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SUMMARY

One of the most important branches of applied mechanics is the theory of

plates - defined to be plane structural elements whose thickness is very small when

compared to the two planar dimensions. There is an abundance of plate theories in the

literature modeling classical elastic solids that fit this description. Recently, however,

there has been a steady growth of interest in modeling materials with microstructures

that exhibit length-scale dependent behavior, generally known as Cosserat elastic

materials. Concurrently, there has also been an increased interest in the construction

of reduced dimensional models of such materials owing to advantages like reduced

computational effort and a simpler, yet elegant, resulting mathematical formulation.

The objective of this work is the formulation and implementation of a theory of

elastic plates with microstructure. The mathematical underpinning of the approach

used is the Variational Asymptotic Method (VAM), a powerful tool used to construct

asymptotically correct plate models. Unlike existing Cosserat plate models in the

literature, the VAM allows for a plate formulation that is free of a priori assumptions

regarding the kinematics. The result is a systematic derivation of the two-dimensional

constitutive relations and a set of geometrically-exact, fully intrinsic equations gov-

erning the motion of a plate. An important consequence is the extraction of the

drilling degree of freedom and the associated stiffness. Finally, a Galerkin approach

for the solution of the fully-intrinsic formulation will be developed for a Cosserat sur-

face analysis which will also be compatible with more traditional plate solvers based

on the classical theory of elasticity. Results and validation are presented from linear

static and dynamic analyses, along with a discussion on some challenges and solution

techniques for nonlinear problems.

xiii



CHAPTER I

INTRODUCTION

1.1 An Overview of Higher-Order Elasticity Theories

A Cosserat or micropolar continuum can be defined as one in which each material

particle has six degrees of freedom, with three independent rotational degrees of free-

dom along with three translational degrees of freedom associated with a classical (or

Cauchy) continuum. Although the concepts leading to the development of general-

ized continuum models were discussed as early as the late nineteenth century by Voigt

[153], Kelvin, Helmholtz, Duhem and others, it was the seminal work of E. and F.

Cosserat [25] in 1909 that presented the governing equations for a three-dimensional

Cosserat continuum, as well as a two-dimensional analogue called a Cosserat surface,

that were nonlinear and geometrically-exact. Such a Cosserat continuum also postu-

lates the independent existence of forces and moments (or force stresses and couple

stresses) along with independence of translations and rotations. However, these initial

efforts by the Cosserats did not address how the constitutive laws for such a theory

could be established, limiting its use.

After being forgotten for nearly half a century, there was a revival of interest in

the use of generalized continuum models starting in the late fifties to explain the

discrepancy between the results of classical elasticity and experiments in cases where

the microstructure of the body is significant – in the neighborhoods of cracks and

notches with appreciable strain gradients, and in granular media. Notable amongst

these are the works by Günther [58], Truesdell and Toupin [150, 148], Grioli [57], Aero

and Kuvshinskii [1, 87], Mindlin and Tiersten [101], Koiter [81], Palmov [111], all of

whom developed a linear Cosserat theory called a Couple-Stress Theory. Common

1



to all these higher-order elasticity theories is the appearance of a material-dependent

length-scale parameter that is thought to be microstructure-dependent. This also

led to the prediction of several non-classical phenomena: for example, Mindlin [100]

predicted that the stress concentration factor for a circular hole would be smaller than

the classical value, and is dependent on the size of the hole itself. Also, the flexural

rigidity of very thin plates was predicted to be higher than those from a classical

Kirchhoff-Love theory. However, in a couple-stress theory, despite the continuum

being able to support couple stresses, the rotation of each material point, called the

microrotation, was not independent and taken to be the macrorotation of the medium

(and hence determined by the displacement field).

Shortly, Eringen [38] developed what was termed as a linear theory of micropolar

elasticity. The term micropolar, coined by Eringen, implied that the microrotation of

each material point was distinct from the macrorotation while also including effects

of rotary inertia. The previous couple-stress theory was now termed indeterminate

because the antisymmetric part of the stress tensor could no longer be determined

solely by constitutive relations. Later, a nonlinear theory of micropolar media was

developed by Kafadar and Eringen [79]. Problems involving finite deformations were

also studied by Grioli [57], Toupin [149], Nowacki [107], Besdo [11] and Reissner

[124, 126, 127]. A more exhaustive set of references highlighting the development of

micropolar1 elasticity in this period can be found in the excellent review article by

Altenbach et al. [3].

It is interesting to note that most of the modeling efforts in literature deal with

isotropic polar media. While it is possible that these efforts have concentrated only on

applications where material isotropy was present (despite microstructures like rigid

inclusions and voids), another practical reason can be understood by looking at the

1For the sake of brevity, the words Cosserat, micropolar and polar will be used interchangeably
henceforth.

2



three-dimensional constitutive law for an isotropic micropolar material (using the

symbols for the constants used by Eringen [38]):

σij = λΓkkδij + (µ+ κ)Γij + µΓji

µij = αXkkδij + βXji + γXij

(1)

where σij,Γij, µij, Xij are the measure numbers of the Jaumann stress tensor, the

Jaumann strain tensor,2 the couple-stress tensor and the wryness tensor3.

It is immediately clear that we are faced with a problem of identifying six param-

eters for a micropolar material. Classical elasticity for small strain only needed two

Lamé moduli to be determined. If one were to look at a fully anisotropic material

instead, a staggering 90 material constants would have to be identified! In such cases,

one must resort to homogenization techniques [51] or numerical techniques [77] as

experimental determination becomes impractical. Nevertheless, some solutions for

anisotropic bodies have been developed assuming one had knowledge of these con-

stants (for example, see works by Ieşan [73, 75, 74, 76], Kumar and Choudary [86]).

Fortunately, as will be seen, many engineering applications involving materials

with microstructure can be considered isotropic, for which identifying the six param-

eters will suffice. Before proceeding further, it is necessary to address the following

question: How does one experimentally determine these micropolar elastic constants?

At a more fundamental level, what is the evidence of this length-scale dependent be-

havior that the micropolar theory of elasticity seeks to model?

1.2 Evidence of Micropolar Effects and Applications

In 1937, Neuber [106] developed an empirical approach that predicted a reduction

of stress-concentration factor below that predicted by classical elasticity in regions of

2Since we plan to restrict ourselves to small strain for the present purposes, we choose to work
with the mathematically-simpler Jaumann strain tensor.

3There are various definitions of the wryness tensor used in literature, a comparative review of
which has been conducted by Pietrasczkiewicz [118].

3



high strain gradients. This has since been confirmed experimentally by Peterson [117],

Kuhn and Figge [84] and others. Most of the earlier works discussing micropolar or

couple-stress theories could also model the non-classical effects mentioned previously,

but did so without experimentally confirming their validity.

In 1966, Schijve [134] was one of the first to attempt experimental validation:

testing on aluminum alloy sheet specimens, he concluded that no significant couple-

stress effects were present. Ellis and Smith [35] carried out cylindrical bending tests

on aluminum and low-carbon steel sheets and concluded that Mindlin’s couple-stress

theory was inadequate in explaining these phenomena, and that grain size of the

material was unrelated to the length-scale parameter present in the theory.

On the other hand, Perkins and Thompson [116] were able to experimentally

observe an increase in the shear modulus of a polyvinyl chloride foam plastic as the

specimen’s thickness diminished as predicted by theory.

Gauthier and Jahsman [47, 48] prepared a composite material with aluminum shot

uniformly distributed throughout an epoxy matrix to represent rigid microelements

in a deformable continuum. While static torsion tests indicated that the material

developed behaved as a classical elastic solid, dynamic tests performed later by Gau-

thier [46] were successful in determining the micropolar elastic moduli. Importantly,

the characteristic length of the material turned out to be very close to the radius of

the aluminum particles.

Yang and Lakes [158, 159], Lakes [91, 92, 89] and Park and Lakes [112] determined

the elastic properties of porous solids like foams and human bone and interpreted

their results in terms of a micropolar theory, noting that characteristic length-scale

parameter was close to the size of structural elements in these materials. For a detailed

discussion about experimental methods for studying generalized elastic continua, the

reader may consult the book chapter by Lakes [90]. In subsequent years, Cosserat

models have seen extensive use in describing foams and other porous media (see works
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by Diebels [31, 33, 34, 32]) and human bones (Fatemi et al. [41]).

As pointed out by Pabst [110], the application of micropolar theory to solids with

periodic microstructure has been more extensive and successful compared to those

with random microstructure, natural or man-made. For example, the micropolar

elastic moduli of KNO3 crystals were determined experimentally by Askar [7, 6],

with further improvements in modeling made by Fischer-Hjalmars [43, 42]. Pouget

et al. [121] applied the micropolar theory to elastic ferroelectric crystals. In 2013,

Beveridge et al. [12, 155] tested two kinds of heterogeneous specimens consisting of

regular periodic arrays of circular voids – made as aluminum bars and rings from

acrylic sheets – and in both cases found that sample stiffness depended on sample

size, with stiffness increasing as size reduced. In terms of a micropolar theory, they

also note that the characteristic length values obtained reflect the intrinsic length

scales of the material given by the void size and spacing.

Engineering applications such as the modeling of micro or nano-scaled structures,

carbon nanotubes and graphene sheets, analysis of MEMS (MicroElectroMechanical

Systems), ultra-thin films, etc., have also seen widespread use of micropolar theories

recently. Chong et al. [19] experimentally observed a size effect in the torsion and

bending of micron-scaled structures present in MEMS devices and concluded that a

strain-gradient analysis was necessary to determine the elastoplastic behavior in the

micron scale. McFarland and Colton [99] studied polypropylene microcantilevers with

a non-homogeneous microstructure and report a measurable increase in flexural rigid-

ity at micron-order thicknesses, suggesting relevance in future MEMS applications.

Guo and Zhao [59] investigated the size dependance of elastic properties of nanofilms

with surface effects.

From this literature search on experimental evidence of length-scale dependent

behavior, we can see that initial efforts to identify size effects have been inconclusive
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where more recent models appear to be successful, especially when applied to porous

media like foams, bone and ceramics. This inconsistency was pointed out and, in

part, explained in the theoretical work by Bigoni and Drugan [13], who presented an

analytical derivation of Cosserat elastic moduli via homogenization of heterogeneous

elastic materials. Their analytical results explain published experimental findings

that for a heterogeneous material to exhibit micropolar behavior the inclusions must

be less stiff than the surrounding matrix and relatively dilute. On the other hand,

for rigid or even relatively stiff inclusions, they showed that Cosserat effects can be

neglected.

In conclusion, Cosserat elasticity seems well suited to model either macroscopically

heterogeneous structures with voids or relatively compliant inclusions, or micron-

scaled structures where specimen dimensions are comparable to the microstructure

of the material.

1.3 Previous Work on the Construction of Plate Models

Traditionally, the problem of constructing reduced-dimensional models of beams,

plates and shells, either starting from a classical or a Cosserat theory of elastic-

ity, has been approached in one of two ways: the degenerate solid approach and

the direct approach. A brief description and analysis of each approach will now be

given, mentioning significant contributions from the scientific community to date in

the development of plate models starting from a Cosserat or micropolar continuum.

This will, then, lead us to a discussion of the principal methodology used in this

dissertation.

1.3.1 Degenerate Solid Approaches

These approaches start from the equations of three-dimensional (3-D) continuum

mechanics and transition to a 2-D surface problem by means of a dimensional re-

duction. Largely, this is done in one of two ways. The first method invokes certain
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ad hoc assumptions regarding the through-thickness variation of the displacement

and stress quantities expressed in terms of 2-D quantities defined on a chosen refer-

ence surface. These assumptions are mainly based on engineering intuition. Then,

the thickness coordinate is eliminated by integration through the plate (shell) thick-

ness, thereby yielding a 2-D boundary value problem. The Kirchhoff-Love type and

Reissner-Mindlin type theories are plate models derived this way, albeit starting from

classical elasticity. Likewise, there have been numerous plate theories derived starting

from a higher-order elasticity theory.

The first attempt was Eringen’s theory of micropolar plates [39] which assumes

that the displacements u1, u2 vary linearly along x3, while u3 and the independent

rotations φ1, φ2, φ3 are constant (x3 taken along the thickness of the plate). Moreover,

the normal or “peeling” stress σ33 is assumed to be zero. This theory is based on

eight unknowns: three averaged displacements, two averaged macrorotations of the

cross-sections and three averaged microrotations.

Many others have since adopted and discussed Eringen’s approach: Ariman [5]

looked at laterally loaded circular micropolar plates. Constanda [23, 24] developed

complex variable treatment of bending of micropolar plates with identical assumptions

and added the effects of distributed and surface loads, while existence and unique-

ness theorems were provided by Schiavone [131, 132], Schiavone and Constanda [133].

A general representation for solutions of Eringen’s micropolar plate equations was

provided by Wang [154]. Other theories with slightly varying assumptions (such as

polynomial representations of through-thickness variations) include those by Stein-

berg [142, 143], Kvasov and Steinberg [88], Gevorkyan [50], Ambartsumian [4], Gao

et al. [45], etc., of which the latter assumes a cubic variation of the in-plane dis-

placements through the thickness (instead of linear) to develop a third-order shear

deformation plate model using the (indeterminate) couple-stress theory. Some of the

more recent works concerning the analysis of Kirchhoff and Reissner-Mindlin plates
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based on couple-stress theory include Tsiatas [151], Kong et al. [82], Yin et al. [160],

Jomehzadeh et al. [78], Ma et al. [98], Roque et al. [128] etc., to name a few.

The main drawback of this approach is that there is no justification provided for

the ad hoc assumptions made. Also, there are various cases where such assumptions

simply will not work (for example, peeling stresses are important while considering

composite plates and cannot be assumed to be zero).

A second method of constructing 2-D plate models is by a formal asymptotic

method, which takes advantage of the smallness of the thickness of the plate rela-

tive to the wavelength of its deformation. The field variables and their governing

differential equations are expanded in an asymptotic series to deduce a series of 2-D

problems corresponding to different kinds of deformation like membrane, bending and

boundary effects. For example, Green and Naghdi [53] derived a set of micropolar

plate equations this way which showed complete agreement to those they derived

previously by a direct approach [54]. Unlike Eringen’s theory, the theory of Green

and Naghdi assumes the in-plane displacement components to be independent of the

transverse coordinate for a first approximation. Erbay [36] presented an asymptotic

theory of thin micropolar plates without a priori assumptions on the exact form of

the field variables. Instead, the relative orders of the field variables (displacements,

microrotations, stresses, couple stresses) are assumed, scaled in terms of a thickness

parameter. It is also shown that Eringen’s plate equations coincide with the zeroth-

order approximation (with slight differences).

Although these theories are mathematically more rigorous and elegant than those

based on ad hoc assumptions, they are still not free of assumptions which are best

avoided whenever possible. It will be shown that the approach chosen in this work us-

ing the VAM does not need a priori assumptions as other formal asymptotic methods,

making it best suited for an engineering approach to plate modeling.
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1.3.2 Direct Approaches

These approaches construct what are known as Cosserat surface models: 2-D di-

rector plate theories that are not directly derived from a 3-D theory of elasticity.

One of the earliest works to construct a reduced-dimensional Cosserat-type model

was by Ericksen and Truesdell [37] who developed an exact theory of rods and shells.

They introduced the notion of a “directed” curve and surface with deformable direc-

tors attached at every point. However, a treatment of the constitutive relations was

lacking.

Later, Green et al. [54] formulated a theory of a restricted Cosserat surface (with

one deformable director) that is exact, complete and fully consistent with the dy-

namical and thermodynamical principles of continuum mechanics. Using these re-

sults, Green and Naghdi also formulated a linear theory of plates [52], [55] and shells

[56]. Cohen and DeSilva [22], DeSilva and Tsai [30] published a nonlinear theory

for oriented surfaces undergoing isothermal or non-isothermal deformations, but with

three deformable directors. Reissner [125] developed a nonlinear theory of shells al-

lowing for arbitrarily large deformations and strains with equilibrium equations that

are geometrically-exact. Other notable efforts in the development of plate (or shell)

models are by Altenbach and Eremeyev [2], Pietraszkiewicz and Eremeyev [118],

Chróścielewski and Witkowski [20], Pietraszkiewicz and Konopińska [119], where lin-

ear and nonlinear models using natural strain measures and exact kinematics are

discussed.

All of these models mention, if at all, constitutive equations that are not directly

related to the 3-D world. Specific constitutive laws are often developed for these

formulations, as described by Naghdi [104]. The elastic constants of the 2-D Cosserat

surface (eight in number if isotropic) could be connected to the 3-D elastic constants

by comparing the strain energy expressions, as was done by Naghdi and Rubin [105],

in [2], [20], among others. Alternately, as suggested by Reissner [125], one would
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have to devise suitable experiments for a 2-D continuum to establish a constitutive

law. Although relevant constitutive laws could be obtained from such a set of specific

experiments, it would be much more expeditious to make use of the comparatively

rich experimental data readily available for 3-D continua. A further alternative would

be to deduce constitutive equations of a 2-D continuum as an asymptotic consequence

of a given system of constitutive equations of a 3-D continuum.

Comparing the two approaches discussed so far, the exact surface kinematics that

are available only in a direct approach are crucial to accurately simulate large de-

formations of a plate structure. If a rational and systematic way to obtain a 2-D

constitute law can be established, Cosserat surface models could be very promising

for the next generation of shell theories. As will be argued, the approach proposed

herein using the VAM seems to be the ideal vehicle to eliminate the need for guessing

of constitutive laws: it can be used to obtain asymptotically correct 2-D constitutive

relationships from those of 3-D continuum mechanics, supplementing a plate formu-

lation that is geometrically-exact and free from ad hoc assumptions like in [125].

1.4 Proposed Approach

To remedy the inadequacies of existing Cosserat plate theories, a theory is proposed

with constitutive relations constructed from a 3-D Cosserat theory of elasticity with-

out invoking any a priori assumptions. Also, exact two-dimensional kinematics of a

Cosserat surface will be used as it is the best available model for plates.

The mathematical foundation of this approach is the Variational-Asymptotic

Method or VAM. Originally proposed by Berdichevsky [10], the VAM is a powerful

mathematical method to construct asymptotically correct models of dimensionally re-

ducible structures. In order to reduce the original 3-D problem to an asymptotically

correct 2-D plate problem, one must attempt to reproduce the energy stored in the

three-dimensional structure in the 2-D formulation. VAM is used to rigorously split a
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general 3-D nonlinear elasticity problem into a 1-D linear through-the-thickness anal-

ysis and a 2-D nonlinear plate analysis. This operation results in the replacement of a

three-dimensional model with a reduced-order model in terms of an asymptotic series

of certain small parameters inherent to the structure, such as the thickness of the

plate relative to the wavelength of its deformation. Thus, the solution of the original

problem can be approximated asymptotically by sequentially dropping small terms

in the energy functional and solving a series of much simpler variational statements.

The proposed approach has been successfully applied by Hodges et al. [65] to

construct classical plate models, and by Yu et al. [166, 167, 162] to construct Reissner-

Mindlin type models for composite laminated plates. These models, implemented in

the computer code VAPAS (Variational-Asymptotic Plate And Shell), have been

shown by Demasi and Yu [29] to be as accurate as layer-wise models despite being as

simple as equivalent single-layer first-order shear deformation theories. For a detailed

description of how VAM can be used to construct reduced-dimensional models, the

reader is referred to the book by Hodges [70].

A Cosserat plate theory constructed using the VAM will have the following highly

desirable features:

• The theory is geometrically-exact, meaning that the displacement of the refer-

ence surface and the rotation of the normal line element are represented exactly.

No restrictions such as small deflections or rotations are imposed, making it

suitable to be directly incorporated into multi-body dynamics codes.

• No a priori assumptions regarding through-thickness variations of the field quan-

tities are made. Instead, it will be shown that the dimensional reduction proce-

dure using the VAM automatically determines their through-thickness behavior

in an asymptotically correct manner.
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• All nine components of the stress and couple-stress tensors (and their work-

conjugate strain measures) can be recovered through the thickness from stan-

dard plate finite element solutions, essentially reproducing 3-D finite element re-

sults but with significantly reduced computational effort. This asymptotically-

accurate recovery is only possible if one starts with 3-D continuum mechanics.

A Note on Degrees of Freedom and the Drilling Stiffness

Central to this work is the determination of the constitutive equations for micropolar

plates. In addition to providing membrane and bending stiffnesses of a Cosserat

elastic plate, first-order effects such as the shear stiffness (like in a Reissner-Mindlin

theory) and the drilling stiffness will also be determined. It is worth noting that

the in-plane curvatures, and hence the drilling degree of freedom (rotation about the

normal to the plate), do not show up in any plate theory that is based on classical

3-D elasticity.

Indeed, Hodges et al. [64] showed that for a Reissner-type plate theory developed

from classical elasticity only 5 independent measures of displacement and rotation

are necessary, and the rotation about the normal can be expressed in terms of these

5 variables. Consequently, only 5 equilibrium equations (for statics) or equations of

motion (EOM, for dynamics) are derived. A sixth equation used to express moment

balance about the normal is expectedly absent due to the reciprocity of the in-plane

shear forces (which has been inferred from moment equilibrium conditions in the

first place). In all, an intrinsic formulation of a Reissner-Mindlin theory contains 5

equilibrium equations/EOM, 6 compatibility equations and 8 constitutive equations

(relating 3 in-plane forces, 3 bending and twisting moments and 2 transverse shear

resultants to their work-conjugate 2-D strain measures).

On the other hand, in a 3-D Cosserat theory of elasticity the rotation about

the normal is taken to be independent of the other 5 displacement and rotation
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measures. Also, the stress tensor is no longer required to be symmetric due to the

presence of couple-stresses. Therefore, an intrinsic formulation of a plate theory will

be derived containing 6 equilibrium equations/EOM, 6 compatibility equations and 12

constitutive equations (relating 4 in-plane forces, 4 bending and twisting moments, 2

transverse shear resultants and 2 drilling moments to their work-conjugate 2-D strain

measures) – a total of 24 equations in as many unknowns.

In the context of a plate (or shell) finite element analysis an independent drilling

degree of freedom has always been viewed as advantageous, especially where a plate

bending element intersects with, say, a beam element or a membrane element (for

example in [71], [137], [44], [72]). This is because the last two elements have six

degrees of freedom per node while a plate element based on classical elasticity has

five. A common workaround has been to incorporate a drill-rotation and introduce an

artificial drilling stiffness which is not inherent to the theory at all. For example, this

technique is used in commercial FEA packages like Nastran and Abaqus. It is clear

that a nonclassical elasticity theory will result in an additional degree of freedom per

node in a theoretical development of plate finite elements and the drilling stiffness is

a natural outcome of the theory.

1.5 Specific Objectives of Present Work

The overall objective of this work is the formulation and implementation of a theory

of elastic plates with microstructure. The construction of such a theory can be broken

up into the following sub-tasks:

• Plate through-the-thickness analysis:

In the context of Cosserat elasticity, this involves reworking most theoretical

aspects of the plate formulation (compared to [64], [166], etc.), such as

(i) plate kinematics, modified to accommodate a rotational field that is inde-

pendent of the displacement field. Here, we treat the local rotation field to
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be an independent ‘rotational analogue’ to the warping field. (Previously,

the latter, along with the 2-D generalized strain measures, completely de-

termined the former).

(ii) the three-dimensional formulation, which relates the 3-D force strain field

and, now additionally, the 3-D moment strain field to a set of 2-D general-

ized plate strain measures. This 3-D moment strain tensor, also referred to

as the wryness tensor, is introduced as work-conjugate to the couple-stress

tensor which is unique to a Cosserat continuum.

(iii) the dimensional reduction, where we attempt to reproduce the potential

energy of the 3-D problem on a 2-D Cosserat surface in an asymptotically-

exact manner using the VAM. In this step, we obtain expressions for the

zeroth-order and first-order warping and local rotation fields which mini-

mize, respectively, the zeroth-order and second-order total potential energy

functionals.

(iv) an energy transformation, to eliminate derivatives containing the 2-D gen-

eralized strain measures and package the strain energy expression in a

more usable form. In previous efforts using classical elasticity, this yielded

a Reissner-like plate model which added contributions of transverse shear

measures to those by classical strain measures of a Kirchhoff-Love theory.

In the present work, this exercise will yield a model that now adds the

contribution of in-plane curvatures to the aforementioned strain measures.

As before, partial derivatives of the resulting energy with respect to the

2-D strain measures determines the constitutive equations. Specifically,

we pick up for the first time the drilling stiffnesses of the plate, by taking

a partial derivative of the energy expression with respect to the in-plane

curvatures. Although the drilling stiffness is mentioned a few times in the

literature, this is the first attempt to the authors knowledge of determining
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it without, say, invoking plane stress assumptions and with a basis in 3-D

continuum mechanics.

This through-the-thickness analysis provides (a) a 2-D plate constitutive law,

and (b) a set of recovery relations which help recover 3-D stress, strain and

displacement data through the thickness from 2-D plate variables (estimated

by a separate analysis) in an asymptotic sense. For practical reasons mentioned

previously we note that the emphasis here is primarily on isotropic Cosserat

elastic materials, although such restrictions are unnecessary from a theoretical

standpoint. So, while the formulation has been developed to include orthotropic

materials, from a validation standpoint a discussion focused on isotropic mate-

rials is deemed sufficient and even preferable.

• Development of a geometrically-exact analysis of Cosserat plates us-

ing Galerkin’s method:

Having dealt with the through-the-thickness analysis, the next objective is the

modeling of a 2-D Cosserat continuum with appropriate kinematics, compati-

bility conditions, constitutive equations and the equations of motion. As was

demonstrated for beams by Hodges [70], starting from Hamilton’s extended

principle three formulations are possible – a fully intrinsic formulation, a dis-

placement formulation and a mixed formulation. Of these, the present work will

reject a complete displacement based formulation due to inherent weaknesses –

equations get very long and complicated for general nonlinear analysis and the

formulation is tied to a chosen set of displacement/finite rotation variables.

A fully intrinsic formulation is one which is independent of any displace-

ment or rotation variables. The advantages of an intrinsic theory are it being

geometrically-exact, with quadratic being the maximum nonlinearities present

and the spatial and time derivatives being a maximum of first order. Also,
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unless specifically requested, the equations can be solved without displacement

or rotation variables for cases where applied loads are independent of deforma-

tion. A mixed variational formulation is also possible combining generalized

strains, forces and moments, linear and angular momenta, motion variables

along with displacements and rotations into a single formulation. As discussed

in [70], it is certainly preferable over a complete displacement based formula-

tion when these variables are necessary. While the fully intrinsic formulation

has its advantanges, it is not suitable for dealing nonlinear statics of statically

indeterminate structures. Plate problems, being inherently hyperstatic, cannot

be dealt with adequately without being augmented with additional kinematical

equations involving displacements and rotations. This can be remedied with

the use of an incremental method, similar to that developed by Sotoudeh and

Hodges [139]. Equations for an incremental method for plates will be developed

that can handle both nonlinear statics and nonlinear steady-state calculations.

Hodges et al. [66] presented an intrinsic theory of plates for statics and dynamics

starting with classical elasticity. They also discuss potential solution strategies

for the resulting intrinsic equations. The main objective of this sub-task is

two-fold:

(i) Extend the previous intrinsic theory to Cosserat elastic plates. The in-

trinsic formulation presented will be applicable to nonlinear statics and

dynamics. Among other things, modifications include a sixth equation of

motion, updated kinematical and constitutive relations and extra bound-

ary conditions.

(ii) Develop a Galerkin-based implementation of the fully intrinsic variational

formulations. Although a fully-intrinsic formulation has been developed

for beams by Patil and Althoff [114], Patil and Hodges [115] and a mixed
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formulation, called GEBT (Geometrically-Exact Beam Theory), has been

developed by Yu and Blair [164] for beams, to the best of the author’s

knowledge, a 2-D solver implementing the intrinsic theory of plates has

not been developed yet (based either on classical or Cosserat elasticity).

