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• The set of commodities (the base set) is a generalized extensive structure.
• Decomposability is supposed for the product of the base set and a set of durations.
• Both ordering and algebraic axioms are proposed for the decomposable structure.
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• We get a weighted additive model so as to reflect nonconstant impatience.
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a b s t r a c t

In intertemporal choice, it has been found that if the receipt time is closer to the present, then people
tend to grow increasingly or decreasingly impatient. This paper develops an axiom system to construct
a weighted additive model reflecting nonconstant impatience. By presupposing that an increment in
duration is subjectively assessed according to the periods at which advancement occurs, we denote the
one-period advanced receipt of outcomes by multiplying the outcomes by the increment on the right.
By this right multiplication, we can regard the effect of advance as the decomposition into two factors,
i.e., the factor of step-by-step advance accompanied by subdivided durations and the factor of advance
based on the total duration. First, the conditions for enabling right multiplication are proposed for the
Cartesian product of the underlying set of a generalized extensive structure and a set of durations. Second,
the properties derived under these conditions yield a right action on the generalized extensive structure.
Finally, theweighted additivemodel is obtained as a representation of the generalized extensive structure
equipped with the right action.

© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Preference for the advanced timing of satisfaction, called impa-
tience (Koopmans, 1960), is a well-known concept in the field of
intertemporal choice. The concept is illustrated by the following
example: receiving $1000 now is probably preferred to receiving
$1100 after one year. A major reason for this preference is that the
value of outcomes decreases with the passage of time.

Koopmans (1972) axiomatized a utility model for infinite out-
come sequences to enable it to deal with impatience, which is
caused by advancing the receipt of outcomes by ‘‘any finite number
of periods’’. By incorporating five postulates consisting of weaker
independence, stationarity, 1 andmonotonicity (which is different

E-mail address: yutaka@neptune.kanazawa-it.ac.jp.
1 Stationarity means if the receipt times of two commodities are advanced

or deferred by the same amount, the preference between two commodities is
invariant.

frommonotonicity related to a binary operation) into the topolog-
ical framework of Debreu (1960), the utility model was first con-
structed on the space of actually finite outcome sequences; then by
the use of continuity itwas extended to a utilitymodel on the space
of infinite outcome sequences. Denoting an infinite-period tempo-
ral sequence of outcomes by (a1, a2, . . .), his utility model is ex-
pressed as the power series u(a1, a2, . . .) =

∑
∞

i=1α
i−1u(ai), where

0 < α < 1 is a constant discount factor. Furthermore, Bleichrodt,
Rohde, and Wakker (2008) refined Koopmans’ formulation theo-
retically. Aiming to make it possible to deal with unbounded out-
come sequences, they weakened the continuity condition from an
infinite-dimensional version to a finite-dimensional version by in-
troducing two conditions (constant-equivalence, tail-robustness).
This workmightmake a test of axioms feasible. However, although
these theories might be suitable for outcomes expressed by real
numbers, e.g., amounts ofmoney, it is too restrictive to treat prefer-
ences among qualitative outcomes because the validity of topolog-
ical conditions (connectedness, separability) is nearly impossible
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Fig. 1. Advanced receipt and postponed receipt of commodities by right multiplication and right division, respectively: in the case of advanced receipt, (· · · (ad1) · · · )di
is defined as a solution x to (x, 0) ∼ (· · · ((a, 0)d1) · · · )di (Proposition 5); in the case of postponed receipt, (· · · (a/d1) · · · )/di is defined as a solution x to (x, 0) ∼
(· · · ((a, 0)/d1) · · · )/di (Proposition 7).

to test directly. To address the problem, Hübner and Suck (1993)
adapted Koopmans’ result to a general algebraic framework. That
is, they extended the n-component, additive conjoint structure
(Krantz, Luce, Suppes, & Tversky, 1971) to an infinite-dimensional
version and added stationarity and monotonicity to derive the
same utility model as above. Their utility model was similarly
constructed using these two steps, apart from the substitution of
restricted solvability for continuity in the step of extending to an
infinite-dimensional model. They also could deal with unbounded
outcome sequences. Meanwhile, Fishburn and Rubinstein (1982)
constructed autilitymodel reflecting impatience in such adifferent
way that it is determined as a function of a single outcome at a
particular time. A major advantage of their work is to generalize
stationarity to the Thomsen condition. Let X be a set of outcomes
and let T be a set of times. Both sets are assumed to be nonnegative
real intervals. With the help of the topological framework of De-
breu (1960) (Fishburn, 1970), they also derived the multiplicative
utility function u(x, t) = ϕ(t)v(x), where v is increasing on X and
ϕ is positive and decreasing on T (due to impatience). However,
these two works possess drawbacks. First, as was pointed out by
Hübner and Suck (1993), the validity of their conditions is difficult
to test because they are formulated in the infinite-dimensional
structure. Second, as in Fishburn and Rubinstein’s (1982) work,
the Thomsen condition is itself artificial, and unfortunately, the
problem of topological conditions still remains to be solved.

Recently, Matsushita (2014) constructed a weighted additive
model, which is an order-preserving function on a generalized
extensive structure A that is of the form

u(ab) = αu(a) + u(b), α ⩾ 1, (1)

where ab is the concatenation of a and b, and it implies receiving a
one period earlier from now and b now. This is a representation of
the generalized extensive structure, called a central left nonneg-
ative concatenation structure with left identity. The left identity
element e plays an important role in this construction. The right
multiplication (resp. right division) of a by e indicates advancing
(resp. postponing) its receipt by one period. Hence (a/e)b implies
receiving a and b in the same time period. By defining a new oper-
ation as a ◦ b = (a/e)b, the central left nonnegative concatenation
structure reduces to an extensive structure with respect to the
operation ◦. Using the fact that ab is equivalent to (ae/e)b and
letting u be an additive representation of the extensive structure,
one obtains u(ab) = u(ae) + u(b); in view of u being a ratio scale,
it is possible to derive u(ae) = αu(a). The inequality α ⩾ 1
(which is interpreted as a markup factor) shows that the model
reflects impatience. Indeed, this construction uses the axioms of
r-nonnegativity (ae ≿ a) and monotonicity (a ≿ b ⇔ ae ≿
be), which correspond to impatience (in the wider sense) and
stationarity, respectively. Since every sequence is expressed as a

concatenation, the abovemodel can evaluate preferences between
outcome sequences with ‘‘any distinct finite number of periods’’.
Hence themodel solves the problem involved inHübner and Suck’s
(1993) formulation.

However, Matsushita’s (2014) formulation has a problem in
that the condition of stationarity is used. It is well known (Loewen-
stein & Prelec, 1992) that stationarity (constant impatience) is of-
ten violated. The preference in the first paragraph can be reversed
if the delay time is increased with the time lag held constant:
receiving $1100 after three years may be preferred to receiving
$1000 after two years, which is an example of decreasing impa-
tience. Attema, Bleichrodt, Rohde, and Wakker (2010) showed the
other type of violation of stationarity – increasing impatience2 –
by analyzing the behavior of subjects faced with intertemporal
(delayed) choice problems through time-tradeoff sequences: sub-
jects are increasingly impatient for periods close to the present
and constantly impatient for later periods. Moreover, Takahashi,
Han, and Nakamura (2012) showed that the exponential discount
function with logarithmic time perception, a psychological time
durationwith the logarithmic unit, is transformed into the general-
ized hyperbolic discount function (Loewenstein & Prelec, 1992); in
other words, perceiving time according to a logarithmic scale and
constantly discounting in terms of this perceived time yields de-
creasing impatience (Attema et al., 2010), because the exponential
discount function reflects constant impatience and the hyperbolic
one captures decreasing impatience.

These works bring us the following concept: if a one-period
advance occurs in a period closer to the present, then a person
is sensitive to the advance, and if the person is increasingly (or
decreasingly) impatient, then he/she may feel as if its time incre-
ment is smaller (or greater) than the actual increment. To allow
for the effect of the time duration varying according to a period
in which an advance occurs, we express a one-period advance by
multiplying outcomes by an increment in a ‘‘subjective’’ duration
(not e) corresponding to the period on the right. We then study a
utility model reflecting nonconstant impatience under measure-
ment theory. To be more precise, let dsi be an increment in a
subjective duration when advancing the receipt of a from period
i − 1 to period i in the previous direction (see Fig. 1). We express
the advanced receipt of a by n periods as (· · · (ads1 ) · · · )dsn , and
construct a utility model of the form

u((· · · (ads1 ) · · · )dsn ) = (ϕ(ds1 ) · · · ϕ(dsn ))u(a), ϕ(dsi ) > 1,

for which u is the weighted additive model of (1), and ϕ is a
weight function of increments in the duration. Since right division

2 Although theoretical studies commonly assumed decreasing impatience, sev-
eral empirical studies (Attema, Bleichrodt, Gao, Huang, and Wakker 2016) have
found increasing impatience.
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is defined as the inverse of right multiplication (i.e., (adsi )/dsi ∼ a),
this utilitymodel can represent also a preference for the postponed
receipt of a by n periods:

u((· · · (a/ds1 )/· · · )/dsn) =
1

ϕ(ds1 ) · · · ϕ(dsn )
u(a).

