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In this study we investigates the thermal behaviour of an assembly of consecutive

cylinders in a counter-rotating configuration cooled by natural convection with the ob-

jective of maximizing the heat transfer density rate (heat transfer rate per unit volume).

A numerical model was used to solve the governing equations that describe the tempera-

ture and flow fields and an optimisation algorithm was used to find the optimal structure

for flow configurations with two or more degrees of freedom. The geometric structure

of the consecutive cylinders was optimized for each flow regime (Rayleigh number) and

cylinder rotation speed for one and two degrees of freedom. Smaller cylinders were

placed at the entrance to the assembly, in the wedge-shaped flow regions occupied by

fluid that had not yet been used for heat transfer, to create additional length scales to

the flow configuration.

It was found that the optimized spacing decreases and the heat transfer density rate

increases as the Rayleigh number increases, for the optimized structure. It was also

found that the optimized spacing decreases and the maximum heat transfer density rate

increases, as the cylinder rotation speed was increased for the single scale configuration

at each Rayleigh number. Results further showed that there was an increase in the heat

transfer density rate of the rotating cylinders over stationary cylinders for a single scale

configuration.

For a multi scale configuration it was found that there was almost no effect of cylin-

der rotation on the maximum heat transfer density rate, when compared to stationary

cylinders, at each Rayleigh number; with the exception of high cylinder rotation speeds,

which serve to suppress the heat transfer density rate. It was, however, found that

the optimized spacing decreases as the cylinder rotation speed was increased at each
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Rayleigh number. Results further showed that the maximum heat transfer density rate

for a multi scale configuration (with stationary cylinders) was higher than a single scale

configuration (with rotating cylinders) with an exception at very low Rayleigh numbers.

Keywords: Natural convection; Rotating cylinders; Heat transfer density rate;

Counter-rotation; Optimal packing; Multi scale; Mathematical Op-

timization

Page ii

 
 
 



iii

Acknowledgements

I wish to express my gratitude to my supervisor, Prof. T. Bello-Ochende, for his guid-

ance, support, encouragement and friendship. It has been a real privilege working with

him and the knowledge I have gained from the experience is truly invaluable.

I would also like to thank my co-supervisor, Prof JP Meyer, for his technical support,

which has enabled the successful completion of this work, and for his assistance in

arranging financial aid.

I would like to thank Dr N Wilke for his insight, useful comments and encouragement

during the course of this work.

I would also like to thank W Leibbrandt for his guidance and instruction in teaching

me how to program efficiently in python.

Lastly I would like to thank my parents, family members and friends for their encour-

agement and support during this period.

Page iii

 
 
 



Table of contents

Abstract i

Acknowledgements iii

Table of contents iv

List of figures viii

List of tables xi

Nomenclature xii

Chapter 1: Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Scope of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Literature study 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Constructal flow geometry . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Heat transfer devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Increased geometric complexity . . . . . . . . . . . . . . . . . . 12

2.4 The effect of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3: Numerical modelling 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Overview of numerical modelling . . . . . . . . . . . . . . . . . . . . . 16

3.3 Geometry and mesh generation . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Page iv

 
 
 



Table of contents v

3.4.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Conservation of momentum . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Numerical solution schemes . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Finite volume method . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 The PISO algorithm . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.1 Self driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.2 Parallel plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 4: Parametrisation and optimization 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Open source tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Numerical optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Numerical optimisation overview . . . . . . . . . . . . . . . . . 33

4.4.2 Non-linear constrained optimisation . . . . . . . . . . . . . . . . 33

4.4.3 Numerical optimisation algorithm . . . . . . . . . . . . . . . . . 35

4.4.4 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 5: Optimization of rotating cylinders in natural convection 38

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 The numerical CFD model . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Single scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Multi scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Non-dimensional governing equations . . . . . . . . . . . . . . . . . . . 43

5.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Convergence criteria and mesh independence . . . . . . . . . . . . . . . 46

5.5.1 Single scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.2 Multi scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 6: Optimal geometric configuration results 51

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Page v

 
 
 



Table of contents vi

6.2 Scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.1 Single scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.1.1 Stationary cylinders . . . . . . . . . . . . . . . . . . . 54

6.3.1.2 Rotating cylinders . . . . . . . . . . . . . . . . . . . . 55

6.3.2 Multi scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2.1 Stationary cylinders . . . . . . . . . . . . . . . . . . . 60

6.3.2.2 Rotating cylinders . . . . . . . . . . . . . . . . . . . . 63

6.3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 7: Summary, conclusions and recommendations 71

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 Cylinder spacings and configurations . . . . . . . . . . . . . . . 72

7.3.2 Optimisation algorithm . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.3 Enhanced natural convection systems . . . . . . . . . . . . . . . 74

Publications in Journals and Conferences 75

References 76

Appendix A: Nomenclature Ai

Appendix A: Discretisation methods A1

A.1 Discretisation of the momentum equation . . . . . . . . . . . . . . . . . A1

A.1.1 Transient term . . . . . . . . . . . . . . . . . . . . . . . . . . . A2

A.1.2 Convection term . . . . . . . . . . . . . . . . . . . . . . . . . . A3

A.1.3 Diffusion term . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4

A.1.4 Source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5

A.1.5 Convection and diffusion terms . . . . . . . . . . . . . . . . . . A6

A.1.6 Rhie - Chow interpolation method . . . . . . . . . . . . . . . . . A6

A.1.6.1 Implementation in OpenFoam . . . . . . . . . . . . . . A10

Appendix A: References A12

Appendix B: OpenFoam code B1

Page vi

 
 
 



Table of contents vii

B.1 “boussinesqBuoyantFoam” Solver . . . . . . . . . . . . . . . . . . . . . B1

Appendix C: Data attachment C1

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1

C.2 Summary of directory structure . . . . . . . . . . . . . . . . . . . . . . C1

Appendix C: References C3

Page vii

 
 
 



List of figures

Figure 1.1: A typical finned heat sink [1] . . . . . . . . . . . . . . . . . . . 2

Figure 1.2: Microprocessor transistor counts 1971-2011 and Moore’s Law. [3] 3

Figure 3.1: The PISO algorithm. . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2: Self driven cavity problem. . . . . . . . . . . . . . . . . . . . . 25

Figure 3.3: Heated parallel plates cooled by natural convection. . . . . . . 27

Figure 3.4: The effect of the plate-to-plate spacing on the heat transfer

density rate for Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.1: Parametrisation routine for OpenFoam . . . . . . . . . . . . . 32

Figure 4.2: Contour representation of a constrained problem [55] . . . . . . 34

Figure 4.3: Illustration of a maximisation function versus a minimisation

function [55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.4: Optimisation routine for OpenFoam. . . . . . . . . . . . . . . . 36

Figure 5.1: Single row of counter-rotating cylinders in natural convection. . 39

Figure 5.2: The computational domain and boundary conditions for a set

of counter-rotating cylinders. . . . . . . . . . . . . . . . . . . . 40

Figure 5.3: Multi scale row of counter-rotating cylinders in natural convection. 42

Figure 5.4: The computational domain and boundary conditions for a set

of counter-rotating cylinders. . . . . . . . . . . . . . . . . . . . 43

Figure 5.5: Illustration of the discretised flow domain. . . . . . . . . . . . 47

Figure 6.1: Illustration of the thermal boundary layer around a stationary

cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 6.2: The maximization of the heat transfer density rate for the as-

semble shown in Fig. 5.1 for Ra = 103, Pr = 0.72 and ω̃0 = 0. 53

Figure 6.3: The optimal cylinder-to-cylinder spacings and corresponding

heat transfer density rates for a row of cylinders shown in Fig.

5.1 for Pr = 0.71, ω̃0 = 0 and 101 ≤ Ra ≤ 104. . . . . . . . . . 54

Page viii

 
 
 



List of figures ix

Figure 6.4: The maximization of the heat transfer density rate for the cylin-

ders shown in Fig. 5.1 for Ra = 101 and Pr = 0.71 at different

rotation speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 6.5: The optimal cylinder-to-cylinder spacings for a row of rotating

cylinders shown in Fig. 5.1 for Pr = 0.71. . . . . . . . . . . . . 56

Figure 6.6: The maximum heat transfer density rates for a row of rotating

cylinders shown in Fig. 5.1 for Pr = 0.71. . . . . . . . . . . . . 58

Figure 6.7: The effect of cylinder rotational speed on the thermal boundary

layer for a row of rotating cylinders shown in Fig. 5.1 . . . . . 59

Figure 6.8: Contour plot of the heat transfer density rates for a row of

rotating cylinders shown in Fig. 5.3 for Ra = 103 and Pr = 0.71. 60

Figure 6.9: The maximum heat transfer density rates for a row of rotating

cylinders shown in Fig. 5.3 for Ra = 103 and Pr = 0.71. . . . . 61

Figure 6.10: The optimal cylinder-to-cylinder spacings and corresponding

heat transfer density rates for a row of cylinders shown in Fig.

5.3 for Pr = 0.72, ω̃0 = 0 and 102 ≤ Ra ≤ 104. . . . . . . . . . 62

Figure 6.11: The optimal cylinder-to-cylinder spacings and small cylinder

diameter for a row of rotating cylinders shown in Fig. 5.3 for

Pr = 0.72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 6.12: The maximum heat transfer density rates for a row of rotating

cylinders shown in Fig. 5.3 for Pr = 0.72. . . . . . . . . . . . . 64

Figure 6.13: The effect of increasing of cylinder rotational speed and the

effect of increasing the complexity on the optimal cylinder-to-

cylinder spacing for Pr = 0.72. . . . . . . . . . . . . . . . . . . 65

Figure 6.14: The effect of increasing of cylinder rotational speed and the ef-

fect of increasing the complexity on the maximum heat transfer

density rate for Pr = 0.72. . . . . . . . . . . . . . . . . . . . . 66

Figure 6.15: The effect of cylinder rotational speed on the thermal boundary

layer for a multi scale structure of rotating cylinders shown in

Fig. 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 7.1: Single row of counter-rotating cylinders in natural convection

with multiple cylinder-to-cylinder spacings. . . . . . . . . . . . 73

Figure 7.2: Multi scale row of counter-rotating cylinders in natural convec-

tion with multiple cylinder-to-cylinder spacings. . . . . . . . . 73

Page ix

 
 
 



List of figures x

Figure A.1: One dimensional control volume. . . . . . . . . . . . . . . . . . A7

Page x

 
 
 



List of tables

Table 3.1: Heat transfer rate, per unit length, from the heated side of the

cavity to the cooled side of the cavity for Pr = 0.72 . . . . . . . 26

Table 5.1: Single scale mesh refinement summary: number of elements per

unit length at each Rayleigh number (Pr = 0.72 and ω̃0 = 0). . 48

Table 5.2: Single scale mesh refinement study for Ra = 103 (H̃u = 1, H̃d =

2, S̃0 = 0.3, ω̃0 = 0 and Pr = 0.72). . . . . . . . . . . . . . . . . 48

Table 5.3: Single scale domain size summary: upstream and downstream

lengths at each Rayleigh number (Pr = 0.72 and ω̃0 = 0). . . . . 48

Table 5.4: Multi scale mesh refinement summary: number of elements per

unit length at each Rayleigh number (Pr = 0.72 and ω̃0 = 0). . 49

Table 5.5: Multi scale mesh refinement study for Ra = 103 (H̃u = 0.5,

H̃d = 3.5, S̃0 = 0.5, ω̃0 = 0 and Pr = 0.72). . . . . . . . . . . . . 49

Table 5.6: Multi scale domain size summary: upstream and downstream

lengths at each Rayleigh number (Pr = 0.72 and ω̃0 = 0). . . . . 49

Table 6.1: Scale analysis for the optimal cylinder-to-cylinder spacing for a

single scale structure. . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 6.2: Coefficients for the power law correlation of the form CRan for

S̃0,opt and q̃m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Page xi

 
 
 



Nomenclature

Latin symbols

A Area m2

Cp Specific heat capacity J/kgK

di Number of large diameter cylinders −

dj Number of small diameter cylinders −

D0 Large cylinder diameter m

D1 Small cylinder diameter m

f (x) Objective function −

Fbuoyant Buoyancy body force vector N/m3

g (x) Inequality constraint function −

g Gravitational acceleration vector m/s2

h Convective heat transfer coefficient W/m2K

h (x) Equality constraint function −

H Enthalpy J/kg

Hd Downstream flow length m

Hu Upstream flow length m

k Thermal conductivity W/mK

Page xii

 
 
 



Nomenclature xiii

k̂ Unit vector −

L Unit length m

m Number of inequality constraints −

P Pressure Pa

Pd Dynamic pressure Pa

Pref Reference pressure Pa

Ps Static pressure Pa

Pt Total pressure Pa

q Total heat transfer rate W

q
′

Heat transfer rate per unit length W/m

q
′′

Heat transfer rate per unit area W/m2

q
′′′

Heat transfer density rate W/m3

r Number of equality constraints −

R Solution residual −

S0 Spacing between large cylinders m

t Time / Time step s

T Fluid temperature K

Tc Cold wall temperature K

Th Hot wall temperature K

Tw Wall temperature K

T∞ Inlet fluid temperature K

u, v, w Velocity components m/s

U Velocity vector m/s

Page xiii

 
 
 



Nomenclature xiv

W Assembly width m

x Design variable −

x Design variable vector −

x, y, z Cartesian coordinates m

Greek symbols

α Thermal diffusivity m2/s

β Thermal expansion coefficient 1/K

δij Kronecker delta function −

δT Thermal boundary layer thickness m

λ Coefficient of bulk viscosity −

µ Viscosity kg/ms

ν Kinematic viscosity m2/s

ρ Fluid density kg/m3

ρo Fluid reference density kg/m3

ρ
′

Density change relative to reference density kg/m3

Φ Dissipation function W/m3

ω0 Cylinder angular velocity rad/s

Non-dimensional numbers

L̃ Characteristic Length

Nu Nusselt number

Pr Prandtl number

q̃ Dimensionless heat transfer density rate

Ra Rayleigh number

Page xiv

 
 
 



Nomenclature xv

Subscripts

[1], [2] number of length scales in the flow configuration

i, j, n Numerical indices

m Maximum

max Maximisation function

min Minimisation function

sn In the direction of the surface normal vector

opt Optimum

t Time step

Superscripts

0, i, k Iteration indices

n Numerical index

T Transpose

∗ Optimum design variable vector

Accents

·̃ Dimensionless variables

Page xv

 
 
 



Chapter 1

Introduction

1.1 Background

Efficiency is a key aspect in design, which has become prevalent in the design of heat

transfer devices such as heat sinks and pin fins. Research has been and is still being

conducted on this subject with the aim of extracting more and more heat from a given

space through the maximization of the packing of heat-generating material per unit

volume. This drive to augment heat transfer devices has become reinforced by modern

electronic systems which produce high amounts of heat due to the ever increasing

power-to-volume ratio employed in such systems.

Heat transfer devices, such as heat sinks (shown in Fig. 1.1), work by removing

heat from a given system, with which they are in direct contact, and transferring that

extracted heat to a working or surrounding fluid. The mechanisms through which heat

is transferred are namely:

• Conduction: heat is transferred when neighbouring atoms vibrate against each

other, or as electrons move from one atom to another

• Convection: heat is transferred from an object to its surroundings through the

movement of fluid
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Chapter 1. Introduction 2

• Radiation: specifically thermal radiation is radiative energy carried by electro-

magnetic waves, which differs from conduction and convection in that it require

no medium for their propagation.

Figure 1.1: A typical finned heat sink [1]

The rapid development of electronic and electrical systems has increased the ther-

mal management requirements of these systems. In 1965 the Intel co-founder Gordon

Moore made a empirical observation, regarding the rapid improvement of integrated

electronics: “The complexity for minimum component costs has increased at a rate

of roughly a factor of two per year... Certainly over the short term this rate can be

expected to continue, if not to increase. Over the longer term, the rate of increase is

a bit more uncertain, although there is no reason to believe it will not remain nearly

constant for at least 10 years. That means by 1975, the number of components per

integrated circuit for minimum cost will be 65,000. I believe that such a large circuit

can be built on a single wafer” [2]. This prediction in now more commonly know as

Moore’s Law which states that transistor density on integrated circuits doubles about

every two years due to the lowering of the minimum manufacturing cost per component

each year (shown in Fig. 1.2).
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Chapter 1. Introduction 3

Figure 1.2: Microprocessor transistor counts 1971-2011 and Moore’s Law. [3]

What is natural convection?

Natural Convection is a heat transfer mechanism in which the fluid motion, of a

working or ambient fluid, is not generated by external sources (like a pump or fan)

but rather by the changes in the body forces of the fluid, caused due to the presents

of gravity. The changes in fluid body forces are cause by density differences which in

turn are created by temperature gradients in the fluid. In natural convection, the fluid

surrounding a heat source receives heat, becomes less dense and rises. The surrounding

cooler fluid then moves in to replace it. This cooler fluid is then in-turn heated and

the process continues. The fluid density due to the energy exchange can be expressed

in terms of the coefficient of thermal expansion, β, given as:

ρ = ρo (1− β∆T ) (1.1)
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Chapter 1. Introduction 4

where ρo is the bulk fluid density, ρ is the fluid density inside the heated layer, and

∆T is the temperature difference between the heated fluid and the bulk of free stream

fluid. The body force, specifically the buoyant force per unit volume (Fbuoyant), due to

the density changes can be expressed as [4]:

Fbuoyant = (ρo − ρ) g (1.2)

Upon substituting Eq. 1.2 into Eq. 1.1, the buoyant force becomes:

Fbuoyant = ρogβ∆T (1.3)

where g is the gravitational acceleration vector.

