × 10−14. All the

design variables were within 2× 10−7 of their respective optimal values.

The helical valley function showed that the design space reduction using PCA

can greatly increase the pass rate. It should be noted that this does depend on the

linear correlation of the feasible points in the input space. If the points are linearly

uncorrelated to start off with, this method will yield no benefit. This problem did not

show that multiple local minima will be explored using the local optimizer. The local

optimizer was able to find the global minima for all of the feasible cases. In order to

test the local optimization part of the methodology, a second test function is used.
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4.6.2 Alpine02 Test Problem

The second objective function used to test the methodology is the Alpine02 function,

defined in Equation 15 [24]. In Equation 15 D is the number of dimensions. For this

study, D is set to 3.

f(x1, ..., xD) = sin(x1)...sin(xD)√x1...xD

subject to 0 ≤ xi ≤ 10
(15)

This function was originally designed as a maximization problem. Maximizing a

function is equivalent to minimizing the negative of that function. Because of the

way the MATLAB optimization function works, the Alpine02 problem is converted

to a minimization problem by taking the negative. In this case, the global minimum

is located at about x = (7.917, 7.917, 7.917) and has a function evaluation of about

−22.14. Figure 48 shows a surface plot of the function with x1 and x2 being varied

and x3 being held constant at the optimum value 7.91. Even with one of the variables

being held constant, multiple local minina are clearly seen. As in Section 4.6.1, an

arbitrary limit is set to define the feasible space for the Alpine02 problem. This limit

is set at −10.

The feasible space can be captured with 40000 points, as seen in Table 19. The

feasible points are shown in Figure 49. The methodology in Section 4.4.4.2 is carried

out using this data. As a reminder, this involves generating an uncorrelated space

using PCA, matching the distributions, generating a set of random cases, and mapping

the cases back to the original design space. It should be noted that for this problem,

the correlations are much smaller than for the helical valley. This means there will

be a smaller increase in pass rate with this method. The set of MC points is shown

in Figure 50. The feasible data and MC cases can be overlaid to confirm that the

feasible space is covered. This is shown in Figure 51.

When these cases are run, the pass rate increases to 7.30%. This is not as large
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Figure 48: Surface plot for the Alpine02 function with x3 = 7.91

Table 19: Pass rates for different case sets using the Alpine02 test function with a
cutoff at −10

Cases 1000 5000 10000 20000 30000 40000
Cases Passed 9 59 116 231 350 466

Pass Rate (%) 0.90 1.18 1.16 1.16 1.17 1.17

of an increase in pass rate as seen in the trajectory problem or in the helical valley

problem. Again, each problem is different, and from Figure 49 it can be seen that

there is less correlation in the design space, which means the PCA method will not

be as beneficial.

The MC cases are optimized using the MATLAB function fmincon [6]. The design

space is multi-modal, as seen in Figure 49, so several local minima should be found.

Figure 52 shows the results. As with the helical valley problem, the optimizer used

does a very good job of finding local optima, so it seems there are only a few points

on the plot. However, there are actually 730 points, all converging on a few local

minima. The points are color-coded based on the function value, blue being the

best solutions. There are a total of 9 local minima found, the best one located at

x = (7.9171, 7.9171, 7.9171) and with a function value of −22.144. This corresponds
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Figure 49: Feasible cases for the Alpine02 objective function

Figure 50: MC cases for the Alpine02 problem
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Figure 51: Overlay of feasible data and MC points for the Alpine02 problem

to the global minimum of the Alpine02 problem within the ranges considered.

The Alpine02 problem showed that the optimization method here can in fact find

many local minima. In this case, 9 local minima were identified and explored, and the

best of these is in fact the global minimum. It should be noted that the trajectory

problem solved in this thesis is much more complicated than either of these test

functions. Figure 42 shows that there is a cloud of local minima for the optimization

problem, as opposed to 9 discrete points for the Alpine02 problem. However, these

two test functions show that the optimization methodology presented here can be

effectively applied to other optimization problems.

4.7 Experiment 5: Including Trajectory Definition in the
Optimization Design Space

Up until this point, the discussion of the results on trajectory optimization has focused

entirely on the control variables. Both the vehicle and the trajectory structure has
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Figure 52: Optimized cases for the Alpine02 problem

remained constant. However, the trajectory structure (or phase discretization) can

play an important role in the performance of the vehicle. The focus of this section is

to answer Research Question 5, repeated below.