The motivation for constructing the utility model is to solve the
problem of nonconstant impatience raised as above. Indeed, the
previous model of (1) cannot explain the decreasing impatience,
for since a/e denotes the one-period postponed receipt of a and
u(a/e) = (1/α)u(a), it follows that if u($1000) > u($1100/e) =

(1/α)u($1100), then (1/α2)u($1000) = u(($1000/e)/e) >

u(($1100/e)/e)/e = (1/α3)u($1100). On the other hand, the pro-
posed model can explain this nonconstant impatience: the allo-
cation of suitable values to ϕ(ds1 ), ϕ(ds2 ), and ϕ(ds3 ) (see Exam-
ple 2) yields u($1000) > u($1100/ds1 ) and u(($1000/ds1 )/ds2 ) <

u((($1100/ds1 )/ds2 )/ds3 ).
The substantial work of this study is to extend the central left

nonnegative concatenation structure A in such a way that right
multiplication by dsi has the same properties as right multipli-
cation by e; that is, right multiplication by dsi is requested at
least to inherit the properties of r-nonnegativity, monotonicity,
and consistent advance from right multiplication by e. Moreover,
right action to devise on A is an action based on right multiplica-
tion by durations having these properties. From the request, we
will formulate the axioms in the situation of advanced receipt.
The formulation is carried out in two steps. First, we consider
the conditions for enabling right multiplication for the Cartesian
product of the underlying sets A × T . Second, by deriving the
essential properties under the conditions, we define a central left
nonnegative concatenation structure that is equipped with the
right action algebraically. A major reason for considering right
multiplication on A × T is to give a clear meaning of ads1 and to
make experimental tests on the conditions simple. Indeed, ads1
is to be defined as a commodity received at the present that is
equivalent to the commodity a at the advanced time ds1 . Herein
this equivalence is written in the form (ads1 , 0) ∼ (a, ds1 ) because
we assume an element (a, ds1 ) ∈ A × T to mean that one receives
a at the advanced time point ds1 . Hence all that we have to do
for experimental checks is to evaluate the preferences between
elements of A×T . As for another reason, to maintain compatibility
with the fact that A itself has a partial binary operation, it is also
desirable that we define the right action as a partial operation;
herein the domain of the right action can be specifically written
as a subset of A × T . Note that the proposed axioms are to be
derived from a direct definition of right division (as will be shown
in Section 3.4), so that we can test the axioms experimentally in
the situation of postponed receipt. In addition, we will discuss
the relation of the utility model with the exponential discount
function.

The proofs of the lemmas, propositions, and theorem are given
in the final section. The mathematical basis for regarding right
multiplication by increments in the duration as a right action is
shown in the Appendix.

2. Basic concepts

2.1. The base structure

Throughout this paper, R and R+

0 denote the sets of all real
numbers and of all nonnegative real numbers, respectively. Let ≿A
be a binary relation on a nonempty set A that is interpreted as
a preference relation. As usual, ≻A denotes the asymmetric part,
∼A the symmetric part, and ≾A, ≺A denote reversed relations. The
binary relation ≿A on A is aweak order if and only if it is connected
and transitive. Let · be a ‘‘partial’’ binary operation on A, meaning a

function from a subset B of A×A into A. The expression a·b is said to
be defined (in A) if and only if (a, b) ∈ B. An element e ∈ A denotes
no change in the status quo with outcome sequences. That is, it is
assumed that receiving e prior to a is no different from receiving a
at the present; however, ae implies advancing the receipt of a by
one period, so that a · e is not always ∼ a.

In preparation, we will review the definition and properties of
the base structure of this paper. In the following conditions, all the
products are assumed to be defined.

A1. Weak order: ≿A is a weak order on A.
A2. Local definability: if a · b is defined, a ≿A c, and b ≿A d, then

c · d is defined.
A3. Monotonicity: a ≿A b ⇔ a · x ≿A b · x ⇔ x · a ≿A x · b for all

a, b, x ∈ A.
A4. Left identity: e is a left identity element; that is, e · a ∼A a for

all a ∈ A.
A5. R-nonnegativity: whenever x · a is defined, x · a ≿A x.
A6. Left solvability: whenever a ≻A b, there exists x ∈ A such

that x · b is defined and a ∼ x · b.

We will inductively define the nth ‘‘left’’ multiple of an element
a by a0 = e, a1 = a and

an = a · an−1 if the right-hand side is defined
an is undefined otherwise.

A7. Left Archimedean: every bounded sequence {an} consisting
of the left multiples of a ≻A e is finite.

The system ⟨A, ≿A, ·, e⟩ is a concatenation structure with left
identity if and only if A1–A4 are satisfied. A left nonnegative con-
catenation structure with left identity is a concatenation structure
with left identity for which A5–A7 are satisfied. Regardless of the
fact that A5 is written as a right sided concept, the concatenation
structure is prefixed by the term ‘‘left nonnegative’’. The reason is
that if a concatenation structurewith left identity is r-nonnegative,
then it is also l-nonnegative (i.e., a · x ≿A x). Hence every left non-
negative concatenation structurewith left identity is a nonnegative
concatenation structure with left identity for which the solvability
and Archimedean properties are satisfied only in relation to left-
concatenation. It is worthwhile to state that A consists – at most
– of elements such that a ≿ e and that the subset {a ∈ A |a ≻ e }

is a generalization of the PCS3 (Luce, Krantz, Suppes, & Tversky,
1990). Throughout the paper, the trivial case where A has just a
single element e is always excluded.

Since, in A6, x is uniquely determined up to ∼A by A3, we write
x ∼A a/b, and a/a ∼A e because a ∼A e · a. Thus a partial binary
operation /, called right division, is defined on A.

Remark 1. Let ⟨A, ≿A, ·, e⟩ be a concatenation structure with
left identity. If A6 holds, then for all a, b, x ∈ A, the following
properties hold.

(i) (a ·b)/b ∼A a ∼A (a/b) ·bwhenever a ·b is defined and a ≿A b.
(ii) Monotonicity of right division (Demko, 2001, Lemma 3.1):

a ≿A b ⇔ a/x ≿A b/xwhenever a, b ≿A x,
a ≿A b ⇔ x/a≾Ax/bwhenever x ≿A a, b.

A8. Weak associative-commutativity: whenever either of a·(b·c)
or b · (a · c) is defined, the other expression is also defined and
a · (b · c) ∼A b · (a · c).

3 The PCS is a positive extensive structure satisfying a solvability property and
the Archimedean property. The extensive structure is a weakly associative PCS.
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A9. Consistent advance:whenever either of (a·b)·e or (a·e)·(b·e)
is defined, the other expression is also defined and (a · b) · e ∼A
(a · e) · (b · e).

Definition 1. A left nonnegative concatenation structure with left
identity is said to be central if it satisfies A8 and A9.4

Define a partial binary operation ◦ on A by

a ◦ b = (a/e) · b. (2)

Since (a · e)/e ∼A a by Remark 1(i), it is rational to interpret a/e
as meaning that the receipt of a is postponed by one period. Hence
a ◦ b is regarded as the (concurrent) receipt of a and b in the same
period. Therefore it is natural that ◦ has the properties of weak
associativity and commutativity: (a ◦ b) ◦ c ∼A a ◦ (b ◦ c) and
a ◦ b ∼A b ◦ a. The next lemma guarantees these properties of ◦.

Lemma 1 (Matsushita, 2014, Lemma 2). 5 Let A be a left nonnega-
tive concatenation structure with left identity. If A8 is satisfied, then
E(A) = ⟨A, ≿A, ◦, e⟩ is an extensive structure with identity.

2.2. Expressing outcome sequences

Henceforth concatenations expressed implicitly by juxtaposi-
tion aremeant to bindmore strongly than right divisions to reduce
the number of brackets in equivalences. For example, (a · b)/b
reduces to ab/b.

We will write outcome sequences in a left-branching fashion,
and enforce the rule that each period number in an outcome se-
quence is counted going back. Hence (· · · ((a1a2)a3) · · · an−1)an de-
notes that a person receives the last component an of the sequence
in the latest period, the last component an−1 of the first outside
parenthesis in the period immediately before the latest period, · · · ,
and so on; finally, the first component a1 is received n − 1 periods
earlier. According to the rule, repeated use of right multiplication
(or right division) by e implies a step-by-step advancement (or
postponement) from the reference period, i.e., the present. An
outcome is written in the following respective forms according to
whether its receipt is advanced or postponed by n periods:

Advancing case.(· · · (ae) · · · e)e   .

n times

Postponing case.(· · · (a/e) · · · /e)/e  
n times

.

3. Axioms on the decomposable structure

3.1. Basic properties

Henceforth assume that a central left nonnegative concatena-
tion structure ⟨A, ≿A, ·, e⟩ with left identity has no minimal posi-
tive element. Let [e] be the equivalence class of the left identity e,
i.e., [e] = {x ∈ A |x ∼A e }. Wewrite A\[e] tomean {a ∈ A |a ̸∈ [e] }.
Throughout this section, let T = R, which is equipped with
the usual order ⩾. Let ⟨T , ⩾, ·T , 0⟩ be an Archimedean simply6
ordered group (Krantz et al., 1971 Definition 2.3). The structure
consists of the sets of positive elements, negative elements, and
an identity element. Let t ∈ T be arbitrary. We write t−1

= x for
x ∈ T such that x·T t = 0. By A3, t−1 < 0 ⇔ t > 0. The symbols

4 The term ‘‘central’’ is used as the concept to mean that it makes ◦ commutative
and associative (Matsushita, 2011).
5 Matsushita (2014) included the condition of A having no minimal positive

element in the lemma. However, it is actually not necessary.
6 A simple order is an antisymmetric weak order (Krantz et al., 1971).

t and t−1 are used to denote positive and negative elements,
respectively. We provide a binary relation ≿ on the Cartesian
product of the underlying sets A and T . An element (a, t) or (a, t−1)
in A × T indicates the receipt of a commodity a ‘‘advanced’’ or
‘‘postponed’’ toward a duration t , respectively. Note that t or t−1

means an ‘‘absolute’’ time. In particular, (a, 0) means receiving
a at a time point of reference (e.g., the present). The following
conditions are assumed for ≿ on A × T .