This solver would take constitutive relations (and inertial properties) from

the through-the-thickness analysis as input to predict the global behavior

of a Cosserat elastic plate.

The rest of the thesis is organized as follows:

Chapter 2 starts off with a verification of the VAM itself. As explained earlier,

VAM is applicable to dimensionally-reducible structures such as beams, plates and

shells. This chapter looks at problems involving beams that are prismatic, initially

curved and/or twisted beams and provides verification against known 3-D classical

elasticity solutions and 3-D finite element analyses. This chapter is mostly adopted

from Kovvali and Hodges [83], with the authors’ permission. Since this chapter

deals with the verification of the VAM as applied to beams, readers who wish to

concentrate only on the development of a plate theory may skip this chapter without

any consequence.

Chapter 3 will focus solely on the through-the-thickness analysis of Cosserat elas-

tic plates and the development of the plate constitutive law. A discussion on the

effect of micropolar elastic constants on the stiffness properties will be presented. As

mentioned previously, it will be demonstrated that the drilling stiffness of a plate can

be determined in a way that connects 2-D and 3-D continua, and a comparative study

against other available results in the literature will be made.

Chapter 4 will detail the development of a geometrically-exact fully-intrinsic set

of equations for Cosserat elastic plates. It will also be shown how the equations

developed can be made “backwards-compatible” with classical theory of elasticity

to work with more traditional Reissner-Mindlin or Kirchhoff-Love models. This will
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tremendously broaden the usefulness of the solver, delivering a unified implementation

of a theory of plates with or without observable Cosserat effects. In the latter case,

the solver will be able to handle all types of plate constructions from isotropic to

composite laminates providing a geometrically-exact analysis.

Chapter 5 will detail an energy-consistent Galerkin approach to solving the previ-

ously developed equations. After some commentary on the choice of shape functions,

various example problems will be solved using the developed 2-D solver highlighting

the advantages of a fully intrinsic or mixed variational formulation over traditional

displacement based approaches and simplified plate theories, namely a simplification

in treatment while being capable of carrying out a high-fidelity analysis. Solutions

to linearized free vibration problems for a variety of boundary conditions will be

provided to serve as a form of model validation and demonstrate the impact of mi-

cropolar effects on the system eigenvalues. This is followed by a discussion on linear

statics and the applicability of a Galerkin’s method to different boundary conditions

(strictly speaking, using a mixed-method). Finally, analysis techniques for nonlinear

static and steady-state analysis of plates are discussed using an incremental approach.
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CHAPTER II

VERIFICATION OF THE VAM FOR PRISMATIC,

INITIALLY CURVED AND TWISTED BEAMS

2.1 Introduction

Beams come under the category of dimensionally reducible structures, with one di-

mension (wavelength of deformation and radius of curvature/twist) much larger than

the cross-sectional dimensions. Typical examples in the aircraft industry include high

aspect-ratio wings and helicopter rotor blades. Because of the complexity of the in-

terior region of such beam-like structures, their analysis and design may be thought

to be best carried out using 3-D finite-element analyses (FEA) given that such anal-

yses provide for high-fidelity modeling of complex geometries and accurate, reliable

results. However, there are some obvious drawbacks: invariably all FEA tools are

computationally expensive when compared to beam modeling tools, often by two to

three orders of magnitude. Another aspect often overlooked is how labor-intensive

even the modeling process can become, especially for complex layups and geome-

tries. An obvious and popular alternative has been conventional beam modeling

techniques. Although they are computationally less expensive, the results are sel-

dom satisfactory, especially for composite structures, which are frequently the cases

of interest. An ideal methodology would combine the relatively inexpensive nature of

beam modeling tools with the ability to achieve high-fidelity in modeling procedures

á la finite-element analyses, resulting in an efficient, reliable analysis tool with no ad

hoc kinematic assumptions typically associated with standard beam modeling tools.

Such an asymptotically exact methodology, called the Variational Asymptotic

Beam Section Analysis (VABS), has been developed over the last two decades with
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the objective to model realistic rotor blades, creating the best possible set of elas-

tic constants for an equivalent beam analysis from a detailed representation of the

cross-sectional plane. Additionally, it can also recover detailed stress and strain fields

based on inputs from a one-dimensional (1-D) global analysis. It uses the Varia-

tional Asymptotic Method (VAM) as its mathematical basis. The VAM is used to

split a general 3-D nonlinear elasticity problem for a beam-like structure into a two-

dimensional (2-D) linear cross-sectional analysis and a 1-D nonlinear beam analysis

by taking advantage of certain small parameters inherent to the structure (typically

a/l and a/R, where a is a characteristic cross-sectional dimension, l is the wavelength

of deformation and R is the radius of curvature/twist). VAM applies an asymp-

totic expansion in terms of these small parameters of the energy functional instead

of the system of differential equations [93, 14, 15, 80], thereby making the modeling

procedure more compact, less cumbersome and variationally consistent. (The term

“variationally consistent” is used here to mean that all unknown variables follow

naturally from an appropriate minimization problem, based in turn on a variational

principle.) The development of VABS was first given by Hodges et al. [63]. The

cross-sectional modeling capability was later extended to include refinements such as

transverse shear and effects of initial curvature and twist [17, 18, 120, 168].

Verification studies for prismatic, isotropic beams have been carried out in suffi-

cient detail [170, 163], but rigorous verification studies for initially twisted and curved

beams do not seem to exist. Even for orthotropic prismatic beams, there has been

extensive numerical verification but none against solutions from theory of elastic-

ity. The present effort presents verification against elasticity solutions for orthotropic

prismatic beams. A recently updated energy transformation to the generalized Tim-

oshenko form by VABS [61] was shown to affect certain cases of prismatic beams and,

almost always, all beams with initial curvature and twist. The present effort seeks to

verify these capabilities of VABS, viz., the correct modeling of how initial curvature
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and twist affect global behavior of beams. Several cases are presented, which are es-

sential to demonstrate that VABS can produce results with an accuracy comparable

to that of 3-D finite element codes (and theory of elasticity solutions, when available).

The purpose of this chapter is to present results from studies that seek to verify

and validate VABS, and hence the VAM; therefore, no details regarding the theoret-

ical foundation for initially twisted/curved beams are repeated here. Details of the

formulation may, instead, be found in refs. [17, 168, 68, 70, 61]. See work cited by

Hodges [70] for a more complete history of the development and verification of VABS

up to 2006 as well as the corresponding 1-D theory of beams. However, fig. 1 gives

an overview of the beam-modeling procedure. Note that in all the verification cases

considered, the cross-sectional analysis tool VABS is used to construct a generalized

Timoshenko model, represented by a 6 × 6 stiffness matrix which, along with the

6 × 6 cross-sectional mass matrix, is then input into the 1-D geometrically exact,

nonlinear equations of equilibrium for beams [68]. Results from such a 1-D global

analysis, such as 1-D displacements, cross-sectional stress resultants and generalized

strains can then be fed back to VABS in order to perform a 3-D recovery analysis to

calculate pointwise displacement, strain and stress fields from the global behavior of

a 1-D global beam analysis.

In this article we will first address the formulation of the 3D problem. Then both the 2D cross-sectional and
1D beam analyses are outlined. Finally, results obtained for example problems will be presented and discussed,
followed by concluding remarks.

3D Formulation in Terms of Intrinsic 1D Variables
Here we present an overview of the 3D formulation. Since we are first considering the beam as a generic elastic
body, the displacement of every point in the beam can be expressed in terms of three components, each a func-
tion of three curvilinear coordinates x1, x2 and x3, where x1 is a running length coordinate along the reference
line of the beam. This line can be any conveniently chosen line. In elementary theory it is normally chosen to
be the locus of shear centres. However, for our purposes this choice is not viable, because the shear centre
does not in general exist for composite beams. Other convenient choices include the locus of aerodynamic
centres, the locus of cross-sectional mass centroids, etc. For beams with a straight axis about which the initial
twist takes place, choice of this axis as the reference line allows one to characterize the beam as simply ini-
tially twisted.

To make the process of dimensional reduction more understandable, we introduce 1D variables typically
associated with a refined beam theory. These are associated with the average position vector of all material
points in a cross-section and a frame associated with a planar cross-section of the undeformed beam at a spe-
cific value of x1.

It is convenient to introduce a reference frame A, in which are fixed dextral, mutually perpendicular, unit
vectors Ai for i = 1, 2, 3. The frame A is an absolute frame as far as deformation is concerned, in that the ori-
entation of the local undeformed beam cross-section in A is a function only of x1 and not of time t. The motion
of A in an inertial frame I is, however, supposed to be known for all time. This assumption is easily relaxed
for applications to flexible multibody dynamics; it is made only for the sake of simplifying our discussion here.

Consider the beam idealized as a reference line and a typical reference cross-section, as shown in Figure 2.
Let x1 denote arc length along a curved reference line r for an undeformed but initially curved and twisted
beam. Let xa denote lengths along straight lines that are orthogonal to each other and to the reference line r
within a cross-section Σ(x1). (Here and throughout this article, unless specified otherwise, Greek indices assume
values 2 and 3, while Latin indices assume values 1, 2 and 3. Repeated indices are summed over their range
unless indicated otherwise.) Here a point on the undeformed beam reference line r is located relative to a point
fixed in frame A by the position vector r(x1). At each point along r define a frame b in which are fixed orthog-
onal unit vectors bi for i = 1, 2, 3 such that b2(x1) and b3(x1) are tangent to the coordinate curves x2 and x3

at r and b1 is tangent to r. Each value of x1 then specifies not only a point on r but also a reference cross-section
at that point, shown in green at the top the figure. The frame b has an orientation that is fixed in A
for any fixed value of x1 but varies along the beam if the beam is initially curved or twisted. Notice that 
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2.2 Bending and Torsion of an Orthotropic Cantilever

Verifications against solutions from the theory of elasticity are superior to verifications

against numerical solutions, because numerical solutions such as 3-D FEA have issues

such as locking that might be significant depending on the type of analysis and choice

of elements. Analytical modeling of isotropic bars with elliptical and rectangular cross

sections carried out by Yu and Hodges [163] showed that VABS results correlate well

with those from theory of elasticity. Here, we consider the modeling of an orthotropic

cantilevered strip beam subjected to, in turn, a unit tip force and a unit tip torque.

Analytical solutions exist for such orthotropic beams (or a single-layer ply as the case

may be), as derived by St. Venant and given by Lekhnitskii [96].

To this end, consider a cantilever with material properties and dimensions as

shown in table 1. The beam is modeled as a single ply with 0◦ in VABS and is

subjected to F3 = 1 lb. (bending) and M1 = 1 lb-in. (torsion). The structural and

inertial properties as calculated by VABS for a generalized Timoshenko model [168]

are provided in table 1. The beam’s reference axis is along x1, noting that specification

of the length of the beam is not necessary as the solution is independent of the length

(as long as it is sufficiently slender to be classified as a beam and the cross-section

considered is not near the ends of the beam). To compare results from a series solution

based on linear theory of elasticity given by Lekhnitskii [96] (Eqs. 49.10 and 31.16),

we plot the recovered 3-D shear stress fields from VABS (σ12 and σ13), resulting from

the applied sectional loading, along the depth and the width of the said cross-section

passing through the centroid.

When the beam is subjected to a tip force, we obtain, as expected, a parabolic

variation of the shear stress σ13 through the thickness (along x3) as indicated in

fig. 2(a). However, since this beam is loaded along x3 instead of along x2, we also

need to consider the variation of σ13 across the width (where there would be negligible

variation for “in-plane” loading). As shown by fig. 2(b), VABS correctly captures this
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Table 1: Material properties, dimensions and elastic constants
Material properties VABS output
E11 (psi) 1.873× 107 S11 (lb) 3.746× 106

E22 (psi) 1.364× 106 S22 (lb) 1.247× 105

G12 (psi) 0.7479× 106 S33 (lb) 9.093× 104

G13 (psi) 0.6242× 106 S44 (lb-in2) 4.819× 102

ν12 0.30 S55 (lb-in2) 3.122× 103

ν23 0.30 S66 (lb-in2) 1.249× 106

ρ (lb-sec2/in4) 1.450× 10−4 µ (lb-sec2/in2) 2.956× 10−5

Width (in., along x2) 2.0 i2 (lb-sec2) 2.464× 10−8

Thickness (in., along x3) 0.1 i3 (lb-sec2) 9.856× 10−6

Note: The 6×6 stiffness matrix obtained from VABS has stiffness values Sij(i, j =
1, 2, . . . , 6) arranged as 1 – extension; 2,3 – shear; 4 – torsion; 5,6 – bending; Inertia
properties: µ – mass per unit length; i2, i3 – cross-sectional mass moments of inertia

variation too – it stays nearly constant across the width but shoots up significantly

at the ends (while maintaining a parabolic variation along x3 at every station along

x2). It is also worthy to note that the σ12 distribution along the width of the cross

section is quite significant and cannot be neglected, as shown in fig. 2(c) for x3 = 0.05

in. This trend is also anti-symmetric about the x2 axis to satisfy a zero net-force

condition along x2.

The beam is now subjected to a tip torque, and again the distributions of the

shear stresses throughout the cross section are compared. In particular, we look at

variations of σ12 and σ13. As expected, fig. 3(a) shows that σ12 varies linearly through

the thickness even for an orthotropic beam, at least at points away from the ends.

However, this is not the only stress quantity that is significant. It turns out that the

σ13 distribution is also very significant at the faces where x2 = ±1 in., which is shown

in fig. 3(b). Again, the correlation between VABS and the analytical solution is quite

satisfactory.
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Figure 2: Comparison of 3-D stresses σ12 and σ13 for bending, VABS vs. theory of
elasticity
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2.3 Verification for Beams with Initial Curvature and Twist:
Approach 1

The methodology for verification proposed in this section is applicable to beams with

both initial twist and curvature, albeit, with minor differences; in either case, however,

the method of analysis is strongly dependent on the choice of coordinates used. In

particular, we analyze the beam once using a curvilinear coordinate system and once

using a Cartesian coordinate system, making sure the two analyses are consistent.

Care must be taken, however, to understand the meaning and implications of selecting

one system over the other, which is explained briefly below.

For initially twisted beams, analysis using curvilinear coordinates involves choos-

ing a coordinate system such that the local cross-sectional coordinates follow the

twist, thereby continuously rotating along the length of the beam. For this set of

test cases we assume that the beam is uniform along the span, and the twist is small

(such that |ak1| << 1). Such a choice of coordinates requires a single cross-sectional

analysis for the stiffness constants and the initial twist measure k1 enters both the

1-D global analysis and the 2-D cross-sectional analysis, as shown in chapters 4 and

5 of [70].

On the other hand, use of Cartesian coordinates implies that the cross-sectional

coordinates are along fixed directions in space and thus do not follow the twist of the

beam. Therefore, since the cross-sectional geometry varies along the length of the

beam, one needs to carry out numerous sectional analyses along the beam to account

for varying sectional properties (due to varying orientation) as seen from this fixed

Cartesian system. The entire beam is discretized into a number of segments, and the

sectional properties are only evaluated at the ends of each segment and interpolated

linearly within it. As evident, in both the 1-D global analysis and the 2-D cross-

sectional analysis, k1 is set to zero.

For initially curved beams, analysis using curvilinear coordinates requires choosing
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a coordinate system wherein the local cross-sectional coordinates continuously rotate

with the beam reference line (but do not rotate when viewed from a plane normal to

the beam reference line). This approach, again, requires only a single cross-sectional

analysis for the stiffness constants, and the initial curvature measure(s) k2 and/or k3

enter both the 1-D global analysis and the 2-D cross-sectional analysis [70]. Unlike

for beams with initial twist, an analysis using piecewise-Cartesian coordinates also

requires just one cross-sectional analysis, but with k2 and k3 set to zero since we model

the entire curved geometry as being piecewise linear and hence, locally prismatic.

There is also a difference in the 1-D global analysis procedure: Instead of modeling it as

a single beam, the beam is thought to be made up of numerous prismatic beams joined

to each other to make up a curved beam. Therefore, again k2 = k3 = 0. The piecewise-

Cartesian approach entails more approximations than the curvilinear approach, but

increasing the number of elements (beams) produces very similar results for a wide

variety of cases irrespective of the choice of coordinate system. For instance, if the

mode of deformation considered is primarily bending, then Approach 1 is a practical

form of verification, whereas a case with predominantly torsional deformation will

render this approach invalid for verification purposes, although it does bring out

certain important aspects pertaining to these methodologies. The exact nature of

these additional approximations and their implications for predictive capability are

discussed in a later section.

The crux of this methodology is as follows: In cases of both initial twist and

curvature, whereas the curvilinear coordinates approach requires that the curva-

ture measure numbers k1, k2 and k3 enter the analysis, a modeling procedure using

Cartesian/piecewise-Cartesian coordinates does not use them. Therefore, invariance

in the 1-D global analyses results, such as static deflections under load and beam

natural frequencies, can be taken as an indication that initial curvature and twist

effects have been modeled accurately in the 2-D cross-sectional analysis as well as in
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the 1-D global analysis.

2.4 Verification for Beams with Initial Curvature and Twist:
Approach 2

The second and a more rigorous form of verification would be to compare results

from VABS (in tandem with a geometrically-exact 1-D beam analysis code such as

NATASHA [113] (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft) with

1-D information extracted from a 3-D finite-element analysis (such as Abaqus). For

example, to compare the static tip deflection under a dead load, the 1-D displacement

variable from NATASHA is compared with the average cross-sectional tip-deflection

from Abaqus. Comparing the beam natural frequencies against Abaqus can be viewed

as a verification of both the static and dynamic behavior modeling capabilities of a

beam approach using cross-sectional properties from VABS. It should be emphasized

that the 1-D global analysis is geometrically exact; hence, the accuracy of the results

would then solely depend on the accuracy of the stiffness constants provided to the

beam analysis tool by VABS. Hence, good correlation between 1-D global results

and 3-D finite-element results would automatically imply accurate 2-D cross-sectional

modeling.

2.5 Results and Discussion

Several verification cases are now taken up following both the approaches described,

and comparisons between the 1-D and 3-D analyses are conducted systematically.

In this section, results are obtained and discussed for the following cases: (Case 1)

initially twisted isotropic beams, (Case 2) initially curved isotropic beams, (Case 3)

initially twisted anisotropic beams, (Case 4) initially curved anisotropic beams, and

(Case 5) a helical spring.
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2.5.1 Case 1: Initially Twisted Isotropic Beams

Results given by Ho et al. [61] showed the prediction of natural frequencies of an

initially twisted isotropic rectangular section and verified by Approach 1. However,

no static deflection results were shown and hence, supplementing results from Ref.

[61] with results from the current section completes the discussion. An example of a

statically-loaded, isotropic, initially-twisted beam is now shown, verified by Approach

1. Here, we consider an isotropic square cross section of side 0.5 in. The length of the

beam is 10 in. and has an initial twist of k1 = 0.1 rad/in. The Young’s Modulus is

E = 2.6× 107 lb/in2, Poisson’s ratio is ν = 0.3 and the mass density ρ = 7.3× 10−4

lb-sec2/in4. The beam is cantilevered and subjected to exaggerated gravitational

loading of 500 times its normal value. Figure 4 shows vertical and lateral deflections

of the beam by analyses using curvilinear and Cartesian coordinates. As can be seen,

the curves show excellent agreement.

2.5.2 Case 2: Initially Curved Isotropic Beams

An initially curved, cantilevered, isotropic beam is chosen with the same material

properties as in Case 1. However, the cross section is rectangular measuring 2 in.×1

in. The length of the beam is now 20 in. and has an initial curvature of k2 = 0.05

rad/in. Again, verification is carried out by Approach 1, where a set of curvilinear

coordinates and piecewise-Cartesian coordinates are chosen to carry out a static and a

dynamic analysis on the beam and the results compared. First, the beam is subjected

to a uniform exaggerated gravitational loading 500 times its normal value. The beam

undergoes axial and transverse displacements as shown in fig. 5. Again, clearly, both

analyses show excellent agreement with one another.

Natural frequencies for the same beam were then calculated with a small modi-

fication: the clamp at the end is removed and the beam is made free-free. Results
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29



are plotted as a function of k2 varying from -0.05 rad/in. to +0.05 rad/in. As ex-

pected, the curves are symmetric about k2 = 0 due to material isotropy and overall

symmetry. With the understanding that correct prediction of natural frequencies can

be interpreted as an accurate representation of the elastic and dynamic behavior of

the beam as influenced by initial curvature, fig. 6 clearly indicates the accuracy of

modeling initial curvature effects in VABS.

2.5.3 Case 3: Initially Twisted Anisotropic Beams

The case considered is a structurally coupled composite beam with rectangular cross

section manufactured from AS4/3501-6 graphite epoxy. The material properties and

outer dimensions of the beam are provided in table 2. A prismatic cantilevered beam

of this configuration has been experimentally tested by Minguet and Dugundji [102,

103]. Note that a prismatic beam with the given configuration will result in bending-

twist coupling. In the present case, we consider an initial twist k1 = 0.05 rad/in, which

further introduces extension-torsion and shear-bending couplings (along with weak

shear-torsion and extension-bending couplings). The beam is free on either end, and

a free-vibration analysis is carried out. The decision to model the beam with free-free

boundary conditions stems from the fact that results may vary considerably depending

on how a boundary condition is applied in a finite element analysis, as discussed by

Yu [165]. For example, there is an infinitely large variety of ways to model a clamped

end in a 3-D finite-element analysis, none of them necessarily being “correct.” The

way a boundary is modeled does not affect long beams as much it does short ones,

with short strip beams affected more than short regular beams. Therefore, choosing

free-free boundary conditions eliminates the possibility that boundary conditions can

contribute to differences, especially for higher frequencies.

Unlike the previous cases examined, we now verify VABS using Approach 2. The

beam is modeled using curvilinear coordinates in VABS and NATASHA and compared
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in., a = 2 in.

ï0.05 ï0.04 ï0.03 ï0.02 ï0.01 0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Initial Curvature k2 (rad/in.)

N
a
tu

ra
l

F
re

q
u
en

cy
(H

z)

 

 

∆ Cartesian
— Curvilinear

Figure 6: Natural frequencies of an initially curved free-free isotropic beam; L = 20
in., a = 2 in.

31



Table 2: Material properties and dimensions
Material properties Outer dimensions
E11 2.059× 107 psi Width 1.1820 in.
E22, E33 1.42× 106 psi Thickness 0.0579 in.
G12, G13 8.70× 105 psi Length 22.047 in.
G23 6.96× 105 psi Layup [45◦/0◦]3s
ν12, ν13 0.30 k1 0− 0.05 rad/in.
ν23 0.34 k2 0− 0.05 rad/in
ρ 1.4784× 10−4 lb-sec2/in.4

with finite-element results generated using Abaqus. Figure 7 compares the natural

frequencies calculated for various values of k1 ranging from 0 to 0.05 rad/in. The solid

lines are results produced by VABS and the symbols denote results from Abaqus.

Note that due to a symmetric layup and the nature of the boundary conditions,

results would be identical for positive or negative values of initial twist, and varying

k1 starting at zero will suffice. The first ten modes shown are in the order of first,

second and third flap-wise bending (F1, F2, F3), first torsion (T1), fourth and fifth

flap-wise bending (F4, F5), second torsion (T2), sixth flap-wise bending (F6), first

lead-lag bending (L1) and third torsion (T3). As should be the case, initial twist

most strongly affects the torsional frequencies. While one may not be interested in

so many modes of vibration, it is worth noting that even the sixth flap-wise bending

mode differs from FEA results only by about 1.5%. This is in spite of the parameter

a/l (which we assumed to be small) not being negligibly small compared to unity

because l would approximately be one-sixth of the beam length. The rest of the

frequencies are all within 0.5% for all values of k1. With the correlation being this

excellent, it is also relevant to consider the relative costs of these methods of analysis.

The Abaqus model was meshed with 4,500 twenty-noded brick elements, and the code

took roughly 180 seconds to run. On the other hand, VABS takes roughly 0.1 seconds

to perform the cross-sectional analysis while NATASHA takes roughly 3 seconds to

obtain converged results even when using a very large number of elements (roughly
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200 along the length). Further, taking into account the relative ease of both pre-

and post-processing of results in VABS/NATASHA, the gains of using a 2-D/1-D

methodology become apparent. It should be noted that NATASHA is a MATLAB-

based code and is therefore not optimized for speed, so actual gains in efficiency when

using a compiled program for the beam analysis would be much greater than reported

here.
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Figure 7: Natural frequencies of an initially twisted free-free anisotropic beam; VABS
vs. Abaqus; L = 22.047 in., a = 1.182 in.

2.5.4 Case 4: Initially Curved Anisotropic Beams

The geometry and the material properties for this case remain exactly the same as in

the previous case with the difference being that the beam is now initially curved rather

than initially twisted. This modifies the stiffness matrix by introducing shear-twist

and extension-bending couplings (along with weak extension-twist and shear-bending

couplings). The beam has a strip-like geometry with curvature k2 out of its plane,

i.e., along the soft-bending direction. One of the reasons this case was chosen is

because for strip-like beams k2 affects the results more than k3. A more important

reason is that there exist elasticity solutions for isotropic strip-beams with in-plane
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curvature [49] against which VABS has been verified [122]. However, no analytical

solutions exist for anisotropic strip-beams curved out-of-plane. Thus, one has to

resort to 3-D finite-element procedures, against which the present case is intended to

be verified. Unlike the previous case, however, both approaches mentioned previously

will be applied to this example. Figure 8 compares natural frequencies calculated by

VABS/NATASHA (solid lines) against finite-element results generated using Abaqus

(symbols). Most of the characteristics described for Case 3 hold true including the

relative costs of the two analyses and the ordering of modes shown.

Figure 9 compares natural frequencies obtained via analyzing with curvilinear and

piecewise-Cartesian coordinates using VABS and NATASHA (represented by solid

lines and symbols, respectively). As one increases the number of elements one can

observe that both analyses yield nearly identical results, thus verifying the capabilities

of VABS. Just as in Case 3, of all the modes of vibration, the torsional frequencies

are most strongly affected because of the initial curvature. While the presence of

initial curvature does modify the equations governing the 1-D global beam analysis

(and hence, the natural frequencies), it can also be shown that it is equally impor-

tant to take into account how this curvature measure affects the 2-D cross-sectional

analysis (and hence modifies the sectional stiffness properties that appear in the 1-D

global analysis) in order to predict this variation with curvature completely and cor-

rectly. For example, table 3 shows the predicted torsional frequencies by Abaqus and

VABS/NATASHA for an initial curvature measure k2 = 0.05. In the last column are

results from a 1-D global analysis with stiffness constants based on a prismatic beam

cross-sectional analysis. In other words, the curvature measure(s) were neglected in

VABS and the natural frequencies calculated. As can be seen, there is a considerable

difference in results; and the prediction based on prismatic stiffness constants may

lead to gross inaccuracies in certain cases.
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One can observe that predictions of the torsional modes between the curvilin-

ear and piecewise-Cartesian-coordinates methodologies slowly diverge as k2 increases.

This would be a manifestation of the fact that the piecewise-Cartesian coordinates

approach entails more approximations than the curvilinear approach, viz., that initial

curvatures (and twist) affect the cross-sectional modeling. For a very large number

of elements, the Cartesian approach would tend to a procedure equivalent to just

neglecting the curvature measures in VABS. This is evident by looking at the fourth

column of table 3. It is important to understand this limitation of the methodology.

