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ABSTRACT

Geometry and Material Properties of Vocal Fold Models

Kimberly Ann Stevens
Department of Mechanical Engineering, BYU

Master of Science

Voiced communication plays a fundamental role in society. Voice research seeks to im-
prove understanding of the fundamental physics governing voice production, with the eventual
goal of improving methods to diagnose and treat voice disorders. For this thesis, three different
aspects of voice production research were studied. First, porcine vocal fold medial surface ge-
ometry was determined, and the three-dimensional geometric distortion induced by freezing the
larynx, especially in the region of the vocal folds, was quantified. It was found that porcine vocal
folds are qualitatively geometrically similar to canine and human vocal folds, as well as commonly
used models, and that freezing of tissue in the larynx causes distortion of around 5%. Second, a
setup of multiple high-resolution cameras and a stereo-endoscopy system simultaneously recorded
positions on the superior surface of synthetic, self-oscillating vocal fold models to estimate the
error in the measurement of the three-dimensional location by the stereo-endoscopy system. The
error was found to be low in the transverse plane, whereas the error was relatively large in the
inferior-superior direction, suggesting that the stereo-endoscope is applicable for in vivo measure-
ments of absolute distances of the glottis in the transverse plane such as glottal length, width, and
area. Third, a function for strain-varying Poisson’s ratio for silicone was developed from experi-
mental data. It is anticipated that the findings herein can aid voice researchers as they study voice
production, leading to improved voice care.

Keywords: vocal folds, porcine vocal folds, vocal fold medial surface geometry, tissue distortion,
histological processing, vocal fold modeling, Poisson’s ratio, stereo-endoscopy, image processing
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CHAPTER 1. INTRODUCTION

1.1 Context for Present Research

”Help!” ”Stop!” ”Run!” From expressions of distress and alarm to comfort and encour-

agement, humans have always relied on verbal communication to convey messages of persuasion,

instruction, and inspiration. Even with the increase in written communication seen in the last sev-

eral centuries, voice is still one of the most utilized tools for communication. Voice plays a central

role in social interactions with others. In addition, many professionals rely heavily on voice, in-

cluding singers, coaches, actors, doctors, law enforcement officers, lawyers, and those involved in

sales. However, 7.5 million people in the United States have trouble using their voices, signifi-

cantly impacting their quality of life [2]. Those who frequently use their voice professionally, such

as teachers, are at a significantly higher risk of having voice disorders [3]. Though many advances

in understanding voice production and clinical treatment have been made over the years, much

regarding the fundamental physics of voice production is still unknown. Improved understanding

of how the deformation of vocal fold tissue leads to voice production and the development of tools

for studying the voice can lead to better prevention, diagnosis, and treatment of voice disorders.

1.1.1 Larynx Anatomy and Function

Speech production is often described as a source-filter model. Sound originates with rapid

oscillation of the vocal folds in the larynx, which serves as the acoustic source. The vocal tract,

including oral and nasal cavities, functions as a linear acoustic filter. Vocal folds are located in

the anterior neck, approximately posterior to the Adam’s apple. Figure 1.1 shows a coronal and

sagittal view of the vocal tract and larynx, and a transverse view at the level of the abducted

(open) vocal folds. The space between the vocal folds is the glottis. The portion of the airway

superior to the glottis is the supraglottis, and inferior to the glottis is referred to as the subglottis.

1



Figure 1.1: Saggital (left) and coronal (middle) views of the vocal tract and larynx, with a trans-
verse view at the level of the glottis (right) (adapted from Gray’s Anatomy of the Human Lar-
ynx [1]).

Pressure in the lungs from the diaphragm induces air flow through the trachea into the larynx,

where the vocal folds are located. During phonation (voicing), the vocal folds are brought together

medially, inhibiting the flow of air. As air pressure builds on the inferior side of the vocal folds,

they are forced apart, creating a burst of air flow until they are brought back together by elastic

forces within the larynx and decreased pressure caused by the increased air velocity, completing

the glottal cycle. This periodic, self-oscillation occurs on the order of hundreds of times per second

and creates pressure fluctuations that are filtered as they travel through the vocal tract to create the

sound heard during phonation.