B1. Weak order: ≿ is a weak order on A × T .
B2. Independence: for all a, b ∈ A and all s, t ∈ T with s, t ⩾ 0,

(i) a ≿A b ⇔ (a, t) ≿ (b, t) ⇔ (a, t−1) ≿ (b, t−1).
(ii) s ⩾ t ⇔ (a, s) ≿ (a, t).
(iii) s ⩾ t ⇔ (a, s−1) ≾ (a, t−1).

B3. Restricted solvability: given (b, s) ∈ A \ [e] × T and t ∈ T ,
whenever there exist a, a ∈ A \ [e] for which (a, t) ≿ (b, s) ≿
(a, t), there exists an x ∈ A \ [e] such that (x, t) ∼ (b, s).

B4. Smallness at any duration level: for any a ∈ A \ [e] and
any t ∈ T with t ⩾ 0, there exists an x ∈ A \ [e] such that
(a, 0) ≿ (x, t).

The system ⟨A × T , ≿⟩ is a decomposable structure if and only if
B1 and B2 are satisfied. In what follows, we will exclude elements
such as (e, t) or (e, t−1) from consideration because it makes little
sense to evaluate the effect of the advanced or the postponed
receipt of a null outcome. Axiom B2(ii) and B2(iii) imply impa-
tience. AxiomB3 alongwith B4 guarantees that there conditionally
exists a commodity received at the present that is equivalent to
any commodity for which its receipt is advanced toward any time
level (Proposition 1). The equivalence at the present is a similar
concept to the ‘‘present value’’ of Bleichrodt, Keskin, Rohde, Spinu,
and Wakker (2015), although they defined the value with respect
to the postponed receipt of commodities. Axiom B4 prevents the
dominance of the component T over A in ordering, i.e., whenever
t > 0, then (x, t) ≻ (a, 0) for all x, a ∈ A \ [e].

The next proposition is fundamental to the development of our
theory in the next subsection.

Proposition 1. Assume that ⟨A × T , ≿⟩ is a decomposable structure
for which B3 and B4 are satisfied.

(i) For any a ∈ A \ [e] and any t ∈ T , there exists x ∈ A \ [e] such
that (x, t) ∼ (a, 0). Moreover, x is uniquely determined up to
∼A.

(ii) For any (a, t) ∈ A \ [e] × T , there exists x ∈ A such that
(x, 0) ∼ (a, t) if and only if (a, 0) ≿ (a, t) for some a ∈ A.
Moreover, x is uniquely determined up to ∼A.

3.2. Right multiplication as an advancement operator

Henceforth assume that ⟨A × T , ≿⟩ is a decomposable structure
for which B3 and B4 are satisfied. Let do > 0 denote an increment
(e.g., one month, one year) in the objective (physical) duration of
one period; on the other hand, ds > 0 denotes an increment in a
subjective (psychological) duration assessed by individuals, which
is dependent onwhen a one-period advancement occurs.Wewrite
dε with ε = o or s when it is unnecessary to make a distinction
between do and ds; further, it is always assumed that dε > 0.
Henceforth we use s, t ⩾ 0 to denote an arbitrary time at which
one receives commodities but use dε > 0 for the above increment
in the duration for one period. It will be shown later that t can be
expressed as the sum of these dε . This subsection devotes itself to
giving a clear meaning to the right multiplication of a by dε .

We will express the advanced receipt of a commodity by mul-
tiplying it by an increment in the duration on the right. Right
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multiplication is defined by the following rule: for any a ∈ A and
any dε ∈ T ,

(a, 0)dε =

{
(a, dε) if a ≻A e
(e, 0) if a ∼A e. (3)

Definition 2. Assume that ⟨A × T , ≿⟩ is a decomposable structure
for which B3 and B4 are satisfied. Each product (a, 0)dε is said to
be defined in A × {0} if and only if (a, 0) ≿ (a, 0)dε for some a ∈ A.
In this case, given a ≻A e, (x, 0) ∼ (a, dε) has the (unique up to
∼A) solution x ∈ A (Proposition 1(ii)). Hence we introduce the right
multiplication of a ∈ A \ [e] by dε by setting x = adε , so that

(a, 0)dε ∼ (adε, 0). (4)

In particular, we define adε ∼A e whenever a ∼A e, and (a, 0)0 =

(a, 0), so that a0 = a. When (a, 0)dε is defined in A × {0}, adε is
also said to be defined in A.

The following equivalence that is obtained by (3) and (4) will be
useful for an intuitive understanding of the meaning of adε .

(adε, 0) ∼ (a, dε) whenever a ≻A e. (5)

This allows us to interpret adε as a commodity received at the
present that is equivalent to a for which its receipt is advanced by
one period at which the increment in the duration is assessed at dε .

Let

C = { (a, t) ∈ A × T | (a, 0) ≿ (a, t) for some a ∈ A}.

Whenever (a, dε) ∈ C , (a, 0)dε is defined in A × {0}, so adε is
also defined in A. Hence the right multiplication of a by dε is a
‘‘partial’’ operation on A × T . The next lemma guarantees that the
product is uniquely determined.

Lemma 2. Assume that ⟨A × T , ≿⟩ is a decomposable structure for
which B3 and B4 are satisfied. Assume that adε, bdε, and ad′

ε are
defined in A. Then the following are true.

(i) a ≿A b ⇔ adε ≿A bdε .
(ii) dε ⩾ d′

ε ⇔ adε ≿A ad′
ε whenever a ≻A e.

It is proper to define right division by increments in the duration
for elements ofA×{0}, denoted /, as the inverse of rightmultiplica-
tion by increments in the duration; that is, right division is defined
to mean that

((a, 0)dε)/dε = (a, 0) and ((a, 0)/dε)dε = (a, 0). (6)

Substituting (3) into the former part of (6) yields such a clear form
that we can understand the operational role of right division by dε:

(a, dε)/dε = (a, 0) whenever a ≻A e. (7)

We extend the application range of the former part of (6) to an
equivalent element received at the present to define right division
for elements of A × {0}.

B5. (a, 0) ∼ (x, 0)dε ⇔ (a, 0)/dε ∼ (x, 0).

Using the latter part of (6), this can be rewritten as

B5′. (a, 0)/dε ∼ (x, 0) ⇔ ((a, 0)/dε)dε ∼ (x, 0)dε,

which is an extension of the application range of the latter part of
(6). Since in the case where a ≻A e, (x, dε) ∼ (a, 0) has the (unique
up to ∼A) solution x ∈ A \ [e] (Proposition 1(i)), it is seen from B5
that (a, 0)/dε ∼ (x, 0) always holds. Moreover, (e, 0)/dε = (e, 0).
Thus the following proposition is obtained.

Proposition 2. Assume that B5 is satisfied. Then right division by
elements of T is a binary operation on A × {0}, where each quotient
is uniquely determined up to ∼.

Definition 3. Assume that B5 is satisfied. Then every quotient
(a, 0)/dε is said to be defined in A × {0} (Proposition 2). Since
((x, 0)dε =)(x, dε) ∼ (a, 0) has the (unique up to ∼A) solution
x for any a ≻A e (Proposition 1(i)), we introduce the right division
of a ∈ A \ [e] by dε by setting x = a/dε , so that

(a, 0)/dε ∼ (a/dε, 0). (8)

In particular, a/dε ∼A e whenever a ∼A e, and a/0 ∼A a. We also
say that a/dε is defined in A.

From (7) and (8) we can interpret a/dε as a commodity equiva-
lent to the commodity a, the receipt of which is postponed by one
period whose increment in the duration is assessed at dε . The next
lemma gives the meaning of the notation adε and a/dε .

Lemma 3. Assume that adε is defined in A and that B5 is satisfied.
Then the following are true.

(i) adε/dε ∼A a and (a/dε)dε ∼A a.
(ii) b ∼A adε ⇔ b/dε ∼A a.

Proposition 3. Assume that B5 is satisfied. Then the following are
true.

(i) a ≿A b ⇔ a/dε ≿A b/dε.

(ii) dε ⩾ d′
ε ⇔ a/dε≾Aa/d′

ε whenever a ≻A e.

Hereafter, we will clarify themeaning of elements in A×{dε} of
the form (ab, dε); more precisely, we examine how an increment
dε in the duration acts on two commodities a and b. For this
purpose, a concatenation operation on A × {dε} is devised such
that it is an extension of the operation · on A. Since each (a, 0)
is identified with a, it should be the case that (a, 0) ⃝ (b, 0) =

(ab, 0). Hence we obtain the following definition.

Definition 4. Let a, b ≻A e be arbitrary, and assume that (a, b) ∈ B.
Let t ∈ T . Let ⃝ be a partial binary operation on A × {t} that is
defined by

(a, t) ⃝ (b, t) = (ab, t). (9)

Each product (a, t) ⃝ (b, t) (a, b ≻A e) is said to be defined on
A × {t} if and only if (a, b) ∈ B.