The heat transfer rate equation for convection was first expressed by Newton in

1701, and is referred to as Newton’s “law” of cooling. This equation is:

q = hA∆T (1.4)

where q is the rate of convective heat transfer, A is the area normal to the direction

of heat flow, h is the convective heat transfer coefficient and ∆T is the temperature

difference between the surface and the bulk or free stream fluid. Equation 1.4 is not a

law but a definition of the coefficient h.

At the surface of any heat source there exists a hydrodynamic boundary layer that

plays an important role in heat transfer. Near the surface of the heat source, the heat

is transferred to the fluid through conduction. The equation describing this mechanism

was first stated in 1822 by Fourier, also known as Fourier’s first law of heat conduction,

and is given as:

q = kA
∆T

δx
(1.5)

where k is the thermal conductivity and ∆T is the temperature difference between the

surface and the surrounding heated fluid. Equation 1.4 and Eq. 1.5 can be combined

and non-dimensionalised to give:

Nu =
hL

k
(1.6)

where L is the characteristic length and the Nusselt number Nu is the ratio of the

temperature gradient at the surface to an overall or reference temperature gradient.
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Chapter 1. Introduction 5

Why do research in natural convection?

The most common reason for selecting natural convection over forced convection is

in order to eliminate the pump or fan from the heat transfer device or system. Pumps

and fans introduce additional points of failure and also increase the noise of the system.

More importantly pumps and fans also require additional power input into the system

whereas natural convection is a self sustained mechanism, requiring no additional power

input, that provides a continuous heat transfer rate.

The disadvantage of natural convection over forced convection is that the convective

heat transfer coefficient is considerably lower for natural convection systems compared

to that achievable by forced convection systems [5]. Subsequently, for example in the

design of heat sinks, a larger surface area or footprint of the heat sink is required to

achieve the equivalent performance of a forced convection heat sink, cf. Eq. 1.4; thus

research into optimal packing is beneficial.

Smarter solutions, utilizing either mixed convection or an alternative use of power

input into the system, are needed in order to bridge the gap between pure natural

convection and forced convection systems; thereby creating a sort of enhanced natural

convection system. These such systems can utilize the functionality of pure natural

convection whist the heat source is operating at a lower capacity and then utilize the

enhancement capability when the heat source is operating at a higher or maximum

capacity. This type of heat transfer system has the potential to reduce the overall

power input into system while maintaining the required heat transfer rates. An example

of such a heat source would be a micro-processor. This thesis thus presents one such

possible solution by investigating the effect of rotating heat generating cylinders cooled

by natural convection.

Examples of the practical application of heat sinks, designed to utilize natural

convection, used to cool electronic components can be found in: LED lighting, solid

state thermoelectric Peltier modules for compact refrigerators, Ball Grid Arrays (BGA)

and power-line transformers. Examples of heat transfer from a rotating heat generating

solid to a surrounding fluid can be found in: the paper, rubber and plastic, and textile

industries (steam, hot oil or induction heated rollers) and a wide variety of rotating

machinery.
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1.2 Research objectives

The objectives of the research presented in this thesis are:

• to numerically investigate the thermal behaviour of an assembly of consecutive

rotating cylinders cooled by natural convection,

• to geometrically optimise this assembly for single scale and multi scale config-

urations with the objective of maximising the heat transfer density rate (heat

transfer per unit volume),

• to couple and automate the numerical computation with a mathematical optimi-

sation algorithm through the use of programming,

• to report all results in the form of non-dimensional quantities (Rayleigh number,

Prandtl Number, etc.) and establish feasible correlations between:

– the Rayleigh number, cylinder rotation speed and heat transfer density rate

and

– the Rayleigh number, cylinder rotation speed and optimal geometric config-

uration.

1.3 Scope of study

A multidisciplinary approach is employed in this thesis combining mathematical op-

timisation, computation fluid dynamics and programming to efficiently optimise the

geometric configuration of an assembly of consecutive rotating cylinders cooled by nat-

ural convection. The fluid flow characteristics are limited to the two dimensional,

steady-state, laminar and incompressible flow regime with the Boussinesq approxima-

tion assumed valid for all cases. The flow regime considered is limited to a Rayleigh

number range of 101 ≤ Ra ≤ 104 with a fixed Prandtl number of Pr = 0.72. The

non-dimensional cylinder rotation speed is limited to a range of 0 ≤ ω̃0 ≤ 10. An

automated optimisation routine is utilized for design cases with two or more design

variables subject to various constraints.
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1.4 Structure of thesis

This thesis is divided into chapters for better organisation and ease of reading. This

thesis therefore consists of the following chapters:

• Chapter 2 gives insight into relevant published work on heat transfer devices

specifically relating to optimal packing and heat transfer density rate. This chap-

ter also highlights the effect rotation has on a cylinder with respects to the heat

transfer rate.

• Chapter 3 gives an overview of the numerical modelling techniques as well as the

numerical methods used in solving the computational model. The mass, momen-

tum and energy conservation equations governing the fluid flow and heat trans-

fer characteristics are discussed. The techniques used in treating the pressure-

velocity coupling (in the momentum equation) is also presented, with additional

information given in Appendix A and Appendix B.

• Chapter 4 presents the tools and methods used to automate the entire compu-

tational process for a selected geometric variable range (Parameterisation). The

method in which this automated process is then coupled to an optimisation algo-

rithm is also discussed. Finally a brief overview of the principals of optimisation

and the governing equations of the optimisation algorithm are highlighted. The

the programming scripts and details thereof are attached in electronic form in

Appendix C.

• Chapter 5 applies the methods presented in Chapter 3 to the numerical model

for single scale and multi scale geometry configurations. The governing mass,

momentum and energy conservation equations are non-dimensionalised in terms

of Rayleigh number and Prandtl number and the quantity used, as the objective

function, to evaluate the geometric configurations is discussed. The convergence

criteria of the CFD solution scheme as well as the optimisation algorithm is also

discussed.

• Chapter 6 opens by presenting the expected results from the numerical model,

presented in Chapter 5, through the use of scale analysis. The results from

the numerical model simulations are then discussed in depth and compared to

the scale analysis approximations. Correlations between the Rayleigh number,
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cylinder rotation speed and heat transfer density rate as well as the Rayleigh

number, cylinder rotation speed and optimal geometric configuration are also

presented.

• Chapter 7 provides a summary of the results, conclusions that may be drawn

from these results and recommendations for future work.
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Chapter 2

Literature study

2.1 Introduction

The strive for greater heat transfer density rates has been the driving force behind many

of the miniaturization efforts, augmentations and unconventional ways of designing

heat transfer devices. It is the purpose of this thesis to maximize the heat transfer

density rate of a row of heat-generating rotating cylinders in steady laminar single-

phase natural convection. This chapter starts by giving an overview of constructal

theory and design, as a method for designing optimal geometric space-constrained flow

configurations, in Section 2.2. Previous research conducted in optimizing heat transfer

devices is then presented in Section 2.3. Previous research into the effect of increasing

the complexity of the geometric structure of the heat transfer devices in then presented

in Section 2.3.1. Finally, previous research into the effect of cylinder rotation in various

flow regimes is presented in Section 2.4.

2.2 Constructal flow geometry

One method for designing optimal geometric space-constrained flow configurations is

constructal theory and design [5–8]. According to this method, the flow configuration

is free to morph (change) in the pursuit of maximising global performance subject to
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global constraints. The resulting optimal (constructal) configuration is determined or

evaluated, not assumed.

Many examples of constructal-design configurations for determining the optimal

internal spacing for heat-generating volumes cooled by plates, and pin fins will be dis-

cussed below in Section 2.3. In each case, the total volume is fixed and the objective is

to maximize the global heat transfer from the heat-generating solid to the surrounding

fluid of the package (or the volume-averaged heat transfer density rate). The result is a

single length scale: the optimal spacing, and this length scale is distributed uniformly

throughout the volume.

This thesis focuses on taking the constructal design of optimal spacings in a new

direction by numerically formulating the problem (Chapter 3) and mathematically

optimising the flow configuration (Chapter 4). An optimized single scale and multi

scale flow structure (subject to global constraints), that achieves even higher levels of

heat transfer density rate, is sought for each flow regime (Rayleigh number and cylinder

rotation speed). The process of optimising the flow configuration is often one of “brute

force”, whereby the design space is broken up into a finite number of points at which

the global objective is evaluated. By introducing a mathematical optimization routine,

a seemingly infinite design space can be evaluated in order to obtain the optimal flow

configuration.

2.3 Heat transfer devices

This strive for greater heat transfer density rates has lead researchers to study the op-

timized geometric configurations for various architectures such as: the optimal spacing

of parallel plates and the optimal spacing of cylinders for various flow regimes.

Bejan and Sciubba [9] reported the optimal board-to-board spacing and maximum

total heat transfer rate from a stack of parallel boards cooled by laminar forced convec-

tion. In a bid to maximise the total heat transfer rate, an order-of-magnitude analysis,

together with the intersecting of asymptotes method, was employed to develop exact

solutions for both uniform temperature and uniform heat flux boundary conditions.

It was learnt that the optimal spacing is proportional to the distance between the
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channels to the power of 1/2 and the pressure head maintained across the stack to the

power of -1/4.

Similarly to Ref [9], Bejan and Morega [10] reported the optimal plate-to-plate

spacing when the stack is cooled by turbulent forced convection. It was shown that the

optimal spacing not only depends on the pressure difference number, but it was also

very sensitive to two parameters: the Prandtl Number and the ratio of plate thickness

to plate length. It is also reported that the optimal spacing increases as these two

parameters increase.

Da Silva et al. [11] showed numerically that the entire flow geometry of a vertical

diverging or converging channel with laminar natural convection could be optimized

for maximal heat transfer density rate. The geometry was free to change in three

ways: (1) the spacing between the walls, (2) the distribution of heating along the

walls, and (3) the angle between the two walls. It was reported that the use of all of

the available heat transfer surface was the best heating distribution along the walls of

the channel. Further, it was reported that a diverging channel had some improvement

on maximising the total heat transfer density rate for small angles of divergence. At

larger angles of divergence numerical instability became prevalent and convergence

of the solution could not be reached. It was further shown, through scale analysis,

that parallel or near parallel walls were the best solution from the point of view of

maximising the total heat transfer density rate.

Bello-Ochende and Bejan [12] presented the optimal geometric spacing between

parallel plates for two flow regime limits: pure natural convection and pure forced

convection. The in-between flow regime of mixed convection is also presented. It was

shown that the numerical results match the results in the limits of natural convection

[13, 14] and forced convection [9]. The authors further reported a correlation for the

mixed convection regime as well as a single formula for the optimal plate-to-plate spac-

ing for the entire flow domain (from natural convection through to forced convection).

Stanescu et al. [15] carried out experimental, numerical and analytical studies of the

optimal spacing between cylinders, in a bundle, cooled by cross-flow forced convection.

The cylinder array occupied a fixed volume and was exposed to a free stream velocity

and temperature with the objective maximizing the overall heat transfer rate between

all the cylinders and the free stream. It was shown that the optimal cylinder-to-cylinder
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spacing decreases as the free stream velocity increase, and as the flow length of the

array decreases.

Similar to the work in Ref [15], Stanescu et al. [16] also carried out experimental,

numerical and analytical studies of the optimal spacing between cylinders, in a array,

cooled by laminar natural convection. It was shown that the optimal cylinder-to-

cylinder spacing was relatively insensitive to the wall boundary condition (isothermal

or uniform heat flux). It was also reported that the optimal spacing decreases as the

Rayleigh number increases.

2.3.1 Increased geometric complexity

The effect of increasing the complexity of the geometry, by adding additional length

scales to the flow configuration, follows the principals of constructal theory and design.

The key to improved performance in heat transfer density rates is more flexibility or

freedom to change. Thus the addition of more length scales to the flow configuration

creates more degrees of freedom, i.e. more directions for the flow configuration to

morph.

Bello-Ochende and Bejan [17] considered the multi scale structure: parallel plates

with multiple length scales in forced convection. Progressively smaller heat generating

plates were inserted into the wedge-shaped region, at the entrance of the flow domain,

to create a multi scale structure. Optimal spacings were reported for structures with

one, two and three length scales. It was shown that the performance increases as the

geometric complexity increases, but a diminishing return are also observed. It was also

shown that the optimized spacings increased slightly with each new (smaller) plate

that was inserted in the entrance region of each channel. The results report in this

literature confirmed the results, derived analytically by Bejan et al. [18], for the same

problem. A three dimensional parallel plate multi scale structure cooled by laminar

natural convection was also considered, more recently, by Bello-Ochende et al. [19].

Similar to the work done in Ref [17], da Silva and Bejan [20] considered the parallel

plate multi scale structure cooled by natural convection. Similar results were reported

in that the maximized heat transfer density increases as the optimized complexity of

the flow structure increases. It was also shown that there is a smallest (cut-off) length
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scale below which the boundary layers are no longer distinct, and where the sequence

of generating optimal length scales ends.

Bello-Ochende and Bejan [21] considered the multi scale structure of a row of par-

allel cylinder cooled by laminar forced convection. Smaller cylinders were placed at the

entrance to the assembly, in the wedge-shaped flow regions occupied by fluid that had

not yet been used for heat transfer. The optimized flow configuration and performance

for structures with 1, 2 and 4 degrees of freedom were reported. It was reported that

the total heat transfer density rate increased (with diminishing return) as the opti-

mized structure became more complex. It was also shown that the optimized cylinder

diameters were relatively robust (insensitive to changes in complexity and pressure dif-

ference) and the optimized spacings decreased monotonically as the driving pressure

difference increased.

Similar to the work done in Ref [21], Bello-Ochende and Bejan [22] also considered

the multi scale structure of a row of parallel heat-generating cylinders cooled by nat-

ural convection. The results reported were similar to the results in Ref [21] in that

the optimized cylinder diameters were relatively robust (insensitive to changes in com-

plexity and Rayleigh number) and the optimized spacings decreased monotonically as

the Rayleigh number increased. For a single scale structure the optimal spacings and

corresponding heat transfer density rates, for each flow regime, were correlated by the

power law:

S0[1]opt

D0

= 1.32Ra−0.22 (2.1)

q̃[1]m = 0.65Ra0.30 (2.2)

For a multi scale structure, with two length scales, the optimal spacings and cor-

responding heat transfer density rates, for each flow regime, were correlated by the

power law:

S0[2]opt

D0

= 2.22Ra−0.22 (2.3)

q̃[2]m = 0.85Ra0.30 (2.4)

where the subscripts 1 and 2 refer to the number of length scales in the flow configu-

ration. The optimal small cylinder diameter (for two length scales) was reported to be
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very robust for all flow regimes and was found to be:

D1

D0

= 0.2 (2.5)

The results reported by Bello-Ochende and Bejan [22] are the cornerstone or bench-

mark on which the work of this thesis is based and as such will be used as a reference.

This thesis builds onto this literature by considering the effect of cylinder rotation

speed on the optimised flow configuration and the total heat transfer density rate.

2.4 The effect of rotation

A single stationary cylinder in steady state convection will have a developed thermal

and momentum boundary layer and a corresponding heat transfer rate (for a given

flow regime). The effect of rotation on this cylinder will thus change the behaviour

(shape) of the developed boundary layers, which in turn effects the heat transfer rate

and fluid flow around this cylinder. The heat transfer rate and fluid flow around a

single rotating cylinder has been studied previously by numerous authors.

Badr and Dennis [23] considered the problem of laminar forced convective heat

transfer from an isothermal circular cylinder rotating about its own axis located in a

uniform stream. The authors reported that the temperature fields are strongly influ-

enced by the rotational speed of the cylinder and contradictory to expectation they

found that the overall heat transfer coefficient tends to decrease as the rotational of

the cylinder increases. They attributed this to the presences of a rotating fluid layer

around the cylinder that separates the cylinder from the main flow stream.

Chiou and Lee [24] considered a problem of forced convection on a rotating cylinder

cooled with an air jet. The results confirmed that the overall heat transfer is enhanced

at lower rotational speeds and at higher rotational speeds the effect became reversed.

They attributed this to the presences of a layer of dead air around the cylinder.

Panda and Chhabra [25] considered a problem of forced convection heat transfer

from a heated cylinder rotating in streaming power-law fluids. The results show a

similar behaviour of the heat transfer rate: for moderate rotational velocities at low
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Reynolds numbers the heat transfer rate is enhanced and there is an envelope of con-

ditions (Reynolds number, rotation speed and power-law index) in which rotation has

a negative effect on the heat transfer rate.

Similar literature includes the works of Gshwendtner [26], Mohanty et al. [27],

Oesterle et al. [28], Ozerdem [29], Paramane and Sharma [30, 31], Yan and Zu [32] and

Nobari et al. [33].

More recent studies have been conducted by Joucaviel et al. [34], with a single scale

structure of a row of heat-generating rotating cylinders cooled by forced convection.