For simple static load cases, this methodology works very well as the effect of k2 on

flap-wise deformation is not as significant. A detailed study of the importance of

including curvature measures in the cross-sectional modeling has been given by Ces-

nik and Hodges [17], where it is shown that corrections to the stiffness model due to

initial twist and curvature are vital for proper representation of anisotropic beams.
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vs. Abaqus; L = 22.047 in., a = 1.182 in.
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Table 3: Effect of including curvature measures in VABS on torsional natural fre-
quencies (in Hz.)
Mode Abaqus VABS VABSprismatic VABSpc

Torsion 1 177.60 178.31 172.14 171.78
Torsion 2 373.00 373.26 360.34 360.01
Torsion 3 609.46 608.10 585.72 585.17

2.5.5 Case 5: A Helical Spring

We now consider the case of a beam that is simultaneously initially twisted and

curved. Imagining a really long beam with these two curvature measures results in

what looks like a helical spring, shown in fig. 10 below. Such a “beam” is modeled

in Abaqus and VABS with an isotropic circular cross section with k1 6= 0 and either

k2 6= 0 or k3 6= 0. The geometric and material properties of the helix are shown

in table 4. Using these specifications and the Frenet-Serret formulae for continuous,

differentiable space curves, one can compute the initial curvature measures as k1 =

0.749 rad/in.−1 and k2 = 4.967 rad/in.−1. (Note that k3 could have been used instead
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of k2 – the choices are equivalent. Also, no initial strains are assumed.)

Figure 11 compares the natural frequencies of a hanging helical spring (clamped-

free boundary conditions) obtained from the 1-D/2-D methodology to a 3-D finite-

element analysis in Abaqus. The lowest modes are predicted the most accurate, the

accuracy declining with increasing mode number. However, all the frequencies shown

in the bar graph predicted by VABS are within 1% of the results from Abaqus, yet at a

far less computational cost. For example, the Abaqus model was meshed with 11,872

twenty-noded hexahedral elements, and the analysis took just under 180 seconds to

complete (on a Core 2 Duo processor). On the other hand, VABS and NATASHA

obtained results within 1% of the Abaqus result using far fewer degrees of freedom and

much less computing time – in this case, 13 sec. Hence, this serves as another verified

case for VABS with regard to initial twist and curvature, further demonstrating that

VABS provides a far less costly alternative to 3-D FEA tools without significant loss

of accuracy.

Table 4: Material and geometric properties of helix
Material properties Geometry
E 2.9877× 106 psi Helical Radius 1.9685× 10−1 in
ν 0.30 Wire Radius 1.9865× 10−2 in
ρ 7.3921× 10−4 lb-sec2/in4 Helical Angle 8.5744◦

Turns 7.6
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Figure 10: Abaqus model for the helical spring
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Figure 11: Natural frequencies of helical spring: VABS/NATASHA vs. Abaqus
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CHAPTER III

VARIATIONAL ASYMPTOTIC MODELING OF

COSSERAT PLATES

3.1 Plate Kinematics

Having satisfactorily verified the capabilities of the variational asymptotic method at

dealing with dimensionally reducible structures, we can now proceed to the modeling

of Cosserat plates.

Consider a Cosserat elastic plate in which matter is distributed about a planar

surface so that one dimension is significantly smaller than the other two. Let us

introduce Cartesian coordinates xi such that xα denotes lengths along orthogonal

straight lines in the mid-surface of the undeformed plate, and x3 is the distance of an

arbitrary point to the mid-surface in the undeformed plate with −h/2 ≤ x3 ≤ h/2.

Let bi denote an orthogonal reference triad along the undeformed coordinate lines.

Covariant and contravariant undeformed base vectors (gi and gi, respectively) both

reduce to bi since the coordinate system chosen is Cartesian.

The position vector from a fixed point O to an arbitrary point is (see fig. 12)

r̂(x1, x2, x3) = r(x1, x2) + x3b3 (2)

The position vector to the mid-surface is also the average position of points along the

normal line, at a particular value of (x1, x2) so that

r(x1, x2) =

∫ h/2

−h/2
r̂dx3 = 〈r̂〉 (3)

where the angle brackets 〈 〉 are used throughout to denote integration through the

thickness (assumed a constant).
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Figure 12: Schematic of plate deformation

A Cosserat continuum also incorporates a local rotation of each material point

in addition to the translation assumed in classical elasticity. One can introduce the

notion of a triad of vectors also called directors attached to each point and talk about

an independent local rotation (or microrotation, as referred to by some authors)

in addition to the macrorotation of the medium. For simplicity, we pick the three

orthonormal directors needed for each 3-D material point in the undeformed state to

be the same as the triad bi of the undeformed reference surface. Therefore,

b̂i(x1, x2, x3) = bi(x1, x2) (4)

Consider the deformed state configuration. The particle which had position vector

r̂(x1, x2, x3) in the undeformed state now has the position vector R̂(x1, x2, x3). We
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can write the position vector from O to any point in the deformed state as

R̂(x1, x2, x3) = R(x1, x2) + x3B3(x1, x2) + wi(x1, x2, x3)Bi(x1, x2) (5)

= r(x1, x2) + u(x1, x2) + x3B3(x1, x2) + wi(x1, x2, x3)Bi(x1, x2) (6)

where wi(x1, x2, x3) is the three-dimensional (3-D) warping displacement field.

Similarly, the directors associated with each particle b̂i(x1, x2, x3) in the unde-

formed state now are the orthonormal directors B̂i(x1, x2, x3). The orientation of B̂i

is coincident with b̂i when the plate is undeformed and must be defined in terms of

the plate deformation; the rotation from b̂i to B̂i is described in terms of the rotation

tensor C(x1, x2, x3).

B̂i = C · b̂i (7)

We can decompose the total rotation C(x1, x2, x3) into a local rotation (small)

and a global rotation (potentially large) as

C(x1, x2, x3) = CBb(x1, x2) · exp(φ̃)(x1, x2, x3) (8)

where exp(φ̃) is the local rotation tensor appropriate for small local rotations (Sedov

1966). The rotation tensor CBb(x1, x2) describes the rotation from bi to Bi. Natu-

rally, the orientation of Bi is coincident with bi when the plate is undeformed. We

have

Bi = CBb · bi (9)

The axial vector φ associated with the antisymmetric tensor φ̃, called the local

rotation vector, can be expressed in the bi basis:

φ = φi(x1, x2, x3)bi (10)

The position R and the triad Bi must be well-defined in order to make eqs. (5) and (8)

describe unique 3-D fields. Thus, it is necessary to identify six dependency relations
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to ensure one-to-one maps. First, in order for eq. (5) to be analogous to eq. (2), R

is defined as the average position of points parallel to the vector B3 corresponding

to particular values of (x1, x2) in the plate. In order for this definition to hold, the

warping must satisfy these three equations

〈wi(x1, x2, x3)〉 = 0 (11)

In an analogous fashion, one can pick CBb to be defined as the average rotation tensor

of points parallel to the vector B3, giving

〈φi(x1, x2, x3)〉 = 0 (12)

In order to express the 3-D strain measures in terms of intrinsic 2-D variables, the fol-

lowing generalized (two-dimensional) strain measures are introduced similar to those

in [64]

R,α = Bα + εαβBβ + 2γα3B3 (13)

and the components of the curvature vectors such that

Bi,α = (−KαβBβ ×B3 +Kα3B3)×Bi (14)

At this point, it is useful to note a few deviations from [64], [166], [167], [162] regarding

the six constraints. Unlike before, having constraints as defined by eq. (12) does not

allow one to pick ε12 = ε21. Moreover, since B3 is not defined to be perpendicular to

R,1 ×R,2, we cannot set 2γα3 = 0 at this stage either, and must instead retain them

as separate two-dimensional strain measures.

3.2 Three-Dimensional Formulation

A Cosserat elastic solid is distinguished from an elastic solid by the fact that it can

support body and surface couples. Hence, two types of stresses are generated – force

stresses and couple stresses – to equilibrate the applied loads. This leads to two sets of
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constitutive equations, one relating the force stress tensor to a typical “force strain” or

stretch tensor, and another relating the couple-stress tensor to an “angular/moment

strain tensor”, commonly referred to as the wryness tensor. We now need to develop

expressions for these three-dimensional strain measures in terms of the generalized

two-dimensional strain measures, the warping field and the local rotation field. For

brevity, only the expressions are presented here with a detailed derivation provided

in appendix A.

For the purpose of restricting ourselves to small strain, we will measure stretching

and shear deformation by the Jaumann-Biot-Cauchy strain tensor (Γ), whose measure

numbers are given by

Γ =


ε11 + x3K11 + w1,1 ε21 + φ3 + x3K21 + w1,2 w1,3 − φ2

ε12 − φ3 + x3K12 + w2,1 ε22 + x3K22 + w2,2 w2,3 + φ1

φ2 + w3,1 + 2γ13 −φ1 + w3,2 + 2γ23 w3,3

 (15)

where the non-underlined terms areO(ε̂) and the single-underlined terms areO(hε̂/l)1.

Only the former are used to develop a “classical” theory of Cosserat elastic plates,

while the latter are included in the development of a refined theory. Terms of O(ε̂2)

under the assumption of small strain (ε̂ � 1) have been discarded for the sake of

developing a linear constitutive model.

Work-conjugate to the couple-stress tensor, an additional strain measure unique to

Cosserat elastic bodies, called the wryness tensor, can be defined similar to Reissner

[127], Pietraszkiewicz and Eremeyev [118], Kafadar and Eringen [79], among others.

Physically, we can explain this in the same manner as how we define a stretching strain

as, loosely speaking, a measure of the gradient of a displacement field; the wryness

tensor is, again loosely speaking, a measure of the gradient of a proper orthogonal

1Estimation of asymptotic order of derivatives is dependent on characteristic length of the do-
mains – derivatives with respect to the in-plane coordinates evolve slower than those with respect
to the thickness coordinate.
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rotation tensor

X =


−K12 − φ1,1 K11 − φ2,1 K13 − φ3,1

−K22 − φ1,2 K21 − φ2,2 K23 − φ3,2

−φ1,3 −φ2,3 −φ3,3

 (16)

where X is a nonsymmetric 3 × 3 matrix of the three-dimensional “moment” strain

measures Xij.

3.2.1 Strain Energy of an Isotropic Cosserat Elastic Material

The total elastically stored energy integrated through the thickness are the addition

of two separate contributions:

2 U = 〈σ : Γ〉+ 〈µ : X〉 (17)

For an isotropic Cosserat elastic material, the constitutive laws are given by eq. (1),

repeated here for convenience

σij = λΓkkδij + (µ+ κ)Γij + µΓji

µij = αXkkδij + βXji + γXij

3.2.2 Virtual Work of the Applied Loads

Consider a plate with an applied body force distribution ϕf (= ϕfiBi), a body couple

distribution ϕm (= ϕmiBi), a surface force distribution τ f (= τfiBi) and a surface

couple distribution τm (= τmiBi). As detailed in appendix C, the virtual work done

through the thickness by the applied loads τ+
f , τ+

m at the top surface, τ−f , τ−m at the

bottom surface, the body force ϕf and the body couple ϕm is

δW =〈ϕf · δR̂〉+ τ+
f · δR̂|h/2 + τ−f · δR̂|−h/2

+〈ϕm · δψ
B̂b〉+ τ+

m · δψ
B̂b|h/2 + τ−m · δψ

B̂b|−h/2
(18)

Following the steps and definitions detailed in appendix C, this becomes

δW = δq
T
f + δψ

T
m+ δ

(
τ+T
f w+ + τ−Tf w− + 〈ϕT

f w〉
)

+ δ
(
τ+T
m φ+ + τ−Tm φ− + 〈ϕT

mφ〉
) (19)
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where the generalized applied forces and moments distributed over the plate reference

surface can be defined as

f = τ+f + τ−f + 〈ϕf〉 (20)

m =


τ+m1

+ τ−m1
+ h

2
(τ+f1 − τ

−
f1

) + 〈ϕm1 + x3ϕf1〉

τ+m2
+ τ−m2

+ h
2
(τ+f2 − τ

−
f2

) + 〈ϕm2 + x3ϕf2〉

τ+m3
+ τ−m3

+ 〈ϕm3〉

 (21)

3.3 Compatibility Equations

It is well known that the 12 quantities εαβ, 2γα3, Kαβ, Kα3 are not independent. It

is clear that that the kinematics of the plate reference surface can be expressed in at

most six independent quantities: three measures of displacement and three measures

of rotation. Expressing the displacement vector u and rotation tensor CBb in matrix

form as u and CBb, it can easily be shown that the following kinematical relations

hold

γα = CBb(eα + u,α)− eα

K̃α = −CBb
,α C

bB

(22)

where (̃ )ij = −eijk( )k, and we have defined

γα =


εα1

εα2

2γα3

 , Kα =


−Kα2

Kα1

Kα3

 , e1 =


1

0

0

 , e2 =


0

1

0

 (23)

The appropriate compatibility equations can be derived following Simmonds and

Danielson [136] or Reissner [125], and are similar in form to those reported by Hodges

et al. [64] had we chosen ε12 = ε21.

γ1,2 − γ2,1 − K̃1(γ2 + e2) + K̃2(γ1 + e1) = 0

K1,2 −K2,1 − K̃1K2 = 0

(24)
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For the reader’s convenience, these relations are expanded out and presented in ap-

pendix B.

Since we are restricting ourselves to small strains, such that ε̂ = max(|εαβ|, h|Kαβ|),

there are several inferences one can draw from these compatibility equations regarding

the relative orders of some of these terms.

• Kα3 are higher order in an asymptotic sense, i.e., O(ε̂/l). This implies that

for the zeroth-order approximation of the total energy leading to a “classical”

theory (where the energy is O(µ̄ε̂2)), these strain measures do not appear. They

will, however, appear in a refined theory where the strain energy has terms of

O(µ̄h2ε̂2/l2).

• The transverse shear strains 2γα3 are taken to be O(hε̂/l). This will also, like

Kα3, result in these strain measures not appearing in a classical theory, but

instead in a refined one.

• The difference K12 − K21 is O(hε̂/l2), involving the derivatives of the shear

strain measures with respect to the in-plane coordinates. It is then natural

to replace K12 and K21 with two other measures, κ12 ≡ (K12 + K21)/2 and

Ωκ ≡ (K12−K21)/2. As we shall see later, doing so makes Ωκ vanish from both

a classical theory and a second-order refined theory. It would only show up if

terms of O(µh4ε̂2/l4) were considered for the strain energy.

• A similar change of variables with ε12 and ε21 can be done, with them replaced

by ε12 ≡ (ε12 + ε21)/2 and Ωε ≡ (ε12 − ε21)/2. However, none of the compati-

bility equations allow us to comment on the relative orders of these two strain

measures and will have to be retained, even in a classical theory. But as will

be shown later, the equilibrium equations enable us to conclude that Ωε is also

O(h2ε̂/l2).
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3.4 Dimensional Reduction

Up to this point, we have simply stated an alternative formulation of the original 3-D

Cosserat elasticity problem. If we attempt to solve this problem directly, we will meet

the same difficulty as solving any full 3-D elasticity problem. Fortunately, as shown

below, the VAM can be used to calculate the 3-D warping functions asymptotically.

In order to reduce the original 3-D problem to an asymptotically correct 2-D plate

problem, one must attempt to reproduce the energy stored in the 3-D structure in

the 2-D formulation. This dimensional reduction can only be done in an approximate

manner, by taking advantage of the certain small parameters inherent to the problem.

For plates, this would be h/l, where l is the wavelength of deformation.

Central to this method is the assessment of the asymptotic orders of various

quantities and their derivatives in the formulation. In the previous section, we have

reported on the relative orders of the various generalized 2-D strain measures. Ad-

ditionally, we need the orders of the distributed force and moment terms, fi and mi.

Following Sutyrin [145], we will state for now that these terms do not contribute to a

zeroth-order approximation. Later, when we develop a refined model, will prove that

these terms need to be included.

The complete statement of the problem can now be presented in terms of the

principle of virtual work, such that

δU − δW = 0 (25)

The VAM requires one to find the leading terms of the energy functional according to

different orders (expanded in a series in the small parameter h/l). The total potential

energy consists of terms involving the 2-D generalized strains and the generalized

warping (wi and φi). One can pose the problem that governs the warping as the

minimization of a total potential functional Π in which only the generalized warping
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functions wi, φi are varied subject to constraints.

δΠ = 0 with

Π = U − τ+T
f w+ − τ−Tf w− − 〈ϕT

f w〉 − τ+T
m φ+ − τ−Tm φ− − 〈ϕT

mφ〉
(26)

3.4.1 Zeroth-Order Approximation

For the zeroth-order approximation, the generalized warping field that minimizes the

total potential energy, subject to the constraints given by eqs. (11) and (12) is found

using the usual calculus of variations (see appendix E for closed form expressions).

Substituting the solution back into the total energy and integrating through-the-

thickness (since the expression is now an explicit function of x3), one can obtain a

quadratic form of the total potential energy in the two-dimensional strain measures,

asymptotically correct through O(µ̄hε̂2) as

2Π0 = ETAE (27)

where

E = [ε11 2ε12 2Ωε ε22 K11 2κ12 K22]
T (28)

and µ̄ is the order of a typical material constant (such as E). It is worth noting

that ε12 and ε21 appear as two separate strain measures (via ε12 and Ωε) due to

the choice of constraints on the local rotation in eq. (12). On the other hand, only

the sum (K12 +K21) appears while the difference (K12−K21) is absent as previously

expected. So, in all, we have 7 generalized strain measures appearing in a zeroth-order

approximation.

Since Π0 is a quadratic form, one can express the plate elastic law in a form where

the conjugate stress resultants denoted by N11, N12, Nε, N22, M11, M12 and M22 are

linear functions of the aforementioned list of two-dimensional strain measures. The

“classical” plate constitutive law is then obtained as follows
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N11 =
∂Π0

∂ε11
=

Eh

1− ν2 (ε11 + νε22) (29a)

N22 =
∂Π0

∂ε22
=

Eh

1− ν2 (νε11 + ε22) (29b)

N12 =
∂Π0

∂(2ε12)
=

Eh

1− ν2
(1− ν)

2
2ε12 (29c)

Nε =
∂Π0

∂(2Ωε)
=
hκ

2
(2Ωε) (29d)

M11 =
∂Π0

∂K11

=

[
Eh3

12(1− ν2) + γh

]
K11 +

[
Eνh3

12(1− ν2) − βh
]
K22 (29e)

M12 =
∂Π0

∂(2κ12)
=

[
Eh3

12(1− ν2)
1− ν

2
+

(β + γ)h

2

]
2κ12 (29f)

M22 =
∂Π0

∂K22

=

[
Eνh3

12(1− ν2) − βh
]
K11 +

[
Eh3

12(1− ν2) + γh

]
K22 (29g)

where

E =
(2µ+ κ)(3λ+ 2µ+ κ)

2λ+ 2µ+ κ

ν =
λ

2λ+ 2µ+ κ

(30)

There are a few important observations to be made here.

• The bending and torsional stiffnesses have contributions from the nonclassical

elastic constants β and γ. Also, these additional terms are linear in h in contrast

to the classical flexural rigidity which is cubic in h. This leads one to conclude

that an increase in the flexural rigidity due to micropolar effects will become

important only for very thin plates.

• Figures 13 and 14 show the increase in the cylindrical bending stiffness of a plate

made of dense polyurethane and polystyrene, respectively as the plate thickness

decreases. Figures 15 and 16 show a similar dependence of the torsional stiffness

on the thickness of a plate made of the same materials. The stiffnesses have

been normalized with their classical values. The constants lb, lt that appear in

the plots are characteristic lengths associated with bending and torsion, defined
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as l2b = γ/2(2µ + κ) and l2t = (β + γ)/(2µ + κ). All the necessary micropolar

constants are presented in table 5 and have been taken from experimental data

provided by Lakes [90].

• These expressions for the membrane and bending stiffnesses coincide with those

published by Gauthier and Jahsman [47], Ellis and Smith [35], Altenbach and

Eremeyev [2], etc. However, no a priori assumptions have been made regarding

the deformation. For example, Ellis and Smith use standard Kirchhoff-Love-

type assumptions regarding the deformation – normal lines remain straight and

normal after deformation, vanishing of the normal stress, etc. Gauthier and

Jahsman treat the problem as plane stress, which automatically implies a loss

of through-the-thickness information. Altenbach and Eremeyev’s linear plate

theory also contains assumptions regarding the through-thickness variation of

the displacements and stresses, not unlike those by Eringen [39]. Clearly, such

assumptions are neither necessary nor are they correct.

• It is worth mentioning that expressions such as this modified plate constitutive

law are what have been traditionally used to design experiments measuring the

constants β, γ, etc. For example, one can consider plate specimens of different

thicknesses and experimentally measure their flexural rigidity as a function of

h in a cylindrical bending test, thereby determining a length scale parameter

associate with bending (and hence determining γ).

3.4.2 Second-Order approximation

We note that the zeroth-order warping is O(ε̂). According to the VAM, to obtain a

refined total energy (of O(µ̄h2ε̂2/l2)), one needs to find the higher-order contribution

in the asymptotic sense to the warping. To obtain the first-order approximations of
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Figure 13: Dependence on thickness of cylindrical bending stiffness in plates made
of dense Polyurethane
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Figure 14: Dependence on thickness of cylindrical bending stiffness in plates made
of Polystyrene
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Figure 15: Dependence on thickness of twisting stiffness in plates made of dense
Polyurethane
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Figure 16: Dependence on thickness of twisting stiffness in plates made of Polystyrene
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Table 5: Material properties of some foams showing length-scale dependent behavior

Polyurethane (dense) Polystyrene
E 2.995× 108 N/m2 1.300× 106 N/m2

ν 0.44 0.07
κ 8.666× 106 N/m2 5.062× 104 N/m2

β 3.547× 101 N −4.320× 101 N
γ 4.448× 101 N 6.075× 101 N
l0 1.635× 10−3 m 1.666× 10−2 m
ρ 3.40× 102 kg/m3 3.674× 101 kg/m3

the generalized warping functions, we simply perturb the zeroth-order results like so

wα = < zeroth-order in-plane warping > + vα

w3 = < zeroth-order out-of-plane warping > + v3

φα = < zeroth-order in-plane local rotation > + ϕα

φ3 = < zeroth-order out-of-plane local rotation > + ϕ3

(31)

Substituting this back into eqs. (15) and (16), one can obtain the leading terms of the

total energy that is asymptotically correct through the second order. Doing so will

result in an expression involving, among other terms, derivatives of vi, ϕi with respect

to the in-plane coordinates. One can eliminate these terms using integration by parts,

since the goal is to obtain an interior solution for the plate without considering edge

effects. Then, a straightforward application of the calculus of variations again will

get us expressions for the generalized warping fields. Closed form expressions for

the same are presented in appendix E for the case of constant body-forces through

the thickness of the plate2. Substituting the solution back into the total energy

and integrating through-the-thickness, one can obtain the following form of the total

potential energy in the two-dimensional strain measures and the externally applied

2Such restrictions are unnecessary although it does simplify calculations considerably.
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loads, asymptotically correct through O(µ̄h3/l2ε̂2):

2Π1 =ETAE + ET,1BE,1 + 2ET,1CE,2 + ET,2DE,2

+GTGG + ET,1G1G + ET,2G2G +KTHK + ET,1H1K + ET,2H2K + ETF
(32)

where G = [2γ13 2γ23]
T , K = [K13 K23]

T . Due to their lengthy nature, expressions for

the matrices above are not provided.

The form of the strain energy in eq. (32) contains derivatives of the 2-D generalized

strains which is unsuitable for practical use. If possible, we wish to eliminate these

terms and repackage the energy expression in the following form:

2Πc = ET ĀE + GT ḠG +KT H̄K + ETFE + GTFG +KTFK (33)

This is possible with a careful use of the equilibrium equations (which are pre-

sented in the next section) and the compatibility equations. It can be shown that,

for isotropic materials, this repackaging can be done in an asymptotically exact man-

ner (i.e., terms discarded in the process are O(µ̄h4ε̂2/l3)). On the other hand, for

orthotropic or even generally anisotropic materials this can only be done in an ap-

proximate manner via an optimization technique similar to the one presented by Yu

et al. [166].

At this stage, we will concentrate mainly on obtaining the Ā, Ḡ, H̄ matrices for

isotropic materials although the load-related terms can be easily determined as well.

It can be shown that Ā = A. This means that the constitutive relations provided by

eq. (29) remain valid for a second-order accurate energy model. This leaves us with

the determination of the shear stiffness matrix Ḡ and the drilling stiffness matrix H̄.

We will now comment on the solutions obtained for these quantities:

Shear Stiffness It can be shown that the shear stiffness ḡ of the plate is the solution

of the following quadratic equation

b

(D + γh)2
ḡ2 +

[
2

(
D

D + γh

)(
µ

µ+ κ

)
− 1

]
ḡ +

2µ+ κ

µ+ κ
hκ = 0 (34)
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where D = Eh3/12(1− ν2) and b is a complicated function of the 3-D material con-

stants. To verify the correctness of the derived result, one can set all the micropolar

constants to zero and check for the shear stiffness obtained. For a classical material,

the expression for b reduces to −Eh5(6 − ν)/[360(1 + ν)(1 − ν)2]. Solving for ḡ, we

obtain

ḡ =
5Gh

6− ν (35)

One can compare this expression to the one that can be derived following the

equations given by Yu et al. [166], where an optimization technique is used in the

transformation procedure to construct a generalized Reissner-Mindlin model. This is

plotted as a function of the Poisson’s ratio in fig. 17 below. Note that for positive

values of ν, the difference between two curves is negligible: for example, at ν = 0.3,

the present work results in ḡ = 0.877Gh while the previous work gives ḡ = 0.879Gh,

a difference of 0.22 %. We note that modifying the way the warping constraints in

eqs. (11) and (12) are specified, as done by Yu [162], we will obtain a more conven-

tional result of 5/6Gh for the shear stiffness. However, both approaches result in

the same second-order strain energy expression and there is no benefit in doing so

and, hence, such an approach is not pursued here. Most recently, Lee and Hodges

[94] introduced a new hybrid transformational approach that does not require an op-

timization procedure or relaxation of warping constraints and gives the same shear

stiffness as eq. (35).

In fact, there is a profusion of literature suggesting that the shear correction factor

(defined here as simply the shear stiffness normalized by Gh) for plates ought to, and

indeed does, depend on Poisson’s ratio. While there is near universal agreement that

the correct factor ought to be 5/6 for zero Poisson’s ratio, there is a wide disagreement

on the functional form of the dependence on ν.

For example, Timoshenko [147] obtained a value of (5+5ν)/(6+5ν) by comparing

a beam solution with a 2-D solution of the bending problem. Cowper [26] derived
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Figure 17: Variation of shear stiffness with Poisson’s ratio

a very similar expression of (10 + 10ν)/(12 + 11ν). Srinivas [141] and Dawe [27, 28]

recommended a value of 0.88 to match the first eigenvalue of a Reissner-Mindin plate

analysis to an exact 3-D (linear) elasticity solution, that is very close to a value

of 0.877 obtained from the present work. Wittrick [156] arrived at the same shear

correction factor of 5/(6 − ν) as ours based on an analytical vibration solution of a

3-D simply supported plate. Babus̆ka [8] suggested a range of expressions dependent

on ν, depending on the goal of the plate modeling. Rössle [129] compared asymptotic

expansions of 3-D displacements from Reissner-Mindlin theory and 3-D elasticity for

periodic boundary conditions and came up with a correction factor of 10/(12− 7ν).

A visual comparison of all these different shear correction factors is shown in fig. 17.