Remark 2. Apply (3) to both sides of (9) to obtain

(a, 0)dε ⃝ (b, 0)dε ∼ (ab, 0)dε.

This provides a regulation on the right multiplication of (ab, 0)
by increments in the duration; that is, ab, the receipt of which
is advanced by one period with the increment in the duration
assessed at dε , is decomposed into the concatenation of a and b,
each receipt of which is advanced by one period with the assessed
increment dε in the duration.

Let a, b ≻A e and dε > 0. Let x, y ∈ A be solutions to
(x, 0) ∼ (a, dε) and (y, 0) ∼ (b, dε), respectively. Then ⃝ is well-
defined if whenever either (a, dε) ⃝ (b, dε) is defined on A × {dε}

with (a, 0) ≿ (ab, dε) for some a ∈ A or (x, 0)⃝(y, 0) is defined on
A×{0}, the other expression is also defined and (a, dε)⃝ (b, dε) ∼
(x, 0) ⃝ (y, 0).

B6. The partial binary operation ⃝ is well-defined.
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Lemma 4. Let ⃝ be a partial binary operation defined on A× {t} for
each t ∈ T . Let a, b ≻A e and dε > 0. Let adε, bdε ∈ A be solutions
to (adε, 0) ∼ (a, dε) and (bdε, 0) ∼ (b, dε), respectively. Then the
following two conditions are equivalent.

(i) Whenever either (a, dε) ⃝ (b, dε) is defined on A × {dε} with
(a, 0) ≿ (ab, dε) for some a ∈ A or (adε, 0) ⃝ (bdε, 0) is
defined on A × {0}, the other expression is also defined and
(a, dε) ⃝ (b, dε) ∼ (adε, 0) ⃝ (bdε, 0).

(ii) Whenever either of (ab)dε or (adε)(bdε) is defined in A, the other
expression is also defined and (ab)dε ∼A (adε)(bdε).

Remark 3. Well-definedness guarantees consistency in the de-
finability of the concatenation operation and right multiplication
by increments in the duration: (adε, bdε) ∈ B ⇔ (ab, dε) ∈ C .
Assume that either of (ab)dε or (adε)(bdε) is defined in A. Lemma 4
asserts that in the presence of (5), a necessary and sufficient condi-
tion forwell-definedness is that (ab)dε ∼A (adε)(bdε). Indeed, since
(a, dε)⃝(b, dε) = (ab, dε), (adε, 0)⃝(bdε, 0) = ((adε)(bdε), 0),
and (ab, dε) ∼ ((ab)dε, 0), it is easily seen that (a, dε) ⃝ (b, dε) ∼
(adε, 0) ⃝ (bdε, 0) if and only if (ab)dε ∼A (adε)(bdε).

3.3. Right multiplication for multiple times

Hereafter, let dsi denote an increment in a subjective duration
when an advancement or postponement occurs from period i − 1
to period i in the previous or following direction (Fig. 1). For exam-
ple, according to Takahashi et al. (2012), a cumulative subjective
duration χi up to period i is calculated by

λ · ln(1 + µ · i) for some real constants λ, µ > 0, (10)

and hence we have dsi = χi − χi−1. We define di = do or
dsi for each i = 1, . . . , n. This subsection considers carrying out
right multiplication by increments in the duration multiple times.
As a result, we can express a commodity for which its receipt is
advanced or postponed by n periods, using right multiplication or
division by increments di in the duration, respectively:

Advancing case.((· · · ((ad1)d2) · · · )dn−1)dn.
Postponing case.((· · · ((a/d1)/d2)/· · · )/dn−1)/dn.

Fig. 1 gives a concise illustration of these two kinds of expressions.
However, since ((a, 0)dε)d′

ε = (a, dε)d′
ε by (3), rightmultiplica-

tion must be defined for elements of the form (a, t) to carry out it
multiple times. Note here that (a, t)dε is not necessarily∼ (adε, t),
because right multiplication for a commodity that is received at
some advanced time might depend on the time (Bleichrodt et al.,
2015, Theorem 6). Hence according to Smith’s (2006, Chap. 10)
approach, it is rational to define as follows: if (a, t·Tdε) ≿ (a, t)dε

for some a ∈ A, then

(a, t)dε ∼ (aτ [t, dε], t·Tdε), (11)

where τ is a function of t and dε . Here τ [t, dε] is interpreted as an
amplification or attenuation operator that reflects the effect caused
by advancing the receipt of a from the time point t to a still more
preceding time point t·Tdε . For example, if a person feels t to be
(or not to be so) a sufficient duration, then τ [t, dε]may become an
attenuation (or amplification) operator. Equivalence (11) implies
that the two-period advanced receipt of a is equivalent to the
receipt of aτ [t, dε] at the advanced time t·Tdε . Henceforth unless
otherwise specified, the premise for (11) is assumed to always
hold. The operator has the monotonicity property.

Proposition 4. If τ is defined by (11), then

a ≿A b ⇔ aτ [t, dε] ≿A bτ [t, dε].

A monotonicity axiom is needed to carry out right multiplica-
tion by increments di multiple times: for any (a, s), (b, t) ∈ A× T ,

B7. (a, s)d1 ∼ (b, t)
⇔ (· · · (((a, s)d1)d2) · · · )dn ∼ (· · · ((b, t)d2) · · · )dn for n ⩾ 2.

Axiom B7 implies that the equivalence between two com-
modities received at different time points is invariant under any
common n-period advancement as long as the advancement is ex-
pressed bymultiple use of rightmultiplication by increments in the
duration. This axiom is a generalization of stationarity in the sense
that the concept of a subjective duration is introduced. Substituting
(4) for the antecedent of B7 gives the restricted version:

B70. (a, 0)d1 ∼ (ad1, 0)
⇔ (· · · (((a, 0)d1)d2) · · · )dn ∼ (· · · ((ad1, 0)d2) · · · )dn.

We first consider the property derived from B70, restricting the
multiplicands to elements of A × {0}.

Proposition 5. Assume that ((· · · (ad1) · · · )dn−1, 0)dn is defined in
A × {0} for n ⩾ 2. If B70 is satisfied, then

(· · · ((a, 0)d1) · · · )dn ∼ ((· · · (ad1) · · · )dn, 0). (12)

Proposition 5 tells us that the product (· · · (ad1) · · · )dn is de-
fined as a solution x to (x, 0) ∼ (· · · ((a, 0)d1) · · · )dn and that the
multiple right multiplication of a by increments in the duration is
derived from the multiple right multiplication of (a, 0) by incre-
ments in the duration. See the next subsection for a similar result
(Proposition 7) regarding right division.

Example 1. Assume that the hypotheses of Proposition 5 hold.
Using B70, (3) and (5) in turn, we have

((a, 0)d1)d2 ∼ (ad1, 0)d2 = (ad1, d2) ∼ ((ad1)d2, 0).

We next extend the multiplicands to elements of A × T . Herein
it is required of the extension that (12) is derived from (11). In
what follows, we consider the construction of τ so as to meet this
requirement.

Assume now that (· · · (ad1) · · · )dn is defined in A. Let d(n) =

(· · · (d1·Td2)·T · · · )·Tdn. For example, (11) and B7 give

((a, d1)d2)d3 ∼ (aτ [d1, d2], d(2))d3
∼ ((aτ [d1, d2])τ [d(2), d3], d(3)).

By repeated use of (11) and B7,

(· · · ((a, d1)d2) · · · )dn
∼ ((· · · (aτ [d1, d2]) · · · )τ [d(n − 1), dn], d(n)).

Hence (12) holds if and only if the following holds:

((· · · (ad1) · · · )dn, 0)
∼ ((· · · (aτ [d1, d2]) · · · )τ [d(n − 1), dn], d(n)). (13)

Since the right-hand side of (13) is defined in A × {0}, it follows
from (5) that

((· · · (aτ [d1, d2]) · · · )τ [d(n − 1), dn], d(n))
∼ (((· · · (aτ [d1, d2]) · · · )τ [d(n − 1), dn])d(n), 0).

Hence we have by B1 and B2(i)

((· · · (aτ [d1, d2]) · · · )τ [d(n − 1), dn])d(n) ∼A (· · · (ad1) · · · )dn.

By Lemma 3(ii),

(· · · (aτ [d1, d2]) · · · )τ [d(n − 1), dn] ∼A (· · · (ad1) · · · )dn/d(n). (14)

Consequently, it is seen that (12) is tantamount to (14).
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Useful notation is provided to express the form of τ . For any
dε ∈ T , define the mapping of a subset of A into A by the rule
Rdε (a) = adε and Rd−1

ε
(a) = a/dε; further, set R−1

dε
= Rd−1

ε
.

The composition of these mappings is denoted by juxtaposition,
e.g., RdεRd′

ε
(a) = (adε)d′

ε . In order to make the expression for τ
definite, we will express τ as an operator on the set of equivalence
classes in A under ∼A, denoted A/∼A. Precisely, letting [a] = {x ∈

A |x ∼A a }, we define [a]τ [dε, d′
ε] = [aτ [dε, d′

ε]], where τ [dε, d′
ε]

in the left-hand side is an operator on A/∼A. This definition is
possible by Proposition 4. Since (a, dε) ∼ (aτ [0, dε], dε) by B1,
(3), and (11), it follows that τ [0, dε] = id (an identity mapping on
A/∼A).