Geometry and material properties of vocal folds significantly affect vibration and are de-

scribed here. Vocal folds are composed of multiple layers of tissue with vastly different material

properties, as shown in Figure 1.2. The most medial layer is the epithelium, which is a very thin,

relatively strong tissue which functions to protect vocal folds from high stress during vibration.

It is composed of stratified squamous cells. The lamina propria consists of collagen and elastin

fibers, and is often divided into superficial, intermediate, and deep layers. Due to the increasing

density of collagen fibers, the lamina propria primarily increases in stiffness from extremely soft in

the superficial layer (often compared to the consistency of gelatin) to more stiff in the deep layer.
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Figure 1.2: Diagram of a coronal view of the vocal folds depicting the various tissue layers.

The thyroarytenoid (TA) muscle is also stiff and contributes to the tensioning and posturing of the

vocal folds for speech.

1.1.2 Vocal Fold Research

Investigators of voice production have used a variety of approaches to study vocal folds and

diagnose voice disorders. A brief introduction to each approach is given below to provide context

for the work presented in this thesis.

Clinical Methods

Several techniques are employed in the diagnosis of voice problems and disorders, includ-

ing electroglottography, stroboscopy, and high-speed endoscopy, as well as indirect methods in-

cluding acoustic and aerodynamic techniques [4]. These techniques are also used in voice research

to gain insight into vocal fold motion, and offer an incomparable degree of physiological reality

relative to other approaches. However, limited space and access to the larynx severely limits the

amount of information available from these tools. For example, direct imaging of the larynx is

generally limited to a two-dimensional superior view.

Ex vivo/In vivo Studies

Experiments with excised human or animal larynges provide information about the effect

of stimulation (e.g., muscle tension and air supply) on output conditions (e.g., dynamics, pressure,

flow, etc.) as well as access to additional views of the larynx [5]. While these experiments offer

3



greater fidelity than synthetic or computational models, they lack physiological influences present

in living conditions, such as complete neurological stimulation, vascularity, and mucosal secre-

tion. in vivo animal studies can provide some physiological influences, but can only be done with

animals, limiting the applicability to human vocal fold phonation. Access to larynx supply, vocal

fold tissue durability, and difficulty in obtaining reproducible results from a single specimen are

particular challenges in both in vivo and ex vivo experiments.

In vitro Studies

Experiments with synthetic models offer greater control and reproducibility while also ex-

hibiting more robustness than ex vivo/in vivo studies. Further, synthetic models eliminate the

challenges associated with experiments in once live tissue, such as procurement and disposal. In

vitro studies can also serve to validate numerical and mathematical studies. Kniesburges et al. have

provided a review of models used for in vitro studies, including self-oscillating vocal fold models

made of silicone [6].

Numerical and Mathematical Models

Numerical and mathematical models offer complete control over most factors influencing

vibration (e.g., geometry, flow characteristics, material properties), leading to easily parameterized

studies which can provide detailed information about the specific influence of each condition on

vocal fold vibration. Additionally, pressure, velocity distributions, flow rates, etc., can be examined

in great detail. They also complement in vitro studies, offering greater flexibility in changing

parameters such as geometry. However, idealized material and geometrical properties and the

difficulty in accounting for effects such as turbulence and acoustics limit the applicability of these

studies [7].

1.2 Research Objectives

This thesis is concerned with further understanding the vibratory motion of the vocal folds

during phonation. More specifically, it increases understanding of vocal fold geometry and me-
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chanical properties. The research presented in this work addresses several limiting aspects of the

approaches described above:

• In vivo imaging studies of human vocal folds are generally limited to two dimensions. This

research contributes to the development of a stereo-endoscope, capable of recording three-

dimensional motion.

• Excised canine larynges are difficult to obtain. This research explores the suitability of

porcine larynges as a model by comparing porcine vocal fold geometry with human and

canine geometry.