Drilling Stiffness By taking a partial derivative of the drilling energy with respect

to the in-plane curvatures, we obtain

M13 =
∂Πc

∂K13

=

[
γ2 − β2

γ
+

(β + νγ)2

γ

(
1− tanh (h/2l0)

h/2l0

)]
hK13

+(β + νγ)

(
ν

1− ν

)(
1− tanh (h/2l0)

h/2l0

)
(1− ν2)

E
f2

(36)
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M23 =
∂Πc

∂K23

=

[
γ2 − β2

γ
+

(β + νγ)2

γ

(
1− tanh (h/2l0)

h/2l0

)]
hK23

−(β + νγ)

(
ν

1− ν

)(
1− tanh (h/2l0)

h/2l0

)
(1− ν2)

E
f1

(37)

where l0 is a length-scale parameter defined as

l0 =

√
γ(µ+ κ)

κ(2µ+ κ)
(38)

This same length-scale parameter shows up in several analyses involving micropolar

elasticity in the literature and was first identified by Eringen [38]. A few observations

can be made regarding the expressions for the drilling stiffness:

• For very thin plates (but h 6= 0), the expression for the drilling stiffness reduces

to (γ2−β2)h/γ. This is the same expression one would obtain with plane stress

assumptions (i.e., taking µ31 = 0). Indeed, several authors have derived this

same expression for the drilling stiffness using various techniques (see Green

and Naghdi [53], Steinberg [142, 144]). Such an approximation is only valid

for cases where the plate thickness is of the order of the length-scale parameter

l0. To demonstrate, let us consider again the experimental data of two foams

provided by Lakes [90] - dense Polyurethane and Polystyrene - whose material

constants are given in table 5. Figures 18 and 19 show the variation of the

drilling stiffness expression, normalized by (γ2 − β2)h/γ, with plate thickness.

Clearly, this plane-stress expression is valid when h ≈ l0 but differs significantly

for larger h.

• The assumption of plane stress also dictates that the location rotation vary

linearly through the thickness. From the expression derived in this work (see

appendix E), one can see that such an approximation does not accurately cap-

ture the through-the-thickness behavior.

• Other authors report a drilling stiffness of γh, which is consistent with an as-

sumption of plane strain (see Altenbach and Eremeyev [2]). Clearly, this does
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not capture all the terms needed and, by the authors’ own admission, is possibly

in error.
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Figure 18: Drilling stiffness of plates made of dense Polyurethane, with l0 = 1.635mm
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Figure 19: Drilling stiffness of plates made of Polystyrene, with l0 = 16.66mm
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CHAPTER IV

FULLY INTRINSIC TWO-DIMENSIONAL THEORY OF

COSSERAT PLATES

Following the dimensional reduction of the original three-dimensional representation,

we will now develop a geometrically-exact intrinsic formulation for the dynamics of a

moving plate. A theory is said to be intrinsic when it is independent of any specific

choice of displacement or rotation variables (see [64] for a detailed discussion). The

formulation will instead result in a system of algebraic-differential equations in terms

of the generalized strains and stress resultants, velocities, angular velocities, linear

momenta and angular momenta, with spatial and time derivatives of the unknowns no

higher than the first, and nonlinearities no higher than quadratic. This has several

benefits over formulations based on displacement and rotation variables, including

computational efficiency and avoidance of singularities associated with rotation vari-

ables.

A formulation of this nature was developed by Hodges [69] for the dynamics of

curved and twisted composite beams. More recently, this methodology was applied

to the dynamics of composite plates [66]. In the current effort, this will be extended

to plates that can be modeled as polar media. It is to be noted that the theory is

equally applicable to anisotropic and isotropic plates. The difficulty associated with

anisotropy is dealt with in the through-the-thickness analysis, allowing the 2-D plate

analysis to be formulated exactly as a Cosserat surface and confines all approximations

to the through-the-thickness analysis, whose accuracy is guaranteed to be the best

by VAM.
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4.1 Intrinsic Equations from Hamilton’s Principle

We begin with Hamilton’s extended principle for a surface

t2∫
t1

∫
S

[δ(K − U) + δW ]dsdt = δA (39)

At this point, the constitutive law is assumed to be known (either determined by

VAM or another suitable through-the-thickness analysis) and can be written for a

general anisotropic micropolar material in stiffness form as

Nα = Aαβγβ + BαβKβ

Mα = Bβαγβ + DαβKβ

(40)

or in flexibility form as

γα = RαβNβ + SαβMβ

Kα = SβαNβ + TαβMβ

(41)

We can therefore write the variation of the two-dimensional strain energy as

δU = δγTαNα + δKT
αMα (42)

where summation is implied over repeated indices, and we define

Nα =


Nα1

Nα2

Qα

 Mα =


−Mα2

Mα1

Mα3

 (43)

However, the variations of the twelve generalized strains are not independent and can

be expressed in terms of six independent virtual displacements and virtual rotations

δεαβ = eTβ

[
δq,α + K̃αδq + (ẽα + γ̃α)δψ

]
δ(2γα3) = δq3,α + δψα + εαβδψβ −Kαβδqβ

δKα = δψ,α + K̃αδψ

(44)
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For the virtual work of applied loads per unit area, δW , we can use the expression

given eq. (19) minus the influence of warping, which is negligible for present purposes.

The next step is to express the variation of the kinetic energy per unit area in intrinsic

form. By definition,

K =
1

2
〈ρvMI · vMI〉+

1

2
〈jωMI · ωMI〉 (45)

where vMI and ωMI are the inertial velocity and angular velocity of any material point

in the moving plate. Note that the rotary inertia j is a consequence of micropolar

elasticity. For low frequency dynamics we can ignore the warping and local rotation

in the kinetic energy. Then, it can be shown that the column matrix of measure

numbers of the velocity and angular velocity, expressed in the basis Bi can be written

as

vMI = V + Ω̃ξ (46)

ωMI = Ω (47)

where ξ =
[

0 0 x3
]T

with x3 as the normal coordinate, V and Ω are the column

matrices of measure numbers of the inertial velocity and angular velocity of any

material point on the plate reference surface, both expressed in the basis Bi. Denoting

the inertial velocity and angular velocity vectors on the undeformed reference plane,

expressed in the basis bi, by column matrices v, ω we can easily derive the following

generalized velocity-displacement equations :

V = C(v + u̇+ ω̃u) (48)

Ω̃ = −ĊCT + Cω̃CT (49)

The expression for the kinetic energy per unit area of the plate now becomes

K =
1

2
〈ρ((V1 + x3Ω1)

2 + (V2 + x3Ω2)
2 + V 2

3 )〉+
1

2
〈j(Ω2

1 + Ω2
2 + Ω2

3)〉 (50)
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and its variation can be written as

δK = δV TP + δΩTH (51)

with P and H as the linear and angular momenta, respectively, given byPH
 =

µ∆ −µξ̃

µξ̃ I


VΩ

 (52)

Here, we define inertial constants commonly used in plate dynamics

µ = 〈ρ〉 µξ̃ = [0 0 〈x3ρ〉]T

J = 〈j〉 µr2 = 〈x23ρ〉

I =


µr2 + J 0 0

0 µr2 + J 0

0 0 J


(53)

To derive the intrinsic equations of motion, the variations δV, δΩ need to be ex-

pressed in terms of δq and δψ. To do so, recall the following definitions:

δq = Cδu

δ̃ψ = δCCT

(54)

Then, using the generalized velocity-displacement relations from eq. (48), we can

obtain:

δV = δ̇q + Ω̃δq + Ṽ δψ

δΩ = ˙δψ + Ω̃δψ

(55)

At this point, we note that it is possible to relate the generalized strains γα, Kα

and the generalized velocities V , Ω by eliminating u, C from the eqs. (22) and (48)

to obtain the following intrinsic kinematical partial differential equations similar to

Hodges et al. [66]

V,α = γ̇α + Ṽ Kα + Ω̃(eα + γα)

Ω,α = K̇α + Ω̃Kα

(56)
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Finally, we also need to express the virtual action δA along the boundary of plate

and at the ends of the time interval in terms of virtual displacements and virtual

rotations. Along the boundary one can specify appropriate combinations of displace-

ments, rotations (geometrical boundary conditions), and running forces and moments

(natural boundary conditions) along the boundary around the reference plane. Con-

sider a boundary region Γ where force resultants N̂ and moment resultants M̂ are

specified, such that

N̂ =

[
Nνν Nντ Nν3

]T
, M̂ =

[
Mνν Mντ Mν3

]T
(57)

where ν, τ are, respectively, along the outward normal of and tangent to the boundary

curve. Also, we assume that at the ends of the time interval, we have virtual actions

(δq
T
P̂ + δψ

T
Ĥ) entering and leaving the system. Then, δA can be expressed as:

δA =

∫
S

(δq
T
P̂ + δψ

T
Ĥ)
∣∣t2
t1

ds−
t2∫
t1

∫
Γ

(δq
T
N̂ + δψ

T
M̂)dΓdt (58)

Using eqs. (19), (44), (55), (F.3), (F.4) and (F.6), it is now possible to write the

exact intrinsic equations of a Cosserat elastic plate as

Nα,α + K̃αNα + f = Ṗ + Ω̃P

Mα,α + K̃αMα + (ẽα + γ̃α)Nα +m = Ḣ + Ω̃H + Ṽ P

(59)

The associated natural boundary conditions on Γ are

Nνν = n2
1N11 + n1n2(N12 +N21) + n2

2N22

Nντ = n1n2(N22 −N11) + n2
1N12 − n2

2N21

Nν3 = n1Q1 + n2Q2

Mνν = n2
1M11 + n1n2(M12 +M21) + n2

2M22

Mντ = n1n2(M22 −M11) + n2
1M12 − n2

2M21

Mν3 = n1M13 + n2M23

(60)
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where n1 = cosφ, n2 = sinφ and φ is the angle between the outward normal of the

boundary and the x1 direction. Finally, for the conditions at the ends of time intervals,

one can either prescribe the 2-D displacement field, so that the 2-D generalized strains

are known, or corresponding momenta such that

P (t1) = P̂ (t1) H(t1) = Ĥ(t1)

P (t2) = P̂ (t2) H(t2) = Ĥ(t2)

(61)

It can be seen that the six equations of motion given by eq. (59), when specialized

to static problems, are identical to the nonlinear equations derived by Reissner [125].

A linear theory can also be derived from these equations for purposes like order

analysis and validation against 3-D linear Cosserat elasticity solutions. It can be

verified that they coincide with those derived by Eringen [39], Altenbach et al. [2],

and several others.

N11,1 +N21,2 + f1 = Ṗ1

N12,1 +N22,2 + f2 = Ṗ2

Q1,1 +Q2,2 + f3 = Ṗ3

M11,1 +M21,2 −Q1 +m1 = Ḣ1

M12,1 +M22,2 −Q2 +m2 = Ḣ2

M13,1 +M23,2 +N12 −N21 +m3 = Ḣ3

(62)

4.2 A Note on Stress Resultants

Before we progress to discuss solution techniques of these 2-D plate equations, it may

be beneficial to see if the stress resultants we defined have any physical significance.

According to the present approach, Nα,Mα are merely quantities that are work con-

jugate to the 2-D generalized strains γα, Kα. It is however interesting to see if they

can be related to the 3-D stress and couple stress measures in a more direct manner.

First, let us digress a little and recall that the 3-D generalized warping func-

tions have been determined only through first order, i.e., O(hε̂/l), which helped us
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construct a strain energy expression correct through second order O(µ̄h2ε̂/l2). This

means that the plate constitutive law is second-order accurate while the recovery

analysis (retrieval of 3-D displacements, stresses, etc., from a 2-D analysis) is second-

order accurate for Γαβ, Xαβ, but only first-order accurate for Γi3,Γ3i, Xi3, X3,i. For

example, as shown by Yu et al. [166, 167] for Reissner-Mindlin plates, this causes the

normal stress to be (inaccurately) predicted as being nonexistent. The same happens

with Cosserat plates as well, only with the added inaccuracy in prediction of the

normal couple stress. To amend this and to have a uniform second-order accuracy in

the recovery relations too along with the total energy, one must go one step further

in the asymptotic analysis and determine the second-order generalized warping solu-

tion. For the isotropic micropolar case, this has been done to arrive at second order

corrections to w3 and φ3, while corrections to the rest of the warping variables come

out to be zero. It turns out that these corrections are mostly functions of in-plane

derivatives of the applied distributed loads and surface tractions. Therefore, with

the help of these warping solutions, we can compute all the 3-D stresses and couple

stresses in terms of the 2-D strains up to O(µh2ε̂/l2).

Keeping this in mind, using eqs. (1), (15) and (16) and results listed in appendix E,

one can show that the following relations hold

〈σαβ〉 = eTβN
∗
α +O(µh2/l2ε̂)

〈µαβ〉+ eT3 〈σx3αβ〉 = eTβM
∗
α +O(µh2/l2ε̂)

(63)

The asterisk over Nα,Mα serves to remind that these resultants have been com-

puted using the first-order warping solutions whereas the 3-D stresses are accurate to

second-order, letting us use eqs. (29), (34), (36) and (37) to come up with a simple

relation such as this. In fact, if one were to use a plate theory with Kirchhoff-Love

type assumptions, it is quite easy to derive eq. (63). For example, such a relation

is implied by [2]. This is because σαβ, µαβ all have zeroth-order terms (plus second-

order terms that we did not explicitly write out). On the other hand, it is not so
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straightforward with either the shear forces or the drilling moments, because they are

made up entirely out of first-order warping solutions and tend to include terms from

the applied distributed and surface loads. So, for an isotropic material, we can write

〈σα3〉 =
D

D + γh
Q∗α + terms of O(hε̂/l) from applied loads

〈σ3α〉 =

[
µ

µ+ κ

D

D + γh
+
γh

ḡl20

]
Q∗α + terms of O(hε̂/l) from applied loads

(64)

and we can see why a direct connection is hard to establish. In the absence of

micropolar effects, it may be tempting to think that the leading term of the integral

of shear stresses are Qα, but it has to be remembered that any externally applied

loads contribute terms of the same order. Finally, we have

〈µ13〉 =
γ2 − β2

γ
hK13 +

β(β − νγ)

γ

(
1− tanh (h/2l0)

h/2l0

)
hK13

+ terms of O(hε̂/l) from applied loads

(65)

Comparing this equation with eqs. (36) and (37), we can see that only for l0 � h and

in the absence of external loading, 〈σ13〉 ≈M13.

Despite this, a most interesting result presents itself through eq. (65): A drilling

moment resultant cannot be generated by Cauchy stressses alone. Unlike all the other

stress resultants, Mα3 are the only quantities that can exist only if the medium sup-

ports of couple stresses. This observation also sets us up nicely to discuss another

important topic of what happens in the limiting case when a Cosserat elastic medium

becomes Cauchy elastic.

4.3 Reduction to a generalized Reissner-Mindlin theory

As described in the introduction, higher-order elasticity theories were originally pro-

posed as generalizations of the classical theory of elasticity. Indeed, setting α = β =

γ = κ = 0 in eq. (1) recovers the familiar 3-D constitutive law. Similarly, it is useful

to see if the fully intrinsic equations for a Cosserat plate reduce to a set of equations

applicable to a Cauchy elastic plate, and preferably so by setting a group of constants
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and/or variables to their limiting values. Here, the term reduction refers to a decrease

in the number of degrees of freedom present in the model.

Let us begin by explicitly writing out eq. (59) in scalar form

N11,1 +N21,2 −N12K13 −N22K23 +Q1K11 +Q2K21 + f1 = Ṗ1 + Ω1P3 − Ω3P2 (66a)

N12,1 +N22,2 +N11K13 +N21K23 +Q1K12 +Q2K22 + f2 = Ṗ2 + Ω3P1 + Ω2P3 (66b)

Q1,1 +Q2,2 −N11K11 −N12K12 −N21K21 −N22K22 + f3 = Ṗ3 − Ω2P2 − Ω1P1 (66c)

M11,1 +M21,2 −M12K13 −M22K23 +M13K12 +M23K22 +N112γ13 +N212γ23

−Q1(1 + ε11)−Q2ε21 +m1 = Ḣ1 + Ω2H3 − Ω3H2 − V1P3 + V3P1 (67a)

M12,1 +M22,2 +M11K13 +M21K23 −M13K11 −M23K21 +N122γ13 +N222γ23

−Q1ε12 −Q2(1 + ε22) +m2 = Ḣ2 + Ω3H1 − Ω1H3 − V2P3 + V3P2 (67b)

M13,1 +M23,2 −M11K12 +M12K11 −M21K22 +M22K21 −N11ε12 +N22ε21

+N12(1 + ε11)−N21(1 + ε22) +m3 = Ḣ3 + Ω1H2 − Ω2H1 + V1P2 − V2P1 (67c)

The following remarks can now be made in the reduction to a classical elastic plate:

• As discussed in the preceding section, M13,M23 only appear in presence of couple

stresses. Therefore, one can set these variables to zero in eq. (67c).

• The polar moment of inertia (also referred to as microinertia [39]) of a through-

thickness plate element in classical elasticity is zero. From eq. (53), this amounts

to setting J = 0, which implies H3 = 0.

• Since individual material points are no longer allowed to undergo independent

rotations, φi need not be primary warping variables and we do not have eq. (12)

to restrict us from picking ε12 = ε21. While it is not compulsory to set them

equal to each other, it does result in certain mathematical simplifications.

• We argued in section 3.3 that K12 − K21 does not show up in the first-order

refined theory that we developed. Despite this, in the development of the present
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theory in section 4.1, we have always expressed M12 and M21, and therefore K12

and K21, as separate variables, even though we have implied their usage to be

interchangeable while only introducing an error of O(hε̂/l2). This was done

mainly to maintain a certain mathematical elegance. Now, based on eq. (29),

we can simply pick the one curvature, (K12 + K21)/2 and the corresponding

generalized forceM12 since it is only the sum of the curvatures that appears in

the strain energy.

Having “lost” the only terms that were being differentiated upon, eq. (67c) is now

purely an algebraic equation that can be thought of as a constraint equation. For

reasons that will become clear momentarily, let us switch from using the variables

N12, N21 to their sum-and-difference forms as they were presented in eq. (29). This

gives us a constraint equation of the form

(2 + ε11 + ε22)Nε = M11K12 −M22K21 −M12(K11 −K22) + (N11 −N22)ε12

−N12(ε11 − ε22) +m3 + Ω1H2 − Ω2H1 + V1P2 − V2P1 (68)

One can see that eq. (68) is exactly the same as eq. (28) derived in [66] if one sets

N12 = N12 and Nε = −N . It is easy to show that using the remarks above along

with eq. (68) in eqs. (66a) to (66c), (67a) and (67b) also reproduces the fully intrinsic

equations of motion of a generalized Reissner-Mindlin plate as given by eqs. (27) in

[66]. Next, the kinematical equations (56) can also be easily modified to give their

counterparts (eqs. (19) from [66]). Finally, we need to come up with a way of reducing

the constitutive equations to their classical forms.

• The drilling stiffness needs to vanish in order to have Mα3 = 0. Looking at

eqs. (36) and (37), we see that setting β = γ = 0 not only is consistent with a

reduction to classical elasticity, it also results in zero drilling resultants.

• An expression for the shear stiffness has already been presented in eq. (35),

which has been derived from eq. (34) by setting κ = γ = β = 0.
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• The in-plane and bending stiffnesses from eq. (29) can also be reduced to their

classical counterparts by simply setting γ = β = κ = 0.

Therefore, we have shown that it is almost trivial to reduce the present Cosserat

elasticity based plate theory to a classical one, resulting in equations coincident with

a generalized Reissner-Mindlin theory. However, the discussion is not complete unless

we also address the situation of the curvatures Kα3. In eq. (36), we have a situation

where the the drilling stiffness and resultants are zero but the in-plane curvatures are

not. The solution, then, is to find a way of expressing Kα3 in terms of the other strain

measures. This procedure is best described with the help of the following comparison.

A Kirchhoff-Love theory is obtained from a Reissner-Mindlin theory by setting the

shear strains to zero. The shear forces, still present but now not arising from a shear

strain, are instead expressed in terms of the bending moments via the equilibrium

equations. Similarly, a Reissner-Mindlin theory is obtained from a Cosserat theory

by setting the drilling resultants to zero. The in-plane curvatures, still present but

now not arising from a drilling moment, are instead expressed in terms of the in-plane

stretching strains via the strain compatibility equations (eqs. (B.3b) and (B.3c)).
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CHAPTER V

ENERGY-CONSISTENT GALERKIN APPROACH

The fully intrinsic nonlinear equations for Cosserat plates presented in the preceding

chapter cannot, in general, be solved analytically except for a few special cases. For

arbitrary loading and boundary conditions, one has to resort to approximate tech-

niques. This chapter presents a Galerkin approach for the solution of these nonlinear

equations. Morever, the specific weighting of all the equations will be shown to be

energy-consistent. In some ways, this portion of the theoretical development can be

thought of as a 2-D analogue to the work done by Patil and Althoff [114], Patil and

Hodges [115] for the nonlinear analysis of beams.

Typically, approximate solution techniques fall into three different categories. The

first is to perform a finite element analysis using the weakest possible shape functions.

This is also known as the h-version of the finite element method. The second is to

completely avoid domain discretization and instead use a very high polynomial degree

in the interpolation and weighting functions to achieve convergence. Examples of such

techniques are the Galerkin method or the Rayleigh-Ritz method (for conservative

systems) and are also referred to as p-versions of the FEM. A third technique, intro-

duced by Babuška [9] and known as the hp-method, involves a combination of mesh

refinement and increase in polynomial order. By now, it has been widely demon-

strated and accepted that p-refinements almost always lead to a faster convergence

than corresponding h-refinements, with the hp-method being the most optimal of the

three providing exponential convergence.

The present work explores several different solution techniques, each suitable for
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a different type of analysis (static vs. dynamic, linear vs. nonlinear, effect of bound-

ary conditions). This is, for instance, unlike the case of beam analysis in [115]. To

make keeping track of the various methods and their differences easier, all the exam-

ple problems chosen feature plates with simple rectangular geometries and uniform

loading conditions, and are prime candidates for a p-method analysis. Therefore,

all the theoretical development focuses mainly by using the Galerkin method, i.e., a

p-version. The method will, however, be developed in a way that makes it easy to

extend it to a finite element analysis.

5.1 Energy-Consistent Weighting

The complete set of equations (the equations of motion from (59), the kinematical

equations from (56) and the constitutive relations from (40) or (41)) involves three

sets of field variables: the stress resultants Nα,Mα, the generalized strains γα, Kα

and the motion variables V,Ω. However, of the three sets of equations, if we stipulate

that the constitutive laws are known exactly, we can eliminate either the generalized

strains in terms of the stress resultants or vice-versa. This leaves us with only two

sets of field variables. Appropriately, an approximate method can be described with

the construction of a two-field principle of the Hellinger-Reissner type. Consider

the following weighting of the equations of motion, the kinematical equations and

appropriate boundary conditions on a rectangular domain (x1 : 0→ L1, x2 → L2).

L1∫
0

L2∫
0

{
V T
[
Ṗ + Ω̃P − f −Nα,α − K̃αNα

]
+ ΩT

[
Ḣ + Ω̃H + Ṽ P −m−Mα,α − K̃αMα

−(ẽα + γ̃α)Nα

]
+NT

α

[
γ̇α − V,α − K̃αV − (ẽα + γ̃α)Ω

]
+MT

α

[
K̇α − Ω,α − K̃αΩ

]}
dx1dx2

− (1− τ (f)1 )

L1∫
0

NT
2

[
V − V(1)

]
dx1

∣∣∣∣
x2=−L2

2

− (1− τ (m)
1 )

L1∫
0

MT
2

[
Ω− 
(1)

]
dx1

∣∣∣∣
x2=−L2

2
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− τ
(f)
1

L1∫
0

V T
[
N2 − N2

(1)
]
dx1

∣∣∣∣
x2=−L2

2

− τ
(m)
1

L1∫
0

ΩT
[
M2 − M2

(1)
]
dx1

∣∣∣∣
x2=−L2

2

+ (1− τ (f)2 )

L2∫
0

NT
1

[
V − V(2)

]
dx2

∣∣∣∣
x1=

L1
2

+ (1− τ (m)
2 )

L2∫
0

MT
1

[
Ω− 
(2)

]
d

∣∣∣∣
x1=

L1
2

+ τ
(f)
2

L2∫
0

V T
[
N1 − N1

(2)
]
dx2

∣∣∣∣
x1=

L1
2

+ τ
(m)
2

L2∫
0

ΩT
[
M1 − M1

(2)
]
dx2

∣∣∣∣
x1=

L1
2

+ (1− τ (f)3 )

L1∫
0

NT
2

[
V − V(3)

]
dx1

∣∣∣∣
x2=

L2
2

+ (1− τ (f)3 )

L1∫
0

MT
2

[
Ω− 
(3)

]
dx1

∣∣∣∣
x2=

L2
2

+ τ
(f)
3

L1∫
0

V T
[
N2 − N2

(3)
]
dx1

∣∣∣∣
x2=

L2
2

+ τ
(m)
3

L1∫
0

ΩT
[
M2 − M2

(3)
]
dx1

∣∣∣∣
x2=

L2
2

− (1− τ (f)4 )

L2∫
0

NT
1

[
V − V(4)

]
dx2

∣∣∣∣
x1=−L1

2

− (1− τ (m)
4 )

L2∫
0

MT
1

[
Ω− 
(4)

]
dx2

∣∣∣∣
x1=−L1

2

− τ
(f)
4

L2∫
0

V T
[
N1 − N1

(4)
]
dx2

∣∣∣∣
x1=−L1

2

− τ (m)
4

L2∫
0

ΩT
[
M1 − M1

(4)
]
dx2

∣∣∣∣
x1=−L1

2

= 0 (69)

where V̂(i), 
̂(i), N̂(i)
1 , M̂

(i)
1 (i = 2, 4) are possible prescribled boundary conditions on

x1 = ±L1

2
, V̂(i), 
̂(i), N̂(i)

2 , M̂
(i)
2 (i = 1, 3) are possible prescribed boundary conditions on

x2 = ±L2

2
, and τ

(f)
i , τ

(m)
i are 3 × 1 column matrices of flags (zero or one) denoting a

prescription of of either geometric or natural boundary conditions, respectively.

This weighted-residual integral can be shown to be an energy balance equation.

To demonstrate this, let us consider, without loss of generality, the example of a plate

that is free along edges (1) and (2), and fully clamped along edges (3) and (4). A
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simple integration-by-parts on eq. (69) results in

L1∫
0

L2∫
0

[
V T Ṗ + ΩT Ḣ

]
dξdη +

L1∫
0

L2∫
0

[
NT
α γ̇α +MT

α K̇α

]
dξdη =

L1∫
0

L2∫
0

[
V Tf + ΩTm

]
dξdη

−
L1∫
0

[
V TN2

(1) + ΩTM2
(1)
]
dx1

∣∣∣∣
x2=−L2

2

+

L2∫
0

[
V TN1

(2) + ΩTM1
(2)
]
dx2

∣∣∣∣
x1=

L1
2

+

L1∫
0

[
NT

2 V
(3) +MT

2 

(3)
]
dx1

∣∣∣∣
x2=

L2
2

−
L2∫
0

[
NT

1 V
(4) +MT

1 

(4)
]
dx2

∣∣∣∣
x1=−L1

2

(70)

The first two area integrals represent the rate of change of kinetic and potential

energy, respectively, while the rest of the terms represent the rate of work done by

the applied distributed loads on the plate surface and at the boundaries. This is

clearly an energy balance equation with the rate of work done on the plate equal to

the rate of change of its total energy.

5.2 Shape Functions and the Galerkin approximation

To derive a Galerkin approach based on eq. (69), a suitable family of shape functions

must be chosen. First, it is important to see that both geometric and natural bound-

ary conditions have been included in the weighted-residual integral and, hence, only

satisfied weakly. This lets us choose shape functions that do not have to be admissi-

ble functions, let alone comparison functions. A set of hierarchic shape functions (or

bubble functions) are best suited for the present analysis since additional degrees of

freedom can be added to the model without having to generate a new geometry. Since

the goal is to eventually extend this Galerkin method to a variable-order finite element

analysis, working with hierarchic functions simplifies the process considerably.