Proposition 6. Assume that (· · · (ad1) · · · )dn is defined in A for n ⩾
2. Assume that (11) and B7 are satisfied. Then (14) holds if and only if
τ is expressed as τ [d(k−1), dk] = (Rd(k−1)Rdk )R

−1
d(k) on A/∼A for each

k = 2, . . . , n.

Substituting (14) into the right-hand side of (13) yields

((· · · (ad1) · · · )dn, 0) ∼ ((· · · (ad1) · · · )dn/d(n), d(n)). (15)

Bymeans of (15), it is possible to regard the ‘‘total’’ effect of the ad-
vance expressed by (· · · (ad1) · · · )dn as consisting of two factors,
(· · · (ad1) · · · )dn/d(n) and Rd(n), the former of which is attributed
to the way an advance occurs: the n-step advance accompanied
by subdivided durations di, and the latter of which is attributed
to the advance by the total duration d(n). As for the former factor,
since ((· · · (ad1) · · · )dn/d(n), 0) has no advancement, it turns out
that the first component expresses not a pure effect of advance but
the effect of the procedure for generating the advance: the n-times
iteration of a small advance. To explain more precisely, three cases
are provided.

Case 1. (· · · (ad1) · · · )dn ≻A ad(n), or (· · · (ad1) · · · )dn/d(n) ≻A
a. This case implies that the n-step advance with a set of in-
crements (d1, . . . , dn) in the duration enhances the value of a
more than the one-step advance whose duration is subjectively
assessed at d(n).

Case 2. (· · · (ad1) · · · )dn≺Aad(n), or (· · · (ad1) · · · )dn/d(n)≺Aa. This
case implies that the n-step advance reduces the value of a
more than the one-step advance whose duration is subjectively
assessed at d(n).

Case 3. (· · · (ad1) · · · )dn ∼A ad(n), or (· · · (ad1) · · · )dn/d(n) ∼A a.
This case implies that there is no effect of the step-by-step
advance, and the total effect of advance depends only on the
advance of the duration d(n).

We consider right multiplication by an increment do in the
objective duration. Recall that ae indicates advancing the receipt of
a by one period for which the increment in duration is a physical
(objective) one. Hence it is rational to consider

(a, 0)do ∼ (ae, 0),

which gives

ado ∼A ae. (16)

Our concept is that stationarity holds if a person can regard each
one-period advancement as merely an advancement in which the
increment in duration is objectively assessed no matter when the
advancement occurs. In other words, if the increment in duration
for each advancement is objectively assessed, then the effect of
advance is invariable regardless of receipt time. We require that
right multiplication by do be independent of the receipt time t ⩾ 0
of commodities; hence we define, for all a ≻A e,

(a, t)do ∼ (ae, t) whenever (a, e) ∈ B. (17)

In the preceding and following equivalences, note that by (16),
adε ∼A ae if ε = o. It must be verified here that (17) is consistent
with (11).

B8. Right multiplication by an increment in the objective dura-
tion: (a, dε)do is defined by means of (17).

Lemma 5. Assume that B70 and B8 are satisfied. Then (adε, e) ∈ B if
and only if (ae, dε) ∈ C for all a ∈ A\[e]. Moreover, (adε)e ∼A (ae)dε

for all a ∈ A.

This lemma guarantees the consistency between (17) and
(11). Indeed, by (11), (a, dε)do ∼ (aτ [dε, do], dε·Tdo). Since
(a, dε)do is defined in A × {0} by the hypothesis of Lemma 5,
and since aτ [dε, do] = (adε)e/(dε·Tdo) by Proposition 6, it fol-
lows that (aτ [dε, do], dε·Tdo) ∼ ((adε)e, 0). On the other hand,
(ae, dε) ∼ ((ae)dε, 0). Hence by the latter result of Lemma 5,
(aτ [dε, do], dε·Tdo) ∼ (ae, dε), as required.

3.4. Right division as a postponement operator

So far we have defined right division as the inverse of right
multiplication. However, by contrast with (3) or (11), it might
be natural to define right division directly as a postponement
operator. In this subsection, we devise a uniform frame to define
right multiplication and right division simultaneously and show
that right division defined in this frame can be an inverse of right
multiplication in the sense of (6). Hence the properties of right
division in the preceding two subsections can be reproduced from
the direct definition. This implies that we can experimentally test
these properties in a postponement situation.

First, right division is defined as a postponement operator by
the rule:

(a, 0)/dε = (a, d−1
ε ) if a ≻A e; (e, 0)/dε = (e, 0).

Second, a dual axiom to B4 is provided as follows:

B4′. Smallness at the present: for any a ∈ A \ [e] and any t−1
∈ T

with t−1 ⩽ 0, there exists an a ∈ A \ [e] such that (a, t−1) ≿
(a, 0).

Since (a, 0) ≿ (a, d−1
ε ) by B2(iii), it follows from B3

and B4′ that there exists an x ∈ A \ [e] such that (x, 0)
∼ (a, d−1

ε ). Hence the right division of a by dε is defined by setting
x = a/dε , so that we reproduce (8):

(a/dε, 0) ∼ (a, 0)/dε.

A similar method to the proof of Lemma 2 guarantees mono-
tonicity regarding right division, i.e., the properties of Proposi-
tion 3.

We show that this right division can be the inverse of right
multiplication. For this purpose, the symbol tδ, δ = ±1, is used
to mean positive or negative elements; that is, tδ = t if δ = 1,
and tδ = t−1 if δ = −1. For convenience, we write (a, t)d−1

ε =

(a, t)/dε . A uniform expression is provided such that one can
define right multiplication and right division as an advancement
and a postponement operator, respectively:

(a, tδ)dδ
ε ∼ (aτ [tδ, dδ

ε], tδ·Tdδ
ε). (18)

Since (a, d−1
ε )dε ∼ (aτ [d−1

ε , dε], 0) and (a, dε)/dε ∼ (aτ [dε,
d−1

ε ], 0) by (18), it is seen that (6) holds up to indifference ∼:

((a, 0)dε)/dε ∼ (a, 0) and ((a, 0)/dε)dε ∼ (a, 0)

if and only if τ [dε, d−1
ε ] = τ [d−1

ε , dε] = id (as an operator on
A/∼A). (This equality suggests that τ be defined by τ [tδ, dδ

ε] =

(Rδ
t R

δ
dε
)(Rtδ ·T dδ

ε
)−1.) Consequently, it turns out that right division
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based on (18) can be identical to right division that was defined
in the previous subsection. Further assuming that B5 holds, we can
obtain the properties of Lemma 3.

Amonotonicity axiom for right division based on (18) is needed
to derive the multiple right division of a by increments in the
duration from the multiple right division of (a, 0) by increments
in the duration.

B7′. (a, s)/d1 ∼ (b, t)
⇔ (· · · (((a, s)/d1)/d2) · · · )/dn ∼ (· · · ((b, t)/d2) · · · )/dn.

The next proposition is an adapted version of Proposition 5 for
right division.

Proposition 7. If B7′ is satisfied, then

(· · · ((a, 0)/d1) · · · )/dn ∼ ((· · · (a/d1)/· · · )/dn, 0).

4. Axioms on the base structure

4.1. Generalized extensive structure with a right action

In this subsection, wewill transform the axioms on A×T raised
in the previous section into the ones on A. Such an axiomatization
enables us to utilize the same method as the proof of the previous
theorem (Matsushita, 2014). Recall here that in either case of
right multiplication or right division, elements of T operating on
A are always nonnegative, e.g., adε, a/dε , dε ⩾ 0. Henceforth in
this section, we assume that T = R+

0 , and let ⟨T , ⩾, ·T , 0⟩ be a
‘‘positive’’ closed extensive structure (Krantz et al., 1971, Definition
3.1) with an identity element 0 (in which ⩾ is a simple order).

We list the conditions on A that have been derived from the
lemmas, definitions, and propositions in the previous section (see
Table 1 for a concise correspondence between them). In the fol-
lowing conditions, all products adε, bdε, ad′

ε are assumed to be
defined in A.

A10. a ≿A b ⇔ adε ≿A bdε .
A11. dε ⩾ d′

ε ⇔ adε ≿A ad′
ε whenever a ≻A e.

A12. (a/dε)dε ∼A a and adε/dε ∼A a.
A13. edε ∼A e and e/dε ∼A e.
A14. For any a ∈ A and any dε ∈ T , there exists x ∈ A such that

xdε ∼A a.
A15. Whenever either of (ab)dε or (adε)(bdε) is defined in A, the

other expression is also defined and (ab)dε ∼A (adε)(bdε).
A16. (adε, e) ∈ B ⇔ (ae, dε) ∈ C for all a ∈ A \ [e]. Moreover,

(adε)e ∼A (ae)dε for all a ∈ A.

Attention should be paid to the fact that

adε ≻A awhenever a ≻A e, (19)

because adε ≻A a0 = a if dε > 0 by A11 and Definition 2.
On the other hand, the dual properties hold for right division.

Proposition 3 gives the dual properties to A10 and A11. Moreover,
we obtain

a ≿A a/dε ≻A e whenever a ≻A e.

Indeed, in viewof (19), it follows fromA12 and Proposition 3(i) that
a ≻A a/dε . Meanwhile since a ≻A e, by Proposition 3(i) and A13,
a/dε ≻A e.

Axiom A15 implies that the mapping Rdε is a homomorphism
with respect to the concatenation operation on A, i.e., Rdε (ab) ∼A
Rdε (a)Rdε (b). By A10, Rdε is order-preserving. We call an order-
preserving homomorphism such as Rdε an order-homomorphism.
In particular, an onto order-homomorphism is called an order-
isomorphism. Axiom A16 implies that the composition of an ad-
vance operator with an increment ds in a subjective duration and
an advance operatorwith an increment do in the objective duration
is commutative, i.e., RdoRds = RdsRdo .

