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𝑡   Time coordinate, current time, [𝑠] 
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SUMMARY 

 

 The objective of this Ph.D. study was to develop an experimental approach that 

would allow the investigation of the causes of detrimental combustion instabilities (CIs) 

that often hinder the development of various propulsion and power generation systems 

(e.g., rockets, ramjets, air breathing engines, and gas turbines) in small-scale rigs that can 

simulate the flow, thermal, and acoustic environments inside the full-scale engines.  The 

availability of such capabilities would significantly reduce the cost of and time required 

for developing stable propulsion systems.   

 The onset of CIs has hindered the development and performance of combustion 

systems employed in industrial, power generation and propulsion systems for many 

decades.  In an effort to solve this problem, many investigations to date sought to 

elucidate the feedback mechanisms that drive these CIs.  Ideally, the experimental setup 

used in such studies should simulate the operating conditions (e.g., combustor and 

reactant supply systems’ pressures and temperatures, and acoustic environments), 

geometry, and scale of the unstable system in order to properly reproduce in the small-

scale rig the combustion process and acoustic oscillations that occur in the unstable full-

scale engine.  This, in turn, would assure that all the parameters affecting the feedback 

mechanism are reproduced in the laboratory rig.  Clearly, investigating the instability in 

an unstable “full-scale” engine would satisfy these requirements.  However, investigating 

CIs in full-scale engine tests is not practical because of the exorbitant cost of such tests, 

the large space required to house the full-sized engine, and the inability to equip full-

scale engines with diagnostic systems that could measure, e.g., the temporal and spatial 
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dependence of the mean and acoustic pressures, velocities, temperatures, compositions, 

and reaction rates.  Because of these difficulties, most studies of CIs to date were 

performed in “small-scale” setups that were geometrically similar to but smaller than the 

full-scale engines combustors.  While testing with these small-scale setups reduced the 

cost of testing and produced important results, the acoustic modes excited in the small-

scale setups had considerably higher frequencies that did not simulate the lower 

frequency oscillations that are excited in the unstable full-scale engines.   

 The above discussion indicates that in order to study the driving of CIs in full-

scale engines in small-scale rigs, the latter must simulate the acoustic environments, the 

combustion processes, and the interactions between these processes in the unstable full-

scale engine.  This study has investigated the use of a small-scale rig equipped with a real 

time active acoustic boundary control (see figure below) to simulate the acoustic 

environment of the full-scale engine in the small-scale rig.  The proposed approach, for 

the study of the driving mechanism of longitudinal CIs, is described in the figure below.  

It describes the proposed approach for experimentally studying the processes taking place 

in region (I)~(II) of an unstable full-scale engine in a small-scale rig.  To attain this goal, 

the active control system (ACS) needs to generate an acoustic impedance at location (II) 

of the small-scale rig that equals to the acoustic impedance at the corresponding location 

in the full-scale unstable engine.  If this is accomplished, the acoustic oscillations in the 

region between locations (I) and (II) in the small-scale rig and the full-scale engine would 

be identical.   
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Description of the proposed experimental approach that allows an actively controlled small-scale rig 

to simulate longitudinal combustion instability in the full-scale combustor   

 

 As described in Chapter 2, this study has developed an ACS that enables a small-

scale rig to simulate the acoustic oscillations in full-scale engines experiencing 

longitudinal CIs.  It consists of the following three modules: 1) A wave separation 

module that uses measured acoustic pressures and a real time wave separation algorithm, 

developed using the method of characteristics, to determine the properties of the right 

and left going waves in the actively controlled, small-scale rig; 2) A simulation module 

that numerically determines in real time the properties of the right and left going waves 

in the “missing part” of the full-scale engine (see figure above), using input from the 

wave separation module, and determines in real time the acoustic boundary condition 

(BC) that must be established at location (II) of the small-scale rig in the above figure; 

and 3) An actuator (speaker) module, that uses input from the simulation module and 

determines the control current to the actuator at location (II) that “generates” the needed 

acoustic BC at that location in the small-scale rig.  This is accomplished by determining 

the control current to the actuator (a speaker in this study) by modelling the speaker as a 
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mechanical spring-mass-damper system forced by the acoustic pressure and the 

electromagnetically induced force by the input current.   

 The performance of the developed ACS was successfully demonstrated in 

numerical simulations and experiments.  The experimental efforts developed a small-

scale, actively controlled, rig equipped with speakers on its left and right hand sides.  The 

left speaker was used to generate acoustic oscillations in the rig that simulated the driving 

of the CI by the combustion process, and the right speaker was actively controlled to 

simulate the acoustic field in the full-scale system.  This experimental setup was used to 

demonstrate that the ACS could excite a travelling acoustic wave CI within the small-

scale rig by actively “generating” a non-reflecting acoustic BC at the right boundary (II) 

of the rig.  This rig was also used to demonstrate that the developed ACS could simulate 

a standing acoustic wave CI in a full-scale engine (i.e., the longer tube in the figure above) 

within the small-scale rig.  Additionally, this rig was used to demonstrate that standing 

acoustic waves CI in full-scale engines having different lengths could be simulated in the 

developed, actively controlled, small-scale rig.   

 Finally, as discussed in Chapter 3, this study also developed a theoretical model 

that determines in real time the acoustic BC that must be generated by the ACS at the 

boundaries of a small-scale rig that simulates transverse (tangential) CI in an annular 

combustor similar to those used in gas turbines and jet engines.  In this case, the small-

scale rig consists of a small section of the annular combustor and the “missing part” of 

the full-scale engine consists of what has been “left over” after the small-scale sector-rig 

has been removed from the annular combustor (see figure below).  The developed model 

assumed that reactants are supplied to the annular combustor by several nozzles (injectors) 
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that stabilize a “concentrated” combustion region in their vicinity, and that the 

combustion products leave the combustor through exhaust nozzles located downstream of 

the combustion regions.  The developed model accounts for the presence of a tangential 

mean flow in the annular combustor.  To determine the BCs that needed to be established 

at the boundaries of the actively controlled, small-scale rig, the developed model 

accounts for the effects of the periodic combustion processes and flows through the 

reactants supply and exhaust nozzles in the “missing part” of the engine, and for the 

presence of a tangential mean flow in the annular combustor.   

 
Description of the proposed approach that allows an actively controlled small-scale sector rig to 

simulate tangential combustion instability in the full-scale annular combustor   

 

 The developed model was numerically validated and used to investigate the 

effects of the exhaust nozzle, combustion process, and tangential mean flow component 

upon the characteristics of tangential CIs in an annular combustor.  Specifically, the 

numerical simulations studied the interactions of initial travelling and standing acoustic 

waves disturbances with the exhaust nozzle and combustion process, and the effect of the 

tangential mean flow upon the characteristics of standing and travelling acoustic modes 

CIs.   
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 Initially, numerical solutions of the developed model shed light on the damping 

and driving of the oscillations provided by the exhaust nozzle flow and a combustion 

process that is only “sensitive” to the local pressure perturbations, respectively, and the 

dependence of these processes upon the presence of a tangential mean flow in the annular 

combustor.  They showed that in the absence of the tangential mean flow, initially 

travelling or standing acoustic wave disturbances are damped by the exhaust nozzle until 

a standing acoustic wave with its pressure node aligned with the exhaust nozzle is 

established in the annular combustor.  This study also showed that a “pressure sensitive” 

(only) combustion process would amplify an initially travelling or standing wave 

disturbance, resulting in the establishment of a standing acoustic wave whose pressure 

anti-node is aligned with the combustion region.  The amplitude of this CI continues to 

grow (to infinity) in the absence of nonlinear and/or damping processes that would limit 

the growth of wave.   

 It was also shown that when a tangential mean flow is present in the annular 

combustor, initial disturbances are continuously damped by the exhaust nozzle until their 

amplitudes are reduced to zero.  However, when the driving by the pressure sensitive 

combustion process exceeds the exhaust nozzle damping, all initial disturbances are 

continuously amplified until, eventually, their amplitudes go to infinity, when there is a 

tangential mean flow in the annular combustor.   

 The developed model was also used to study how a combustion process that 

depends upon the steady (tangential) flow velocity component and (acoustic) velocity 

perturbation affects the characteristics (e.g., temporal variations of the spatial waveforms) 

of the ensuing CIs.  Numerical solutions of the developed model showed when an initial 
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disturbance is introduced into the annular combustor in the absence of a tangential mean 

flow, the (nonlinear) dependence of the combustion process upon the acoustic velocity 

magnitude produces a higher frequency component in the developed CI that oscillates 

with twice the frequency of the initial disturbance.  They also showed that the presence 

and direction of the mean tangential flow component critically affect the characteristics 

of tangential (spinning) instabilities, due to the nonlinear dependence of the combustion 

process upon the acoustic velocity and the tangential mean flow.  Specifically, this study 

showed that when a tangential mean flow component is present in the annular combustor, 

an initially standing wave disturbance gradually transforms itself into a spinning wave 

that rotates around the annular combustor in the direction of the tangential mean flow 

component.  This finding is in agreement with previous experimental observations that 

have not been explained to date.   

 



1 

 

CHAPTER 1. 

INTRODUCTION 

 

 The objective of this study was to develop a real time, active boundary control 

approach that would allow simulations of longitudinal and tangential combustion 

instabilities (CIs) in full-scale engines in small-scale laboratory rigs that could be used to 

study these CIs more thoroughly and at significantly lower cost.   

 

1.1.  Background and Motivation 

 The onset of combustion instabilities (CIs) has hindered the development and 

performance of combustion systems employed in industrial, power generating and 

propulsion systems for many decades, shortening components lifetime and causing 

systems failures.  CIs manifest themselves as organized, large amplitude, pressure, 

velocity, and reaction rate oscillations in the combustion system [1, 2].  An example of 

pressure oscillations measured in an unstable combustor is shown in Figure 1.   

 
Figure 1.  An example of pressure oscillations in an unstable laboratory combustor, from Lieuwen 

and Zinn [3, 4].   
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 CIs are driven by feedback processes in which the combustion process and flow 

oscillations (e.g., vortex shedding and acoustic oscillations) interact with each other.  

Figure 2 presents an example of such a feedback process [2].  More specifically, CIs are 

excited when combustion process heat release oscillations drive acoustic pressure and 

velocity oscillations.  These acoustic oscillations may, in turn, produce, e.g., periodic 

vortex shedding, mixing and reactants flow rates oscillations that enhance the combustion 

process heat release oscillations, thus producing a feedback process that supplies energy 

to the acoustic oscillations.  Simultaneously, acoustic energy is lost from the oscillations 

by, for example, convection of acoustic energy out of the combustor (e.g., through the 

nozzle), viscous dissipation, and heat transfer.  If the magnitude of the “driving” 

processes exceeds the magnitude of these “damping” processes, the energy of the 

oscillations increases with time.  In this case, the oscillations are amplified until constant 

amplitude, limit cycle, oscillations are established in the combustor [3, 4] as shown in 

Figure 1.  At the limit cycle, the time averages of the acoustic energies supplied and 

removed by the driving and damping processes, respectively, are equal and no net energy 

is added to the oscillations.   

 
Figure 2.  An example of a feedback cycle responsible for driving combustion instability, from 

Lieuwen and Yang [2].   
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 The driving effectiveness of the feedback process generally depends upon two 

characteristic time constants: the period of the oscillations and the characteristic time 

constant of the feedback process.  In a typical feedback process, each physical process 

affects another process after a time delay; e.g., the time lag of the combustion process, 

the relaxation time of the injection system, the chamber pressure relaxation time and so 

on.  The sum of the time delays for the involved physical processes provides the total 

time delay for the completion of one feedback cycle, which represents its characteristic 

time constant.  The feedback process drives CI only when the period of the instability is 

related to the time constant of the feedback process by a specific relationship as 

demonstrated by the example below.  Notably, CIs generally excite a natural acoustic 

mode of the combustor whose period satisfies the required “time relationship”.   

 To illustrate the importance of the magnitude of the characteristic time constant of 

the feedback process, consider the simple combustor shown in Figure 3.  It shows a 

combustible mixture of fuel and air injected into the combustor at its left boundary by a 

constant pressure supply system, thus generation a mean flow through the combustor.  

For simplicity, it is assumed that a concentrated combustion process occurs near the 

injector, see Figure 3-(i).  Suppose that oscillations with a frequency, 𝑓𝑜𝑠𝑐, occur near the 

injector that produce local chamber pressure oscillations as shown in Figure 3-(ii).  This 

produces injector pressure drop oscillations that experience a minimum when the 

chamber pressure is at a maximum and vice versa.  The oscillatory pressure drop across 

the injector produces an oscillatory injection rate after a certain time delay (i.e., the line 

relaxation time).  The injection rate oscillations produce burning rate oscillations after a 

combustion time lag and, finally, the combustion heat release rate oscillations produce 



4 

 

pressure, temperature, and velocity oscillations in the chamber after a time delay, which 

approximately equals the chamber relaxation time.  The sum of the line relaxation time, 

the combustion time lag, and the chamber relaxation time provides a characteristic time 

constant for the feedback process, 𝜏𝑓𝑏, which is the total time delay for the completion of 

one feedback cycle.  If in the example shown in Figure 3-(ii) the sum of these time delays 

is close to a half period of the local chamber pressure oscillations, i.e., 𝜏𝑓𝑏 ≈
1

2
𝑇𝑜𝑠𝑐 =

1

2

1

𝑓𝑜𝑠𝑐
, the combustor oscillations are amplified (driven) by the energy supplied by the 

oscillatory combustion process.  If this condition is satisfied, when the local chamber 

pressure is at its minimum the reactants injection rate is at its maximum.  At this instant, 

the injector supplies a “maximum energy packet” of reactants that releases its “maximum 

energy” and, thus, creates maximum driving of the combustor oscillations about a half a 

period of the oscillations later when the local chamber pressure is at its maximum, see 

Figure 3-(ii), thus enhancing the combustor oscillations.  This example shows that a 

feedback process having a time constant, 𝜏𝑓𝑏, can drives the combustor oscillations only 

at selected frequencies; i.e., 𝑓𝑜𝑠𝑐 ≈
1

2

1

𝜏𝑓𝑏
.  If the frequency of one of the natural acoustic 

modes of the combustor satisfies this condition, i.e., 𝑓𝑛 ≈ 𝑓𝑜𝑠𝑐 ≈
1

2

1

𝜏𝑓𝑏
, the combustion 

process (through the feedback process) may excite large amplitude oscillations of this 

natural acoustic mode of the system.   
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Figure 3.  An example of time and spatial relationships for driving combustion instability;  (i) an 

example of an unstable combustor,  (ii) a schematic of the time dependence of the various oscillating 

quantities, showing relevant time delays, from Crocco and Cheng [1],  (iii) locations of the 

combustion process relative to the structure of the excited acoustic pressure oscillations: (a) maximum 

driving, (b) driving, (c) no effective driving by the concentrated combustion process.   

 

 The driving of CI also depends upon the location of the oscillating combustion 

process relative to the structure of the excited acoustic mode pressure oscillations as 

shown in Figure 3-(iii).  Let’s assume that a natural acoustic mode oscillations with a 

frequency, 𝑓𝑛,1, and a feedback process having time constant, 𝜏𝑓𝑏, of the concentrated 

combustion process satisfy the above discussed time condition; i.e., 𝑓𝑛,1 ≈ 𝑓𝑜𝑠𝑐 ≈
1

2

1

𝜏𝑓𝑏
.  If 

the concentrated combustion process occurs at a node of the natural acoustic mode 

pressure oscillations, location (c) in Figure 3-(iii), this mode cannot be driven by the 

feedback process because the combustion process “experience” no pressure oscillations at 

the node, thus “preventing” the excitation of the feedback process.  In this case, another 

natural acoustic mode of the combustor with a different frequency, 𝑓𝑛,2 (𝑓𝑛,2 ≠ 𝑓𝑛,1), may 
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be excited, if the oscillatory combustion process is not located at a the pressure node of 

this mode and the above discussed time condition is satisfied.  On the other hand, when 

the concentrated combustion process is located at a pressure anti-node, i.e., location (a) in 

Figure 3-(iii), maximum driving of the pressure oscillations through the feedback process 

may occur.  A combustion process located between a node and an anti-node of the 

acoustic pressure oscillations, e.g., location (b) in Figure 3-(iii), may still interact with the 

combustion process in a manner that will drive an instability.   

 The above discussion shows that the onset of CI and its frequencies depend upon 

the temporal and spatial conditions for driving the oscillations through a feedback 

process.  The temporal condition relates the time delays of the involved physical and 

combustion processes and the periods of the natural acoustic modes of the system.  The 

spatial condition relates the location of the combustion process heat release “relative” to 

the structure of the unstable mode.  These conditions depend upon the design and 

operating conditions of the combustor and the characteristics of the unstable mode.  Thus, 

combustion systems with different configurations and operating conditions are 

susceptible to CI having different frequencies and mode structures (e.g., tangential or 

longitudinal modes), because the parameters that affect these temporal and spatial 

conditions depend upon the system design and operating conditions.  For example, 

changing the injection system design changes the line relaxation time and changing the 

fuel changes the time lag of the combustion process as different fuels (e.g., solid, liquid, 

and gaseous fuels) have different characteristic combustion times.  Also, reducing the 

size of the combustion chamber increases the frequencies of its natural acoustic modes.  
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All of these modifications alter the feedback mechanism and may excite different CI 

modes at different frequencies.   

 Investigations of the mechanisms that drive CI generally consisted of 

combinations of experimental, theoretical, and numerical studies.  These generally seek 

to elucidate the feedback process that drives the CI, see Figure 2.  Ideally, the 

experimental setups used in such studies should be capable of simulating all the 

phenomena, e.g., thermodynamic operating conditions, mixing processes, combustion 

process, and acoustic oscillations that occur in the unstable full-scale engine to assure that 

all the parameters affecting the feedback mechanism are reproduced in the laboratory rig.  

Clearly, investigating the instability in the unstable, full-scale engine, would satisfy these 

requirements.  However, investigating CI in the full-scale engine tests is not practical 

because of the exorbitant costs of such tests [5] and the inability to equip full-scale 

engines with diagnostic systems that could measure, e.g., the temporal and spatial 

dependence of the mean and acoustic pressures, temperatures, velocities, and reaction 

rates.   

 Because of the above described problems of investigating CI in full-scale engine 

combustors, most studies of CI to date were performed in small-scale setups that were 

geometrically similar to but smaller than the full-scale engine combustor.  While testing 

with these small-scale setups reduced the cost of testing and produced important results 

[6, 7], the acoustic modes excited in the small-scale setups had higher frequencies and 

could not simulate the lower frequency oscillations that are excited in the unstable full-

scale engines.   
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 Next, we will discuss the problems associated with small-scale rigs that are used 

to study longitudinal and transverse (tangential) CIs.  The former involves excitation of 

oscillations whose properties vary along the direction of the axis of the combustor and the 

latter involves the excitation of oscillations in transverse planes of the combustor whose 

properties vary in planes perpendicular to the combustor’s axis.  The problems associated 

with the study of these CIs will be discussed with the aid of Figure 4-(a) for longitudinal 

CI and Figure 4-(b) for transverse (tangential) CI.  Figure 4-(a) shows a “full-scale” 

combustor that experiences longitudinal CI on top and a small-scale rig that is used to 

study this CI on the bottom.  Such a small-scale rig is generally developed by reducing 

the length and diameter of the full-scale engine while maintaining other design 

parameters, such as mean flow Mach number (i.e., nozzle area ratio), injectors design, 

reactants combination, and fuel/air mixture ratio the same as in the full-scale engine on 

top of Figure 4-(a).  The frequencies and driving/damping of the modes excited in the 

full-scale engine and the small-scale rig are determined by the combustion processes, the 

combustor’s length and diameter (because it affects damping), the gas temperature, and 

the acoustic boundary conditions (BCs) at the combustor’s inlet (where the injectors or 

fuel nozzles are located) and the outlet (where the exhaust nozzle is located).  As 

discussed above, since CIs are excited when a certain relationship (e.g., the 

temporal/spatial conditions) is satisfied between the characteristic combustion time and 

the period of the acoustic mode, this relationship may be satisfied for different 

mechanisms or different modes in the small-scale rig and full-scale engine.  For example, 

since the small-scale rig is shorter than the full-scale engine, the natural acoustic modes 

of the small-scale rig have higher frequencies and shorter wavelengths than the full-scale 
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engine; i.e., 𝑓𝑛,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 > 𝑓𝑛,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒  and 𝜆𝑛,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 < 𝜆𝑛,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 .  

Consequently, the CIs’ feedback processes in the small-scale rig and the full-scale rig 

should satisfy the following temporal conditions: 𝑓𝑛,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 ≈
1

2

1

𝜏𝑓𝑏,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒
 and 

𝑓𝑛,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 ≈
1

2

1

𝜏𝑓𝑏,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒
.  However, since the natural acoustic modes of the small-

scale rig and the full-scale rig are different, the time constants of the feedback processes 

of the oscillatory combustion processes may significantly differ from one another (i.e., 

𝜏𝑓𝑏,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 ≠ 𝜏𝑓𝑏,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒).  Additionally, the fundamental mode (e.g., 𝑓1,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒) 

may be excited in the small-scale rig while the first harmonic of the fundamental mode 

(e.g., 𝑓2,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒) will be excited in the full-scale engine because the frequencies of these 

two modes are close (e.g., 𝑓1,𝑠𝑚𝑎𝑙𝑙−𝑠𝑐𝑎𝑙𝑒 ≈ 𝑓2,𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒).  However, since these modes 

have different spatial structures, their interactions with the oscillatory combustion 

processes may be significantly different.  When these occur, the results obtained in the 

small-scale rig study may not elucidate the physics of the instability in the full-scale 

engine.  This discussion indicates that in order for a small-scale rig to simulate 

(longitudinal) instabilities in a full-scale engine, it must simulate the acoustic 

environment experienced by the combustion process in the full-scale engine.  As 

discussed below, this could be achieved by active control of the small-scale rig’s acoustic 

boundary condition (BC).   
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Figure 4.  Descriptions of full-scale combustors and small-scale rigs:  (a) case of longitudinal 

instability,  (b) case of tangential instability.   

 

 Similar problems are encountered when attempting to simulate full-scale 

tangential instabilities, similar to those encountered in annular gas turbine combustors [8, 

9], in a small-scale laboratory rig, see Figure 4-(b).  In this case, the direction of the 

acoustic motions is normal to the direction of the mean flow from the injectors to the 

combustor’s exit.  Furthermore, the full-scale combustor employs several fuel nozzles 

while the small-scale rig may have only one (as shown in Figure 4-(b)), two or three fuel 

nozzles.  Clearly, as in the above discussed longitudinal instability case, the small-scale 

“tangential” rig cannot simulate the acoustic environment in the unstable full-scale 

engine because of its smaller dimensions and, additionally, the need to account for the 

driving provided by all the fuel nozzles in the full-scale engine.  Specifically, the onset 

and frequency of CI in the full-scale engine depend on the temporal and spatial variations 

of the state variables encountered by the multiplicity of combustion processes generated 

by all the fuel nozzles.  Furthermore, the onset of CI in the full-scale engine and small-

scale rig depends upon the acoustic damping in each system.  To study tangential CIs, the 

small-scale rig could consist of a “segmented combustor”, see Figure 4-(b), that is formed 
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by “truncating” the full-scale annular combustor.  Consequently, the small-scale rig 

would likely have a single fuel nozzle whose “single” combustion process would interact 

with acoustic oscillations excited by one or more natural acoustic mode whose 

frequencies are most likely much higher than the frequency of the instability in the full-

scale annular combustor.  In this small-scale rig, the driving is “supplied” by a “single 

combustion process” in contrast to the driving provided by the system of fuel nozzles in 

the full-scale combustor.  Therefore, the small-scale rig cannot simulate the driving 

provided by all the injectors in the full-scale engine.  Figure 4-(b) describes these 

problems.  It indicates that the small-scale rig could simulate the CI of the full-scale 

engine only if the effects of the phenomena occurring in the “missing part” (shown in 

Figure 4-(b)) of the annular combustor could be simulated in the small-scale combustor 

by active control of the acoustic BCs at both ends of the small-scale rig.  Specifically, the 

actively controlled BCs at the both ends of the small-scale rig would have to account for 

the effects of acoustic wave propagation/reflection and combustion processes in the 

“missing part” of the engine.   

 

1.2.  Simulating “Full-Scale” Combustion Instabilities 

in Small-Scale Laboratory Rigs 

 The above discussions indicate that in order to study the driving of CI in a full-

scale engine in a small-scale rig, the latter must simulate the acoustic environment, the 

combustion process, and the interactions between these processes as encountered in the 

unstable, full-scale, engine.   
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1.2.1.  Simulating Longitudinal Combustion Instabilities in Small-Scale Rigs 

 To demonstrate how to attain these goals, using active acoustic BC control, we 

will first discuss the case of longitudinal CIs with the aid of Figure 5, which shows a 

schematic of the full-scale engine on top and the actively controlled small-scale rig on the 

bottom.  To illustrate how a small-scale rig might be able to simulate the acoustic 

environment in the unstable full-scale engine, we drew a vertical line (i.e., the thick 

dashed line (II)) at the location where the full-scale engine would be “cut off” in order to 

construct the small-scale rig.  An acoustic wave generated in the combustion region in the 

unstable full-scale engine would propagate to the right, past the dashed line (II).  When 

this wave reaches the exhaust nozzle, “part of the wave” will be transmitted through the 

nozzle and a “part” will be reflected off the nozzle and propagate back into the 

combustion chamber.  Consequently, incident and reflected acoustic waves will be 

present at the location of the dashed line (II).  The properties of these waves determine 

the magnitude and phase of the acoustic impedance (i.e., 𝑧 = 𝑝′/𝑣′) at that location.  This 

acoustic impedance represents the effect of the acoustics in the combustor section to the 

right of the dashed line and the nozzle (i.e., the region between the dashed lines (II) and 

(III)) upon the oscillations in the combustor section to the left of the dashed line (i.e., the 

region between the dashed lines (I) and (II)).  Consequently, if the acoustic impedances at 

the location of the dashed line (II) in the full-scale engine and the small-scale rig are the 

same, the acoustic environments to the left of the dashed line (II) in both setups will be 

the same.  Finally, to assure that the small-scale rig simulates the driving in the full-scale 

engine, the small-scale rig must also simulate the mean flow Mach number in the full-
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scale engine and employ the same injectors’ design, propellants, and mixture ratio as in 

the full-scale engine.   

 
Figure 5.  Proposed approach for using a small-scale rig with real time active boundary control to 

simulate the acoustic environment in an unstable full-scale engine experiencing an axial 

(longitudinal) combustion instability.   

 

 It is proposed that the small-scale rig employ actively controlled actuators (e.g., 

speakers) installed at its (right) exit to generate the acoustic impedance that is present at 

that location in the full-scale engine (i.e., the dashed line (II) in Figure 5).  Such actuators 

could be installed on the sidewalls of the small-scale combustor rig near the exit plane to 

allow the combustion products to flow out of the rig.   

 In order to determine the acoustic BC (e.g., acoustic pressure and velocity, or 

impedance) at the boundary of the small-scale rig (i.e., location (II) in Figure 5), which 

needs to equal, e.g., the acoustic pressure and velocity (or the ratio of them, i.e., 
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impedance) at the corresponding location in the full-scale engine, the proposed active 

control system (ACS) will have to perform the following tasks:   

i. Determine the right and left going waves in the small-scale rig (i.e., region (I)~(II) in 

Figure 5) using the measured acoustic pressures, by performing “wave separation”.  

This determines the right going acoustic wave arriving at the right boundary of the 

small-scale rig (i.e., location (II) in Figure 5).   

ii. Numerically simulate in real time the acoustic waves propagation and reflection in the 

“missing part” of the full-scale engine (i.e., region (II)~(III) in Figure 5), and 

determine the properties of the reflected, left going acoustic wave arriving at location 

(II).   

iii. Using the determined properties of the right and left going acoustic waves (obtained 

in steps i. and ii. above), determine the acoustic pressure and velocity at the boundary 

of the small-scale rig (i.e., location (II) in Figure 5).   

iv. Use the actuator (e.g., speaker) at the boundary of the small-scale rig to generate the 

determined acoustic BC, i.e., acoustic pressure and velocity at the small-scale rig’s 

boundary (determined in step iii.).   

Such an active control system (ACS) was developed as part of this study and is discussed 

in detail in Chapter 2.   

 

1.2.1.1.  Related Studies 

 The developments and applications of “active control approaches”, which 

manipulate the acoustic impedance at the boundary of the rig using actively controlled 

actuator, were studied by several researchers.  Guicking and Karcher [10] first suggested 
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this concept to generate non-reflecting (or fully absorbing) BC at the termination of an 

impedance tube and implemented an ACS for noise absorption purposes.  Paschereit at al. 

[11-13] investigated the application of a related “impedance tuning approach” to a 

combustion system under non-reacting and reacting flow conditions.  Other related 

studies dealing with, e.g., noise absorption and resonator wave simulation, also showed 

that impedance tuning approaches can be used to control the impedance at a given 

location in a small-scale rig to create non-reflecting BCs that simulate anechoic 

terminations [10, 14] or maintain a predetermined reflection coefficient [11-13, 15].  

Among these, the studies by Guicking and Karcher [10] and Paschereit at al. [11-13] are 

discussed herein as they influenced this study.   

 Guicking and Karcher [10] demonstrated active control of a one-dimensional 

acoustic wave reflection off a boundary.  Specifically, the objective of their study was to 

develop a methodology for manipulating the acoustic impedance of a boundary using an 

actuator (e.g., a loud speaker in their study) to establish a fully absorbing (or, non-

reflecting) acoustic BC.   

 Their experimental setup is shown in Figure 6-(a).  It consisted of an impedance 

tube equipped with a loud speaker at each end.  The speaker at the right boundary was 

used to excite a harmonic sound wave at a given frequency in the tube, and the speaker at 

the left boundary actively controlled the acoustic impedance (and, thus, the reflection 

coefficient) there.  In order to generate the control signal, a “wave separator” algorithm 

was developed and first used to “manipulate” the acoustic pressures measured by two 

microphones (by adding, subtracting, and time-delaying), to “split” the acoustic wave 

field into incident and reflected waves, for pure harmonic excitations.  A signal 
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describing the incident wave was then fed into the amplifier (for the speaker), and the 

gain and phase of the amplifier signal were “manually tuned” until a non-reflecting 

acoustic BC was established at the left boundary where the actively controlled speaker 

was installed.  Notably, this “manual tuning” process was necessary because their ACS 

could not determine “non-reflecting” acoustic impedance and did not have a speaker 

model that could be used to determine the command signal to speaker, as was done in this 

study (and discussed in Chapter 2).   

 This “empirical” ACS, using a wave separator, was applied to generate non-

reflecting acoustic BC for harmonic oscillations at different frequencies.  The result of 

their study is shown in Figure 6-(c).  It shows the frequency dependence of the obtained 

reflection coefficient, |𝑟|, (i.e., the ratio of the amplitude of the reflected wave to that of 

the incident wave) in the 100~800 Hz frequency range (see the solid line).  Notably, it 

was close to zero over the investigated frequency range, thus demonstrating the 

effectiveness of the developed ACS for this specific application; i.e., establishing |𝑟| ≅ 0 

at a boundary (while |𝑟| = 0 at the ideal “non-reflecting” boundary).  In their study, the 

use of the wave separator allowed the ACS to use the incident wave only without 

“interference” from the reflected wave, which was generated by the speaker, thus 

preventing unstable operation of the ACS (i.e., rapid amplification of the reflected wave), 

which could be driven by a feedback path involving the measurement system, the control 

system, and the speaker.  It should be also noted that when the control was attempted 

without the use of a wave separator, with the use of only one measured acoustic pressure 

(see M1 microphone in Figure 6-(b)), the “feedback instability” became significant and 
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the ACS was not able to establish non-reflecting BC at frequencies above 400 Hz as 

described by the dashed line in Figure 6-(c).   

 
Figure 6.  Active impedance control for one-dimensional sound, from Guicking and Karcher [10]:  

(a) experimental setup,  (b) active impedance control with two feedback microphones (and a wave 

separator),  (c) reflection coefficients obtained for harmonic excitations, with the wave separator 

(with two-microphones - solid line) and without wave separator (with one-microphone - dashed line).   

 

 These results suggest that it should be possible to actively manipulate the acoustic 

BC (or, acoustic impedance) by actively controlling an actuator (e.g., speaker) at the 

boundary of the rig.  Also, a wave separator, which identifies the right and left going 

waves from two measured acoustic pressures in the rig, is crucial to the successful 

operation of such an active control approach.  This study suggested that for an active 

control of an acoustic BC in a rig, the ACS would require capabilities for determining (i) 

the properties of the rightward and leftward moving waves in the rig, (ii) the acoustic 

pressure and velocity at the actively controlled boundary, and (iii) a “speaker model” that 
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determines the required command current to the speaker that “generates” the desired 

acoustic BC.   

 Paschereit at al. [11-13] also used an active control scheme to manipulate the 

acoustic BC in a swirl stabilized, lean premixed, combustor, see Figure 7-(a).  The 

objective of their studies was to investigate whether longitudinal CIs in full-scale 

combustors having different lengths may be investigated in the same test rig during early 

engine design phases before the final design and fabrication of the full-scale combustor.   

 To actively control the acoustic BC, they measured acoustic pressures using 

microphones located at several locations along the rig and used a “wave separator” to 

characterize the right and left going waves in the combustor.  This wave separator was 

developed in frequency domain, based on the “wave separator” algorithm developed by 

Guicking and Karcher [10].  The commands for the acoustic impedance (i.e., 𝑍 = 𝑃̂/𝑉̂) 

at the reference plane, where the actively controlled actuators, i.e., speakers, were located, 

as shown in Figure 7, were “predetermined” using pre-calculated frequency domain 

solutions of the acoustic motions in the full-scale combustor at each frequency.  In order 

to apply this approach to general acoustic pressure signals consisting of several 

frequencies components, the measured signals were decomposed, and the wave separator 

was separately applied to each frequency component.  These results were then used to 

determine acoustic BC at each frequency at the reference plane (i.e., the location of the 

actuators), and the results were synthesized to generate the time varying control signal to 

the actuator.  Their study demonstrated that the ACS was able to generate fully reflecting 

and non-reflecting acoustic impedances at the boundary of the combustor (i.e., the 
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location of the actively controlled actuators) under reacting and non-reacting flow 

conditions.   

 
Figure 7.  Impedance tuning of a premixed combustor using active control, from Bothien, Moeck, 

and Paschereit [11-13]:  (a) schematic set up of the atmospheric test rig,  (b) application of the active 

control scheme.   

 

 Paschereit at al.’s [11-13] results also suggest that it should be possible to use an 

active control approach to manipulate the acoustic BC of a small-scale combustor rig in 

order to allow it to simulate longitudinal CIs in different lengths’, full-scale, combustors.  