• Knowledge of vocal fold geometry is important for synthetic and computational modeling,

but accurate knowledge of geometry is difficult to obtain. This research describes the level

of distortion induced by freezing, an important step in obtaining information regarding vocal

fold geometry.

• Knowledge of the material properties of the materials used in synthetic modeling is important

for comparing between in vitro studies, as well as comparing to computational studies and

excised data. However, no Poisson’s ratio data for the silicone presently used in synthetic

models is presently available. This research provides a strain-varying Poisson’s ratio for

silicone.

By addressing these specific limitations, this work seeks to build upon the valued work of

others while furthering the work of future investigators in the voice community.

1.3 Thesis Overview

Characterization of Porcine Vocal Fold Geometry–Chapter 2

Five porcine larynges were scanned on a MicroCT scanner in a frozen state and at room

temperature. The three dimensional geometry was imported into CAD programs, and relevant

geometrical information was extracted using CAD tools and then further refined using a series of

custom MATLAB codes. The porcine geometry was compared to geometry of human, canine, and

commonly used synthetic model vocal folds. The effect of freezing on vocal fold geometry was
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also examined by comparing frozen and room temperature geometry. A variety of computer vision

techniques, implemented in MATLAB, were used to make the comparison.

Stereo-endoscope Validation–Chapter 3

The performance of a stereo-endoscope recording the superior surface of vibrating, syn-

thetic vocal fold models was evaluated. Two DSLR cameras and the stereo-endoscope simultane-

ously recorded the surface of vibrating vocal fold models. The location of specific points marked

on the surface were tracked through time. A Direct Linear Transformation (DLT) was used with

the DSLR cameras to obtain three-dimensional coordinates that were used as reference data to

evaluate the stereo-endoscope accuracy in each dimension.

Characterization of the Poisson’s Ratio of Silicone–Chapter 4

The Poisson’s ratio of silicone was measured as a function of strain. A range of silicone

samples, aimed to match the stiffness of the various layers of the vocal folds, were subjected to

a tensile load. Photos of the samples at varying strain levels were used to find the Poisson’s ratio

as a function of strain for the material, as defined by Smith et al. [8]. This information can be

used to more fully quantify the material properties of synthetic models and to thereby improve the

accuracy of numerical models.
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CHAPTER 2. QUANTIFICATION OF PORCINE VOCAL FOLD GEOMETRY1

2.1 Introduction to Porcine Geometry Research

In terms of the underlying physics of voice production, the manner in which the human

vocal folds respond to flow through the respiratory airway is primarily governed by the spatial

distribution of tissue layers of differing stiffness. Thus, two of the most important characteristics

of the vocal folds, from a mechanical point of view, are geometry and material properties. A few

specific examples include the following: First, geometry is needed to describe mass distribution,

which in turn plays an essential role in vocal fold vibratory characteristics. Second, the shapes of

the vocal folds’ medial surfaces define the shape of the glottal airway, directly influencing glottal

air flow. Finally, studies of vocal fold tissue material properties depend on geometric details for

interpretation since the spatial distribution of the stiffness of the various tissue layers is fundamen-

tally a geometric description.

Several studies have highlighted and characterized connections between vocal fold geom-

etry and voicing. For example, it has been shown that surgical geometric alterations can cause

significant change in voice quality [9, 10], that pre-phonatory glottal shape influences vocal regis-

ter and vibration [11], and that mathematical [12,13] and computational [14,15] models are highly

dependent on initial and boundary conditions (the latter of which, in particular, are directly tied to

model geometries). In addition, an understanding of vocal fold geometry is essential for develop-

ing and studying anatomically-accurate synthetic vocal fold replicas that exhibit realistic vibratory

responses and that thus have the potential to advance voice production research [16–18].