Table 1
Correspondence between conditions and original statements.

Conditions on A Original statements

A10 Lemma 2(i), Proposition 5
A11 Lemma 2(ii), Proposition 5
A12 Lemma 3(i)
A13 Definitions 2 and 3
A14 Proposition 1(i)
A15 Lemma 4
A16 Lemma 5

Lemma 6. Let ⟨T , ⩾, ·T , 0⟩ be a positive closed extensive structure
with identity. Let ⟨A, ≿A, ·, e⟩ be a central left nonnegative con-
catenation structure with left identity. Assume that a partial binary
operation ◦ on A is defined by (2). If A15 and A16 are satisfied, then
for any a, b ∈ A,

adε ◦ bdε ∼A (a ◦ b)dε. (20)

Although the mathematical basis is omitted here (it is given in
the Appendix), a correspondence dε ↦→ Rdε is a representation of
the simply ordered set T on A. Therefore it seems appropriate to
regard right multiplication of A by T as a ‘‘right action’’7 of T on A
in the measurement-theoretic sense.

Definition 5. Let ⟨T , ⩾, ·T , 0⟩ be a positive closed extensive
structure with identity. A central left nonnegative concatenation
structurewith left identity that is equippedwith a right action of T is a
central left nonnegative concatenation structure with left identity
⟨A, ≿A, ·, e⟩ for which A10–A16 are satisfied.

We present the representation theorem.

Theorem 1. Let ⟨T , ⩾, ·T , 0⟩ be a positive closed extensive structure
with identity. Let ⟨A, ≿A, ·, e⟩ be a central left nonnegative concate-
nation structure with left identity that has a right action of T and no
minimal positive element. Then there exist functions ϕ : T → [1, ∞)
with ϕ(0) = 1, ϕ(do) = α and u : A → R+

0 that is the weighted
additive model of (1) with u(e) = 0 such that

(i) u((· · · (ad1) · · · )dn) = (ϕ(d1) · · · ϕ(dn))u(a) whenever
(· · · (ad1) · · · )dn is defined in A,

(ii) u((· · · (a/d1)/· · · )/dn) =
1

ϕ(d1)···ϕ(dn)
u(a),

(iii) s ⩾ t ⇔ ϕ(s) ⩾ ϕ(t).

Moreover, other functions ϕ′ and u′ satisfy the above properties if and
only if ϕ′

= ϕ and u′
= γ u for some real number γ > 0.

Remark 4. We mention the reason why ϕ has been restricted to
an absolute scale. According to Fishburn and Rubinstein (1982,
Theorem 3) since u is of the multiplicative form (by (i)), two
factors ϕ and u are to be unique up to power transformations with
commonexponents, i.e.,ϕ′

= γ1ϕ
β , u′

= γ2uβ with γ1, γ2, β > 0.
Meanwhile since u is an additive representation, it must be a ratio
scale. This forces β into being = 1. Since u(adε) = ϕ(dε)u(a)
and u′(adε) = ϕ′(dε)u′(a), from the permissible transformations
we obtain u′(adε) = γ2u(adε) = γ2ϕ(dε)u(a) and u′(adε) =

ϕ′(dε)u′(a) = γ1γ2ϕ(dε)u(a). Hence it holds that γ2ϕ(dε)u(a)(1 −

γ1) = 0. In view of the fact that a and dε are arbitrary, it follows
that 1 − γ1 = 0, or γ1 = 1, so that ϕ′

= ϕ.

The utilitymodel of Theorem 1 implies that rightmultiplication
by increments in the duration is commutative, i.e., (ad1)d2 ∼
(ad2)d1. However, the order of operating two one-period advance-
ments having different increments in a subjective duration is likely

7 For example, see Lang (1993) for the mathematical meanings of terminology,
representation, action, and group action (which appears later).
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Table 2
Increments in a subjective duration and weight values.

Period 1 2 3

ds 1.4 1.0 0.77
ϕ(ds) 1.151 1.105 1.080

to have an effect on preferences. It is a future research topic to
develop a utility model that can reflect this order effect. Further,
note that ϕ does not represent the algebraic structure of T . We
will later consider the case where ϕ is related to an additive
representation of T .

The utility model of Theorem 1 can deal with intertemporal
choice problems in which decreasing or increasing impatience
is involved. This is exemplified in a postponement situation as
follows.

Example 2. Assume that a person is faced with the following
choice problems.

A: receiving $1000 now vs. B: receiving $1100 after one year
A′: receiving $1000 after two years vs. B′: receiving $1100 after

three years
Decreasing impatience can give rise to preferences: A is pre-

ferred to B, while B′ is preferred to A′. To calculate a utility value
of each option, let u($1000) = 1.0 and u($1100) = 1.1, and α =

ϕ(do) = 1.105. Assume that an increment in a subjective duration
for each year and the corresponding weight value are determined
as in Table 2. Here they are calculated on the basis of (10) with
λ = 3.46, µ = 0.5 and the equation in the corollary below with
ν = 0.1. Then by Theorem 1, we have u($1000) > u($1100/d1)
and u(($1000/d1)/d2) < u((($1100/d1)/d2)/d3), implying the
above preferences. On the other hand, the previous model of
(1) gives u($1000) > u($1100/do) and u(($1000/do)/do) >

u((($1100/do)/do)/do), as mentioned in the introduction.

4.2. Relation to the exponential discount function

We will consider the case where the total effect of advance de-
pends only on the advance of the sum of increments d(n) (the third
case raised after (15)). For this, the following axiom is provided.

A17. a(dε·Td′
ε) ∼A (adε)d′

ε.

Indeed, A17 and A10 yield (· · · (ad1) · · · )dn ∼A ad(n). Axiom
A17 is expressed as Rdε ·T d′

ε
= RdεRd′

ε
; in view of the fact that

R0 = id, R is a homomorphism of T into the set of those maps
Rdε (roughly speaking, this allows us to call R a group action). It
should be emphasized that A17 drastically alters our interpretation
of the right action of increments in the duration. Although the right
action has been regarded as a step-by-step advance operator, the
alternation to a group action invalidates the step-by-step property
of the advance operator. Indeed, A17 means that the receipt of a
is advanced toward the amount of duration dε·Td′

ε , regardless of
whether the advancement is carried out by the procedure repeated
once or twice.

Proposition 8. Let ⟨T , ⩾, ·T , 0⟩ be a positive closed extensive
structure with identity, and let w be an additive representation of T .
Assume that all of the hypotheses of Theorem 1 are satisfied. If A17 is
satisfied, then the function ϕ : T → [1, ∞) of Theorem 1 (of course,
having property (iii)) is of the multiplicative form ϕ(s·T t) = ϕ(s)ϕ(t),
where

ϕ(t) = eνw(t) for some real constant ν > 0.

Since a discount rate is evaluated by the reciprocal of the
weight, 1/ϕ(t) = e−νw(t), Proposition 8 asserts that our weight
function is related to the exponential discount function only if
we acknowledge A17. Since any w is strictly increasing, when
·T reduces to the usual addition +, it is seen from Theorem 3.2
Falmagne (1985) that w is of the linear form, i.e., w(t) = γ t for
γ > 0. Thus we obtain the corollary to Proposition 8.

Corollary 1. If ·T reduces to +, then ϕ(t) = eνt .

The corollary implies that

ϕ(s + t) = eν(s+t).

According to Takahashi et al. (2012), if a cumulative duration is cal-
culated by (10), then the exponential discount function transforms
into the general hyperbolic one. A tractable method for measuring
the discount function without requiring any knowledge of utility
functions was proposed by Attema et al. (2016), which enables
us to elicit a cumulative discount weight only from preferences
among outcome streams.

5. Conclusion

This study extended the weighted additive model of (1) such
that it can reflect nonconstant impatience. Under the presupposi-
tion that the set of commodities is a central left nonnegative con-
catenation structure with left identity and a set of durations is an
Archimedean simply ordered group, a decomposable structurewas
assumed for the Cartesian product of the underlying sets of these
two structures. Further, right multiplication and right division by
increments in the duration and a concatenation operation were
devised as operations on the decomposable structure. An element
of the decomposable structure denotes a commodity received at
a time point advanced by the specified duration. Ordering and
algebraic axioms were proposed for the decomposable structure.
In particular, restricted solvability played an important role. First,
it gave a clear meaning of a right action: the image of a right
action is regarded as a commodity received at the present that
is equivalent to a commodity received one period earlier. Second,
with the help of well-definedness, restricted solvability provided
the compatibility of a right actionwith the concatenation operation
for commodities. The proposed axioms seem to be easy to test
experimentally because each axiom is described as a preference
between commodities whose receiving time points are different.
Finally, by transforming the axioms into the ones on the central
left nonnegative concatenation structure, we developed a struc-
ture that is equipped with a right action. In this structure, the
advanced receipt of commodities is expressed by multiple use of
right multiplication of commodities by increments in the duration.
By using this right multiplication and division, we can decompose
the effect of advance into two factors, i.e., the factor of step-
by-step advance accompanied by subdivided durations and the
factor of advance based on the total duration. Note that the pro-
posed utility model can address intertemporal postponed choice
problems because right division is defined as the inverse of right
multiplication. In a postponement situation, it was shown that our
utility model reduces to the exponential discount function if the
effect of advancement (dually, postponement) depends only on the
total duration. A topic for future research is to develop a utility
model that can allow for the order effect when operating the right
actions of two different increments in a subjective duration.