Notably, Paschereit at al.’s ACS also used a wave separator and “apriori” determined 

the actively controlled acoustic impedance BC in frequency domain.  Additionally, their 

ACS could actively control multi-frequencies oscillations by employing signal 

decomposition and synthesis processes, which require relatively long computational 

periods and complex algorithms.  This suggests that there is a need for another signal 

analysis approach that would enable active control of acoustic BCs in “real time”.  Also, 

since their studies simulated only longitudinal CIs in full-scale combustors, it has been 
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assumed that no combustion process is present in the “missing part” of the combustor, 

which allowed “apriori” determination of the actively controlled acoustic impedance at 

the boundary using the solutions of the full-scale combustor’s acoustics.  Notably, this 

approach would not work, if combustion is present in the “missing part” of the full-scale 

engine and should be considered in the determination of the actively controlled, acoustic, 

(impedance) BC.  Additionally, to simulate tangential CIs in a full-scale engine (where 

combustion occurs in the “missing part” of the full-scale engine; see Figure 4-(b)) in a 

small-scale rig, it may not be possible to “apriori” determine the actively controlled 

acoustic impedance BCs at the boundaries of the small-scale rig using frequency domain 

solutions that account for the effects of the acoustic oscillations, tangential mean flow, 

and combustion in the “missing part” of the full-scale combustor.  Determining the 

actively controlled acoustic BCs in this case would require a model that describes the 

interactions among the combustion process, tangential mean flow, and acoustic waves in 

the “missing part” of the full-scale combustor, and could be solved in real time.  The 

development of such a model is described in Chapter 3 of this thesis.   

 As discussed in the previous studies, to identify the rightward and leftward 

moving acoustic waves in the small-scale rig from the acoustic pressures measurements 

in real time, a “wave separation” module that uses two (or more) acoustic pressure 

measurements is required.  Analysis of the acoustic field using acoustic pressures 

measured by two or more acoustic pressure sensors distributed along the rig has been 

extensively studied.  For example, Chung and Blaser [16, 17] developed a transfer 

function method that determines the acoustic properties of a duct.  They successfully 

decomposed a broadband stationary random acoustic wave in a duct into its complex 
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incident and reflected components (for a complex reflection coefficient) using a transfer 

function relationship between the acoustic pressures at two locations in the tube.  

However, in order to develop a “real time” ACS, the wave separator needs to rapidly 

identify the rightward and leftward moving acoustic waves at least before the right going 

wave arrives at the reference plane (i.e., the boundary of the small-scale rig where the 

actively controlled actuator is installed), thus requiring a very short calculation time.  For 

this reason, the transfer function method developed by Chung and Blaser [16, 17] is not 

directly applicable to the present study because it uses a relatively “slow” FFT to analyze 

the measured acoustic pressure signals [18, 19].  This indicates that in order to develop a 

“real time” ACS, a “real time” approach for determining the properties of the rightward 

and leftward moving waves using two measured acoustic pressures will have to be 

developed.  The development of such an approach is described in Chapter 2 of this thesis.   

 The general features of the active control approaches used by Paschereit at al. [11-

13] and Guicking and Karcher [10] are described in Figure 8.  It shows that their ACS 

uses two (or more) transducers to measure the acoustic pressures in the small-scale rig.  

Next, the frequency spectra of the measured pressure signals are determined and fed into 

an array of the “wave separators” that determine the properties of the rightward and 

leftward moving waves at each frequency.  These solutions are “modified” to satisfy 

“apriori” determined acoustic impedances that must be established at the small-scale 

rig’s boundary by each frequency component present in the measured signal.  The 

determined impedance BCs at the various frequencies are then synthesized to determine 

the acoustic BC that needs to be established by the actively controlled speaker.  Finally, 

to determine the control current to the actively controlled speaker, the ACS requires the 
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use of a “speaker model” that relates the acoustic pressure and velocities at the speaker’s 

diaphragm to the control current to the speaker.  Notably, the ACS developed by 

Guicking and Karcher did not have such a model and they accomplished their objective 

by “manual” control of the current fed to the speaker, while Paschereit at al.’s ACS 

employed a speaker model, which is shown in Figure 8.   

 
Figure 8.  A schematic of the active control system used by previous investigators (Guicking and 

Karcher [10] and Paschereit at al. [11-13]) to simulate longitudinal oscillations in “full-scale” engines 

in a small-scale rig.   

 

 As discussed above, the ACS used in the earlier studies (described in Figure 8) 

used wave separators formulated in frequency domain to characterize the acoustic field 

inside the rig, and “apriori” determined the acoustic impedance at each frequency 

component present in the rig.  Such frequency domain approaches are useful for 

developing a stable ACS because selective suppression of noise in unwanted frequency 

ranges can be attained.  Also, as shown in Figure 8, the ACS “prescribed” apriori 

determined acoustic impedances at the location of the control actuator (shown as the red 

dashed circle) that were determined using frequency based analyses of the full-scale 



23 

 

system acoustics (for example, see the red colored solution of the pressure amplitude near 

the boundary).  Thus, before the operation of the ACS and the small-scale rig, the 

frequency domain solution of the full-scale system acoustics is required, and the acoustic 

impedances at the control actuator of the small-scale rig need to be determined apriori 

using this solution of the full-scale system acoustics.   

 

1.2.1.2.  Active Control Approach Developed in this Study 

 Since, as discussed above, the active acoustic BC control approaches that have 

been developed to date, see Figure 8, do not meet the performance goals of the ACS that 

would be required to simulate full-scale engines’ CIs in a small-scale rig, this study has 

developed a new ACS that is shown in Figure 9.  It consists of:   

1. Two transducers to measure the acoustic pressures at two locations in the small-scale 

rig,   

2. A “wave separation” module that determines the properties of the rightward and 

leftward moving acoustic waves in the rig in “real time”,   

3. A simulation module that determines in “real time” the properties of the rightward 

and leftward moving waves in the “missing part” of the full-scale combustor and 

determines the acoustic BC that must be “generated” at the boundary of the small-

scale rig (i.e., location (II)),   

4. A speaker model module that determines the control current to the speaker that would 

generate the required acoustic BC, and   

5. An actuator (i.e., a speaker in this study) that actively generates the required acoustic 

BC at the boundary of the small-scale rig (i.e., location (II)).   
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Figure 9.  A schematic of the active control approach developed in this study to simulate full-scale 

engines’, longitudinal, combustion instabilities in a small-scale rig.   

 

 To identify the rightward and leftward moving acoustic waves in the small-scale 

rig from the two acoustic pressures measurements in real time, a “wave separation” 

module was developed in this study.  To meet the objectives of this study, the developed 

wave separation module needs to identify the rightward and leftward moving acoustic 

waves in a time shorter than the time required for the right going wave to arrive at the 

boundary of the small-scale rig where the actively controlled actuator is installed.  In 

addition, since the right going wave identified by the wave separation module is used as 

an input to a “real time” simulation that determines the subsequent behavior of the 

combustion and acoustic processes in the “missing part” of the full-scale combustor, the 

wave separation module must use a “time domain” formulation, which significantly 

differs from the “frequency domain” approaches used by the previous investigators.  For 

these reasons, this study has developed and used a relatively simple wave separation 

algorithm that analyzes the measured acoustic pressure signals without the use of, e.g., 

FFT, coherence calculations, etc. that require significant computation times.  Therefore, 
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the wave separation algorithm developed in this study “operates” in time domain, which 

requires short calculation times and, thus, provides “real time” active control.  

Additionally, the developed time domain wave separation algorithm is compatible with 

the real time, “time marching”, simulations of the combustion and acoustic processes in 

the “missing part” of the full-scale engine that are performed by the “simulation module”, 

see Figure 9.   

 Also, the developed time domain wave separation algorithm eliminates the need 

for the time consuming decomposition and synthesis processes that have been employed 

in the previous studies.  Therefore, the developed time domain based ACS can handle 

active control scenarios involving general time varying signals; i.e., transient or 

stationary oscillating signals.   

 In summary, the main difference between the active control approach developed 

in this study and the previously used approaches to determine the actively controlled, 

acoustic, BC in the small-scale rig is the approach used to characterize the acoustic 

processes in the “missing part” of the full-scale combustor.  Specifically, the previously 

developed approaches “apriori” determined the acoustic impedances that must be 

satisfied at the boundary of the small-scale rig by analyzing the acoustics (in the “missing 

part”) of the full-scale combustor.  In contrast, this study determines the actively 

controlled, acoustic, BCs by analyzing the oscillations in the small-scale rig and the 

“missing part” of the full-scale combustor using a “real time” simulation.  As shown in 

Figure 9 and discussed in Chapter 2, the simulation module numerically simulates in real 

time the acoustic processes in the “missing part” of the full-scale combustor (see the red 

dashed circle) and determines the acoustic BC at the actively controlled boundary of the 
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small-scale rig.  When combustion processes occurs in the “missing part” of the full-scale 

combustor, the simulation module of the ACS must simulate the combustion and acoustic 

processes and their interactions in the “missing part” of the full-scale combustor in real 

time using an appropriate model (which was also developed in this study and discussed in 

Chapter 3).   

 

1.2.2.  Simulating Tangential Combustion Instabilities in Small-Scale Rigs 

 This study also investigated the possible use of a small-scale “tangential” rig for 

investigating tangential CIs in full-scale engines.  The proposed approach is described in 

Figure 10.  It shows a small-scale rig consisting of a sector of the full-scale annular 

combustor located in the space between the two dashed lines (I) and (II).  When a 

tangential CI occurs in the full-scale engine, it excites two travelling acoustic waves that 

move in opposite directions across the dashed lines (I) and (II) that enclose a small-scale 

segment of the full-scale engine in Figure 10.  In this case, the wave that moves in the 

clockwise direction across the right dashed line (II) would move around the annular 

combustor before re-entering the segment across the left dashed line (I).  As the two 

waves move around the engine, outside the “enclosed” segment, they are damped by, e.g., 

viscous and heat transfer processes and exhaust nozzles, and amplified by interactions 

with the combustion processes associated with the different fuel nozzles.  In this case, 

actively controlled actuators located at the two ends (i.e., at the locations of the dashed 

lines (I) and (II)) of the small-scale rig would need to simulate the effect of all the 

processes taking place in the “removed” or “missing” part of the engine upon the 

processes in the small-scale rig between the two dashed lines (I) and (II).  Specifically, 
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these actuators will actively generate acoustic impedances at locations (I) and (II) of the 

small-scale rig that would equal to the acoustic impedances at the corresponding 

locations of the two dashed lines (I) and (II) in the full-scale annular combustor.   

 
Figure 10.  A schematic of the proposed small-scale rig with actively controlled acoustic boundary 

conditions (on the right) that simulates a tangential combustion instability in the full-scale annular 

combustor (on the left)   

 

 Notably, in the case of tangential CIs in a full-scale annular combustor (e.g., see 

Figure 10), multiple driving/damping sources (i.e., combustion processes, exhaust 

nozzles, and fuel/oxidizer nozzles) and propagating acoustic waves are present in the full-

scale combustor, which differs from the scenarios encountered when trying to simulate 

axial (longitudinal) CIs in a small-scale rig, as discussed in Section 1.2.1.  Clearly, the 

acoustic impedances that will have to be “established” at the two boundaries at locations 

(I) and (II) of the small-scale rig will have to account for the acoustic waves propagation 

and the damping and driving of the waves by the combustion processes, exhaust nozzles, 

and fuel/oxidizer nozzles that occur in the “missing part” of the full-scale combustor.  As 

discussed in Chapter 3, this study has developed a real time approach for determining 

these actively controlled impedances that uses a model that describes the acoustic 
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motions and their interactions with the combustion processes (including injectors and 

exhaust nozzles flows) and a tangential mean flow in the “missing part” of the full-scale 

annular combustor.   

 

1.2.2.1.  Proposed Active Control Approach for Simulating Tangential CI in a Small-

Scale Rig 

 Figure 11 describes the approach proposed in this study for simulating the 

tangential CI in a full-scale annular combustor in a small-scale rig.  It consists of a small-

scale sector combustor rig equipped with an ACS installed at its boundaries at location (I) 

and (II).  The wave separation module diagnoses the acoustic field inside the small-scale 

rig and identifies the properties of the waves crossing the boundaries of the small-scale 

rig (i.e., at the dashed lines (I) and (II)).  Using a developed model, the real time 

simulation module estimates the changes experienced by the outgoing waves as they 

propagate through the “missing part” of the full-scale annular combustor (i.e., the region 

enclosed by red dashed lines in Figure 11) and interact with the concentrated combustion 

regions, exhaust nozzles, and fuel/oxidizer supply systems.  For example, a wave 

crossing the left dashed line (I) in Figure 11 and moving in the counterclockwise 

direction will interact with several concentrated combustion processes, exhaust nozzles, 

and fuel/oxidizer supply systems before crossing the dashed line (II) on the right.  

Similarly, a wave travelling in the clockwise direction will experience similar interactions.  

The simulation module also estimates the acoustic impedances at the boundaries of the 

small-scale rig (i.e., the locations (I) and (II)) using the information provided by the wave 

separation module and the simulation module that determine the properties of the waves 
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leaving and re-entering the small-scale rig at locations (I) and (II) at all times.  Once 

determined, these acoustic impedances will have to be established at the boundaries of 

the small-scale rig (i.e., the locations (I) and (II)) by actuators (e.g., speakers) that will be 

driven by control signals generated by models of these actuators.  Applying this approach, 

it would be possible to simulate in the small-scale rig the acoustic environment occurring 

at the dashed lines (I) and (II) in an unstable, full-scale, annular combustor.   

 
Figure 11.  Description of a proposed active control approach for simulating a tangential combustion 

instability in a full-scale annular combustor in a small-scale rig.   

 

 

1.3.  Objectives of this Investigation 

 The overall objective of this study was to develop a real time, active boundary 

control approach that would allow simulations of longitudinal and tangential CI in full-
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scale engines in small-scale laboratory rigs.  The following goals will have to be met to 

attain the overall objective of this study:   

a. Develop a real time active control system (ACS) that consists of:  (i) a wave 

separation module that determines the properties of the rightward and leftward 

propagating waves in the small-scale rig by analyzing (at least) two measured 

acoustic pressures;  (ii) a simulation module that simulates the propagation, 

amplification, and damping of the acoustic waves in the “missing part” of the full-

scale engine (e.g., see Figure 5 and Figure 10).  This information is used to determine 

the acoustic BCs that need to be established at the boundaries of the small-scale rig;  

and (iii) an actuator module that uses the output of the simulation module (i.e., the 

acoustic BC) and models of the actuators (e.g., speakers) to determine the control 

signals to the actuators.  These efforts are described in details in Chapter 2 of this 

thesis.   

b. Develop the proposed ACS and investigate its performance in a small-scale rig that 

simulates the acoustics of longitudinal CIs in full-scale engines (e.g., see Figure 5).  

These efforts are also described in Chapter 2 of this thesis.   

c. Develop a model that could be used to determine the time dependence of actively 

controlled BCs of a small-scale rig that simulates tangential CIs in a full-scale annular 

combustor (e.g., see Figure 10).  Additionally, use the developed model to investigate 

the dependence of tangential CIs upon the characteristics of the combustion process, 

exhaust nozzle damping, the impedances of the reactants supply system, and the 

presence of a mean tangential flow component.  These efforts are described in 

Chapter 3 of this thesis.   
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d. Propose follow up research efforts that will further expand the work performed under 

this study.  These are described in Chapter 4 of this thesis.   
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CHAPTER 2. 

DEVELOPMENT OF A REAL TIME ACTIVE ACOUSTIC 

BOUNDARY CONTROL APPROACH FOR SMALL-SCALE RIGS 

 

 As discussed in Chapter 1, in order to study the causes of combustion instabilities 

(CIs) in a full-scale engine in a small-scale rig, the acoustic environments in the unstable, 

full-scale, engine combustor must be reproduced in the small-scale rig.  However, since 

the small-scale rig and the full-scale engine have different dimensions, the frequencies 

and amplitudes of the acoustic modes excited by CIs in these facilities are different.  This 

chapter describes the results of a study that investigated the use of an active control 

system (ACS) to resolve this issue.  Specifically, the objective of this study has been to 

determine whether actively controlled acoustic boundary conditions (BCs) could be 

applied to excite axial oscillations in a small-scale (short) rig that simulate the acoustic 

oscillations excited in a longer, full-scale, engine that experiences axial CIs.  These 

efforts involved development of the necessary rigs, and the hardware and software of the 

ACS.  The results of these studies are described in the remainder of this chapter.   

 

2.1.  Problem Statement 

2.1.1.  Simplified Problem 

 Since the objective of this study was to develop a specific active control system 

(ACS), this research was performed on a “simplified”, one-dimensional, cold flow, setup, 

which was developed for this purpose.  The investigated problem is described in Figure 

12.  Figure 12-(a) describes a full-scale engine experiencing an axial instability that is 
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driven by an oscillatory combustion process, which is described as a red ball near the left 

end of the combustor where the reactants are supplied.  As stated earlier, the goal of this 

study is to determine whether the unstable oscillations in the full-scale engine could be 

simulated in the shorter rig shown in Figure 12-(b).  To accomplish this, the shorter rig 

has been retrofitted with an ACS at its right boundary (i.e., at location II).  The objective 

of this ACS is to reproduce the acoustic impedance at location II in the full-scale engine 

shown in Figure 12-(a) at the right boundary of the small-scale rig.   

 
Figure 12.  Schematics of the full-scale engine and the small-scale rig “simulator” with active control.   

 

 This would require, however, that the full-scale engine and small-scale rig 

“employ” a combustion process to drive the acoustic oscillations, which would introduce 

unnecessary complexities into this study.  Also, an exhaust nozzle (see Figure 12) will be 

required to discharge the generated combustion products, which, in turn, will create a 

mean flow in the rig.  These exhaust nozzle flow and mean flow will affect the acoustic 

boundary conditions (BCs) that will have to “set up” by the ACS in the small-scale rig.  
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Finally, the presence of an exhaust nozzle flow and mean flow will require the 

development of “complex” actuator that will have to be shielded (e.g., insulated or cooled) 

from the hot mean flow.  However, for the purpose of investigating whether the ACS is 

able to simulate the oscillations in the full-scale engine in a small-scale rig by actively 

controlling the acoustic BCs of the small-scale rig, the incorporation of an exhaust nozzle 

would introduce unnecessary complexities into this study.   

 The above observations suggested that the objective of this study could be 

pursued using the cold flow setups described in Figure 13.  It shows the “full-scale engine” 

on top and the actively controlled small-scale rig on the bottom.  The objective of the 

study is to demonstrate that the actively controlled rig could simulate the longitudinal 

acoustic resonances of the full-scale engine on top in the small-scale rig on the bottom; 

i.e., the acoustic field in the actively controlled rig of length L2 (i.e., region I~II) would 

be identical to the acoustic field in region I~II in the full-scale engine, see Figure 13.   

 
Figure 13.  Description of the simplified one-dimensional cold flow setup used to develop the active 

control system.   
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 To achieve this objective, the ACS should be able to simulate both travelling and 

standing wave type CIs that are encountered in unstable, full-scale, engines in the small-

scale rig.  This could be accomplished by experimentally demonstrating the developed 

ACS can determine the acoustic BC that must be established at the actively controlled 

boundary (at location II) of the small-scale rig that properly accounts for the effects of the 

acoustic oscillations in the “missing part” of the full-scale engine (i.e., in region II~III; 

see Figure 13).   

 If, for example, such capabilities could be demonstrated for “full-scale” engines 

having different lengths (and, thus, having different lengths of the “missing part” of the 

engine), then longitudinal resonances in different lengths’ full-scale engines could be 

simulated using the same small-scale rig, as demonstrated later in this chapter.  It is also 

noteworthy that, the ACS should be able to simulate any “portion” of the resonant 

standing wave oscillations in the full-scale engine within the small-scale rig.  For 

example, as shown in Figure 13, the ACS should be also able to simulate the oscillations 

between, e.g., locations (1) and (2) in the full-scale engine (note that the distance between 

locations (1) and (2) also equals L2, the length of the small-scale rig), in the small-scale 

rig.   

 

2.1.2.  Description of the Developed Active Control System (ACS) 

 To meet this study’s objectives, the developed small-scale rig was equipped with 

a speaker at its left boundary and an ACS employing a speaker as an actuator at its right 

boundary, see Figure 14.  The objective of the speaker on the left boundary is to drive an 

oscillation at a resonant frequency of the “full-scale” engine (i.e., the longer rig on the top 
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of Figure 13 and Figure 14) in the small-scale rig, thus simulating the combustion process 

that drives resonant acoustic oscillations in unstable, full-scale, engine (as shown in 

Figure 12).  The objective of the ACS is to establish the acoustic BC at location II of the 

small-scale rig that is the same as the acoustic condition (e.g., acoustic pressure and 

velocity, or impedance) at location II in the full-scale rig on top, see Figure 14 .  If this 

would be accomplished, the acoustic fields in region I~II in the small-scale and full-scale 

rigs would be the same.   

 
Figure 14.  Schematics of the developed, actively controlled, small-scale rig simulator (bottom) and 

the corresponding “full-scale rig” (top).   

 

 To achieve these objectives, the ACS must first diagnose the acoustic field inside 

the small-scale rig (i.e., region I~II in Figure 14).  To accomplish this, the acoustic 

pressures inside the small-scale rig are measured with pressure transducers, which are 

installed on the wall of the rig.  The ACS analyses the measured acoustic pressures 

(minimally at two locations) and characterizes the properties of the acoustic waves 
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leaving and entering the rig; i.e., it performs “wave separation” analysis that determines 

the right going wave, 𝑓𝑟𝑖𝑔, and the left going wave, 𝑔𝑟𝑖𝑔, of the excited acoustic field, see 

Figure 14.  The right going wave, 𝑓𝑟𝑖𝑔, propagates toward the right boundary of the rig 

(i.e., location II) where it “leaves” the rig, see 𝑓𝐼𝐼  in Figure 14.  Thus, the “wave 

separation module” of the ACS in Figure 14 determines the properties of 𝑓𝑟𝑖𝑔 and 𝑓𝐼𝐼 and 

provides this information to the “simulation module” of the ACS.   

 Next, the ACS must simulate the acoustic waves’ propagations/reflections in the 

“missing part” in the full-scale engine; i.e., region II~III in Figure 14.  In the full-scale 

engine, the right going wave, 𝑓𝐼𝐼, continues to propagate into the “missing part” of the 

“full-scale engine” until it arrives at the right boundary of the engine (i.e., location III), 

see 𝑓𝐼𝐼𝐼  in Figure 14.  This right going wave, 𝑓𝐼𝐼𝐼, is then reflected off the boundary at 

location III to generate the left going wave, 𝑔𝐼𝐼𝐼.  This left going wave, 𝑔𝐼𝐼𝐼, propagates 

back towards location II, see 𝑔𝐼𝐼 on top of Figure 14.  The ACS simulates these waves’ 

propagation and reflection processes in region II~III, to “estimate” the properties of the 

left going wave, 𝑔𝐼𝐼 at location II in the full-scale engine that equals 𝑔𝑠𝑖𝑚,𝐼𝐼 at location II 

at the right boundary of the small-scale rig; i.e., 𝑔𝑠𝑖𝑚,𝐼𝐼  is the estimation of 𝑔𝐼𝐼 , see 

bottom of Figure 14.  This analysis is performed by the “simulation module” of the ACS 

in Figure 14.   

 Next, the ACS determines the acoustic BC at the location of the actuator (i.e., 

location II) by using the results provided by the wave separation and simulation modules.  

At location II in the full-scale rig (see top of Figure 14), the acoustic pressure, 𝑝′, and 

velocity, 𝑣′, are related to the right going wave, 𝑓𝐼𝐼, and the left going wave, 𝑔𝐼𝐼; i.e., 

𝑝′
𝐼𝐼

= 𝑓𝐼𝐼 + 𝑔𝐼𝐼 and 𝑣′
𝐼𝐼 =

1

𝜌𝑐
(𝑓𝐼𝐼 − 𝑔𝐼𝐼) [20-22].  On the other hand, the ACS determines 
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the acoustic BC at the right boundary (location II) of the small-scale rig by combining the 

right going wave, 𝑓𝐼𝐼, and the estimated left going wave, 𝑔𝑠𝑖𝑚,𝐼𝐼 to obtain i.e., 𝑝′̃
𝐼𝐼

= 𝑓𝐼𝐼 +

𝑔𝑠𝑖𝑚,𝐼𝐼 and 𝑣 ′̃
𝐼𝐼 =

1

𝜌𝑐
(𝑓𝐼𝐼 − 𝑔𝑠𝑖𝑚,𝐼𝐼), see bottom of Figure 14.  Notably, 𝑝′

𝐼𝐼
 and 𝑣′

𝐼𝐼 are 

the acoustic pressure and velocity at location II in the full-scale engine while 𝑝′̃
𝐼𝐼
  and 

𝑣 ′̃
𝐼𝐼 are the acoustic pressure and velocity estimated by the “simulation module” of the 

ACS to determine the “needed” acoustic BC (at location II) of the small-scale rig, which 

is also determined by the “simulation module” of the ACS in Figure 14.   

 Finally, the actuator (i.e., a speaker in this study) of the ACS is used to establish 

the estimated acoustic pressure, 𝑝′̃
𝐼𝐼
 , and velocity, 𝑣 ′̃

𝐼𝐼 , at the right boundary of the 

small-scale rig.  To accomplish this, the actuator must receive a control command from 

the ACS that describes the time dependence of the input current to the speaker.  The 

model of the speaker that was used to calculate this input current to the speaker using the 

estimated acoustic pressure and velocity at location II, see “speaker model module” in 

Figure 14, will be discussed later.   

 

2.2.  Development of the Actively Controlled Small-Scale Laboratory Rig Simulator 

 The roles of the modules of the ACS (i.e., the “wave separation”, “simulation”, 

and “speaker model” modules) are described in the previous section and Figure 14.  In 

this section, the development of these modules is discussed.   

 

2.2.1.  The Wave Separation Module 

 This section describes how the wave separation module determines the properties 

of the right and the left going waves in the small-scale rig from measured acoustic 
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pressures.  A one-dimensional acoustic field can be represented by a combination of a 

“right going wave” and a “left going wave”.  By determining the properties of the right 

and the left going waves, the acoustic field in the small-scale rig can be characterized.   

 As discussed in Chapter 1, Chung and Blaser [16, 17] showed that one-

dimensional acoustic field can be accurately analyzed by a transfer function method 

employing FFT and coherence analyses.  However, this and related approaches require a 

relatively “long” period of time to “collect” and “analyze” a large arrays of sampled data 

[18, 19].  For example, in this study, the ACS measured the acoustic pressures and 

performed the required calculations (using the three modules discussed in Section 2.1.2.) 

to determine the control signal at a sampling frequency, 𝑓𝑠 = 10 𝑘𝐻𝑧 (or with a sampling 

time, 𝜏𝑠 = 1/𝑓𝑠 = 0.1 𝑚𝑠𝑒𝑐 ).  If a FFT analysis is used to determine the frequency 

content of the signal in the 1 Hz to 5 kHz (= 𝑓𝑠/2) range with resolution of 1 Hz, 1 sec 

period of time is required to collect 10000 samples of data, and a “long” calculation time 

is necessary to integrate 10000 samples of the data at each frequency.  The duration of 

these processes is too long (i.e., more than 1 sec) for the proposed real time active control 

approach (that requires a computation time less than 0.1 msec).  Therefore, a different 

signal analysis approach was developed in this study to reduce the measured acoustic 

pressures analysis period.  Specifically, the developed wave separation algorithm 

employs simple formulas whose solution requires relatively small amount of data and 

very short “calculation time” compared with commonly used approaches such as FFT and 

coherence calculations.  This approach allows the wave separation module to rapidly 

identify the right and the left going waves in the small-scale rig before the right going 
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wave arrives at the right boundary of the small-scale rig where the actively controlled 

actuator is installed (i.e., location II in Figure 14), thus enabling “real time” active control.   

 In this study, a time domain approach was used to develop the wave separation 

algorithm rather than a frequency domain approach that has been used in related studies 

[10-14].  This approach allows the wave separation algorithm to handle “all” time 

varying signals, including transient and stationary, oscillatory signals.  The developed 

wave separation algorithm has been also incorporated into the simulation module that 

analyses the acoustics in the missing part of the engine; i.e., the module that performs the 

real time numerical simulation of the acoustics in the missing part of the engine using a 

“time marching” approach.   

 

2.2.1.1.  The Wave Separation Algorithm 

 The wave separation algorithm essentially employs the well-known “method of 

characteristics” [21, 22].  The right and the left going waves propagations are described 

using “characteristic lines” in the (𝑥, 𝑡) plane, as shown in Figure 15, where the abscissa 

is the space coordinate, 𝑥, and the ordinate is the time coordinate, 𝑡.  In this characteristic 

plane (𝑥, 𝑡) , waves propagating at a constant speed of sound, 𝑐 , are represented as 

straight lines.  For example, when the medium is stationary (i.e., the mean flow velocity 

is 𝑉̅ = 0), a right going wave is represented as a line having a positive slope, 
1

𝑐
, and a left 

going wave is represented by a line having a negative slope, 
1

−𝑐
; e.g., see the 

characteristic lines R1 and L1 in Figure 15.   

 The objective of the wave separation module is to determine the properties of the 

acoustic pressures and velocities at any location in the small-scale rig from the 
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measurements of acoustic pressures at (a minimum of) two locations in the rig.  For 

example, the wave separation module may need to determine the properties of the right 

going wave, 𝑓3, at location 𝑥3 from the two acoustic pressures, 𝑝′1 and 𝑝′2, measured at 

locations 𝑥1 and 𝑥2, respectively, see Figure 15.   

 
Figure 15.  Characteristics of acoustic waves and the wave separation algorithm.   

 

 An acoustic pressure measured at a certain location and time can be represented 

by the sum of a right going wave and a left going wave at that location and time.  For 

example, the acoustic pressures, 𝑝′1 measured at location 𝑥1 at time 𝑡 and 𝑝′2 measured 

at location 𝑥2 at time 𝑡 − 𝜏, are described by the expressions in Eq. (2-1) below, where 𝑡 

is the current time and 𝜏 is the time required for an acoustic wave to propagate from 

location 𝑥1 to location 𝑥2, see Figure 15.   

 )()()( 111 tgtftp     

)()()( 222   tgtftp    
(2-1)  

where, 𝑝′2(𝑡 − 𝜏) was measured earlier (i.e., at time 𝑡 − 𝜏) and stored by the ACS.   
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 The properties of the right and left going waves are constant along their 

corresponding characteristic lines; i.e., 𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 on line R1 and 𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 on 

line L1.  Using these properties and Figure 15, the following relationships are obtained:   

 )()2( 13 tftf      

)()( 23  tftf    

)()( 21  tgtg    

(2-2)  

The first relationship in Eq. (2-2) states that the right going wave at location 𝑥3  and 

time 𝑡 + 2 ∙ 𝜏, 𝑓3(𝑡 + 2 ∙ 𝜏), is equal to the right going wave at location 𝑥1 and time 𝑡, 

𝑓1(𝑡), since the right going wave is constant along the characteristic line R1; see Figure 

15.  Similarly, the second and third relationships in Eq. (2-2) can be derived using the 

characteristic lines R2 and L1, respectively.   

 Using Eqs. (2-1) and (2-2) and Figure 15, the change in magnitude of the right 

going wave between the characteristic lines R1 and R2, can be derived.  Specifically, 

subtracting 𝑝′2(𝑡 − 𝜏) from 𝑝′1(𝑡) provides the following expression for the change in 

magnitude, ∆𝑝𝑓, of the right going wave:   

 

fp

tftf

tgtftgtftptp







                          

)()(                          

)()()()()()(

21

221121





 (2-3)  

because 𝑔1(𝑡) = 𝑔2(𝑡 − 𝜏) from the last relationship in Eq. (2-2).   

 Substituting the first and second expressions in Eq. (2-2) into Eq. (2-3) and 

manipulating the resulting expression yields the following relationship:   

 )()( 21  tptpp f  

fptftf  )()2( 33   
(2-4) 
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where the value, 𝑓3(𝑡) , of the right going wave at location 𝑥3  and time 𝑡  is known 

because it has been determined at earlier time 𝑡 − 2 ∙ 𝜏.  Equation (2-4) essentially shows 

that using the two measured acoustic pressures at locations 𝑥1 and 𝑥2 and times 𝑡 and 

𝑡 − 𝜏, respectively, and the stored value of the right going wave (i.e., 𝑓3(𝑡)), the right 

going wave at location 𝑥3 at 2𝜏 time later (i.e., 𝑓3(𝑡 + 2 ∙ 𝜏)) can be obtained.   

 While Eq. (2-4) is general and can be used when “continuous” descriptions of the 

measured pressures are available, in practice the measured pressures are discretized at a 

certain sampling rate given by, e.g., 𝜏𝑠 =
1

𝑓𝑠
, where 𝑓𝑠  is the sampling frequency.  The 

ACS measures acoustic pressures and performs the required operations (e.g., wave 

separation, simulation, etc.) at every discretized time instant, 𝜏𝑠.  In this case, the current 

time 𝑡 can be described by a time index 𝑖 that satisfies the relationship, 𝑡 = 𝑖 ∙ 𝜏𝑠, and the 

next time step 𝑡𝑛𝑒𝑥𝑡 is given by 𝑡𝑛𝑒𝑥𝑡 = 𝑡 + 𝜏𝑠 = (𝑖 + 1) ∙ 𝜏𝑠, where 𝑖 is an integer.  In 

the developed ACS, the “times” in Eq. (2-4) are replaced by their “digital” descriptions 

using the time index 𝑖 as shown in Eq. (2-5) below, where 𝑚 is the number of digital time 

steps required for an acoustic wave to propagate from location 𝑥1 to location 𝑥2; i.e., 

𝜏 ≈ 𝜏𝑠 ∙ 𝑚, where 𝑚 is a positive integer.   

 )()( 21 mipipp sssf    

fsss pifmif  )()2( 33   
(2-5) 

Omitting, for convenience, 𝜏𝑠 from the above equations yields the following simplified 

expressions in a “discrete form”:   

 )()( 21 mipipp f     

fpifmif  )()2( 33    
(2-6) 
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 While on the surface either Eq. (2-4) or (2-6) could be used to perform wave 

separation, the application of these equations in practice is problematic because of 

numerical stability issues.  From a numerical point of view, these equations are similar to 

those obtained when applying the first-order upwind scheme (using the spatial grid ∆𝑥 

and the temporal grid ∆𝑡) with 𝐶𝐹𝐿 = 𝑐∆𝑡/∆𝑥 = 1 to the solution of 1-D convection 

equations, which also describes the wave equations [23, 24].  Equation (2-7) below 

provides an example of a 1-D convection equation, a first-order upwind scheme 

(Forward-Time Backward-Space (FTBS) [24]) for its numerical solution, and the 

definition of the CFL number.   
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(2-7)  

 Figure 16 below describes the relationships between the used (known) data and 

the estimated data determined by the wave separation algorithm (using Eq. (2-6)) and the 

first-order upwind scheme shown in Eq. (2-7), respectively, by showing the domains of 

dependence of both schemes [23-26].  Specifically, the wave separation algorithm uses 

the known values of 𝑝′1(𝑖), 𝑝′2(𝑖 − 𝑚), and 𝑓3(𝑖) (shown as black points) to calculate an 

“estimated” value of 𝑓3(𝑖 + 2 ∙ 𝑚) (shown as a red point).  On the other hand, the first-

order upwind scheme uses the known values of 𝑓(𝑥 − ∆𝑥, 𝑡) and 𝑓(𝑥, 𝑡) (shown as black 

points) to calculate 𝑓(𝑥, 𝑡 + ∆𝑡) (shown as a red point), which describes the wave at the 

next time step.  It can be shown that if the wave separation algorithm is applied to solve 
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the 1-D convection equation to determine the propagation of only right going waves, the 

algorithm becomes equivalent to the first-order upwind scheme with 𝐶𝐹𝐿 = 1.   