The authors reported that the effect of rotation was beneficial from the point of view

of maximising the heat transfer density rate. The results also showed that a counter-

rotation configuration increases the heat transfer density rate more efficiently when

compared to a co-rotation configuration. In fact the authors states that a co-rotating

configuration “seems to be useless”, in that the heat transfer density rate decreases

and the optimal spacing increases with the increase in rotational speed.

Bello-Ochende et al. [35] then built onto the work of Joucaviel et al. [34] by

considering the effect of rotation on a multi scale configuration as well as the placement

of the small cylinder. It was reported that optimal small cylinder placement is such

that all cylinders are aligned along their leading edges.

2.5 Conclusion

This chapter provided an overview of some of the available literature on the designing of

heat transfer devices with the objective of enhancing the volume-averaged heat transfer

density rate. The published work includes theoretical analysis, experimental procedures

and numerical modelling, which are used to determine the optimal structure. On

overview of the literature showing the effect of rotation on a single cylinder and on a

row of consecutive was also presented.
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Chapter 3

Numerical modelling

3.1 Introduction

This chapter gives an overview of the numerical methods used for modelling and solv-

ing a typical engineering problem and how these methods are applied in a Computa-

tional Fluid Dynamics (CFD) package or code (Section 3.2). The governing equations

that characterise the fluid flow and heat transfer are also discussed (Section 3.4). An

overview of the Finite Volume discretisation Method (FVM) (Section 3.5.1) and PISO

algorithm (Section 3.5.2), used for solving the governing equations, is also presented.

Finally the verification of these numerical methods, as implemented in OpenFOAM, is

put foreward (Section 3.6).

3.2 Overview of numerical modelling

In recent times numerical modelling has been made easier and readily accessible due

to the advances and accessibility of the personal computer as well as the develop-

ment of CFD packages or codes structured around numerous numerical algorithms.

This advancement has lead to easier and faster solutions for fluid flow and heat trans-

fer problems in engineering. The solutions for fluid flow and heat transfer problems

through the use of a CFD package or code involves three stages [36], namely:
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1. Pre-processing, which involves defining a computation domain. The computation

domain is first broken up the into smaller, non-overlapping, pieces or sub-domains

(mesh generation) and then the relevant boundary conditions and fluid properties

are defined for the domain.

2. Solution, which involves the solution of the governing equations at each of the

smaller pieces or volumes (making up the computation domain) through the

use of numerical approximation methods (finite difference, finite volume, finite

element).

3. Post-processing, which involves the collection and evaluation of results and data.

At this stage the user is also often equipped with visualisation tools such as

contour plots, stream-line plots, particle tracking etc.

3.3 Geometry and mesh generation

Mesh generation is an integral part of the pre-processing stage when using a CFD

package or code. This process involves generating the geometry of the computational

domain or simply stated the region of interest (the fluid and / or material volume). This

domain is then broken up into a finite number of discrete sub-domains, called control

volumes or cells. The boundary conditions are then applied to the computational

domain. This disrectisation of the the computational domain produces a numerical

description to the solution domain, including the spacial and temporal locations at

which the solution to the flow variables are sought.

This disrectisation process has been made easier in recent times through the use

of commercial automated mesh generators in which the user can, with the help of a

Graphical User Interface (GUI), generate meshes by the click of a mouse. Unfortunately

many open-source packages or codes are still based on a “text-file” input method

whereby the user has to manually input all required information into a “text-file”

prior to executing the mesh generator. This such “text-file” based input method used

for mesh generation is employed as a build-in function in OpenFOAM (an open source

finite volume CFD package) [37]. The method adopted, in this thesis, for generating a

mesh through the use of OpenFOAM consists of the following steps [38]:
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1. Structure the computation domain, in which the computational domain is broken

up into smaller volumes, each of which forming a quadrilaterally-faced hexahe-

dron (this is done in order to obtain a structured hexahedral mesh).

2. Determine all vertex coordinates and indices of the hexahedra volumes and input

this information into a text-file.

3. Determine each hexahedron volume connectivity, based on the vertex indices and

input this information into the text-file.

4. Determine the number of elements as well as the element grading in each direction

of the hexahedron volume local coordinate system, for all the hexahedra volumes,

and input this information into the text-file.

5. Determine all sets of vertex indices (forming a face of a hexahedron volume lying

on a boundary) for each computational boundary and input this information into

the text-file.

6. Execute OpenFOAM’s build-in mesh generation function, “blockMesh”.

The advantage of this method is that the user can take advantage of it through the

use of a programming language (e.g. Octave [39], Python [40], etc.) and thereby, after

initially setting up one case file, automate the mesh generation process.

3.4 Governing equations

The governing equations are a set of non-linear partial differential equations that de-

scribe the fluid flow and heat transfer characteristics of a typical engineering problem.

The equations that govern these characteristics are the continuity (conservation of

mass), momentum and energy equations.
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3.4.1 Conservation of mass

The general form of the continuity equation, in an Eulerian specification of the fluid

flow field, is given by [41]:
∂ρ

∂t
+ ρ div (U) = 0 (3.1)

where ρ is the density of the fluid, t is the time and U is the velocity vector field of the

fluid. For steady-state incompressible (constant density) flow, Equation 3.1 simplifies

to:

div (U) = 0 (3.2)

3.4.2 Conservation of momentum

The conservation of momentum equation is derived from Newton’s second law, which

relates the applied forces to the resulting acceleration of a fluid particle with mass.

For Newtonian viscous fluids, Navier and Stokes fundamentally derived the following

equation using indicial notation (using Stokes hypothesis λ = −2
3
) [41]:

ρ
DU

Dt
= ρg −∇P +

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ div (U)

]
(3.3)

where g is the gravitational acceleration vector, P is the total pressure, x is the spatial

coordinate, µ is the dynamic viscosity, u is the velocity component, δij is the Kronecker

delta function and λ is coefficient of bulk viscosity associated with volume expansion.

For incompressible flow, the coefficient of bulk viscosity λ and div (U) (due to the

continuity relationship, Equation 3.2) vanish and Equation 3.3 simplifies to:

ρ
DU

Dt
= ρg −∇P + µ∇2U (3.4)

where the laplacian ∇2 = ∂/∂x+ ∂/∂y + ∂/∂z.

As mentioned in Section 1.1, for free or “natural” convection, the fluid motion is

not generated by an external source (such of a pump or fan, etc.), but rather by the

temperature gradients of the fluid. The temperature gradients cause the density of the

fluid to change and this change in density is the driving force of the fluid momentum.

The total fluid density can be written as a constant or reference density plus some
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change in density:

ρ = ρo + ρ′ (3.5)

where the change in density can be approximated as a function of temperature [42]:

ρ
′ ≈ −ρoβ (T − T∞) (3.6)

where β is the thermal expansion coefficient, T is the temperature of the fluid and

T∞ is the reference or inlet temperature. Substituting Equation 3.6 into Equation 3.5

yields the density of the fluid as a function of constant density and temperature:

ρ ≈ ρo [1− β (T − T∞)] (3.7)

Substituting Equation 3.7 into Equation 3.4, and taking into account that Pt =

Ps + Pd + Pref and ∇Ps = ρ0g, gives:

ρo
DU

Dt
= −∇Pd + µ∇2U− ρogβ (T − T∞) (3.8)

where Pt is the total pressure, Ps is the static pressure, Pd is the dynamic pressure

and Pref is the reference pressure. Equation 3.8 is know as the Oberbeck-Boussinesq

approximation and is valid for an almost incompressible fluid where the temperature

changes are assumed sufficiently small relative to the absolute temperature so that the

linear density approximation is valid, cf. Equation 3.7.

3.4.3 Conservation of energy

The conservation of equation equation is derived from the first law of thermodynamics,

which states that the sum of work and heat added to a system will result in an increase

in the energy of that system. Neglecting radiation effects, the energy equation in its

standard form can be written as [41]:

ρ
DH

Dt
=
DP

Dt
+ div (k∇T ) + Φ (3.9)
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where H is the enthalpy, k is the thermal conductivity, T is the temperature of the

fluid and Φ represents the dissipation function, involving viscous stresses, expressed as:

Φ = µ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2
]

+µ

[(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2
]

+λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

(3.10)

For the limit of low velocity or incompressible flow with constant thermal conductivity,

the viscous dissipation becomes negligible and Equation 3.9 simplifies to:

DT

Dt
= +α∇2T (3.11)

where α = k/ρCp is the thermal diffusivity and Cp is the specific heat capacity.

3.5 Numerical solution schemes

The solution of the mass, momentum and energy conservation equations is achieved

through the use of numerical approximation schemes; such as the finite difference, finite

volume and finite element discretization methods. The purpose of any discretisation

method is to transform one or more partial differential equations into a corresponding

system of linear algebraic equations. The discretisation process can be split into two

components: the discretisation of the computational domain (as discussed in Section

3.3) and the discretisation of the governing equations, discussed below in Section 3.5.1.

Section 3.5.2 then gives an overview of how the pressure-velocity coupling is treated in

solving the momentum conservation equation.

3.5.1 Finite volume method

The discretisation method implemented by OpenFOAM is the Finite Volume Method

(FVM), which was originally developed as a special finite difference formulation [36].
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The Finite Volume Method consists of the following properties [43]:

• This method is based on discretising the integral form of the governing equations

over each control volume. The basic quantities, such as the mass and momentum,

will therefore be conserved at a discrete level.

• The governing equations are solved at spacial locations, in a fixed Cartesian

coordinate system, on the mesh that does not change in time. This method is

applicable to both steady-state and transient calculations.

• The control volumes can be of any general polyhedral shape, with a variable num-

ber of neighbouring control volumes, thus creating an arbitrarily unstructured or

structured mesh. All dependent variables share the same control volumes, which

is usually called a collocated or non-staggered variable arrangement [44–46].

• Systems of partial differential equations are treated in a segregated manner [47,

48], meaning that they are solved sequentially one at a time, with the inter-

equation coupling treated in an explicit manner.

The discretisation of the mass, momentum and energy conservation equations, using

the Finite Volume Method, has been documented previously in a number of textbooks

and papers. The reader is thus invited to go through Chapter 4 of Versteeg [36],

Chapter 4 of Ferziger [46] and Chapter 3 of Jasak [43] for more information.

3.5.2 The PISO algorithm

In a segregated approach the equations are solved in sequence and special treatment

is required in solving the pressure-velocity coupling in the momentum conservation

equation. OpenFOAM applies the velocity correction what some would call “in then

spirit of Rhie and Chow” [43]. The Rhie-Chow correction is absolutely vital for fluid

flow simulations, solved using collocated or non-staggered grids, since it removes oscil-

lations in the solution [49]. The pressure equation is derived from a semi-discretised

form of the momentum equation (obtained from the integral form of the momentum

equation). This correction is most often seen as the correction of the interpolated

cell face velocity, by subtracting the difference between the pressure gradient and the
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Figure 3.1: The PISO algorithm.
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interpolated gradient at the cell face. This approach to pressure-velocity coupling on

collocated grids was developed in the early 1980s and is usually attributed to Rhie and

Chow [44]. It is widely used and is employed in many commercial CFD codes [46].

The derivation of the Rhie-Chow interpolation method is shown in Appendix A and

the implementation of this method in OpenFoam is shown in Appendix B.

The solution algorithm employing the Pressure-Implicit with Splitting of Operators

(PISO) procedure, proposed by Issa [50], can be described as follows [43]:

• The energy equation, Eqn. 3.11, is solved first using the mass fluxes at the cell

faces (interpolated from the velocity field) from the previous time-step. This

stage is know as the temperature solution.

• The momentum equation is then solved using the new temperature field. The

exact pressure gradient source term is not known at this stage and thus the

pressure field from the previous time-step is used instead. This stage is called

the momentum predictor. The solution of the momentum equation, Eqn. 3.8,

gives an approximation of the new velocity field.

• The mass fluxes at the cell faces are then updated based on the intermediate

velocity field.

• The semi-discretised form of the velocity equation is then used to formulate the

pressure equation. The solution to the pressure equation gives the first estimate

to the new pressure field. This step is known as the pressure solution.

• The mass fluxes at the cell faces and the velocity field are corrected based on the

new pressure field. This is done for a prescribed number of times (nNonOrthCorr)

to account for non-orthogonality in the mesh.

• The procedure of formulating and solving the pressure equation; and correcting

the mass fluxes and velocity fields is done for a prescribed number of times (nCorr)

before continuing on to the next temperature solution and momentum correction

steps.

The flow diagram for this solution algorithm is shown in Fig. 3.1. For further infor-

mation on how the pressure equation is derived and how the velocity is corrected, the
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reader is invited to go through Chapter 6 of Versteeg and Malalasekera [36], Chapter

7 and 8.8 of Ferziger and Perić [46] and Chapter 3 of Jasak [43].

3.6 Verification

The governing equations (Equation 3.1, 3.8 and 3.11) as well as the PISO algorithm

were implemented in OpenFOAM as a stand alone “solver”. This “solver”, shown in

Appendix B, was verified for three cases:

• Self driven cavity problem (Section 3.6.1),

• Heated parallel plates (Section 3.6.2) and

• The recreation of the results for stationary cylinders, reported by Bello-Ochende

[22], discussed in Sections 6.3.1.1 and 6.3.2.1

3.6.1 Self driven cavity

Figure 3.2: Self driven cavity problem.

Consider a two-dimensional square cavity as shown in Fig. 3.2. The velocity bound-

ary condition is specified as zero slip and zero penetration on all sides of the cavity.
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For the left and right sides of the cavity, the surface temperature is assumed constant

and uniform, with a high surface temperature on the left side and a low surface tem-

perature on the right side. For the top and bottom sides of the cavity, the temperature

boundary conditions is specified as adiabatic. The pressure boundary conditions is

specified as zero gradient on all sides of the cavity.

q̃

Ra Present Ref. [51] Difference (%)

103 1.116 1.118 0.179
104 2.243 2.245 0.076
105 4.517 4.521 0.100
106 8.731 8.822 1.027

Table 3.1: Heat transfer rate, per unit length, from the heated side of the cavity to the
cooled side of the cavity for Pr = 0.72

This problem was simulated for various flow regimes (Pr = 0.72 and 103 ≤ Ra ≤
106). From Table 3.1, it can be seen that there is a maximum difference of about 1%

between the results obtained from the present simulations and the results reported by

da Silva and Gosselin [51].

3.6.2 Parallel plates

Consider the two-dimensional computational domain with two heated parallel plates as

shown in Fig. 3.3. For the heated plates, the velocity boundary condition in specified

as zero slip and zero penetration; and the surface temperature is assumed constant,

uniform and higher than that of the inlet stream. For the inlet of the computational

domain, the boundary conditions are specified as P̃ = 0, T̃∞ = 0 and ũ = ∂ṽ/∂ỹ = 0.

For the exit of the computational domain, the boundary conditions are specified as

∂ (ũ, ṽ) /∂ỹ = 0, ∂P̃ /∂ỹ = 0 and ∂T̃ /∂ỹ = 0.

This problem was simulated for a fixed flow regime (Pr = 0.72 and Ra = 106) and

the plate-to-plate spacing was varied. There exists an optimum plate-to-plate spacing,

shown in Fig. 3.4, of S̃o,optRa
1/4 = 2.790 or S̃o,opt = 0.088. There is less than a 1.15%

difference when comparing this optimal spacing with that reported by da Silva and

Bejan [20].
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Figure 3.3: Heated parallel plates cooled by natural convection.

Figure 3.4: The effect of the plate-to-plate spacing on the heat transfer density rate
for Pr = 0.72
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The corresponding maximum heat transfer density rate is q̃mRa
−1/2 = 0.480 or

q̃m = 478. There is less than a 8.35% difference when comparing this maximum heat

transfer density rate with that reported by da Silva and Bejan [20].

3.7 Conclusion

This chapter presented an overview of the processes involved in setting up and solving

a typical engineering heat transfer and fluid flow problem through the use of a CFD

package or code. The set of non-linear partial differential equations that govern con-

servation of mass, momentum and energy where discussed. The numerical methods

and algorithms employed by OpenFOAM in solving the governing equations was also

reviewed. Finally the implementation of this these numerical methods and algorithms

in OpenFOAM were verified for two example cases.
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Chapter 4

Parametrisation and optimization

4.1 Introduction

Almost all CFD packages or codes are designed with the goal in mind that the CFD

package will be used once off for a given engineering problem with maybe a handful

of variations in either the geometry or fluid properties being simulated. For an opti-

misation type problem this “one-by-one set up and solution” method can become very

cumbersome as the number of simulations required to be set up and solved becomes

exponentially greater with an increased number of design variables. A more efficient

method is sought and this chapter deals with just that. In order to automate this

entire process three key aspects to interface with OpenFoam are highlighted:

1. Initialisation: In which all parameters need to be set (fluid properties, gravita-

tional acceleration, fixed boundary conditions etc.). All variables also need to be

set and the discretisation of the computational domain (mesh generation) is also

done at this stage.

2. Execution: Here a system call to execute OpenFoam’s solver is required. Some

form of monitoring of the solution residuals is also required so that a system

termination call can be issued to stop OpenFoam.

3. Analysis: In which the results from the simulation are extracted and consolidated

into a single log file for ease of review and comparison.
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Section 4.2 gives an introduction to the tools used to achieve this automation pro-

cess. Section 4.3 shows how these tools are coupled together with OpenFoam for an

automated parametrisation set up. Section 4.4 discusses the principals behind optimi-

sation and the governing equations for the optimisation algorithm used as well as how

this optimisation algorithm is easily merged with the parametrisation process routine.