Research Question 5 - Do phase structure variables make a difference in the trajectory

optimization outcome?

The discussion here on the phase discretization will be limited. The goal is to

determine if phase discretization should be included in the trajectory optimization

process. The goal is not to find the best strategy of including the phase variables.

With that in mind, two experiments were conducted. The first kept the same number

of trajectory variables and varied when the control variables apply in the trajectory.
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For example, in the original trajectory formulation the control variable u4 applied

from 200 s after staging to 500 s after staging. However, these time values were

arbitrarily chosen. The control variable can be applied starting from 190 s instead

of 200 s. The effects of this change were investigated. The second experiment dealt

with the number of trajectory variables included in the process. For example, after

staging there are 3 variables used to control the trajectory. If 6 variables are used

instead, the trajectory may perform better, even though the search will take longer

because of the increased dimensionality.

As stated previously, the goal is not to fully investigate the effects of adding more

variables or completely understand how changing the phase structure will affect the

trajectory. Instead, the goal is to determine whether enough benefit is seen from

considering trajectory structure variables in the optimization process to merit their

inclusion.

4.7.1 Phase Criteria Values

Keeping in mind that the objective is to determine whether or not phase criteria val-

ues should be part of the optimization process, only the phase structure for the upper

stage guidance was initially varied. If better solutions resulted, no further investi-

gation would be required. This would show that changing the trajectory structure

does indeed affect the output, and should be included. If worse solutions resulted,

the same can be concluded, because it would show again that changing the trajectory

structure changes the output, and the current arbitrarily chosen structure happened

to be a good one. If no change in the solutions resulted, further investigation would

be required using more phases than just the upper stage phases.

Referring to Table 5, the upper stage controls are u3, u4, and u5. The beginning

of the phase where u3 is applied is set by the first stage burnout, and cannot be

changed. However, the end of that phase (which is the beginning of the phase where
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Figure 53: Timeline for upper stage trajectory structure

u4 is used) and the end of the next phase can be changed. Figure 53 depicts what is

explained here. The red dots represent when the changes from u3 to u4 and from u4

to u5 are applied. Those times can change, as they were arbitrarily chosen. As those

times are changed and the trajectory is optimized, different results are expected.

The experiment was set up using the method explained in Section 4.5.2. As the

goal is to see if better results can be found, the method that has yielded the best

results so far was employed. Because the trajectory structure is changed, it is not

certain that the previous data applies to the problem. However, in the interest of

scoping the problem, the method was used to provide initial guesses for the control

variables.

The time values were set as random numbers between ±50sec of the current value.

This was chosen arbitrarily, as the goal is to determine whether it has an effect, not

to find the best trajectory structure.

As in Section 4.5.2, four sets of cases were run, two with 1000 cases each and

two with 10000 each. For the best results, the method should be started from the

the global search again and these additional time variables included in the process.

However, the method is time consuming, so this alternate approach was used.

Table 20 displays the results of this experiment. A comparison of these results to

the results given in Table 17 shows that they are very similar. Both the 1000 case sets

perform better without varying the times, while both 10000 case sets perform better

when the times are varied. It should be noted that the way the initial guesses for
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the controls were selected was designed for the baseline times. When the times are

varied, this method is no longer applicable. Therefore the fact that varying the times

provided equivalent or even slightly better answers is an indication that varying the

phase structure is important.

Table 20: Results of experimental sets created using the best performing cases after
optimization and varying phase criteria for upper stage guidance

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 437 43.7 -1885.4
2 1000 387 38.7 -1884.1
3 10000 4147 41.5 -1815.1
4 10000 4173 41.7 -1758.7

Because this result is not very persuasive, one more experiment was performed,

this time varying the phase criteria for the other controls as well. Again, because of

the way the cases were selected, it is expected that the optimized rate will decrease.

Even still performance may increase because of the increased freedom the optimizer

has over the variables. Referring to Table 5, altitude at which the gravity turn is

initialized in Phase 2 and the dynamic pressure at which Phase 2 ends were varied

within ±500 ft and ±15 psf respectively. Like the range on times, these values were

arbitrarily chosen to see if they had an effect. The changes to these values were added

to the same experiments run previously in this section.