Let us now shift to working on a mapped domain described by fig. 20. The family

of shape functions chosen, inspired by the set of orthogonal polynomials proposed by
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Hodges [62] for one-dimensional structures, are

φ1
ξ =

1− ξ
2

φ1
η =

1− η
2

φ2
ξ =

1 + ξ

2
φ2
η =

1 + η

2

φnξ =
1− ξ2

4
P (2,2)
n (ξ) φnη =

1− η2
4

P (2,2)
n (η), n ≥ 3

(71)

where P
(2,2)
n (x) are Jacobi polynomials orthogonal with respect to the weight (1 +

x)2(1− x)2 on the interval [−1, 1]. For n ≥ 3, this choice of shape functions ensures

that each φn vanishes at the boundaries and remains orthogonal with the others.

(1,�1)(1,�1)

(�1, 1) (1, 1)

1
1

2

2

3
3

4

4

⇠

⌘

�M12N11

N12

Q1

N22

N21 Q2

M11

M13

�M22

M21

M23

Figure 20: Schematic of a typical plate element. Variables in red are defined on all
edges normal to ξ, those in blue are defined on all edges normal to η.

The two-dimensional interpolation functions for a chosen polynomial degree p are
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now expressed as

Φk(ξ, η) =


φiξφ

j
η 0 0

0 φiξφ
j
η 0

0 0 φiξφ
j
η

 (72)

i, j = 1, 2, . . . , p; i+ j = 1, 2, . . . , p; k = 1, 2, . . . , Ne

Note that p here represents the total degree of the polynomial over the entire plate

element and not along the individual directions. So, the total number of shape func-

tions, and hence the degrees of freedom per variable, is Ne = (p+1)(p+2)
2

.

It is also worth comparing the present construction of shape functions to those

recommended by Szabó and Babuška [146]. The space of monomials used to construct

the present family of shape functions is given by ξiηj(i, j = 0, 1, , . . . , p; i + j =

0, 1, . . . , p). The shape functions recommended in [146] supplement this space of

monomials with ξpη and ξηp (for p ≥ 2). While this makes an elegant categorization

of the shape functions into nodal, side and internal modes possible, it has been found

that, at least for a purely p-method of analysis, the addition of these two monomials

hurts the monotony of the convergence process and even gives erroneous results. This

will be demonstrated shortly.

Representing the field variables in terms of independent generalized coordinates,

we have a Galerkin approximation of the form

V (ξ, η, t) =
Ne∑
k=1

Φk(ξ, η)vk(t) (73a)

Ω(ξ, η, t) =
Ne∑
k=1

Φk(ξ, η)ωk(t) (73b)

Nα(ξ, η, t) =
Ne∑
k=1

Φk(ξ, η)nkα(t) (73c)

Mα(ξ, η, t) =
Ne∑
k=1

Φk(ξ, η)mk
α(t) (73d)

where
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vk =


vk1

vk2

vk3

 ωk =


−ωk2
ωk1

ωk3

 nkα =


nkα1

nkα2

qkα

 mk
α =


−mk

α2

mk
α1

mk
α3

 (74)

Using the constitutive law to eliminate the generalized strains, the six sets of

Galerkin equations can be derived as

L1L2

1∫
−1

1∫
−1

Φj
[
(GΦiv̇i + KΦiω̇i) + Φ̃kωk(GΦivi + KΦiωi)− ( ˜SβαΦknkβ + ˜TαβΦkmk

β)Φiniα

− 1

Lα
Φi
,αn

i
α − f

]
dξdη − τ (f)1 L1

1∫
−1

Φj
[
Φini2 − N(1)

2

]
dξ

∣∣∣∣
η=−1

+ τ
(f)
2 L2

1∫
−1

Φj
[
Φini1 − N(2)

1

]
dη

∣∣∣∣
ξ=1

+τ
(f)
3 L1

1∫
−1

Φj
[
Φini2 − N(3)

2

]
dξ

∣∣∣∣
η=1

− τ (f)4 L2

1∫
−1

Φj
[
Φini1 − N(4)

1

]
dη

∣∣∣∣
ξ=−1

= 0 (75a)

L1L2

1∫
−1

1∫
−1

Φj
[
(KTΦiv̇i + IΦiω̇i) + Φ̃kωk(KTΦivi + IΦiωi) + Φ̃kvk(GΦivi + KΦiωi)− 1

Lα
Φi
,αm

i
α

−( ˜SβαΦknkβ + ˜TαβΦkmk
β)Φimi

α − (ẽα + ˜RαβΦknkβ + ˜SαβΦkmk
β)Φiniα −m

]
dξdη

−τ (m)
1 L1

1∫
−1

Φj
[
Φimi

2 − M(1)
2

]
dξ

∣∣∣∣
η=−1

+ τ
(m)
2 L2

1∫
−1

Φj
[
Φimi

1 − M(2)
1

]
dη

∣∣∣∣
ξ=1

+τ
(m)
3 L1

1∫
−1

Φj
[
Φimi

2 − M(3)
2

]
dξ

∣∣∣∣
η=1

− τ (m)
4 L2

1∫
−1

Φj
[
Φimi

1 − M(4)
1

]
dη

∣∣∣∣
ξ=−1

= 0 (75b)

L1L2

1∫
−1

1∫
−1

Φj
[
R1βΦiṅiβ + S1βΦiṁi

β −
1

L1
Φi
,1v

i −
(

˜Sβ1Φknkβ + ˜T1βΦkmk
β

)
Φivi −

(
ẽ1

+ ˜R1βΦknkβ + ˜S1βΦkmk
β

)
Φiωi

]
dξdη + (1− τ (f)2 )L2

1∫
−1

Φj
[
Φivi − V(2)

]
dη

∣∣∣∣
ξ=1

−(1− τ (f)4 )L2

1∫
−1

Φj
[
Φivi − V(4)

]
dη

∣∣∣∣
ξ=−1

= 0 (75c)

L1L2

1∫
−1

1∫
−1

Φj
[
R2βΦiṅiβ + S2βΦiṁi

β −
1

L2
Φi
,2v

i −
(

˜Sβ2Φknkβ + ˜T2βΦkmk
β

)
Φivi −

(
ẽ2
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+ ˜R2βΦknkβ + ˜S2βΦkmk
β

)
Φiωi

]
dξdη − (1− τ1)(f)L1

1∫
−1

Φj
[
Φivi − V(1)

]
dξ

∣∣∣∣
η=−1

+(1− τ (f)3 )L1

1∫
−1

Φj
[
Φivi − V(3)

]
dξ

∣∣∣∣
η=1

= 0 (75d)

L1L2

1∫
−1

1∫
−1

Φj
[
Sβ1Φ

iṅiβ + T1βΦiṁi
β −

1

L1
Φi
,1ω

i −
(

˜Sβ1Φknkβ + ˜T1βΦkmk
β

)
Φiωi

]
dξdη

+(1− τ (m)
2 )L2

1∫
−1

Φj
[
Φiωi − 
(2)

]
dη

∣∣∣∣
ξ=1

− (1− τ (m)
4 )L2

1∫
−1

Φj
[
Φiωi − 
(4)

]
dη

∣∣∣∣
ξ=−1

= 0

(75e)

L1L2

1∫
−1

1∫
−1

Φj
[
Sβ2Φ

iṅiβ + T2βΦiṁi
β −

1

L2
Φi
,2ω

i −
(

˜Sβ2Φknkβ + ˜T2βΦkmk
β

)
Φiωi

]
dξdη

−(1− τ (m)
1 )L1

1∫
−1

Φj
[
Φiωi − 
(1)

]
dξ

∣∣∣∣
η=−1

+ (1− τ (m)
3 )L1

1∫
−1

Φj
[
Φiωi − 
(3)

]
dξ

∣∣∣∣
η=1

= 0

(75f)

5.3 Special Case: Uniform Plates

For the purpose of demonstration, let us look at plates with constant stiffness and

inertia properties. In the context of a finite element implementation, assuming such

constancy certainly makes sense. One can then replace all the integrals above in

terms of the following

Aji = L1L2

1∫
−1

1∫
−1

Φj(ξ, η)Φi(ξ, η)dξdη Bjiα =
L1L2

Lα

1∫
−1

1∫
−1

Φj(ξ, η)Φi
,α(ξ, η)dξdη

E ji(1) = L1

1∫
−1

Φj(ξ,−1)Φi(ξ,−1)dξ E ji(2) = L2

1∫
−1

Φj(1, η)Φi(1, η)dη

E ji(3) = L1

1∫
−1

Φj(ξ, 1)Φi(ξ, 1)dξ E ji(4) = L2

1∫
−1

Φj(−1, η)Φi(−1, η)dη
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Cjik = L1L2

1∫
−1

1∫
−1

Φj(ξ, η)Φi(ξ, η)Φk(ξ, η)dξdη (76)

We can rewrite the Galerkin equations above as

Aji(Gv̇i + Kω̇i) + Cjikω̃k(Gvi + Kωi)− Bji1 ni1 − Bji2 ni2

− Cjik(S̃βαnkβ + T̃αβmk
β)niα − L1L2

1∫
−1

1∫
−1

Φjf dξdη

− τ (f)1

Eji(1)ni2 − L1

1∫
−1

ΦjN(1)
2 dξ

∣∣∣∣
η=−1

+ τ
(f)
2

Eji(2)ni1 − L2

1∫
−1

ΦjN(2)
1 dη

∣∣∣∣
ξ=1


+ τ

(f)
3

Eji(3)ni2 − L1

1∫
−1

ΦjN(3)
2 dξ

∣∣∣∣
η=1

− τ (f)4

Eji(4)ni1 − L2

1∫
−1

ΦjN(4)
1 dη

∣∣∣∣
ξ=−1

 = 0 (77a)

Aji(KT v̇i + Iω̇i) + Cjikω̃k(KT vi + Iωi) + Cjikṽk(Gvi + Kωi)− Bji1 mi
1 − Bji2 mi

2

− Cjik(S̃βαnkβ + T̃αβmk
β)mi

α −
(
Ajiẽα + Cjik(R̃αβnkβ + S̃αβmk

β)

)
niα − L1L2

1∫
−1

1∫
−1

Φjm dξdη

− τ (m)
1

Eji(1)mi
2 − L1

1∫
−1

ΦjM(1)
2 dξ

∣∣∣∣
η=−1

+ τ
(m)
2

Eji(2)mi
1 − L2

1∫
−1

ΦjM(2)
1 dη

∣∣∣∣
ξ=1


+ τ

(m)
3

Eji(3)mi
2 − L1

1∫
−1

ΦjM(3)
2 dξ

∣∣∣∣
η=1

− τ (m)
4

Eji(4)mi
1 − L2

1∫
−1

ΦjM(4)
1 dη

∣∣∣∣
ξ=−1

 = 0 (77b)

Aji(R1βṅ
i
β + S1βṁ

i
β)− Bji1 vi − Cjik(S̃β1nkβ + T̃1βm

k
β)vi −

(
Ajiẽ1 + Cjik(R̃1βn

k
β + S̃1βm

k
β)

)
ωi

+ (1− τ (f)2 )

Eji(2)vi − L2

1∫
−1

ΦjV(2)dη

∣∣∣∣
ξ=1

− (1− τ (f)4 )

Eji(4)vi − L2

1∫
−1

ΦjV(4)dη

∣∣∣∣
ξ=−1

 = 0

(77c)

Aji(R2βṅ
i
β + S2βṁ

i
β)− Bji2 vi − Cjik(S̃β2nkβ + T̃2βm

k
β)vi −

(
Ajiẽ2 + Cjik(R̃2βn

k
β + S̃2βm

k
β)

)
ωi

− (1− τ (f)1 )

Eji(1)vi − L1

1∫
−1

ΦjV(1)dξ

∣∣∣∣
η=−1

+ (1− τ (f)3 )

Eji(3)vi − L1

1∫
−1

ΦjV(3)dξ

∣∣∣∣
η=1

 = 0

(77d)
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Aji(Sβ1ṅiβ + T1βṁ
i
β)− Bji1 ωi − Cjik(S̃β1nkβ + T̃1βm

k
β)ωi

+ (1− τ (m)
2 )

Eji(2)ωi − L2

1∫
−1

Φj
(2)dη

∣∣∣∣
ξ=1

− (1− τ (m)
4 )

Eji(4)ωi − L2

1∫
−1

Φj
(4)dη

∣∣∣∣
ξ=−1

 = 0

(77e)

Aji(Sβ2ṅiβ + T2βṁ
i
β)− Bji2 ωi − Cjik(S̃β2nkβ + T̃2βm

k
β)ωi

− (1− τ (m)
1 )

Eji(1)ωi − L1

1∫
−1

Φj
(1)dξ

∣∣∣∣
η=−1

+ (1− τ (m)
3 )

Eji(3)ωi − L1

1∫
−1

Φj
(3)dξ

∣∣∣∣
η=1

 = 0

(77f)

The above set of equations can be written compactly as

Ajiżi +Bjizi + Cjikzizk +Dj = 0 (78)

where the generalized coordinates are represented in a 18Ne × 1 column matrix:

z =

[
v1(t) . . . vNe(t) ω1(t) . . . ωNe(t) n1

1(t) . . . . . . mNe
2 (t)

]T
(79)

5.4 Linear Free Vibration Analysis

In this section, let us further specialize eqs. (77) to the case of a free vibration analysis,

resulting in an eigenvalue problem. All the nonlinear terms as well as terms coming

from the applied loads are set to zero leaving us with a considerably simplified set of

equations of the form:

Aji(Gv̇i + Kω̇i)−
[
Bji1 − τ

(f)
2 Eji(2) + τ

(f)
4 Eji(4)

]
ni1 −

[
Bji2 + τ

(f)
1 Eji(1) − τ

(f)
3 Eji(3)

]
ni2 = 0 (80a)

Aji(KT v̇i + Iω̇i)−
[
Bji1 − τ

(m)
2 Eji(2) + τ

(m)
4 Eji(4)

]
mi

1 −
[
Bji2 + τ

(m)
1 Eji(1) − τ

(m)
3 Eji(3)

]
mi

2

−Ajiẽαniα = 0 (80b)

Aji(R1βṅ
i
β + S1βṁ

i
β)−

[
Bji1 − (1− τ (f)2 )Eji(2) + (1− τ (f)4 )Eji(4)

]
vi −Ajiẽ1ωi = 0 (80c)

Aji(R2βṅ
i
β + S2βṁ

i
β)−

[
Bji2 + (1− τ (f)1 )Eji(1) − (1− τ (f)3 )Eji(3)

]
vi −Ajiẽ2ωi = 0 (80d)

Aji(Sβ1ṅiβ + T1βṁ
i
β)−

[
Bji1 − (1− τ (m)

2 )Eji(2) + (1− τ (m)
4 )Eji(4)

]
ωi = 0 (80e)

Aji(Sβ2ṅiβ + T2βṁ
i
β)−

[
Bji2 + (1− τ (m)

1 )Eji(1) − (1− τ (m)
3 )Eji(3)

]
ωi = 0 (80f)
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Equation (80) can be assembled into the form

Aż +Bz = 0 (81)

It is interesting to note that due to our choice of stress resultants and velocity

variables as the primary unknowns, all the information regarding the material and

inertial properties of the plate is contained solely in the matrix A and all the infor-

mation regarding the boundary conditions is contained solely in the matrix B. This

observation will be useful in a later section. It is now easy to cast eq. (81) into a

generalized eigenvalue problem. Results from a free vibration analysis for a variety

of boundary conditions will now be presented along with appropriate validation.

5.4.1 Natural frequencies of simply supported (S-S-S-S) plates

Due to the simplicity of its validation, we can first look at the case of a plate that

is simply supported (either hard or soft) on all four edges. This case has a simple

analytical solution for the natural frequencies when analyzed using a Kirchhoff-Love

theory, of the form

ωmn = (m2 + n2)π2 (82)

where ωmn is the mnth nondimensional frequency, related to the dimensional natural

frequency λmn as

ωmn = λmn

√
µL4

D
(83)

Reducing eq. (80) to represent a generalized Kirchhoff-Love theory as shown in sec-

tion 4.3 and looking at only the decoupled bending problem, we can obtain the

nondimensional frequencies and compare them with eq. (82), as given by table 6.

These results have been obtained by using 276 assumed modes per variable (p = 22),

although accuracy up to three significant digits can be obtained by using only 66 as-

sumed modes per variable (p = 10). A plot showing the convergence of the Galerkin
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Table 6: Comparison of frequency parameters of S-S-S-S square plate against ana-
lytical solution: Generalized Kirchhoff-Love theory

Mode Analytical Kirchhoff-Love
1-1 19.7392 19.7389
1-2,2-1 49.3480 49.3463
2-2 78.9568 78.9482
1-3,3,1 98.6960 98.6895
2-3,3-1 128.3049 128.2826
1-4,4,1 167.7833 167.7718
3-3 177.6529 177.5896

procedure to the analytical solution for the first two nondimensional frequencies is

shown in fig. 21. As expected, a lower frequency will converge quicker than a higher

one. For most practical purposes, agreement to four or five significant digits is con-

sidered excellent. One must also keep in mind that for a p-method, the problem size

increases exponentially with p. Consequently, this increases computational time and

needs to be weighed against the accuracy desired. Figure 22 shows the exponential

increase in computational cost (run time) with increasing polynomial degree.

With a preliminary model validation giving satisfactory results, let us look now

at the case of a plate that is fully clamped on all of its edges for further analysis

5.4.2 Natural frequencies of fully clamped (C-C-C-C) plates

Unlike the previous case of a simply supported plate, exact, closed form solutions

were not known for plates that have all their edges clamped (or a mix of clamped

and free edges). As such, the problem of determining the dynamic characteristics

using approximate techniques has attracted a lot of attention since at least the 1930s.

The reader is referred to Leissa [95] for a rigorous survey of the literature treating

clamped plates in an approximate manner. More recently, however, Xing and Liu

[157] presented an exact solution to the problem of thin, clamped plates for the first

time. It might be a worthwhile exercise to validate the present Galerkin method
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Figure 21: Relative error of the Galerkin method : Natural Frequencies of S-S-S-S
Plates

against some of the results commonly accepted as accurate for the bending vibration

of thin Kirchhoff-type plates along with the exact solutions from [157].

Table 7 compares the first twelve (nondimensional) natural frequencies with those

derived by Young [161], Claassen and Thorne [21], Vijayakumar and Ramaiah [152],

and Rajalingham et al. [123]. Most of these attempts only differ in their choice of

shape functions: Young used products of beam shape functions (for C-C beams) in a

Rayleigh-Ritz method. Vijayakumar and Ramaiah also used a Rayleigh-Ritz method,

but used a superior set of shape functions derived from a modified Bolotin’s method.

Claassen and Thorne used a double Fourier sine series for the deflection. Vijayakumar
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and Ramaiah used what are known as “plate characteristic functions” derived from an

extended Kantorovich-Krylov approach. Notably, all of these works, and numerous

others, investigate only Kirchhoff plates using the displacement method.

Figures 23 and 24 show the percentage differences between the present Kirchhoff

solution and the aforementioned references. It is clear from table 7 and figs. 23 and 24

that the present method yields results that are in excellent agreement with the afore-

mentioned literature using approximate techniques, with a tenth of a percent being

the maximum order of difference between other well known approximate solutions.

It is worth remembering that the family of shape functions used here are made to

satisfy the geometric boundary conditions only in a weak sense, thereby avoiding the
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Table 7: Comparison of frequency parameters of a C-C-C-C square plate: General-
ized Kirchhoff-Love theory

Mode Present Ref. [161] Ref.[21] Ref. [152] Ref. [123]
1 35.9852 35.9904 35.9852 35.9853 35.9854
2, 3 73.3938 73.4106 73.3938 73.3942 73.3943
5 108.2165 108.2703 108.2165 108.2174 108.2178
5 131.5808 131.6389 131.5808 131.5808 131.5809
6 132.2048 132.2500 132.2048 132.2063 132.2067
7,8 165.0003 165.1508 165.0004 165.0026 165.0033
9,10 210.5218 — 210.5218 210.5229 210.5230
11 220.0325 — — 220.0375 220.0389
12 242.1539 — 242.1539 242.1539 242.1542

Note: Ref. [161] – Young (1950); Ref. [21] – Claassen and Thorne (1961); Ref. [152]
– Vijayakumar and Ramaiah (1978); Ref. [123] – Rajalingham et al. (1996).
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Figure 23: Percentage error of the frequency parameters against FEA
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Figure 24: Percentage error of the frequency parameters against FEA: magnified

trouble of having to fabricate shape functions with agreeable characteristics.

The convergence behavior and computational time remain similar to the simply

supported case before. Figures 25 to 28 show the convergence of the first, second

(third), fourth and, to look at a higher mode, the twelfth frequencies to their final

values given in table 7 with increasing polynomial degree p. Symbols have been used

to differentiate between the converged results (up to six significant digits) from the

rest. One can again see the expected behavior of lower frequencies converging earlier

than the higher ones. That said, even the twelfth mode converges to six significant

digits for only p = 18, where the first mode converges at p = 14.

More rigorous forms of verification are comparisons with exact solutions, 3-D

FE solutions and experimental data. Xing and Liu [157] used a novel separation of

variables to come up with an exact solution for thin, clamped plates for the first time.

For example, Hazell and Mitchell [60] conducted experiments to measure eigenvalues

of square clamped plates using holographic interferometry to measure mode shapes.

Their results are compared with those from the present Galerkin approach (using p =

20) in table 8. The plate under consideration is a very thin one (L/h ≈ 166.55), with
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Figure 25: Convergence of the Galerkin method for C-C-C-C plates: ω1 vs. p
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Figure 26: Convergence of the Galerkin method for C-C-C-C plates: ω2, ω3 vs. p
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Figure 27: Convergence of the Galerkin method for C-C-C-C plates: ω4 vs. p
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Figure 28: Convergence of the Galerkin method for C-C-C-C plates: ω12 vs. p
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minimal transverse shear effects. Nevertheless, we now compare frequencies obtained

from both a generalized Reissner-Mindlin theory and a Kirchhoff-Love theory to this

experimental data. Additionally, a further comparison is made with 3-D finite element

analysis, performed using 40,000 20-node brick elements in Abaqus.

Taking a closer look at the frequency parameters listed, it can be seen that a

Kirchhoff model gives results that are slightly higher than those from 3-D FEM while

a shear deformable model gives values that are both slightly higher and lower values.

In either case, all the differences are with ±0.05%. Owing to the smooth second-

order convergence of FEM solution, it is conceivable that for an even greater number

of brick elements, the FE solution will slowly approach the latter. On the other

hand, the exact solution consistently provides frequencies lower in magnitude than any

other approximate computational technique, showing that the latter are merely upper

bounds. It is worth noting, however, that the fifth and sixth frequencies are predicted

to be identical whereas all approximate plate solutions as well as 3-D FEM predict

them to be close, but otherwise different. Indeed, a look at the corresponding mode

shapes from 3-D FEM (not provided here) shows them to be as unmistakably distinct.

This is a well known debate among mechanicians whether this source of discrepancy

is physical or numerical and remains, to the authors knowledge, unresolved. Finally,

experimental results, which are typically not known to the same precision, render

the differences between these three solution sets insignificant. A plot showing the

percentage error of the results presented in ?? with respect to 3-D finite element

results (regarded as being a reliable representation of the 3-D elasticity solution) is

given in fig. 29.

Further verification of classical elasticity based results for shear deformable beams

in particular can be made by varying the length-to-thickness ratio and comparing to

3-D FE analysis. Figures 30 and 31 show the dependance of the first and the second

(or third) frequency parameters, respectively, on L/h, which is varied from a value
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Table 8: Validation of frequency parameters of a C-C-C-C square plate against
experiment

Mode Expt. [60] Exact [157] Reissner-Mindlin Kirchhoff-Love 3-D FEM
1 35.986 35.1124 35.9717 35.9852 35.9955
2, 3 72.83 ±.98 72.8994 73.3465 73.3938 73.3920
4 108.0 ±1.4 107.4688 108.1182 108.2165 108.1798
5 132.2±1.7 131.6289 131.4462 131.5808 131.5170
6 132.2±1.7 131.6289 132.0725 132.2048 132.1438
7,8 166.2 ±2.1 164.3867 164.791 165.0003 164.8728
9,10 209.1 ±2.6 210.3617 210.2106 210.5218 210.3022
11 220.2 ±2.7 219.3245 219.6741 220.0325 219.7669
12 245.0 ±3.0 242.1969 241.7327 242.1539 241.8268
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Experiment

Exact (with K-L assumptions)
Reissner-Mindlin (current)
Kirchhoff-Love (current)

Figure 29: Percentage error of the frequency parameters against FEA

of 5 to 200. As the plate gets thicker, the two results start to deviate in increasingly

greater amounts: for L/h = 5, we see a 2.73% difference in the first natural frequency

and a 4.72% difference in the next two.

Having looked at basic model validation of Reissner-Mindlin and Kirchhoff-Love

plates, both of which are based on classical elasticity, we can now investigate the effect

micropolar elastic constants have on the (linear) dynamic behavior. Specifically, we

can look at how varying the thickness of the plate relative to the internal length-

scale parameters affects the predicted natural frequencies of the bending problem.
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Figure 30: First nondimensional frequency of a C-C-C-C Plate for various L/h: 3-D
FEM vs. Reissner-Mindlin
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Figure 31: Second (and third) nondimensional frequency of a C-C-C-C Plate for
various L/h: 3-D FEM vs. Reissner-Mindlin
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Let us focus, without loss of generality, on the example of the Polystyrene foam

mentioned in table 5. Since we wish to isolate the effect of varying h with respect to

l0, let us also maintain the ratio L/h a constant. A value of L/h = 15 was chosen

so as to have sufficiently different results between a Kirchhoff-Love and a Reissner-

Mindlin plate, both of which are limiting cases of a Cosserat elastic plate (as shown in

section 4.3). The plate thickness is varied from l0 to 30l0 and plotted against the first

10 nondimensional natural frequencies in figs. 32 to 37. For the sake of comparison,

the classical results are also presented.

Looking at figs. 32 to 37, the following observations can be made:

• For plates where h ∼ l0, length-scale effects have a significant impact on the pre-

dicted natural frequencies. For the example at hand, all the natural frequencies

are predicted to be 15%−20% higher for a micropolar plate when h = l0 (when

compared to classical Reissner-Mindlin frequencies). Note that since it may be

physically unreasonable to have a plate that is much thinner than the length-

scale of the microstructure of the material, all the plots presented consider a

minimum thickness of l0 .

• For thicker plates (h� l0), we see that the stiffening caused by the microstruc-

ture become increasingly unimportant and the predicted frequency parameters

very close to those from a Reissner-Mindlin theory. The results will not, how-

ever, coincide exactly unless all the micropolar constants vanish. This difference

arises due to the shear stiffness predicted by eq. (34) being different from eq. (35)

for nonzero β, γ, κ.

• In the same manner that a Kirchhoff plate model yields stiffer results than a

Reissner-Mindlin one for moderately thick classical elastic plates, a Kirchhoff-

type micropolar or couple stress based plate theory will also yield unrealistic

results unless L � h. Since the effect of including microstructure-dependent
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length-scale effects is the same as suppressing shear deformation, i.e., both yield

stiffer results, using a Kirchhoff based theory for even moderately thick microp-

olar plates will often result in a gross overestimation of the stiffening effect.

The magnitude of this over-estimation depends on the particular frequency of

interest: for the present case, the lowest frequency is predicted to be around

30% higher while the tenth frequency is, theoretically, greater by as much as

45% when compared to the classical Reissner-Mindlin frequencies. It is impor-

tant to note that for higher frequencies, the wavelength of deformation is much

smaller than L. Since the suitability of a plate theory for a dynamic analysis

is dictated by the ratio of thickness to the wavelength of deformation (which is

the appropriate small parameter of the problem, instead of h/L), one must be

wary when looking at results for higher frequencies (for example, ω9, ω10 and

higher), making sure the parameter remains suitably ‘small’.