4.2 Open source tools

The tools used in this thesis to interface with OpenFoam and to automate the simula-

tion process are all open source and freely available:

• Python: An open source cross platform programming language [40].

• Gnuplot: A portable command-line driven graphing utility for multiple platforms

[52].

• NumPy: A Python library, adding support for multi-dimensional arrays and ma-

trices, along with a large library of high-level mathematical functions to operate

on these arrays [53].

• SciPy: An Open Source library of scientific tools for Python. It depends on the

NumPy library, and it gathers a variety of high level science and engineering

modules together as a single package [53].

• PyFoam: A Python library to control OpenFoam simulations and manipulate

OpenFoam data [54].

Python is used as the “glue” that couples all the tools discussed above together

in order to create a seamlessly smooth automated script. Python is also the key tool

used to create the geometry and mesh input file, as discussed in section 3.3. Python

was chosen as the programming language for several reasons: python is very easy to

learn, the code is extremely readable, the code is dynamic and there are numerous

comprehensive libraries available for scientific and mathematical functions. Gnuplot is

used to actively plot the solution residuals during or after the simulation. SciPy is used

for its readily availably, built in optimisation algorithms. PyFoam is the key tool used
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to interface with OpenFoam as it is able to manager and control the “Initialisation”

and “Execution” aspects of the OpenFoam interfacing.

4.3 Parametrisation

Parametrisation is the method whereby the simulation case files (geometry and mesh

input, fluid properties, boundary conditions, etc.) are set up in the form of variables or

parameters to describe a given system. The two areas of the numerical model that were

selected for parametrisation were the geometry and mesh input file and the velocity

boundary condition file (effecting the cylinder rotation speed). The geometry file was

automated following the method described in section 3.3 through the use of Python.

This script was set up with variable and parameter information (discussed later in

section 5.2) being parsed to the python script and the required OpenFoam input file

being automatically generated. The complete parametrisation flow diagram in shown

in Fig. 4.1. From this flow diagram is can be seen that the entire process from mesh

generation to extracting the results from the OpenFoam simulation has been automated

through the use of python and the set of python tools (discussed in section 4.2); and

this process loops over a given range for a given variable or parameter. The python

scripts have been attached digitally in the data attachment in Appendix C.

4.4 Numerical optimisation

This section presents the theory behind mathematical optimisation and introduces the

optimisation algorithm used in this thesis. The feasibility of using an optimisation

algorithm becomes prevalent for design cases with two or more design variables as it

eliminates the need to consider each and every result generated by range of design

variables combinations, but rather seeks out the optimal results from the information

obtained from a fewer number of design variable combinations.
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python

pyFoam

Generate mesh text-file

Adjust transport properties

Adjust large cylinder velocity boundary condition

Execute OpenFoam's "blockMesh"

Execute OpenFoam's "decomposePar"

Extract heat flux

values from log file

input variable range

Select first / next input variable

Analyse OpenFoam log file

log filesolver output

Convergence

reached

yes no

yes

Execute OpenFoam's solver
stop solver

store input variable

and corresponing

heat transfer value

Routine A

Figure 4.1: Parametrisation routine for OpenFoam
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4.4.1 Numerical optimisation overview

Numerical optimisation (also known as mathematical optimisation, mathematical pro-

gramming or non-linear programming) is the field that deals with determining the

best solution to problems which can be expressed mathematically or numerically. In

other words, it implies choosing the best result from a range of available alternatives

for a given range of variables. The history of this field dates back to the 1940s when

the first optimisation technique, called the steepest descent, was developed for solving

very simple problems. Since then numerous methods for solving a general optimisa-

tion problem have been developed, tested and successfully applied to many important

scientific, economic and engineering problems [55]. One such successful application

of an automated mathematical optimisation algorithm coupled to a commercial CFD

package is presented by Bello-Ochende et al. [56] and Ighalo [57], where the authors

utilised the Dynamic-Q algorithm developed by Snyman and Hay [58].

4.4.2 Non-linear constrained optimisation

In numerical optimisation, the quantity to be optimised (minimised or maximised)

is known as the objective or cost function f (x). The parameters or variables to be

changed in order to obtain this optimal solution are known as the design variables and

they are usually represented by a vector x with the optimal values usually expressed

by the vector x∗. When certain constraints in the form of inequalities gi (x) ≤ 0 or

equalities hj (x) = 0 are introduced into the process, the problem or objective function

is known as a constrained optimisation problem otherwise the problem is known as an

unconstrained optimisation problem. In general, a constrained optimisation problem

is formally written as:

minimise:
w.r.t. x

f (x) , x = [x1, x2, . . . , xn]T ∈ Rn

such that:

gi (x) ≤ 0, i = 1, 2, . . . ,m

hj (x) = 0, j = 1, 2, . . . , r

(4.1)
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(a) Inequality Constraint

(b) Equality Constraint

Figure 4.2: Contour representation of a constrained problem [55]

Figure 4.3: Illustration of a maximisation function versus a minimisation function [55].
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Figure 4.2 shows the difference between an inequality constraint and an equality

constraint and how these constraints effect the feasible region (the region in which the

solution is valid and does not violate any of the constraints). In the case where the

objective function f (x) is required to be maximised, the minimisation algorithm is

still applied by setting fmin (x) = −fmax (x). The plot in Fig. 4.3 depicts how the

maximisation problem is transformed into a minimisation problem [55].

4.4.3 Numerical optimisation algorithm

For most optimisation algorithms it is required that the objective or cost function be

known, smooth and continuous with one optimum solution (being the global optimum).

Difficulties arise when these conditions are not met, for example when oscillations occur

in the objective function it becomes difficult to evaluate the oscillations as only local

minimums and still return a global minimum. If discontinuities occur in the objective

function no function or gradient information is available at the point or range of the

discontinuity making it difficult to evaluate a global minimum.

When there is no analytical expression for the objective function (as is the case

in many heat transfer and fluid dynamics problems), the gradient information of the

objective function is not readily available and approximation methods are required in

order to obtain this gradient information. These gradient approximation methods often

require additional objective function evaluations, making them very “expensive” based

on the time required for each objective function evaluation. Each objective function

evaluation is the solution of a CFD simulation. Many optimisation algorithms can be

found that have been developed to deal with the difficulties mentioned above, some

such algorithms are presented in Ref [58–63]

Unfortunately there are a limited number of optimisation algorithms available in

the SciPy python library when considering multiple design variables and constraint

functions. The objective function is thus minimised using the Sequential Least SQuares

Programming (SLSQP) algorithm available in the SciPy python library “fmin slsqp”

[53]. This algorithm is based on the Fortran routine originally implemented by Kraft

[64] which utilises the slightly modified Non-Negative Least Squares (NNLS) algorithm

of Lawson [65]. The detail of optimisation algorithm itself is outside the scope of this

thesis, thus the reader is invited to go through Ref [64, 65] for more information.
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4.4.4 Automation

The optimisation algorithm presented in section 4.4.3 is easily merged with the auto-

mated parametrisation subroutine as shown in the process flow diagram in Fig. 4.4.

“Routine A” from the parametrisation process shown in Fig. 4.1 effectively becomes

the objective function f (x). For a given design variable vector xi, where x0 (the initial

or starting values for the design variables) has to be provided by the user, the optimisa-

tion algorithm calculates the values of the cost function f (xi); its gradient ∇f (xi); the

constraints g (xi), h (xi), and their Jacobi matrices ∇g (xi), ∇h (xi). These values are

introduced into the optimiser which either proposes a new design variable vector xi+1

or informs the user that certain convergence criteria have been satisfied and terminates

[64].

Optimisation Algorithm

["fmin_slsqp"]

input initial values

Objective Function

[Routine A]

Constraint Functions

Stop

Figure 4.4: Optimisation routine for OpenFoam.

4.5 Conclusion

This Chapter presented the tools used to automate the numerical computational pro-

cess and how these tools where implemented to create a parameterisation routine to
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interface with OpenFoam. This Chapter also presents an efficient and effective method

for solving geometric optimisation design type problems whereby a mathematical op-

timisation algorithm is coupled to a Computation Fluid Dynamics (CFD) package

through the use of a programming language in order to efficiently optimise the de-

sign problem (with multiple design variables) for a global objective subject to global

constraints.
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Chapter 5

Optimization of rotating cylinders

in natural convection

5.1 Introduction

This chapter starts with introducing the numerical model used in OpenFoam to solve

the fluid flow and heat transfer fields for heat generating cylinders rotating in natural

convection (Section 5.2). Section 5.3 shows how the governing equations expressing the

conservation of mass, momentum and energy are non-dimensionalised for the discussed

numerical models. Section 5.4 then discusses the objective function used to evaluate

the geometric configurations in order to determine the optimum. Section 5.5 presents

the convergence criteria used in the OpenFoam solution scheme (Figure 3.1) as well as

the convergence criteria used for the optimisation algorithm. The results from a series

of studies conducted in order to achieve results independent of computational domain

sizes and mesh size is also presented in section 5.5.

5.2 The numerical CFD model

This thesis builds on the research previously conducted by Bello-Ochende and Bejan

[22] (in which the authors present the optimal geometric configuration and thus the
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corresponding maximum heat transfer density rate for stationary cylinders cooled by

natural convection) by considering the effect of rotation on the cylinders. This Section

is presented in two smaller sub-sections: the numerical model for a simple single scale

geometry structure (Section 5.2.1) and the numerical model for an increase in com-

plexity of the geometric structure or multi scale geometry structure (Section 5.2.2).

5.2.1 Single scale

Figure 5.1: Single row of counter-rotating cylinders in natural convection.

Consider a row of infinity long, rotating and heat-generating parallel cylinders

aligned along a single line to form a stacking as shown in Fig. 5.1. The cylinders

rotate at an angular velocity of ω0 in a counter-rotating configuration. The large

cylinder diameter (D0) is fixed and the surface temperature of the cylinders (Tw) is

assumed uniform and constant and greater than that of the fluid temperature (T∞).

The cylinders thus generate heat and are subsequently cooled by natural convection.

The objective is to select the number of cylinders in the stacking or the cylinder-to-

cylinder spacing (S0) in such a manner that the overall thermal heat transfer between

the cylinders and the ambient air is maximized. This is done for each flow regime

(Rayleigh number) and cylinder rotation speed. The flow is assumed steady, lami-

nar, incompressible and two-dimensional. All thermophysical properties are assumed
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constant. The temperature variations are assumed sufficiently small relative to the

absolute temperature so that the Boussinesq approximation is valid.

Figure 5.2: The computational domain and boundary conditions for a set of counter-
rotating cylinders.

Figure 5.2 shows the elemental volume that characterises this assembly. The com-

putational domain contains the upstream section [Hu × 2 (D0 + S0)], the downstream

section [Hd×2 (D0 + S0)] and the flow region [D0×2 (D0 + S0)]. The upstream lengths

(Hu) and downstream lengths (Hu) were selected based on mesh independence tests
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described later in Section 5.5. The computational domain boundary conditions are in-

dicated in Fig. 5.2. For the cylinder surfaces, the boundary conditions are specified as

zero slip, zero penetration, constant uniform surface temperature T̃w = 1 and an angu-

lar velocity of ω̃0. For the inlet of the computational domain, the boundary conditions

are specified as P̃ = 0, T̃∞ = 0 and ũ = ∂ṽ/∂ỹ = 0. For the exit of the computational

domain, the boundary conditions are specified as ∂ (ũ, ṽ) /∂ỹ = 0, ∂P̃ /∂ỹ = 0 and

∂T̃ /∂ỹ = 0. From the inlet and outlet boundary conditions is it evident that no ṽ ve-

locity component is specified and only a zero gradient boundary condition is specified.

The ṽ velocity component is thus generated, in the computational domain, from the

buoyancy body force acting on the fluid (cf. Eq. 1.3 and Eq. 3.8).

For the upstream section (0 ≤ ỹ ≤ H̃u) of the computational domain, the bound-

ary conditions are specified as symmetry planes or free slip and no penetration (ũ =

∂(ṽ, T̃ )/∂x̃ = 0). For the downstream section (H̃u ≤ ỹ ≤ H̃u + D̃0 + H̃d) of the com-

putational domain, two boundary conditions are specified: symmetry plane or free slip

and no penetration (ũ = ∂(ṽ, T̃ )/∂x̃ = 0) at the left side of the flow region and; zero

stress (∂P̃ /∂x̃ and ∂ũ/∂x̃ = ∂(ṽ, T̃ )/∂x̃ = 0) on the right side of the flow region. By

specifying ∂ũ/∂x̃ on the right side of the flow region, fluid is allowed to flow horizon-

tally into the computational domain. This entrainment effect nullifies the unrealistic

vertical acceleration or chimney effect that would have been generated had we speci-

fied zero slip on this side. The vertical acceleration is also generated should a periodic

boundary condition be applied on the left and right side of the entire computational

domain.

5.2.2 Multi scale

The effect of increased complexity is shown in Fig. 5.3, in which a smaller cylinder

(of diameter D1) is inserted in the entrance (converging) region of the channels formed

between the larger cylinders. This geometric change adds one more degree of freedom

to the system: the smaller cylinder diameter D̃1 = D0/D1. The flow configuration now

has two degrees of freedom, represented by the small cylinder diameter D̃1 and the

original cylinder-to-cylinder spacing S̃0. Again the objective is to select the number of

cylinders (large and small) in the stacking or in other words to select the cylinder-to-

cylinder spacing (S0) and the small cylinder diameter (D1) in such a manner that the
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overall thermal heat transfer between the cylinders and the ambient air is maximized.

The smaller cylinders have a uniform and constant surface temperature (T̃w) equal

to the surface temperature of the larger cylinders. The smaller cylinders are kept

stationary, thus creating a staggered rotational configuration of counter rotating larger

cylinders and stationary smaller cylinders. All the cylinders were aligned along their

leading edges. It was assumed in this thesis that this alignment was the most beneficial

for enhancing the heat transfer density rate for both stationary and rotating cylinders

(see Ref. [35]).

Figure 5.3: Multi scale row of counter-rotating cylinders in natural convection.

Figure 5.4 shows the elemental volume that characterises this assembly. The com-

putational domain boundary conditions, indicated in Fig. 5.4, for the multi scale

structure are similar to the single scale structure (Section 5.2.1), with a few differences

for the upstream and downstream section boundary conditions. For the upstream sec-

tion (0 ≤ ỹ ≤ H̃u) of the computational domain, the boundary conditions are specified

as symmetry planes or free slip and no penetration (ũ = ∂(ṽ, T̃ )/∂x̃ = 0). For the

downstream section (H̃u ≤ ỹ ≤ H̃u + D̃0 + H̃d) of the computational domain, two

boundary conditions are specified: symmetry plane or free slip and no penetration

(ũ = ∂(ṽ, T̃ )/∂x̃ = 0) at the left side of the flow region and; zero stress (∂P̃ /∂x̃ and

∂ũ/∂x̃ = ∂(ṽ, T̃ )/∂x̃ = 0) on the right side of the flow region.
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Figure 5.4: The computational domain and boundary conditions for a set of counter-
rotating cylinders.

5.3 Non-dimensional governing equations

The governing continuity of mass, momentum and energy equations (Equations 3.2,

3.8 and 3.11) can be re-written in a non-dimensional form by introducing the following

dimensionless variables:
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x̃, ỹ, ỹ =
(x, y, z)

D0

, ũ, ṽ, w̃ =
(u, v, w)

(α/D0) (RaD0Pr)
1/2

(5.1)

T̃ =
T − T∞
Tw − T∞

, P̃ =
P(

αµ/D0
2
)

(RaD0Pr)
1/2

(5.2)

ω̃0 =
ω0(

2α/D0
2
)

(RaD0Pr)
1/2

(5.3)

where the large cylinder diameter (D0) is selected as the characteristic length, Pr = ν/α

is the Prandtl number and the Rayleigh number is defined in terms of the large cylinder

diameter as:

RaD0 =
gβ (Tw − T∞)D0

3

αν
(5.4)

Substituting Equations 5.1 to 5.4 into Equations 3.2, 3.8 and 3.11 yields the dimen-

sionless form of the continuity, momentum and energy equations respectively:

div Ũ = 0 (5.5)

(
Ra

Pr

)1/2DŨ

Dt̃
= −∇̃P̃ + ∇̃2 Ũ +

(
Ra

Pr

)1/2

T̃ k̂ (5.6)

(RaPr)
1/2DT̃

Dt̃
= +∇̃2 T̃ (5.7)

where Ũ = [ũ, ṽ, w̃] is the dimensionless velocity field and k̂ = [0 1 0] is a unit

vector indicating the directions in which gravity acts. All geometric dimensions (cylin-

der diameter, cylinder-to-cylinder spacing, upstream and downstream lengths) of the

computational domain shown in Figures 5.2 and 5.4, were also made dimensionless by

dividing through by the length scale D0:

D̃0 =
D0

D0

= 1, S̃0 =
S0

D0

, H̃d, H̃u =
Hd, Hu

D0

, (5.8)

5.4 Objective function

As shown in section 5.2.1, for a single scale structure, the cylinder-to-cylinder spacing

is varied and for a multi scale structure (section 5.2.2), both the cylinder-to-cylinder

spacing and the small cylinder diameter are varied. We are interested in the geometric
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configuration that maximizes the overall heat transfer between the cylinders and the

surrounding fluid. The dimensionless quantity used to evaluate this configuration is

the dimensionless heat transfer density rate. The heat transfer density rate is q
′′′

=

q
′
/2D0(D0 +S0), where q

′
is the sum of the total heat transfer rate integrated over the

surface of the cylinders:

q
′
=

di∑
i=1

D0

2

∫ 2π

0

k(∇T )sndθ +

dj∑
i=1

D1

2

∫ aπ

−π/2
k(∇T )sndθ (5.9)

where D0/2 and D1/2 is the radius of the large diameter and small diameter cylinders

respectively, di is the number of large diameter cylinders, dj is the number of small

diameter cylinders, a = 3/2 or a = 1/2 for a complete and half cylinder respectively.