 For numerical stability, this numerical scheme requires a 𝐶𝐹𝐿 ≤ 1  (note that 

𝐶𝐹𝐿 = 1  is only marginally stable) [24, 25].  The numerical scheme with 𝐶𝐹𝐿 = 1 

employs a grid size, ∆𝑥, and a time step size, ∆𝑡, that satisfy the relationship, 𝐶𝐹𝐿 =

𝑐∆𝑡/∆𝑥 = 1; see the shaded triangle in Figure 16-(b).  To assure numerical stability, it 

requires that 𝐶𝐹𝐿 < 1.  This, in turn, requires that the time step size, ∆𝑡, be reduced to 

yield 𝐶𝐹𝐿 = 𝑐∆𝑡/∆𝑥 < 1 for the given grid size, ∆𝑥.  Thus, a stable first-order upwind 

scheme (Forward-Time Backward-Space (FTBS)) determines the estimated data point at 

the next time step, 𝑓(𝑥, 𝑡 + ∆𝑡) , inside the shaded triangular region or on the line 

between 𝑓(𝑥, 𝑡 + ∆𝑡) (when 𝐶𝐹𝐿 = 1 and shown as a red point), and 𝑓(𝑥, 𝑡) (shown as a 

black point); see Figure 16-(b).  Similarly, as shown in Figure 16-(a), the data points 

needed for applications of the wave separation algorithm are located “on” the boundaries 

of the domains of dependence (shaded regions), which results in 𝐶𝐹𝐿 = 1  and a 

marginally stable algorithm.  Notably, a numerical scheme having 𝐶𝐹𝐿 < 1  is stable 

because an error introduced at a certain time step 𝑡 is subsequently suppressed by the 

numerical scheme.  On the other hand, when 𝐶𝐹𝐿 = 1, an error introduced at a certain 

time step 𝑡 is not amplified nor suppressed as the calculation proceeds.  Thus, since errors 

are continuously introduced in experiments, they are accumulated and amplified as the 

calculation proceeds when 𝐶𝐹𝐿 = 1.  Consequently, when Eq. (2-6) is applied to analyze 

noisy experimental data, this algorithm becomes unstable, and the solution diverges.   
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Figure 16.  Domains of dependence;  (a) original (Eq.(2-6)) and relaxed (Eq. (2-8)) wave separation 

algorithm,  (b) first-order unwind scheme (Eq. (2-7)) (Forward-Time Backward-Space (FTBS)) for 

solving 1-D convection equation with CFL=1 and CFL<1.   

 

 To illustrate this point, Eq. (2-6) was applied to analyze the behavior of a given, 

“pure”, right going travelling wave field.  Adding noise to an assumed, “exact”, solution 

for the pressures, 𝑝′1  and 𝑝′2 , the right going wave at location 𝑥3  was estimated and 

compared with the exact value provided by the known (assumed) travelling wave.  The 

results are shown in Figure 17.  Figure 17-(a) shows that the solution (described by the 

red curve) becomes unstable and slowly diverges from the exact solution (represented by 

the black curve).  This example shows that the wave separation algorithm employing Eq. 

(2-6) produces erroneous solution when 𝐶𝐹𝐿 = 1, even though the scheme is marginally 

stable in this case.   
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Figure 17.  Example of numerical test (with 100 Hz right going travelling wave) of the original 

algorithm (Eq. (2-6));  (a) whole result: exact wave (black line) and estimated wave (red line),  (b) 

result shortly after the start of the calculation,  (c) result near 1.5 sec.   

 

 Also, as shown in Eq. (2-6), the information at each time step does not depend on 

the information at “adjacent” time steps (i.e., 𝑖 ± 1).  In fact, Eq. (2-6) shows that it only 

depends on the information at time indices located 2 ∙ 𝑚 time steps apart; e.g., 𝑓3(𝑖 + 2 ∙

𝑚)  depends on 𝑓3(𝑖) .  In the domain of dependence in Figure 16-(a), the value of 

𝑓3(𝑖 + 2 ∙ 𝑚) (depicted as a red point) depends on 𝑓3(𝑖) but not on the values of 𝑓3(∙) at 

any intermediate time steps such as 𝑓3(𝑖 + 1), …𝑓3(𝑖 + 2 ∙ 𝑚 − 1) (depicted as open 

circles).  Specifically, 𝑓3(𝑖 + 2 ∙ 𝑚)  depends on 𝑓3(𝑖), 𝑓3(𝑖) depends on 𝑓3(𝑖 − 2 ∙ 𝑚) , 

and 𝑓3(𝑖 − 2 ∙ 𝑚) depends on 𝑓3(𝑖 − 4 ∙ 𝑚), etc.  On the other hand, 𝑓3(𝑖 + 2 ∙ 𝑚 − 1) 
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depends on 𝑓3(𝑖 − 1) , 𝑓3(𝑖 − 2 ∙ 𝑚 − 1) , 𝑓3(𝑖 − 4 ∙ 𝑚 − 1) , etc.  Consequently, the 

estimations at adjacent time steps, e.g., 𝑓3(𝑖 + 2 ∙ 𝑚)  and 𝑓3(𝑖 + 2 ∙ 𝑚 − 1)  (or, 

equivalently 𝑓3(𝑖) and 𝑓3(𝑖 − 1)), do not depend upon each other.  As the calculation 

proceeds, estimations at adjacent time steps accumulate errors independently, and the 

estimated signal eventually has higher frequency oscillation errors that are related to 𝜏𝑠.  

This growth of high frequency oscillations errors in time is shown in Figure 17-(b) (in the 

initial period) and Figure 17-(c) (near the end of the calculation).   

 The discussed algorithm can be stabilized by adding a “relaxation” to the 

numerical scheme.  Equation (2-6) shows that the magnitude of the right going wave at 

location 𝑥3 changes by an “exact” amount, ∆𝑝𝑓, between the time steps 𝑖 and 𝑖 + 2 ∙ 𝑚.  

This “exact” difference, ∆𝑝𝑓 , could be “relaxed” using an approximated slope, 
∆𝑝𝑓

2∙𝑚
, 

representing the change ∆𝑝𝑓 between the time steps 𝑖 and 𝑖 + 2 ∙ 𝑚, see Figure 15 and 

Figure 18.  If the distance between the two acoustic pressure sensors is sufficiently 

smaller than the excited acoustic wave length (i.e., ∆𝑥 ≪ 𝜆), as required for proper use of 

the two microphones technique, then the actual right going wave (the red curve in Figure 

18) and its linear approximation (the dashed line in Figure 18) are very close to each 

other.   
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Figure 18.  Relaxation of the rigorous algorithm using the approximated slope, ∆𝒑𝒇/(𝟐𝒎).   

 

Using the approximated (linear) slope, 
∆𝑝𝑓

2∙𝑚
, the right going wave at time step 𝑖 + 1, rather 

than at time step 𝑖 + 2 ∙ 𝑚 , can be estimated, while still applying the method of 

characteristics, as shown by Eq. (2-8) below.   

 )()( 21 mipipp f   
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(2-8) 

 Notably, the relaxed or approximated algorithm given in Eq. (2-8) does not 

experience the numerical stability problems associated with the use of Eq. (2-6).  The 

relaxed or approximated algorithm is similar to a first-order upwind scheme for 1-D 

convection equation with 𝐶𝐹𝐿 < 1.  Thus, the estimation, 𝑓3(𝑖 + 1) (shown as a blue 

point in Figure 16-(a)), by the wave separation algorithm is within the domain of 

dependence (i.e., inside the shaded region between the characteristic lines from 𝑝′1(𝑖) to 

𝑓3(𝑖 + 2𝑚) and from 𝑝′2(𝑖 − 𝑚) to 𝑓3(𝑖)), as is the case with the first-order upwind 

scheme with 𝐶𝐹𝐿 < 1 whose solution at the next time step, 𝑓(𝑥, 𝑡 + ∆𝑡) (shown as a blue 
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point in Figure 16-(b)) is also within the domain of dependence (i.e., inside the shaded 

triangular region).  Thus, the algorithm described in Eq. (2-8) provides the wave 

separation module of the ACS with a numerically stable solution approach.   

 Additionally, the use of Eq. (2-8) eliminates the high frequency oscillations errors 

that are related to the sampling period, 𝜏𝑠.  Using this scheme, the information at each 

time step depends on the previous time step, and the information and errors propagate to 

the next time step, not to time steps several time steps apart; e.g., 𝑓3(𝑖 + 1) depends on 

𝑓3(𝑖) .  As the calculation progresses, the estimations at adjacent time steps do not 

accumulate errors independently, and errors in 𝑓3(𝑖) affect errors in 𝑓3(𝑖 + 1).  Due to 

this dependence between the adjacent time steps, the algorithm estimates approximated 

travelling wave solutions devoid of high frequency oscillations errors.  Thus, introducing 

relaxation to the original rigorous algorithm not only stabilizes the wave separation 

algorithm but also provides a “step-to-step” solution dependence, which was lacking in 

the rigorous algorithm and caused diverging solutions with high frequency errors.   

 While the relaxed or approximated algorithm described in Eq. (2-8) is stable, it 

introduces errors because it is an approximation of the “exact” relationship given in Eq. 

(2-6).  These errors could be studied by evaluating the algorithm’s frequency response by 

comparing the frequency dependence of its prediction for the amplitude and phase of a 

wave with known exact solutions.  To investigate this problem, the developed algorithm 

(Eq. (2-8)) was used to predict the propagation of a known, harmonic, right going wave 

having a specific frequency and unit amplitude.  The amplitude and phase of the 

calculated/estimated wave was obtained and compared with the unit amplitude and the 

phase of the given, harmonic, travelling wave.  This numerical test was performed at each 
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frequency in the 0 Hz to 1 kHz frequency range using Eq. (2-8).  The calculated 

frequency dependences of the amplitude and phase of the estimated waves are shown in 

Figure 19.  It shows, for example, that when the algorithm is applied to a harmonic 300 

Hz right going wave with unit amplitude, the estimated right going wave has ~0.9 

amplitude and ~0.5 Rad phase lead; see the dashed lines at 300 Hz in Figure 19-(a) and 

(b), respectively.   

 
Figure 19.  Frequency responses of the approximated wave separation algorithm;  (a) amplitude vs 

frequency,  (b) phase vs frequency,  (c) time lead (negative time delay) vs frequency.   

 

 The amplitude plot in Figure 19-(a) shows that the amplitude of the estimated 

wave (red curve) is close to the exact solution (black line) at low frequencies.  As the 
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frequency increases, the amplitude of the estimated wave decreases and the deviation 

from the amplitude of the exact solution increases.  For example, at 100 Hz and 300 Hz, 

the estimated amplitude is ~0.95 and ~0.9, respectively, while the amplitude of the exact 

solution is 1.0.  Also, the decrease in the amplitude of the estimated wave is nearly linear 

in the high frequency region (i.e., 600 Hz ~ 1000 Hz range), and its slope is larger than 

the slope of the decrease in the estimated amplitude in the low frequency region (i.e., 100 

Hz ~ 300 Hz range).  This feature helps to stabilize the algorithm as it suppresses high 

frequency noise.  Figure 19-(a) also shows that in the frequency range of interest (i.e., 

100 Hz ~ 300 Hz), the algorithm produces reasonably accurate amplitudes and the 

calculated amplitude does not vary rapidly with the frequency.  The phase plot in Figure 

19-(b) shows that the algorithm introduces a phase-lead error that linearly increases with 

frequency.   

 Notably, both the amplitude and phase errors can be corrected in practice.  Since 

the amplitude of the frequency response of the approximated algorithm in the frequency 

range of interest (100 Hz ~ 300 Hz) does not vary rapidly with frequency (varying from 

~0.95 to ~0.9), the amplitude error can be minimized by multiplying the calculated 

solution by a “correction factor”.  For example, this correction factor, 𝛼𝑐𝑜𝑟𝑟, could be 

chosen using an average value (e.g., 0.925) of the estimated amplitudes at 100 Hz and 

300 Hz, by letting 1/𝛼𝑐𝑜𝑟𝑟=0.925 (see “1/𝛼𝑐𝑜𝑟𝑟” in Figure 19-(a)).  Multiplying this 

correction factor, 𝛼𝑐𝑜𝑟𝑟, with the estimated amplitude could minimize the amplitude error, 

and this “corrected amplitude” using this amplitude correction approach varies from 

~1.03 to ~0.97 from 100 Hz to 300 Hz.   
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 Also, the phase-lead error shown in Figure 19-(b) could be corrected for because 

the phase at the current time was estimated by the algorithm at earlier time, which allows 

the ACS to store the history of the solutions up to the current state (or time).  

Consequently, the correct phase of the current state could be provided by one of the 

stored solutions.  Additionally, since the phase error of the calculated solution linearly 

depends upon the frequency, it can be compensated for by introducing a “time delay”.  

Figure 19-(b) shows that the phase-lead of the estimated wave (red line) relative to the 

exact wave (black line) is a straight line that linearly varies with the frequency.  The 

time-lead of the estimated wave, which is obtained by dividing the phase-lead by the 

frequency, is a constant, ~0.3 msec; see Figure 19-(c).  Thus, since (in this example) the 

wave separation algorithm provides the wave estimation ~0.3 msec early, this phase error 

can be accounted for by time delaying the solution by ~0.3 msec for all the frequency 

components.   

 The developed approximated wave separation algorithm that includes corrections 

for the amplitude and phase errors is given in Eq. (2-9) below, where 𝑓3̃ is the corrected, 

estimated, right going wave at location 𝑥3, 𝛼𝑐𝑜𝑟𝑟 is the amplitude correction, and 𝑛𝑐𝑜𝑟𝑟 is 

the time delay correction that compensate for the phase error.   
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(2-9) 

 Notably, the developed wave separation algorithm described in Eq. (2-9) does not 

depend on the frequency of the oscillations; it only depends on the time dependence of 

the measured acoustic pressures (i.e., 𝑝′1(𝑖) and 𝑝′2(𝑖 − 𝑚) in Eq. (2-9) above).   
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2.2.1.2.  Investigation of the Developed Wave Separation Module 

 The developed wave separation algorithm has been tested both numerically and 

experimentally.  In the numerical test of the algorithm, the propagation of a 1-D 190 Hz 

right going travelling wave was analyzed by the developed wave separation module.  

Using the pressures, 𝑝′1  and 𝑝′2 , provided by the known (assumed) properties of the 

wave, the wave separation module calculated the right going wave at location 𝑥3.  This 

estimated right going wave was compared with the known exact solution 𝑝′3 at location 

𝑥3.  This numerical test is described in Figure 20-(a), and the calculated and known exact 

solutions are compared in the plot in Figure 20-(b).  The black line is the exact wave 

solution, the red line is the estimated wave without phase and amplitude corrections, and 

the blue line is the estimated wave with phase correction (i.e., time delay) without 

amplitude correction.  Figure 20-(b) shows that the wave separation algorithm estimates 

the right going wave with reasonable accuracy.  The developed wave separation 

algorithm successfully captures the harmonic behavior of the exact solution.  The 

amplitude errors of the estimated waves with and without phase corrections are within 10 % 

of the exact solution, and this amplitude error could be compensated for by introducing 

the amplitude correction factor (i.e., 𝛼𝑐𝑜𝑟𝑟  in Eq. (2-9)).  The estimated wave without 

corrections (i.e., Eq. (2-8)) is shown as a red line in Figure 20-(b).  It phase-leads (time-

leads) the exact solution that is described by the black line, as discussed above in 

connection with the results presented in Figure 19-(b) and Figure 19-(c).  Correcting for 

this phase-lead error using time-delay, 𝑛𝑐𝑜𝑟𝑟 in Eq. (2-9), the wave separation algorithm 

successfully estimates the phase of the exact solution; i.e., see the phase-match between 
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the estimated solution (i.e., the blue line) and the exact solution (i.e., the black line) in 

Figure 20-(b).   

 
Figure 20.  Numerical results of the evaluation of the performance of the developed wave separation 

algorithm;  (a) setup of numerical validation,  (b) comparison between the estimated wave and the 

exact wave.   

 

 The performance of the wave separation algorithm was experimentally studied in 

the impedance tube shown in Figure 21-(a).  A 190 Hz right going travelling wave field 

was established by manually “tuning” the speakers at both ends of the tube.  Using the 

measured acoustic pressures, 𝑝′1 and 𝑝′2, the developed wave separation module (i.e., Eq. 

(2-9)) estimated the right going wave at location 𝑥3.  The estimated right going wave was 

then compared with the measured acoustic pressure, 𝑝′3 at location 𝑥3.  Figure 21-(b) 

shows that the measured and the estimated right going waves (shown as black and blue 

lines, respectively) at location 𝑥3 are reasonably matched, indicating that the developed 

wave separation algorithm can successfully estimate the behavior of harmonic travelling 

waves.  It also shows that the estimated right going wave is in phase with the measured 

right going wave and that its amplitude is reasonably close to the amplitude of the 
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measured right going wave.  The amplitude errors of the estimated waves are within ~7 % 

of the measured wave.  As previously discussed in connection with the results presented 

in Figure 19-(a), since the amplitudes of the high frequency noise components are 

damped by the algorithm, the estimated signal is smoother than the measured signal; i.e., 

the blue curve describing the estimated right going wave is smoother than the black curve 

that describes the measured right going acoustic wave, see Figure 21-(b).  Significantly, 

this characteristic makes the developed wave separation algorithm (and ACS) less 

susceptible to high frequency noise in applications.  In additional tests, not discussed here, 

it has also been shown that the developed wave separation algorithm also works well in 

applications involving standing wave acoustic fields where the presence of the left going 

wave does not reduce the algorithm’s effectiveness.   

 
Figure 21.  Experimental results of the evaluation of the performance of the developed wave 

separation algorithm;  (a) setup of experimental validation,  (b) comparison between the estimated 

wave and the measured acoustic pressure.   
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2.2.2.  The Simulation Module 

 As discussed in Sections 2.1.2. and 2.2.1., the objective of the wave separation 

module is to determine the properties of the right and left going waves in the small-scale 

rig from the measured acoustic pressures.  This determines the properties of the right 

going wave arriving at the right boundary of the small-scale rig (i.e., location II in Figure 

14).  In the full-scale engine, this right going wave passes through location II and 

propagates towards the right boundary of the full-scale engine (i.e., location III), where it 

is reflected off the boundary.  The reflected, left going, wave propagates back towards 

location II (see Figure 14).  The right and left going waves at location II determine the 

acoustic pressure and velocity, 𝑝′ and 𝑣′, at location II in the full-scale engine.  These 

acoustic pressure, 𝑝′, and velocity, 𝑣′, at location II in the full-scale engine must be 

“generated” by the active control system (ACS) at the right boundary of the small-scale 

rig (i.e., location II in Figure 14).  When the acoustic pressure and velocity at location II 

in the full-scale engine and the small-scale rig are the same, the oscillations in region I~II 

in the full-scale engine and the small-scale rig would be the same.  Thus, to determine the 

characteristics of the acoustic conditions at location II of the small-scale rig, the 

“simulation module” of the ACS must simulate the acoustic processes taking place in the 

“missing part” of the full-scale engine; i.e., in region II~III of the full-scale engine in 

Figure 14.  The acoustic boundary conditions (BCs) at location II of the small-scale rig 

are then determined using the right going wave provided by the wave separation module 

and the left going wave provided by the simulation module at the boundary of the small-

scale rig (i.e., location II in Figure 14).   
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 The remainder of this section describes how the simulation module of the ACS 

performs the following tasks:   

i. Simulates the acoustics in the missing part (i.e., region II~III in Figure 14) of the full-

scale engine using the right going wave (at location II in Figure 14) provided by the 

wave separation module, and   

ii. Determines the acoustic pressure and velocity, 𝑝′  and 𝑣′ , at the boundary (i.e., 

location II) of the small-scale rig in Figure 14.   

 

2.2.2.1.  Simulation of the Acoustics in the Missing Part of the Full-Scale Engine 

 As discussed earlier and shown in Figure 22, the “wave separation module” 

determines the properties of the right going wave and the left going wave inside the 

small-scale rig and calculates the right going wave, 𝑓𝐼𝐼, at the boundary of the small-scale 

rig (i.e., location II).  Using this right going wave, 𝑓𝐼𝐼, as an input, the “simulation module” 

of the ACS numerically simulates in real time the propagations and reflection of this right 

going wave, 𝑓𝐼𝐼, in the missing part of the full-scale engine and determines the left going 

wave, 𝑔𝑠𝑖𝑚,𝐼𝐼, at the right boundary of the small-scale rig, (i.e., an estimation of the left 

going wave, 𝑔𝐼𝐼, that propagates back to location II in the full-scale engine); see waves, 

𝑓𝐼𝐼, 𝑔𝐼𝐼, and 𝑔𝑠𝑖𝑚,𝐼𝐼 in Figure 22.   
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Figure 22.  Acoustic wave phenomena in the full-scale system and the small-scale rig.   

 

 In Figure 22, the right going wave, 𝑓𝐼𝐼 at the boundary of the small-scale rig (i.e., 

location II), would propagate to the right boundary of the full-scale engine (i.e. location 

III) during the time, 
𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑐
, where 𝑐 is speed of sound, as described in Eq. (2-10) below.   
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 When this right going wave arrives at location III, i.e., 𝑓𝐼𝐼𝐼, it is reflected off the 

boundary as a left going wave, 𝑔𝐼𝐼𝐼.  The relationship between the incident wave and the 

reflected wave is determined by the BC at location III in the full-scale engine.  In the 

“fully absorbing” (or non-reflecting) boundary (or an infinitely long tube) case, no 

reflected wave is generated.  On the other hand, when the boundary at location III is a 

rigid wall, the reflected wave has the same amplitude as the incident wave and is in phase 

with it.  For the open end case, the reflected wave has the same amplitude as the incident 

wave, but it is 180° out of phase.  The time domain representations of these BCs are 

given in Eq. (2-11).  In the more general case, the BCs are given by specifying the 

impedance BC, 𝑍 = 𝑃̂/𝑉̂ , where 𝑃̂  and 𝑉̂  are the complex amplitudes of the acoustic 



60 

 

pressure 𝑝 and velocity 𝑣 at the location of interest.  For example, for a travelling wave, 

𝑍 = 𝜌𝑐, for a rigid wall, 𝑍 = ∞, and for an open end, 𝑍 = 0.  These complex impedance 

BCs need to be “transformed” into time domain representations to enable the simulation 

module to calculate the reflected wave at the boundary at each time step in a time 

marching approach.  The general BCs in time domain can be represented as a relationship 

between the incident wave, 𝑓𝐼𝐼𝐼 , and the reflected wave, 𝑔𝐼𝐼𝐼 , as shown in Eq. (2-11) 

below.   

 non-reflecting boundary;   0IIIg    

rigid wall boundary;   IIIIII fg     

open end boundary;   IIIIII fg     

general boundary;     0,..., IIIIII gfF    

(2-11) 

where 𝐹(⋯)  is a functional relationship between 𝑓𝐼𝐼𝐼  and 𝑔𝐼𝐼𝐼  obtained in “separate” 

analysis and/or experiments.   

 The reflected wave, 𝑔𝐼𝐼𝐼, reaches location II (i.e., dashed line II in Figure 22) after 

a time delay, 
𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑐
, resulting in the following relationship between the reflected wave, 

𝑔𝐼𝐼𝐼, and the wave arriving at location II, 𝑔𝐼𝐼:   
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 Equations (2-10), (2-11), and (2-12) describe the relationships between the 

propagating waves (i.e., 𝑓𝐼𝐼, 𝑓𝐼𝐼𝐼, 𝑔𝐼𝐼𝐼, and 𝑔𝐼𝐼) in the missing part (i.e., region II~III) in 

the full-scale engine; see the top of Figure 22.  For the small-scale rig, shown at the 

bottom of Figure 22, the simulation module of the ACS numerically simulates these 

relationships using the right going wave at the boundary of the small-scale rig, 𝑓𝐼𝐼 

(provided by the wave separation module) and estimates the left going wave at the right 
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boundary of the small-scale rig, 𝑔𝑠𝑖𝑚,𝐼𝐼 , where 𝑔𝑠𝑖𝑚,𝐼𝐼  is the estimated value for 𝑔𝐼𝐼 

(𝑔𝑠𝑖𝑚,𝐼𝐼 ≈ 𝑔𝐼𝐼).   

 Notably, if acoustic sources that add/remove energy from the acoustic field, such 

as combustion processes and acoustic liners, respectively, are present in the missing part 

of the full-scale engine (as shown in Figure 10 in Chapter 1), their effects upon the 

acoustic wave propagations and reflections in the missing part must be also determined 

by the simulation module of the ACS.  An analysis describing how the effects of 

combustion processes and injector and exhaust nozzle flows in the missing part of the 

engine might be accounted for is presented in Chapter 3.   

 

2.2.2.2.  Determination of the Boundary Condition of the Small-Scale Rig 

 The wave separation module determines the right going wave, 𝑓𝐼𝐼 , and the 

simulation module determines the left going wave, 𝑔𝑠𝑖𝑚,𝐼𝐼, at the boundary of the small-

scale rig.  These can be used by the simulation module of the ACS to establish the 

required acoustic BC at the right boundary of the small-scale rig by actively controlling 

an actuator, which was a speaker in this study.   

 The acoustic pressure and velocity at location II in the full-scale engine 

(corresponding to the right boundary of the small-scale rig) are given by the following 

expressions.   
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 For the small-scale rig, the simulation module calculates the acoustic BC of the 

small-scale rig using the right going wave, 𝑓𝐼𝐼, and the left going wave, 𝑔𝑠𝑖𝑚,𝐼𝐼, which are 
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obtained by the wave separation and simulation modules of the ACS, respectively; see Eq. 

(2-14) below.   
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(2-14)  

 These pressure and velocity at the right boundary of the small-scale rig are needed 

to reproduce the acoustic field of the full-scale engine within the small-scale rig.  If the 

wave separation module accurately identifies the right going wave 𝑓𝐼𝐼 at the boundary of 

the small-scale rig (location II), and the simulation module accurately determines the left 

going wave 𝑔𝑠𝑖𝑚,𝐼𝐼(≈ 𝑔𝐼𝐼) at location II, then the acoustic pressure and velocity, Eq. 

(2-13), at location II in the full-scale engine and the acoustic pressure and velocity, Eq. 

(2-14), at the boundary of the small-scale rig (location II) would be close to each other; 

i.e., (𝑝′𝐼𝐼 , 𝑣′𝐼𝐼) ≈ (𝑝′̃𝐼𝐼, 𝑣′̃𝐼𝐼).  In this case, the acoustic oscillations in the small-scale rig 

would be close to the acoustic oscillations in the region I~II in the full-scale engine.   

 In summary, the developed simulation module of the ACS simulates the acoustics 

in the “missing part” of the full-scale engine during the proposed experiments in real time.  

Notably, it employs a time domain analyses in the simulation in contrast to the frequency 

domain representations that have been employed in the related studies (Paschereit at al. 

and Mongeau at al. [11-13, 15]).  These approaches pre-calculated the acoustic fields in 

the one-dimensional full-scale engine and apriori determined the impedance BC at the 

boundary of the small-scale rig, which was subsequently used by their frequency domain 

based ACS.   
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2.2.3.  The Actuator (Speaker) Module 

 This section describes the development and application of the actuator (speaker) 

model, which was used by the ACS to determine the control current to the actuator (a 

speaker in this study).  Figure 14 (in Section 2.1.2.) describes the manner in which the 

three developed ACS modules interacted with one another.  It shows that the “wave 

separation module” calculates the value of 𝑓𝐼𝐼 (the right going wave at location II) that is 

used by the “simulation module” to determine the time dependence of the acoustic 

pressure, 𝑝′̃𝐼𝐼, and velocity, 𝑣′̃𝐼𝐼, at the right boundary (at location II) of the small-scale 

rig that “corresponds” to 𝑝′𝐼𝐼  and 𝑣′𝐼𝐼  at location II of the full-scale engine.  The 

calculated 𝑝′̃𝐼𝐼 (≈ 𝑝′𝐼𝐼) and 𝑣′̃𝐼𝐼 (≈ 𝑣′𝐼𝐼) are then supplied to the “actuator module” that 

uses these inputs to determine the command signal, which is a controlled electric current, 

𝐼, to the speaker.  This current “forces” the speaker to generate the required acoustic 

pressure and velocity at location II of the small-scale rig.   

 This study employed a speaker to actively control the acoustic BC and a current 

mode amplifier to ensure that the command and generated electric current match well.  

The use of the current mode amplifier reduces the influence of back-EMF (backwards 

electromotive force) and makes the model of the speaker more reliable.   

 

2.2.3.1.  Modelling the Speaker 

 The dynamics of the speaker’s diaphragm was modeled as a spring-mass-damper 

system [20, 21].  As shown in Figure 23, the diaphragm is forced by the acoustic pressure 

and the force electromagnetically induced by the current; i.e., 𝐹𝑝 and 𝐹𝐼, respectively.   
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Figure 23.  Speaker model; a moving diaphragm described as a spring-mass-damper system forced 

by the acoustic pressure and driven by the force induced by the electric current.   

 

 The spring-mass-damper system model for the speaker is described by Eq. (2-15) 

below.   

 
Ip FFxkxcxm      (2-15)  

where 
  

 IFI  ,  pAFp
    

vx     
(2-16) 

and  𝑚, 𝑐 , 𝑘 , and 𝐴 are the mass, damping constant, spring constant, and area of the 

diaphragm (speaker), respectively.  𝛼 is a constant that relates the electric current, 𝐼, to 

the electromagnetic force, 𝐹𝐼, via the relationship, 𝐹𝐼 = 𝛼 ∙ 𝐼.   

 The diaphragm of the speaker is subjected to an acoustic pressure force, 𝐹𝑝, and 

an electromagnetic force induced by the current, 𝐹𝐼.  These set the diaphragm in motion 

with a velocity, 𝑥̇ (𝑥 is the diaphragm displacement), that must be equal to the acoustic 

velocity, 𝑣′, at its face; see Figure 23 and Eq. (2-16) above.  Substituting Eq. (2-16) into 

Eq. (2-15) yields in the following expression:   

 0  IpAvkvcvm     (2-17)  
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 Notably, the acoustic pressure and velocity in Eq. (2-17) above are provided by 

the simulation module of the ACS; see Eq. (2-14).  The coefficients, 𝑚, 𝑐, 𝑘, 𝐴, and 𝛼 in 

Eq. (2-17) have been experimentally determined using different lengths’ impedance tubes 

equipped with the speaker at one end and having open or closed boundaries at their other 

end; see Figure 24.   

 
Figure 24.  Experimental setup for the determination of the coefficients, 𝒎, 𝒄, 𝒌, 𝑨, and 𝜶, of the 

speaker model.   

 

 For harmonic excitation at frequency, 𝜔, the acoustic pressure and velocity, and 

the electric current in Eq. (2-17) can be expressed by the following relationships:   

 ]ˆRe[ tiePp  ,  ]ˆRe[ tieVv     

]ˆRe[ tieII     
(2-18)  

where, 𝑃̂, 𝑉̂, and 𝐼 are the complex amplitudes of the acoustic pressure and velocity at the 

diaphragm of the speaker, and the electric current to the speaker, respectively.   

 Substituting Eq. (2-18) into Eq. (2-17) and manipulating the resulting expression 

yields the following relationship:   
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 As shown in Figure 24, the speaker was driven by a harmonic electric current, 𝐼, 

at frequency, 𝜔.  The acoustic pressures in the tube were measured by the equally spaced 

pressure transducers (i.e., 𝑃̂0, 𝑃̂1, 𝑃̂2, and 𝑃̂3) to determine the complex amplitudes of the 

pressure and velocity ( 𝑃̂  and 𝑉̂ ) at the speaker face.  Substituting these complex 

amplitudes, 𝑃̂, 𝑉̂, and 𝐼, and the frequency, 𝜔, into Eq. (2-19) provides a relationship 

between coefficients, 𝑚, 𝑐, 𝑘, 𝐴, and 𝛼.   

 Performing such experiments with different lengths’ tubes with open/closed ends 

at the left boundary of the tube and different frequencies, the following system of 

algebraic equations for the five unknowns, 𝑚, 𝑐, 𝑘, 𝐴, and 𝛼, was obtained:   
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(2-20)  

 Applying a least squares method into the above “overdetermined system of linear 

equations”, Eq. (2-20), the coefficients, 𝑚, 𝑐, 𝑘, 𝐴, and 𝛼, of the speaker model were 

obtained.   