Therefore, for the present example at least, the difference between results from

a Cosserat plate theory and classical Reissner-Mindlin frequencies is of the same

order as the difference between Kirchhoff-Love and Reissner-Mindlin frequencies

and, as such, one must take care not to neglect shear flexibility while accounting

for length-scale effects.

Having satisfactorily dealt with linear free vibration analysis, let us now shift our

attention to dealing with linear static problems.
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Figure 32: First nondimensional frequency of a C-C-C-C Cosserat Plate for various
h/l0; L/h = 15
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Figure 33: Second (third) nondimensional frequency of a C-C-C-C Cosserat Plate
for various h/l0; L/h = 15
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Figure 34: Fourth nondimensional frequency of a C-C-C-C Cosserat Plate for various
h/l0; L/h = 15
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Figure 35: Fifth nondimensional frequency of a C-C-C-C Cosserat Plate for various
h/l0; L/h = 15

95



��������

●

●

●

●
● ●

● ● ● ● ●

�� � �� �� �� �� �� �� �� �� �� �� ��
����

���

���

���

���

���

���

ω��ω�

● Cosserat

Reissner-Mindlin

Kirchhoff-Love

Figure 36: Seventh nondimensional frequency of a C-C-C-C Cosserat Plate for vari-
ous h/l0; L/h = 15
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Figure 37: Ninth (tenth) nondimensional frequency of a C-C-C-C Cosserat Plate for
various h/l0; L/h = 15
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5.5 Linear Static Analysis

The fully intrinsic equations are unsuitable for static analysis (linear or nonlinear) of

stationary structures [139]. This is easily seen by noting that for non-moving plates,

eqs. (56) are identically satisfied because V = Ω = 0. This leaves us with the six

equilibrium equations in 12 unknowns - a case of static indeterminacy that cannot

be solved without some augmentation. We shall address linear statics in this section

and defer the discussion on nonlinear static behavior to the next chapter.

Solving a linearized static problem is best done using a mixed formulation with

displacement and rotation variables. Since these quantities would have to be small,

they pose none of the problems associated with dealing with a direction cosine matrix

of finite rotations such as infinite degree nonlinearities and singularities. However, for

a linear analysis, the generalized strain-velocity relations are simply time derivatives

of the generalized strain-displacement relations. So, the matrices A,B,D assembled

in eq. (78) can be reused here if one removes the time derivatives on the generalized

strains and set all inertia terms in the equilibrium equations to zero (the latter is

easily implemented by simply setting the mass density to zero). This results in the

following system of equations

(Aji
∣∣
µ=0

+Bji)zi +Dj = 0 (84)

Strictly speaking, this formulation is now a mixed formulation involving infinitesimal

displacements and rotations along with force and moment resultants. Nevertheless, it

is worth pursuing such a mixed method as will be demonstrated in the next chapter.

For illustrative purposes, we will now solve a few static problems. Additionally, for

reasons that will be clear shortly, let us differentiate between two kinds of problems,

with respect to boundary conditions: those plate problems where there is at least

one direct boundary condition in terms of all the variables of the problem (force,

moment, displacements and rotations), and those where no such requirements are
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made. For example, cantilever plates fall into the former category while clamped or

simply supported plates, having no boundary condition on the force resultants, belong

to the latter. For the purpose of demonstration, it will suffice to look at simple cases

of static deflections of classical elastic plates under a uniformly applied distributed

dead load, p3, normal to the plate reference surface. For Cosserat elastic plates,

similar qualitative observations can be made as before (viz., they yield stiffer results

for h ∼ l0). Since we are looking at linear statics, no distinction is made between the

plate’s undeformed and deformed configurations. Therefore, in the Galerkin equations

given by eq. (84), we set f = p3e3 and m = 0.

5.5.1 Linear statics of uniform F-F-C-C plates

Consider once again a uniform isotropic plate whose domain is described by fig. 20.

Let edges 1, 2 be rigidly clamped while edges 3, 4 remain traction free. The distribu-

tion of the transverse displacement field u3, nondimensionalized with p3L4/D, under

a uniform load p3 is given by fig. 38. The solution converges to its final value up

to four significant digits for only p = 11. A plot showing the convergence behavior

for increasing p is given in fig. 39. Also provided in fig. 39 is a validation of the

obtained solution against a 3-D finite element solution from Abaqus (using approx-

imately 40k 20-node brick elements). Expectedly, there are significant gains to be

had in computational time using a plate solver as opposed to full-blown 3-D finite

elements: the present Galerkin approach, implemented in Fortran, took 0.05s to run

(for p = 11), as opposed to over 4 minutes in Abaqus. Even if one wishes to use a

much higher polynomial degree, say p = 24, the plate solver still only takes under 4

seconds. These cost savings do not come at the expense of accuracy: the difference

in solutions shown by fig. 39 is, at best, only 0.04% (for p ≥ 10). Also, as will be

discussed in the following subsections, the problem size was reduced significantly from

the original 18Ne variables to a much smaller set of 6Ne, which immensely helps in
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reducing the computational time with no (further) loss of accuracy.

5.5.2 Linear statics of uniform cantilever (C-C-C-F) plates

Next, consider the case of a cantilever plate. Referring to fig. 20, let us arbitrarily

pick edge 4 to be rigidly clamped and leave the remaining edges traction-free. The

plate is subjected to the same uniform loading as before. The distribution of the

transverse displacement field u3, nondimensionalized with p3L4/D, is given by fig. 40.

Let us take a look at the transverse deflection of the mid-point of edge 2 (opposite

to the clamped edge). Figure 41 shows a rapid convergence of the solution, similar

to previous case. The figure also shows this solution compared against that obtained

from a 3-D finite element analysis. The gains in computational cost are, naturally,

almost identical to the previous case. While it appears that the results do not match

with Abaqus as well as the previous case, there is still only a 0.1% between the two

solutions which, for all practical purposes, is excellent agreement.

Unlike cantilever beams, we also pick up variations in field quantities along both

the in-plane directions for cantilever plates. For the present loading case, while a

cursory glance at fig. 40 may lead one to think that the transverse displacement

along edge 2 is a constant, there is a small, but non-negligible variation. Figure 42

shows this variation in u3 and a comparison with the corresponding finite element

solution. Again, these solutions are within 0.1% of each other.

5.5.3 Linear statics of uniform fully clamped (C-C-C-C) and simply sup-
ported (S-S-S-S) plates

The case of a fully clamped plate has only geometric boundary conditions specified

on every edge (and importantly, has no edge with natural boundary conditions).

On the other hand, the simply supported plate has no edge with rotations or forces

specified. As noted by Sotoudeh and Hodges [140], because every single equation

does not have a boundary condition that can be associated with it, these cases are
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Figure 38: Static deflection of a F-F-C-C plate under uniform loading
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Figure 40: Static deflection of a cantilever plate under uniform loading
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not well posed. This is in contrast to the previous cases of clamped-free plates where

we had one boundary condition in terms of every force, moment, displacement and

rotation variable. It is most likely due to this reason that eq. (84), when applied to

these problems, results in matrices that are severely ill-conditioned and provide no

useable results.

It is worth noting that Sotoudeh [138] applied the same mixed formulation for

linear statics successfully to simply supported plates. The key differences from the

present approach lie in the manner in which variables are interpolated (an h-method

vs. the current p-method), and a strict enforcement of boundary conditions at nodal

points/edges (as opposed to a weak form of both the geometric and natural boundary

conditions in eq. (69)).

Since it is important that problems with all types of boundary conditions be

handled satisfactorily, a workaround has been developed that involves restructuring

of the original Galerkin equations. This will be detailed now.

Let us first explicitly write out eq. (84) in the form of these six sets of equations:

[
Bji1 − τ

(f)
2 Eji(2) + τ

(f)
4 Eji(4)

]
ni1 +

[
Bji2 + τ

(f)
1 Eji(1) − τ

(f)
3 Eji(3)

]
ni2 + L1L2

1∫
−1

1∫
−1

Φjf dξdη = 0

(85a)[
Bji1 − τ

(m)
2 Eji(2) + τ

(m)
4 Eji(4)

]
mi

1 +
[
Bji2 + τ

(m)
1 Eji(1) − τ

(m)
3 Eji(3)

]
mi

2 +Ajiẽαniα

+ L1L2

1∫
−1

1∫
−1

Φjm dξdη = 0 (85b)

Ajiγi1 =
[
Bji1 − (1− τ (f)2 )Eji(2) + (1− τ (f)4 )Eji(4)

]
vi +Ajiẽ1ψi ≡ Bji1fqi +Ajiẽ1ψi (85c)

Ajiγi2 =
[
Bji2 + (1− τ (f)1 )Eji(1) − (1− τ (f)3 )Eji(3)

]
vi +Ajiẽ2ψi ≡ Bji2fqi +Ajiẽ2ψi (85d)

AjiKi
1 =

[
Bji1 − (1− τ (m)

2 )Eji(2) + (1− τ (m)
4 )Eji(4)

]
ψi ≡ Bji1mψi (85e)

AjiKi
2 =

[
Bji2 + (1− τ (m)

1 )Eji(1) − (1− τ (m)
3 )Eji(3)

]
ψi ≡ Bji2mψi (85f)

Using eqs. (85c) to (85f), it is now possible to express the generalized coordinates
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of the 2-D strains solely in terms of those of the displacements and rotations in the

form

γiα = (Aij)−1Bjkαfqk + ẽαψ
i

Ki
α = (A−1)ijBjkαmψk

(86)

Using eq. (86) along with the appropriate constitutive laws, one can replace all the

force and moment resultants in eqs. (85a) and (85b) in terms of the displacements and

rotation variables. This will result in a system of 6Ne equations in 6Ne unknowns, a

reduction from the original system of 18Ne equations in as many unknowns.

It is very important to note that this reduction of variables does not equal to the

application of a purely displacement-based method. Since the Galerkin approximation

is applied prior to the aforementioned substitution of variables, this remains a mixed-

method. In fact, for the previous case of a cantilever plate, identical results are

obtained for all the 18 variables with or without a reduction of variables. However,

even though it is in unnecessary for this case, it is still beneficial to do so because of

significant savings in computational cost.

Solving the reduced set of equations for the cases of uniform, isotropic, fully

clamped and simply supported plates under uniformly distributed loads results in the

transverse displacement fields shown by figs. 43 and 45. It is immediately obvious that

the solution satisfies the geometric boundary conditions rather poorly in a point-wise

sense. Plots showing the behavior of the central deflection for increasing p are given by

figs. 44 and 46. While it may be said that the obtained solution is close to the expected

value (obtained from 3-D finite elements for the clamped plate, Navier’s solution

for the simply supported plate), the convergence behavior is extremely erratic. For

certain p, the solution obtained is often unacceptably far-removed from solutions of

neighboring values of p and, in general, the overall quality of the solution is poor. It

has been observed that small changes in, say, the values of the material constants cause

large variations in these solutions obtained. This clearly indicates that, despite the
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process mentioned above, the issue of ill-conditioning persists, albeit not identical in

severity. As suggested previously, a stronger enforcement of the boundary conditions

(i.e. , requiring the use of admissible functions) along with an h-refinement is expected

to improve results. Indeed, the same set of equations have been solved successfully

for a simply supported plate with solely an h-refinement by Sotoudeh [138].
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Figure 43: Static deflection of a fully clamped plate under uniform loading
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Figure 45: Static deflection of a simply supported plate under uniform loading
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CHAPTER VI

NONLINEAR ANALYSIS OF COSSERAT PLATES

As demonstrated in the previous chapter, a mixed formulation for linear statics worked

well for certain boundary conditions but not for others. To be able to accommodate for

a wider variety of boundary conditions, a method of modifying the solution procedure

was presented that improved the results considerably. This modification, however,

hinged on the fact that the generalized coordinates of the 2-D generalized strain

measures could be simply expressed in terms of those for the displacements and

rotations using eq. (86). Keeping this in mind, let us now discuss potential solution

strategies for computing (a) a nonlinear static solution, and (b) a nonlinear steady-

state solution. On paper, there are at least three ways of doing so. The advantages

and drawbacks of each approach will now be discussed.

6.1 A Mixed Variational Formulation

The first approach is to simply use a mixed formulation as previously done in the

linear case. This certainly has the advantage of being equipped to handle both static

and dynamic problems well, and for all boundary conditions. In fact, a similar mixed

formulation for the nonlinear analysis of beams was developed by Hodges [67] and

successfully implemented by Yu and Blair [164] in the computer code GEBT. With the

relevant derivation for a mixed variational statement for Cosserat plates is provided

in appendix F, the variational statement representing the dynamics of a moving plate
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is given by∫
S

{
δq

T

,αNα + δq
T
[
Ṗ + Ω̃P − K̃αNα − f

]
+ δψ

T

,αMα

+δψ
T
[
Ḣ + Ṽ P + Ω̃H − K̃αMα − (ẽα + γ̃α)Nα −m

]
− δNT

α,αu

−δNT

α

[
CT (γα + eα)− eα

]
− δMT

α,αθ − δM
T

α

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

−δP T [
u̇+ v + ω̃u− CTV

]
− δHT

[(
∆ +

1

2
θ̃ +

1

4
θθT
)

(Cω − Ω) + θ̇

]}
ds

=

∫
Γ

(δq
T
N̂ + δψ

T
M̂ − δNα

T
u− δMα

T
θ)dΓ

(87)

where the direction cosine matrix C has been expressed in terms of Rodrigues pa-

rameters θ. For obtaining a steady-state solution, one simply sets the terms with

time derivatives to zero. The fundamental unknowns of the mixed formulation are

u, θ,Nα,Mα, P and H (24 variables). One can further specialize for the static case

by simply setting P,H (and hence, V,Ω) to zero, leaving us with 18 variables.

This approach, while certainly viable, also comes with all the disadvantages tra-

ditionally associated with mixed or displacement based formulations - the presence

of finite rotation variables gives rise to singularities and infinite-degree nonlinearities.

On the other hand, fully intrinsic formulations, with the kinematics solely described

by velocity and angular velocity variables, have a maximum degree of nonlinearity of

two. Ideally, we would like to retain the advantages of a fully intrinsic formulation

but also be able to deal with static equilibrium problems.

6.2 A Fully Intrinsic Formulation for Statics

For static problems, yet another approach that is possible is the one outlined by

Hodges et al. [66]. Here, recognizing that the velocity and angular velocity measures

are identically zero, we lose the 12 generalized strain-velocity equations since they

are trivially satisfied. The remaining six equilibrium equations are now in terms of

12 variables and, owing to the statically indeterminate nature of plates, cannot be
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solved. However, one can use the six strain compatibility equations and end up with

a balanced set of 12 equations in 12 unknowns. For convenience, these equations are

presented here again in matrix form

Nα,α + K̃αNα + f = 0

Mα,α + K̃αMα + (ẽα + γ̃α)Nα +m = 0

γ1,2 − γ2,1 − ẽ1K2 + ẽ2K1 = 0

K1,2 −K2,1 = 0

(88)

Despite the parity of equations and unknowns, there is now an issue with the speci-

fication of boundary conditions. While natural boundary conditions can be handled

easily, those of the geometric type require a bit more thought. For example, as demon-

strated by Sotoudeh [140], certain geometric boundary conditions can be expressed

in terms of integrals of the strain measures. Besides, as was also observed in [140],

finding a good initial guess for the Newton-Raphson procedure can be tricky. Later,

a third and arguably superior way of solving for the nonlinear static equilibrium will

be presented.

6.3 Nonlinear Steady-State Solution

The nonlinear algebraic equations resulting from applying Galerkin’s method to the

fully intrinsic formulation were derived in the previous chapter as given by eq. (81):

Ajiżi +Bjizi + Cjikzjzk +Dj = 0

One can observe that these equations are set up in the same way as those developed

by Patil and Althoff [114] or Patil and Hodges [115] for beams. Given this set of

equations, it was straightforward to solve the linear eigenvalue problem by simply

ignoring the nonlinear terms. This, though, is equivalent to assuming that the steady-

state about which the system was linearized is simply z̄i = 0. Except for cases where

the external loading is absent and the plate is not in motion (such as a prescribed
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rotation), this assumption that the free vibration analysis is unaffected by applied

loading or prescribed motion is clearly invalid. Instead, the nonlinear steady-state

solution has to be determined first, followed by a linearization of the system about

the steady-state. One can expect this to be done by solving the following equations

using a suitable iterative method.

Bjiz̄i + Cjikz̄j z̄k + D̄j = 0 (89)

Moving plates are most amenable to be solved with the fully intrinsic nonlinear equa-

tions because of nonzero V and Ω distributions. Unlike static problems, this implies

we now have the right number of equations and unknowns to solve for the nonlinear

steady-state. To demonstrate, let us look at a very simple example.

6.3.1 Example: A Freely Spinning Plate

Consider a square (classical) isotropic plate of side L spinning about its center at a

constant angular velocity ω3. We wish to compute the steady-state deformation that

the plate develops caused only by the spinning motion. There are no additional loads

applied either on the surface or at the boundaries. A schematic of the plate is shown

in fig. 47. For this problem, it is easy to see that the only nonzero variables are the

in-plane generalized strains and velocities. The governing equations for this problem

are

N11,1 +N21.2 −N12K13 −N22K23 = −µΩ3V2 (90a)

N12,1 +N22.2 +N11K13 +N21K23 = µΩ3V1 (90b)

M13,1 +M23,2 −N11ε12 +N12(1 + ε11)−N21(1 + ε22) +N22ε21 = 0 (90c)

V1,1 + Ω3ε12 = 0 (91a)

V2,1 − Ω3(1 + ε11) = 0 (91b)
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Figure 47: Schematic of free plate spinning at a constant angular velocity

V1,2 + Ω3(1 + ε22) = 0 (91c)

V2,2 − Ω3ε21 = 0 (91d)

Ω3,1 = 0 (91e)

Ω3,2 = 0 (91f)

with the boundary conditions εαβ = 0, Kα3 = 0 on all four edges, and Ω3 = ω3 at the

center.

First, we can immediately observe from eqs. (91e) and (91e) that Ω3 = constant =

ω3. This greatly simplifies the solution procedure. Using this result in the eqs. (91a)

to (91d) and then substituting into eqs. (B.3b) and (B.3c) in appendix B gives us

K13 = K23 = 0. Using the standard constitutive law for the in-plane behavior of a

classical elastic isotropic plate and noting that ε12 = ε21, we can express eqs. (90a)
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and (90b) as

Eh

1− ν2 (ε11,1 + ε22,1) = −µω3V 2 (92a)

Eh

1− ν2 (ε11,2 + ε22,2) = µω3V 1 (92b)

Differentiating eq. (92a) with respect to x1, eq. (92b) with respect to x2, adding the

resulting equations and nondimensionalizing, we obtain

∇2εs + α2εs = −α2 (93)

where α2 = µω2
3L

2(1−ν2)/Eh. Here, we have taken advantage of the symmetry of the

problem to set ε11 = ε22 = εs. Equation (93) resembles the two-dimensional Helmholtz

equation. Indeed, many problems in physics related to steady-state oscillations lead

to the Helmholtz equation. For a rectangular domain with prescribed boundary

conditions, the solution of the above equation is well known (for example, see [16])

and can be expressed as an infinite series as

εs =

∫ 1

0

∫ 1

0

4α2

∞∑
n=1

∞∑
m=1

sin (nπx̄1) sin (mπx̄2) sin (nπξ) sin (mπη)

π2(m2 + n2)− α2
dξdη (94)

After determining ε11 and ε22, it is fairly straightforward to determine ε12, V1 and V2

and is therefore not expounded here.

It is also worth noting that a linear analysis would have simply resulted in a trivial

solution for the deformations while V1, V2 and Ω3 would merely describe a rigid body

rotation. It is the nonlinear terms in the generalized strain-velocity relations that

provide the necessary coupling between the imposed motion and the deformations

developed. By inspection of eq. (94), it can be seen that this depends on how large

the magnitude of α, and hence, ω3 can get. Notice that the denominator of α2 has

Eh, which is typically a very large value. Therefore, one must impart a very large

angular velocity ω3 to the plate to cause any noticeable deformation. Figure 48 shows

the distribution of the non-dimensional velocity V̄2(≡ V2/Lω3) at x2 = 0.5 for all x1.
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In the case of a rigid plate, V2 would vary linearly along x1 going from -1/2 to 1/2.

For lower (but more meaningful) values of α, this practically remains unchanged. For

very large values of α, say of the order of unity, this changes to yield a significantly

different velocity distribution. In fact, as can be seen from fig. 49, values of α just

over unity start to violate the small strain assumption and the solution is likely to

be incorrect anyway. To better illustrate the nature of the ε11 distribution, a value of

α = 0.1 has been picked to plot ε11 in fig. 50.
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Figure 48: V2 distribution along x1, x2 = 0.5 for α = 10−3, 1, 2, 3

This example is provided mainly to highlight the difference between dealing with

static and moving plates using the fully intrinsic equations. To reiterate, while a

static problem will not have the right balance between equations and unknowns, a

moving plate problem can be solved due to nonzero V and Ω.

Finally, in the case of beams, Sotoudeh and Hodges [140] note that the fully

intrinsic equations are easier to solve when at least one end is subjected to only

natural boundary conditions, thereby giving at least one direct boundary condition

in terms of forces and moments. Now, for plates, it has been found that a similar

conclusion is applicable. So for example, plates with two edges clamped and two
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Figure 49: Log(ε11) distribution along x1, x2 = 0.5 for α = 10−3, 1, 2, 3

edges free are easier to solve than, say, a plate with all edges clamped. Similar

behavior has already been demonstrated while solving the linear static problem which,

therefore, necessitated a workaround presented in section 5.5.3. Expectedly, this

difficulty carries over to the nonlinear problem too, although it is easy to see that the

same workaround cannot be applied because the generalized strain-velocity relations

cannot be easily inverted to express the strain measures solely in terms of the velocity

and angular velocity measures.

In fact, with a wide variety of boundary conditions, all efforts to apply a Newton-

Raphson procedure to the complete set of fully intrinsic equations have been unfruitful

in yielding a steady-state solution. So, while certain cases, such as the analytical

example presented previously, work as expected, a large majority of problems seem

unsuitable for analysis by this approach. On inspection of the Jacobian matrix needed

to compute the solution iteratively, it may be safe to say that severe ill-conditioning is

likely the culprit. This behavior has also observed in beam analyses using equations

derived by Patil and Althoff [114], wherein only cantilever beams have been studied.

However, application of the same equations to, say, a pinned-pinned beam with one
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Figure 50: ε11 distribution along x1, x2 = 0.5 for α = 0.1

moveable end (to avoid static indeterminacy) fails to compute the nonlinear steady-

state solution whereas a linear eigenvalue analysis behaves as expected. It would

be a worthwhile exercise to try and pin-point the exact reason for this behavior by

examining the structure of the nonlinear algebraic equations for various boundary

conditions.

6.4 Incremental Method for Nonlinear Plate Analysis

A way of circumventing similar problems that arise in the nonlinear analysis of stati-

cally indeterminate beams has been successfully developed by Sotoudeh and Hodges

[139]. This approach, typically referred to as an incremental method, can be applied

to plate analysis as well. The same method can be used to carry out either a nonlinear

static analysis or to find the steady-state solution of a moving plate. For dynamic

problems, once a steady-state solution has been found, the behavior of small motions

about this state can be analyzed by a generalized eigenvalue problem.

The incremental method is based on applying loads in small increments and solving

a linearized set of the fully intrinsic equations after each load increment. All time

derivative terms are naturally set to zero. In addition to these equations, equations
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that govern incremental displacements and rotations are also included which, because

of the incremental nature of the quantities, are linear. Therefore, the disadvantage

of a mixed method in introducing infinite-degree nonlinearities is not present here.

Also, since only incremental rotations are used instead of a finite rotation tensor, no

singularities are encountered. One has to remember that the incremental method is

ultimately an approximate way of solving the nonlinear system of equations. However,

with a suitable choice of loading increments, the method can yield excellent results.

The derivation of the necessary equations is presented next.

Starting with the geometrically-exact intrinsic equations given by eq. (59) and

setting all time derivatives to zero, they can be linearized as follows

N̂α,α + ˜̄KαN̂α − ˜̄NαK̂α + f̂ = ˜̄ΩP̂ − ˜̄P Ω̂ (95a)

M̂α,α + ˜̄KαM̂α − ˜̄MαK̂α + (ẽα + ˜̄γα)N̂α − ˜̄Nαγ̂α + m̂ = ˜̄ΩĤ − ˜̄HΩ̂ + ˜̄V P̂ − ˜̄PV̂
(95b)

Here, we have marked all quantities known from a previous loading step by (̄ ) quan-

tities and the unknowns at each step by the (̂ ) quantities, the exceptions being f̂ and

m̂, which are the incremental loads applied in the current step, and will be detailed

momentarily. Since these quantities are all expressed in the Bi system, it is easy to

update them after any given step as

X̄new = X̄old + X̂ (96)

The generalized strain-velocity relations from eq. (56) can similarly be linearized as

V̂,α + ˜̄KαV̂ − ˜̄V K̂α + (eα + γ̄α)Ω̂− ˜̄Ωγ̂α = 0 (97a)

Ω̂,α + ˜̄KαΩ̂− ˜̄ΩK̂α = 0 (97b)

In the incremental method, we also need to introduce incremental displacements

and rotations, and derive equations relating them to increments in V,Ω, γα and Kα.
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While a detailed derivation has been provided in appendix G, the necessary equations

are simply listed here as

V̂ = ˜̄Ωq̂ + ˜̄V ψ̂ (98a)

Ω̂ = ˜̄Ωψ̂ (98b)

γ̂α = q̂,α + ˜̄Kαq̂ + (ẽα + ˜̄γα)ψ̂ (98c)

K̂α = ψ̂,α + ˜̄Kαψ̂ (98d)

Applying the incremental method to a nonlinear static problem, one can simply

use eqs. (95), (98c) and (98d) to solve for the equilibrium state. A nonlinear steady-

state computation for moving plates requires the inclusion of V̂ and Ω̂ that is easily

done by using eqs. (98a) and (98b) to simply substitute for these variables in terms

of q̂ and ψ̂ without increasing the size of the problem. Therefore, in both cases we

have a system of 12 equations in 12 unknowns, while eq. (97a) is redundant.