Table 21 shows the results of these sets. Again the results are inconclusive. Better

results are seen for some of the cases, while worse for others.

Table 21: Results of experimental sets created using the best performing cases after
optimization and varying all available phase criteria

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 418 41.8 -1803.9
2 1000 422 42.2 -1847.5
3 10000 4266 42.7 -1837.6
4 10000 4240 42.4 -1795.6

A final way to see if the phase structure makes a difference in how the trajectories
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perform is to take a single trajectory that works well, and change the phase structure

for this trajectory while keeping the initial guesses constant. This does not address

the question of how to include phase structure variables in the optimization process,

but it will determine if it should be included.

The best solution from this set of cases was a trajectory that ended with −1705

lbs of propellant remaining. It is interesting to note, however, that over 10% of the

cases performed better than best result from the case sets shown in Table 21. This

is expected, as the starting guess for this case set already performed very well.

The results show, then, that yes, changing the phase structure does have an effect

on the trajectory result. However, the magnitude of that effect is on the order of 10 lbs,

so it may not be worth the extra effort to include these variables in the optimization

design space. A final note before the discussion on this subject is finalized is that the

phase structure variables were not varied until the end of the optimization process.

Including them in the beginning along with the control variables may yield different

results. This effort, however, is left for a future study.

4.7.2 Number of Control Variables

The second part of investigating the role the phase structure plays in the trajectory

optimization process involves the number of control variables. The test for this was

quite simple. Originally, there were 5 control variables. The previous sections have

laid out a methodology to obtain good initial guesses for those control variables. Each

of those control variables is applied for a certain amount of time. The control variable

is applicable between the phase starting and ending criteria, as seen in Table 5.

Keeping these criteria the same, each control variable is replaced by 2 control

variables. For example, control variable u3 is applied from 2 s after staging to 202 s

(see footnotes in Table 5). Now u3 is replaced by 2 control variables, for example

u3 1 and u3 2. The first applies from 2 s after staging to say 102 s after staging, and
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Figure 54: Timeline for upper stage trajectory structure with added control variables

the second applies from 102 s to 202 s after staging. The value that separates u3 1

and u3 2 is not important at this point, and was chosen to be halfway in between

with respect to time.

The value of this strategy is that a method already exists to provide an initial

guess for u3. The control variable u3 is applied for the same section of the trajectory

as u3 1 and u3 2. Therefore the initial guess for u3 can be repeated, and used as an

initial guess for both u3 1 and u3 2. Figure 54 depicts how this would play out for

the upper stage control variables.

Initially, this was only done with the upper stage control variables to see if a

difference was noticed. As in the Section 4.7.1, the goal is not to find the best way to

include more variables, or the best number of variables to include, but to determine

if it is worth investigating the number of variables used. If no change is seen, the

method will be applied to the first stage control variables as well. Four sets of cases

were used, two of 1000 cases and two with 10000. The initial guesses for the control

variables were the same as the ones used in Section 4.7.1. Since the cases are selected

randomly, there is no reason to select different guesses.

Table 22 shows these results. Comparing these results with the results in Table

17 shows that for 3 of the 4 sets run, using a higher number of controls improves the

result. In addition, for 3 of the 4 sets the optimized rate was higher. While this is not

of direct importance, a higher optimized rate will increase the probability of finding

better solutions, which is the objective of these simulations. The higher optimized
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rate is due to the greater flexibility the optimizer has to modify the trajectory due

to the higher number of variables. Therefore, POST has more opportunity to find a

trajectory that meets the constraints.

Table 22: Results from case sets using additional repeated control variables for upper
stage guidance

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 450 45.0 -1861.9
2 1000 443 44.3 -1853.5
3 10000 4176 41.8 -1809.0
4 10000 4318 43.2 -1805.6

In the cases presented in Table 22, the same guess was used for both the the

control variables used to replace the previous control variable. For example, the same

guess was used for u3 1 and u3 2. However, different guesses that are still consistent

with the methodology presented in Section 4.4.4.2 can be applied to u3 1 and u3 2.

After all, these initial guesses come from a distribution, so instead of choosing a single

number, two were chosen.