The subscript sn, in Eq. 5.9, denotes that gradient of T is taken with respects to

the normal direction to the cylinder surface. The corresponding dimensionless heat

transfer density rate is:

q̃ =
q
′

2D0 (D0 + S0) k (Tw − T∞)
(5.10)

Thus the constrained optimisation problem can formally be written as:

minimise:
w.r.t. x

f (x) = −q̃ (x) , x = [x1, x2]T ∈ Rn

such that:

g1 (x) = −x1 ≤ 0

g2 (x) = −
[(

x1 +D0

2

)2

+

(
D0 − x2

2

)2
]0.5

≤ 0

= −
[
(x1 +D0)2 + (D0 − x2)2]0.5 ≤ 0

(5.11)

where x1 = S0 and x2 = D1. The equality constraint g1 (x) is added to Eq. 5.11 to

ensure that the cylinder-to-cylinder spacing is greater than 0 and the second equality

constraint g2 (x) is added (only for the multi scale configuration) to ensure that the

large diameter cylinders and small diameter cylinders do not overlap.

As mentioned in section 4.4, solving the optimisation problem (Eq. 5.11) only

becomes practical for two or more design variables, hence only for a multi scale config-
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uration. Thus the optimisation problem (Eq. 5.11) was solved only for the multi scale

configuration using the techniques described in section 4.4.3 and a parametrisation

approach (as described in section 4.3) was used for the single scale configuration.

5.5 Convergence criteria and mesh independence

The numerical models being solved (section 5.2.1 and 5.2.1) were initialised with all

internal variable fields being 0 (i.e. U0 = 0, P 0 = 0 and T 0 = 0). Thus each simulation

was viewed as a transient problem that reached steady-state at a certain time. The

convergence criteria, used to solve the governing equations (cf. Fig. 3.1), at each time

step was set based on the residual of each of the variable fields:

Rk
t (U) ≤ 10−4, Rk

t (P ) ≤ 10−4, Rk
t (T ) ≤ 10−6 (5.12)

and the convergence criteria to terminate the simulation was evaluated based on the

initial residual of each of the variable fields, i.e.:

R0
t (U) ≤ 10−4, R0

t (P ) ≤ 10−4, R0
t (T ) ≤ 10−6 (5.13)

In which k was the iteration counter and t was the time step.

The convergence criteria used to terminate the optimisation algorithm was:

‖xi − xi−1‖ ≤ 10−3 (5.14)

where ‖ · ‖ is the Euclidean norm.

In order to obtain accurate heat flux results (Eq. 5.9), from all the simulations, the

computational domain needed to be considered, namely the upstream and downstream

lengths as well as the number of elements used to discretise the computational domain.

The mesh design received special attention and was tested extensively in the range

101 ≤ Ra ≤ 104, for ω̃0 = 0 and Pr = 0.72, with the grid varying from one geometric

configuration to the next. A structured mesh, consisted of quadrilateral elements was

used. The selected mesh arrangement shown in Fig. 5.5 (for both single scale and multi

scale configuration) was uniform in the x̃ direction and double graded in the ỹ direction
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so as to put more elements near the cylinder surfaces to more accurately capture the

behaviour of the boundary layers. The initial guess for the mesh size in the x̃ direction

was chosen based on the boundary layer thickness scale δT ∼ D0Ra
(−1/4).

The results from the mesh refinement and domain size studies has been split into two

smaller sub-section: section 5.5.1 presents the results for the single scale configuration

and section 5.5.2 presents the results for the multi scale configuration.

(a) Single scale mesh (b) Multi scale mesh

Figure 5.5: Illustration of the discretised flow domain.

5.5.1 Single scale

Table 5.1 shows a summary of the mesh refinement studies conducted for the range

101 ≤ Ra ≤ 104 and ω̃0 = 0. This table shows the number of elements required per unit

length at each Rayleigh number in order to achieve results independent of mesh size

(varies by less than 1%). For example the mesh refinement study shows, for Ra = 101,

the heat transfer density rate was insensitive (varies by less than 1%) to further mesh

refinement when 16 elements per unit length were used.
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Both mesh independence and domain size independence was achieved in the same

manner: by starting off with a low value for a given parameter and doubling that value

until the result was insensitive to further refinement or doubling. Table 5.2 shows one

example of how mesh independence was achieved for Ra = 103, S̃0 = 0.3, ω̃0 = 0 and

Pr = 0.72. It can be seen from this table that the heat transfer density rate was

insensitive (varies by less than 1%) to further mesh refinement when 48 elements per

unit length were used.

Ra Elements/L

101 16
102 48
103 48
104 100

Table 5.1: Single scale mesh refinement summary: number of elements per unit length
at each Rayleigh number (Pr = 0.72 and ω̃0 = 0).

Elements/L q̃ q̃i−q̃i+1

q̃i

12 6.899 -
24 6.035 0.1365
48 5.499 0.0887
96 5.531 0.0058

Table 5.2: Single scale mesh refinement study for Ra = 103 (H̃u = 1, H̃d = 2, S̃0 = 0.3,
ω̃0 = 0 and Pr = 0.72).

Ra H̃u H̃d

101 1.5 3.5
102 1.0 2.5
103 1.0 2.0
104 0.5 1.5

Table 5.3: Single scale domain size summary: upstream and downstream lengths at
each Rayleigh number (Pr = 0.72 and ω̃0 = 0).

Table 5.3 shows a summary of the domain size study for the upstream and down-

stream lengths. For example the domain size study shows for Ra = 102, when H̃u = 1.5

and H̃d = 2.5, the heat transfer density rate was insensitive to further doubling of up-

stream and downstream lengths.
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5.5.2 Multi scale

Table 5.4 again shows the mesh refinement summary, for the number of elements

required per unit length, for the multi scale configuration (101 ≤ Ra ≤ 104 and

ω̃0 = 0). Table 5.5 again shows one example of how mesh independence was achieved

for Ra = 103, S̃0 = 0.5, D̃1 = 0.2, ω̃0 = 0 and Pr = 0.72.

Ra Elements/L

102 32
103 48
104 80

Table 5.4: Multi scale mesh refinement summary: number of elements per unit length
at each Rayleigh number (Pr = 0.72 and ω̃0 = 0).

Elements/L q̃ q̃i−q̃i+1

q̃i

12 6.604 -
24 6.618 0.00219
48 6.631 0.00199
96 6.634 0.00041

Table 5.5: Multi scale mesh refinement study for Ra = 103 (H̃u = 0.5, H̃d = 3.5,
S̃0 = 0.5, ω̃0 = 0 and Pr = 0.72).

Ra H̃u H̃d =

102 0.9 −4.57
(
S̃0 − D̃1

)
+ 7.50

103 0.6 −5.11
(
S̃0 − D̃1

)
+ 4.95

104 0.4 −5.31
(
S̃0 − D̃1

)
+ 3.15

Table 5.6: Multi scale domain size summary: upstream and downstream lengths at
each Rayleigh number (Pr = 0.72 and ω̃0 = 0).

Table 5.6 shows a summary of the domain size study for the upstream and down-

stream lengths for Pr = 0.72. It was found that the heat transfer density rate is

insensitive when the upstream length H̃u scales linearly as a function of the cylinder-

to-cylinder spacing minus the small cylinder diameter. For example the domain size

study shows for Ra = 103, S̃0 = 0.5, and D̃1 = 0.2 that the heat transfer density rate
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is insensitive to further doubling of upstream and downstream lengths when H̃u = 0.6

and H̃d = −5.11
(
S̃0 − D̃1

)
+ 4.95 = 3.42.

From the results reported in section 5.5.1 and section 5.5.2 it can be seen that

the mesh refinement and domain size studies were conducted with ω̃0 = 0 and it was

assumed that the effect of cylinder rotation would not require a finer mesh and would

not effect the upstream and downstream lengths.

5.6 Conclusion

This Chapter presented the numerical models in solving the fluid flow and temperature

fields for both single scale and multi scale configurations. It was also shown how the

governing equations are non-dimensionalised in order to report the results obtained

in terms of dimensionless quantities. The objective function used to evaluate the

maximum heat transfer density rate for the optimal geometric configurations was also

presented in dimensionless form. The accuracy to which the governing equations are

numerically solved as well as the accuracy to which the optimisation algorithm is solved

was also presented. Finally the computational domain accuracy studies for achieving

independent heat transfer density rates was presented. The results obtained from the

numerical models presented in this Chapter is presented next in Chapter 6.
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Chapter 6

Optimal geometric configuration

results

6.1 Introduction

This Chapter opens by using the method of scale analysis to predict the optimal struc-

ture results expected from the numerical simulations (Section 6.2). The results ob-

tained from the numerical simulations are then presented in two subsection, Sections

6.3.1 and 6.3.2, for the single scale and multi scale structures respectively. Each of

these two subsections is again split into smaller section. Sections 6.3.1.1 and 6.3.2.1

compare the results obtained from the numerical simulations for stationary cylinders

against the results reported by Bello-Ochende and Bejan [22] for the single scale and

multi scale structures respectively. Sections 6.3.1.2 and 6.3.2.2 then show the effect of

rotation of the cylinders for the single scale and multi scale structures respectively.

6.2 Scale analysis

The optimal packing for a single scale structure, as shown in Fig. 5.1, is achieved

when the cylinder-to-cylinder spacing is such that the thermal boundary layers of each

cylinder just touch (shown in Fig. 6.1a). From Fig. 6.1b it can be seen how, for a
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multi scale structure, the flow structure of Fig. 6.1a is improved by inserting a smaller

cylinder into the wedge-shaped region of the thermal boundary layer in order to utilise

the region of fluid previously not used for heat transfer.

Thermal Boundary Layer

(a) Single scale configuration

Thermal Boundary Layer

(b) Multi scale configuration

Figure 6.1: Illustration of the thermal boundary layer around a stationary cylinder

According to scale analysis, the thermal boundary layer of a cylinder with laminar

natural convection flow and Pr ∼ 1 [14] has a thickness of order:

δT ∼ D0Ra
(−1/4) (6.1)

By setting the thermal boundary layer thickness, δT ∼ 2S0 in Eq. 6.1, we find that:

S̃0,opt ∼ 2Ra(−1/4) (6.2)

Using Eq. 6.2, the expected results for the single scale structure are shown in Table

6.1

The heat transfer density rate can be analysed based on the same scaling argument.

The cylinder heat flux (heat transfer rate per unit area) scale is

q
′′ ∼ k (Tw − T∞) /δT (6.3)

where δT ∼ D0Ra
(−1/4). Because S0 < D0 (cf. Eq. 6.1) for Ra � 1, the heat transfer

density rate is q
′′′ ∼ q

′′
/D0, such that the dimensionless heat transfer density rate

becomes:

q̃ ∼ q
′′′
D0

2

k (Tw − T∞)
∼ Ra(−1/4) (6.4)
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Ra S̃0 ∼ .

10 1.125
100 0.632

1000 0.356
10000 0.200

100000 0.112

Table 6.1: Scale analysis for the optimal cylinder-to-cylinder spacing for a single scale
structure.

6.3 Results

The flow and temperature fields were simulated in a large number of configurations, in

order to determine the effect of the cylinder-to-cylinder spacing on the heat transfer

density rate at each flow regime for each cylinder rotation speed. The Rayleigh number

range considered is 101 ≤ Ra ≤ 104 and the cylinder rotation speed range considered

is 0 ≤ ω̃0 ≤ 104.

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.5

4

4.5

5

5.5

6

S̃0

q̃

Figure 6.2: The maximization of the heat transfer density rate for the assemble shown
in Fig. 5.1 for Ra = 103, Pr = 0.72 and ω̃0 = 0.
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6.3.1 Single scale

6.3.1.1 Stationary cylinders

Figure 6.2 shows that the heat transfer density rate is optimal when S̃0 has a certain

value, when there is no cylinder rotation. The optimal spacing, shown in Fig. 6.2, for

Ra = 103, Pr = 0.72 and ω̃0 = 0 is S̃0,opt = 0.291. There is a 0.6% difference when

comparing this optimal spacing with that reported by Bello-Ochende and Bejan [22]

for a single row of cylinders.

10
1

10
2

10
3

10
4

0.1

1

10

Ra

q̃m | S̃0,opt

q̃m

S̃0,opt

Figure 6.3: The optimal cylinder-to-cylinder spacings and corresponding heat transfer
density rates for a row of cylinders shown in Fig. 5.1 for Pr = 0.71, ω̃0 = 0 and
101 ≤ Ra ≤ 104.

The optimal cylinder-to-cylinder spacings and corresponding maximum heat trans-

fer density rates for 101 ≤ Ra ≤ 104, Pr = 0.72 and ω̃0 = 0 are summarized in Fig.

6.3. The optimal cylinder-to-cylinder spacings (from Fig. 6.3) can be correlated by the

power law, within 0.25%:

S̃0,opt = 1.76Ra(−0.26) (6.5)

Equation. 6.5 is anticipated well by the scale analysis argument, cf. Eq. 6.2.
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This correlation also compares well with the power law correlation proposed by

Bello-Ochende and Bejan [22]: S̃0,opt = 1.32Ra(−0.22). For 103 ≤ Ra ≤ 105, there is a

1% difference (Ra = 103), 8% difference (Ra = 104) and 16% difference (Ra = 105).

The corresponding maximum heat transfer density rates, reported in Fig. 6.3, can be

correlated by the power law, within 0.05%:

q̃m = 0.72Ra0.29 (6.6)

Again Equation 6.6 is anticipated well by the scale analysis argument, cf. Eq. 6.4.

This correlation also compares well with the power law correlation proposed by Bello-

Ochende and Bejan [22]: q̃m = 0.65Ra0.30. For 103 ≤ Ra ≤ 105, there is a 3% difference

(Ra = 103), 1% difference (Ra = 104) and 1% difference (Ra = 105).

6.3.1.2 Rotating cylinders

0.2 0.4 0.6 0.8 1 1.2 1.4

1.2

1.4

1.6

1.8

2

2.2

S̃0

q̃

 

 
ω̃0 = 0
ω̃0 = 0.01
ω̃0 = 0.1
ω̃0 = 1
ω̃0 = 10

Figure 6.4: The maximization of the heat transfer density rate for the cylinders shown
in Fig. 5.1 for Ra = 101 and Pr = 0.71 at different rotation speeds.

Figure 6.4 shows the optimal cylinder-to-cylinder spacing and the heat transfer

density rate for Ra = 101 and Pr = 0.72 at different cylinder rotation speeds (0 ≤
ω̃0 ≤ 10). The optimal cylinder-to-cylinder spacing decreases and the maximum heat
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transfer density rate increases as the cylinder rotational speed is increased. There is

a 63% increase in the maximum heat transfer density rate for the optimized structure

when the cylinder rotation speed is increased from stationary to ω̃0 = 10.

10
1

10
2

10
3

10
4

0.1

1

Ra

S̃0,opt

 

 
ω̃o = 0
ω̃o = 0.01
ω̃o = 0.1
ω̃o = 1
ω̃o = 10

Figure 6.5: The optimal cylinder-to-cylinder spacings for a row of rotating cylinders
shown in Fig. 5.1 for Pr = 0.71.

The optimal cylinder-to-cylinder spacings for 101 ≤ Ra ≤ 104, Pr = 0.72 and

0 ≤ ω̃0 ≤ 10 are summarized in Fig. 6.5. A cylinder rotational speed of ω̃0 = 0.01

has no impact on the optimal cylinder-to-cylinder spacing when compared to that of

stationary cylinders. The optimal cylinder-to-cylinder spacing is reduced by 3.5% for

Ra = 104 and by less than 1.5% for 101 ≤ Ra ≤ 103 when the cylinder rotational

speed is increased from stationary to ω̃0 = 0.1. There is a 57% decrease in the optimal

cylinder-to-cylinder spacing for Ra = 102 when the cylinder rotation speed is increased

from stationary to ω̃0 = 10 and a 17% decrease in the optimal cylinder-to-cylinder

spacing for Ra = 103 when the cylinder rotation speed is increased from stationary to

ω̃0 = 1.