Considering these factors, it is apparent that accurate geometrical descriptions of the human

vocal folds are needed in order to develop a more complete understanding of the physics of voice

production, in addition to the clear surgical and clinical implications. Indeed, knowledge of both

1Accepted for publication: Stevens KA, Jette ME, Thibeault SA, Thomson SL. Quantification of porcine vocal
fold geometry. Journal of Voice.
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the geometry and material properties of vocal fold tissue is important for accurate model creation.

A significant amount of research has been done to quantify the material properties of the various

tissue layers [19–26]. A somewhat smaller, though important, body of work involving a variety of

methods to obtain vocal fold geometric data also exists, including that which is summarized below.

Casting techniques have been used to create detailed three-dimensional (3D) models of the

airway in the region of the vocal folds. Berry et al. [27] measured the medial surface geometry of

canine larynges using a lost wax technique, and Sidlof et al. [28] provided quantitative descriptions

of profiles along the medial surface for excised female human larynges using a plaster casting

technique. These studies have provided important quantitative information about the geometry of

the laryngeal lumen, although more data are needed to more completely quantify airway geometry

for a broader population. The casting technique is limited to providing information about the shape

of the medial surface and is not able to be used to quantify geometry of internal vocal fold tissue

layers.

Medical imaging modalities, such as X-ray, magnetic resonance (MR), and computed to-

mography (CT), have yielded vocal fold dimension and shape data, but have not yet been fully ex-

ploited to provide complete 3D geometrical descriptions. Agarwal et al. [29] used laminagraphic

tracings of the larynx to obtain dimensions of the vocal folds in one plane. Bakhshaee et al. [30]

described the use of CT scans to create a generic standard model of the laryngeal framework and

models of the airway, but no geometric descriptions were included (e.g., providing equations for

surface profiles or making 3D computer models available). Others have used CT imaging to study

conditions such as unilateral vocal fold immobility [31], paralysis [32], or post-surgical airflow

characteristics [33]. However, rather than reporting full 3D geometric descriptions, instead they

have provided basic geometric measures such as glottal area [33] or vocal fold length [31]. Pickup

and Thomson [18] created an MRI-based model of the vocal folds, and provided an equation for

the medial surface; however, this was only for one patient and no subglottic or supraglottic data

were included. In general, CT imaging is well-suited for quantifying geometry of the airway, car-

tilage, or bulk tissue, but it is not useful for distinguishing between soft tissue layers. MR has

potential for imaging soft tissue layers, but it has not yet been widely utilized for imaging vocal

fold layer structure because of challenges with spatial resolution and tissue distinction.
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Processing histological sections can yield information regarding the geometry of the vari-

ous vocal fold layers, but the technique is limited to two dimensions and often induces significant

tissue deformation. This approach appears to be the best option for generating layer geometric

descriptions, but a more in-depth knowledge of the geometrical artifacts induced by histologic

processing is required in order to rely on geometric data obtained by such methods. Traditional

histologic sample processing induces high levels of deformation. Various researchers have shown

that resection [34] and fixation in formalin [35] create significant artifacts in tissue geometry.

Johnson et al. [34] measured the change in linear dimensions from in situ to post resection, fix-

ation in 10% formalin, and slide preparation for tissue from canine labiobuccal mucosal margins

and tongue. They reported a change in linear dimensions of 20 to 40% for tissue resection, 8 to

10% change after fixation, and a further shrinkage of 2 to 10% during slide preparation. Kimura

et al. [35] compared the geometry in the mid-coronal plane of formalin-fixed and unfixed canine

larynges and found that significant shrinkage was caused by the formalin fixation and histological

processing. The most shrinkage was observed in the depth (medial-lateral direction) of the vocal

fold body, with around 42% shrinkage induced by fixation in formalin and less than 17% induced

from histological treatment. The depth of the vocal fold cover exhibited less shrinkage than the

body, with less than 20% shrinkage from fixation and less than 20% shrinkage in cover from his-

tological processing. Less shrinkage, on the order of 9% to 24% for fixation, was observed in the

thickness (inferior-superior direction), demonstrating the influence of direction on shrinkage.