There are two considerations to take into account when selecting cases in this

manner. The first is the possibility of getting better results. It is essentially explor-

ing parts of the design space that have not been explored. These parts of the design

space were not even available for exploration without the extra variables. The sec-

ond consideration is because the number variables has changed, the design space has

changed. The information gathered earlier does not necessarily apply. The correla-

tions between u4 and u5, for example, may only be seen now between u4 2 and u5 1,

and a completely different correlation may exist between u4 1 and u5 2. Therefore,

the best option at this point is to start over with the global search and design space

reduction. This was not done in the interest of scoping the problem. Determining the

best way to add variables to the design space, or choose the best number of variables,

is outside the scope of this discussion. What is dealt with here, is whether or not the

number of variables should be considered.
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Table 23 shows the results of these cases. The performance was actually worse

than the original results in Table 17, where the phase structure was kept constant.

This could be for one of two reasons. The first is that adding control variables does

not help the trajectory. The second is that the design space investigation done with

5 variables, which is used here, does not apply to a design with 8 variables.

Table 23: Results from case sets using additional but different control variables for
upper stage guidance

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 453 45.3 -1880.4
2 1000 481 48.1 -1865.8
3 10000 4670 46.7 -1864.9
4 10000 4612 46.1 -1862.8

A set of cases was run to try to obtain some definitive results. As in Section

4.7.1, the best case found so far was chosen. The trajectory definition was modified

to have 3 more control variables, for a total of 8. Then small perturbations were run

around this case to see if any improvement was found. A total of 20, 000 cases were

run. These cases took significantly longer, as the local optimizer is controlling more

variables.

Surprisingly, these did not find a better solution. The best case ended the trajec-

tory with −1743.1 lbs, about 27 lbs lighter than the case all these trajectories were

based on. This is completely opposite to what was expected. Further investigation

was performed to determine what was happening. The first step was to make sure

the baseline best case was working well with the new trajectory structure. This was

confirmed by running the best case final control parameter values with the new tra-

jectory structure without optimization. The outputs matched, so the trajectory setup

for the new phase structure was not a problem. Running that same trajectory setup,

however, with optimization yielded a worse result. This seems to go against common

sense. However, the trajectory design space is extremely non-linear. Local optimizers

may take a step in a direction that leads to a worse local optimum. If the first step
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was taken in a different direction, the result may be drastically different. However,

for this study there was no control over the local optimization algorithm details.

With this in mind, a different local optimization scheme was employed for this

specific case. POST has several optimization methods available, as discussed in Sec-

tion 2.2.3.1. The method used up to this point in the study was the accelerated

projected gradient (PGA) method. This was because of its speed. However, to see if

the optimization method made a difference, the best case was run using the projected

gradient method (instead of the accelerated PGA). The number of phases was varied

as well. The results, shown in Table 24, are indeed interesting.

Table 24: Comparison of different optimization methods and number of phases using
current best case

Test Number of Variables Optimization Method Solution (lbs)
1 5 Accelerated PGA -1718.5
2 6 Accelerated PGA -1901.3
3 5 PGA -1898.3
4 6 PGA -511.0

What is seen very clearly is that the number of variables along with the optimiza-

tion method makes a tremendous difference. An improvement of over 1200 (lbs) to

orbit is seen. Recall that getting a lbs of payload to orbit can cost anywhere between

$1000 and $10000. The improvement here translates to between 1.2 to 12 million

dollars.

A paragraph is taken to discuss what can and what cannot be concluded from these

results. It can be concluded that the phase structure can make a large difference for a

specific trajectory. Consider Test 3 and 4 in Table 24. The only difference is a degree

of freedom, an added variable in the trajectory structure. The optimization method,

initial guesses, and vehicle parameters were all the same. It can also be concluded

that the optimization method can make a difference. This result was not sought after

in this study, but it has become clear. Consider Test 2 and 4. The only difference

is the optimization method. Phase structure, initial guesses, and vehicle parameters
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were all the same.

What cannot be concluded from these results is that a similar or better result

would not have been found if all the local optimization cases with 5 variables had

been performed using the PGA optimization method. This can easily be tested by

running a set of cases with the new optimization method. For direct comparison, the

four sets of cases used in Section 4.5.2 were used.

Table 25 shows the results. Compared to the results in Table 17, this optimization

method performs worse for these cases. The question arises, then, of what would

happen if a case set were run with 6 design variables using the PGA optimization

method. The results in Table 24 indicate that better results would be obtained.