 

2.2.3.2.  Command Signal Calculation 

 It is convenient to rewrite Eq. (2-17) in a form in which the acoustic properties 

serve as inputs, and the electrical current appears as an output as shown by Eq. (2-21) 

below.   
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  pAvkvcvmI  


1
   (2-21)  

Since the acoustic pressure and velocity at the speaker’s diaphragm are provided by the 

simulation module of the ACS (i.e., 𝑝′̃𝐼𝐼 (≈ 𝑝′𝐼𝐼) and 𝑣′̃𝐼𝐼 (≈ 𝑣′𝐼𝐼) at the boundary of the 

small-scale rig, see Eq. (2-14)), the command signal for the electric current (i.e., 

𝐼𝑐𝑜𝑚𝑚𝑎𝑛𝑑) can be expressed as follows:   

  IIIIIIIIcommand pAvkvcvmI  
~~~~1 


   (2-22)  

 Notably, since the command signal, 𝐼𝑐𝑜𝑚𝑚𝑎𝑛𝑑, is determined by a linear model of 

the speaker and duct acoustics [20, 21], it would have to be modified for the applications 

in which nonlinearities become significant.  This linear model was used in this study 

because its main objective was to investigate the performance of the developed ACS.   

 

2.3.  Investigation of the Performance of 

the Actively Controlled Small-Scale Cold Flow Rig 

 This section describes the results of experiments whose objective was to 

determine whether the developed ACS can be used to simulate the acoustic environments 

in unstable, full-scale, engines in a small-scale rig.  This study employed the actively 

controlled, small-scale, rig shown in Figure 14 whose ACS executes the following 

sequence of steps in real time:   

i. Uses the wave separation module to estimate the right going wave in the rig at the 

current time step.   

ii. Uses the simulation module to simulate the acoustics in the missing part of the full-

scale engine and calculate the acoustic BC that must be established at the actively 
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controlled boundary of the small-scale rig setup at the next time step using stored data 

history.   

iii. Uses the speaker model to generate the required command signal (current) to the 

speaker that generates the proper acoustic BC for the next time step.   

 For the ACS to function properly, all the estimations and calculations need to be 

completed within a time step, and the command signal should be available at the next 

time step.  To accomplish these real time operations, the ACS was operated using the 

real time operation system (dSPACE DS1103 board) shown in Figure 25.   

 

2.3.1.  Experimental Setup 

 The performance of the developed ACS was investigated using the setup shown in 

Figure 25.  The objective of this study was to determine whether the ACS could simulate 

one-dimensional acoustic fields encountered in longer (i.e., the “full-scale engines”) rigs 

in the developed “small-scale” rig.   

 The developed experimental setup consisted of a 4 inch diameter tube equipped 

with an acoustic speaker having 8 ohm impedance at each end.  The speaker at the left 

end was used to generate an acoustic field in the tube that simulated the sound generated 

by, e.g., a combustion process, and the speaker at the right end was actively controlled by 

the ACS.  The objective of the control speaker was to excite one-dimensional acoustic 

oscillations in the rig that simulated those encountered in a longer, unstable, combustor.   
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Figure 25.  A schematic of the developed experimental setup.   

 

 Experiments were performed over a frequency range of 100 ~ 400 Hz that was 

higher than the resonant frequency of the speakers (~60 Hz), and lower than the first cut-

off frequency (~1960 Hz) of the tube to avoid interference from speaker resonances and 

transverse acoustic modes oscillations during the experiments.   

 Four pressure sensors (Kistler type 211B5), installed equal distances (~12 cm) 

apart on the wall of the tube, were used to measure acoustic pressures, and two of them 

supplied the signals to the ACS.  The measured signals and command signals were 

conditioned by analog filters (Krohn-Hite model 3364).  The developed ACS was 

implemented with a real time operation system (dSPACE DS1103 board) using a 10 kHz 

sampling rate.  A voltage mode amplifier (Samson servo200) and a function generator 

(Tektronix AFG3022) were used to drive the “driving speaker” at the left end of the tube 

and a current mode amplifier (AE Techron LVC608) was used to provide the command 

current signal to the “control speaker” at the right end of the tube.   

 

2.3.2.  Using the ACS to Simulate Travelling Wave Fields 

 Initial experiments investigated whether the developed ACS could excite one-

dimensional travelling acoustic waves in the small-scale rig setup.  In these experiments, 
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the driving speaker (i.e., the left speaker in Figure 25) generated a 120 Hz sinusoidal 

signal, and the ACS was set to establish a right going travelling wave in the small-scale 

rig that may simulate a travelling, one-dimensional, acoustic wave that might be 

encountered in a full-scale (longer) rig having a non-reflecting BC at its right end.  Since, 

in this case, the incident wave, 𝑓𝐼𝐼𝐼, is not reflected at the right boundary of the full-scale 

rig (see Figure 14 or Figure 22), the simulation module of the ACS “calculated” a zero 

amplitude reflected wave; i.e., 𝑔𝐼𝐼𝐼 = 0.   

 The measured acoustic pressures at evenly spaced locations are shown in Figure 

26 for tests conducted with two small-scale tube rigs having lengths of ~38.5 inch (case 

(a)) and ~55 inch (case (b)).  Note that the 55 inch tube has a natural acoustic mode 

whose frequency is close to 120 Hz, which is the frequency at which the system was 

driven by the source speaker.   

 Figure 26 shows the time dependence of the acoustic pressure oscillations 

measured by the red, blue, and black colored transducers in Figure 25.  The nearly equal 

time (or phase) shifts between the wave forms measured by the equally spaced 

transducers indicate that the ACS excited a traveling wave in both setups.  However, the 

amplitudes measured by the different transducers slightly differed from one another, in 

contrast to the theoretical requirement that the amplitudes measured by the transducers at 

different locations equal one another.  The differences between the determined 

amplitudes could have been caused by errors introduced by, e.g., pressure transducers 

calibrations, signal conditioners, amplifiers, real time data acquisition system components, 

and inadequacies of the models used in the wave separation, simulation, and speaker 

modules (such as inaccuracies of the assumed speed of sound and the approximations 
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used for algorithm).  The sensitivity of the accuracy of the amplitudes determination upon 

these factors needs to be further studied.   

 To determine the “deviation” of the travelling wave acoustic fields excited by the 

ACS from “ideal” travelling waves, the reflection coefficients of the excited acoustic 

waves were calculated using Eq. (2-23) below.   
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    (2-23)  

Using the measured acoustic pressures, the complex amplitudes were calculated using a 

FFT analysis.  Using the complex acoustic pressures at different locations, the amplitudes 

of the right and left going waves, |𝑓𝑟𝑖𝑔| and |𝑔𝑟𝑖𝑔|, in Eq. (2-23) above were calculated 

and used to determine the reflection coefficient, 𝑅, for the two experimental setups.   

 The reflection coefficients for the two setups (note that 𝑅 = 0  for an “ideal” 

travelling wave) were found to be 𝑅 = ~0.10 for case (a) and 𝑅 = ~0.17 for case (b).  

These results show that while the incident right going waves were not completely 

“absorbed” by the actively controlled BC, the resulting acoustic fields show the 

characteristics of a travelling wave.  Notably, in spite of the fact that in case (b) the 

system was driven near the tube’s natural acoustic mode frequency, the ACS 

accomplished its goal without the amplification of the excited wave in time due to 

resonance effects.  These tests demonstrated that the developed ACS could excite 

acoustic oscillations closely approximating a travelling wave acoustic field in the small-

scale rigs even near the tube’s natural acoustic mode frequency.   
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Figure 26.  Experimental results showing the simulations of 120 Hz travelling acoustic waves in 

longer full-scale tube rigs in actively controlled small-scale rigs;  (a) 38.5 inch tube, R=0.10, (~129 dB 

incident wave to the control speaker),  (b) 55 inch tube, R=0.17, (~129 dB incident wave to the control 

speaker).   

 

 

2.3.3.  Using the ACS to Simulate Standing Wave Fields 

 In follow up tests, the application of the developed ACS to excite one-

dimensional, standing, acoustic wave encountered in “full-scale” (i.e., longer) tubes in the 

developed small-scale rigs was investigated.  Specifically, we investigated whether 

standing waves acoustic oscillations encountered in a “full-scale engine” having a rigid 

wall BC at its right end can be reproduced in a small-scale rig using the developed ACS.   

 Figure 27 describes the experimental setup with the “missing part” of the “full-

scale rig” shown by the dashed line tube extension with a rigid wall boundary (i.e., a 

“virtual” rigid wall) on the right side.  The driving speaker (the left speaker in Figure 25 

and Figure 27) was supplied with a 120 Hz sinusoidal signal, and the ACS was set to 

excite a standing acoustic wave oscillations consisting of equal amplitude right and left 

going waves in the “full-scale engine”.  Specifically, the ACS was set to simulate a 

(standing) acoustic wave oscillations in a “full-scale engine” that is longer (on the right 
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side) than the small-scale rig by 𝐿𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑡 and has a rigid wall at its right boundary, 

see Figure 27.  In this study, the simulation module of the ACS used the length, 

𝐿𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑡, of the “missing part” and a rigid wall reflection BC (yielding 𝑔𝐼𝐼𝐼 = 𝑓𝐼𝐼𝐼, 

see Figure 14 and Figure 22) to determine 𝑔𝑠𝑖𝑚,𝐼𝐼 (≈ 𝑔𝐼𝐼), 𝑝′̃𝐼𝐼 (≈ 𝑝′𝐼𝐼), and 𝑣′̃𝐼𝐼 (≈ 𝑣′𝐼𝐼) 

at the right boundary of the small-scale rig.   

 
Figure 27.  A schematic of the actively controlled small-scale rig setup with a virtual tube extension 

on its right side.   

 

 Figure 28 shows acoustic pressures measured at evenly spaced locations in tests 

performed in two different small-scale rig configurations consisting of a ~38.5 inch tube 

with a 16” virtual rigid wall extension in case (a) (see Figure 28-(a)) and a ~55 inch tube 

with a 10.7” virtual rigid wall extension in case (b) (see Figure 28-(b)).  The locations 

and color/location relationships of the acoustic pressures measurements are described in 

Figure 27.  Figure 28 shows that the waveforms measured at four different locations in 

the small-scale rigs are in-phase or out-of-phase each other.  In Figure 28-(a), the 

measured acoustic pressure, 𝑝′1 , (measured by the red colored transducer shown in 

Figure 27) has the smallest amplitude and is out-of-phase with the acoustic pressures, 𝑝′2 

and 𝑝′3, measured by the blue and black colored transducers, respectively.  These results 

indicate that a pressure node was located between the red and blue colored transducers 

(i.e., the locations of 𝑝′1 and 𝑝′2) and close to the red colored transducer (i.e., the location 
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of 𝑝′1 ).  Figure 28-(b) shows that the acoustic pressure 𝑝′0  (measured by the green 

colored transducer) is out-of-phase with the acoustic pressures, 𝑝′1 , 𝑝′2 , and 𝑝′3 , 

measured by the red, blue, and black colored transducers, respectively.  In this case, a 

pressure node is located between the green and red colored transducers (i.e., the locations 

of 𝑝′0  and 𝑝′1).  Generally, an “ideal” standing wave acoustic field shows 0° or 180° 

phase differences between the acoustic measurements at different locations and has 

pressure nodes at locations where leftward and rightward moving waves having the same 

amplitude cancel one another.  The results in Figure 28 agree reasonably well with the 

expected behavior of standing waves.   

 The reflection coefficients ( 𝑅 =
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑔𝑜𝑖𝑛𝑔 𝑤𝑎𝑣𝑒

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑔𝑜𝑖𝑛𝑔 𝑤𝑎𝑣𝑒
) for the two 

experiments (note that 𝑅 = 1 for an “ideal” standing wave) were found to be 𝑅 = ~0.85 

for case (a) and 𝑅 = ~1.05 for case (b).  While the incident right going wave and the 

reflected left going wave do not have the same amplitudes, i.e., 𝑅 ≠ 1 , the excited 

acoustic fields exhibit all the characteristics of standing waves.  Notably, in case (b), the 

small-scale rig (~55” tube) was driven at 120 Hz, which is near the tube’s natural 

acoustic mode frequency, yet the ACS was able to simulate the standing wave acoustic 

field of the “longer”, full-scale, engine (of length ~55”+10.7”) instead of exciting 

oscillations at the natural acoustic mode frequency of the small-scale rig without 

experiencing “amplitude amplification” due to resonance effects.  These tests 

demonstrated that the ACS can simulate standing wave acoustic fields excited in “full-

scale engines” in small-scale rigs.   
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Figure 28.  Experimental results showing the simulations of 120 Hz standing acoustic waves in longer 

full-scale tube rigs in actively controlled small-scale rigs;  (a) 38.5 inch tube, 16” virtual rigid wall 

extension, R=0.85, (~132 dB incident wave to the control speaker),  (b) 55 inch tube, 10.7” virtual 

rigid wall extension, R=1.05, (~132 dB incident wave to the control speaker),  where the location of 

each colored pressure transducer is shown in Figure 27.   

 

 

2.3.4.  Using the ACS to Simulate Standing Waves in Full-Scale Engines 

 To get further insight into the performance of the developed, actively controlled, 

small-scale, rigs, their ability to simulate standing, longitudinal, acoustic waves CIs in 

full-scale engines (or longer tubes, in this study) was investigated in two “series” of 

experiments whose configurations are described on the bottom of Figure 29.  Of 

particular interest is the “relationship” between the standing wave acoustic field excited 

by the ACS in the shorter, small-scale, rig and the oscillations in the longer, full-scale 

engine (or rig).  As shown in Figure 29, these experiments used the previously discussed 

~38.5” and ~55” experimental setups.  In each series of experiments, the ACS was set to 

simulate, within the small-scale rig, the oscillations in longer tubes whose length was 

equal to the length of the small-scale rig plus an additional, virtual, length on its right side 

that varied between ~5.4” to ~18.7”, as shown on the bottom of Figure 29.  In all of these 

experiments, 120 Hz acoustic oscillations were excited in the small-scale rig by the 
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speaker on its left end, and the speaker on the right was actively controlled to simulate 

the oscillations in the longer, full-scale, tube.  The determined spatial dependences of the 

acoustic pressure amplitudes in the investigated configurations are shown on the top of 

Figure 29 where the vertical dashed (on the left) and solid (on the right) lines describe the 

locations of the right terminations of the investigated, ~38.5” and ~55” tube rigs, 

respectively, where the actively controlled speakers were installed.   

 Figure 29 describes the spatial dependences of the amplitudes of the acoustic 

pressures (i.e., the “acoustic pressures mode shapes”) in domains consisting of the small-

scale rig and the “missing part” of the “full-scale tube” (i.e., the virtual tube extension of 

the small-scale rig).  Each plot shows the amplitudes of the four measured acoustic 

pressures (shown as circles) superimposed upon the calculated pressure mode shape 

(shown as a dashed or a solid curve) in the actively controlled small-scale rig and its 

“virtual extension” that was assumed to be terminated by a rigid wall.  The plots in 

Figure 29-(a) and Figure 29-(b) describe the results obtained with the ~38.5” and ~55” 

actively controlled small-scale rigs, respectively, for each of the investigated 

configurations, which are shown below each figure.  The measured acoustic pressures 

amplitudes, shown as circles in the figures, were obtained by applying FFT to the four 

acoustic pressure measurements, 𝑝′𝑖, that are related to their (complex valued) amplitudes, 

𝑃̂𝑖, by the following relationship:   

 ]ˆRe[ ti

ii ePp  ,  3 ,2 ,1 ,0i  (see transducer’s locations in Figure 27)   (2-24)  

where, 
ip ; acoustic pressure measured at location i    

iP̂ ; complex acoustic pressure amplitude at location i    
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The FFT analyses also showed that the phase differences between the (complex valued) 

acoustic pressure amplitudes at different locations are 0° or 180°.  Notably, pressure 

amplitudes having 180° phase difference with respect to other measured pressures (on 

the same plot) are presented as “negative” pressure amplitudes on the mode shape plots in 

Figure 29.  Using the four measured complex valued pressure amplitudes (that describe 

the amplitude and phase), the complex amplitudes of the right and left going waves were 

calculated.  At the location of transducer 𝑖, the complex amplitudes of the right and left 

going waves, 𝐴̂ and 𝐵̂, respectively, and the measured complex pressure amplitude, 𝑃̂𝑖 , 

satisfy the following relationship:   

 
ii

ikxikx
PxPeBeA ii ˆ)(ˆˆˆ 


,  3 ,2 ,1 ,0i  (see Figure 27)   (2-25)  

where, Â ; complex amplitude of the right going wave   

B̂ ; complex amplitude of the left going wave   

ix ; location i    

 

By solving Eq. (2-25) above, the complex amplitudes of the right and left going waves, 𝐴̂ 

and 𝐵̂, were obtained.  Using these, complex valued, right and left going waves, the 

acoustic pressure mode shape in the domain of the actively controlled small-scale rig and 

the “missing part” of the full-scale tube were determined (using Eq. (2-26) below), and 

are described by the dashed and solid curves in Figure 29-(a) and (b), respectively.   

 ikxikx eBeAxP  ˆˆ)(ˆ    (2-26)  

These calculations were performed for all the experimentally investigated cases (i.e., the 

actively controlled small-scale rigs and virtual extensions) shown in Figure 29.  The 

investigated test matrix consisted of the two small-scale rigs having lengths of ~38.5” and 
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~55” with each setup of actively controlled small-scale rig being virtually “extended” by 

four lengths of ~5.4”, ~10.7”, ~16”, and ~18.7”.   

 
Figure 29.  Measured acoustic pressure amplitudes (depicted as open circles) and calculated acoustic 

pressure mode shapes in the domain of the full-scale tubes (depicted as dashed and solid curves for 

cases (a) and (b), respectively);  (a) 38.5 inch tube with ACS setups of ~5.4”, ~10.7”, ~16”, and ~18.7” 

virtual rigid wall extensions,  (b) 55 inch tube with ACS setups of ~5.4”, ~10.7”, ~16”, and ~18.7” 

virtual rigid wall extensions, (from ~125 dB to ~ 139 dB incident wave to the control speaker).   

 

 Each of the calculated acoustic pressure mode shape in Figure 29 covers a domain 

that starts at the left side of the small-scale rig where the driving speaker is located and 

ends at the location of the right boundary of the simulated, full-scale, tube where the 

“virtual” rigid wall of the “missing part” of the tube is located.  Figure 29-(a) and (b) 

show that as the length of the virtual extension (i.e., the distance between the locations of 

the right termination of the small-scale rig and the virtual rigid wall of the virtual tube 

extension) increases, the acoustic pressure node (i.e., 𝑝′ = 0) moves to the right towards 

the boundary of the small-scale rig in each of the investigated, small-scale, configurations.  
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This occurred because increasing the length of the “missing part” of the full-scale tube 

while keeping the properties of the virtual rigid wall termination of the virtual tube 

extension on the right and the driving frequency of 120 Hz unchanged required that 

wavelength of the oscillations and the 
𝑑𝑝′

𝑑𝑥
= 0 acoustic BC at the rigid wall on the right 

side remain unchanged for all the investigated cases.  This, in turn, required that the 

excited acoustic mode shape shift to the right in step with the “rightward displacement” 

of the virtual, rigid, wall boundary location.  Consequently, as location of the virtual rigid 

wall moved to the right, the acoustic pressure oscillations’ spatial profile, which included 

its pressure node, also moved to the right as shown in Figure 29-(a) and (b).  These 

results show that the developed ACS can simulate, one-dimensional, standing wave, 

acoustic oscillations that occur in longer full-scale tubes having different lengths in an 

actively controlled, small-scale, rig.   

 The analysis performed in this study also determined the “acoustic velocity mode 

shape” in domains consisting of the actively controlled small-scale rig and the “missing 

part” of the full-scale tube using Eq. (2-27) below.  These spatial profiles are described 

by the dashed and solid line curves in Figure 30-(a) and (b) for the ~38.5” and ~55” 

actively controlled rigs, respectively, for the shown virtual length “extensions” of ~5.4”, 

~10.7”, ~16”, and ~18.7”.   

 ikxikx eBeAxVc  ˆˆ)(ˆ    (2-27)  

where,  ; density of the air,  c ; speed of sound    

 As the acoustic pressure mode shape, the acoustic velocity mode shape plots in 

Figure 30 show that as the location of the virtual rigid wall moved to the right, the 

acoustic velocity mode shape and its anti-node (i.e., where 
𝑑𝑣′

𝑑𝑥
= 0) locations also shifted 
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to the right, to assure that its acoustic velocity node (i.e., 𝑣′ = 0) remained adjacent to the 

virtual rigid boundary that shifted to the right, as shown in Figure 30-(a) and (b).   

 
Figure 30.  Calculated acoustic velocity mode shapes in the domain of the full-scale tubes (depicted as 

dashed and solid curves for cases (a) and (b), respectively);  (a) 38.5 inch tube with ACS setups of 

~5.4”, ~10.7”, ~16”, and ~18.7” virtual rigid wall extensions,  (b) 55 inch tube with ACS setups of 

~5.4”, ~10.7”, ~16”, and ~18.7” virtual rigid wall extensions, (from ~125 dB to ~ 139 dB incident wave 

to the control speaker).     

 

 To gain additional insight into the results presented in Figure 29 and Figure 30, 

these results are redrawn in a different “coordinate system” in Figure 31, where the 

virtual, rigid, wall boundary of each of the tested configurations is set at the right end of 

the “coordinate system”.  Notably, all the tested configurations are shown on the bottom 

of Figure 31, and the acoustic pressure and velocity modes shapes obtained in the tests 

using the ~38.5” and ~55” tube rigs are shown by dashed and solid lined plots, 

respectively.  It should be noted that the “combined length” of the tested configurations 

(consisting of the length of the small-scale rig and the virtual tube extension) shown on 
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the bottom of Figure 31 increases as one moved from the top to the bottom configuration.  

Consequently, the locations of the left terminations of the configurations and the acoustic 

pressure 𝑝′ and velocity 𝑣′ modes shapes’ plots differ from one another.   

 
Figure 31.  Collections of the calculated acoustic mode shapes aligned at the virtual rigid walls;  (a) 

acoustic pressure mode shapes,  (b) acoustic velocity mode shapes, (from ~125 dB to ~ 139 dB 

incident wave to the control speaker).   

 

 An examination of the acoustic pressure 𝑝′  and velocity 𝑣′  modes shapes in 

Figure 29 through Figure 31 shows that the developed ACS generated acoustic 

oscillations that properly accounted for the “virtual extension” of the small-scale rig and 

satisfied the “rigid wall" acoustic BC (i.e., 𝑣′ = 0 and 
𝑑𝑝′

𝑑𝑥
= 0) at the right end of the 

virtual tube extension.  Additionally, Figure 31 shows that the acoustic mode shapes 
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excited in all the investigated configurations (i.e., the ~38.5” and ~55” small-scale rigs 

being “extended” by four lengths by the ACS), have acoustic pressure nodes (i.e., 𝑝′ = 0) 

and acoustic velocity anti-nodes (i.e., the maximums, 
𝑑𝑣′

𝑑𝑥
= 0) approximately at the same 

locations.   

 These 𝑝′  and 𝑣′  plots also show that the magnitudes of the acoustic pressure 

gradient 
𝑑𝑝′

𝑑𝑥
, acoustic velocity 𝑣′, and its gradient 

𝑑𝑣′

𝑑𝑥
 next to the locations of the “driving” 

speakers at the left ends of the small-scale rigs varied from one investigated configuration 

to another, even though the input voltages’ amplitudes to the driving speakers in all the 

tested configurations were the same.  This happened because for each tested 

configuration the driving speaker was located at a different location on the structure of 

the excited oscillations; i.e., at a different distance from the location of the oscillations’ 

pressure node or anti-node (recall that the wavelength of the oscillations was fixed at all 

tests while the distance of the driving speaker from the virtual rigid wall on the right side 

varied form on test to another).  Because the location of the driving speaker relative to the 

structure of the excited acoustic oscillations varied from one configuration to another, the 

effectiveness of the speaker’s driving was affected, which may have also affected the 

magnitude of the acoustic field excited at each configuration.  Thus, as the location of the 

driving speaker got close to the location of the maximum amplitude oscillations (in this 

study, it occurred when the length of tested configuration of the full-scale engine 

approximately equaled half the wavelength of the driven 120 Hz oscillations), the 

speaker’s driving effectiveness increased and the magnitude of the excited oscillations in 

the actively controlled small-scale rig increased as shown in Figure 29 through Figure 31.   
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 Figure 29 through Figure 31 also show that the excited acoustic pressure and 

velocity amplitudes were maximum in the configuration consisting of the ~55” small-

scale tube rig (virtually) extended by ~5.4” whose profiles are described by the blue solid 

curves.  An analytical investigation of the resonant frequencies of this tube, which 

included the application of an “empirical effective tube length” correction that accounts 

for the presence of a multi-dimensional acoustic field near the speaker’s diaphragm [20], 

showed that the effective “acoustic length” of the investigated “maximum amplitude” 

configuration equaled ~56.4”; i.e., 56.4′′ ≈ ~55′′ + ~5.4′′ − 4′′ where the subtracted 4” 

(4” is the diameter of the tube) is the above discussed length correction.  This calculation 

also showed that the driving 120 Hz frequency equals one of the resonant frequencies of 

the (effectively) 60.4” length configuration that exhibited the largest amplitude 

oscillations.  Thus, the largest amplitude acoustic oscillations excited in the actively 

controlled ~55” small-scale tube rig (virtually) extended by ~5.4” simulated a “resonating” 

standing wave acoustic field in a ~60.4” tube having a driving speaker and a rigid wall at 

its boundaries.   

 It is, however, noteworthy that at resonance, for a given “energy input”, the 

maximum amplitude oscillations are excited in the system.  Furthermore, when the 

system is linear, “infinite amplitude” oscillations are excited for an infinitesimal energy 

supply at resonance.  In this study, it was shown that for the same amplitude voltage input 

to the driving speaker, the amplitude of the excited oscillations depended upon the length 

of the simulated full-scale tube (or engine) and that maximum amplitude oscillations 

were excited when the resonant frequency of the simulated full-scale tube (i.e., sum of 

the small-scale rig and the “missing prat” of the full-scale tube) was close to the 



84 

 

frequency of the driving voltage.  However, to rigorously determine whether the actively 

controlled small-scale rig simulated a resonance of the full-scale tube, the “acoustic 

power input” through the driving speaker for all the investigated configurations needed to 

be determined in order to show that the energy input to the driving speaker was 

minimized when a resonance of the full-scale engine was simulated.  While this writer 

believes that this was the case, this fact regretfully cannot be proved because the power 

input to the driving speaker was not measured in these experiments.   

 Notably, the small-scale rigs utilized in the above discussed experiments, each 

equipped with a driving speaker and an actively controlled speaker on their left and right 

boundaries, respectively, could only simulate the oscillations in the portion of the 

wavelength of the full-scale tube’s (or engine’s) oscillations immediately adjacent to the 

driving speaker at the left end of the rig.  This scenario is described in Figure 32-(a) and 

(b) below where Figure 32-(a) describes the “full-scale” tube (or engine) whose 

oscillations are simulated in the small-scale rig shown in Figure 32-(b).  The latter 

consists of the small-scale rig equipped with a driving and an actively controlled speakers 

at its left and right ends, respectively.  In this arrangement, the small-scale rig can only 

simulate the oscillations in the section between locations I and II of the full-scale engine 

on top, as was done in the studies described in this chapter.   
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Figure 32.  Simulating “different portions of the oscillations” of the full-scale engine in the small-

scale rigs;  (a) “full-scale rig”,  (b) small-scale rig with active control setup 1,  (c) small-scale rig with 

active control setup 2.   

 

 Next, we would like to provide some suggestions for future research.  One 

interesting study would consider how to modify the small-scale rig if we wanted to 

simulate the oscillations in a section between locations (1) and (2) in the full-scale engine 

shown in Figure 32-(a); note that the distance between locations (1) and (2) also equals 

L2, the length of the small-scale rig.  To accomplish this, we will have to equip the small-

scale rig with actively controlled speakers at both ends as shown in Figure 32-(c).  In this 

case, the left and right speakers will use ACSs to generate the acoustic impedances at 

locations (1) and (2) in the full-scale engine (on top) at the left and right ends of the 

small-scale rig, respectively.  In this experiment, the ACS of the left speaker will 
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simulate in real time the oscillations in region I~(1) and the ACS of the right speaker will 

simulate in real time the oscillations in region (2)~III of the full-scale engine, 

respectively.  This, in principle, will assure that the small-scale rig will simulate the 

oscillations in the section between locations (1) and (2) of the full-scale engine above.  

Furthermore, this small-scale rig would enable experimental simulations in the small-

scale rig of oscillations in any section of length L2 in the full-scale engine.  Investigating 

the performance of the rig shown in Figure 32-(c) provides a very interesting future 

research topic that may significantly improve existing capabilities for experimentally 

investigating full-scale, axial, CIs in small-scale rigs.   
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CHAPTER 3. 

SIMULATION OF 

TANGENTIAL COMBUSTION INSTABILITIES 

IN ANNULAR COBUSTORS 

 

 As discussed in Chapter 1, the objective of this thesis is to develop a real time, 

active boundary control approach that would allow simulations of longitudinal and 

tangential combustion instabilities (CIs) that occur in full-scale engines in small-scale 

laboratory rigs; see Figure 5 and Figure 10 in Chapter 1.  To achieve this objective, 

capabilities for performing real time simulations of the acoustic and combustion 

processes in the “missing part” of the full-scale engine combustor must be developed, as 

it is one of the three modules (i.e., the “wave separation”, “simulation”, and “actuator 

model” modules) of the active control system (ACS) that determine the control signal for 

the actuator.  In Chapter 2, the “simulation module” of the ACS only simulated the 

acoustic waves propagations/reflections in the missing part of the combustor because the 

study in Chapter 2 focused on the simulation of longitudinal CIs when no combustion 

generally occurs in the missing part; see Figure 5 in Chapter 1.  In contrast, when 

tangential CIs are excited in an engine, combustion processes, a tangential mean flow, 

and inflows and outflows through injectors and exhaust nozzles, respectively, are present 

in transverse planes of the combustor and interact with the acoustic motions there.  

Therefore, the simulation module of the ACS needs to account for all of these 

interactions in the “missing part” of the engine; see Figure 10 in Chapter 1.  Thus, as 

discussed in Chapter 1, the use of ACS to simulate full-scale, tangential, CIs in a small-
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scale rig will require development of capabilities for simulating the interactions of the 

tangential mean flow, combustion process, injectors’ inflows, and exhaust nozzles’ 

outflows with the acoustics in the “missing part” of the engine.  The development of such 

capabilities is described in this chapter.   

 The interactions between combustion (flame) and the flow and acoustic 

disturbances and their effects on the longitudinal and tangential (transverse) CIs have 

been investigated in several studies.  For example, the detail unstable thermo-acoustic 

modes structures associated with flow instabilities and their responses to the acoustics in 

swirl stabilized combustor have been studied [27].  The flame response to transverse 

acoustic excitation has been analyzed in detail [28, 29].  In this study, to perform “real 

time” control, the developed CI model must simulate the important physics of the 

problem and be simple enough to allow rapid computational solution of the problem.  

The developed model describes tangential CI in an annular combustor, see Figure 33.  It 

simulates the essential features of tangential CIs; i.e., periodic combustion, acoustic 

waves, the axial in/out mean flows through the injectors and exhaust nozzles, respectively, 

and a tangential mean flow component, see Figure 33.  The developed model was 

numerically solved, and the results are described at the end of this chapter.   

 

3.1.  Problem Statement 

 Tangential CIs, whose acoustic motions are perpendicular to the direction of the 

mean flow from the injectors to the exhaust nozzles, are often encountered in liquid 

rocket motors and annular gas turbine combustors, see Figure 33-(a).  It shows a liquid 

rocket motor that employs a large number of injectors on a circular injector plate and an 
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annular gas turbine combustor that employs several fuel nozzles on its inlet plane.  Such 

tangential CIs may manifest themselves as large amplitudes, standing or spinning, 

acoustic waves, which may travel in the clockwise or counterclockwise direction, see 

Figure 33-(a).   

 This study developed a “simplified” model of tangential CIs in an annular 

combustor because this geometry (shown in Figure 33-(b)) can be considered to be an 

“element” of a full-scale circular combustor (shown as an annular region within two 

black circular boundaries in Figure 33-(a)) or a representation of a full-scale annular gas 

turbine combustor (shown in the bottom of Figure 33-(a)).   

 
Figure 33.  Examples of full-scale combustors experiencing tangential combustion instabilities:  (a) 

rocket engine and annular gas turbine combustor,  (b) simple annular combustor with several fuel 

nozzles (injectors), and exhaust nozzles.   
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 The annular combustor modeled in this study is described in Figure 33-(b).  

During unstable operation, acoustic waves may propagate in the clockwise or 

counterclockwise direction and interact with combustion processes anchored to the fuel 

nozzles in the presence of a tangential mean flow component in the clockwise or 

counterclockwise direction.  In such a combustor, the fuel nozzles (injectors) supply 

streams of liquid or gaseous fuel and oxidizer that subsequently may vaporize, mix, react, 

and release heat, thus generating a flow of hot combustion products that is discharged 

through the exhaust nozzles.  All of these processes must be simulated by the model, 

since they affect the driving/damping of the CIs through a feedback process.   

 

3.1.1.  Simplified Problem 

 This section describes the development of a model of tangential CIs that simulates 

the interactions of the acoustic waves with the combustion processes, injectors and 

exhaust nozzles flows, and the tangential mean flow in an annular combustor, see Figure 

34.  The developed model assumed that the reactants are gases, the mixing processes are 

infinitely fast, the medium behaves as a thermally perfect gas, and the tangential 

component of the mean flow moves in the clockwise direction, see Figure 34.  This 

tangential mean flow is shown to move from left to right as it crosses the combustion 

region in the top schematic in Figure 34.   

 We further assumed that the annular combustor volume could be separated into 

two types of regions; i.e., small “concentrated combustion” regions and larger “no 

combustion” regions in between, see Figure 34.  For example, one of the several 
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“concentrated combustion” regions is shown as a red dashed region, and one of “no 

combustion” regions is shown as a blue dashed region in Figure 34.   

 Specifically, it was assumed that the combustion process is concentrated in a 

small region whose scale is much smaller than the excited acoustic wavelength.  The 

gaseous fuel and oxidizer enter the combustion regions through fuel nozzles (or injectors), 

mix, and react to release heat.  The gaseous combustion products are discharged through 

exhaust nozzles; see the “combustion” region in Figure 34.  These combustion processes, 

inflows, and outflows interact with the mean flow and the travelling acoustic waves that 

enter and leave the combustion regions through their right and left boundaries; see the 

interfaces between “combustion” and “no combustion” regions in Figure 34.   

 
Figure 34.  Simplified problem;  annular combustor with concentrated combustion regions,  linear 

acoustic waves propagations,  injectors and exhaust nozzles, and tangential mean flow.   
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 It has also been assumed that no combustion occurs in the regions outside the 

concentrated combustion regions, implying that no acoustic sources that drive the waves 

are present in these regions; see the “no combustion” region in Figure 34.   

 

3.2.  Derivations of the Model Equations 

 The modeled, concentrated, combustion region is described in Figure 35.  It 

shows that the incoming acoustic waves 𝑓1 and 𝑔2 enter the control volume through the 

control surface s1 and s2, respectively.  As these waves cross the volume, they interact 

with the combustion process, which amplifies or damps the waves, to produce the 

outgoing acoustic waves 𝑔1 and 𝑓2.  In this one-dimensional description, the tangential 

mean flow in the clockwise direction, 𝑉⃗ ̅, is aligned with the 𝑥̂1 direction.  It affects the 

propagations of the right going (𝑓1 , 𝑓2 ) and the left going (𝑔1 , 𝑔2 ) waves and their 

interactions with the combustion process.   

 
Figure 35.  Interaction between acoustic waves and combustion process at the acoustically compact 

combustion region.   

 

 The fuel/oxidizer mixture is supplied by the injector at the bottom wall (s3 in 

Figure 35), the combustion process (red ball in Figure 35) occurs in the space enclosed by 
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s1, s2, the injector (s3), and the exhaust nozzle (s4), and the gaseous combustion products 

are discharged through the choked nozzle in the upper wall (s4 in Figure 35).  The 

objective of the developed model is to describe the interaction of these processes with the 

incoming (𝑓1, 𝑔2) and outgoing (𝑔1, 𝑓2) acoustic waves.   

 To simplify the presentation of the derivation of the model equations, only key 

steps of the derivation are presented in this discussion.  A detailed derivation of the 

model is presented in APPENDIX A, and the definitions of the various variables are 

listed in NOMENCLATURE at the beginning of the thesis.   

 We start the development of the model by considering the following, general, 

three-dimensional, integral forms of the conservation equations for a reacting flow [30, 

31]:   
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 where,  externalF


 is the sum of the external forces acting on the 

control volume.   
 

Energy:   
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where, 

externalQ  is the external heat added to the control volume; 
sW  is 

the shaft work; .... ekepue   where u , ..ep , and ..ek  are 

the internal energy per unit mass, potential energy per unit 