When the Rayleigh number is equal to 103 and the cylinder rotational speed is

greater than 1, the results become non-physical because the laminar model of the flow

collapses due to a wake and consequent turbulence, which dominates the flow behind

the rotating cylinders. This is also the case when the Rayleigh number is equal to 104
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and the cylinder rotational speed is greater than 0.1. The optimal cylinder-to-cylinder

spacings, reported in Fig. 6.5, can be correlated by a power law, within 0.33%, of the

form S̃o,opt = CRan where C and n are given in Table 6.2, for the cylinder rotation

speeds 0.01, 0.1, 1 and 10 respectively. These individual correlations can be simplified

into one power law correlation, with an error of less than 1%:

S̃0,opt = −0.05ω̃0.86
0 + 1.69Ra−0.25 (6.7)

The maximum heat transfer density rates for 101 ≤ Ra ≤ 104, Pr = 0.72 and

0 ≤ ω̃0 ≤ 10 are summarized in Fig. 6.6. A cylinder rotational speed of ω̃0 = 0.01 has

less than a 0.4% increase on the maximum heat transfer density rate when compared

to that of stationary cylinders. The maximum heat transfer density rate is increase

by 2.5% for Ra = 104 and by less than 1.5% for 101 ≤ Ra ≤ 103 when the cylinder

rotational speed is increased from stationary to ω̃0 = 0.1. There is a 46% increase

in the maximum heat transfer density rate for Ra = 102 when the cylinder rotation

speed is increased from stationary to ω̃0 = 10 and a 13% increase in the maximum heat

transfer density rate for Ra = 103 when the cylinder rotation speed is increased from

stationary to ω̃0 = 1.

S̃0,opt q̃m
ω̃0 C n C n

0.01 1.77 -0.27 0.72 0.29
0.1 1.75 -0.27 0.72 0.29

1 1.65 -0.27 0.70 0.31
10 1.27 -0.37 1.22 0.25

Table 6.2: Coefficients for the power law correlation of the form CRan for S̃0,opt and
q̃m.

The maximum heat transfer density rates, reported in Fig. 6.6, can be correlated

by a power law, within 0.05%, of the form q̃m = CRan where C and n are given in

Table 6.2, for the cylinder rotation speeds 0.01, 0.1, 1 and 10 respectively. Again these

individual correlations can be simplified into one power law correlation, with an error

of less than 1%:

q̃m = 0.32ω̃0.49
0 + 0.71Ra0.29 (6.8)
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Figure 6.6: The maximum heat transfer density rates for a row of rotating cylinders
shown in Fig. 5.1 for Pr = 0.71.

Figure 6.7 shows the effect of cylinder rotational speed on the thermal boundary

layer for a row of rotating cylinders shown in Fig. 5.1 for Ra = 102, Pr = 0.72 and

So = 0.5. Figure 6.7a shows, for ω̃0 = 0, that the thermal boundary layer between two

consecutive cylinders touches near the centreline of the cylinders. Figure 6.7a shows, for

ω̃0 = 10, that the thermal boundary layer between two consecutive cylinders (where

the cylinder rotation aids the flow direction) is extended and touches just past the

top of the cylinders. Similarly, the thermal boundary layer between two consecutive

cylinders (where the cylinder rotation opposes the flow direction) remains relatively

unchanged.

The results presented in this section can also be compared to the work of Joucaviel

et al. [34] in the sense that the trends in this thesis and in the work of Joucaviel et al.

are in agreement: the maximum heat transfer density rate increased and the optimal

cylinder-to-cylinder spacing decreased as the cylinder rotation was increased.
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(a) ω̃0 = 0

(b) ω̃0 = 10

Figure 6.7: The effect of cylinder rotational speed on the thermal boundary layer for
a row of rotating cylinders shown in Fig. 5.1
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6.3.2 Multi scale

6.3.2.1 Stationary cylinders

Figure 6.8: Contour plot of the heat transfer density rates for a row of rotating cylinders
shown in Fig. 5.3 for Ra = 103 and Pr = 0.71.

As discussed in Chaper 4 and Chapter 5, an optimisation routine was used to de-

termine the optimal geometric configuration for the maximum heat transfer density

rate. The accuracy of results obtained from the optimisation routine need to be con-

sidered. Figure 6.8 shows a contour plot for the heat transfer density rate for and range

of cylinder-to-cylinder spacings (S̃0) and small cylinder diameters (D̃1) for Ra = 103,

Pr = 0.72 and ω̃0 = 0. The optimum configuration obtained from the optimisation

routine is also shown in Fig. 6.8 (as the “Global optimum”) and it can be seen that this

result is very feasible and compares well with the data collected. It is also worth men-

tioning that the heat transfer density rate (objective function) is very well behaved, in
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the sense that it can be considered to be smooth, continuous and have no local optima.

The feasibility of the result obtained from the optimisation routine is again shown

in Fig. 6.9. This figure shows that the cylinder-to-cylinder spacing can be optimized,

for maximum heat transfer density rate, for each small cylinder diameter. It can fur-

ther be seen, from Fig. 6.9, that there exists a global optimum heat transfer density

rate when S̃0 and D̃1 have a certain value, when there is no cylinder rotation. The

global optimum shown in Fig. 6.9, for Ra = 103, Pr = 0.72 and ω̃0 = 0, is found when

S̃0,opt = 0.557 and D̃1,opt = 0.191. There is a 14.8% and 4.5% difference when compar-

ing this optimal cylinder-to-cylinder spacing and small cylinder diameter, respectively,

with that reported by Bello-Ochende and Bejan [22] for a multi scale configuration of

cylinders with two length scales.

Figure 6.9: The maximum heat transfer density rates for a row of rotating cylinders
shown in Fig. 5.3 for Ra = 103 and Pr = 0.71.

The optimal cylinder-to-cylinder spacings and corresponding maximum heat trans-

Page 61

 
 
 



Chapter 6. Optimal geometric configuration results 62

fer density rates for 102 ≤ Ra ≤ 104, Pr = 0.72 and ω̃0 = 0 are summarized in Fig.

6.10. The optimal cylinder-to-cylinder spacings (from Fig. 6.10) can be correlated by

the power law, within 0.27%:

S̃0,opt = 2.113Ra(−0.205) (6.9)

This correlation compares reasonably well with the power law correlation proposed by

Bello-Ochende and Bejan [22]: S̃0,opt = 2.218Ra(−0.22). For 103 ≤ Ra ≤ 105, there

is a 5.67% difference (Ra = 103), 9.38% difference (Ra = 104) and 13.24% difference

(Ra = 105).

Figure 6.10: The optimal cylinder-to-cylinder spacings and corresponding heat transfer
density rates for a row of cylinders shown in Fig. 5.3 for Pr = 0.72, ω̃0 = 0 and
102 ≤ Ra ≤ 104.

The corresponding maximum heat transfer density rates, reported in Fig. 6.10, can
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be correlated by the power law, within 5.9%:

q̃m = 0.698Ra0.321 (6.10)

This correlation also compares well with the power law correlation proposed by Bello-

Ochende and Bejan [22]: q̃m = 0.85Ra0.30. For 103 ≤ Ra ≤ 105, there is a 5.06%

difference (Ra = 103), 0.36% difference (Ra = 104) and 4.58% difference (Ra = 105).

6.3.2.2 Rotating cylinders

Figure 6.11: The optimal cylinder-to-cylinder spacings and small cylinder diameter for
a row of rotating cylinders shown in Fig. 5.3 for Pr = 0.72.

The optimal cylinder-to-cylinder spacings and optimal small cylinder diameters for

102 ≤ Ra ≤ 104, Pr = 0.72 and 0 ≤ ω̃0 ≤ 10 are summarized in Fig. 6.11. This figure

shows that any cylinder rotation in the range 0 ≤ ω̃0 ≤ 1 has very little improvement
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on the the optimal geometric configuration for a multi scale structure. There is a

maximum decrease in the optimal cylinder-to-cylinder spacing of 3.1%, 4.7% and 0%

for the Ra numbers 102, 103 and 104 respectively, when the cylinder rotation speed is

increased from stationary to ω̃0 = 1. It is also shown that, for a cylinder rotation speed

of ω̃0 = 10, there is a decrease in the optimal cylinder-to-cylinder spacing of 10.74%

and 24.57% for the Ra numbers 102 and 103 and respectively. When the Rayleigh

number is equal to 104 and the cylinder rotational speed is greater than 1, the results

become non-physical because the laminar model of the flow collapses due to a wake

and consequent turbulence, which dominates the flow behind the rotating cylinders.

Figure 6.12: The maximum heat transfer density rates for a row of rotating cylinders
shown in Fig. 5.3 for Pr = 0.72.

The optimal small cylinder diameters, shown in Fig. 6.11, is 0.2 for all cylinder

rotation speeds for Ra = 104 and 0.19 for all cylinder rotation speeds (with the ex-

ception of ω̃0 = 10) for Ra = 103. This result compares well with the result proposed

by Bello-Ochende and Bejan [22]: D̃1,opt = 0.2. For the Rayleigh number Ra = 102
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the optimal small cylinder diameter is 0.1 for all cylinder rotation speeds, this devia-

tion from 0.2 can be attributed to the larger thermal boundary layer around the large

cylinder (large slenderness ratio) at this Rayleigh number.

The corresponding maximum heat transfer density rates for 102 ≤ Ra ≤ 104,

Pr = 0.72 and 0 ≤ ω̃0 ≤ 10 are summarized in Fig. 6.12. From Fig. 6.12 it can be

seen that any cylinder rotation in the range 0 ≤ ω̃0 ≤ 1 has almost no improvement

on the the maximum heat transfer density rate for a multi scale structure. There is

a maximum increase in heat transfer density rate of 1.2%, 1.5% and 1.2% for the Ra

numbers 102, 103 and 104 respectively, when the cylinder rotation speed is increased

from stationary to ω̃0 = 1. It is interesting to note that, at a cylinder rotation speed

of ω̃0 = 10, the maximum heat transfer density rate is suppressed for all Rayleigh

numbers in the range 102 ≤ Ra ≤ 103.

Figure 6.13: The effect of increasing of cylinder rotational speed and the effect of
increasing the complexity on the optimal cylinder-to-cylinder spacing for Pr = 0.72.
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Figure 6.13 shows a comparison between the multi scale and single scale configura-

tions for the optimal cylinder-to-cylinder. The multi scale configuration has the effect

of increases the optimal cylinder-to-cylinder when adding a smaller diameter cylinder

in the mouth of the channel. This smaller diameter cylinder also has the effect of re-

stricting the flow through the mouth of the large diameter cylinders and thus cylinder

rotation has a minimal effect on the cylinder-to-cylinder spacing. The maximum cylin-

der packing, from a physical point of view, is obtained using a single scale configuration

with rotation.

Figure 6.14: The effect of increasing of cylinder rotational speed and the effect of
increasing the complexity on the maximum heat transfer density rate for Pr = 0.72.

Figure 6.14 shows a comparison between the multi scale and single scale configu-

rations for the maximum heat transfer density rate. Although the effect of cylinder

rotation (on a single scale configuration) is an increase in the maximum heat trans-

fer density rate, a multi scale configuration (without any cylinder rotation) achieves

a higher maximum heat transfer density rate. There is however an exception at very
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low Rayleigh numbers (Ra = 101 and Ra = 102) where a high cylinder rotation speed

increases the maximum heat transfer density rate greater than that of a multi scale

configuration.

The optimal packing (both single scale and multi scale configurations) for the max-

imum heat transfer density rate for a given Rayleigh number and cylinder rotation

speed can be presented in the following equality equation:

if 101 ≤ Ra ≤ 102 :

d.o.f. = 1

ω̃0 = 10

S̃0,opt = −0.362 + 1.69Ra−0.25

(cf. Eq. 6.7)

q̃m = 0.989 + 0.71Ra0.29

(cf. Eq. 6.8)

if 102 < Ra ≤ 104 :

d.o.f. = 2

ω̃0 = 0

S̃0,opt = 2.113Ra(−0.205)

(cf. Eq. 6.9)

q̃m = 0.698Ra0.321

(cf. Eq. 6.10)

(6.11)

where d.o.f. is the number of degrees of freedom for the flow configuration.

Figure 6.15 shows the effect of cylinder rotational speed on the thermal boundary

layer for a multi scale structure of rotating cylinders shown in Fig. 5.3 for Ra = 103

and Pr = 0.72. Figure 6.15a shows, for ω̃0 = 0, that the thermal boundary layer

between two consecutive large diameter cylinders, at the optimal geometric configura-

tion, touches just past the top of the cylinders. Figure 6.15b shows, for ω̃0 = 1, that

the thermal boundary layer between two consecutive large diameter cylinders (where

the cylinder rotation aids the flow direction) is extended and touches around one large

cylinder diameter past the top of the cylinders. However, unlike the single scale con-

figuration (cf. Fig. 6.7), the thermal boundary layer between two consecutive large
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(a) ω̃0 = 0

(b) ω̃0 = 1

Figure 6.15: The effect of cylinder rotational speed on the thermal boundary layer for
a multi scale structure of rotating cylinders shown in Fig. 5.3
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diameter cylinders (where the cylinder rotation opposes the flow direction) is more

strongly effected and touches near the centreline of the large diameter cylinders.

6.3.3 Observations

No definitive values for computational time and storage requirements were captured

during the simulations of the computational domain. The computational time required

to solve the fluid flow and temperature fields for the computational domain varied

drastically (anywhere from a few minutes to a few days), depending on the number

of elements in the mesh, the Rayleigh number, and cylinder rotational speed. All sim-

ulations were run using the same resources under the same conditions and thus the

following trends were observed:

1. As the Rayleigh number was increased so was the number of elements in the

computational domain (in order to achieve accuracy), which lead to an increase

in storage requirements and computation time.

2. A higher Rayleigh number (leading to higher velocities) and a higher number of

elements also lead to a smaller time step required to obtain a stable convergence

and solution (Co = u∆t/∆x ≤ 1). This smaller time step also leads to an increase

in computational time.

3. The increase of the cylinder rotational speed had no effect on storage requirements

but did slightly increase the computational time, although not to the extent of 1

and 2 above.

The time required for an optimisation run also varied drastically (anywhere from

a few hours up to a week or two), again depending on the number of elements in the

mesh, the Rayleigh number, and cylinder rotational speed.

6.4 Conclusion

This Chapter presented the results obtained for the optimal geometric configurations

for the maximum heat transfer density rate, from the numerical models presented in
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Chapter 5. The results show that the addition of rotation to the cylinders serves to

maximize the packing (minimize the cylinder-to-cylinder spacing and achieve a higher

heat transfer density rate) of heat generating cylinders for a single scale configuration.

Results further show that the addition of rotation to the cylinders, for a multi scale

configuration, has almost no impact on improving the maximum packing.
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Chapter 7

Summary, conclusions and

recommendations

7.1 Summary

In this paper we showed numerically the effect of counter-rotation on a row of heat-

generating cylinders which were cooled by natural convection. The cylinder-to-cylinder

spacing was optimized for each flow regime and rotational speed on the cylinders. In

the Rayleigh number range considered it was shown that the maximum heat transfer

density rate increased and the optimal cylinder-to-cylinder spacing decreased with an

increase in cylinder rotation speed for a single scale configuration at each Rayleigh

number. For a multi scale configuration, the effect of increasing the rotation of the

large diameter cylinders has little to no impact on the heat transfer density rate with

the exception of a high rotation speed which serves to suppress the heat transfer density

rate.

7.2 Conclusions

Cylinder rotation is beneficial for a single scale geometric design and serves to maximise

the packing of the heat generating cylinders. For higher heat transfer density rates a
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multi scale geometric design becomes necessary, however the addition of rotation is no

really beneficial. There are two effects of adding smaller cylinders in the wedge-shaped

flow regions of the entrance to the assembly: 1) utilize the fluid that has not yet been

used for heat transfer and 2) restrict the flow between the consecutive large cylinders.

It is due to reason 2 that the optimal spacing is greater for a multi scale configuration

than a single scale configuration.

It is also due to reason 2 that the effect of cylinder rotation has little impact on

maximising the packing. As mentioned in Section 6.3.2.2 for cylinder rotation:

• The thermal boundary layer between two consecutive large diameter cylinders

(where the cylinder rotation aids the flow direction) is extended and touches

around one large cylinder diameter past the top of the cylinders: causing an

increase in the heat transfer density rate.

• The thermal boundary layer between two consecutive large diameter cylinders

(where the cylinder rotation opposes the flow direction) is strongly effected and

touches near the centreline of the large diameter cylinders: causing a reduction

in the heat transfer density rate; thereby cancelling each other out and yielding a

net heat transfer density rate only slightly higher than the stationary cylinders.

7.3 Recommendations for future work

This section gives an overview of areas that have been identified as potential aspects

for further research and investigation.

7.3.1 Cylinder spacings and configurations

The work presented in this thesis used only one spacing between consecutive large

cylinders and only cylinder arrangement for the multi scale configuration. Future work

may include extending the work in this thesis by considering multiple cylinder-to-cylin-

der spacings (as shown in Fig. 7.1) were it is expected that the cylinder spacing SA

(where the flow is aided by the cylinder rotation) will be smaller than the cylinder
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spacing SB. It may be worth investigating the effect of multiple cylinder-to-cylinder

spacings on the heat transfer density rate as well as how (SA + SB) /2 relates to S0

presented in this thesis.

Figure 7.1: Single row of counter-rotating cylinders in natural convection with multiple
cylinder-to-cylinder spacings.

Figure 7.2: Multi scale row of counter-rotating cylinders in natural convection with
multiple cylinder-to-cylinder spacings.

Further research may include considering various cylinder arrangements for the

multi scale configuration (one example shown in Fig. 7.2). Again it may be worth
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investigating the effect of multiple cylinder-to-cylinder spacings on the heat transfer

density rate. It may also be worth investigating the effect of small cylinder rotation

and position (vertical and horizontal) on the heat transfer density rate. The multi scale

configuration, for example, may be one with a staggered small cylinder arrangement

(placed only by the large cylinder spacings where rotation aids the flow) or a uniform

small cylinder arrangement (placed by all large cylinder spacings).