Table 25: Results from cases shown in Table 17 with different optimization method

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 680 68.0 -1879.3
2 1000 720 72.0 -1888
3 10000 7026 70.3 -1835.9
4 10000 6992 69.9 -1859.1

The results are dramatically different for the same set of cases with 6 design

variables instead of 5. Recall that a set of cases with 8 design variables was run.

These cases added phases to the upper stage portion of the trajectory. However,

after seeing that only small differences were obtained, a different phase modification

was implemented. An additional phase was added to the pitch over maneuver used

to initiate the gravity turn. This corresponds to Phase 2 in Table 5. So the pitch

over maneuver was modified to have 2 control variables, while the entire pitch over

maneuver was kept the same. The results are shown in Table 26. Comparing Table

25 and Table 26, where only the number of phases used to define the trajectory

is different, shows that the number of phases can have a very large effect on the

trajectory performance.

As another test, the set of 20, 000 cases around the best found solution with 8
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Table 26: Results using 6 design variables and PGA optimization method

Case Set Cases Optimized Cases Optimized Rate (%) Best Solution (lbs)
1 1000 616 61.6 -482.3
2 1000 644 64.4 -482.3
3 10000 6292 62.9 -481.5
4 10000 6285 62.8 -481.7

control variables run earlier was repeated using the PGA optimization method. The

results were somewhat worse, the best case yielding a final propellant of 1989 (lbs).

This shows that adding phases my not always be beneficial.

4.7.3 Phase Discretization Summary

The result of the phase discretization experiment is that phase variables can indeed

make a dramatic difference. However, this difference is not always seen, and may de-

pend on other variables not included in this study, such as local optimization method.

What is clearly seen, though, is that adding a control variable can make a dramatic

difference. In addition, allowing the boundaries between phases to vary can also

improve the result, although not as dramatically.
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CHAPTER V

CONCLUSIONS

5.1 Answers to Research Questions

In this section the research questions will be repeated and summary answers given.

For more information on any of the results, refer to Chapter 4.

Research Question 1 - Can an existing tool be used to evaluate trajectories for a

global search?

Answer - Yes, the industry standard trajectory tool POST can be used.

Research Question 2 - Should path constraints be evaluated during the global search

for all the trajectories or at the end of the global search for trajectories that meet the

required ending conditions?

Answer - Using POST, path constraints should be evaluated during the global search.

Research Question 3a - How can the global search be initialized?

Answer - Between LHC and FF designs, the global search should be initialized using

a LHC design.

Research Question 3b - What is an effective strategy to reduce the design space?
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Answer - PCA on the feasible points can be used to generate a design space where a

much larger percentage of points are feasible (compared to the initial percentage).

Research Question 4 - Will using local optimization on the results from the global

search yield better solutions?

Answer - Yes, using a local optimizer to fine-tune solutions yields much better results.

Research Question 5 - Do phase structure variables make a difference in the trajectory

optimization outcome?

Answer - Yes, phase structure variables can drastically affect the vehicle performance.

5.2 Contributions

There are several contributions attributed to this work.

1. Demonstrated that POST can be used as a trajectory propagator for global

searches.

2. Created a method to capture the feasible space of a launch vehicle ascent tra-

jectory problem.

3. Created a method to inform a local search based on feasible design space from

the global search or “top-performing” space from the local search.

4. Successfully applied these methods to other generic optimization problems.
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5. Demonstrated that trajectory phase structure variables can have a drastic effect

on the trajectory optimization result.

5.3 Future Work

There are several topics dealt with in this thesis that require more research. The first

is investigating the global search. Only two initialization designs were considered. In

addition, the design space reduction strategy was carried out using the simplest tools

available. Investigating other options for initialization, distribution fitting, and case

selection would be of value.

The second area is the question of local optimization. For this thesis, a single

local optimization method was used until the final experiment. The original goal was

to keep the the local optimization constant and not include it as a variable. Using

different local methods may work better for trajectory problems, especially if the

input cases are assumed to be already feasible.

A third area is determining how phase discretization variables should be included.

The work here only showed that it should be included, but did not develop a strategy

for including it.