6.4.1 Weighted–Integral Statement

To solve the static problem, consider the following weighting of eqs. (95), (98c)

and (98d) on a domain given by fig. 20

1∫
−1

1∫
−1

{
q̂T
[
N̂α,α + ˜̄KαN̂α − ˜̄NαK̂α + f̂

]
+ ψ̂T

[
M̂α,α + ˜̄KαM̂α − ˜̄MαK̂α + (ẽα + ˜̄γα)N̂α

− ˜̄Nαγ̂α + m̂
]

+ N̂T
α

[
q̂,α + ˜̄Kαq̂ + (ẽα + ˜̄γα)ψ̂ − γ̂α

]
+ M̂T

α

[
ψ̂,α + ˜̄Kαψ̂ − K̂α

]}
dξdη

+(1− τ (f)1 )

1∫
−1

N̂T
2

[
q̂ − q̂(1)

]
dξ

∣∣∣∣
η=−1

+ (1− τ (m)
1 )

1∫
−1

M̂T
2

[
ψ̂ − 	̂(1)

]
dξ

∣∣∣∣
η=−1

+τ
(f)
1

1∫
−1

q̂T
[
N̂2 − N̂(1)

2

]
dξ

∣∣∣∣
η=−1

+ τ
(m)
1

1∫
−1

ψ̂T
[
M̂2 − M̂(1)

2

]
dξ

∣∣∣∣
η=−1

−(1− τ (f)2 )

1∫
−1

N̂T
1

[
q̂ − q̂(2)

]
dη

∣∣∣∣
ξ=1

− (1− τ (m)
2 )

1∫
−1

M̂T
1

[
ψ̂ − 	̂(2)

]
dη

∣∣∣∣
ξ=1
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−τ (f)2

1∫
−1

q̂T
[
N̂1 − N̂(2)

1

]
dη

∣∣∣∣
ξ=1

− τ (m)
2

1∫
−1

ψ̂T
[
M̂1 − M̂(2)

1

]
dη

∣∣∣∣
ξ=1

−(1− τ (f)3 )

1∫
−1

N̂T
2

[
q̂ − q̂(3)

]
dξ

∣∣∣∣
η=1

− (1− τ (m)
3 )

1∫
−1

M̂T
2

[
ψ̂ − 	̂(3)

]
dξ

∣∣∣∣
η=1

−τ (f)3

1∫
−1

q̂T
[
N̂2 − N̂(3)

2

]
dξ

∣∣∣∣
η=1

− τ (m)
3

1∫
−1

ψ̂T
[
M̂2 − M̂(3)

2

]
dξ

∣∣∣∣
η=1

+(1− τ (f)4 )

1∫
−1

N̂T
1

[
q̂ − q̂(4)

]
dη

∣∣∣∣
ξ=−1

+ (1− τ (m)
4 )

1∫
−1

M̂T
1

[
ψ̂ − 	̂(4)

]
dη

∣∣∣∣
ξ=−1

+τ
(f)
4

1∫
−1

q̂T
[
N̂1 − N̂(4)

1

]
dη

∣∣∣∣
ξ=−1

+ τ
(m)
4

1∫
−1

ψ̂T
[
M̂1 − M̂(4)

1

]
dη

∣∣∣∣
ξ=−1

= 0 (99)

where q̂(i), 	̂(i), N̂(i)
1 , M̂

(i)
1 (i = 2, 4) are possible prescribled boundary conditions on

edges 2 and 4, q̂(i), 	̂(i), N̂(i)
2 , M̂

(i)
2 (i = 1, 3) are possible prescribed boundary conditions

on edges 1 and 3, and τ
(f)
i , τ

(m)
i are 3×1 column matrices of flags (zero or one) denoting

a prescription of of either geometric or natural boundary conditions, respectively.

Before we proceed, it is worthwhile to note this weighting of the equations is not

energy-consistent, in that an integration by parts will not yield an energy balance

equation as before due to the approximate nature of these linearized equations.

The incremental displacements and rotations are not updated as per eq. (96), but

can instead be updated as

q̄new = q̄old + CT q̂ (100a)

C̄new = (∆− ˜̂ψ)C̄old (100b)

Since the final values of the displacements and direction cosine matrix may be

computed from the generalized strains using eq. (22), it is not essential to keep track

of either q̂ or ψ̂ after every load step and update q and C. However, doing so may

prove useful in checking the accuracy of the solution obtained at every step - for

instance, one may check the deviation of C from being a perfectly orthogonal matrix.
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Also, it is worth making an important observation regarding the weighted-integral

statement above. If one looks at only the linear terms, then the equations look exactly

like eqs. (85a) to (85f) written for linear statics. This also means that, left unchanged,

the problems of ill-conditioning encountered with certain boundary condition types

will carry over here as well. To avoid this, it is recommended to shift entirely to

using only the six incremental displacement and rotation variables. While this would

not have been possible if one were dealing with the original nonlinear generalized

strain-velocity relations, it can be done easily here in their incremental form.

Applying a Galerkin approximation to eqs. (98c) and (98d) along with the ap-

propriate geometric boundary conditions, one can obtain the following equations ex-

pressed in terms of generalized coordinates:

Ajiγ̂i1 −
[
Bji1 − (1− τ f2 )E ji2 + (1− τ f4 )E ji4

]
q̂i − Cjik ˜̄k1kq̂i −Ajiẽ1ψ̂i

− Cjik ˜̄γ1kψ̂i = (1− τ (f)2 )

1∫
−1

Φj q̂(2)dη

∣∣∣∣
ξ=1

− (1− τ (f)4 )

1∫
−1

Φj q̂(4)dη

∣∣∣∣
ξ=−1

(101)

Ajiγ̂i2 −
[
Bji2 + (1− τ f1 )E ji1 − (1− τ f3 )E ji3

]
q̂i − Cjik ˜̄k2kq̂i −Ajiẽ2ψ̂i

− Cjik ˜̄γ2kψ̂i = −(1− τ (f)1 )

1∫
−1

Φj q̂(1)dξ

∣∣∣∣
η=−1

+ (1− τ (f)3 )

1∫
−1

Φj q̂(3)dξ

∣∣∣∣
η=1

(102)

Ajik̂i1 −
[
Bji1 − (1− τm2 )E ji2 + (1− τm4 )E ji4

]
ψ̂i − Cjik ˜̄k1kψ̂i

= (1− τ (m)
2 )

1∫
−1

Φj	̂(2)dη

∣∣∣∣
ξ=1

− (1− τ (m)
4 )

1∫
−1

Φj	̂(4)dη

∣∣∣∣
ξ=−1

(103)

Ajik̂i2 −
[
Bji2 + (1− τm1 )E ji1 − (1− τm3 )E ji3

]
ψ̂i − Cjik ˜̄k2kψ̂i

= −(1− τ (m)
1 )

1∫
−1

Φj	̂(1)dξ

∣∣∣∣
η=−1

+ (1− τ (m)
3 )

1∫
−1

Φj	̂(3)dξ

∣∣∣∣
η=1

(104)
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where A,B1,B2, E1 . . . E4 are integrals of shape functions as defined in eq. (76).

These equations, linear in the unknowns, can now be easily inverted to yield

γ̂i1 = (Aij)−1
[
Bjk1 − (1− τ f2 )E jk2 + (1− τ f4 )E jk4

]
q̂k + (Aji)−1Cjik ˜̄k1kq̂i + ẽ1ψ̂

k

+ (Aij)−1Cjlk ˜̄γ1kψ̂l + (Aij)−1
[

(1− τ (f)2 )

1∫
−1

Φj q̂(2)dη

∣∣∣∣
ξ=1

− (1− τ (f)4 )

1∫
−1

Φj q̂(4)dη

∣∣∣∣
ξ=−1

]

(105)

γ̂i2 = (Aij)−1
[
Bjk2 + (1− τ f1 )E jk1 − (1− τ f3 )E jk3

]
q̂k + (Aij)−1Cjlk ˜̄k2kq̂l + ẽ2ψ̂

k

+ (Aij)−1Cjlk ˜̄γ2kψ̂l + (Aij)−1
[
−(1− τ (f)1 )

1∫
−1

Φj q̂(1)dξ

∣∣∣∣
η=−1

+ (1− τ (f)3 )

1∫
−1

Φj q̂(3)dξ

∣∣∣∣
η=1

]

(106)

k̂i1 = (Aij)−1
[
Bjk1 − (1− τm2 )E jk2 + (1− τm4 )E jk4

]
ψ̂k + (Aij)−1Cjlk ˜̄k1kψ̂l

+(Aij)−1
[

(1− τ (m)
2 )

1∫
−1

Φj	̂(2)dη

∣∣∣∣
ξ=1

− (1− τ (m)
4 )

1∫
−1

Φj	̂(4)dη

∣∣∣∣
ξ=−1

] (107)

k̂i2 = (Aij)−1
[
Bjk2 + (1− τm1 )E jk1 − (1− τm3 )E jk3

]
ψ̂k + (Aij)−1Cjlk ˜̄k2kψ̂l

+(Aij)−1
[
−(1− τ (m)

1 )

1∫
−1

Φj	̂(1)dξ

∣∣∣∣
η=−1

+ (1− τ (m)
3 )

1∫
−1

Φj	̂(3)dξ

∣∣∣∣
η=1

] (108)

The remaining Galerkin equations are given by

[
Bji1 − τ f2 E ji2 + τ f4 E ji4

]
n̂i1 +

[
Bji2 + τ f1 E ji1 − τ f3 E ji3

]
n̂i2 + Cjik˜̄kαkn̂iα − Cjik˜̄nαkk̂iα

= −
1∫

−1

1∫
−1

Φj f̂dξdη − τ (f)2

1∫
−1

ΦjN̂(2)
1 dη

∣∣∣∣
ξ=1

+ τ
(f)
4

1∫
−1

ΦjN̂(4)
1 dη

∣∣∣∣
ξ=−1

+ τ
(f)
1

1∫
−1

ΦjN̂(1)
2 dξ

∣∣∣∣
η=−1

− τ (f)3

1∫
−1

ΦjN̂(3)
2 dξ

∣∣∣∣
η=1

(109)
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[
Bji1 − τm2 E ji2 + τm4 E ji4

]
m̂i

1 +

[
Bji2 + τm1 E ji1 − τm3 E ji3

]
m̂i

2 + Cjik˜̄kαkm̂i
α

− Cjik ˜̄mα
k
k̂iα + Cjik˜̄γαkn̂iα − Cjik˜̄nαkγ̂iα +Ajiẽαn̂iα = −

1∫
−1

1∫
−1

Φjm̂dξdη

− τ (m)
2

1∫
−1

ΦjM̂(2)
1 dη

∣∣∣∣
ξ=1

+ τ
(m)
4

1∫
−1

ΦjM̂(4)
1 dη

∣∣∣∣
ξ=−1

+ τ
(m)
1

1∫
−1

ΦjM̂(1)
2 dξ

∣∣∣∣
η=−1

− τ (m)
3

1∫
−1

ΦjM̂(3)
2 dξ

∣∣∣∣
η=1

(110)

The generalized coordinates of the stress resultants can be expressed in terms of

those of the strain measures via the plate stiffness matrix, as

n̂iα = Aαβγ̂
i
β + Bαβk̂

i
β (111a)

m̂i
α = Bβαγ̂

i
β + Dαβk̂

i
β (111b)

Therefore, using eqs. (105) to (108) along with eqs. (111) to substitute for n̂iα, m̂
i
α, γ̂

i
α, k̂

i
α

in terms of q̂i, ψ̂i into eqs. (109) and (110) gives us the final system of linear algebraic

equations to be solved at every load step. Owing to the lengthy nature of the result-

ing equations, these are not explicitly written out. Finally, this development can be

complete with a discussion on how to express increments in the applied distributed

loads.

6.4.2 Modeling Distributed Loads

In the preceding development, very little was said about the expressions for increments

in the applied distributed loads, f̂ and m̂. Conceptually, while they can be thought of

as being a fraction of the total loads f,m applied at a given loading step, their exact

expression depends on the behavior of the applied loads during the loading process.

Here, a treatment will be provided for two cases - loads that “follow” the deformation,

or follower loads, and loads that do not change in magnitude or direction during the

loading process, or dead loads.
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Modeling follower loads is extremely straightforward in the present formulation

since fi,mi are already expressed in the Bi basis associated with the deformed plate

reference surface. For example, consider a constant distributed force piBi acting on

the plate. We have

fi(x1, x2) = (pjBj) ·Bi = pi

Therefore, the incremental applied force is simply

f̂ = p̂ (112)

where p̂ are incremental values of the load in each step.

In the case of dead loads, one has to take into account the change in orientation

of the Bi basis relative to the inertial basis in which the applied forces are specified.

Considering a similar constant distributed force of piii on the plate, we have

fi(x1, x2) = (pjij) ·Bi = Cijpj

⇒f = Cp

(113)

where the matrix of direction cosines is now necessary to correctly determine fi. For

this case, f̂ can be found as

f̄ = C̄p̄

and f̄ + f̂ = Cp = (∆− ˜̂ψ)C̄(p̄+ p̂)

⇒f̂ = C̄p̂− ˜̂ψC̄p̄ = C̄p̂+ ˜̄fψ̂
(114)

The first term, C̄p̂, is the inhomogeneous part with p̂ being the incremental value

at every step while the second, ˜̄fψ̂, is a homogeneous term.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The objective of the dissertation was to derive a nonlinear theory of Cosserat elastic

plates using the VAM. Any plate theory requires the following sets of equations:

kinematic relations, constitutive laws, compatibility equations and the equilibrium

equations/equations of motion. A systematic derivation of each of these is presented.

Using the VAM, the original three-dimensional problem was rigorously split into a

through-the-thickness analysis that is asymptotically correct and a two-dimensional

plate analysis that is geometrically-exact.

The zeroth-order approximation in the through-the-thickness analysis provided a

two-dimensional constitutive law that matched well with published results, although

no assumptions regarding the through-thickness variation of the displacements and

stresses. Additionally, the analysis also provides a means to recover the 3-D stress,

strain and displacement fields from plate variables. A second-order approximation

of the total energy is then found using an energy transformation, which augments

the previously determined constitutive law with the shear stiffness and the drilling

stiffness. The additional drilling degree of freedom comes from the appearance of

the in-plane curvature terms Kα3 in the strain energy of a micropolar plate. To the

best of the authors’ knowledge, this is the first time the drilling stiffness, interpreted

as relating the internal drilling moments to the in-plane curvatures of a plate, has

been determined in a mathematically rigorous manner. Several comparisons are made

with expressions found in the literature for the drilling stiffness, highlighting potential

errors in using such simplified forms.
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Next, a fully intrinsic theory of Cosserat elastic plates is derived from Hamilton’s

extended principle. Since the rotation about the plate normal can be considered as

independent, this results in six nonlinear equations of motion for the dynamics of a

moving plate. In contrast to a Reissner-Mindlin-type theory, the moment equilib-

rium about the normal is not satisfied implicitly and is instead given in terms of the

internal drilling moments. A systematic way of obtaining a Reissner-Mindlin theory

from the more general Cosserat plate theory is also presented, delivering a unified

implementation of a theory of plates with or without observable Cosserat effects.

This work also presents a Galerkin approach for solving the fully intrinsic equa-

tions of Cosserat plates. It is also shown that the weighted-integral statement is energy

preserving. For linear free vibration problems, it was shown to yield very accurate

results in comparison with 3-D finite element results. Next, a mixed-method for lin-

ear statics was presented and analyzed using a Galerkin method. It was found that

the current approach gave excellent results provided there was at least one boundary

condition each in terms of all the unknowns. This meant that cantilever plates fared

well while fully clamped or simply supported plates gave extremely unsatisfactory

results due to ill-conditioning. A method to restructure the Galerkin equations and

eliminate a set of unknowns in favor of the rest was shown to improve results con-

siderably, although not as accurate as a finite-element implementation with strong

enforcement of boundary conditions.

Finally, methods to tackle nonlinear static and dynamic problems are discussed in

the context of plates (both classical and Cosserat). It was shown with the help of an

example that the fully intrinsic equations are ideally suited to solve problems involving

moving plates. To avoid dealing with infinite degree nonlinearities associated with

finite rotation tensors in a mixed method, but have the well-posedness of such a

formulation, an incremental method was developed that is suitable for both moving

and stationary plates. The method involves successive solving sets of linear algebraic
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equations, thereby avoiding solution of sets of nonlinear algebraic equations using an

iterative procedure, which was said to not work as expected for hyperstatic structures.

Although inherently approximate, the incremental method is known to provide very

good results in beam analyses and is expected to perform similarly for plates.

7.2 Future Work

The present work can be considered as providing the initial, yet crucial, developments

towards the formulation of a unified theory of two-dimensional plate structures. It

does, however, leave a lot of scope for further research and development.

• Extensive validation of plate modeling. As of today, there is an avalanche of

work being done on the theoretical side of Cosserat plate modeling. However,

there are only a precious few sources of dependable experimental data materials

modeled as micropolar elastic. Over time, with further availability of test data,

a more rigorous testing of the plate modeling effort needs to be done including

anisotropic micropolar materials.

• Computational determination of micropolar constants. One of the challenges

concerning the accurate determination of the additional length-scale dependent

elastic constants by way of experiment is the extremely precise measurement

techniques required. This is the reason why higher-order elasticity was dismissed

in the 1960s ([134, 35]) as being insignificant or inadequate. However, with

improved measurement techniques in the mid 1980s and after, interest in higher-

order elasticity theories was rekindled and reliable, repeatable data started to

appear. As just mentioned however, there is still far less data available than one

might like. Recently, an alternate way of determining these elastic constants by

computational techniques has gained traction. For instance, there has been a

lot of interest in modeling single layer graphene sheets and carbon nanotubes

as equivalent micropolar continua at the macro scale with the help of atomistic
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simulations. Some notable examples include the works by Odegard et al. [108],

Lu et al. [97], Scarpa et al. [130], Kumar et al. [85] and, recently, Selmi et

al. [135]. Although explored only in concept, a micromechanics approach, such

as the one presented by Yu and Tang [169], might also prove useful integrating

the VAM to length-scale dependent behavior.

• Implementation of variable-order finite elements. Galerkin’s method and the as-

sociated p-refinement provide a very desirable exponential rate of convergence

as opposed to an h-refinement. However, the cases we have looked at were uni-

form plates subjected to uniform loading. If one wishes to solve plate problems

that are (a) not rectangular in geometry but arbitrarily shaped, (b) subject to

discontinuous loading and/or boundary conditions, it is computationally less

expensive to have multiple elements rather than use an extraordinarily high

polynomial degree to accurately capture sharp transitions. This extension from

the Galerkin method is fairly straightforward, and is made easy with the present

choice of hierarchical bubble functions.

• Validation of the incremental method. The incremental method developed in

section 6.4 requires a thorough validation for both nonlinear static and dy-

namic problems. The implementation is no more complicated than that of the

linear analysis presented earlier, with the addition of having to repeat the pro-

cess over multiple loading steps. Using an h-method, this approach to solving

nonlinear beam problems has been validated by Sotoudeh and Hodges [139].

Specifically, care has to be taken to ensure solution consistency after every load

step, such as verifying the orthogonality of the direction cosine matrix. Addi-

tionally, an exploration into the development of a corrector method, to work in

tandem with the predictor step, might be beneficial in reducing the number of

load steps required or ensure convergence to the correct solution. It is worth
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noting that the incremental method, in the form presented here, does not have

a mathematical proof that guarantees convergence.

• Extension to shell modeling. While plenty of two-dimensional structures can be

modeled as plate structures, it is certainly restrictive to require a zero initial

curvature. An important step in the generalization of the current methodology

is to extend the analysis to Cosserat elastic shells. This is viewed as being

fundamentally similar to the generalization of a theory of classical elastic plates

to classical elastic shells, which, in and of itself, is fairly involved, requiring

a careful consideration of the orders of all the additional terms introduced in

the asymptotic analysis. After the development of such a theory of shells, it is

recommended to solve the resulting equations with variable-order finite elements

instead of exclusively a p-refinement. Depending on the shell geometry, having

a single element over the entire geometry might cause difficulties when using

Galerkin method without no h-refinement. This is especially likely for shells

whose curvatures are much smaller than their wavelengths of deformation, such

as a half tube, where the local normal changes orientation significantly along

the shell surface, making higher degree polynomial interpolations of variables

ineffective in improving results.

• Examples demonstrating the advantages of Cosserat elasticity in the context of

drilling rotations. A rigorous demonstration of the advantages of modeling stiff-

ness about a plate normal is required. The simplest example is to consider an

infinite plate subjected to a concentrated drilling moment. Classical plate mod-

els (of the Kirchhoff or Mindlin types) predict an infinite response at the point

of application of the moment. Realistically, we know that the rotation at the

point of application ought to be finite. Cosserat or micropolar elasticity has pos-

tulated, from the outset, the existence of independent microrotations and the
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ability of the medium to support concentrated couples. Solving the aforemen-

tioned problem will help illustrate the advantages of using a more general theory

of plates that is based on higher-order elasticity theories. The corresponding

three dimensional problem of a concentrated couple in an infinite micropolar

solid has been solved successfully by Eringen [40], where the expression for a

nontrivial microrotation field is derived. The present problem can be thought of

as the corresponding 2-D analogue of Eringen’s problem and is, consequently,

expected to yield a finite solution dependent on the material parameters. A

partial attempt at solving this problem is presented in appendix H and needs

to be completed in the future.
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APPENDIX A

EXPRESSIONS FOR THE THREE-DIMENSIONAL

STRAIN MEASURES

A.1 Force Strain

The Jaumann-Biot-Cauchy strain tensor Γ is defined as

Γ = U −∆ (A.1)

Here, the Cosserat stretch tensor U is not symmetric and does not coincide with

the symmetric right stretch tensor U from the polar decomposition theorem. The

deformation gradient tensor can be written as

χ = C ·U (A.2)

Substituting for the U using eqs. (8) and (A.2), we have

Γ = exp(−φ̃) ·CbB · χ−∆ (A.3)

To make the formulation simpler, we can write these expressions in matrix form.

Expressing Γ in the bi triad and the deformation gradient in mixed bases,

Γ = biΓijbj (A.4)

χ = Biχijbj (A.5)

Following a development similar to [70], we can express in matrix notation

Γ = exp(−φ̃)χ−∆ (A.6)

where Γ is a nonsymmetric 3 × 3 matrix of the three-dimensional “force” strain

measures Γij and χ contains the measure numbers of the deformation gradient, as
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defined by Ogden [109]. For the case of small strain and small local rotation φ̃, with

ϕ ≡ max|φ̃ij| = O(max|Γij|) ≡ O(ε), we can write

Γ = χ− φ̃−∆ +O(ϕ2, ϕε) ≈ χ− φ̃−∆ (A.7)

This definition holds as long as such that max |Γij| ≡ ε̂ � 1. For a plate, the

components of the matrix χ can be determined as

χij = (Bi ·Gk)(g
k · bj)

= Bi ·Gj

(A.8)

where Gi are the covariant vase vectors tangent to the coordinate curves of the

deformed plate:

Gi(x1, x2, x3) =
∂R̂

∂xi
(A.9)

This gives us the following expression for Γ in terms of the 2-D generalized strain

variables:

Γ =
ε11 + x3K11 + w1,1 ε21 + φ3 + x3K21 + w1,2 w1,3 − φ2

ε12 − φ3 + x3K12 + w2,1 ε22 + x3K22 + w2,2 w2,3 + φ1

φ2 + w3,1 + 2γ13 −φ1 + w3,2 + 2γ23 w3,3


(A.10)

A.2 Moment Strain/Wryness Tensor

Similar to the definitions in [127], [118], [79], etc., the wryness tensor is defined as

X = bi κ
b
i (A.11)

where we define the curvature vectors of the three-dimensional deformed Cosserat

continuum κBi expressed in the Bi basis (three-dimensional equivalents to K for

beams and Kα for plates/shells) as

κ̃Bi = C ,i.C
T (A.12)
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where ( ),i denotes the differentiation ∂( )
∂xi

(i = 1, 2, 3). The quantities κbi simply

represent a pull-back of the vectors κBi . Using eq. (8) and writing separate relations

for i = α and i = 3,

κ̃Bα = (CBb. exp (φ̃)),α. exp (−φ̃).CbB

= CBb
,α .C

bB +CBb. exp (φ̃)
,α
. exp (−φ̃).CbB

= K̃ ,α +CBb. exp (φ̃)
,α
. exp (−φ̃).CbB

(A.13)

κ̃B3 = (CBb. exp (φ̃)),3. exp (−φ̃).CbB

= CBb. exp (φ̃)
,3
. exp (−φ̃).CbB

(A.14)

Switching to writing these expressions in matrix form, it can be simplified to

κ̃Bα = K̃α − exp (φ̃)φ̃,α exp (−φ̃) (A.15)

κ̃B3 = − exp (φ̃)φ̃,3 exp (−φ̃) (A.16)

For small local rotations, we can approximate exp (φ̃) ≈ ∆ + φ̃, giving

κBα = Kα − φ,α +O(ϕ2) ≈ Kα − φ,α (A.17)

κB3 ≈ −φ,3 (A.18)

Here it is noted that the negative signs in these relations stem from a sign convention

stipulated while relating the matrix and tensor forms of CBb that is different from

those for exp(φ̃). Using these relations, we can write

X = bi κ
b
i = Bi κ

B
i (A.19)

⇒Xij = eTj κ
B
i (A.20)

Expanded out In matrix form,

X =


−K12 − φ1,1 K11 − φ2,1 K13 − φ3,1

−K22 − φ1,2 K21 − φ2,2 K23 − φ3,2

−φ1,3 −φ2,3 −φ3,3

 (A.21)
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APPENDIX B

COMPATIBILITY EQUATIONS FOR PLATES

Following [136], we can enforce the following equalities regarding the kinematic vari-

ables of a plate

R,12 = R,21 (B.1)

Bi,12 = Bi,21 (B.2)

These four vector equations lead to only six independent compatibility equations

similar to those reported by Hodges et al. [64] when ε12 6= ε21. These equations are

(1 + ε22)K12 − (1 + ε11)K21 = 2γ23,1 − 2γ13,2 + ε12K22 − ε21K11 (B.3a)

(1 + ε22)K13 − ε12K23 = ε21,1 − ε11,2 − 2γ13K21 + 2γ23K11 (B.3b)

(1 + ε11)K23 + ε21K13 = ε22,1 − ε12,2 − 2γ13K22 + 2γ23K12 (B.3c)

K11,2 −K21,1 +K13K22 −K12K23 = 0 (B.3d)

K22,1 −K12,2 +K23K11 −K21K13 = 0 (B.3e)

K23,1 −K13,2 +K11K22 −K12K21 = 0 (B.3f)
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APPENDIX C

EXPRESSION FOR VIRTUAL WORK OF THE APPLIED

LOADS

For any point in the deformed configuration,

δR̂ = δR + x3δB3 + δwiBi + wiδBi (C.1)

The virtual displacement and rotation of the reference surface and the virtual rotation

at any 3-D material point are defined as

δqBi = δu ·Bi = δR ·Bi (C.2)

δBi = δψ
Bb ×Bi = (−δψBbBβBβ ×B3 + δψ

Bb

B3B3)×Bi (C.3)

δB̂i = δψ
B̂B × B̂i = (−δψB̂BB̂β B̂β × B̂3 + δψ

B̂B

B̂3 B̂3)× B̂i (C.4)

Therefore, eq. (C.1) becomes (after neglecting products of warping and virtual rota-

tions)

δR̂ = δqBiBi + x3(δψ1B1 + δψ2B2) + δwiBi (C.5)

where we simply denote δψ
Bb

Bi by δψBi.