6. Proofs

In the following proofs, we will utilize the fact (Matsushita,
2014, Proposition 1) that A consists – at most – of elements such
that a ≿ e.
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6.1. Proposition 1

Proof. (i) The proposition is obvious when t = 0. Since (a, t) ≻

(a, 0) for t > 0 by B2(ii), we obtain the conclusion from B3 and B4.
The uniqueness of x follows from B2(i).

(ii) Since necessity is obvious, we prove only sufficiency. As-
sume that (a, 0) ≿ (a, t). Then since (a, t) ≿ (a, 0) by B2(ii), B3
guarantees the existence of x ∈ A such that (x, 0) ∼ (a, t). The
uniqueness is similar to (i). □

6.2. Lemma 2

Proof. (i) The lemma is obvious in the cases where a ∼A b ∼A e
and a ≻A b ∼A e. Hence we prove the case where a, b ≻A e.
By (5), (adε, 0) ∼ (a, dε) and (bdε, 0) ∼ (b, dε). Assume that
a ≿A b. Since (a, dε) ≿ (b, dε) by B2(i), it follows from B1 that
(adε, 0) ≿ (bdε, 0), and hence by B2(i), adε ≿A bdε . The converse
is also proved.

(ii) In a similar way to (i), we prove (ii). □

6.3. Lemma 3

Proof. (i) If a ∼A e, then the lemma is trivial. Let a ≻A e. Using (8)
and applying B5 to (4), we have (adε/dε, 0) ∼ (adε, 0)/dε ∼ (a, 0).
By B1 and B2(i), adε/dε ∼A a. Similarly, we use (4) and apply B5′ to
(8) to obtain ((a/dε)dε, 0) ∼ (a/dε, 0)dε ∼ (a, 0). By B1 and B2(i),
(a/dε)dε ∼A a, as required.

(ii) We first consider the case of a ∼A e. Assume that b ∼A adε .
Then since b ∼A e, b/dε is also∼A e by Definition 3. Hence b/dε ∼A
a. Assumenext that b/dε ∼A e. By part (i) of the lemma, (b/dε)dε ∼A
b. By Lemma 2(i) and Definition 2, (b/dε)dε ∼A edε ∼A e. Hence by
A1, b ∼A e(∼A adε). We next consider the case of a ≻A e. By the
hypothesis, let b solve (b, 0) ∼ (a, dε). Then since (b, 0) ∼ (a, 0)dε

by (3), it follows from B5 that (b, 0)/dε ∼ (a, 0); meanwhile by
(8), (b, 0)/dε ∼ (b/dε, 0). Hence by B1 and B2(i), b/dε ∼A a. On
the other hand, since (a, dε) ∼ (adε, 0) by (5), B2(i) along with B1
implies that b ∼A adε . Thus we obtain the conclusion. □

6.4. Proposition 3

Proof. (i) The proposition is obvious in the cases of a ∼A b ∼A e
and a ≻A b ∼A e. Hence we consider the case of a, b ≻A e. From
(5), Lemma 3(i), B1, and B2(i), we obtain

(a, 0) ∼ (a/dε, dε) and (b, 0) ∼ (b/dε, dε).

Hence by B1 and B2(i), a ≿A b ⇔ a/dε ≿A b/dε .
(ii) Given dε > d′

ε , assume, contrarily to Proposition 3(ii), that
a/dε ≿A a/d′

ε . Recall from the proof of (i) that (a, 0) ∼ (a/d′
ε, d′

ε).
Hence by B2(i), (a, 0) ∼ (a/dε, dε) ≻ (a/d′

ε, d′
ε) ∼ (a, 0), or

(a, 0) ≻ (a, 0), in contradiction to B1. Hence a/dε must be≺Aa/d′
ε .

Next, when a/dε≺Aa/d′
ε , assume that dε ⩽ d′

ε . Also, by B2(i),
(a, 0) ∼ (a/dε, dε) ≺ (a/d′

ε, d′
ε) ∼ (a, 0), which contradicts B1.

Hence dε must be > d′
ε . Obviously, dε = d′

ε ⇔ a/dε ∼A a/d′
ε . □

6.5. Lemma 4

Proof. We first show that (i) implies (ii). By (i), either (adε, 0) ⃝

(bdε, 0) = ((adε)(bdε), 0) or (a, dε) ⃝ (b, dε) = (ab, dε) with
(a, 0) ≿ (ab, dε) for some a ∈ A. It is obvious from the former
equality that (adε)(bdε) is defined in A. We consider the latter
case. Proposition 1(ii) guarantees the existence of x ∈ A such that
(x, 0) ∼ (ab, dε); according to (5), this is written as ((ab)dε, 0) ∼
(ab, dε), so that (ab)dε is defined inA. It is clear from (i) that if either
(adε)(bdε) or (ab)dε is defined, then so is the other. Since (a, dε)⃝
(b, dε) ∼ (adε, 0) ⃝ (bdε, 0), it follows from B1 that ((ab)dε, 0) ∼
((adε)(bdε), 0), and hence by B2(i), (ab)dε ∼A (adε)(bdε).

We next show that (ii) implies (i). Assume that (a, dε)⃝ (b, dε)
is defined on A × {dε} and (a, 0) ≿ (ab, dε) for some a ∈ A. Then
themethod used in the previous proof gives (ab, dε) ∼ ((ab)dε, 0).
Meanwhile since (adε, bdε) ∈ B by (ii), (adε, 0) ⃝ (bdε, 0) is
defined on A × {dε}; since (adε)(bdε) ∼A (ab)dε by (ii), (adε, 0) ⃝

(bdε, 0) ∼ ((ab)dε, 0). Hence by B1, (adε, 0)⃝(bdε, 0) ∼ (a, dε)⃝
(b, dε). Assume next that (adε, 0)⃝ (bdε, 0) is defined on A× {0}.
Then (adε, bdε) ∈ B. Since (adε)(bdε) ∼A (ab)dε by (ii), we have
(adε, 0) ⃝ (bdε, 0) ∼ ((ab)dε, 0). By Proposition 1(i), (x, dε) ∼
((ab)dε, 0) for some x ∈ A. Here by (5), (xdε, 0) ∼ (x, dε). By B1 and
B2(i), xdε ∼A (ab)dε . It follows fromLemma2(i) that x ∼A ab. Hence
(a, dε) ⃝ (b, dε) is defined on A × {dε}, and ((ab)dε, 0) ∼ (ab, dε).
By B1, (a, dε) ⃝ (b, dε) ∼ (adε, 0) ⃝ (bdε, 0). □

6.6. Proposition 4

Proof. Assume that a ≿A b, so that at ≿A bt by Lemma 2(i).
Since (at, dε) ≿ (bt, dε) by B2(i), it follows from (3) and
B70 that ((a, 0)t)dε ≿ ((b, 0)t)dε . On the other hand, by (3),
B7, and (11), we have ((a, 0)t)dε ∼ (aτ [t, dε], t·Tdε) and
((b, 0)t)dε ∼ (bτ [t, dε], t·Tdε). Hence by B1, (aτ [t, dε], t·Tdε) ≿
(bτ [t, dε], t·Tdε), and by B2(i), we obtain the demanded equiva-
lence. The converse is also proved. □

6.7. Proposition 5

Proof. By induction on n. Example 1 proves the case of n =

2. Assume that the proposition holds if n = k. Set x =

ad1. By B70, (· · · (((a, 0)d1)d2) · · · )dk+1 ∼ (· · · ((x, 0)d2) · · · )dk+1.
Since ((· · · (xd2) · · · )dk, 0)dk+1 is defined in A × {0}, the element
(· · · (xd2) · · · )dk+1 exists in A. From the induction hypothesis we
obtain (· · · ((x, 0)d2) · · · )dk+1 ∼ ((· · · (xd2) · · · )dk+1, 0). Hence by
B1, (· · · ((a, 0)d1) · · · )dk+1 ∼ ((· · · (ad1) · · · )dk+1, 0). □

6.8. Proposition 6

Proof. Assume that (14) holds. Substituting the equivalence of (14)
for n = k − 1 into the left-hand side of the equivalence of (14) for
n = k under Proposition 4, we obtain

(((· · · (ad1) · · · )dk−1)/d(k − 1))τ [d(k − 1), dk]
∼A ((· · · (ad1) · · · )dk)/d(k).

Set D(a) = ((· · · (ad1) · · · )dk−1)/d(k − 1). Then since

((· · · (ad1) · · · )dk)/d(k) ∼A ((D(a)d(k − 1))dk)/d(k)

by Lemmas 2(i), 3(i), and Proposition 3(i), it follows again from the
lemmas and proposition that

(((D(a)τ [d(k − 1), dk])d(k))/dk)/d(k − 1) ∼A D(a).