mass, and kinetic energy per unit mass, respectively.   
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Species: 

  





....
 ˆ    

SC
ll

VC
ll dSnvYdVY

t
M 

     (3-4) 

 
where, 

lM  is the mass production rate of species l in the control 

volume; i.e.,  
....

   
VC

ll
VC

ll dVMWdVmM     

where lMW  is the molecular weight of species l; l  is the molar 

production rate of species l per unit volume.  Additionally, 

diffusionll VVv ,


  is the velocity of species l and V


 and 

diffusionlV ,


 are the mass averaged flow velocity and the diffusion 

velocity of species l, respectively.   

 

 Next, we derive the mean and small-perturbation conservation equations 

assuming that 𝑄̇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 0  (adiabatic system), 𝑊̇𝑠 = 0  (no shaft work), and 𝑝. 𝑒. = 0 

(negligible potential energy).  We also assumed that all the properties can be expressed as 

a sum of a steady state property and a small-perturbation; e.g., 𝑝 = 𝑝̅ + 𝑝′, 𝜌 = 𝜌̅ + 𝜌′, 

… where 
𝑝′

𝑝̅
,
𝜌′

𝜌̅
, … ≪ 1.  The assumed expressions for the properties are then substituted 

into the above conservation equations, and the resulting equations are separated into the 

following steady state conservation equations and small-perturbation conservation 

equations.   

 

 Steady state (or mean) conservation equations:   
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 Small-perturbation conservation equations:   
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 Next, we manipulate the mean (or steady state) and small-perturbation energy 

equations to obtain equations that would allow to derive an integral form of the non-

homogeneous wave equation that includes an acoustic source term representing the effect 

of the heat release by the combustion process upon the acoustic motions.  The derivation 

of the mean and small-perturbation energy equations with source terms describing the 

effect of the heat release by the combustion process is presented in Section A.1.3. of 

APPENDIX A, where Eqs. (A-32) and (A-34) describe the mean and small-perturbation 

chemical heat release terms.  These expressions were subtracted from the mean and 
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small-perturbation energy equations (i.e., Eqs. (3-7) and (3-11)) to obtain the following 

expressions (see Section A.1.3. for the details of the derivations of Eqs. (A-36) and 

(A-37)):   
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 Notably, the left hand sides (LHSs) of the above equations describe the mean and 

small-perturbation heat releases due to chemical composition changes.  Since, as 

discussed in Section A.1.2., it has been assumed that the specific heat, 𝑐𝑝,𝑙, of all species 

equal to one another, the small-perturbation sensible enthalpy, ℎ′𝑠, for the gas mixture (in 

Eq. (3-14) above) varies only as the temperature perturbation, 𝑇′, varies; i.e., ℎ′𝑠 = 𝑐𝑝𝑇′ 

(where 𝑐𝑝 is the specific heat of the gas mixture, see Eq. (A-27)).   

 Also, to derive a non-homogeneous wave equation having the effects of all the 

relevant acoustic sources appearing as inhomogeneous terms, the effects by the in/out 

flows through the injectors and exhaust nozzles have been separated out and expressed as 

source terms in the small-perturbation conservation equations.  The derivations of these 

equations are in Section A.1.4., yielding the following expressions:   

 



97 

 

Mass:   

 

mass

nozzleinjector

SCSCVC

S

MM

dSnVdSnVdV
t

~
     

     

 ˆ  ˆ  
......





















   (3-15)  

where,   
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Momentum in 𝑥̂1 direction (i.e., tangential direction):   
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Energy:   
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where,   
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 For simplicity, the control surface description “C.S.” in the integrals on the LHS 

of the Eqs. (2-1), (3-17), and (3-18) denotes the control surfaces s1 and s2 only (i.e., it 

does not include control surfaces s3 and s4 (see Figure 35)).  Since it is assumed that no 

external force in tangential direction (i.e., 𝑥̂1 direction) is present, i.e., (∑𝐹 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑥̂1
)
′
=

0⃗ , it follows that the acoustic source term in the small-perturbation momentum equation 

in 𝑥̂1 direction (i.e., Eq. (3-17) above) is also zero, i.e., 𝑆̃𝑓𝑜𝑟𝑐𝑒,𝑥̂1
= 0⃗ .   

 Notably, the terms on the LHS of the above equations describe the acoustic 

motions with the presence of a (tangential) mean flow while the terms on the right hand 

side (RHS) of these equations describe the effects of the “sources” and “sinks” that add 

and remove acoustic energy from the acoustic field, respectively.  These “sources” and 

“sinks” include the acoustic energy supplied by the combustion process and the acoustic 

energy added and removed from the system by the injectors and the exhaust nozzles, 

respectively.   

 As shown in Section A.1.4., Eqs. (2-1), (3-17), and (3-18) can be manipulated to 

obtain the following integral form of the non-homogeneous wave equation:   
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where,   
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 The LHS of Eq. (3-21) is the integral form of the wave equation with mean flow 

(𝑉⃗ ̅), and the RHS describes the effects of the acoustic sources, 𝑆̃𝑚𝑎𝑠𝑠 , 𝑆̃𝑓𝑜𝑟𝑐𝑒,𝑥̂1
, and 

𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦, that amplify/damp the oscillations within the combustion region.  These acoustic 

sources describe the effects of the in/out flows through the injector and exhaust nozzle, 

respectively, and the chemical reactions, and are described in Eq. (3-23) above (with the 

definitions in Eqs. (3-19) and (3-20)).  The term (𝑄̇𝑐ℎ𝑒𝑚)′ describes the chemical heat 

release perturbation.  The terms 𝑀′̇ 𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟  and (𝐻̇𝑠 + 𝐾. 𝐸.̇ )′𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟  are the perturbed 

mass flow rate and energy flux of the fuel/oxidizer mixture “inflow” through the injector, 

respectively, and the terms 𝑀′̇ 𝑛𝑜𝑧𝑧𝑙𝑒 and (𝐻̇𝑠 + 𝐾. 𝐸.̇ )′𝑛𝑜𝑧𝑧𝑙𝑒 are the perturbed mass flow 

rate and energy flux of the gaseous combustion products “outflow” through the exhaust 

nozzle, respectively; see Eq. (3-16), Eq. (3-20), and Figure 35.   

 As discussed in Section 3.1.1. and described in Figure 34, the CI problem in the 

annular combustor will be investigated by solving the non-homogeneous wave equation 
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with mean flow (𝑉⃗ ̅), i.e., Eq. (3-21), in the “no combustion” regions and “combustion” 

regions separately and then matching the obtained solutions at the interfaces between 

these regions.  The solutions of Eq. (3-21) in the “no combustion” and “combustion” 

regions are described in the following Sections 3.2.1. and 3.2.2., respectively.   

 

3.2.1.  Acoustic Waves Propagations in the “No Combustion” Regions 

 Since there are no combustion processes and no in/out flows through injectors and 

exhaust nozzles in the “no combustion” regions, see Figure 34, all the acoustic source 

terms on the RHS of Eq.(3-21) are zero in these regions, yielding the following integral 

form of the homogeneous wave equation that describes the acoustics in these regions:   
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 Assuming that the oscillations are one-dimensional (in the tangential direction), 

the solutions of Eq. (3-24) are given by the following expressions [20-22]:   

 consttVaxf  ))((    

consttVaxg  ))((    
(3-25) 

where, 𝑓  and 𝑔  are the clockwise and counterclockwise moving waves, respectively.  

These acoustic waves, 𝑓  and 𝑔 , are shown as the right and the left going waves, 

respectively, as they cross the left and right boundaries of the combustion region in the 

top schematics in Figure 34 and Figure 35.  The acoustic pressure and velocity are related 

to 𝑓 and 𝑔 by the following expressions [20-22]:   
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(3-26) 



101 

 

While the acoustic waves propagate in the “no combustion” regions without change in 

amplitude, their propagation velocities are affected by the tangential mean flow 𝑉̅.  The 

propagation velocities of the right going waves 𝑓 (𝑓1 , 𝑓2) and the left going waves 𝑔 

(𝑔1, 𝑔2) are 𝑎̅ + 𝑉̅ and 𝑎̅ − 𝑉̅, respectively, see Eq. (3-25).   

 Using the following normalization expressions:   
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the solutions of Eqs. (3-25) and (3-26) can be expressed in the following form:   

 consttVaxf  ))((ˆ    

consttVaxg  ))((ˆ    
(3-28) 
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(3-29) 

 Equations (3-28) and (3-29) above describe the acoustic waves motions in the “no 

combustion” region and will be used to determine the properties of the waves, 𝑓1 and 𝑔2, 

(see Figure 35) that enter the concentrated “combustion” region.  These waves, 𝑓1 and 𝑔2, 

will be used by the equations that describe the processes taking place within the 

concentrated “combustion” region (described in the next section) to determine the 

properties of the waves, 𝑔1 and 𝑓2, that leave the concentrated “combustion” region.   

 

3.2.2.  Interaction between the Combustion Process and the Acoustic Waves in the 

“Combustion” Regions 

 The physics of the acoustically compact combustion region are described by Eq. 

(3-21).  It describes the acoustic waves’ interactions with the combustion process, the 
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in/out flows through the injector and exhaust nozzle, and the mean flow.  The LHS of Eq. 

(3-21) describes acoustics of the system, and the RHS describes the source terms that 

generate or remove acoustic energy from the oscillations [32-34].   

 To predict the effect of these acoustic sources and the mean flow upon the 

acoustic oscillations, the following expressions were substituted into the LHS of Eq. 

(3-21).   
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(3-30) 

 Next, the values of the integrals on the LHS of the equation were evaluated in the 

limit when the width of the combustion region goes to zero; i.e., ∆𝑥 → 0.  This procedure 

is justified because the combustion region was assumed to be acoustically compact; i.e., 

𝑘∆𝑥 ≪ 1 [21, 22, 31].  The details of this analysis are described in Section A.2. (see Eq. 

(A-85)) where the following equation is derived:   
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 Equation (3-31) shows that the “unknown” waves, 𝑔1  and 𝑓2 , that leave the 

combustion region depend upon the “known” waves, 𝑓1 and 𝑔2, that enter the combustion 

region and the acoustic sources on the RHS that describe the processes within the 

combustion region that add/remove acoustic energy from the oscillations.   

 Since the combustion region is acoustically compact and the acoustic sources on 

the RHS of Eq. (3-31) are monopole sources [21, 33, 34], the acoustic pressure across the 

combustion region is continuous, implying that the pressures at the surfaces s1 and s2 are 
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the same.  However, the acoustic velocity is not continuous because the heat added by the 

combustion process and the mass and energy added/removed by the in/out flows produce 

an acoustic velocity jump across the “combustion source” [21, 22].  Thus, the variation of 

the acoustic pressure across the combustion region is described by the following 

expressions:   

 )()( 21 tptp     

)()()()( 2211 tgtftgtf     
(3-32) 

Equations (3-31) and (3-32) can then be solved to determine the two unknowns 𝑔1 and 𝑓2 

(i.e., the outgoing acoustic waves).   

 It is shown in Section A.2. (see Eq. (A-89)) that substituting the expressions for 

the acoustic source terms, 𝑆̃𝑚𝑎𝑠𝑠 and 𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦 in Eq. (3-23), into the RHS of Eq. (3-31) 

yields the following expression:   
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where,   
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 As noted before, the RHS of Eq. (3-33) describes the acoustic sources produced 

by the chemical reactions (𝑄̇𝑐ℎ𝑒𝑚)′, the inflow through the injector (𝑆𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′, and the 

outflow through the exhaust nozzle (𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′.  To solve Eqs. (3-32) and (3-33) and 



104 

 

determine the relationships between the “unknown” outgoing acoustic waves, 𝑔1 and 𝑓2, 

and the “given” incoming acoustic waves, 𝑓1 and 𝑔2, (from the no combustion region), 

the acoustic source terms need to be calculated.   

 As discussed above, the nozzle has been assumed to be short and choked, 

implying that 𝑀 = 1 at the throat, and that the distance from the combustion chamber to 

the nozzle throat is much shorter than the acoustic wavelength.  Since the time scale of 

the short nozzle is much shorter than the time scale of the acoustic motions, the flow in 

the nozzle can be assumed to be quasi-steady.  In this case, the stagnation conditions in 

the combustion region (with 𝑀 = 1 at the nozzle throat) determine the mass flow rate and 

energy flux through the nozzle [35].   

 These stagnation conditions can be expressed in terms of the acoustic pressure 

and velocity inside the combustion region.  Since the combustion region is assumed to be 

acoustically compact, the acoustic pressure inside the region is the same as the acoustic 

pressures on the surface s1 and s2; see the red dashed line in Figure 36.  On the other 

hand, since the acoustic velocity across the region is discontinuous, the velocity inside 

the region is assumed to be the average of the velocities on the surfaces s1 and s2; see the 

blue dashed line in Figure 36.   
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Figure 36.  Description of the acoustically compact combustion region having a constant acoustic 

pressure and an acoustic velocity jump.   

 

 Thus, the acoustic pressure and velocity inside the combustion region can be 

expressed in terms of the acoustic properties at the control surface s1 and s2 as shown 

below:   
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 The above discussed, short-choked, nozzle assumptions were used to model the 

flow through the exhaust nozzle, which has been shown to “act” as a source/sink term 

(i.e., (𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′) in the derived equations (i.e., Eqs. (3-33) and (3-35)).  Specifically, the 

exhaust nozzle affects the physics of the problem by allowing acoustic energy to be 

convected and radiated through the nozzle and be reflected back into the no combustion 

region, see Eqs. (3-33) and (3-35).  The development of the model that describes the 

effect of a short-choked exhaust nozzle is presented in detail in Section A.3.1.   

 As shown in Section A.3.1. (see Eq. (A-130)), using the expression for the 

exhaust nozzle source/sink, (𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′, Eqs. (3-32) through (3-36) can be solved to obtain 

the following expressions for the outgoing waves, 𝑔1 and 𝑓2, in terms of the incoming 
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waves, 𝑓1  and 𝑔2  and the source/sink terms that drive/damp the acoustic oscillations 

within the combustion region:   
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where,   

 

p
M

M

Vh

Tc
Q

Aa

s

p

ref

M

11

)1(
2

1
1

)1(
2

1

2

1

2

13

2

1
)(               

11

2

1

2

2

2














































 







































 













 (3-38) 

 nozzlesinjectorschemref EKHEKHQQ )..()..()()(      (3-39) 

 The parameter, 𝜀𝑀̅, in Eqs. (3-37) and (3-38) describes the effect by the exhaust 

nozzle.  As shown in Section A.3.1.4., the parameter, 𝜀𝑀̅, is a non-dimensional number.  

Also, using the assumptions that the nozzle throat area, 𝐴∗, is much smaller than the cross 

sectional area of the annular combustor, 𝐴, (i.e., 
𝐴∗

𝐴
≪ 1) and that the tangential mean 

flow is subsonic (i.e., 𝑀̅ < 1), it can be shown that 𝜀𝑀̅ ≪ 1, implying that 𝜀𝑀̅𝑀̅ ≪ 1; see 

the discussions in Section A.3.1.4.  It, thus, follows that 

 10 
M
    

10  M
M
    

(3-40) 

 Using the above order of magnitudes expressions, the following relationships can 

be derived:   
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 Finally, substituting the above expressions into Eq. (3-37) yields the following, 

simplified, expressions for the outgoing waves, 𝑔1 and 𝑓2:   
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 Applying the normalization expressions in Eq. (3-27) to the above equation, the 

following relationship between the acoustic waves entering and leaving the compact 

combustion region can be obtained.   
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where,   
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 Equation (3-43) provides a relationship between the unknown outgoing waves, 𝑔̂1 

and 𝑓2, and the known incoming waves, 𝑓1 and 𝑔̂2.  The incoming waves, 𝑓1 and 𝑔̂2, are 

given by Eq. (3-28) that describes the acoustic waves propagation in the no combustion 
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regions.  The outgoing waves, 𝑔̂1  and 𝑓2 , are the “unknown” of the problem and are 

determined by the model equations (i.e., Eqs. (3-43), (3-44), and (3-45)) that describe the 

processes taking place within the combustion region.   

 Notably, the term 𝜀𝑀̅  in Eq. (3-43) describes the effect by the exhaust nozzle.  

Since the term 𝜀𝑀̅ is always greater than zero (see Eq. (3-40)), the acoustic oscillations in 

the combustion region are damped by the exhaust nozzle as indicated by the minus sign 

in front of the term 𝜀𝑀̅ in Eq. (3-43).  Also, when an acoustic wave interacts with the 

exhaust nozzle, reflected and transmitted waves are generated.   

 The term (𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ in Eq. (3-43) describes the acoustic driving/damping by the 

mass and energy fluxes (i.e., sensible enthalpy and kinetic energy) transported through 

the injector (see the definition of (𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′, Eq. (3-45)).  Since the inflow through the 

injector depends on the injection system, the small-perturbations of the mass flow rate, 

the sensible enthalpy flux, and the kinetic energy flux can be related to the operating 

conditions of the injection system (i.e., the fuel and oxidizer, mass flow rate, temperature, 

pressure, fuel/oxidizer ratio, flow velocities, etc.), which can be used to calculate 

(𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ using Eq. (3-45).   

 The term (𝑄̂̇𝑐ℎ𝑒𝑚)′ in Eq. (3-43) describes the acoustic driving/damping by the 

combustion process heat release perturbation.  As shown in Eq. (3-44), this heat release 

perturbation depends on the perturbation of the rate of change of the chemical 

compositions, which is due to the reaction rate perturbation.  Since this reaction rate 

perturbation depends on the flow condition within the combustion region, it is 

undoubtedly affected by the acoustic oscillations in the combustor.   
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 Briefly, the system of equations, Eqs. (3-43), (3-44), and (3-45), describes the 

driving and damping of the oscillations in the “combustion” region.  The processes 

involve the arrived waves 𝑓1  and 𝑔2  at the concentrated combustion region, their 

amplification and damping by the chemical reactions and the in/out flows through the 

injector and exhaust nozzle, and the generation of the outgoing waves 𝑔1 and 𝑓2.   

 In summary the developed model equations consist of equations describing the 

physics in the “no combustion” and “combustion” regions; see the list in Section A.4. in 

APPENDIX A.   

 

3.3.  Numerical Solutions of the Developed Model Equations 

 The developed model was numerically solved to validate the model and 

investigate the effects of the combustion process, injector and exhaust nozzle flows, and 

the tangential mean flow upon the characteristics of tangential CIs.   

 The method of characteristics [23, 25, 36] was used to calculate the acoustic 

waves’ behavior in the “no combustion” region (see Eqs. (3-28) and (3-29)), and a 

numerical algorithm [26] was used to solve the equations that simulate the interactions 

between the acoustic waves and the processes taking place in the “combustion” region 

(see Eqs. (3-43), (3-44), and (3-45)).   

 Acoustic waves propagating in the counterclockwise and clockwise directions in 

the “no combustion” regions enter/leave the combustion regions.  Upon entering a 

“combustion” region, these waves affect the physical/chemical processes taking place 

there, while being affected by the processes taking place in the combustion region.  At 

each “time step” of the numerical calculation, “separate” solutions describing the waves 
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entering and leaving the “no combustion” and “combustion” regions are obtained and 

“matched” at the interfaces between these regions.  These numerical simulations were 

performed using the following sequence of steps:   

i. At the start of the numerical simulation, an initial condition (e.g., the presence of a 

travelling or standing wave oscillations) is set in the entire computational domain of 

the combustor; i.e., the incoming (𝑓1 and 𝑔2) and outgoing (𝑔1 and 𝑓2) waves in the 

“combustion” region and the acoustic pressure and velocity in the “no combustion” 

region.   

ii. In the “no combustion” region, the acoustic waves propagations are determined using 

Eqs. (3-28) and (3-29).  The outgoing waves, 𝑔1  and 𝑓2  at the present time step 𝑡 

leave the “combustion” region and propagate into the adjacent “no combustion” 

regions at the next time step 𝑡 + ∆𝑡.  The acoustic waves in the “no combustion” 

region at the present time step 𝑡 arrive at the boundaries of the “combustion region” at 

the next time step 𝑡 + ∆𝑡; i.e., the incoming waves, 𝑓1 and 𝑔2 (see Figure 35) enter 

the “combustion” region at the next time step 𝑡 + ∆𝑡.   

iii. The model equations that describe the processes within the concentrated “combustion” 

region (i.e., Eqs. (3-43), (3-44), and (3-45)) are solved to determine the effects of the 

acoustic sources there (generated by the combustion process, injector, and exhaust 

nozzle) upon the waves entering this “combustion” region from the “no combustion” 

region.  Specifically, these solutions determine how the waves entering the 

“combustion” region, 𝑓1  and 𝑔2  (which are provided by the solutions of the “no 

combustion” region in step ii), are modified as they pass through the “combustion” 
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region.  These solutions determine the properties of the outgoing waves, 𝑔1 and 𝑓2, 

that enter the adjacent “no combustion” regions at the next time step 𝑡 + ∆𝑡.   

iv. These steps determine the solutions at the next time step; i.e., the acoustic waves (𝑓1, 

𝑔2 , 𝑔1 , and 𝑓2 ) at the “combustion” region and the acoustic waves in the “no 

combustion” region.  The above described solution approach (i.e., step ii ~ step iii) is 

repeated at each time step to determine the time dependence of the solutions.   

 Some of the results obtained using this approach are described in the remainder of 

this section.  They describe the effects of the basic driving/damping processes that control 

the investigated CIs.  They also show that the presence and direction of the tangential 

component of the mean flow critically affect the characteristics of spinning tangential 

instabilities, [37-39].   

 

3.3.1.  Utilized Numerical Simulations 

 To investigate the dependence of tangential CIs upon design parameters and 

operating conditions, the developed model was numerically solved to determine the 

characteristics of tangential CIs in annular combustors with and without the presence of a 

tangential component of the mean flow assuming that combustion occurred in a single 

combustion region having a single injector, a single exhaust nozzle, and a single 

concentrated chemical reaction region, as shown in Figure 37.  These computations were 

repeated using different assumptions about the conditions within the combustion region 

(e.g., with/without the effects by the exhaust nozzle, the combustion process, and the 

tangential mean flow) and using different models to describe the unsteady combustion 

process.   
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Figure 37.  A schematic of an annular combustor with a single concentrated combustion region.   

 

 Since the characteristics of tangential acoustic waves in large radius of curvature 

annular combustors could be approximated by the behavior of one-dimensional acoustic 

waves, the investigated annular combustor was approximated by a one-dimensional 

straight duct, as shown in Figure 38.  In order to simulate the wave propagations in the 

closed annular tube, the boundaries of the straight domain were virtually linked; i.e., the 

right going waves leaving the domain through the right boundary enter the domain 

through the left boundary, and the left going waves leaving through the left boundary 

enter the domain through the right boundary.  To perform the numerical computations, 

the straight domain was discretized uniformly, and the concentrated combustion region 

was located at the point, 𝑖𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛, shown on the bottom of Figure 38.   
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Figure 38.  Computational domain for the numerical simulation of one-dimensional annular 

combustor with a single combustion region.   

 

 

3.3.2.  Exhaust Nozzle Damping 

3.3.2.1.  Exhaust Nozzle Damping Without a Tangential Mean Flow 

 In this section, the results of a study of the effect of an exhaust nozzle upon 

acoustic waves in an annular combustor without a tangential mean flow are discussed.  

To meet this objective, the model equations that accounted for the effect of the exhaust 

nozzle only were numerically solved.  Specifically, it was assumed that the oscillatory 

heat release by chemical reactions was zero and that there were no fluctuations in the 

inlet flow through the injector.  Consequently, the following values of the model 

parameters:   

 0M ,  11.0 
M
 ,  0)

ˆ
( chemQ ,  0)ˆ( injectorS    (3-46)  

were substituted into the model equations; i.e., Eqs. (3-28), (3-29), (3-43), (3-44), and 

(3-45).  It was also assumed that a traveling wave propagating from left to right was 

initially (i.e., at 𝑡 = 0) present in the combustor and that the exhaust nozzle was located 

at the center of the combustor as shown in Figure 38.   



114 

 

 Figure 39 describes the calculated spatial dependence of the acoustic pressures in 

the annular combustor at several time steps.  To trace the evolution of these waves, the 

pressure maxima at different time steps were connected by blue dashed lines that describe 

the wave front motion.  The figures on the left in Figure 39 show the evolution of the 

waves shortly after an initial travelling wave was introduced into the combustor.  It 

shows that initially the wave is a travelling at the speed of sound from left to right, the 

propagation direction of the initial disturbance.  The figures on the right in Figure 39 

show the behavior of the wave a long time thereafter (i.e., 18.75 cycles later; one period 

of the oscillations equals 1 in this example).  The plots on the right show that after some 

time has elapsed, the initially travelling wave has transformed into a standing wave 

whose pressure node is aligned with the location of the exhaust nozzle.   

 
Figure 39.  Result of a numerical simulation investigating the effect of the exhaust nozzle flow upon 

an “initial” travelling wave in an annular combustor in the absence of a tangential mean flow.   
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 The result above shows that in the absence of a tangential mean flow, an initially 

spinning wave, rotating at the speed of sound, gradually transforms itself into a standing 

wave.  The initial travelling wave excited the oscillations in the combustion region that 

generated the mass flow rate and the energy flux fluctuations through the exhaust nozzle, 

which interacted with the oscillations in the combustor.  The expressions describing the 

interactions of the acoustic waves with the exhaust nozzle can be derived by substituting 

(𝑄̂̇𝑐ℎ𝑒𝑚)′ = 0 and (𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ = 0 into the “combustion” region model equations, i.e., Eq. 

(3-43), which yields the following expressions:   

 )ˆˆ)(()ˆˆ(ˆˆ
212112 gfMgfff

MM
     

)ˆˆ)(()ˆˆ(ˆˆ
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(3-47) 

The above equations show that when only a right going wave 𝑓1 arrives at the combustion 

region (i.e., 𝑔̂2 = 0), the amplitude of the transmitted wave 𝑓2 is smaller than that of the 

incoming wave (i.e., 𝑓2 = 𝑓1 − 𝜀𝑀̅(1 + 𝑀̅)𝑓1 < 𝑓1).  Equation (3-47) also shows that the 

interaction of the incident wave 𝑓1 with the exhaust nozzle generates a reflected wave 𝑔̂1 

(i.e., 𝑔̂1 = −𝜀𝑀̅(1 + 𝑀̅)𝑓1 ) that propagates in the opposite direction (i.e., leftward); 

notably, the reflected wave 𝑔̂1 is 180° out of phase with respect to the incident wave 𝑓1, 

as 𝑔̂1 and 𝑓1 have opposite signs.  It should be also noted that the effect of the tangential 

mean flow on the interaction between the exhaust nozzle and the acoustic waves in the 

combustion region is described by the last term in Eqs. (3-47) and (3-43), which is very 

small because 𝜀𝑀̅𝑀̅ is even smaller than 𝜀𝑀̅  (i.e., 𝜀𝑀̅𝑀̅ < 𝜀𝑀̅ ≪ 1).  Notably, this term 

was zero in this example because it has been assumed that there was no tangential mean 

flow in the annular combustor, thus requiring that 𝑀̅ = 0 and 𝜀𝑀̅𝑀̅ = 0.   
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 The discussion showed that the interaction of the initial, right going, wave, 𝑓1, 

with the exhaust nozzle damped the initial wave and generated a smaller amplitude 

transmitted wave, 𝑓2 , and a reflected wave, 𝑔̂1  having 180°  out of phase (with the 

incident wave 𝑓1) that propagated in opposite directions.  To elucidate the physics of 

these waves and exhaust nozzle interactions, we will denote the waves involved in this 

“first” interaction with the exhaust nozzle as 𝑓1(1), 𝑓2(1), and 𝑔̂1(1).  Since there was no 

mean flow in this example, the damped right going wave and reflected left going wave 

propagated around the annular combustor at the same speed of sound without 

experiencing amplitude changes.  These waves returned to the combustion region and 

interacted with the exhaust nozzle for a “second” time.  At the “second” interaction with 

the exhaust nozzle, the right going wave 𝑓1(2) arrived at the combustion region with an 

amplitude 𝑓1(2) = 𝑓2(1) = 𝑓1(1) − 𝜀𝑀̅𝑓1(1) and the arriving left going wave 𝑔̂2(2) had 

an amplitude 𝑔̂2(2) = 𝑔̂1(1) = −𝜀𝑀̅𝑓1(1).  After completing the “second” interaction 

with the exhaust nozzle, the amplitudes of the outgoing right going and left going waves 

were: 𝑓2(2) = 𝑓1(1) − 𝜀𝑀̅𝑓1(1) − 𝜀𝑀̅ (𝑓1(1) − 2𝜀𝑀̅𝑓1(1))  and 𝑔̂1(2) = −𝜀𝑀̅𝑓1(1) −

𝜀𝑀̅ (𝑓1(1) − 2𝜀𝑀̅𝑓1(1)) , respectively, see Eq. (3-47) above.  An examination of the 

above expressions shows that the interactions of the waves with the exhaust nozzle 

damped the larger amplitude, right going, waves and amplified the smaller amplitude, 

(180° out of phased), left going waves.  Consequently, the amplitudes of the right going 

and left going waves decreased and increased, respectively, as they continued to interact 

with the exhaust nozzle.  Eventually, the amplitudes of the right and left going waves 

became equal and a standing wave was established in the combustor.  Notably, as the 
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results on the right of Figure 39 show, the pressure node of the resulting “final” standing 

wave field is aligned with the exhaust nozzle (depicted as red line at center of the 

combustor) because the magnitudes of the amplitudes of the incoming right and left 

going waves were the same but had “opposite” signs.  These two waves exactly “cancel 

one another” at the resulting, standing wave, pressure node where the exhaust nozzle is 

located; i.e., 𝑝′ = 0 at the exhaust nozzle.  When the pressure node of the standing wave 

in the combustor was aligned with the exhaust nozzle axis, the flow fluctuations through 

the exhaust nozzle stopped and the exhaust nozzle could no longer affect the standing 

wave acoustic field in the combustor.   

 Figure 40 describes the time dependence of the right and left going waves and the 

acoustic pressure waveform at a specific location in the annular combustor.  It shows that 

interactions of the waves with the exhaust nozzle damped the right going wave (described 

by blue curve) and amplified the left going wave (described by green curve) until their 

amplitudes was equal to one another and a standing wave acoustic field was established 

in the combustor.  As discussed above, the pressure node of the resulting standing wave 

was aligned with the location of the exhaust nozzle (i.e., 𝑝′ = 0 at the exhaust nozzle), 

and the exhaust nozzle stopped affecting the acoustic waves in the annular combustor.   

 Notably, Figure 40 shows that the amplitude of the acoustic pressure at the 

indicated location (described by the black curve) remains constant throughout the 

duration of the process that results in the transition of the initial travelling wave into a 

final standing wave as shown in Figure 39 above.  This observation may (erroneously) 

suggest that the interaction of the exhaust nozzle with the acoustic oscillations did not 

damp the acoustic oscillations in the combustor, which is not the case.  The acoustic field 
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produced by the “initial” disturbance (near 𝑡 ≈ 0) consisted mostly of a right going 

travelling wave, while the acoustic field during the “final” period (i.e., near 𝑡 ≈ 20) was 

a standing wave acoustic field that consisted of right and left going waves having equal 

amplitudes.  In order to investigate whether the acoustic oscillations in the combustor 

were damped by the exhaust nozzle during the transition from a travelling wave field into 

a standing wave field having the same amplitude, the “acoustic energy” of the initial and 

final oscillations in the combustor were evaluated.   

 

 
Figure 40.  The right going wave, the left going wave, and the acoustic pressure in the annular 

combustor (at x=0.25, see the figure on the top).   

 

 In order to clearly demonstrate the exhaust nozzle “damping” effect, the “time 

averaged acoustic energies” [20, 21] of the oscillations in the annular combustor at the 
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initial state (i.e., oscillations described on the left in Figure 39) and at the final state after 

the transition to standing wave oscillations (i.e., oscillations described on the right in 

Figure 39) were calculated and compared each other.  The time averaged acoustic energy, 

𝑊𝑎𝑣, in a one-dimensional duct of length, 𝐿, is shown as below:   
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where, 
avW : time averaged acoustic energy in a one-dimensional duct   

T : period of the oscillations   

L : length of the one-dimensional duct   

 

The time averaged acoustic energy of the “initial” right going acoustic wave in the 

annular combustor, 𝑊𝑎𝑣,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , having the normalized acoustic pressure amplitude, 

𝑃̂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1, can be calculated by integrating Eq. (3-48) as following.   
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where, 
initialP : amplitude of the initial acoustic wave; ]Re[ ti

initialinitial ePp     

initialP̂ : normalized amplitude; ]ˆRe[ˆ ti

initialinitial ePp     

ppp initialinitial /ˆ  ; pPP initialinitial /ˆ     

 

After a sufficient time of the transition, the time averaged acoustic energy of the “final” 

standing wave acoustic field in the annular combustor, 𝑊𝑎𝑣,𝑓𝑖𝑛𝑎𝑙, having the normalized 

acoustic pressure amplitude, 𝑃̂𝑓𝑖𝑛𝑎𝑙 = 0.1, can be also calculated using Eq. (3-48) as 

following.   
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As shown in Eqs. (3-49) and (3-50), the acoustic energy in the annular combustor after 

the transition into the “final” standing wave acoustic field is smaller than that of the 

“initial” right going wave (i.e., 𝑊𝑎𝑣,𝑓𝑖𝑛𝑎𝑙 < 𝑊𝑎𝑣,𝑖𝑛𝑖𝑡𝑖𝑎𝑙), and it indicates that the acoustic 

energy was lost (or discharged) through the exhaust nozzle.  Thus, the exhaust nozzle 

“damps” the acoustic oscillations (energy) in the combustor.   

 To further investigate the effect of the exhaust nozzle upon tangential CIs in an 

annular combustor, the above described calculation was repeated for the case when the 

initial disturbance in the annular combustor was a standing wave acoustic oscillation, 

assuming that all other parameters that describe the combustor’s operation was equal to 

those used in the above example, see Eq. (3-46).  It was also assumed that the pressure 

node and anti-node of the initial standing wave acoustic oscillation were not aligned with 

the location of the exhaust nozzle.  The result of this computation is described in Figure 

41 where the spatial dependences of the initial disturbance at different times shortly after 

the introduction of the disturbance into the combustor are shown on the left, and the 

spatial dependences of the oscillations at later times (18.75 cycles later; one period of the 

oscillations equals 1 in this example) are shown on the right.  The vertical red lines on the 

left and right of Figure 41 describe the location of the exhaust nozzle.  In order to trace 

the evolution of the standing wave, the maxima of the oscillations (i.e., the acoustic 

pressure anti-nodes) at different time steps were connected by blue dashed lines.   

 The figures on the left of Figure 41 show the evolution of the initial, standing 

wave disturbance shortly after it was introduced into the combustor.  It shows that 

initially the pressure node of the standing wave disturbance was not aligned with the 

exhaust nozzle (i.e., its location is identified by the vertical red line).  The figures on the 
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left of Figure 41 also show that the anti-node of the initial standing wave disturbance, 

which had a value of 0.2, was located slightly to the left of the location of the exhaust 

nozzle.  The figures on the right of Figure 41 show that during a period of 18.75 cycles 

the standing wave acoustic oscillation “shifted” to a position at which its pressure node 

was aligned with the location of the exhaust nozzle (i.e., as denoted by the vertical red 

line).  Furthermore, the calculations show that the exhaust nozzle damped the initial 

disturbance, reducing its amplitude to a value of 0.14.  Interestingly, these two examples 

(shown in Figure 39 and Figure 41) show that in the absence of a tangential mean flow 

component in the annular combustor, initially travelling or standing acoustic wave 

disturbances are damped by the exhaust nozzle until “final” standing wave acoustic 

oscillations, whose pressure node is aligned with the location of the exhaust nozzle, are 

established in the combustor.   

 
Figure 41.  Result of a numerical simulation investigating the effect of the exhaust nozzle flow upon 

an “initial” standing wave in the annular combustor in the absence of a tangential mean flow.   

 



122 

 

 To gain insight that control the wave phenomena discussed above and described 

in Figure 41, it was assumed that when the “initial” standing wave was introduced into 

the combustor, the right and left going waves, 𝑓1(1) and 𝑔̂2(1), respectively, arrive at the 

combustion region and “first” interact with the exhaust nozzle, and generate the outgoing 

waves, 𝑓2(1) and 𝑔̂1(1).  These waves propagate at the same speed of sound around the 

annular combustor and return to the combustion region where they interact again with the 

exhaust nozzle.  These processes are repeated and at the “n-th” interaction of the 

incoming waves, 𝑓1(𝑛) and 𝑔̂2(𝑛), with the exhaust nozzle, the outgoing waves, 𝑓2(𝑛) 

and 𝑔̂1(𝑛), are generated.  The latter can be expressed in the following form (using Eq. 

(3-47)):   
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(3-51) 

Using the expressions for the travelling acoustic waves provided in Eq. (3-51) above, the 

acoustic pressure in the combustion region (i.e., the exhaust nozzle) can be expressed in 

the following form (using Eq. (3-36)):   
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The fact that the outgoing right going wave 𝑓2(𝑛) and left going wave 𝑔̂1(𝑛) propagate 

around the annular combustor and return to the combustion region as incoming right 

going wave 𝑓1(𝑛 + 1)  and left going wave 𝑔̂2(𝑛 + 1) , respectively, can be 

mathematically expressed as follows:   
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(3-53) 
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At the “(n+1)-th” interaction between the acoustic waves and the exhaust nozzle, the 

relationships between the incoming and outgoing waves are described by the following 

expressions:   
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(3-54) 

At this “(n+1)-th” interaction, the acoustic pressure in the combustion region (and at the 

exhaust nozzle) can be expressed as follows:   
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By comparing Eq. (3-52) and Eq. (3-55), it can be shown that the magnitude of the 

acoustic pressure oscillations at the exhaust nozzle gradually decrease as the interactions 