Finally, research into developing a tool made specifically to determine trajectory

feasibility would speed up the global search and possibly allow for either much larger

searches or much shorter run-times.
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APPENDIX A

ADDITIONAL DATA AND VISUALIZATIONS

The following histograms are from the 10 repetitions of 632 case experiments in

Section 4.5.1. The histograms are of propellant remaining at the end of the optimized

trajectory. The repeated experiments were set up using the design space created from

the global search.

Repetition 1 Repetition 2
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Repetition 3 Repetition 4

Repetition 5 Repetition 6
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Repetition 7 Repetition 8

Repetition 9 Repetition 10
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Table 27: Passed cases for repetitions of 632 case experiments

Case Set Number of Cases Cases Passed Pass %

1 632 69 10.9

2 632 85 13.4

3 632 87 13.8

4 632 86 13.6

5 632 87 13.8

6 632 80 12.7

7 632 95 15.0

8 632 75 11.9

9 632 70 11.1

10 632 68 10.8

Average 632 80.2 12.7

The following histograms are from the 2 repetitions of 1000 case experiments

and the 2 repetitions of 10000 case experiments in Section 4.5.1. The histograms

are of propellant remaining at the end of the optimized trajectory. The repeated

experiments were set up using the design space created from the global search.
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Repetition 1 Repetition 2

Repetition 1 Repetition 2

The following histograms are from the 2 repetitions of 1000 case experiments,

the 2 repetitions of 10000 case experiments, and the 2 repetitions of 100000 case
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experiments in Section 4.5.2. The histograms are of propellant remaining at the end

of the optimized trajectory. The repeated experiments were set up using the design

space created using the top performing optimized cases.

Repetition 1 Repetition 2
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Repetition 1 Repetition 2

Repetition 1 Repetition 2
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APPENDIX B

SOFTWARE

B.1 Sample POST Input File

1 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 $SEARCH

3 l i s t i n = −1,

4 srchm = 5 ,

5 optvar = ’WEIGHT’ ,

6 opt = 1 ,

7 optph = 100 ,

8 maxitr = 100 ,

9 coneps = 91 ,

10 wopt = 0.00001 ,

11 nindv = 5 ,

12 indvr = 6HPITPC2, 6HPITPC2, 6HPITPC2, 6HPITPC2, 6HPITPC2,

13 indph = 5 , 20 , 35 ,40 ,45 ,

14 u = 0.099634 ,

15 0 .02025 ,

16 −1.5004 ,

17 −1.4001 ,

18 0 .017714 ,

19 ndepv = 2 ,

20 depvr = 5HGDALT, 6HGAMMAI,

21 depval = 1312340 ,0 ,

22 depph = 100 ,100 ,

23 idepvr = 0 , 0 ,

24 dept l = 100 , 1 ,

25 $
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26 $GENDAT

27 event = 1 ,

28 maxtim = 2000 ,

29 altmax = 100000000 ,

30 altmin = −1000 ,

31 prnc = 0 ,

32 prnca = 0 ,

33 f e s n = 100 ,

34 dt = 1 ,

35 pinc = 1000 ,

36 time = 0 ,

37 C Veh ic l e Weight Conf igurat ion

38 ns tp l = 1 ,

39 nstph = 4 ,

40 wstpd (1 ) = 58996 ,

41 wstpd (2 ) = 6283 ,

42 wstpd (3 ) = 18500 ,

43 wstpd (4 ) = 3697 ,

44 wprp (1 ) = 440042 ,

45 wprp (2 ) = 44974 ,

46 menstp (1 )= 1 ,

47 menstp (2 )= 2 ,

48 mentnk (1 )= 1 ,

49 mentnk (2 )= 2 ,

50 s r e f = 219 ,

51 C Propuls ion Parameters

52 neng = 2 ,

53 nengh = 2 ,

54 nengl = 1 ,

55 iengmf (1 )= 1 ,

56 iengmf (2 )= 0 ,

57 iwdf = 3 ,3 ,
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58 iwpf = 1 ,1 ,