In order to avoid the excessive shrinkage caused by fixation, Eckel and Sittel [36] snap

froze human larynges in liquid nitrogen and performed a morphometric analysis of the entire lar-

ynx based on horizontal sections. However, since freezing vocal fold tissue still induces some

expansion, accurate quantification of the expansion induced by freezing the tissue would enable

better approximation of actual vocal fold dimensions. Tayama et al. [37] began this process by

measuring the linear shrinkage that occurred in coronal sections of canine larynges. They snap

froze the larynges and then measured vocal fold depth and thickness as the larynges thawed in

saline. They found that freezing the tissue induced small changes in vocal fold length (< 2%),

depth (< 5%), and thickness (5 to 10%), and that thawed larynges returned to pre-freezing dimen-

sions.
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The first purpose of this chapter is to build on the work of Tayama [37] by quantifying

the expansion of the tissue in three dimensions, providing needed insight into multi-dimensional

effects of freezing on airway and vocal fold tissue geometry. It is intended as an intermediate step

towards a more complete quantitative description of the geometry of the vocal folds, which would

entail a three-dimensional description of all of the tissue layers. To obtain information regarding

the internal tissue distribution found in the vocal folds, either medical imaging capable of dif-

ferentiating between the layers or information obtained from histological processing is necessary.

However, medical imaging has not yet been demonstrated for vocal fold tissue layer distinction.

Though histological processing enables very high spatial resolution, since it induces deformation,

quantification of the deformation is necessary to obtain accurate geometry from histology. There-

fore, in this chapter, the three-dimensional-deformation induced by freezing tissue is quantified,

which is one step towards quantifying the overall deformation that results from histological pro-

cessing.

Animal modeling, particularly excised larynx studies, has been an important fixture in voice

production research. Though canine vocal folds have been the primary animal model for the study

of phonation, in some aspects of voice production, other animals may more closely model human

vocal folds. For example, it is known that significant differences do exist between porcine and

human vocal folds, such as the vibration of the superior folds in pigs, the incline of the porcine

vocal folds in the inferior direction (anterior aspect is more inferior than posterior), as well as

differences in phonation threshold pressure, subglottal pressure, sound pressure level, and Young’s

modulus [38]. Despite these differences, research has shown that for some situations porcine vocal

folds serve as a suitable model, especially those focusing on variations in pitch [38–41]. Jiang

et al. [41] observed that the thickness and structure of the vocal fold cover, overall vocal fold

stiffness, fundamental frequency, and range of phonation of a the pig most closely resembles that

of human when compared with those of a dog or deer. Alipour et al. [38] found that the frequency

range and non-linear stress-strain patterns of pigs most closely resembled those of human when

compared with dog, sheep, and cow. Garrett et al. [40] found that though the pig only has a two-

layer lamina propria, in contrast with the three-layer lamina propria of humans, the composition of

the superficial and deep layers are almost identical between the pig and human. Alipour et al. [38]

hypothesized that this similarity is what contributes to the large dynamic range in both species.
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(a)

(b)

Figure 2.1: Photographs of porcine Larynges 1 (a) and 2 (b).

In addition, the availability of porcine larynges is significantly more convenient than canine vocal

folds.

Notably, given the advantages of using porcine vocal folds as a model, quantitative descrip-

tions of porcine vocal fold geometry beyond length, depth, and thickness have not been reported.

In this chapter, additional aspects of porcine vocal fold geometry are quantified and compared to

canine geometry from Berry et al. [27], human geometry from Sidlof et al. [28], and other geome-

tries that have been used for vocal fold modeling purposes. Therefore, the second purpose of this

work is to quantify geometric aspects of porcine vocal folds relative to human vocal folds.