7.3.2 Optimisation algorithm

The optimisation algorithm used in this thesis (“fmin slsqp”) required a lot of objective

function evaluations in order to determine the optimal geometric structure. Each

objective function evaluation is in effect the solution for one CFD simulation for the

given design variable values. A higher number of objective function evaluation leads to

more time spent solving for the optimal structure, with the majority of the time being

spent solving the CFD simulation. It would therefore be beneficial to research another

optimisation algorithm or even develop a new algorithm, specifically tailored for CFD

applications, that requires fewer objective function evaluation. Two suggested starting

points would be with the work given in Refs [58, 63].

7.3.3 Enhanced natural convection systems

Future work in natural convection may include the complete design of a three dimen-

sional pin fin heat sink (including physical side effects or boundary conditions) with

the effect of pin rotation. Another possible research area for an enhanced natural con-

vection system could be to consider the effect of vibration or oscillation of the pin fin

on the heat transfer density rate.

Another possible research area could be to consider a tube type pin fin, in place of

a solid volume pin fin, with perforation in the tube; thus allowing the fluid to move

through the pin fin itself, allowing the flow configuration a lot more freedom to morph.

Page 74

 
 
 



Publications in journals and

conferences

Articles published

1. L.G. Page, T. Bello-Ochende, J.P. Meyer, ’Maximum heat transfer density rate

enhancement from cylinders rotating in natural convection’, International Com-

munications in Heat and Mass Transfer, 38:1354–1359, 2011.

Page 75

 
 
 



References

[1] GTO Media Inc. Hardware canucks, March 2008. URL http:

//www.hardwarecanucks.com/forum/hardware-canucks-reviews/

7054-asus-rampage-formula-x48-motherboard-review-5.html. [Online;

accessed 10-March-2010].

[2] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82 – 85, 1998.

[3] Wikipedia. Moore’s law — wikipedia, the free encyclopedia, 2011. URL

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_

Law_-_2011.svg. [Online; accessed 04-Jan-2012].

[4] J.R. Welty, C.E. Wicks, R.E. Wilson, and G. Rorrer. Fundamentals of Momentum,

Heat, and Mass Transfer. John Wiley & Sons, Inc., 4th edition, 2001.

[5] A. Bejan and S. Lorente. The constructal law and the thermodynamics of flow

systems with configuration. International Journal of Heat and Mass Transfer, 47:

3203 – 3214, 2004.

[6] A. Bejan and S. Lorente. Design with Constructal Theory. John Wiley & Sons,

Inc., 1st edition, 2008.

[7] A. Bejan. Shape and structure, from engineering to nature. Technical report,

Cambridge University Press, Cambridge, UK, 2000.

[8] A. Bejan, I. Dincer, S. Lorente, A.F. Miguel, and A.H. Reis. Porous and Complex

Flow Structures in Modern Technologies. Springer-Verlag, New York, 1st edition,

2004.

Page 76

 
 
 

http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/7054-asus-rampage-formula-x48-motherboard-review-5.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/7054-asus-rampage-formula-x48-motherboard-review-5.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/7054-asus-rampage-formula-x48-motherboard-review-5.html
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg


References 77

[9] A. Bejan and E. Sciubba. The optimal spacing for parallel plates cooled by forced

convection. International Journal of Heat and Mass Transfer, 35:3259 – 3264, 1992.

[10] A. Bejan and A.M. Morega. The optimal spacing of a stack of plates cooled by

turbulent forced convection. International Journal of Heat and Mass Transfer, 37:

1045 – 1048, 1994.

[11] A.K. da Silva, A. Bejan, and S. Lorente. Maximal heat transfer density in vertical

morphing channels with natural convection. Numerical Heat Transfer Part A –

Applications, 45:135 – 152, 2004.

[12] T. Bello-Ochende and A. Bejan. Optimal spacings for mixed convection. Journal

of Heat Transfer, 126:956 – 962, 2004.

[13] A. Bar-Cohen and W. M. Rohsenow. Thermally optimum spacing of vertical,

natural convection cooled, parallel plates. ASME Journal of Heat Transfer, 106:

116 – 123, 1984.

[14] A. Bejan. Convection Heat Transfer. John Wiley & Sons, Inc., 3rd edition, 2004.

[15] G. Stanescu, A.J. Fowler, and A. Bejan. The optimal spacing of cylinders in

free-stream cross-flow forced convection. International Journal of Heat and Mass

Transfer, 39:311 – 317, 1996.

[16] G. Stanescu, A.J. Fowler, and A. Bejan. The optimal spacing between horizontal

cylinders in a fixed volume cooled by natural convection. International Journal of

Heat and Mass Transfer, 38:2047 – 2055, 1995.

[17] T. Bello-Ochende and A. Bejan. Maximal heat transfer density: plates with mul-

tiple lengths in forced convection. International Journal of Thermal Sciences, 43:

1181 – 1186, 2004.

[18] A. Bejan and Y. Fautrelle. Constructal multi-scale structure for maximal heat

transfer density. Acta Mechanica, 163:39 – 49, 2003.

[19] T. Bello-Ochende, J.P. Meyer, and J. Dirker. Three-dimensional multi-scale plate

assembly for maximum heat transfer rate density. International Journal of Heat

and Mass Transfer, 53:586 – 593, 2010.

Page 77

 
 
 



References 78

[20] A.K. da Silva and A. Bejan. Constuctal multi-scale structure for maximal heat

transfer density in natural convection. International Journal of Heat and Fluid

Flow, 26:34 – 44, 2005.

[21] T. Bello-Ochende and A. Bejan. Constructal multi-scale cylinders in cross-flow.

International Journal of Heat and Mass Transfer, 48:1373 – 1383, 2005.

[22] T. Bello-Ochende and A. Bejan. Constructal multi-scale cylinders with natural

convection. International Journal of Heat and Mass Transfer, 48:4300 – 4306, 2005.

[23] H.M. Badr and S.C.R. Dennis. Laminar forced convection from a rotating cylinder.

International Journal of Heat and Mass Transfer, 28:253 – 264, 1985.

[24] C.C. Chiou and S.L. Lee. Forced convection on a rotating cylinder with an incident

air jet. International Journal of Heat and Mass Transfer, 36:3841 – 3850, 1993.

[25] S.K. Panda and R.P. Chhabra. Laminar forced convection heat transfer from a ro-

tating cylinder to power-law fluids. Numerical Heat Transfer; Part A: Applications,

59:297 – 319, 2011.

[26] M.A. Gshwendtner. Optical investigation of the heat transfer from a rotating

cylinder in a cross flow. Heat and Mass Transfer, 40:561 – 572, 2004.

[27] A.K. Mohanty, A.A. Tawfek, and B.V.S.S.S. Prasad. Heat transfer from a rotating

cylinder in crossflow. Experimental Thermal and Fluid Science, 10:54 – 61, 1995.

[28] M. Oesterle, M. Lauster, R. Waibel, V. Lippig, and D. Straub. Topological struc-

tures near a heated rotating cylinders. Experiments in Fluids, 24:308 – 322, 1998.

[29] B. Ozerdem. Measurement of convective heat transfer coefficient for a horizontal

cylinder rotating in quiescent air. International Communications in Heat and Mass

Transfer, 27:389 – 395, 2000.

[30] S.B. Paramane and A. Sharma. Numerical investigation of heat and fluid flow

across a rotating circular cylinder maintained at constant temperature in 2-d lami-

nar flow regime. International Journal of Heat and Mass Transfer, 52:3205 – 3216,

2009.

[31] S.B. Paramane and A. Sharma. Heat and fluid flow across a rotating cylinder

dissipating uniform heat flux in 2d laminar flow regime. International Journal of

Heat and Mass Transfer, 53:4672 – 4683, 2010.

Page 78

 
 
 



References 79

[32] Y.Y. Yan and Y.Q. Zu. Numerical simulation of heat transfer and fluid flow past

a rotating isothermal cylinder — a lbm approach. International Journal of Heat

and Mass Transfer, 51:2519 – 2536, 2008.

[33] M.R.H. Nobari, K. Gharali, and M. Tajdari. A numerical study of flow and heat

transfer in internally finned rotating curved pipes. Numerical Heat Transfer; Part

A: Applications, 56:76 – 95, 2009.

[34] M. Joucaviel, L. Gosselin, and T. Bello-Ochende. Maximum heat transfer density

with rotating cylinders aligned in cross-flow. International Communications in Heat

and Mass Transfer, 35:557 – 564, 2008.

[35] T. Bello-Ochende, J.P. Meyer, and O.I. Ogunronbi. Constructal multiscale cylin-

ders rotating in cross-flow. International Journal of Heat and Mass Transfer, 54:

2568 – 2577, 2011.

[36] H.K. Versteeg and W. Malalasekera. An introduction to computational fluid dy-

namics: the finite volume method. Prentice Hall, England, 2nd edition, 2007.

[37] OpenCFD Ltd. OpenFOAM: The open source cfd toolbox, August 2011. URL

http://www.openfoam.com. [Online; accessed 11-October-2011].

[38] OpenCFD Ltd. OpenFOAM: User guide, August 2011. URL http://www.

openfoam.com/docs/user/. [Online; accessed 11-October-2011].

[39] J.W. Eaton. Octave, October 2011. URL http://www.gnu.org/software/

octave/. [Online; accessed 19-October-2011].

[40] Python Software Foundation. Python programming language - official website,

September 2011. URL http://www.python.org/. [Online; accessed 19-October-

2011].

[41] F.M. White. Viscous Fluid Flow. McGraw-Hill International Editions, Singapore,

3rd edition, 2006.

[42] A. Bejan and A.D. Kraus. Heat Transfer Handbook. John Wiley & Sons, Inc.,

2003.

[43] H. Jasak. Error Analysis and Estimation for the Finite Volume Method with

Applications to Fluid Flows. PhD thesis, Department of Mechanical Engineering

Imperial College of Science, Technology and Medicine, 1996.

Page 79

 
 
 

http://www.openfoam.com
http://www.openfoam.com/docs/user/
http://www.openfoam.com/docs/user/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.python.org/


References 80

[44] C.M. Rhie and W.L. Chow. A numerical study of the turbulent flow past as

isolated airfoil with trailing edge separation. In AIAA-82-0998, AIAA/ASME 3rd

Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis,

Missouri, 1982.
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Appendix A: Nomenclature

Latin symbols

A Area m2

aP Central coefficient −

anb Coefficient corresponding to neighbour element −

A Central coefficient matrix −

A Coefficient matrix −

b Source term matrix −

D Diffusion conductance coefficient −

F Convective mass flux coefficient kg/s

H Transport and source coefficient matrix −

n Surface normal vector −

P Pressure Pa

Pd Dynamic pressure Pa

S Surface m2

Su Constant part of the conservation equation source term −

SPφ Linear part of the conservation equation source term −

Sφ Conservation equation source term −
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Appendix A. Nomenclature Aii

t Time / Time step s

T Fluid temperature K

T∞ Inlet fluid temperature K

U Velocity vector m/s

u, v, w Velocity components m/s

V Element volume m3

x, y, z Cartesian coordinates m

Greek symbols

α Thermal diffusivity m2/s

αf Mathematical averaging function −

β Thermal expansion coefficient 1/K

Γφ Diffusion coefficient −

δAP Distance between the centroids of elements A and P m

δAf Distance between the centroid and face of elements A m

δfP Distance between the face and centroid of elements P m

µ Viscosity kg/ms

ρ Fluid density kg/m3

ρo Fluid reference density kg/m3

φ Scalar variable −

Subscripts

A Arbitrary control volume adjacent to element P

e East face of element P

E Centre of the control volume east of element P
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f Values at the face centre of the control volume

nb Neighbour element

P Values at the centre of the control volume

t Time step

w West face of element P

W Centre of the control volume west of element P

Accents

· Finite number of selected points

· Weighted linear interpolation
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Appendix A

Discretisation methods

A.1 Discretisation of the momentum equation

The work presented in this section and sub-sections includes a summary of the work

presented in Chapter 2 of Croft [A1]. Consider the general form of a given conservation

equation, for a scalar variable φ:

∂ (ρφ)

∂t
Transient

+ div (ρuφ)
Convection

= div [Γφgrad (φ)]
Diffusion

+ Sφ
Source

(A.1)

where φ is a scalar variable, Γφ is the diffusion coefficient and Sφ is the φ source term.

Equation A.1 can be written in vector form, to represent the governing momentum

equation (Eq. 3.8), as:

∂ (ρU)

∂t
+ div (ρUU) = div [µ grad (U)]−∇Pd − ρ0gβ (T − T∞)︸ ︷︷ ︸

Source

(A.2)

Equation A.1 can also be written in vector form, to represent the governing energy

equation (Eq. 3.11), as:

∂ (T )

∂t
+ div (UT ) = div [α grad (T )] + 0︸︷︷︸

Source

(A.3)
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The aim of discretising Eq. A.1 is to obtain suitable approximations for each term

in Eq. A.1 such that it can be expressed in a linear matrix equation of the form:

Aφ = b (A.4)

where φ is a vector of the values of φ at a finite number of selected points, such that

the solution of Eq. A.4 gives as close an approximation as possible to the solution of

Eq. A.1 [A1]. The method used to discretise Eq. A.1 is the Finite Volume Method

(FVM) presented in Section 3.5.1 and all terms in Eq. A.1 are discretised from the

integral form over each control volume.

A.1.1 Transient term

The transient term, integrated over time and a control volume, is:∫ t

t−∆t

∫
V

∂ (ρφ)

∂t
dV dt (A.5)

If the mesh is stationary, the control volume V does not change with time, then Eq.

A.5 becomes: ∫
V

(
ρiφi − ρi−1φi−1

)
dV (A.6)

where i denotes the time step. Assuming that the values at the centre of the control

volume, signified by the subscript P , are representative of the average value in the

control volume then Eq. A.6 can be approximated by

VP
(
ρiPφ

i
P − ρi−1

P φi−1
P

)
(A.7)

where VP is the volume of the control volume.

For every other term in the momentum equation fully implicit assumptions are

used. This means that the time integration of the remaining terms simply leads to a

multiplying factor of ∆t. The whole discretised equation is divided by this multiplying

factor so that the choice of time step only affects the contribution from the transient

term.
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Thus the final form of the discretised transient term is

VP
(
ρiPφ

i
P − ρi−1

P φi−1
P

)
∆t

(A.8)

The integration over time will thus be ignored in the following sections that describe

the discretisation of the remaining terms [A1].

A.1.2 Convection term

The first step in the discretisation of the convection term is to use the divergence

theorem: ∫
V

div (F ) dV =

∫
S

(F · n) dS (A.9)

where n is the outward unit vector normal to the surface and F is a continuous differ-

entiable vector field defined on a neighbourhood of V . The divergence theorem (Eq.

A.9) is used to convert the convection term from a volume integral to a surface integral:∫
V

div (ρ uφ) dV =

∫
S

ρ (u · n)φ dS (A.10)

The surface integral is again split into a set of integrals over each of the faces

bounding the control volume and each of the values in the integrand are estimated on

the face to give: ∑
f

ρf (u · n)f φfAf (A.11)

In this equation the value of ρf is given the value in the upwind element. Thus

ρf = ρP if (u · n)f > 0.0

or

ρf = ρA if (u · n)f < 0.0

(A.12)

The Rhie - Chow interpolation method, used to evaluate the normal component of

velocity at the face, (u · n)f , will be described later in section A.1.6. To complete the

discretisation of the convection term some approximation has to be made regarding the
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calculation of the face value of φ. One possible method is to use arithmetic averaging:

φf = αfφP + (1− αf )φA

αf =
δAf

δAf + δfP

(A.13)

Assuming that arithmetic averaging is being used the discretised form of the con-

vection term becomes: ∑
f

ρf (u · n)f [αfφP + (1− αf )φA]Af (A.14)

A.1.3 Diffusion term

As with the convection term the divergence theorem (Eq. A.9) is used to transform

the volume integral of the diffusion term into a surface integral:∫
V

div [Γφgrad (φ)] dV =

∫
S

Γφgrad (φ) · ndS (A.15)

Equation A.15 can be simplified further by recognising that grad (φ) · n is equal to

the gradient of φ in the direction of the normal. The overall surface of any polyhedral

control volume consists of a set of faces and thus Eq. A.15 can be written as a sum of

surface integrals over each face bounding the control volume:

∑
f

∫
f

Γφ
∂φ

∂n
dS (A.16)

Consider an element A adjacent to element P , such that the two elements share

a face f . For simplicity it is assumed that the mesh is fully orthogonal. The normal

gradient in Eq. A.16 is then approximated as:

∂φ

∂n
' φA − φP

δAP
(A.17)

where δAP is the distance between the centroids of elements A and P. The discretised
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form of Eq. A.15 becomes:

∑
f

(Γφ)f

(
φA − φP
δAP

)
Af (A.18)

where Af is the area of face f . The only remaining decision is how to calculate the

coefficient Γφ on the face. This is often done by means of an arithmetic mean:

(Γφ)f = αf (Γφ)P + (1− αf ) (Γφ)A

αf =
δAf

δAf + δfP

(A.19)

A.1.4 Source term

When the source term is discretised it is initially expressed in a linearised form [36]:

Sφ = Su − SPφ (A.20)

where Su and SP can be functions of any stored value including φ. To maintain

diagonal dominance of the resulting equation the value of SP must not be negative.