Next, we need to write δψ
B̂B

in terms of Bi and δφi. Consider

C = CBb. exp (φ̃)

⇒B̂i = C.bi = (Bjbj.bk exp (φ̃)klbl).bi

= Bj exp (φ̃)ji = exp (−φ̃)ijBj

⇒Bi = exp (φ̃)ijB̂j
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Taking the variation of the equation above and ignoring products of local rotation

and virtual rotations,

δB̂i = exp (−δφ̃)ijBj + exp (−φ̃)ijδBj

≈ exp (−δφ̃)ij exp (φ̃)jkB̂k

(C.6)

Comparing eq. (C.4) with eq. (C.6) we can conclude that

δψ
B̂B

B̂ ≡


−δψB̂BB̂2

δψ
B̂B

B̂1

δψ
B̂B

B̂3

 =


δφ1

δφ2

δφ3

 (C.7)

Neglecting products of local rotation times the virtual rotations again, we have

the virtual rotations in the Bi system as

δψ
B̂B

B ≡


−δψB̂BB2

δψ
B̂B

B1

δψ
B̂B

B3

 =


δφ1

δφ2

δφ3

 (C.8)

Making use of the addition theorem, we can write

δψ
B̂b

= δψ
B̂B

+ δψ
Bb

(C.9)

or, in matrix notation,

δψ
B̂b

B = δψ
B̂B

B + δψ
Bb

B

=


−δψB2

δψB1

δψB3

+


δφ1

δφ2

δφ3


(C.10)

δW =

(
〈ϕf · δR̂〉+ 〈ϕm · δψ

B̂b〉+ τ+
f · δR̂|h/2 + τ−f · δR̂|−h/2

+τ+
m · δψ

B̂b|h/2 + τ−m · δψ
B̂b|−h/2

) (C.11)
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Using results from eqs. (C.1) and (C.10), we can express this as

δW = δW1D + δW∗

δW1D =

((
τ+fi + τ−fi + 〈ϕfi〉

)
δqBi +

[
h

2
(τ+fα − τ

−
fα

) + 〈x3ϕfα〉
]
δψα

+ (τ+mi + τ−mi + 〈ϕmi〉)δψi

)

δW∗ = δ
[
τ+fiw

+
i + τ−fiw

−
i + 〈ϕfiwi〉

]
+ δ

[
τ+miφ

+
i + τ−miφ

−
i + 〈ϕmiφi〉

]
By introducing column matrices δq, δψ, τf , τm, ϕf and ϕm, which are formed by

stacking the three elements associated with indexed symbols of the same names, one

may write the virtual work in matrix form:

δW =
(
δq

T
f + δψ

T
m
)

+ δ
(
τ+T
f w+ + τ−Tf w− + 〈ϕT

f w〉
)

+ δ
(
τ+T
m φ+ + τ−Tm φ− + 〈ϕT

mφ〉
) (C.12)
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APPENDIX D

ESTIMATING ORDERS OF THE APPLIED LOADS

Previously, we stipulated that εαβ, hKαβ ∼ O(ε̂), 2γα3, hKα3 ∼ O(hε̂/l), and µ̄ is the

order of the material constants (all of which are assumed to be of the same order

here). Therefore, we know the order of the Nαβ, Mαβ, Qα and Mα3 from the plate

constitutive law as

Nαβ ∼ µ̄hε̂ Mαβ ∼ µ̄h3
ε̂

h
(D.1)

Qα ∼ µ̄h
h

l
ε̂ Mα3 ∼ µ̄h3

h

l

ε̂

h
(D.2)

Using the linearized equilibrium equations, we can find the order of the forces and

moments distributed over the plate reference surface as

fα ∼ µ̄(
h

l
)ε̂ (D.3)

f3 ∼ µ̄(
h

l
)2ε̂ (D.4)

mα ∼ µ̄h(
h

l
)ε̂ (D.5)

m3 ∼ µ̄h(
h

l
)2ε̂ (D.6)

The orders of these distributed forces and moments coincides with the orders assumed

by Erbay [36].

We also can see that the influence of warping on the virtual work contributes

to terms that are O(µ̄h2ε̂2/l2). This justifies our earlier statement that in a refined

theory one must take into account the effect of surface tractions and body forces while

evaluating the expressions for the warping.

Additionally, as mentioned before, the sixth equilibrium equation (from eq. (62))

in tells us about the order of the 2-D strain measure Ωε. Consider, for the sake
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of order analysis, a case where m3 = 0. In that case, N12 − N21 ≡ 2Nε is of the

same order as M13,1 and M23,2. From the plate constitutive law we just derived, it

follows that Ωε is O(h2ε̂/l2). This observation simplifies the analysis somewhat while

deriving a refined theory of plates.
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APPENDIX E

EXPRESSIONS FOR THE GENERALIZED WARPING

FUNCTIONS

The expressions for the zeroth-order warping and local rotation fields:

wα = 0

w3 =
λ

λ+ 2µ+ κ

[
−x3(ε11 + ε22) +

(
h2

24
− x23

2

)
(K11 +K22)

]
φα = 0

φ3 = 0

(E.1)

The expressions for the first-order warping and local rotation fields:

v1 =
λ

λ+ 2µ+ κ
(ε11,1 + ε22,1)

[
x23
2
− h2

24
− γ

2µ+ κ

(
coshx3/l0
coshh/2l0

− tanhh/2l0
h/2l0

)]
+

λ

λ+ 2µ+ κ
(K11,1 +K22,1)

[
h2x3

8
− x33

6
+

µ

µ+ κ

h2x3
12

]
+ (K11,1 + κ12,2)

[
x33
3
− (3µ+ 2κ)h2x3

(κ+ µ)12
+

γ

2µ+ κ

(
x3 −

sinh (x3/l0)

sinh (h/2l0)

h

2

)]
+
τf1 + βf1
(2µ+ κ)h

[
x23 −

h2

12
− γ

2µ+ κ

(
coshx3/l0
coshh/2l0

− tanhh/2l0
h/2l0

)]
+
τf1 − βf1 − 2µ(2γ13)

2(µ+ κ)
x3 −

τm2 + βm2

(2µ+ κ)h

(
x3 −

sinhx3/l0
sinhh/2l0

h

2

)
+
τm2 − βm2 + 2βK23

2(2µ+ κ)

(
coshx3/l0
coshh/2l0

− tanhh/2l0
h/2l0

)
(E.2)
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v2 =
λ

λ+ 2µ+ κ
(ε11,2 + ε22,2)

[
x23
2
− h2

24
− γ

2µ+ κ

(
cosh (x3/l0)

cosh (h/2l0)
− tanh (h/2l0)

h/2l0

)]
+

λ

λ+ 2µ+ κ
(K11,2 +K22,2)

[
h2x3

8
− x33

6
+

µ

µ+ κ

h2x3
12

]
+ (K22,2 + κ12,1)

[
x33
3
− (3µ+ 2κ)h2x3

(κ+ µ)12
+

γ

2µ+ κ

(
x3 −

sinh (x3/l0)

sinh (h/2l0)

h

2

)]
+
τf2 + βf2
(2µ+ κ)h

[
x23 −

h2

12
− γ

2µ+ κ

(
coshx3/l0
coshh/2l0

− tanh (h/2l0)

h/2l0

)]
+
τf2 − βf2 − 2µ(2γ23)

2(µ+ κ)
x3 +

τm1 + βm1

(2µ+ κ)h

(
x3 −

sinh (x3/l0)

sinh (h/2l0)

h

2

)
−τm1 − βm1 + 2βK23

2(2µ+ κ)

(
cosh (x3/l0)

cosh (h/2l0)
− tanh (h/2l0)

h/2l0

)
(E.3)

v3 = 0 (E.4)

ϕ1 =−
(

λ

λ+ 2µ+ κ
(ε11,2 + ε22,2) +

τf2 + βf2
(2µ+ κ)h

)[
x3 −

sinh (x3/l0)

sinh (h/2l0)

h

2

]
− (K22,2 + κ12,1)

[
x23
2
− h2

24
+ l20 −

cosh (x3/l0)

sinh (h/2l0)

hl

2

]
−τm1

l0
2γ

[
cosh (x3/l0)

sinh (h/2l0)
+

sinh (x3/l0)

cosh (h/2l0)
− 2l0

h

]
− βm1

l0
2γ

[
cosh (x3/l0)

sinh (h/2l0)
− sinh (x3/l0)

cosh (h/2l0)
− 2l0

h

]
− sinh (x3/l0)

cosh (h/2l0)

l0
γ
βK13

(E.5)

ϕ2 =

(
λ

λ+ 2µ+ κ
(ε11,1 + ε22,1) +

τf1 + βf1
(2µ+ κ)h

)[
x3 −

sinh (x3/l0)

sinh (h/2l0)

h

2

]
− (K11,1 + κ12,2)

[
x23
2
− h2

24
+ l20 −

cosh (x3/l0)

sinh (h/2l0)

hl

2

]
+τm2

l0
2γ

[
cosh (x3/l0)

sinh (h/2l0)
+

sinh (x3/l0)

cosh (h/2l0)
− 2l0

h

]
βm2

l0
2γ

[
cosh (x3/l0)

sinh (h/2l0)
− sinh (x3/l0)

cosh (h/2l0)
− 2l0

h

]
+

sinh (x3/l0)

cosh (h/2l0)

l0
γ
βK23

(E.6)

ϕ3 = 0 (E.7)
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APPENDIX F

MIXED VARIATIONAL STATEMENT FOR COSSERAT

PLATES

A mixed formulation is obtained by adjoining the appropriate kinematical relations

to Hamilton’s weak principle with Lagrange multipliers and identifying the Lagrange

multipliers. The rotation variables chosen are the Rodrigues parameters

θ =


θ1

θ2

θ3


and the direction cosine matrix CBb, henceforth denoted simply by C, can be ex-

pressed as

C =
[(1− (1/4)θT θ)∆− θ̃ + (1/2)θθT ]

1 + (1/4)θT θ
(F.1)

It is useful to obtain the inverse kinematical relations before proceeding further.

We have

u,α = CT (eα + γα)− eα

u̇ = CTV − v − ω̃u

θ,α =

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

θ̇ =

(
∆ +

1

2
θ̃ +

1

4
θθT
)

(Ω− Cω)

Hamilton’s extended principle

t2∫
t1

∫
S

[δ(K − U) + δW ] dsdt = δA (F.2)
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After following the procedure for obtaining the Lagrange multipliers outlined by

Hodges [70], we can write the variations in potential and kinetic energy as

δU = δγTα [Aαβγβ −Nα] + δN
T

α

[
u,α + eα − CT (γα + eα)

]
+
[
δq

T

,α − δq
T
K̃α − δψ

T
(ẽα + γ̃α)

]
Nα + δKT

α [DαβKβ −Mα]

+ δM
T

α

[
θ,α −

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

]
+
[
δψ

T

,α − δψ
T
K̃α

]
Mα

(F.3)

where

δNα = CT δNα

δMα =
∆ + 1

2
θ̃

1 + 1
4
θT θ

δMα

δK = δV T
[
µ(V − ξ̃Ω)− P

]
+ δP

T [
u̇+ v + ω̃u− CTV

]
+

[
δ̇q

T

− δqT Ω̃− δψT Ṽ
]
P + δΩT

[
µξ̃V + iΩ−H

]
+ δH

T
[(

∆ +
1

2
θ̃ +

1

4
θθT
)

(Cω − Ω) + θ̇

]
+

[
˙δψ
T

− δψT Ω̃

]
H

(F.4)

where

δP = CT δP

δH =
∆ + 1

2
θ̃

1 + 1
4
θT θ

δH

Ignoring the effect of warping (acceptable unless we are interested in high-frequency

dynamics),

δW = δq
T
f + δψ

T
m (F.5)

Finally, the virtual action can be written as

δA =

∫
S

(δq
T
P̂ + δψ

T
Ĥ)
∣∣t2
t1

ds−
t2∫
t1

∫
Γ

(δq
T
N̂ + δψ

T
M̂)dΓdt (F.6)
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Using eqs. (F.3) to (F.6) in eq. (F.2),

t2∫
t1

∫
S

{
δγTα

[(
∂U
∂γα

)T
−Nα

]
+ δKT

α

[(
∂U
∂Kα

)T
−Mα

]
− δV T

[
µ(V − ξ̃Ω)− P

]
− δΩT

[
µξ̃V + iΩ−H

]
+
[
δq

T

,α − δq
T
K̃α − δψ

T
(ẽα + γ̃α)

]
Nα +

[
δψ

T

,α − δψ
T
K̃α

]
Mα

−
[
δ̇q

T

− δqT Ω̃− δψT Ṽ
]
P −

[
˙δψ
T

− δψT Ω̃

]
H + δN

T

α

[
u,α + eα − CT (γα + eα)

]
+ δM

T

α

[
θ,α −

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

]
− δP T [

u̇+ v + ω̃u− CTV
]

− δHT
[(

∆ +
1

2
θ̃ +

1

4
θθT
)

(Cω − Ω) + θ̇

]
− δqTf − δψTm

}
dsdt

=−
∫
S

(δq
T
P̂ + δψ

T
Ĥ)
∣∣t2
t1

ds+

t2∫
t1

∫
Γ

(δq
T
N̂ + δψ

T
M̂)dΓdt

(F.7)

Performing an integration by parts to remove the time derivatives of virtual quantities,

we get

t2∫
t1

∫
S

{
δγTα

[(
∂U
∂γα

)T
−Nα

]
+ δKT

α

[(
∂U
∂Kα

)T
−Mα

]
− δV T

[
µ(V − ξ̃Ω)− P

]
− δΩT

[
µξ̃V + iΩ−H

]
+ δq

T

,αNα + δq
T
[
Ṗ + Ω̃P − K̃αNα − f

]
+ δψ

T

,αMα

+ δψ
T
[
Ḣ + Ṽ P + Ω̃H − K̃αMα − (ẽα + γ̃α)Nα −m

]
+ δN

T

α

[
u,α + eα − CT (γα + eα)

]
+ δM

T

α

[
θ,α −

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

]
− δP T [

u̇+ v + ω̃u− CTV
]
− δHT

[(
∆ +

1

2
θ̃ +

1

4
θθT
)

(Cω − Ω) + θ̇

]}
dsdt

= −
∫
S

(
δq

T
(P̂ − P ) + δψ

T
(Ĥ −H)

) ∣∣t2
t1

ds+

t2∫
t1

∫
Γ

(δq
T
N̂ + δψ

T
M̂)dΓdt

(F.8)

Next, to obtain the weakest possible form, we need to remove the (spatial) derivatives
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of all the unknowns. Performing another integration by parts,

t2∫
t1

∫
S

{
δγTα

[(
∂U
∂γα

)T
−Nα

]
+ δKT

α

[(
∂U
∂Kα

)T
−Mα

]
− δV T

[
µ(V − ξ̃Ω)− P

]
− δΩT

[
µξ̃V + iΩ−H

]
+ δq

T

,αNα + δq
T
[
Ṗ + Ω̃P − K̃αNα − f

]
+ δψ

T

,αMα

+ δψ
T
[
Ḣ + Ṽ P + Ω̃H − K̃αMα − (ẽα + γ̃α)Nα −m

]
− δNT

α,αu− δN
T

α

[
CT (γα + eα)− eα

]
− δMT

α,αθ − δM
T

α

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

− δP T [
u̇+ v + ω̃u− CTV

]
− δHT

[(
∆ +

1

2
θ̃ +

1

4
θθT
)

(Cω − Ω) + θ̇

]}
dsdt

= −
∫
S

(
δq

T
(P̂ − P ) + δψ

T
(Ĥ −H)

) ∣∣t2
t1

ds+

t2∫
t1

∫
Γ

(δq
T
N̂ + δψ

T
M̂ − δNα

T
u− δMα

T
θ)dΓdt

(F.9)

The first four terms are determined by the through-the-thickness analysis using VAM

and can be taken as a given. Also, assuming P = P̂ , H = Ĥ at t1, t2, we can drop

the time integral. This leaves us with the following mixed variational statement:∫
S

{
δq

T

,αNα + δq
T
[
Ṗ + Ω̃P − K̃αNα − f

]
+ δψ

T

,αMα

+ δψ
T
[
Ḣ + Ṽ P + Ω̃H − K̃αMα − (ẽα + γ̃α)Nα −m

]
− δNT

α,αu

− δNT

α

[
CT (γα + eα)− eα

]
− δMT

α,αθ − δM
T

α

(
∆ +

1

2
θ̃ +

1

4
θθT
)
Kα

− δP T [
u̇+ v + ω̃u− CTV

]
− δHT

[(
∆ +

1

2
θ̃ +

1

4
θθT
)

(Cω − Ω) + θ̇

]}
ds

=

∫
Γ

(δq
T
N̂ + δψ

T
M̂ − δNα

T
u− δMα

T
θ)dΓ

(F.10)

The primary variables of our mixed formulation are u, ψ,Nα,Mα, P and H.
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APPENDIX G

RELATING INCREMENTAL QUANTITIES IN THE

KINEMATICAL EQUATIONS

A detailed derivation of eqs. (98) is provided here for interested readers. Too often,

equations such as these are simply used without showing how one could obtain them

and this appendix, along with some of the prior ones, try to rectify that.

From the generalized velocity-displacement equations presented in eq. (48),

V = C(v + u̇+ ω̃u)

Now, if u and C have small perturbations from a “steady-state” value, i.e.,

u = u+ û

C = (∆− ˜̂ψ)C

(G.1)

we need to find expressions for corresponding incrementals in the quantities V,Ω, γα

and Kα. Let us start with V:

V = C(v + u̇+ ω̃u)

⇒ V = C(v + u̇+ ω̃u),

V + V̂ = (∆− ˜̂ψ)C
[
v + u̇+ ˙̂u+ ω̃(u+ û)

]
⇒V + V̂ = C(v + u̇+ ω̃u) + C( ˙̂u+ ω̃û)− ˜̂ψC(v + u̇+ ω̃u)

⇒V̂ = C( ˙̂u+ ω̃û)− ˜̂ψV = C( ˙̂u+ ω̃û) + Ṽ ψ̂

Defining q̂ = Cû, we have ˙̂q = Ċû+ C ˙̂u = ĊC
T
q̂ + C ˙̂u. Therefore,

V̂ = C ˙̂u+ Cω̃C
T
q̂ + Ṽ ψ̂

= ˙̂q − ĊCT
q̂ + Cω̃C

T
q̂ + Ṽ ψ̂

= ˙̂q + Ω̃q̂ + Ṽ ψ̂
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We have our expression for an increment in V as

V̂ = ˙̂q + Ω̃q̂ + Ṽ ψ̂ (G.2)

Next, let us find an expression for an increment in Ω. From eq. (49), we have

Ω̃ = −ĊCT + Cω̃CT

⇒ Ω̃ = −ĊCT
+ Cω̃C

T
,

Ω̃ +
˜̂
Ω = −

[
(∆− ˜̂ψ)Ċ −

˙̃
ψ̂C

]
C
T

(∆ +
˜̂
ψ) + (∆− ˜̂ψ)Cω̃C

T
(∆ +

˜̂
ψ)

⇒ ˜̂
Ω =

˙̃
ψ̂+ Ω̃

˜̂
ψ − ˜̂ψΩ̃ =

˙̃
ψ̂+

˜̃
Ωψ̂

This gets us the expression for an increment in Ω as

Ω̂ =
˙̂
ψ + Ω̃ψ̂ (G.3)

To find an expression for the increment in γα, we start with

γα = C(eα + u,α)− eα

⇒ γα = C(eα + u,α)− eα,

γα + γ̂α = (∆− ˜̂ψ)C(eα + u,α + û,α)− eα

⇒ γα + γ̂α = C(eα + u,α)− eα + Cû,α − ˜̂ψC(eα + u,α)

Noting that q̂ = Cû, and using K̃α = −C ,αC
T

, we get the expression for the increment

as

γ̂α = q̂,α + K̃αq̂ + (ẽα + γ̃α)ψ̂ (G.4)

Finally, starting with

K̃α = −C,αCT

⇒ K̃α = −C ,αC
T
,

K̃α +
˜̂
Kα = −

[
(∆− ˜̂ψ)C ,α − ˜̂ψ,αC]CT

(∆ +
˜̂
ψ)

⇒ K̃α +
˜̂
Kα = −C ,αC

T
+
˜̂
ψ,α + K̃α

˜̂
ψ − ˜̂ψK̃α
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We now have the expression for the perturbation as

K̂α = ψ̂,α + K̃αψ̂ (G.5)

It is interesting to note that all of eqs. (G.2) to (G.5) look remarkably similar to

their counterparts for beams (for example, as shown in [139]). Such a compact and

elegant representation is made possible only in the context of a theory of Cosserat

plates. So, for instance, in a generalized Reissner-Mindlin theory, one would neither

have Ω3, K13, K23 among the primary set of variables nor have ε12 as different from

ε21. However, a Cosserat theory can always be reduced to a Reissner-Mindlin theory

or even a Kirchhoff-Love theory with the right choice of elastic constants.
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APPENDIX H

IN PLANE DEFORMATION OF A MICROPOLAR PLATE

UNDER A DRILLING MOMENT: AN ATTEMPT

In this section, we discuss the problem of a micropolar isotropic plate subjected to a

point drilling moment T . The aim of this exercise is to try and highlight the ability of

micropolar elasticity to model the in plane deformation resulting from such a moment

applied normal to the plate. Practically, one can imagine this problem to model a

scenario where a rod, attached rigidly at right angles to a plate, is given a torque that

is then transmitted to the plate, causing in plane deformation. In the limiting case

of vanishing diameter, the rod can simply be replaced with a concentrated drilling

moment. Plate models derived from classical elasticity (Reissner-Mindlin, Kirchhoff-

Love) predict no deformation from such a moment. However, since it is physically

reasonable to expect a nontrivial elastic response, micropolar elasticity is expected to

be superior in providing a realistic nonlocal solution.

To simplify this process, let us restrict ourselves to a geometrically linear formula-

tion. Also, let us look at a circular plate instead of the rectangular plates considered

thus far. Doing so would make the problem axisymmetric, thereby greatly simplifying

the solution procedure by reducing all the governing equations to ordinary differen-

tial equations. Let us further consider an infinite plateThe equations of equilibrium

(linear) for a circular micropolar plate are given by

∂Nr

∂r
+

�
�
�
�1

r

∂Nθr

∂θ
+
Nr −Nθ

r
= 0 (H.1a)

∂Nrθ

∂r
+

�
�

��1

r

∂Nθ

∂θ
+
Nrθ +Nθr

r
= 0 (H.1b)

∂Mrz

∂r
+

�
�

�
�1

r

∂Mθz

∂θ
+
Mrz

r
+Nrθ −Nθr +mz = 0 (H.1c)
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First, from eq. (H.1b), we can write

Nθr = −d(rNrθ)

dr
(H.2)

The applied drilling moment is supported solely by Mrz, Nrθ and Nθr. This gives

Nr = Nθ = 0 and a trivial satisfaction of eq. (H.1a). The distributed moment term

mz in eq. (H.1c) is mathematically a Dirac delta function enclosing an area equal

in magnitude to T . Using this fact and eq. (H.2) in eq. (H.1c) gives us, after an

integration,

rMrz + r2Nrθ = T (H.3)

One may also arrive at eq. (H.3) directly by drawing a simple free body diagram.

Since the problem is, by definition, hyperstatic, the equilibrium equations are not

enough to arrive at the solution: we are one equation short. This is provided by

looking at the strain compatibility equations, given by

∂εθr
∂r

+
εrθ + εθr

r
−

�
�
�1

r

∂εr
∂θ
−Krz = 0 (H.4a)

∂εθ
∂r

+
εθ − εr
r
−

�
�

��1

r

∂εrθ
∂θ
−Kθz = 0 (H.4b)

∂Kθz

∂r
+
Kθz

r
−

�
�

�
�1

r

∂Krz

∂θ
= 0 (H.4c)

Here, eqs. (H.4b) and (H.4c) give us εr = εθ = Kθz = 0. Equation (H.4a) provides us

with the additional equation required, but needs to be expressed in terms of the stress

resultants. This can be done with the help of the following constitutive relations

εrθ =
(µ+ κ)Nrθ − µNθr

(2µ+ κ)κh
(H.5a)

εθr =
(µ+ κ)Nθr − µNrθ

(2µ+ κ)κh
(H.5b)

Krz =
1

γhθ̄
Mrz (H.5c)

where θ̄ is the nondimensional drilling stiffness and the remaining Cosserat elastic

constants are the same as given by eq. (1).
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Substituting eqs. (H.5a) to (H.5c), (H.2) and (H.3) into eq. (H.4a) gives, after

some simplification, a single ordinary differential equation in terms of Nrθ:

l20

(
r2
d2Nrθ

dr2
+ 3r

dNrθ

dr

)
+
T

θ̄
− r2Nrθ

θ̄
= 0 (H.6)

where l0 is the micropolar length-scale parameter defined by eq. (38).

As a check, consider for a moment the specific case of having all micropolar effects

set to zero, thereby reducing to a classical elastic plate. This implies l0 = 0, reducing

eq. (H.6) to

Nrθ = Nθr = T/r2 (H.7)

In fact, one can arrive at this solution by simply looking at only the equilibrium

equation (eq. (H.3)) for the case where Mrz = 0. Using the relevant constitutive

relations, it follows that εrθ = εθr = T/(2µhr2). Further, this gives a tangential

displacement field

uθ = − T

4µhr
(H.8)

One can clearly see problem with the classical elasticity solution: the stress resul-

tant field given by eq. (H.7), and hence the displacement field given by eq. (H.8), go

to infinity as r → 0. In fact, this is a very common behavior for a wide variety of

elasticity solutions near concentrated applied loads.

The case of l0 6= 0 makes for some interesting observations. For example, the Nrθ

distribution now depends on the specific choice of the material of the plate (reflected

in l0 and θ̄) and not simply on the magnitude of the applied moment. The solution

to eq. (H.6) for l0 6= 0 is expected to be in terms of Bessel functions of the first

and second kind. At this point, a closed form solution is not readily available and is

designated as future work.
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[8] Babuška, I., d’Harcourt, J., and Schwab, C., “Optimal shear correction
factors in hierarchical plate modelling,” tech. rep., DTIC Document, 1991.
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des Sciences - Series I - Mathematics, vol. 328, pp. 269 – 274, 2 1999.

[130] Scarpa, F., Adhikari, S., and Phani, A. S., “Effective elastic mechani-
cal properties of single layer graphene sheets,” Nanotechnology, vol. 20, no. 6,
p. 065709, 2009.

[131] Schiavone, P., “On existence theorems in the theory of extensional motions of
thin micropolar plates,” International Journal of Engineering Science, vol. 27,
no. 9, pp. 1129 – 1133, 1989.

160



[132] Schiavone, P., “Uniqueness in dynamic problems of thin micropolar plates,”
Applied Mathematics Letters, vol. 4, no. 2, pp. 81 – 83, 1991.

[133] Schiavone, P. and Constanda, C., “Existence theorems in the theory of
bending of micropolar plates,” International Journal of Engineering Science,
vol. 27, no. 4, pp. 463 – 468, 1989.

[134] Schijve, J., “Note on couple stresses,” Journal of the Mechanics and Physics
of Solids, vol. 14, no. 2, pp. 113 – 120, 1966.

[135] Selmi, A., Hassis, H., Doghri, I., and Zenzri, H., “A cosserat-type plate
theory and its application to carbon nanotube microstructure,” American Jour-
nal of Applied Sciences, vol. 11, no. 8, p. 1255, 2014.

[136] Simmonds, J. G. and Danielson, D. A., “Nonlinear shell theory with finite
rotation and stress-function vectors,” Journal of Applied Mechanics, vol. 39,
no. 4, pp. 1085 – 1090, 1972.

[137] Simo, J. C., Fox, D. D., and Hughes, T. J. R., “Formulations of finite
elasticity with independent rotations,” Computer Methods in Applied Mechanics
and Engineering, vol. 95, no. 2, pp. 277 – 288, 1992.

[138] Sotoudeh, Z., “A new element for mixed plate formulation,” in 56th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, American Institute of Aeronautics and Astronautics, 2015.

[139] Sotoudeh, Z. and Hodges, D. H., “Incremental method for structural anal-
ysis of joined-wing aircraft,” Journal of Aircraft, vol. 48, no. 5, pp. 1588 – 1601,
2011.

[140] Sotoudeh, Z. and Hodges, D. H., “Modeling beams with various bound-
ary conditions using fully intrinsic equations,” Journal of Applied Mechanics,
vol. 78, no. 3, pp. 031010–031010–9, 2011.

[141] Srinivas, S., Rao, C. J., and Rao, A., “An exact analysis for vibration of
simply-supported homogeneous and laminated thick rectangular plates,” Jour-
nal of Sound and Vibration, vol. 12, no. 2, pp. 187 – 199, 1970.

[142] Steinberg, L., “Deformation of micropolar plates of moderate thickness,”
International Journal of Applied Mathematics and Mechanics, vol. 6, no. 17,
pp. 1 – 24, 2010.

[143] Steinberg, L. and Kvasov, R., “Enhanced mathematical model for cosserat
plate bending,” Thin-Walled Structures, vol. 63, pp. 51 – 62, 2013.

[144] Steinberg, L. and Kvasov, R., “Analytical modeling of vibration of microp-
olar plates,” Applied Mathematics, vol. 6, no. 05, pp. 817 – 836, 2015.

161



[145] Sutyrin, V. G., “Derivation of plate theory accounting asymptotically correct
shear deformation,” Journal of Applied Mechanics, vol. 64, no. 4, pp. 905 – 915,
1997.
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