2.2 Methods

Five fresh porcine larynges (Figure 2.1) were obtained from a local abbatoir. Less than

six hours from procurement, all five larynges were placed in specimen bags and imaged with a

Siemens Inveon MicroPET/CT scanner using Inveon Acquisition Workplace (IAW) software for

data acquisition at the University of Wisconsin-Madison. The folds were in the resting position

and placed with the posterior larynx flat on the imaging bed of the scanner. After scanning, the

larynges were then frozen with isopentane cooled over liquid nitrogen in order to prevent cracking

and then rescanned. Voxel size for all scans was 0.1029 mm along each side, with the interrogation

region containing 992 voxels in each dimension.
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Figure 2.2: Sagittal view of porcine larynx (left) and computer rendering of segmented porcine
laryngeal airway (right).

The scans were then analyzed using two different methods. First, medial surface profiles

were extracted from the scans in order to compare porcine vocal fold geometry with other com-

monly used models. Second, tissue and airway volumes were analyzed to quantify the effects of

freezing the tissue on the geometry. These are described in detail below.

2.2.1 Medial Surface Profile

The laryngeal airway was segmented using ITK-SNAP [42] for both scans (room tempera-

ture and frozen). A sagittal section of the larynx and a segmented airway is shown in Figure 2.2.

The volumes were imported into computer-aided design (CAD) software packages (NX, Seimens

PLM Software, and ProEngineer Wildfire 3.0), and a profile of the medial surface of the vocal folds

was obtained by defining a reference plane perpendicular to both the sagittal plane and the vocal

folds, placed halfway between the anterior commissure and the vocal process, as shown in Fig-

ure 2.3. Note the porcine vocal folds are inclined inferiorly at about a 40◦ angle to the horizontal,

as described by Alipour et al. [39] and as can be seen in Figure 2.2, so this reference plane differs

somewhat from the human coronal plane that is typically used to characterize human vocal fold

medial surface profiles. The intersection data of the CAD geometry and the reference plane was

exported and converted into a series of points in a plane using custom MATLAB codes, yielding

medial surface profiles such as shown in Figure 2.3. Because the false or superior folds vibrate in

pigs [39], superior fold geometry was also reported.
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Figure 2.3: Medial surface profile (left) and airway CAD model rendering (right)

Figure 2.4: Manual registration of Larynx 1 at room temperature (left column) to Larynx 1 when
frozen (right column). The center column includes the overlap in yellow, the frozen tissue in green,
and the room temperature tissue in red. The three rows are the three orthogonal views of the larynx
that roughly correspond to the transverse, coronal, and sagittal planes. The yellow, red, and green
lines show the locations of the coronal, sagittal, and transverse planes, respectively.
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Figure 2.5: (a) Sample image from the transverse plane midway through the volume. These images
were imported into MATLAB and the tissue or airway segmented, as follows. (b) The edges of the
image were found using the method of Sorbel. (c) The border of the tissue was found automatically.
(d) The location of the edge of the tissue for all the images in that plane was used to select a
threshold, which was applied to all the images, and used to calculate the area of the tissue in that
slice. Further details regarding this procedure can be found in Appendix A.

2.2.2 Tissue and Airway Volume

The microCT scans were resampled in Analyze 8.1 (AnalyzeDirect, Inc.) such that the

voxel size was 0.218 mm along each side. The room temperature and frozen volumes were man-

ually registered to each other in Analyze using the Analyze 3-D Voxel Registration Tool. Since

the tissue expanded unevenly with freezing, the volumes were manually registered such that there

was an even amount of overlap across the larynx in all three directions as illustrated in Figure 2.4.

The registered volumes were then exported as a series of images in the transverse, sagittal, and

coronal planes. In MATLAB, the tissue was segmented from the surrounding air by thresholding

each image and the area of the tissue in each cross section was then calculated, as illustrated in

Figure 2.5.
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Figure 2.6: Left and right medial surface profiles of Larynges 1 through 5 (a through e, respec-
tively) at room temperature.

2.3 Results and Discussion

2.3.1 Medial Surface Profile

The medial surface profile for each larynx was obtained and analyzed. Figure 2.6 contains

the left and right sides of the profiles superimposed on each other for each of the five larynges at

room temperature. The horizontal axis corresponds to the sagittal plane, from inferior to superior.

The vertical axis denotes medial to lateral sense. A degree of natural asymmetry on the order of

10 to 30% between the left and right sides is manifest.