59 C Guidance

60 i g u id (1 ) = 1 ,

61 i g u id (2 ) = 0 ,

62 i g u id (4 ) = 1 ,

63 p i tpc (1 ) = 0 ,

64 p i tpc (2 ) = 0 ,

65 C NPC’ s

66 npc (5 ) = 5 ,

67 npc (7 ) = 1 ,

68 npc (9 ) = 1 ,

69 npc (8 ) = 2 ,

70 npc (19) = 0 ,

71 npc (30) = 3 ,

72 C I n i t i a l Condit ions

73 g c l a t = 28 .46 ,

74 long = 279 .38 ,

75 gda l t = 0 ,

76 v e l r = 0 ,

77 a z v e l r = 0 ,

78 gammar = 0 ,

79 p i t i = 0 ,

80 r o l i = 0 ,

81 yawi = 0 ,

82 monx(1 ) = ’ dynp ’ ,

83 monx(2 ) = ’ gda l t ’ ,

84 monx(3 ) = ’gammai ’ ,

85 asmax = 5 ,

86 prnt (1 ) = ’ time ’ ,

87 prnt (2 ) = ’ gda l t ’ ,

88 prnt (3 ) = ’ v e l i ’ ,

89 prnt (4 ) = ’gammai ’ ,
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90 prnt (5 ) = ’ wprp2 ’ ,

91 prnt (6 ) = ’xmax1 ’ ,

92 prnt (7 ) = ’xmax2 ’ ,

93 prnt (8 ) = 5HPSTOP,

94 $

95 $TBLMLT

96 cdm(1) = 1 ,

97 $

98 ∗ i n c lude ’ aero . aero ’

99 ∗ i n c lude ’ p r o p d e l t a i v . prop ’

100 $GENDAT

101 event (1 ) = 100 ,

102 event (2 ) = 1 ,

103 c r i t r = ’ v e l i ’ ,

104 value = 25548 .8 ,

105 endphs = 1 ,

106 $

107 $GENDAT

108 event = 5 ,

109 c r i t r = ’ gda l t ’ ,

110 value = 3500 ,

111 i g u id (4 ) = 0 ,

112 p i tpc (2 ) = 0.099634 ,

113 dtimr (3 ) = 1 ,

114 t imr f (3 ) = 0 ,

115 endphs = 1 ,

116 $

117 $GENDAT

118 event = 10 ,

119 c r i t r = ’ dynp ’ ,

120 value = 150 ,

121 i g u id (1 ) = 0 ,
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122 i g u id (2 ) = 1 ,

123 i g u id (6 ) = 3 ,

124 i g u id (7 ) = 0 ,

125 i g u id (8 ) = 0 ,

126 desn = 15 ,

127 dalpha = 0 ,

128 betpc (2 ) = 0 ,

129 bnkpc (2 ) = 0 ,

130 dtimr (1 ) = 1 ,

131 t imr f (1 ) = 0 ,

132 endphs = 1 ,

133 $

134 $GENDAT

135 event = 15 ,

136 c r i t r = ’ t imr f1 ’ ,

137 value = 10 ,

138 i g u id (1 ) = 0 ,

139 i g u id (2 ) = 0 ,

140 i g u id (4 ) = 0 ,

141 alppc (2 ) = 0 ,

142 betpc (2 ) = 0 ,

143 bnkpc (2 ) = 0 ,

144 endphs = 1 ,

145 $

146 $GENDAT

147 event (1 ) = 26 ,

148 event (2 ) = 1 ,

149 c r i t r = ’ wprp1 ’ ,

150 value = 0 ,

151 mdl = 3 ,

152 n s tp l = 2 ,

153 nengl = 2 ,
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154 npc (8 ) = 0 ,