between the acoustic waves and the exhaust nozzle are repeated.  In fact, using Eqs. (3-52) 

and (3-55) it can be shown that   
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M

     (3-56) 

Applying Eq. (3-56) above to the acoustic pressure oscillations at the “n-th” interaction 

and the “initial” acoustic pressure oscillations results in the following relationship:   
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Also, by expressing the argument (i.e., the variable of interaction number, “𝑛”) in Eq. 

(3-57) above in terms of the time variable, “𝑡”, the exponentially decaying “amplitude” of 

the acoustic oscillations in the combustion region (i.e., at the exhaust nozzle) can be 

expressed as follows:   
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The above Eqs. (3-56), (3-57), and (3-58) show that the acoustic pressure at the exhaust 

nozzle keeps decreasing exponentially until, eventually, it becomes zero and a pressure 

node of the standing wave is established at the exhaust nozzle.   

 Figure 41 shows that the exhaust nozzle damps the oscillations in the combustion 

region until the standing wave reaches its “equilibrium” state, when its pressure node is 

adjusted to the location of the exhaust nozzle.  In this case, the exhaust nozzle damping 

reduced the amplitude of the initial standing wave disturbance from 0.2 to 0.14 (see 

Figure 41).   

 We also investigated the time evolution of an initial standing wave disturbance 

whose pressure anti-node was aligned with the location of the exhaust nozzle by 

numerically solving the model equations (i.e., Eqs. (3-28), (3-29), (3-43), (3-44), and 

(3-45)), assuming that all other parameters that describe the combustor’s operation was 

equal to those used in the previously discussed examples, see Eq. (3-46).  Figure 42 

describes the results of this calculation.  It shows that the initial standing wave acoustic 

oscillation was damped until its amplitude eventually became zero; the amplitude was 

reduced from 0.2 to 0.003 as shown in the figures on the left and right in Figure 42.   
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Figure 42.  Result of a numerical simulation investigating the effect of the exhaust nozzle flow upon 

an “initial” standing wave in the annular combustor in the absence of a tangential mean flow;  the 

pressure anti-node of the initial standing wave was located at the exhaust nozzle.   

 

 In order to investigate the effect of the location of the exhaust nozzle relative to 

the acoustic pressure node and anti-node of the initial standing wave oscillations upon the 

exhaust nozzle “damping” effect, the above described calculation was repeated using a 

“series” of standing waves initial conditions whose pressure nodes were located at 

different distances from the location of the exhaust nozzle.  In all the cases, the initial 

standing waves oscillations in the annular combustor were damped as their pressure 

nodes moved toward the location of the exhaust nozzle.   

 Figure 43 describes the dependence of the “initial” (described by the blue solid 

line) and “final” (described by the red dashed line) standing waves’ amplitudes upon the 

distance between the initial disturbance’s pressure node and the location of the exhaust 

nozzle; where this distance was measured in the wavelength, 𝜆 of the oscillations.  Figure 

43 shows that the damping of the initial standing wave disturbance increased as the 
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distance between its pressure node and the exhaust nozzle increased.  As discussed above, 

Figure 43 also shows that complete damping of the initial disturbance occurred when this 

distance was 
1

4
𝜆 and the initial disturbance’s pressure anti-node was aligned with the 

location of the exhaust nozzle.  Notably, when this distance was zero and the initial 

disturbance’s pressure node was aligned with the exhaust nozzle location, damping of the 

initial disturbance did not occur (see Figure 43), and the initial disturbance was not 

affected by the exhaust nozzle.  This occurred because the initial disturbance did not 

excite flow fluctuations through the exhaust nozzle because the exhaust nozzle was 

aligned with the wave’s pressure node (i.e., 𝑝′ = 0 ) and, thus, was not exposed to 

pressure fluctuations.   

 
Figure 43.  Damping of the “initial” standing wave oscillations in the annular combustor by the 

exhaust nozzle in the absence of a tangential mean flow;  the effect of the location of the exhaust 

nozzle relative to the structure of the “initial” standing wave on the amount of damping.   
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3.3.2.2.  Effect of a Tangential Mean Flow upon the Exhaust Nozzle Damping 

 In this section, the results of a study of the effect of an exhaust nozzle upon 

acoustic waves in an annular combustor in the presence of a tangential mean flow are 

discussed.  When a tangential mean flow, 𝑉̅, is present in the annular combustor, the 

propagation velocities of the right going wave and the left going wave are 𝑉̅ + 𝑎̅ and 

𝑉̅ − 𝑎̅, respectively; see Figure 37 and Figure 38.  Consequently, when right and left 

going waves leave the combustion region after interacting with the exhaust nozzle they 

do not return to the combustion region (i.e., exhaust nozzle) at the same time, as was the 

case when we studied these interactions earlier assuming that there was no tangential 

mean flow in the annular combustor.  In addition, the dependences of the model equation 

(i.e., Eq. (3-43)) and its parameter 𝜀𝑀̅ (i.e., Eq. (3-38)) upon the tangential mean flow 

Mach number, 𝑀̅, indicate that the interactions of the exhaust nozzle with the oscillations 

inside the combustor is affected by the tangential mean flow.   

 In order to investigate the effect of the presence of a tangential mean flow 

component on the interactions of the acoustic waves with the exhaust nozzle, the above 

described calculations were repeated assuming that a tangential mean flow component 

was present in the annular combustor and that all the other operating conditions were the 

same with the previous cases (these are described in the examples discussed in Section 

3.3.2.1. whose results are shown in Figure 39 through Figure 43).  Specifically, it was 

assumed that the oscillatory heat release by chemical reactions was zero and that there 

were no fluctuations in the inlet flow through the injector.  The same exhaust nozzle 

parameter 𝜀𝑀̅ was used while assuming that the tangential mean flow Mach number was 

not zero.  Specifically, the following model parameters were employed:   
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 It was also assumed that the exhaust nozzle was located at the center of the 

annular combustor as was assumed in the solved examples in Section 3.3.2.1.; see Figure 

38.  It was also assumed that the initial conditions (i.e., the acoustic oscillations in the 

combustor at 𝑡 = 0), consisted of either a traveling acoustic wave that propagated from 

left to right with a velocity that equals the sum of the mean flow velocity and the speed of 

sound or a standing acoustic wave that was convected by the tangential mean flow.   

 The results of these computations are described in Figure 44 and Figure 45 where 

the spatial dependences of the initial disturbance at different time instants shortly after 

the introduction of the disturbance into the combustor are shown on the left, and the 

corresponding spatial dependences at different time instants after some time has elapsed 

(about 18.77 cycles later; one period of the oscillations equals 1 in this example) are 

shown on the right.  The plots on the left of Figure 44 show that an initial travelling wave 

disturbance propagated to the right at a speed that equals the sum of the speed of sound 

and the (tangential) mean flow velocity.  In this case, the initial travelling wave 

disturbance was “completely” damped until its amplitude eventually became zero (in this 

example, the amplitude of the initial wave was reduced from 0.1 to ~0.01, as shown in 

the figures on the right).  The plots on the left of Figure 45 show that an initial, standing, 

acoustic wave disturbance moved slowly to the right, suggesting that it was convected by 

the tangential mean flow velocity.  As in the case of an initial travelling wave disturbance, 

the plots on the right side show that the initial standing wave disturbance was also 

“completely” damped to nearly zero amplitude (in this example, the amplitude of the 

initial standing wave disturbance was reduced from 0.2 to 0.014).   
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Figure 44.  Result of a numerical simulation investigating the effect of the exhaust nozzle flow upon 

an “initial” travelling wave in the annular combustor in the presence of a tangential mean flow.   

 

 The two examples described in Figure 44 and Figure 45 show that in the presence 

of a tangential mean flow component in the annular combustor, initially travelling or 

standing acoustic wave disturbances are “completely” damped by the exhaust nozzle 

(essentially reducing their amplitudes to zero).  Since in these examples the right and left 

going waves had different propagation velocities due to the presence of a tangential mean 

flow, the transmitted and reflected waves leaving the combustion region, after their 

interaction with the exhaust nozzle, did not return to the combustion region at the same 

time, and the repeated interactions of these “pair” of waves with the exhaust nozzle did 

not occur (which is different from the previous examples in the absence of the tangential 

mean flow in Section 3.3.2.1.).  Therefore, the transition from the initial travelling wave 

disturbance to “final” standing wave oscillations did not occur.  Similarly, the pressure 
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node of an initial standing wave disturbance did not move toward the location of the 

exhaust nozzle when the tangential mean flow was present in the annular combustor.   

 
Figure 45.  Result of a numerical simulation investigating the effect of the exhaust nozzle flow upon 

an “initial” standing wave in the annular combustor in the presence of a tangential mean flow.   

 

 However, as shown in the model equation (Eq. (3-43)) and in the previous 

examples described in Figure 39 through Figure 43, some of the acoustic energy of the 

waves in the combustor was lost through the exhaust nozzle (via sound radiation and 

convection by the flow through the exhaust nozzle) until the oscillations in the 

combustion region were completely damped.  Thus, in the presence of a tangential mean 

flow in the annular combustor, initial travelling or standing acoustic wave disturbances 

are completely damped by the exhaust nozzle.   

 It should be also noted that additional studies, whose details are not reported here, 

showed that when the exhaust nozzle parameter, 𝜀𝑀̅, was increased, the exhaust nozzle 

“damping” also increased.  This was accompanied by increased damping and 
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amplification of the transmitted and reflected waves leaving the “combustion region”, 

respectively.  Also, as the exhaust nozzle parameter, 𝜀𝑀̅, was increased in the absence of 

a tangential mean flow, the transition period from an initial travelling wave disturbance to 

a “final” standing wave oscillation whose pressure node is aligned with the exhaust 

nozzle became shorter.   

 

3.3.3.  Driving of Combustion Instabilities by a Pressure Dependent Combustion 

Process 

 In this section, the results of a study of the effect of the characteristics of the 

unsteady combustion process upon the stability of an annular combustor operating with 

and without a tangential mean flow are discussed.   

 This required that the dependence of the perturbed heat release by the combustion 

process (i.e., (𝑄̂̇𝑐ℎ𝑒𝑚)′) upon the conditions in the combustion region be modeled.  In this 

study, we used an empirical model used in related previous studies [1, 40], that used the 

following expression to describe the dependence of the chemical heat release perturbation 

(𝑄̂̇𝑐ℎ𝑒𝑚)′  upon the mean velocity and the velocity and pressure perturbations in the 

combustion region:   
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The terms 𝑘𝑝  and 𝑘𝑣  in Eq. (3-60) above are empirical constants that “relate” the 

chemical heat release perturbation to the acoustic pressure and velocity perturbations in 

the combustion region; i.e., 𝑝̂′ and 𝑣′.  Notably, the acoustic pressure and velocity, 𝑝̂′ and 

𝑣′, in the “combustion” region can be obtained using the following equations, which are 

obtained from Eq. (3-36):   
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(3-61) 

Notably, the second term in the expression for (𝑄̂̇𝑐ℎ𝑒𝑚)′ in Eq. (3-60) describes the effect 

of the tangential mean flow on the interaction between the combustion process and the 

acoustic waves in the combustion region.   

 First, the stability of the annular combustor was studied assuming that the 

combustion process heat release (i.e., (𝑄̂̇𝑐ℎ𝑒𝑚)′ in Eq. (3-60)) only depended upon the 

pressure oscillations in the combustion region (i.e., 𝑝̂′) while neglecting the effects of the 

mean and perturbed velocity components (described by the second term on the RHS of 

Eq. (3-60)) upon the combustor stability.  Furthermore, to investigate the effect of the 

pressure dependence of the combustion process, it was assumed that the empirical 

constant 𝑘𝑝 was a large number, thus assuring that the heat addition process that drives 

the instability is much larger than the damping provided by the exhaust nozzle (which is 

discussed in Section 3.3.2.).  This assumption was used because the exhaust nozzle 

parameter, 𝜀𝑀̅, cannot be set to zero because it also describes the “steady state” operation 

of the combustor.  It can be set, however, to have a non-zero, but small value; see 

discussions in Section 3.2.2. and Section A.3.1.4., and Eqs. (A-125) and (A-126).  

Therefore, instead of using zero valued exhaust nozzle parameter 𝜀𝑀̅ , the empirical 

constant 𝑘𝑝  was assumed to be large to allow the study of the effect of the pressure 

dependence of the combustion process.   
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3.3.3.1.  Combustor Stability in the Absence of a Tangential Mean Flow 

 The stability of the annular combustor under the conditions discussed in the 

previous section and when there is no tangential mean flow in the annular combustor was 

studied by numerically solving the derived model equations (i.e., Eqs. (3-28), (3-29), 

(3-43), (3-44), (3-45), and (3-60)).  This solution was obtained by also assuming that the 

flow through the injector did not interact with the oscillations in the combustor.  To 

satisfy these assumptions, the following model parameters were employed:   

 0M ,  11.0 
M
 ,  8.1pk ,  0vk ,  0)ˆ( injectorS    (3-62)  

It was also assumed that a traveling wave propagating from left to right was initially (i.e., 

at 𝑡 = 0) present in the annular combustor and that the concentrated combustion region 

was located at the center of the combustor as shown in Figure 38.   

 Figure 46 describes the calculated spatial dependence of the acoustic pressures in 

the annular combustor at several time steps.  As was done in the examples presented in 

Section 3.3.2., the wave fronts motions are described by blue dashed lines, and the plots 

on the left of Figure 46 show the evolution of the waves shortly after the initial travelling 

wave disturbance was introduced into the combustor.  These plots show that the initial 

disturbance is travelling at the speed of sound from left to right, the propagation direction 

of the initial disturbance.  The plots on the right of Figure 46 show the characteristics of 

the waves some time thereafter (specifically, 23.60 cycles later; one period of the 

oscillations equals 1 in this example).  They show that the wave front is stationary, 

indicating that the initially travelling wave has settled into a standing wave.  These plots 

also show that the amplitude of the initial disturbance increased from an initial travelling 

wave amplitude of 0.1 to a standing wave amplitude of 2.3 after ~24 cycles.  Notably, the 
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pressure anti-node of the developed standing wave was aligned with the location of the 

combustion region.  This is described by the plots of the standing acoustic wave pressure 

profiles on the right in Figure 46 whose pressure maxima/minima are aligned with the red 

vertical line that describes the location of the combustion region.   

 
Figure 46.  Result of a numerical simulation investigating the effect of the combustion (pressure 

dependence) upon an “initial” travelling wave in the annular combustor in the absence of a 

tangential mean flow.   

 

 The result presented in Figure 46 above shows that in the absence of a tangential 

mean flow, an initially spinning wave, rotating at the speed of sound, gradually 

transforms itself into a standing wave.  Figure 46 also shows that the amplitude of the 

oscillation in the annular combustor increased in time due to the driving provided by the 

pressure dependent combustion process heat addition.  In fact, the time dependence of the 

combustor’s oscillations depends upon the difference between the damping provided by 

the exhaust nozzle and the driving provided by the combustion process.  Specifically, the 
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amplitude of the combustor oscillations increases/decreases when the combustion process 

driving is larger/smaller than the exhaust nozzle’s damping, respectively.   

 In the discussed example, the initial travelling wave disturbance excited 

oscillations in the combustion region that affected the combustion process that produced 

interactions between the combustion process and acoustic oscillations, which “pumped” 

acoustic energy from the combustion process into the oscillations.  In fact, using the 

derived model equation (i.e., Eq. (3-43)) and the assumed combustion model (i.e., Eqs. 

(3-60) and (3-62)), it can be shown that a combustion process amplifies the oscillations in 

the combustor.  These equations show that when only a right going wave 𝑓1 arrives at the 

combustion region (i.e., 𝑔̂2 = 0), the amplitude of the transmitted wave 𝑓2 is larger than 

that of the incoming wave (i.e., 𝑓2 > 𝑓1) and a reflected wave 𝑔̂1 is generated.  In this 

case, the reflected wave 𝑔̂1 is in phase with the incoming wave 𝑓1 (because 𝑔̂1 has the 

same sign with 𝑓1), while in the examples investigating the effect of exhaust nozzle 

(described in Section 3.3.2.), the reflected wave is 180° out of phase with the incoming 

wave.   

 Thus, the interaction of the initial, right going wave, 𝑓1 , with the combustion 

process (which only depends upon the pressure in the combustion region) amplified the 

initial wave and generated a larger amplitude transmitted wave, 𝑓2, and a reflected wave, 

𝑔̂1 that is in phase with the incident wave 𝑓1.  Notably, since the combustion process is a 

monopole acoustic source and the combustion region is acoustically compact (i.e., 

𝑘∆𝑥 ≪ 1 ), the acoustic pressure across the combustion region is continuous; i.e., 

𝑝̂′1 = 𝑝̂′2  (see Eq. (3-32)).  When the initial, right going wave, 𝑓1 , arrives at the 

combustion region, this acoustic pressure “continuity” can be expressed in terms of the 
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incoming and outgoing right and left going waves as 𝑓1 + 𝑔̂1 = 𝑓2, since initially there is 

no left going wave (i.e.,  𝑔̂2 = 0) entering the combustion region.  Thus, the combustion 

driving at this instant increases the amplitude of the incident wave 𝑓1 by an amount equal 

to the difference between the incident and transmitted right going waves 𝑓1 and 𝑓2, (i.e., 

by 𝑓2 − 𝑓1).  In additions, the combustion process supplies the energy needed to generate 

the reflected, left going wave 𝑔̂1.  Notably, equal amounts of energy are added to the 

generation of 𝑔̂1 and amplification of 𝑓1; i.e., 𝑔̂1 = 𝑓2 − 𝑓1.  Since there was no mean 

flow in the annular combustor, the amplified right going wave and reflected left going 

wave propagated at the same speed of sound around the annular combustor without 

experiencing amplitude changes.  These waves returned to the combustion region at the 

same time, after propagating once around the annular combustor, and interacted again 

with the combustion process there.  This interaction, again, added the same amount of 

acoustic energy to the outgoing right and left going waves through the amplification and 

reflection processes.  These propagation/amplification processes continued until, 

“eventually”, a standing wave having a larger amplitude (than the initial disturbance) was 

established in the annular combustor.  Notably, the results on the right of Figure 46 show 

that the pressure anti-node of the resulting standing wave field after the passage of 23.60 

cycles was centered in the combustion region (depicted as red line at the center of the 

combustor) because the incoming right and left going waves have the same amplitudes 

and signs (phases) at the combustion region and each has been amplified by the same 

amount by the combustion process.  Since the location of the pressure anti-node 

coincided with the location of the combustion process, the driving provided by the 

combustion process was maximized according to the well-known Rayleigh Criterion [41, 
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42].  It should be also noted that the amplitude of the oscillations in Figure 46 

continuously increased with time.  This is a well-known feature of linear stability 

problems (which include all the examples discussed so far) whose instabilities’ 

amplitudes grow to infinity if left unchecked.   

 The results presented in Figure 46 clearly show that the combustion process 

driving increases the amplitude of the combustor’s oscillation, thus increasing their 

acoustic energy.  The amount of energy added to the oscillations may be determined by 

comparing the “time averaged acoustic energies" of the oscillations in the annular 

combustor when the “initial” travelling wave disturbance was excited in the combustor 

(described by the plots on the left of Figure 46) and the “amplified”, standing wave 

oscillations at a later time of 𝑡 ≈ 24 (described by the plots on the right of Figure 46).  

These time averaged acoustic energies were calculated and compared to each other 

following the approach presented in Section 3.3.2.1.  The time averaged acoustic energy 

of the “initial” right going travelling wave in the annular combustor, 𝑊𝑎𝑣,𝑖𝑛𝑖𝑡𝑖𝑎𝑙, having a 

normalized acoustic pressure amplitude, 𝑃̂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1 , can be calculated using the 

following expression:   
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   (3-63)  

As time passed, the initial travelling wave disturbance has transformed itself into a 

standing acoustic wave whose time averaged acoustic energy, 𝑊𝑎𝑣,𝑡≈24 , is calculated 

below at time 𝑡 ≈ 24, when the normalized amplitude of the standing wave oscillations 

was equal to 𝑃̂𝑡≈24 = 2.3.   
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   (3-64)  

Comparing Eqs. (3-63) and (3-64) shows that the acoustic energy in the annular 

combustor after the transition into the standing wave acoustic field is larger than that of 

the “initial” right going wave (i.e., 𝑊𝑎𝑣,𝑡≈24 > 𝑊𝑎𝑣,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ), indicating that acoustic 

energy was supplied by the combustion process to the oscillations.   

 Figure 47 describes the time dependence of the right and left going waves and the 

acoustic pressure in the annular combustor at location 𝑥 = −0.5 as shown on the top and 

bottom of the figure.  Figure 47 shows that the amplitudes of the right going wave (the 

blue curve) and the left going wave (the green curve) increased in time.  These plots also 

show that the amplitudes of the two oppositely propagating waves approached one 

another as time increased, thus establishing a standing wave within the annular 

combustor.  Notably, the pressure anti-node of this standing wave was located at the 

combustion region, and the acoustic pressure amplitude in the combustor exponentially 

increased with time as described in the acoustic pressure plots in Figure 47.  The 

exponential pressure growth is due to the fact that the driving of the oscillations by the 

combustion process was larger in this example than the damping provided by the exhaust 

nozzle, and both are linearly related to the local pressure oscillations, as shown by Eqs. 

(3-43) and (3-60).   
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Figure 47.  The right going wave, the left going wave, and the acoustic pressure in the annular 

combustor (at x=-0.5, see the figure on the top).   

 

 To further investigate the effect of this combustion process upon tangential CIs in 

an annular combustor, the above described calculation was repeated for the case when the 

initial disturbance in the annular combustor was a standing wave acoustic oscillation, 

assuming that all other parameters that describe the combustor’s operation were kept the 

same as in the above example, see Eq. (3-62).  It was also assumed that neither the 

pressure node nor the anti-node of the initial standing wave disturbance were located at 

the combustion region.  The results of this computation are described in Figure 48 where 

the spatial dependences of the initial disturbance at different time instants shortly after 

the introduction of the disturbance into the combustor are shown on the left, and the 
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developed wave behaviors at later times (i.e., 23.60 cycles later; one period of the 

oscillations equals 1 in this example) are shown on the right.   

 The figures on the left of Figure 48 show the evolution of the initial, standing 

wave disturbance shortly after it was introduced into the combustor.  It shows that 

initially the pressure anti-node of the standing wave disturbance was not located at 

combustion region (designated by the vertical red line).  The plots on the left of Figure 48 

also show that the anti-node of the initial standing wave disturbance, which had a value 

of 0.2, was located slightly to the left of the location of the combustion region.  The 

figures on the right of Figure 48 show that during a period of 23.60 cycles the standing 

wave acoustic oscillation “shifted” to a position at which its pressure anti-node was 

aligned with the location of the combustion region (designated by the vertical red line).  

Furthermore, the calculations show that the combustion process amplified the initial 

standing wave disturbance, increasing its initial amplitude of 0.2 to a value of 3.0.   

 These two examples whose behaviors are described in Figure 46 and Figure 48 

show that in the absence of a tangential mean flow component in the annular combustor, 

initially travelling or standing acoustic wave disturbances were amplified by the pressure 

dependent combustion process in a manner that eventually establishes standing wave 

acoustic oscillations having their pressure anti-nodes at the combustion region.  As 

expected, the amplitudes of these standing wave oscillations continuously increased with 

time.   
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Figure 48.  Result of a numerical simulation investigating the effect of the combustion (pressure 

dependence) upon an “initial” standing wave in the annular combustor in the absence of a tangential 

mean flow.   

 

 Similar to the case of an initial travelling wave disturbance, when a standing wave 

disturbance was initially introduced into the annular combustor, it generated right and left 

going waves that entered the combustion region and were amplified there through their 

interaction with the pressure dependent combustion process, see Eqs. (3-43), (3-60), and 

(3-62)), resulting in amplified outgoing waves.  Notably, both waves were amplified by 

the same amount as they passed through the combustion region.  These amplified, 

outgoing, right and left going waves propagated at the same speed of sound, since there 

was no tangential mean flow in the combustor, without experiencing amplitude changes.  

They returned to the combustion region and interacted again with the combustion process 

at the same time.  These processes continued until, “eventually”, a standing wave with a 

larger amplitude was established in the annular combustor.  Notably, the pressure anti-

node of the “resulting” standing wave was located at the combustion region (designated 
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by red line at center of the combustor), as shown on the right of Figure 48.  The 

amplitude of this wave would continue to increase as long as the acoustic pressure 

oscillations were not zero in the combustion region because of the pressure dependence 

of the combustion process driving, see Eqs. (3-60) and (3-62).  If left unchecked, the 

amplitude of these oscillations would reach (mathematically, but not realistically) an 

infinite value.   

 

3.3.3.2.  Effect of a Tangential Mean Flow upon the Combustor Stability 

 This section discusses the results of a study that investigated the effect of the 

presence of a tangential mean flow component upon the investigated annular combustor 

stability.  As discussed in Section 3.3.2.2., when a tangential mean flow is present in the 

annular combustor, the right and left going waves that leave the combustion region, after 

interacting with the combustion process, propagate in opposite directions in the annular 

combustor with different propagation velocities; i.e., the velocities of the right and left 

going waves are 𝑉̅ + 𝑎̅ and 𝑉̅ − 𝑎̅, respectively.  Consequently, these waves do not return 

to the combustion region at the same time.   

 In order to investigate the effect of a tangential mean flow upon the combustor 

stability when the combustion process driving only depends upon the pressure 

oscillations, the calculations described in the previous sections were repeated assuming 

that a tangential mean flow was present in the annular combustor.  As was the case with 

the examples described in Section 3.3.3.1. and Figure 46 and Figure 48, it was assumed 

that there were no fluctuations present in the inlet flow through the injector and that the 

effects of the exhaust nozzle damping and combustion process driving were described by 
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the same parameters 𝜀𝑀̅  and 𝑘𝑝 , respectively.  However, since the presence of a 

tangential mean flow needed to be accounted for, the investigated stability problem is 

described by the following set of model parameters:   

 1.0M ,  11.0 
M
 ,  8.1pk ,  0vk ,  0)ˆ( injectorS    (3-65)  

 As in the examples discussed in Section 3.3.3.1., it was also assumed that the 

combustion region was located at the center of the annular combustor and that the 

computational domain of the investigated annular combustor is described in Figure 38.  

Additionally, the investigated initial conditions were assumed to be either a traveling 

acoustic wave that propagated from left to right with a velocity that was equal to the sum 

of the mean flow velocity and the speed of sound, and a standing acoustic wave that was 

convected by the tangential mean flow.   

 The numerical solutions of these problems are described in Figure 49 and Figure 

50 where the spatial dependence of the initial disturbance at different instants of time 

shortly after the introduction of the initial disturbance into the combustor are shown on 

the left, and the spatial dependence of the oscillations at later times (about 18.77 cycles 

later; one period of the oscillations equals 1 in this example) are shown on the right.  The 

plots of the left and right of Figure 49 show that the wave fronts propagated to the right at 

a speed that was equal to the sum of the speed of sound and the tangential mean flow 

velocity throughout the process, and that the amplitude of the travelling wave increased 

from 0.1 to ~0.3 during the investigated time period.   

 Figure 50 describes the behavior of the combustor’s oscillations when the initial 

disturbance was a standing acoustic wave.  It shows that the ensuing combustion 

instability also behaved as a standing acoustic wave that was convected from left to right 
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with the velocity of the tangential mean flow.  Figure 50 also shows that the amplitude of 

the combustor oscillations continuously increased due to their driving by the pressure 

dependent combustion process.  Specifically, the amplitude of the oscillations increased 

from an initial value of 0.2 to ~0.74 during the investigated time period.   

 
Figure 49.  Result of a numerical simulation investigating the effect of the pressure dependent 

combustion process upon an “initial” travelling wave in the annular combustor in the presence of a 

tangential mean flow.   

 

 The result presented in Figure 49 shows that in the presence of a tangential mean 

flow, an initial travelling wave disturbance develops into a travelling wave CI, and Figure 

50 shows that an initially standing wave disturbances develops into a standing wave type 

CI.  In both cases, the initial disturbances were amplified by the pressure dependent 

combustion process.  Interestingly, the presence of the tangential mean flow modified the 

characteristics of the resulting instability.  For example, when an initial travelling wave 

disturbance was introduced into the annular combustor in the absence of a tangential 

mean flow, the disturbance was “transformed” into a standing wave CI whose pressure 
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anti-node was located at the combustion region.  On the other hand, when a tangential 

mean flow was present in the annular combustor, an initial travelling wave disturbance 

developed into a travelling wave CI.  Also, in the absence of a tangential mean flow, an 

initial standing wave disturbance “developed” into a standing wave CI whose pressure 

anti-node stabilized at the combustion region.  Such a pressure anti-node was not located 

at the combustion region when a tangential mean flow was present in the annular 

combustor.   

 The above discussed differences in behavior of the initial disturbances in the 

presence and absence of a tangential mean flow is due to the differences in the velocities 

of the right and left going waves that leave the combustion region after interacting with 

the combustion process there.  Since the right and left going waves have different 

propagation velocities in the presence of a tangential mean flow, these (transmitted and 

reflected) outgoing waves did not return to the combustion region at the same time, and 

the repeated interactions between these pairs of waves and the combustion process after 

each traverse of the annular combustor did not occur “in phase”, which prevented the 

establishment of a standing wave acoustic pressure anti-node at the combustion region.  

This behavior differs from that observed when a tangential mean flow was absent in the 

annular combustor (discussed in Section 3.3.3.1.) and the right and left going waves 

propagated around the combustor at the same speed and arrived at the combustion region 

“in phase”, resulting in the establishment of a standing wave pressure anti-node there.   
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Figure 50.  Result of a numerical simulation investigating the effect of the combustion (pressure 

dependence) upon an “initial” standing wave in the annular combustor in the presence of a 

tangential mean flow.   

 

 In summary, the examples presented in this section show that as long as the 

driving by the pressure dependent combustion process was larger than the damping 

provided by the exhaust nozzle, initial disturbances were amplified and exponentially 

increased in amplitude with time, unless nonlinear processes that limited this growth 

were present.  Furthermore, if the driving by this combustion process increased by 

increasing the pressure dependence parameter 𝑘𝑝 (see Eqs. (3-60) and (3-65)), the growth 

rate of the amplitude of the combustor oscillations also increased.   It was also shown that 

the characteristics of the resulting CIs strongly depend on whether a tangential mean flow 

was present in the annular combustor.   
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3.3.4.  Driving of Combustion Instabilities by a Combustion Process Nonlinearly 

Depended upon the Velocity 

 In Section 3.3.3., the results of a study of the effect of a pressure (only) dependent 

combustion process upon the stability of an annular combustor are reported.  In this 

section, the results of a study of the effects of nonlinear dependence of the combustion 

process upon the tangential mean velocity component and perturbed velocity with and 

without the presence of a tangential mean flow in the annular combustor are presented.   

 The examples solved in this section assumed the dependence of the perturbed heat 

release by the combustion process, (𝑄̂̇𝑐ℎ𝑒𝑚)′, upon the acoustic pressure and velocity, 𝑝̂′ 

and 𝑣′, in the combustion region is described by the empirical relationship shown in Eq. 

(3-60).  To investigate the effect of the acoustic velocity dependence of the combustion 

process (which is the second term on the RHS of Eq. (3-60)) upon the combustor stability, 

the magnitudes of the parameters describing the exhaust nozzle damping (i.e., 𝜀𝑀̅) and 

the acoustic pressure dependent combustion process (i.e., 𝑘𝑝) were adjusted, so that the 

effect of the driving by the pressure dependent combustion process nearly cancelled the 

effect of the exhaust nozzle damping to produce a scenario in which the driving by the 

acoustic velocity dependent combustion process could be clearly observed.   

 

3.3.4.1.  Combustor Stability in the Absence of a Tangential Mean Flow 

 The effect of the acoustic velocity dependence of the combustion process upon 

the acoustic waves in an annular combustor without a tangential mean flow was 

investigated, by numerically solving Eqs. (3-28), (3-29), (3-43), (3-44), (3-45), and (3-60).  

As described above, the parameters describing the driving by the pressure dependent 
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component of the combustion process and the exhaust nozzle damping were adjusted in 

the model equations so that the effects of these two processes nearly cancelled one 

another.  When this was accomplished, the amplitude of the oscillations in the annular 

combustor slowly increased or decreased.  In addition, it was assumed that the 

combustion process depends upon the acoustic velocity oscillation in the combustion 

region and that there were no fluctuations in the inlet flow through the injector.  

Consequently, the following model parameters were employed:   

 0M ,  11.0 
M
 ,  7.0pk ,  0.1vk ,  0)ˆ( injectorS    (3-66)  

It was also assumed that a traveling wave propagating from left to right was initially (i.e., 

at 𝑡 = 0) present in the annular combustor and that the concentrated combustion region 

was located at the center of the combustor as shown in Figure 38.   

 Figure 51 describes the calculated spatial dependence of the acoustic pressures in 

the annular combustor at several time steps.  The wave front motion, described by blue 

dashed lines on the left of Figure 51, describes the evolution of the waves shortly after 

the initial travelling wave was introduced into the combustor.  It shows that initially the 

wave travelled at the speed of sound from left to right, the propagation direction of the 

initial disturbance.  The figures on the right of Figure 51 show the behavior of the wave a 

long time thereafter (i.e., 28.75 cycles later; one period of the oscillations equals 1 in this 

example).  They show that the wave profile is no longer sinusoidal, exhibiting the 

presence of higher frequency oscillations.   

 The result in Figure 51 shows that in the absence of a tangential mean flow, an 

initially travelling wave disturbance, propagating at the speed of sound, gradually 

transforms itself into a nonlinear waveform oscillation having higher frequency 
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components.  When there is no tangential mean flow in the annular combustor, i.e., 

𝑉̅ = 0 and 𝑀̅ = 0, the velocity dependence of the combustion process can be expressed 

by (𝑄̂̇𝑐ℎ𝑒𝑚)′ ∝ 𝑘𝑣 ∙ |𝑣′|, which is obtained by substituting 𝑉̅ = 0 into the second term of 

the RHS of Eq. (3-60).  In this example, the initial travelling wave disturbance excited 

velocity oscillations in the combustion region (i.e., 𝑣′) that affected the combustion 

process via the relationship, (𝑄̂̇𝑐ℎ𝑒𝑚)′ ∝ 𝑘𝑣 ∙ |𝑣′|.  Since it can be shown that the (most 

dominant) frequency of oscillations in the term 𝑘𝑣 ∙ |𝑣′| equals twice frequency of the 

velocity oscillation 𝑣′  in the combustion region, the combustion process generates 

acoustic waves in the combustion region with twice the frequency of the initial 

disturbance.  It follows the combustion process must generate oscillations in the annular 

combustor that have a component that oscillates with twice the frequency of the initial 

disturbance.  Figure 51 shows that the initial disturbance in the annular combustor at 

t = 0 has two local minima/maxima (as shown in the figure at t = 0 on the left), and that 