This implies that ((τ [d(k − 1), dk])Rd(k))R−1
dk

R−1
d(k−1) = id holds as

an operator on A/∼A. Hence τ [d(k − 1), dk] = (Rd(k−1)Rdk )R
−1
d(k), as

required. Conversely, if this equation holds, then it is easily seen
that (14) holds. □

6.9. Lemma 5

Proof. Let a ≻A e. Assume that (adε, e) ∈ B. By (17), (adε, 0)do ∼
((adε)e, 0). Hence (adε, 0)do is defined in A×{0}. Since (a, dε)do =

((a, 0)dε)do ∼ (adε, 0)do by (3) and B70 and since (a, dε)do ∼
(ae, dε) by (17), it follows that (adε, 0)do ∼ (ae, dε). We can use
(5) to obtain (ae, dε) ∼ ((ae)dε, 0). This implies that (ae, dε) ∈ C .
The converse is also proved. Finally, from the above equivalences
and B2(i), we obtain (adε)e ∼A (ae)dε . Obviously, the equivalence
holds if a ∼A e. □
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6.10. Proposition 7

Proof. The proof is similar to that of Proposition 5. Substituting
(8) for the antecedent of B7′ gives (· · · (((a, 0)/d1)/d2) · · · )/dn ∼
(· · · ((a/d1, 0)/d2) · · · )/dn. From the induction hypothesis we ob-
tain

(· · · ((a/d1, 0)/d2) · · · )/dn ∼ (· · · (((a/d1)/d2) · · · )/dn, 0).

Hence B1 guarantees the conclusion. □

6.11. Lemma 6

Proof. If either a ∼A e or b ∼A e, then the lemma is trivial (recall
that e is an identity element with respect to ◦). Let a, b ≻A e.
We claim that A16 implies that (a/e)dε ∼A adε/e. Set b = a/e.
Since (be, dε) ∈ C , A16 implies that (bdε)e ∼A (be)dε . From
Remark 1(i) and (ii) we obtain bdε ∼A (be)dε/e, which implies that
(a/e)dε ∼A adε/e. Assume that (adε, bdε) ∈ B and (a ◦ b, dε) ∈ C
with (a, b) ∈ B. Then

(a ◦ b)dε = ((a/e)b)dε (2)
∼A ((a/e)dε)(bdε) (A15)
∼A (adε/e)(bdε) (The above claim, A3)
= adε ◦ bdε, (2)

as required. □

6.12. Theorem 1

We provide two concepts for the proof.

• Let ⟨A, ≿A, ◦, e⟩be an extensive structurewith identity, and
let S be a nonempty subset of A. A relation is defined on S
by the restriction of ≿A to S. A partial binary operation is
defined by the restriction of ◦ to S such that a ◦ b (a, b ∈ S)
is defined in A and belongs to S. Then S is called an extensive
substructure with identity of A if it contains the identity e
and is an extensive structurewith respect to the relation and
operation defined above. (See Theorem 3.5 in Krantz et al.,
1971.) Hereafter, we will denote this relation and operation
on S by the same symbols ≿A and ◦, respectively.

• Extensive structures A and A′ are order-isomorphic if there
exists an order-isomorphism ι : A → A′.

Proof. Theorem 1 (Matsushita, 2014) guarantees the existence of
the weighted additive representation u : A → R+

0 with u(e) = 0.
See Remark 4 for the uniqueness assertion. Hence it remains to
prove that u satisfies (i) and (ii) and ϕ satisfies (iii). Since it is clear
fromA13, the order-preserving property, and the equality u(e) = 0
that (i) and (ii) hold whenever a ∼A e, we prove (i) and (ii) for
a ≻A e. For this it suffices to show that u(adε) = ϕ(dε)u(a) for
some ϕ(dε) > 1. Note then that ϕ(do) = α. Indeed, it follows from
(16) and the order-preserving property that u(ado) = ϕ(do)u(a) =

αu(a) = u(ae). The following lemma is provided for the proof.

Lemma 7. For any given dε , let Adε = [e] ∪ {adε |(a, dε) ∈ C } and
A′

= [e] ∪ {a ∈ A |(a, dε) ∈ C }. Let E(Adε ) = ⟨Adε , ≿A, ◦, e⟩ and
E(A′) = ⟨A′, ≿A, ◦, e⟩. Then both E(Adε ) and E(A′) are extensive
substructures with identity of E(A), and are order-isomorphic.

Proof. The proof is similar to that of Lemma 3 (Matsushita, 2014);
that is, its steps are as follows.

1. It is verified that A1–A7 hold for E(Adε ).

2. Using the presupposition of (20): (adε, bdε) ∈ B if and only
if (a, b) ∈ B and (a ◦ b, dε) ∈ C , it is shown that E(Adε ) is
an extensive structure with respect to the above-defined≿A
and ◦ if and only if E(A′) is.

3. It is shown that a mapping ι of A′ to Adε defined by ι(a) =

adε is an order-isomorphism, so E(Adε ) and E(A′) are order-
isomorphic.

In what follows, we will prove A6 relating to ◦ to specify a differ-
ence between the present and previous proofs. Assume that adε ≻

bdε . By A6 relating to ·, there exists x ∈ A such that adε ∼A x(bdε).
Since (x, bdε) ∈ B here, A2 relating to · implies that xe ∈ A. Hence
A14 guarantees the existence of y ∈ A such that xe ∼A ydε , and
by Remark 1(i) and (ii), x ∼A (ydε)/e. By using A3 relating to ·,
x(bdε) ∼A (ydε/e)(bdε) = (ydε) ◦ (bdε). This along with A1 implies
that adε ∼A (ydε) ◦ (bdε), as required. □

This lemma implies that the restriction of u is an additive
representation on E(Adε ) and on E(A′). Hence the equation u(adε) =

ϕ(dε)u(a) where ϕ(dε) ⩾ 1 is deduced in the same way as in the
proof of Theorem 1 (Matsushita, 2014). Inductive use of this result
yields (i), e.g., u((ad1)d2) = ϕ(d2)u(ad1) = ϕ(d2)(ϕ(d1)u(a)). We
next prove (ii). It must be valid from A12 and the order-preserving
property that u((a/dε)dε) = u(a). By (i), ϕ(dε)u(a/dε) = u(a), or
u(a/dε) = (1/ϕ(dε))u(a). Again by inductive use of this equation,
we obtain (ii). Before proving (iii), we must show that ϕ(dε) > 1
(not ϕ(dε) ⩾ 1). Recall that a≺Aadε for all a ≻A e with (a, dε) ∈

C ((19)). Then by (i) and the order-preserving property, u(a) <

u(adε) = ϕ(dε)u(a). Thus ϕ(dε) > 1. To determine the value
of ϕ(0), we apply the expression u(at) = ϕ(t)u(a), t = dε to
the case of t = 0. It then follows from the equality a0 = a
(Definition 2) that ϕ(0) = 1. For (iii), let dε ⩾ d′

ε . Then by A11
and (i), ϕ(dε)u(a) ⩾ ϕ(d′

ε)u(a) ⇔ adε ≿A ad′
ε , and hence we obtain

ϕ(dε) ⩾ ϕ(d′
ε) ⇔ dε ⩾ d′

ε . □

6.13. Proposition 8

Proof. In view of A17, it follows from (i) and the order-preserving
property of Theorem 1 that ϕ(s·T t)u(a) = (ϕ(s)ϕ(t))u(a), so that
ϕ(s·T t) = ϕ(s)ϕ(t) because a is arbitrary. Now set φ = lnϕ to
obtain φ(s·T t) = φ(s) + φ(t) and φ(0) = 0. It is clear from
property (iii) that s ⩾ t ⇔ φ(s) ⩾ φ(t). These results show
that φ is an additive representation of T . Hence by the admissible
transformation (Krantz et al., 1971 Theorem 3.1 ), we have φ(t) =

νw(t) for some ν > 0, or ϕ(t) = eνw(t). □
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Appendix

Given dε ⩾ 0, let Cdε = [e] ∪ {a ∈ A |(a, dε) ∈ C }, which is the
domain of the mapping Rdε . Note that by B4, Cdε \ [e] ̸= ∅. We
claim that

dε ⩾ d′

ε ⇒ Cdε \ [e] ⊆ Cd′
ε
\ [e]. (A.1)

Proof. Let dε ⩾ d′
ε . Since Cdε \[e] ̸= ∅ , take an element x ∈ Cdε \[e].

Then (a, 0) ≿ (x, dε) for some a ∈ A. Since (x, dε) ≿ (x, d′
ε)

by B2(ii), we have (a, 0) ≿ (x, d′
ε) by B1, which implies that x ∈

Cd′
ε
\ [e]. □
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Let M = {Rdε |dε ∈ T } (recall from A10 that Rdε is order-
preserving). In view of (A.1), we introduce a binary relation ⩾M on
M by setting

Rdε⩾MRd′
ε

⇔ Rdε (a) ≿A Rd′
ε
(a) for some (and hence for all)

a ∈ Cdε \ [e] ∩ Cd′
ε
\ [e]. (A.2)

Proposition A. Let ⟨T , ⩾, ·T , 0⟩ be a positive closed extensive
structure with identity. Let ⟨A, ≿A, ·, e⟩ be a central left nonnegative
concatenation structure with left identity. Assume that ⩾M is defined
by (A.2). If A11 is satisfied, then dε ⩾ d′

ε ⇔ Rdε⩾MRd′
ε
, and hence ⩾M

is a simple order on M.

Proof. If dε > d′
ε , then since Cdε \ [e] ⊆ Cd′

ε
\ [e] by (A.1), we have

by A11 adε ≻A ad′
ε for some a ∈ Cdε \ [e], implying that Rdε>MRd′

ε
.

Obviously, if dε = d′
ε , then Rdε = Rd′

ε
. Thus dε ⩾ d′

ε ⇔ Rdε⩾MRd′
ε
.

Since ⩾ is a simple order, this implies that ⩾M is also. □
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