155 dtimr (2 ) = 1 ,

156 t imr f (2 ) = 0 ,

157 endphs = 1 ,

158 $

159 $GENDAT

160 event = 20 ,

161 c r i t r = ’ dynp ’ ,

162 value = 20 ,

163 mdl = 3 ,

164 i g u id (1 ) = 1 ,

165 i g u id (2 ) = 0 ,

166 i g u id (4 ) = 0 ,

167 p i tpc (2 ) = 0.02025 ,

168 endphs = 1 ,

169 $

170 $GENDAT

171 event = 35 ,

172 c r i t r = ’ t imr f2 ’ ,

173 value = 2 ,

174 mdl = 1 ,

175 iengmf (2 )= 1 ,

176 t imr f (2 ) = 0 ,

177 p i tpc (2 ) = −1.5004 ,

178 endphs = 1 ,

179 $

180 $GENDAT

181 event (1 ) = 37 ,

182 c r i t r = ’ t imr f2 ’ ,

183 value = 10 ,

184 nstph = 3 ,

185 endphs = 1 ,
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186 $

187 $GENDAT

188 event = 40 ,

189 c r i t r = ’ t imr f2 ’ ,

190 value = 200 ,

191 p i tpc (2 ) = −1.4001 ,

192 endphs = 1 ,

193 $

194 $GENDAT

195 event = 45 ,

196 c r i t r = ’ t imr f2 ’ ,

197 value = 500 ,

198 p i tpc (2 ) = 0.017714 ,

199 endphs = 1 ,

200 $

201 $GENDAT

202 event = 400 ,

203 c r i t r = ’ t imes ’ ,

204 value = 200000 ,

205 endphs = 1 ,

206 endprb = 1 ,

207 endjob = 1 ,

208 $
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B.2 MATLAB Code to Perform PCA

1 clear ; clc ;

2 %Import data

3 f i l ename = ’ data . txt ’ ;

4 data = dlmread( f i l ename ) ;

5 var num = s ize ( data , 2 ) ;

6 means = mean( data ) ;

7 standard dev = std ( data ) ;

8 [ c o e f f , score , l a t ent , t square ] = princomp ( z s c o r e ( data ) ) ;

9 o f f s e t = means∗ c o e f f ;

10 hold = ( data−repmat ( means , s ize ( data , 1 ) ,1 ) ) . / repmat ( standard dev , s ize

( data , 1 ) ,1 ) ∗ c o e f f ;

11 t e s t = ( s co r e ∗ c o e f f ’ ) .∗ repmat ( standard dev , s ize ( data , 1 ) ,1 ) + repmat (

means , s ize ( data , 1 ) ,1 ) ;

12 mc s i ze = 10000;

13 mc = l h s d e s i g n ( mc size , var num ) .∗ repmat ( range ( s co r e ) , mc s ize , 1 )+

repmat (min( s co r e ) , mc s ize , 1 ) ;

14 % Transform mc back in t o o r i g i n a l des i gn space v a r i a b l e s

15 mc transform = mc∗ c o e f f ’ . ∗ repmat ( standard dev , mc s ize , 1 ) + repmat (

means , mc s ize , 1 ) ;

16 range mins = [−0.3177 ,−2 ,−2 ,−2 ,−1.2563];

17 range maxs = [ 0 . 3 2 5 4 , 2 , 2 , 2 , 1 . 2 4 6 3 ] ;

18 mc t rans fo rm sca l e = ( mc transform−repmat (min( mc transform ) , mc s ize

, 1 ) ) . / repmat ( range ( mc transform ) , mc s ize , 1 ) ;

19 mc t ran s f o rm re s ca l e = mc trans fo rm sca l e .∗ repmat ( range maxs−

range mins , mc s ize , 1 )+repmat ( range mins , mc s ize , 1 ) ;

20

21 %The second par t o f t h i s code f i t s d i s t r u b u t i o n s on the data

ob ta ined and uses those d i s t r i b u t i o n s to ge t the MC

22 mins = min( s c o r e )+repmat ( . 000001 , 1 , var num ) ;

23 maxs = range ( s co r e )+repmat ( . 0 0 0 1 , 1 , var num ) ;
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24 s c a l e d s c o r e = ( score−repmat ( mins , s ize ( score , 1 ) , 1 ) ) . / repmat (maxs ,

s ize ( score , 1 ) , 1 ) ;

25 mc v2 = zeros ( mc s ize , var num ) ;

26 for i = 1 : var num

27 [ d i s t , pd ] = a l l f i t d i s t ( s c a l e d s c o r e ( : , i ) ) ;

28 mc v2 ( : , i ) = random (pd{1} , mc s ize , 1 ) .∗ repmat (maxs ( i ) , mc s ize , 1 )

+ repmat ( mins ( i ) , mc s ize , 1 ) ;

29 end

30 mc v2 transform = mc v2∗ c o e f f ’ . ∗ repmat ( standard dev , mc s ize , 1 ) +

repmat ( means , mc s ize , 1 ) ;

31 %Write data to f i l e

32 name = ’ t rans f o rmed se t ’ ;

33 f i d = fopen (name , ’w ’ ) ;

34 dlmwrite (name , mc v2 transform )

35 fc lose ( ’ a l l ’ )
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