the oscillation at t = 28.75 has four local minima/maxima (as shown in the figure at 

t = 28.75 on the right), which confirms the above discussed expectation that the assumed 

velocity dependence of the combustion process would produce an oscillation in the 

combustor with twice the frequency of the initial disturbance.   
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Figure 51.  Result of a numerical simulation investigating the effect of the acoustic velocity 

dependence of the combustion process upon an “initial” travelling wave disturbance in the annular 

combustor in the absence of a tangential mean flow.   

 

 

3.3.4.2.  Combustor Stability in the Presence of a Tangential Mean Flow 

 In this section, the results of a study of the effects of the presence of a tangential 

mean flow component in the annular combustor and a combustion heat release 

perturbation that depends upon both the tangential mean flow velocity and the acoustic 

velocity perturbation (see Eq. (3-60)) are presented.  This problem was investigated by 

numerically solving Eqs. (3-28), (3-29), (3-43), (3-44), (3-45), and (3-60).   

 As one done in the example discussed in Section 3.3.4.1. above, the parameters 

describing the amplification of the waves by the pressure dependent component of the 

combustion driving process and their damping by the exhaust nozzle were chosen so that 

these two effects nearly cancelled one another and had a negligible effect upon the 

growth/decay of the combustion oscillations.  It was also assumed that the combustion 
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process depends upon the acoustic velocity oscillations in the combustion region and that 

there is a tangential mean flow moving in the clockwise direction in the annular 

combustor, as shown in Figure 37 (which also appears as a mean flow moving from left 

to right near the combustion region shown in Figure 38).  It was also assumed that there 

were no fluctuations in the inlet flow through the injector, and that the following 

parameters described the investigated problem:   

 15.0M ,  11.0 
M
 ,  7.0pk ,  0.1vk ,  0)ˆ( injectorS    (3-67)  

 To start the numerical simulation, it was assumed that a standing acoustic wave 

that was convected by the tangential mean flow was initially (i.e., at 𝑡 = 0) present in the 

combustor and that the concentrated combustion region was located at the center of the 

annular combustor, as shown in Figure 38.   

 The solutions describing the spatial dependence of the acoustic pressures in the 

combustor at several time steps are shown in Figure 52, where the blue dashed lines 

indicate the positions of the wave fronts at different times.  The figures on the left 

describe the behavior of the initial disturbance.  It shows that the initially “introduced” 

standing acoustic wave is moving slowly to the right, indicating that the initial 

disturbance is being convected by the tangential mean flow velocity.  The figures on the 

right show the behavior of the disturbance some time thereafter.  They indicate that the 

wave fronts are propagating to the right at a speed that equals the sum of the speed of 

sound and the tangential mean flow velocity.   



152 

 

 
Figure 52.  Result of a numerical simulation investigating the effect of a tangential mean flow and the 

acoustic velocity dependence of the combustion process upon an “initial” standing wave disturbance 

in the annular combustor.   

 

 This solution shows that when a tangential mean flow component is present in the 

combustor, an initially standing wave disturbance that is being convected by the 

tangential mean flow gradually transforms itself into a spinning wave that rotates around 

the annular combustor with a velocity that equals the sum of the mean flow velocity and 

the speed of sound.  Notably, this behavior is consistent with observations made in 

relatively recent experimental studies [37-39] that showed that the direction of spin of 

tangential CIs coincided with the direction of the mean tangential flow in the combustor.   

 As noted earlier, this simulation assumed that the chemical heat release 

perturbation, (𝑄̂̇𝑐ℎ𝑒𝑚)′, depends upon the acoustic pressure and velocity fluctuations, 𝑝̂′ 

and 𝑣′, in the combustion region, as described in Eq. (3-60).  It is particularly noteworthy 

that the expression describing the dependence of this chemical heat release on the 
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tangential mean flow and acoustic velocity, i.e., (𝑄̂̇𝑐ℎ𝑒𝑚)′ ∝ 𝑘𝑣 ∙ (|𝑉̂̅ + 𝑣′| − |𝑉̂̅|) , 

amplifies and damps the right and the left going waves, respectively, as they pass through 

the combustion region.  For example, when a (positive valued) right going wave, 𝑓, alone 

arrives at the combustion region, its acoustic velocity is also positive, (i.e., 𝑣′ = 𝑓/𝛾, see 

Eq. (3-27) for normalized expressions), and the chemical heat release term depending 

upon the tangential mean flow and acoustic velocity is also positive; i.e., (𝑄̂̇𝑐ℎ𝑒𝑚)
′

∝ 𝑘𝑣 ∙

(|𝑉̂̅ + 𝑣′| − |𝑉̂̅|) ≈ 𝑘𝑣 ∙ 𝑓/𝛾.  On the other hand, when a (positive valued) left going 

wave, 𝑔̂ alone arrives at the combustion region, its acoustic velocity is negative (i.e., 

𝑣′ ≈ −𝑔̂/𝛾), resulting in a negative chemical heat release term; i.e., (𝑄̂̇𝑐ℎ𝑒𝑚)
′

∝ 𝑘𝑣 ∙

(|𝑉̂̅ + 𝑣′| − |𝑉̂̅|) ≈ −𝑘𝑣 ∙ 𝑔̂/𝛾 .  Thus, the presence of a tangential mean flow in the 

above expression amplifies the wave whose propagation direction is aligned with the 

mean flow direction and damps the wave that moves in the opposite direction.  This 

dependence produces a travelling wave whose propagation direction is aligned with the 

direction of the tangential mean flow.  This behavior will be discussed in detail later in 

this section.   

 Figure 53 describes the time dependence of the magnitudes of the right and left 

going waves and the acoustic pressure in the annular combustor at location 𝑥 = 0.25 

shown on the top of the figure.  It shows that the right going wave (the blue curve) that 

propagated in the direction of the tangential mean flow and the left going wave (the green 

curve) that propagated in the direction opposite to that of the tangential mean flow were 

amplified and damped, respectively, by the velocity dependent “part” of the combustion 

process.  These complex, nonlinear, interactions between the initial standing wave 
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disturbance that was initially convected by the tangential mean flow and the combustion 

process resulted in the gradual transition of the initial standing wave disturbance into a 

spinning wave CI that propagated in the tangential mean flow direction at a speed that 

was equal to the sum of the speed of sound and the (tangential) mean flow velocity (after 

𝑡 ≈ 25).   

 While the spatial dependence of the acoustic pressures in the combustor at several 

time steps (shown in Figure 52) and the right and left going waves at one location (shown 

in the middle of Figure 53) show the gradual transition from the initial standing wave 

disturbance into a spinning wave CI, the acoustic pressure at a location 𝑥 = 0.25 (the 

black curve in Figure 53) shows irregularly varying amplitude during this transition.   
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Figure 53.  The right going wave, the left going wave, and the acoustic pressure in the annular 

combustor (at x=0.25, see the figure on the top).   

 

 To further elucidate the manner in which a combustion process that depends upon 

the acoustic velocity and the tangential mean flow velocity causes a transition from an 

initial standing wave disturbance into a spinning wave CI, it was assumed that the 

combustor oscillations were only driven by a combustion process heat release that is 

described by the expression, (𝑄̂̇𝑐ℎ𝑒𝑚)′ ∝ 𝑘𝑣 ∙ (|𝑉̂̅ + 𝑣′| − |𝑉̂̅|), and that the flows through 

the injector and exhaust nozzle did not fluctuate.   

 This problem is described in Figure 54.  The top of the figures shows that when a 

sinusoidal right going wave 𝑓1 arrives at the combustion region, its interaction with the 

combustion process there generates the outgoing right and left going waves (i.e., 𝑓2, 𝑔1).  
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Figure 54 also shows the spatial dependence of the acoustic pressure and velocity of the 

right going wave as it arrive at the combustion region just below the top of the figure.  

Additionally, the figure includes descriptions of the time dependence of the acoustic 

waves at the combustion region.  It shows that when the magnitude of the acoustic 

velocity is smaller than the magnitude of the mean flow velocity, the fluctuating flow 

velocity experienced by the combustion processes (i.e., (|𝑉̂̅ + 𝑣′| − |𝑉̂̅|) ) is also 

sinusoidal and “in phase” with the acoustic pressure oscillations of the incoming right 

going wave, as also shown in Figure 54.  Consequently, the driving of the acoustic 

oscillations provided by the heat release process described by (𝑄̂̇𝑐ℎ𝑒𝑚)′ ∝ 𝑘𝑣 ∙

(|𝑉̂̅ + 𝑣′| − |𝑉̂̅|)) is also sinusoidal and “in phase” with the oscillations of the incoming 

right going wave 𝑓1.  Because of this “in phase” driving by the combustion process, the 

incident right going wave 𝑓1 is amplified and a larger amplitude, transmitted, right going 

wave 𝑓2  is generated (i.e., 𝑓2 > 𝑓1 ).  This amplified transmitted right going wave 𝑓2 

propagates into the “no combustion” region of the closed annular tube (see Figure 37).  It 

returns to the “combustion” region, after one passage through the annular combustor, 

where it is amplified again by its interaction with the combustion process.  Thus, the right 

going waves (propagating in the tangential mean flow direction) are amplified by the 

velocity dependent combustion process as they repeatedly move around the annular 

combustor and enter the combustion region.   

 The interaction of the combustion process with the right going wave 𝑓1  also 

generates a reflected left going wave 𝑔1 that propagates into the “no combustion” region 

of the annular combustor and returns to the combustion region again as an incoming left 

going wave 𝑔2.   
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Figure 54.  Amplification of the right going waves by the combustion process that depends upon the 

acoustic velocity and the tangential mean flow velocity.   

 

 Its behavior is described in Figure 55, where the top schematic shows that when a 

sinusoidal left going wave 𝑔2 arrives at the combustion region, its interaction with the 

combustion process generates outgoing (reflected) right and (transmitted) left going 

waves, 𝑓2 and 𝑔1, respectively.  In this case, the fluctuating flow velocity experienced by 

the combustion process (i.e., (|𝑉̂̅ + 𝑣′| − |𝑉̂̅|)) is sinusoidal but “out of phase” with the 

acoustic pressure oscillations of the incoming left going wave because the acoustic 

pressure and velocity of left going waves are “out of phase” with each other as shown in 

Figure 55.  The driving of the acoustic oscillations provided by the combustion process 

heat release, described by (𝑄̂̇𝑐ℎ𝑒𝑚)′ ∝ 𝑘𝑢 ∙ (|𝑉̂̅ + 𝑣′| − |𝑉̂̅|), is also “out of phase” with 



158 

 

the incoming left going wave 𝑔2.  This produces “out of phase” interactions between the 

pressure oscillations of the incoming wave 𝑔2 and the combustion process heat addition 

oscillations that damp the incident left going wave 𝑔2, thus generating a lower amplitude 

transmitted left going wave 𝑔1 (i.e., 𝑔1 < 𝑔2).  This damped, transmitted, left going wave 

𝑔1 propagates into the “no combustion” region of the annular combustor and returns to 

the combustion region, after propagating once around the annular combustor, where it is 

damped again by the combustion process.  Thus, the left going waves (whose propagation 

directions are opposite to the direction of the tangential mean flow) are damped at every 

passage through the combustion region.   

 In this example, in spite of the fact that no incoming right going wave was 

initially present in the combustor, a reflected right going wave 𝑓2 was generated by the 

interaction of the left going incident wave 𝑔2 with the combustion process.  Although the 

reflected right going wave 𝑓2  may be initially small, its subsequent travel around the 

annular combustor and interactions with the velocity dependent combustion process 

would amplify this right going wave by the above described process (also described in 

Figure 54).   
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Figure 55.  Damping of the left going waves by the combustion process that depends upon the 

acoustic velocity and the tangential mean flow velocity.   

 

 The above discussion indicates that the chosen dependence of the combustion 

process upon the acoustic velocity and the tangential mean flow velocity causes right 

going waves to be gradually amplified and left going wave to be gradually damped as 

they repeatedly propagate around the annular combustor and pass through the combustion 

region.  When an initial standing wave disturbance is introduced into the combustor, its 

components consist of equal amplitude right and left going waves that propagate in 

opposite directions around the annular combustor.  As they repeatedly interact with the 

combustion process, the right going wave is gradually amplified and the left going wave 

is gradually damped until it finally disappears.  Thus, an initial standing wave oscillation 

gradually transforms itself into the travelling wave propagating in the direction of the 
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tangential mean flow.  As stated above, this behavior is consistent with the experimental 

results of recent studies, [37-39].  To the best of this writer’s knowledge, this analysis and 

discussion provide the first known (and plausible) explanation of the causes of this 

behavior.   

 

3.3.5.  Summary of Chapter 3’s Results 

 The main results obtained in this chapter’s studies are summarized in the two 

tables below.  Table 1 below summarizes the dependence of the exhaust nozzle and 

combustion process upon local state variables and the manner in which they affect the 

oscillations.   

 

Table 1  Effects of the exhaust nozzle and combustion in the developed model   

 Exhaust Nozzle Combustion Process 

Dependence 𝑝′ in the 

combustion region 

𝑣′ in the 

combustion region 

𝑝′ in the 

combustion region 

𝑣′ in the 

combustion region 

Functional 

Dependence 

on State 

Variables 

~𝑝′ ~𝑉̅𝑣′ ~𝑝′ ~|𝑉̅ + 𝑣′| − |𝑉̅| 

Effects o Damps the 

oscillations 
 

o Reflects incident 

waves 

 

o Selectively 

Damps waves 

propagating in 𝑀̅ 

direction 
 

o Reflects incident 

waves 
 

o Effects are small 

o Amplifies the 

oscillations 
 

o Reflects incident 

waves 

o Amplifies waves 

propagating in 𝑀̅ 

direction  
 

o Damps waves 

propagating in the 

opposite direction  
 

o Reflects incident 

waves 

Controlling 

Parameter 
𝜀𝑀̅ 𝜀𝑀̅𝑀̅ (small) 𝑘𝑝 𝑘𝑣 
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 On the other hand, Table 2 below summarizes the dependence of the exhaust 

nozzle and combustion process upon local state variables and the manner in which they 

affect CIs in annular combustors.   

 

Table 2  Summary of the Effects of Exhaust Nozzle and Combustion Process on the Behavior of the 

Combustion Instabilities   

 Exhaust Nozzle Combustion Process 

Dependence 𝑝′  𝑣′  𝑝′  𝑣′  

No Mean 

flow  

(𝑀̅ = 0) 

o Damps the 

oscillations 
 

o Forms a standing 

wave acoustic 

field (STDG) 
 

o Forms a pressure 

node at the 

Exhaust Nozzle 
 

o TRVL*  STDG 
 

o STDG*  STDG 

o No effect 
 

o Because   

𝜀𝑀̅𝑀̅ = 0 

o Amplifies the 

oscillations 
 

o Forms a standing 

wave acoustic 

field (STDG) 
 

o The STDG has a 

pressure anti-node 

at the Combustion 

Region 
 

o TRVL  STDG 
 

o STDG  STDG 

o Generates higher 

frequency modes 
 

o By ~|𝑣′| term 
 

o ~|𝑉̅ + 𝑣′| − |𝑉̅| 
= ~|𝑣′|  
with 𝑉̅ = 0 

With Mean 

flow  

(small 𝑀̅) 

o Damps the 

oscillations 
 

o TRVL  decay 
 

o STDG  decay 

o Effects are small 
 

o 𝜀𝑀̅𝑀̅ < 𝜀𝑀̅  

o Amplifies the 

oscillations 
 

o TRVL  grow 
 

o STDG  grow 

o Selective 

Amplification of 

waves propagating 

in the 𝑀̅ direction 
 

o Selective Damping 

of waves 

propagating in the 

opposite direction  
 

o Forms a spinning 

CI moving in the 

𝑀̅ direction 

(TRVL) 
 

o STDG  TRVL 
 

o TRVL TRVL 

 TRVL*: travelling wave acoustic field  STDG*: standing wave acoustic field 
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CHAPTER 4. 

ACCOMPLISHMENTS AND RECOMMANDATIONS 

 

 The objective of this study was to develop an active control approach that allows 

small-scale rigs to simulate longitudinal and tangential combustion instabilities (CIs) in 

full-scale engines.  The following tasks were accomplished in this study:   

 Developed a real time, active, acoustic boundary control approach that enables 

simulation of acoustic environments within a full-scale engine in a small-scale rig in 

real time.   

 Developed and demonstrated a small-scale, cold flow, rig that can simulate 

longitudinal (axial) acoustic oscillations that are encountered in full-scale (i.e., longer) 

tubes.  Specifically, it was shown that the developed, actively controlled, small-scale, 

rig can simulate travelling and standing acoustic waves oscillations that are 

encountered in longer tubes or full-scale engines.   

 To allow implementation of the ACS, developed a real time wave separation 

algorithm that determines the properties of the right and left going waves in the 

actively controlled small-scale rig from two acoustic pressure measurements, using 

the method of characteristics.   

 Developed a theoretical model that describes the characteristics of tangential CIs in 

an annular combustor when a tangential mean flow is present in the combustor.  This 

model can be used to determine the actively controlled acoustic boundary conditions 

(BCs) that must be generated in real time in a small-scale rig that simulates tangential 

CIs in full-scale engines.   
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 Utilized the above described model to study the effects of the exhaust nozzle, 

combustion process, and tangential mean flow component upon the characteristics of 

tangential CIs in an annular combustor using numerical calculations.   

 Demonstrated that the presence and direction of the mean tangential flow critically 

affect the characteristics of tangential CIs due to the nonlinear dependence of the 

combustion process upon the acoustic velocity and the tangential mean flow.  It has 

been shown that when a tangential mean flow component is present in the annular 

combustor, an initially standing wave disturbance gradually transforms itself into a 

spinning wave that rotates around the annular combustor in the direction of the 

tangential mean flow component.  This finding is in agreement with previous 

experimental observations that have not been explained to date.   

 

 The following are a few suggestions for follow up studies that would improve the 

capabilities for simulating full-scale engines CIs in small-scale rigs:   

o As discussed in Chapter 2, modify the developed actively controlled small-scale rig to 

be able to simulate any section of the wavelength of the unstable oscillations in the 

full-scale engine.  This could be done by replacing the driving actuator (i.e., speaker) 

on the left side of the rig with a second ACS and a control actuator.  This would allow 

an actively controlled, small-scale, rig to investigate the processes taking place at any 

location within an unstable, full-scale, engine.   

o Improve the developed real time wave separation module and simulation module by 

providing them with capabilities for accounting for the effects of the temperature 

dependence of the speed of sound and the presence of an axial mean flow component.   
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o Modify the developed, cold flow, small-scale, rig to allow the presence of a mean, 

axial, flow component whose Mach number would be equal to that of the mean flow 

in full-scale engines.  A schematic of the proposed setup is shown in Figure 12 below.  

It shows the “full-scale” engine on top and the proposed “small-scale” rig on the 

bottom.  The schematic of the small-scale rig shows that its driving and actively 

controlled actuators (speakers) will be most likely installed on the side walls of the rig 

to allow the mean flow to enter and leave the rig.   

 
Figure 56.  Schematics of the “full-scale” engine having a real exhaust nozzle to allow the presence of 

an axial mean flow (top) and the actively controlled “small-scale” rig (bottom).   

 

o Investigate the applications into real combustion systems; e.g., high temperature and 

temperature variations induced by the combustion process, the mean flow from the 

fuel injector to the exhaust nozzle, the acoustic waves propagations in three-

dimensional domain of the combustor, and the power of the actuator to excite and 

control the large amplitude oscillations in the combustor need to be considered.   

 



165 

 

APPENDIX A. 

DERIVATION OF A MODEL 

DESCRIBING TANGENTIAL COMBUSTION INSTABILITIES 

IN AN ANNULAR COMBUSTOR 

 

 

A.1.  A Non-Homogeneous Wave Equation with Mean Flow 

 

 As discussed in CHAPTER 3, in order to develop the model of the combustion 

instabilities (especially, tangential or spinning CIs) in an annular combustor (shown in 

Figure 34), the following physical processes need to be considered:   

i. The acoustic waves propagations and reflections in the “no combustion” regions in 

the annular combustor with presence of mean flow; see Figure 34.   

ii. The interactions between the combustion processes (and the injectors and exhaust 

nozzles flows) and the acoustic waves at the “combustion” regions with presence of 

mean flow; see Figure 34 and Figure 35 in CHAPTER 3.   

 For the applicability to the real time active control system (ACS), the model must 

be simple to achieve short calculation time, yet capable of describing the physics 

controlling the behavior of the CI (i.e., the physical processes i. and ii. discussed above).  

To account these physical processes, the development of the model was started from the 

general conservation equations for reacting flow.  These conservation equations were 

reduced by a first order small perturbation approximation, and the resulted small-

perturbation equations were combined into a non-homogeneous wave equation with mean 
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flow having acoustic sources by the chemical reaction and the in/out flows through the 

injector and exhaust nozzle.  The solutions of this non-homogeneous wave equation were 

obtained for the “no combustion” regions and the “combustion” regions with further 

approximations (e.g., acoustically compact “combustion” regions, quasi-steady exhaust 

nozzles, subsonic tangential mean flow Mach number, etc.).  These solutions composes 

the model of tangential or spinning CIs in the annular combustor, and will be numerically 

calculated separated for the “combustion” regions and the “no combustion” regions and 

matched at the interfaces between the regions, when applying to the real time ACS.   

 Among the procedures of the development of the model, this section describes the 

derivation of the non-homogeneous wave equation with mean flow from the general 

conservation equations for reacting flow.   

 

A.1.1.  General Conservation Equations for Mass, Momentum, Energy, and Species 

 As discussed in CHAPTER 3, we start the development of the model by 

considering the following, general, three-dimensional, integral form of the conservation 

equations for a reacting flow [30, 31]:   

Mass:   

  





....
 ˆ  0

SCVC
dSnVdV

t



    (3-1) 

Momentum:   

    





......
 ˆ  ˆ    

SCSCVC
external dSnpdSnVVdVV

t
F 


    (3-2) 

 where,  externalF


 is the sum of the external forces acting on the 

control volume.   
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Energy:   

  





......
 ˆ  ˆ    

SCSCVC
sexternal dSnVpdSnVedVe

t
WQ 





     (3-3) 

 
where, 

externalQ  is the external heat added to the control volume; 
sW  is 

the shaft work; .... ekepue   where u , ..ep , and ..ek  are 

the internal energy per unit mass, the potential energy per unit 

mass, and the kinetic energy per unit mass, respectively.   

 

Species:   

  





....
 ˆ    

SC
ll

VC
ll dSnvYdVY

t
M 

     (3-4) 

 
where, 

lM  is the mass production rate of species l in the control 

volume; i.e.,  
....

   
VC

ll
VC

ll dVMWdVmM     

where lMW  is the molecular weight of species l; l  is the molar 

production rate of species l per unit volume.  Additionally, 

diffusionll VVv ,


  is the velocity of species l and V


 and 

diffusionlV ,


 are the mass averaged flow velocity and the diffusion 

velocity of species l, respectively.   

 

 

A.1.2.  Small Perturbation Approximations up to First-Order 

 Next, we derive the mean and small-perturbation conservation equations.  We 

assume that all the properties can be expressed as a sum of a steady state property and a 

small-perturbation; e.g., 𝑝 = 𝑝̅ + 𝑝′, 𝜌 = 𝜌̅ + 𝜌′, … where 
𝑝′

𝑝̅
,
𝜌′

𝜌̅
, … ≪ 1.  The assumed 

expressions for the properties are then substituted into the above conservation equations, 

Eqs. (3-1), (3-2), (3-3), and (3-4).   Using the steady state conservation equations (i.e., 

Eqs. (A-1), (A-2), (A-3), and (A-4) shown below), the small-perturbation equations (i.e., 

Eqs. (A-5), (A-6), (A-7), and (A-8) shown below) are separated out.   
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Steady state conservation equations or Mean equations:   

Mass:  





....
 ˆ  0

SCVC
dSnVdV

t



    (A-1) 

Mom.:      





......
 ˆ  ˆ    

SCSCVC
external dSnpdSnVVdVV

t
F 


    (A-2) 

Energy:   










......
 ˆ    )(

SC
t

VCVC
texternal dSnVh dVp

t
dVh

t
Q 


     (A-3) 

Species:  





....
 ˆ    )(

SC
ll

VC
ll dSnvYdVY

t
M 

     (A-4) 

 

Small-perturbation conservation equations:   

Mass:  





......
 ˆ  ˆ  0

SCSCVC
dSnVdSnVdV

t






    (A-5) 

Mom.:  

   




















....

..

....

 ˆ   ˆ                         

                        

 ˆ   

SCSC

VC

SCVC
external

dSnVVdSnVVV

dVV
t

dSnpdVV
t

F

















   (A-6) 

Energy:  

   
















....

....

 ˆ    ˆ                   

   )(

SC
tt

SC
t

VCVC
ttexternal

dSnVhhdSnVh

 dVp
t

dVhh
t

Q












   (A-7) 

Species:  

 











....

..

 ˆ    ˆ             

   )(

SC
lll

SC
ll

VC
lll

dSnvYYdSnvY

dVYY
t

M












   (A-8) 

 

 The total enthalpy (and formation and sensible enthalpy) per mass and kinetic 

energy per mass terms also need to be considered.   
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 ..ekhht     (A-9) 

 sf hhh     (A-10) 

 VVek





2

1
..   (A-11) 

Equation (A-9) describes the total enthalpy when potential energy per mass, 𝑝. 𝑒., is 

negligible.  With applying the small-perturbation approximation to the Eqs. (A-9), (A-10), 

and (A-11) as discussed above, the following mean (or steady state) and small-

perturbation equations are obtained.   

 

Mean total enthalpy, enthalpy (of the mixture), and kinetic energy per mass:   

 ..ekhht     (A-12) 

 sf hhh     (A-13) 

 VVek





2

1
..     (A-14) 

 

Small-perturbation total enthalpy, enthalpy (of the mixture), and kinetic energy per mass:   

 ..  ekhht    (A-15) 

 sf hhh     (A-16) 

 VVek 





..    (A-17) 

 

 For Eqs. (A-13) and (A-16), the mean and small-perturbation formation and 

sensible enthalpies for the mixture, ℎ̅𝑓, ℎ′𝑓, ℎ̅𝑠, and ℎ′𝑠, also need to be considered.  The 

formation enthalpy and the sensible enthalpy of the mixtures can be expressed in terms of 
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the specific heat, 𝑐𝑝,𝑙 , and the mixture ratio (mass fraction), 𝑌𝑙 , of the species 𝑙 , as 

following.   

  
l

llff Yhh ,    (A-18) 

  
l

T

T
llps

ref

dTYch  ,
   (A-19) 

Equations (A-18) and (A-19) are expressed as a sum of (mean) steady state properties and 

small-perturbation properties with neglecting higher order terms.   

   
l l

llfllfff YhYhhh ,,    (A-20) 

  


l

T

T
llp

l

TT

T
llp

l

T

T
llpss

refref

dTYcdTYTcdTYchh   )( ,,,
   (A-21) 

Where, the higher order term, e.g., 



l

TT

T
llp dTYTc  )(,

, is neglected.  The third term in 

Eq. (A-21),  
l

T

T
llp

ref

dTYc  ,
, describes the small-perturbation sensible enthalpy of the 

mixture by the chemical composition perturbation.  Even though this term is a first order 

term, but its magnitude is small comparing the other terms.  In this study, the specific 

heat, 𝑐𝑝,𝑙, assumed to have similar values for all the species, as shown below; cf. this 

assumption is similar to the Zeldovich’s assumption [30, 31].   

 mplp cc ,,   for the species l and m, ml    

pmixplp ccc  ,,
   

(A-22) 

Using the above assumption and the definition of the mixture ratio (mass fraction), the 

third term in Eq. (A-21) is neglected as shown below.   

 0 ,  
l

l

T

T
p

l

T

T
llp YdTcdTYc

refref

     0
l

lY  (A-23) 
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 Matching the mean and small-perturbation terms in Eqs. (A-20) and (A-21), the 

mean and small-perturbation formation enthalpies and sensible enthalpies for the mixture 

are obtained as following.   

 

Mean formation enthalpy and sensible enthalpy for the mixture:   

  
l

llff Yhh ,    (A-24) 

 









T

T
p

l

T

T
lp

l

T

T
llps

refref

ref

dTcdTYc

dTYch

      

 ,

   (A-25) 

 

Small-perturbation formation enthalpy and sensible enthalpy for the mixture:   

  
l

llff Yhh ,    (A-26) 

 

TcTTcdTYTc

dTYTch

pp

l

TT

T
lp

l

TT

T
llps












)( )(    

 )(,

   (A-27) 

 

 In this study, thermally perfect gas assumption was used.   

 
RTp     

(A-28) 

Substituting 𝑝 = 𝑝̅ + 𝑝′ , 𝜌 = 𝜌̅ + 𝜌′ , and 𝑇 = 𝑇̅ + 𝑇′  into Eq. (A-28) and neglecting 

higher order terms by 
𝑝′

𝑝̅
,
𝜌′

𝜌̅
,
𝑇′

𝑇̅
… ≪ 1 , the following mean and small-perturbation 

equation of state are obtained.   
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Mean state equation of state:   

 TRp     (A-29) 

 

Small-perturbation equation of state:   

 






R

T

R

p
T    (A-30) 

 

A.1.3.  Separation of the Heat Release by Chemical Reaction 

 The mean (or steady state) energy equation, Eq. (A-3), and small-perturbation 

energy equations, Eq. (A-7), account the chemical reaction by combustion processes.  For 

example, in the equations, the total enthalpy terms, ℎ𝑡̅  and ℎ′𝑡 , contain the formation 

enthalpy terms, ℎ𝑓
̅̅ ̅ and ℎ′𝑓, these terms are affected by the chemical compositions change 

due to chemical reactions; see Eqs. (A-24) and (A-26).  However, the effects (e.g., the 

chemical compositions change and the heat release) by the chemical reactions are not 

expressed explicitly, and the derivation of a non-homogeneous wave equation is not 

simple.   

 In order to express the thermal and kinetic behaviors (involved by the sensible 

enthalpies and the kinetic energy terms) on the LHS (non-source side) and the chemical 

reaction phenomena (involved by the formation enthalpies and chemical compositions) 

on the RHS (source side) in the non-homogeneous wave equation, the terms related to the 

chemical reactions need to be separated.  In order to separate the terms affected by the 

chemical reaction, the mean (or steady state) species equation, Eq. (A-4), and the small-

perturbation species equation, Eq. (A-8), can be used.  By multiplying the formation 
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enthalpy of the species l, ℎ𝑓,𝑙, to the mean and small-perturbation species equations, Eqs. 

(A-4) and (A-8), and summing these equations for all the species using the below 

relationship (i.e., Eq. (A-31) below), the following equations are obtained; see Eqs. (A-32) 

and (A-34) shown below.   

 1
l

lY ,  1
l

lY ,  0
l

lY  (A-31) 

 

 )( ˆ    )(
....

, flxdiff
SC

f
VC

f

l

llf hdSnVhdVh
t

Mh 



  


     (A-32) 

 where, 0 ˆ   )(
..

,, 







  

SC
diffusionll

l

lfflxdiff dSnVYhh 


    (A-33) 
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
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



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



   (A-34) 

 

where, 

0 ˆ                  
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Where, in this study, it is assumed that diffusion velocities, 𝑉⃗ ̅𝑙,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 and 𝑉⃗ ′𝑙,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

are negligible as in Eq. (3-4) or that the diffusion related terms, (ℎ𝑓𝑙𝑥𝑑𝑖𝑓𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and (ℎ𝑓𝑙𝑥𝑑𝑖𝑓𝑓)′, 

in Eqs. (A-33) and (A-35) are negligible.   

 The above equations have similar forms with the mean and small-perturbation 

energy equations; compare Eq. (A-32) with the mean energy equation (i.e., Eq. (A-3)), 
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and compare Eq. (A-34) with the small-perturbation energy equation (i.e., Eq. (A-7)).  By 

subtracting Eq. (A-32) from Eq. (A-3), the following equation is obtained.   

 

Mean (steady state) energy equation with heat release by chemical reaction: 

Energy: 
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 where, 0)( flxdiffh   

 

Also, subtracting Eq. (A-34) from Eq. (A-7) results in the following expression.   

 

Small-perturbation energy equation with heat release by chemical reaction: 

Energy: 
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where, 0)( flxdiffh     

 

 In Eq. (A-36), the mean (or steady state) heat release by the chemical composition 

change is shown as −∑ ℎ𝑓,𝑙(𝑀𝑙)̇
̅̅ ̅̅ ̅̅

𝑙 , and in Eq. (A-37), the small-perturbation heat release 

by the chemical composition change is shown as −∑ ℎ𝑓,𝑙(𝑀𝑙)̇ ′𝑙 .  As shown in Eqs. (A-36) 

and (A-37), these terms affected by chemical reactions are separated and explicitly 

written on the source side of the equations; i.e., in these expressions, the LHSs.  Notably, 
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Eqs. (A-36) and (A-37) also have similar forms of the mean and small-perturbation 

energy equations, Eqs. (A-3) and (A-7), respectively.   

 

A.1.4.  Separation of Acoustic Motions and In/Out Flows through Injectors and 

Exhaust Nozzles  

 The control volume of combustion region consists of 4 control surfaces; see 

Figure 35 in CHAPTER 3.  Through the control surfaces s1 and s2 (oriented in 𝑥̂1 

direction), the acoustic waves interact with the combustion processes.  Through the 

control surfaces s3 and s4 (oriented in 𝑥̂2 direction), i.e., the injector (s3) and the exhaust 

nozzle (s4), the fuel/oxidizer mixture is introduced and the product gas is discharged.  

The terms describing the in/out flows through the inlet (injector) and outlet (exhaust 

nozzle) can be separated and expressed as source terms of the conservation equations; see 

the mean and small-perturbation conservation equations of mass (Eqs. (A-1) and (A-5)), 

momentum (Eqs. (A-2) and (A-6)), and energy (Eqs. (A-36) and (A-37)).   

 Also, as shown in Figure 35, the acoustic motions occur in 𝑥̂1 direction, and the 

acoustic velocity and tangential mean flow are in 𝑥̂1 direction.  On the other hand, the 

in/out flows through the injector and exhaust nozzle are in 𝑥̂2  direction and do not 

transport the 𝑥̂1  directional momentum.  Thus, the mean (or steady state) momentum 

equation, Eq. (A-2), and the small-perturbation momentum equation, Eq. (A-6), can be 

written separately as the 𝑥̂1  component mean and small-perturbation momentum 

equations describing acoustic motions and the 𝑥̂2  component momentum equations 

describing the injector and exhaust nozzle flows.   
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 By applying the expressions of the medium properties (i.e., the mean (steady state) 

properties describing the acoustic motions) and the expressions of the mean in/out flows 

through the injector and exhaust nozzle, the mean (steady state) conservation equations 

for mass (Eq. (A-1)), momentum (Eq. (A-2)), and energy (Eq. (A-36) with separation of 

the heat release by the chemical reaction) are manipulated as following.   

 

Mean (steady state) conservation equations with separation of acoustics and sources:   

Mass:   

 0 injectornozzle MM     (A-38) 

 where, 
3.,.

 ˆ 
sSC

injector dSnVM 


   

            
4.,.

 ˆ 
sSC

nozzle dSnVM 


     
(A-39) 

Momentum in 𝑥̂1 direction (or tangential direction):   
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 where,   0
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
 xexternalF , i.e., no support force in 

1x̂  direction    

Energy:   
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 In the above equations, the time derivative (i.e., 
𝜕

𝜕𝑡
(∙)) terms are disappeared 

because of applying mean (steady state) properties.  Since the medium properties (mean 

properties) in the control surface s1 and s2 are same, the mass, momentum and energy 

fluxes across the control surfaces s1 and s2 are cancelled each other and disappeared in 

the equations.  As shown in the above equations, the steady state of the system is 

maintained by the mean (steady state) in/out flows through the injector and exhaust 

nozzle.  Equation (A-38) describes that the mass flux in through the injector and the mass 

flux out through the exhaust nozzle are balanced.  Equation (A-40) describes that there is 

no support force in 𝑥̂1  direction and the mean (steady state) pressures at the control 

surfaces s1 and s2 are the same.  Equation (A-41) describes the energy conservation at 

the steady state; i.e., the total enthalpy flux flows in to the combustion region through the 

injector, it is consumed by the chemical reactions, and the remaining total enthalpy flux 

flows out from the combustion region through the exhaust nozzle.  The mean (steady 

state) heat release by the mean chemical composition change is defined by the term, 

(𝑄̇𝑐ℎ𝑒𝑚
̅̅ ̅̅ ̅̅ ̅̅ ), shortly the mean (or steady state) chemical heat release; see Eq. (A-42).   

 Also, by separating the acoustic motions and the injector and exhaust nozzle 

flows in the small-perturbation conservation equations for mass (Eq. (A-5)), momentum 

(Eq. (A-6)), and energy (Eq. (A-37) with separation of the heat release by the chemical 

reaction), the following equations are obtained.   
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Small-perturbation conservation equations with separation of acoustics and sources:   

Mass:   
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Momentum in 𝑥̂1 direction (i.e., tangential direction):   
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where, 0)( externalQ , i.e., adiabatic condition  

              
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 Where, for simplicity, the control surface 𝐶. 𝑆. in the integrals on the LHS of the 

Eqs. (A-44), (A-46), and (A-47) denotes the control surface s1 and s2 (see Figure 35).  As 

shown in the above equations, the terms describing the acoustic motions are on the LHS, 

and the source terms by the combustion processes and the in/out flows through the 

injector and exhaust nozzle are on the RHS.  The heat release perturbation by the 

chemical composition change is defined by the term, (𝑄̇𝑐ℎ𝑒𝑚)′  , shortly the small-

perturbation chemical heat release; see Eq. (A-48).   

 Similarly, by applying the expressions of the mean in/out flows through the 

injector and exhaust nozzle to Eq. (A-32), the following equation is obtained.   

 

Mean energy equation for the heat release by chemical reaction:  
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 Equation (A-50) describes that in the steady state, the chemical energy (i.e., 

formation enthalpy) is introduced through the injector, the heat is released by the 

chemical reaction, and remaining chemical energy leaves the combustion region through 

the exhaust nozzle.   

 Also, by applying the expressions of the small-perturbation in/out flows through 

the injector and exhaust nozzle to Eq. (A-34), the following expression is obtained.   

 

Small-perturbation energy equation for the heat release by chemical reaction: 
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(A-53) 

 

A.1.5.  Non-Homogeneous Wave Equation with Acoustic Sources by Combustion, 

Injector Flow, and Exhaust Nozzle Flow 

 As discussed above, the effects by the combustion processes and the in/out flows 

through the injector and exhaust nozzle are separated and expressed explicitly as source 

terms in small-perturbation conservation equations.  These resulted small-perturbation 

equations for mass (Eq. (A-44)), momentum (Eq. (A-46)), and energy (Eq. (A-47)), can 

be modified into a form of non-homogeneous wave equation having acoustic sources by 
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the combustion process, and the in/out flows through the injector and exhaust nozzle; see 

Eq. (3-21) in CHAPTER 3.   

 With defining the following derivative using the tangential mean flow velocity, 𝑉⃗ ̅,  

 
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Equation (A-44) can be expressed as following.   
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 Multiplying 𝑉⃗ ̅  on the both sides of Eq. (A-44) and the resulting equation is 

subtracted from Eq. (A-46).   

  

massxforce

SCSCVC

SVS

dSnpdSnVVdVV
t

~~
                    

 ˆ  ˆ    

1,

......

















   (A-56) 

Using Eq. (A-54), the above equation can also be expressed as following.   
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 Subtracting the divergence (∇ ∘) of Eq. (A-57) from the material derivative (
𝐷

𝐷𝑡
) of 

Eq. (A-55) results in the following expression.   

 

 massxforcemass

SCVC

SVSS
Dt

D

dSnpdV
Dt

D

Dt

D