The equations used to evaluate the values of Su and SP can significantly affect both

the rate of convergence and stability of the solution procedure. For speed as large a

portion of the source as possible should be placed in the linear, SPφ, part. This speed

will be compromised if the size of Su is also increased. Stability will be affected if

changes in any aspect of the solution results in large changes in the values of Su and

SP .

When the linearised source term is integrated over the control volume all terms are

evaluated at the centre of the element to give a contribution:

(Su − SPφP )VP (A.21)

The importance of the linearisation becomes clear in implicit calculations. It is advis-

able to treat the source term as “implicitly” as possible.
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A.1.5 Convection and diffusion terms

Having obtained expressions for the discretised form of each of the terms in the con-

servation equation in the previous section, the discretised form of the full equation is

obtained by simply adding together all these contributions. If only the convection and

diffusion terms are considered, and using arithmetic averaging in the evaluation of the

face value of φ in the convection term, the discretised equation becomes:

∑
f

[
ρf (u · n)f {αfφP + (1− αf )φA}+ (Γφ)f

(
φA − φP
δAP

)]
Af = 0 (A.22)

The quantities Ff and Df are now introduced where:

Ff = ρf (u · n)f Af Df = (Γφ)f Af/δAP (A.23)

Ff is the strength of the convection of φ and Df is the diffusion conductance. Now Eq.

A.22 can be rewritten as:

aPφP =
∑
nb

anbφnb (A.24)

where the summation is over all neighbouring elements. The equations for the coeffi-

cients in Eq. A.24 are:

anb = Df − (1− αf )Ff
aP =

∑
f

(Df + αfFf )

=
∑
nb

anb +
∑
f

Ff

(A.25)

A.1.6 Rhie - Chow interpolation method

If the one dimensional x momentum equation is considered:

∂ (ρu)

∂t
+
∂ (ρuu)

∂x
=

∂

∂x

(
µ
∂u

∂x

)
− ∂P

∂x
(A.26)
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where u is the x component of velocity. The pressure derivative term must be discretised

over the control volume. If the control volume considered contains the node P with

neighbouring nodes W and E (as shown in Fig. A.1) then the contribution to the

discretised equation from this term is Pe − Pw. Assuming that the faces e and w are

midway between the nodes either side of them, then using linear interpolation for the

face values of pressure:

Pw − Pe =
PW + PP

2
− PP + PE

2
=
PW + PE

2
(A.27)

Figure A.1: One dimensional control volume.

This indicates that the pressure differential term
(
∂P
∂x

)
in the momentum equation

leads to a discretised form which is a relationship between alternate nodal pressure val-

ues rather than adjacent ones. As a consequence the pressure differential is calculated

over a coarser mesh than the one used for all other quantities. It also means that an

oscillatory pressure field, in which, for example, the pressure at consecutive grid points

follows the sequence [1, 100, 1, 100, 1 etc.], would be treated as a uniform pressure

field due to the alternate grid points having the same value.

In higher dimensions the problem leads to the checkerboard effect where in each

of the dimensions alternate grid points have the same pressure value but not adjacent

nodes. This means that in three dimensions the pressure field could take 8 different

values but still the discretised pressure differential term would give a zero pressure

differential.

Consider now the steady one dimensional continuity equation for an incompressible
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flow, given as:
∂u

∂x
= 0 (A.28)

Integrating this over the control volume of Fig. A.1, and assuming that the faces

lie midway between their nodes, the following equation is obtained:

ue − uw = 0 (A.29a)

or
uP + uE

2
− uW + uP

2
= 0 (A.29b)

or uE − uW = 0 (A.29c)

The problems of an equation which tests alternate nodal values, rather than adja-

cent ones, is again obtained. Hence, similar to the pressure, a checkerboard velocity

field would satisfy the continuity equation.

The standard mechanism for handling the above problem is the use of a staggered

mesh. The staggered grid for the velocity components was first suggested by Harlow and

Welch [A2] and forms the basis of the SIMPLE procedure [47]. In a staggered grid the u

velocity is calculated at the faces of the control volume which have their normal vector

in the x coordinate direction. Similarly the v and w velocities are calculated at the

faces of the control volume with normal vectors in the y and z directions respectively.

The calculation of the velocities at the control volume faces means that in Eq. A.28

the values of ue and uw are obtained directly from the solution of the u component

of velocity. This means that the discretised continuity equation now consists of a

relationship between adjacent u values and so the checkerboard velocity pattern is no

longer possible. Similarly the staggered grid leads to the pressure differential between

adjacent nodes becoming the driving force of the velocity component solved for between

these nodes.

This staggering of the velocity components is of huge benefit on structured meshes

but the method does not extend easily to unstructured meshes. In the approach pre-

sented in this thesis, all quantities are solved and stored at the element centroid. The

face values of the velocity components have to be calculated from these element based

values. This leads to the need to employ an alternative interpolation method, to those

described earlier in this section, which does not suffer from the checkerboard effect.
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The Rhie - Chow interpolation method [44] offers one approach which satisfies these

requirements.

The u momentum equation

∂ (ρu)

∂t
+ div (ρuu) = −∂P

∂x
+ div [µ grad (u)] + Su (A.30)

can be discretised, using the techniques described earlier in this chapter, over the

control volume about a node P to produce an equation which can be written in the

form:

aPuP + (∇xP )P =
(∑

anbunb

)
P

+ Su,P (A.31)

where ∇xp is the discretised contribution from the pressure gradient term. Similarly

for the adjacent node A:

aAuA + (∇xP )A =
(∑

anbunb

)
A

+ Su,A (A.32)

From the conservation principle of the control volume, the formulation of the u ve-

locity, at a point on the face between the nodes, must also have a discretised momentum

equation of the form:

afuf + (∇xP )f =
(∑

anbunb

)
f

+ Su,f (A.33)

The Rhie - Chow interpolation method uses Eq. A.31 and Eq. A.32 to approximate

a solution of Eq. A.33. It is assumed that the right hand side of Eq. A.33 may be

approximated by using a weighted linear interpolation of the corresponding terms in

Eq. A.31 and Eq. A.32. Thus:

afuf + (∇xP )f = afuf + (∇xP )f

=
(∑

anbunb

)
f

+ Su,f (A.34)

where the over-line in the above equation indicates a weighted linear interpolation of

the variable.
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A.1.6.1 Implementation in OpenFoam

Consider the complete mass conservation equation (Eq. 3.2) for steady-state incom-

pressible flow. Again the divergence theorem (Eq. A.9) is used to transform the volume

integral of the continuity equation into a surface integral:∫
V

div (U) dV =
∑
f

(Uf · n)Af = 0 (A.35)

The complete momentum equation (Eq. A.2) can also be discretised, using the

techniques described earlier in this chapter, over the control volume about a node P

to produce an equation which can be written in the same form as Eq. A.34:

AfUf + (∇P )f = AfUf + (∇P )f

=
(∑

AnbUnb

)
f

+ Sφ,f (A.36)

where A is the complete matrix associated with the central coefficients. Re-arranging

Eq. A.36, to solve for Uf , gives:

Uf =

(
1

Af

)[(∑
AnbUnb

)
f
− (∇P )f + Sφ,f

]
(A.37)

Equation A.37 needs to satisfy the mass conservation equation (Eq. A.35). Taking

the divergence of the right hand terms of Eq. A.37 and setting this equal to zero (i.e.

substituting Eq. A.37 into the mass conservation equation), gives:

div

[
(∇P )f
Af

]
= div

[
(
∑AnbUnb)f + Sφ,f

Af

]
(A.38)

Equation A.38 is known as the pressure correction equation and the solution of P

from this equation yields the corrected pressure field. Equation A.38 can be simplified

by introducing the H (U)f term:

H (U)f =
(∑

AnbUnb

)
f

+ Sφ,f (A.39)
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The H (U) term consists of two parts: the “transport part”, including the matrix

coefficients for all neighbours multiplied by corresponding velocities and the “source

part” including the source part of the transient term and all other source terms apart

from the pressure gradient. This simplified form of Eq. A.38 is:

div (∇P )f
Af

= div

[H (U)f
Af

]
(A.40)

For further information the reader is invited to go through Section 3.8 of Jasak [43],

Appendix A of Kärrholm [49] and Chapter 2 of Croft [A1].
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Appendix B

OpenFoam code

B.1 “boussinesqBuoyantFoam” Solver

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O pera t i on |
5 \\ / A nd | Copyright (C) 2008−2009 OpenCFD Ltd .

6 \\/ M an ipu l a t i on |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License

9 This f i l e i s par t o f OpenFOAM.

10

11 OpenFOAM i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify i t

12 under the terms o f the GNU General Pub l i c License as pub l i s h ed by the

13 Free Sof tware Foundation ; e i t h e r ve r s i on 2 o f the License , or ( at

14 your opt ion ) any l a t e r ve r s i on .

15

16 OpenFOAM i s d i s t r i b u t e d in the hope t ha t i t w i l l be u s e fu l , but

17 WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

19 General Pub l i c License f o r more d e t a i l s .

20

21 You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c License

22 a long wi th OpenFOAM; i f not , wr i t e to the Free Sof tware Foundation ,

23 Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
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24

25 Appl i ca t ion

26 boussinesqBuoyantFoam

27

28 Desc r ip t i on

29 Trans ient s o l v e r for buoyancy−dr iven laminar f low o f i n compre s s i b l e

30 Newtonian f l u i d s using the Bouss inesq Model

31

32 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
33

34 #include ”fvCFD .H”

35

36 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

37

38 int main ( int argc , char ∗argv [ ] )

39 {
40

41 #inc lude ” setRootCase .H”

42 #inc lude ” createTime .H”

43 #inc lude ” createMesh .H”

44 #inc lude ” readTranspor tProper t i e s .H”

45 #inc lude ” r e a d G r a v i t a t i o n a l A c c e l e r a t i o n .H”

46 #inc lude ” c r e a t e F i e l d s .H”

47 #inc lude ” i n i t C o n t i n u i t y E r r s .H”

48 #inc lude ” readTimeControls .H”

49 #inc lude ”CourantNo .H”

50 #inc lude ” s e t I n i t i a l D e l t a T .H”

51

52 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

53

54 Info<< ”\ nStar t ing time loop \n” << endl ;

55 int startLoop = 0 ;

56 int minInitLoop = 10 ;

57

58 while ( runTime . loop ( ) | | startLoop <= minInitLoop )

59 {
60 startLoop += 1 ;

61 Info<< ”Time = ” << runTime . timeName ( ) << nl << endl ;

62

63 #inc lude ” readPISOControls .H”

64 #inc lude ” initConvergenceCheck .H”
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65 #inc lude ”CourantNo .H”

66 #inc lude ” setDeltaT .H”

67

68 p . s t o r e P r e v I t e r ( ) ;

69

70 // So lve energy equat ion

71 fvSca la rMatr ix TEqn

72 (

73 fvm : : ddt (T)

74 + fvm : : div ( phi , T)

75 − fvm : : l a p l a c i a n ( alpha , T)

76 ) ;

77

78 TEqn . r e l a x ( ) ;

79 eqnResidual = TEqn . s o l v e ( ) . i n i t i a l R e s i d u a l ( ) ;

80 maxResidual = max( eqnResidual , maxResidual ) ;

81

82 rho = rho0 ∗ ( s c a l a r ( 1 . 0 ) − beta ∗ (T − T0) ) ;

Lines 71 to 76 shows how the energy equation (Eq. A.3) is implemented in Open-

Foam. The “fvm::” statements tells OpenFoam that the term following the statement

must be determined implicitly. Lines 82 shows the calculation of the fluid density ap-

proximation (Eq. 3.7).

83

84 // So lve momentum equat ion

85 fvVectorMatr ix UEqn

86 (

87 fvm : : ddt (U)

88 + fvm : : div ( phi , U)

89 − fvm : : l a p l a c i a n (nu , U)

90 ) ;

91 UEqn . r e l a x ( ) ;

92 eqnResidual = s o l v e (

93 UEqn

94 ==

95 − f v c : : grad (p/ rho0 )

96 − g ∗ beta ∗ (T − T0)

97 ) . i n i t i a l R e s i d u a l ( ) ;
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99

100 maxResidual = max( eqnResidual , maxResidual ) ;

Lines 85 to 90 shows how the momentum equation (Eq. 3.8) is implemented in

OpenFoam. The pressure [(∇P ) /ρ0] and buoyancy force terms [gβ (T − T∞)] are

added to the right hand side of the momentum equation and solved in lines 93 to

98. Here the “fvc::” statements tells OpenFoam that the term following the statement

must be determined explicitly.

101

102 // So lve pre s sure equat ion −− PISO loop

103 for ( int co r r =0; corr<nCorr ; co r r++)

104 {
105 v o l S c a l a r F i e l d rUA = 1.0 / UEqn .A( ) ;

106

107 U = rUA ∗ UEqn .H( ) ;

108

109 phi = ( fvc : : i n t e r p o l a t e (U) & mesh . Sf ( ) )

110 + fvc : : ddtPhiCorr (rUA, U, phi ) ;

111

112 adjustPhi ( phi , U, p) ;

113

114

115 s u r f a c e S c a l a r F i e l d buoyancyPhi =

116 ( fvc : : i n t e r p o l a t e (

117 rUA ∗ ( g ∗
118 beta ∗
119 (T − T0) )

120 ) & mesh . Sf ( ) ) ;

121

122 phi −= buoyancyPhi ;

123

124 for ( int nonOrth=0; nonOrth<=nNonOrthCorr ; nonOrth++)

125 {
126 fvSca la rMatr ix pEqn

127 (

128 fvm : : l a p l a c i a n (rUA/rho0 , p) == fvc : : d iv ( phi )

129 ) ;
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130

131 pEqn . s e tRe f e r ence ( pRefCel l , pRefValue ) ;

132 eqnResidual = pEqn . s o l v e ( ) . i n i t i a l R e s i d u a l ( ) ;

133 maxResidual = max( eqnResidual , maxResidual ) ;

134

135 i f ( nonOrth == nNonOrthCorr )

136 {
137 phi −= pEqn . f l u x ( ) ;

138

139 p . r e l a x ( ) ;

140

141 U −= rUA ∗ f v c : : grad (p/ rho0 ) ;

142 U −= fvc : : r e c o n s t r u c t ( buoyancyPhi ) ;

143 U. correctBoundaryCondit ions ( ) ;

144 }
145 }
146 }

Lines 103 through 146 shows how the PISO algorithm (Section 3.5.2) is implemented

in OpenFoam. Lines 105 to 107 represents the first term on the right hand side of the

following equation, (cf. Eq A.37):

UP =

(
1

AP

)
[H (U)P − (∇P )P ] (B.1)

which is then interpolated at the cell face centres (Line 109) to obtain Uf .

From the definition of H (U) (cf. Eq. A.39), it can seen that this term should

include the source part of the buoyancy force term. However when looking closely

at the definition of the momentum equation, implemented in OpenFoam (Lines 85

through 90), it is seen that the source part of the buoyancy force term is absent. This

is corrected by first calculating the buoyancy force at the cell face nodes (Lines 115 to

120) and then subtracting this from Uf (Line 122).

Lines 126 to 129 shows the implementation of the pressure correction equation (Eq.

A.40) in OpenFoam. The solution of which gives the corrected pressure field. The ve-

locity at the cell face nodes is then corrected, based on the corrected pressure field (Line

137). Finally the centre node velocity is corrected, based on the corrected pressure field
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(Line 141) and based on the absence of the buoyancy force term source part (Line 142).

137

138 #inc lude ” con t inu i t yEr r s .H”

139

140 runTime . wr i t e ( ) ;

141

142 Info<< ”ExecutionTime = ” << runTime . elapsedCpuTime ( ) << ” s ”

143 << ” ClockTime = ” << runTime . elapsedClockTime ( ) << ” s ”

144 << nl << endl ;

145

146 #inc lude ” convergenceCheck .H”

147 }
148

149 Info<< ”End\n” << endl ;

150

151 return (0 ) ;

152 }
153

154

155 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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Data attachment

C.1 Overview

Numerous files, images, animations, python scripts and documentation have been at-

tached digitally on DVD at the back of this thesis. Section C.2 summaries the direc-

tories attached on the DVD.

C.2 Summary of directory structure

Directory Description

DVD Drive

|–. Case Files Case files for several flow regimes and cylinder rotation

speeds for the OpenFoam simulations.

|–. Documentation

|–. Python Scripts Documentation, generated using Epidoc [C1], describing

each class and function for the Python Code.
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Directory Description

DVD Drive (continued)

|–. Gallery

|–. Animations Temperature and velocity animations for

several flow regimes and cylinder rotation

speeds.

|–. Contour Plots Temperature and velocity contour plots

for several flow regimes and cylinder ro-

tation speeds.

|–. OpenFoam Applications

|–. Solver

|–. boussinesqBuoyantFoam OpenFoam solver “boussinesqBuoyant-

Foam”, presented in Appendix B.

|–. Utilities

|–. wallHeatFluxLaminar OpenFoam utility “wallHeatFluxLami-

nar”, for calculating the heat transfer rate

for each cylinder.

|–. Python Code Python scripts for interfacing with Open-

Foam for parametrisation and optimisa-

tion, as shown in Fig. 4.1 and Fig. 4.4.
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