~~~
                    

 ˆ  

1,

....











 










   (A-58) 

 By multiplying (ℎ̅𝑠 + 𝑘. 𝑒.̅̅ ̅̅ ̅ ) on the both sides of Eq. (A-44), taking dot-product on 

𝑉⃗ ̅ on the both sides of Eq. (A-56) with applying Eqs. (A-14) and (A-17), and subtracting 

these resulting equations from Eq. (A-47), the following expression is obtained.   
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Using Eq. (A-54), the above equation can also be expressed as following. 
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 Taking the material derivative (
𝐷

𝐷𝑡
) of Eq. (A-60), applying the expressions for ℎ′𝑠, 

Eq. (A-27), and applying the mean and small-perturbation equations of state, Eqs. (A-29) 

and (A-30), result in the following expression.   
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 where, TR
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 Using Eqs. (A-61) and (A-58), the following expression is obtained.   
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 By applying Gauss theorem (Eq. (A-64) below),  
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Eq. (A-63) is expressed as following.   
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Non-homogeneous wave equation with mean flow having the acoustic sources by 

combustion process and in/out flows through injector and exhaust nozzle:   
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 where, 



 


V

tDt

D
  

 

 The LHS is the wave equation with mean flow (𝑉⃗ ̅) in integral form, and the RHS 

has the acoustic sources, 𝑆̃𝑚𝑎𝑠𝑠, 𝑆̃𝑓𝑜𝑟𝑐𝑒,𝑥̂1
, and 𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦, that amplify/damp the oscillations 

within the combustion region..  As defined in Eqs. (A-44), (A-46), and (A-47), these 

acoustic sources describe the effects of the in/out flows through the injector and exhaust 

nozzle and the chemical reactions in the combustion region.   
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A.2.  Interactions at the Combustion Region 

 

 The source terms in the RHS of the non-homogeneous wave equation, Eq. (3-21) 

or Eq. (A-65), depend on the oscillations in the combustion region (i.e., the variables on 

the LHS).  For example, the chemical reaction and the out flow through the exhaust 

nozzle depends on the acoustic oscillations in the combustion region, and in the same 

time these processes (as acoustic sources) generate and interact with the acoustic waves.  

In this case, the Green function approach for the solutions of the entire annular combustor 

is not available [32-34].  However, Eq. (3-21) or Eq. (A-65) could provide the 

relationship between acoustic waves and combustion processes (with in/out flows 

through the injector and exhaust nozzle) at the combustion region at a certain instant.   

 

 The obtained non-homogeneous wave equation with mean flow having acoustic 

sources, 𝑆̃𝑚𝑎𝑠𝑠 , 𝑆̃𝑓𝑜𝑟𝑐𝑒,𝑥̂1
, and 𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦, (i.e., Eq. (3-21) or Eq. (A-65) shown below) is 

applied to the combustion region.   
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(A-65) 
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or 

(A-44) 

(A-46) 

(A-47) 

(A-48) 

 By applying 𝑆̃𝑓𝑜𝑟𝑐𝑒,𝑥̂1
= 0⃗  (i.e., Eq. (A-46) or (3-17)) and ∇ ∘ (𝑉⃗ ̅ ∙ 𝑆̃𝑚𝑎𝑠𝑠) = 0 

(because of no gradient in the combustion region) and defining the temporary acoustic 

source, 𝑆𝑒𝑛𝑒𝑟𝑔𝑦, for convenience, the above equation is simplified as following.   
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 By applying one-dimensional assumption and setting the coordinate 𝑥 for 𝑥̂1 in 

Figure 35, for simplicity, Eqs. (A-66) and (A-67) are expressed as following.   
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where, A ; the cross sectional area of the annular combustor  
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 Since the acoustic source, 𝑆𝑒𝑛𝑒𝑟𝑔𝑦 describes the effects by the inflow through the 

injector, outflow through the exhaust nozzle, and the heat by the conversion of the 

chemical compositions, which are carried by the in/out flows, it does not depend upon the 

volume of the combustion region and has finite value.  The RHS of Eq. (A-68) can be 
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written rigorously using the cross sectional area of the annular combustor, 𝐴 (see Figure 

35), and delta function, 𝛿(𝑥 − 𝑥0), as following.   
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 where, )0(0 x ; the location of the combustion region  

 In order to calculate the first term on the LHS of Eq. (A-71), the definition of the 

material derivative, 
𝐷

𝐷𝑡
, Eq. (A-69), for one-dimensional approach is applied.   
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 By applying Eq. (A-72) to Eq. (A-71) and integrating Eq. (A-71) over ∆𝑥, the 

following expression is obtained.   
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 In this study, the combustion region is assumed to be acoustically compact; i.e., 

𝑘∆𝑥 ≪ 1 [21, 22, 31].  Also, it is assumed that the acoustic sources, 𝑆𝑒𝑛𝑒𝑟𝑔𝑦 (or 𝑆̃𝑚𝑎𝑠𝑠 

and 𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦 ) have no gradient in the combustion region, and behave as monopole 

acoustic sources [21, 33, 34].  The acoustic pressures at the control surface s1 and s2 are 

the same.   
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 With applying the assumption of the acoustically compact combustion region, Eq. 

(A-74) above, Eq. (A-73) is expressed as below.   
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 The acoustic pressures, 𝑝′, in Eq. (A-75) can be expressed as a sum of the right 

going wave, 𝑓, and the left going wave, 𝑔.  Since the goal of the derivation of this section 

is to obtain the relationship between the acoustic waves and the physical processes in the 

combustion region at a certain instant, the arguments for the acoustic pressure, 𝑝′, the 

right going wave, 𝑓, and the left going wave, 𝑔, are chosen as below.   
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As shown in Figure 35, the right and left going wave, 𝑓1 and 𝑔1, arrives and leaves the 

control surface s1, which is located at 𝑥 =
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 Applying Eq. (A-77) above to Eq. (A-75) and cancelling the cross section area, 𝐴, 

of the annular combustor results in the following expression.   
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(A-78) 

 Since the combustion region is acoustically compact, i.e., 𝑘∆𝑥 ≪ 1, we can set 

∆𝑥 → 0 for Eq. (A-78).  The LHS of the non-homogeneous wave equation (i.e., Eq. 

(A-65) or Eq. (3-21)) has the wavelength as the length scale, and the size of the 

combustion is very small and infinitesimal in this length scale.  These manipulations 

results in the following expression:   
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(A-79) 

Since the width of the combustion region goes to zero, ∆𝑥 → 0, by the above limiting 

procedure, the locations of the control surface s1 and s2 are at 𝑥 = 0 − and 𝑥 = 0 +, 

respectively.  The expressions of the right and left going waves at control surface s1 and 

s2 can be simplified as following.   
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Using Eq. (A-80), Eq. (A-79) is simplified as below.   
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 Since it is assumed that the acoustic sources terms have no gradient in the 

combustion region, the term in the RHS is expressed as following.   
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Applying Eq. (A-82) to Eq. (A-81) results in the following expression.   
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 The both sides of Eq. (A-83) have the time derivative, 
𝜕

𝜕𝑡
, and the properties (i.e., 

𝑓1 , 𝑔1 , 𝑓2 , 𝑔2 , and 𝑆𝑒𝑛𝑒𝑟𝑔𝑦 ) in the equation are all small-perturbation properties and 

fluctuate about zero.  Also, when the source strength is zero, i.e. 𝑆𝑒𝑛𝑒𝑟𝑔𝑦 = 0 , the 

acoustic waves are not affected by the processes in the combustion region, i.e., 𝑓2 = 𝑓1 

and 𝑔1 = 𝑔2.  It is consistent with the case of the acoustic waves propagations in “no 
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combustion” region; see section 3.2.1. in CHAPTER 3.  Removing the time derivative, 
𝜕

𝜕𝑡
 

without integral constant from the both sides of Eq. (A-83), the following expression is 

obtained.   
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 Applying Eq. (A-67) back to the temporary acoustic source, 𝑆𝑒𝑛𝑒𝑟𝑔𝑦, in the RHS 

of the above equation, the following equation is obtained.   

    

































 









 








 

A

Sa

A

S
VV

A

S
ekh

A

S

a

tgtg
a

Va
tftf

a

Va

massmassmass
s

energy

~

1

~~

)..(

~
1

     

)()()()(

2

2

212122



 



 (A-85) 

 where, 1
ˆ xVV 


  

Where, in order to avoid confusions when applying 𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦 and 𝑆̃𝑚𝑎𝑠𝑠 on the RHS of the 

above equation (which acts in 𝑥̂2 direction), the tangential mean flow is expressed as 

𝑉⃗ ̅ = 𝑉̅𝑥̂1.   

 Equation (A-85) describes that the “unknown” outgoing waves, 𝑔1 and 𝑓2, depend 

upon the “known” incident waves, 𝑓1 and 𝑔2, and the acoustic sources on the RHS that 

describe the processes taking place within the combustion region.   

 Since the combustion region is acoustically compact and the acoustic sources on 

the RHS of Eq. (A-85) are monopole sources [21, 33, 34], the acoustic pressure across 

the combustion region is continuous and the pressures at the surfaces s1 and s2 are the 

same.  However, the acoustic velocity is not continuous because the heat added by the 

combustion process and the mass and energy added/removed by the in/out flows produce 

a discontinuous acoustic velocity jump across the “combustion source” [21, 22].   
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The requirement, 𝑝′
1
(𝑡) = 𝑝′

2
(𝑡) , (which was also used in Eq. (A-74)) yields the 

following relationship:   

 )()()()( 2211 tgtftgtf   (A-87) 

 Notably, Eqs. (A-85) and (A-87) can be solved to determine the two unknowns, 

the outgoing acoustic waves, 𝑔1 and 𝑓2.   

 Substituting the definitions of 𝑆̃𝑚𝑎𝑠𝑠  and 𝑆̃𝑒𝑛𝑒𝑟𝑔𝑦 , Eq. (3-23) or Eqs. (A-44), 

(A-47), and (A-48), into the RHS of Eq. (A-85), yields the following expression.   

    

 

 

  

 



























 









 








 

nozzleinjector

nozzleinjector

nozzleinjectors

nozzlesinjectorschem

MM
a

MMVV

MMekh

EKHEKHQ
Aa

tgtg
a

Va
tftf

a

Va













1
                              

                             

)..(                             

)..()..()(
11

     

)()()()(

2

2

212122





   (A-88) 

 By arranging the terms on the RHS of Eq. (A-88) by the small-perturbation heat 

release by the chemical reaction, the effects by the injector flow, and the effects by the 

exhaust nozzle flow, the following expression is obtained.   
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where, 
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Where, the RHS of Eq. (A-89) describes the acoustic sources produced by the chemical 

reaction, (𝑄̇𝑐ℎ𝑒𝑚)′, the inflow through the injector, (𝑆𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′, and the outflow through 

the exhaust nozzle, (𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′.   
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A.3.  Effects by the Combustion, Injector Flow, and Exhaust Nozzle Flow 

 

 As discussed in A.2.  , Eqs. (A-89) and (A-87) describe that the “unknown” 

outgoing waves, 𝑔1 and 𝑓2, depend upon the “known” incident waves, 𝑓1 and 𝑔2, and the 

acoustic sources, (𝑄̇𝑐ℎ𝑒𝑚)′, (𝑆𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′, and (𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′, on the RHS that describe the 

processes taking place within the combustion region, i.e., the combustion process and the 

in/out flows through the injector and exhaust nozzle; see Figure 35.   
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 )()()()( 2211 tgtftgtf   (A-87) 

 Equations (A-89) and (A-87) above provide two equations for two unknown, and 

the outgoing waves, 𝑔1  and 𝑓2 , (leaving the combustion region after completing the 

interactions) can be calculated, when the given incident waves, 𝑓1  and 𝑔2 , and the 

descriptions about the acoustic sources, (𝑄̇𝑐ℎ𝑒𝑚)′ , (𝑆𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ , and (𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′ , are 

provided.  The incident waves, 𝑓1 and 𝑔2, are provided by the model of “no combustion” 

region; see Eqs. (3-27), (3-28), and (3-29) and Section 3.2.1 in CHAPTER 3.  In order to 
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calculate the effects by the acoustic sources, the terms, (𝑄̇𝑐ℎ𝑒𝑚)′ , (𝑆𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ , and 

(𝑆𝑛𝑜𝑧𝑧𝑙𝑒)′, need to be modeled.   

 

A.3.1.  Effect by the Out Flow through the Exhaust Nozzle 

 At first, the model of the out flow through the exhaust nozzle will be developed.   

 

A.3.1.1.  Quasi-Steady and Choked Exhaust Nozzle 

 As discussed in Section 3.2.2 in CHAPTER 3, the exhaust nozzle has been 

assumed to be short and choked, implying that 𝑀 = 1 at the throat, and the distance from 

the combustion chamber to the nozzle throat is much shorter than the acoustic 

wavelength.  Since the time scale of the short nozzle is much shorter than the time scale 

of the acoustic motions, the flow in the nozzle can be assumed to be quasi-steady.  In this 

case, the stagnation conditions in the combustion region (with 𝑀 = 1 at the nozzle throat) 

determine the mass flow rate and energy flux through the nozzle [35].   

 The following equations describe the mass flow and sensible enthalpy and kinetic 

energy flux through the choked nozzle [35].   
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Where, 𝑝𝑡 and 𝑇𝑡 are the stagnation pressure and temperature and 𝐴∗ is the area of the 

throat of the exhaust nozzle; see Figure 34 and Figure 35 in CHAPTER 3.   
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 By defining the following coefficient, 𝑘𝑛𝑜𝑧𝑧𝑙𝑒, and expressing 𝑝𝑡 and 𝑇𝑡 in terms 

of mean properties and small-perturbation properties in Eqs. (A-92) and (A-93), the 

following expressions are obtained; see Eqs. (A-95), (A-96), (A-97), and (A-98) below.   
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 The mean (steady state) and the small-perturbation equations of the mass flow 

through the short and choked nozzle are expressed in Eqs. (A-95) and (A-96) as below.   

 

t

t
nozzlenozzle

T

p
kM   (A-95) 

 












 


t

t
t

t

t
nozzlenozzle

T

p
T

T

p
kM

2/3
2

1  (A-96) 

The mean (steady state) and the small-perturbation equations of the sensible enthalpy and 

kinetic energy flux through the short and choked nozzle are expressed in Eqs. (A-97) and 

(A-98) as below.   
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 The mean (or steady state) energy conservation equations with separation of 

acoustic motions and acoustic sources by the combustion process (chemical reaction), 

and the in/out flow through the injector and exhaust nozzle, (i.e., Eqs. (A-41) and (A-42) 

in A.1.  ), can be expressed as Eq. (A-99) below.   
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 where, 0)( externalQ , i.e., adiabatic condition  
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Eq. (A-99) is manipulated as following, and the reference energy flux (or heat release) is 

defined in Eq. (A-100) as below.   
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Using Eqs. (A-97) and (A-100), the coefficient, 𝑘𝑛𝑜𝑧𝑧𝑙𝑒, can be expressed as following.   
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 Applying Eq. (A-101) to Eqs. (A-96) and (A-98), the small-perturbation equations 

of the mass flow and the sensible enthalpy and kinetic energy flux through the quasi-

steady and choked nozzle are expressed in Eqs. (A-102) and (A-103) as below.   
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The small-perturbation stagnation pressure, 𝑝′𝑡, and temperature, 𝑇′𝑡, in Eqs. (A-102) and 

(A-103) can be obtained from the small-perturbation properties in the combustion region.   

 

A.3.1.2.  Stagnation Properties in the Combustion Region 

 In order to calculate the fluctuating mass flow rate and enthalpy and kinetic 

energy flux through the exhaust nozzle (using Eqs. (A-102) and (A-103)), the small-

perturbation stagnation pressure, 𝑝′𝑡, and temperature, 𝑇′𝑡, need to be obtained.  Using 

the small-perturbation pressure, temperature, and velocity in the combustion region, the 

stagnation properties can be calculated.   

 In order to avoid confusions with the total enthalpy, ℎ𝑡 , by the sum of the 

formation enthalpy, the sensible enthalpy, and the kinetic energy, the notation ℎ𝑡,𝑠 is used 

for the stagnation enthalpy accounting the sensible enthalpy, ℎ𝑠, and the kinetic energy, 

𝑘. 𝑒., but not accounting the formation enthalpy, ℎ𝑓; see Eq. (A-104) below.   
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 The relationships between the stagnation properties and the state properties are 

expressed in Eqs. (A-105), (A-106), and (A-107) as shown below [35].   
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Where, we define control volume or cavity, “cv”, for notating the combustion region in 

order to avoid confusion; i.e., the properties in the control volume or cavity, “cv”, (e.g., 

𝑝′𝑐𝑣) means the properties in the combustion region (e.g., 𝑝′𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛).  Other 

required properties, Mach number and speed of sound in the combustion region, are also 

expressed in Eqs. (A-108) and (A-109) as below.   
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 The properties in Eqs. (A-104) ~ (A-109) are expressed in terms of the mean (or 

steady state) properties and small-perturbation properties, the higher order terms are 

neglected, and the mean and small-perturbation equations are obtained as below.   

 

Mean and small-perturbation stagnation enthalpy (sensible enthalpy & kinetic energy)   
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Mean and small-perturbation stagnation temperature 
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Mean and small-perturbation Mach number 
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Mean and small-perturbation speed of sound 
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Mean and small-perturbation expressions for the relationship between pressures and 

temperatures   
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 In the above equations, Eqs. (A-110) ~ (A-120), the mean and small-perturbation 

stagnation properties are expressed by the properties in the combustion region (i.e., 

cavity).   
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A.3.1.3.  Acoustic Source Effects by the Out Flow through the Exhaust Nozzle 

 As discussed above, the acoustic source effect by the exhaust nozzle flow can be 

expressed as below; see Eqs. (A-89) and (A-91), that are mentioned in A.2.   and in the 

introduction of A.3.  .   
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 The small-perturbation mass flow, 𝑀′̇ 𝑛𝑜𝑧𝑧𝑙𝑒 (i.e., Eq. (A-102)), and the sensible 

energy and kinetic energy flux, (𝐻̇𝑠 + 𝐾̇. 𝐸. )′𝑛𝑜𝑧𝑧𝑙𝑒  (i.e., Eq. (A-103)), through the 

exhaust nozzle are applied into the above acoustic source by the exhaust nozzle (i.e., Eq. 

(A-91)).  Then, the stagnation properties in the resulting equation are expressed by the 

properties in the combustion regions, using Eqs. (A-110) ~ (A-120).  These 

manipulations result in the following expression.   
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The acoustic source by the exhaust nozzle flow is expressed in terms of the properties in 

the combustion region, and, for simplicity, omitting the notation, “cv”, the acoustic 

source effects by the exhaust nozzle flow are expressed as following.   
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 (A-122) 

Where, 𝑐𝑝𝑇̅ ≠ ℎ̅𝑠 in Eq. (A-122) above, and 𝑐𝑝𝑇̅ =
𝛾𝑅𝑇̅

𝛾−1
=

𝑎̅2

𝛾−1
.   

 

A.3.1.4.  Further Manipulation of the Effects by the Exhaust Nozzle 

 In order to further investigate the effects by the out flow through the exhaust 

nozzle, after combining Eq. (A-89) (describing the interactions between the acoustic 

waves and the acoustic sources) and Eq. (A-87) (describing the acoustic pressure 

condition by the assumption of the acoustically compact combustion region), Eq. (A-122) 

is applied to the resulting equations.  These manipulations result in the following 

expression.   
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 Defining the following parameter, 𝜀𝑀̅, in Eq. (A-125) below, the above equation 

(Eq. (A-123)) can be expressed as following.   
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As shown in Eq. (A-124), the acoustic source effects by the out flow through the exhaust 

nozzle are expressed in terms of the parameters, 𝜀𝑀̅ and 𝜀𝑀̅𝑀̅, and the acoustic properties 

in the combustion region, 𝑝′ and 𝜌̅𝑎̅𝑣′.  Where, the parameters, 𝜀𝑀̅  and 𝜀𝑀̅𝑀̅, are non-

dimensional, and the acoustic pressure, 𝑝′ , and the term, 𝜌̅𝑎̅𝑣′ , have dimensions of 

acoustic pressures.  Also, the acoustic source effect by the out flow through the exhaust 

nozzle is damping the oscillations; see the minus sign in Eq. (A-124).   

 By applying Eqs. (A-94) and (A-101) to Eq. (A-125) and expressing stagnation 

properties in the resulting equation in terms of the properties in the combustion region, 

the parameter, 𝜀𝑀̅, by Eq. (A-125) is expressed as following.   
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   (A-126) 

Notably, Eq. (A-126) above clearly shows that the parameter, 𝜀𝑀̅, is a non-dimensional 

number.   



203 

 

 As shown in Figure 35 in CHAPTER 3, the nozzle throat area, 𝐴∗ , is much 

smaller than the cross sectional area of the annular combustor, 𝐴 , i.e., 𝐴∗ ≪ 𝐴 .  By 

applying 
𝐴∗

𝐴
≪ 1 to Eq. (A-126) and investigating the magnitudes of the each factors, it 

can be deduced that the parameter, 𝜀𝑀̅ , is a small number, i.e., 𝜀𝑀̅ ≪ 1.  Since it is 

assumed that the tangential mean flow is subsonic, i.e., 𝑀̅ < 1, the parameter, 𝜀𝑀̅𝑀̅, is 

also a small number, i.e., 𝜀𝑀̅𝑀̅ ≪ 1.   
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(A-127) 

 As shown on the RHS of each equation in Eq. (A-124), the effect by the exhaust 

nozzle flow depends on the acoustic pressure and velocity inside the combustion region.  

Since the combustion region is assumed as an acoustically compact zone, the acoustic 

pressure inside the region is the same as the acoustic pressures on the surface s1 and s2.  

On the other hand, since the acoustic velocity across the region is discontinuous, the 

velocity inside the region is assumed to be the average of the velocities on the surfaces s1 

and s2; see Figure 36 in CHAPTER 3.  These oscillations inside the combustion region in 

terms of the acoustic waves arriving/leaving the combustion region are expressed in the 

following relationships, Eq. (A-128), as below.   
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(A-128) 

 Applying Eq. (A-128) to Eq. (A-124) results in the following system of equations 

of two unknowns (i.e., the outgoing waves, 𝑓2 and 𝑔1 from the combustion region) and 

two knowns (i.e., the incident waves, 𝑓1  and 𝑔2  to the combustion region) with the 
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acoustic sources by chemical reaction, (𝑄̇𝑐ℎ𝑒𝑚)′ , the inflow through the injector, 

(𝑆𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′, and the outflow through the exhaust nozzle in terms of 𝜀𝑀̅.   
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In the above system of equations, i.e., Eq. (A-129), the unknowns are on the LHS and the 

knowns are on the RHS.  Eq. (A-129) can be solved and expressed in a matrix form:   
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 Since the parameter, 𝜀𝑀̅, is a small number as discussed above (see Eq. (A-127)), 

the following approximation is available.   
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Using Eq. (A-131), Eq. (A-130) can be further simplified as below:   
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 Using the following expressions for normalization:   
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 where, nozzlesinjectorschemref EKHEKHQQ )..()..()()(      (A-100) 

the approximated solutions of the outgoing waves, 𝑓2 and 𝑔1, from the combustion region 

given in Eqs. (A-132) can be expressed in the following expressions:   

 




































































 




























 










2

1

2

1

2

1

1

2

ˆ

ˆ

11

11
)

2

1
(2

ˆ

ˆ

01

10

ˆ

ˆ

10

01
)1(          

1

1
)ˆ()

ˆ
(

)(11

2

1

ˆ

ˆ

g

f
M

g

f

g

f

SQ
p

Q

Aag

f

MMM

injecorchem

ref



 


   (A-134) 

Or,  
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 Eq. (A-134) or (A-135) provides a relationship between the unknown outgoing 

waves, 𝑔̂1 and 𝑓2, and the known incoming waves, 𝑓1 and 𝑔̂2.  The incoming waves 𝑓1 

and 𝑔̂2, are given by Eq. (3-28) (in Section 3.2.1 in CHAPTER 3) that describes the 

acoustic propagations in the no combustion regions.  The outgoing waves, 𝑔̂1 and 𝑓2, are 

“unknown” and are calculated by this model equation that describes the processes taking 

place within the combustion region.  Notably, the term 𝜀𝑀̅ in Eqs. (A-134) and (A-135) 

describes the effect by the exhaust nozzle.  Since the term 𝜀𝑀̅ is always greater than zero 

(see Eq. (A-127)), the acoustic oscillations are damped by the exhaust nozzle interaction; 

i.e., 𝜀𝑀̅ > 0 and 𝑓2 < 𝑓1, 𝑔̂1 < 𝑔̂2 when (𝑄̂̇𝑐ℎ𝑒𝑚)′ = 0 and (𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ = 0, as shown in 

Eq. (3-43).   

 

A.3.2.  Effect by the In Flow through the Injector 

 The term, (𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′ , in Eqs. (A-134) and (A-135) describes the acoustic 

driving/damping by the mass and energy fluxes (i.e., sensible enthalpy and kinetic energy) 

through the injector.  With the definition of the Mach number of the tangential mean flow, 

𝑀̅ =
𝑉̅

𝑎̅
, the definition the acoustic source by the inflow through the injector, (𝑆̂𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)′, 

Eq. (A-90) can be written as following.   
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 Since the inflow through the injector depends on the injection system, the small-

perturbation mass flow rate and the sensible enthalpy and kinetic energy flux can be 

given by the operation conditions of the injection (or fuel and oxidizer supply) system 

(e.g., mass flow, temperature, fuel/oxidizer, flow velocity, etc.)   

 

A.3.3.  Effect by the Chemical Reaction (Combustion Process) 

 The term, (𝑄̂̇𝑐ℎ𝑒𝑚)′, in Eqs. (A-134) and (A-135) describes the driving/damping 

by the chemical heat release perturbation, and in this study it has been assumed to have 

the following linear dependence upon the acoustic pressure and velocity [1]:   

 





  VvVkpkQ vpchem

ˆˆˆˆ)
ˆ

(   (A-138) 

 

A.3.4.  Interactions between the Acoustic Waves and the Acoustic Sources in the 

Combustion Region 

 The system of equations, Eq. (A-134) (or Eq. (A-135)), Eq. (A-137), and Eq. 

(A-138), describe the driving and damping of the oscillations in the “combustion” region.  

They essentially describe:   

(i) The arrival of the waves 𝑓1 and 𝑔2 at the concentrated combustion region.   

(ii) The amplification/damping of these waves by the chemical reactions and the in/out 

flows through the injector and exhaust nozzle.   

(iii) The dependence of the sources by these processes upon the oscillations in the region.   
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(iv) The generation of the waves 𝑔1 and 𝑓2, that leave the combustion region and enter 

the “no combustion” regions.   

 

 The equation set of the developed model consists of equations in the “no 

combustion” and “combustion” regions, ant it is listed in A.4.  .   
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A.4.  Equation Set of the Developed Model 

 

 The equation set of the developed model with tangential mean flow are arranged 

in this section.  For the case of subsonic tangential mean flow, 𝑀̅ < 1 and short and 

choked nozzle, the term 𝜀𝑀̅ in the following equation set is a small number; i.e., 𝜀𝑀̅ ≪ 1.  

The following equation set is simplified equations using 𝜀𝑀̅ ≪ 1.   

 

A.4.1.  Normalization of the Properties 

 All properties are normalized by the definitions in Eq. (A-139).   
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A.4.2.  Interactions in the “Combustion” Region 

 




































































 




























 










2

1

2

1

2

1

1

2

ˆ

ˆ

11

11
)

2

1
(2

ˆ

ˆ

01

10

ˆ

ˆ

10

01
)1(          

1

1
)ˆ()

ˆ
(

)(11

2

1

ˆ

ˆ

g

f
M

g

f

g

f

SQ
p

Q

Aag

f

MMM

injecorchem

ref



 


  (A-140) 



210 

 

 

p
M

M

Vh

Tc
Q

Aa

s

p

ref

M

11

)1(
2

1
1

)1(
2

1

2

1

2

13

2

1
)(               

11

2

1

2

2

2














































 







































 













 

       or,  

       






































 










































2

2

)1(2

1

2
)1(2

1

)1(
2

1
1

)1(
2

1

2

1

2

13
                              

)1(
2

1
1

1

2*

2

1

M

M

M
A

A
M


















 

       1
M
  and 1M    

(A-141) 

 





  VvVkpkQ vpchem

ˆˆˆˆ)
ˆ

(   (A-142) 

 

 





















injector

injectorsinjectors

refref

injector

injector

MM
a

MekhEKH
QQ

S
S






2
2

)1(1
1

                                              

)..()..(
)(

1

)(

)(
)ˆ(




   (A-143) 

 Eqs. (A-140), (A-142), and (A-143) describe the interactions between acoustic 

waves and physical processes in the combustion region (chemical reactions, in/out flows 

through the injector and exhaust nozzle) with the mean flow.   

where, 
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injectorfnozzlefchem HHQ )()()(      (A-147) 

 

 

A.4.3.  Acoustic Waves in the “No Combustion” Region 

 consttVaxf  ))((ˆ    

consttVaxg  ))((ˆ    
(A-148) 
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 Eqs. (A-148) and (A-149) describe the acoustic waves propagations affected by 

the mean flow outside the combustion region.   
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