In order to account for size variations between samples, profiles from each larynx were

normalized relative to a characteristic height (the average distance from the most superior point

to the middle of the laryngeal ventricle) and a characteristic width (the average distance from the

sagittal plane to the most lateral edge of the laryngeal ventricle), and are plotted in Figure 2.7a
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for the room temperature larynges and Figure 2.8a for the frozen larynges. The average of the

profiles with one standard deviation above and below the mean for the room temperature and

frozen larynges, respectively, is shown in Figures 2.7b and 2.8b. It should be noted that the

superior edges of the superior folds were located at several different positions, due to the fact that

the length of the larynges was normalized relative to the distance from the most superior point to

the middle of the laryngeal ventricle and the height of the superior folds varied between individual

samples. Therefore, the slope of the superior edge of the superior fold is lost in the averaged

profile. One interested in the shape of the superior folds can refer to the shape of the individual

profiles. The normalized, average profile from the room temperature larynx could be used in vocal

fold modeling. Since the shape is not able to be readily described by an equation, the data will

be made available in the on-line data repository at www.larynxdata.org. The averaged profiles

from the room temperature and frozen scans are shown together in Figure 2.9. No consistent

variation in either the medial-lateral or inferior-superior direction is evident, other than the fact

that the room temperature inferior folds were not all fully adducted in the mid-membranous plane.

However, it is clear from the standard deviation plots in Figures 2.7 and 2.8 that distortion was

introduced by freezing the tissue. Tayama et al. [37] measured canine vocal fold geometry in the

mid-membranous coronal plane at various stages of thawing after quick freezing. They showed

that the frozen tissue expands by about 5% and returns to within 1 to 2% of pre-frozen dimensions

with thawing. This is comparable to the level of distortion seen in the present study.

The medial surface profiles from one of the room temperature larynges at locations other

than the mid-membranous section are shown in Figure 2.10; profiles correspond to planes offset

2 mm anterior and posterior to the mid-membranous profile, as denoted in Figure 2.10a. Slight

variation of the porcine vocal folds can be seen, but in general the shape of the vocal folds is

similar in the anterior-posterior direction. Even though the vocal folds are inclined inferiorly, there

is little variation in the direction of the length of the folds. The ability to neglect variation in the

third dimension significantly simplifies modeling the shape of the vocal folds for computational

and experimental studies.

The averaged profile obtained from the porcine folds at room temperature is compared with

data obtained by other researchers and two models in Figure 2.11. Berry et al. [27] provided an

equation for the surface profile of canine larynges, and the profile shown here corresponds to the
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Figure 2.7: (a) Average of left and right medial surface profiles of the five room temperature
larynges, normalized. (b) Mean profile (solid line) of all five larynges, including left and right
sides, and envelope corresponding to plus and minus one standard deviation (dotted line).

Figure 2.8: (a) Average of left and right medial surface profiles of the five frozen larynges,
normalized. (b) Mean profile (solid line) of all five larynges, including left and right sides, and
envelope corresponding to plus and minus one standard deviation (dotted line).

profile midway between the anterior and posterior sides of the surface. Sidlof et al. [28] reported

data for two female human larynges, and the data shown here is the mid-membranous coronal

section from their specimen labeled Larynx 8 when it was positioned for phonation at 148 Hz.

The Agarwal et al. [29] data is for human false fold geometry obtained from coronal laryngeal

laminagrams near the midmembranous location of the vocal fold length; the combined mean data

for non-singers is shown. The shape of two models is also included: the commonly used M5 model

from Scherer et al. [43] and a recent variation of the M5 model, used by Murray and Thomson [16],

the primary variation being a larger inferior glottal radius. This latter model is referred to as the

EPI model (due to the inclusion of an epithelial layer in the model).
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Figure 2.9: Mean frozen (dashed line) and room temperature (solid line) profiles

All models and vocal fold data are qualitatively similar, although some significant quanti-

tative differences existed. The porcine mid-membranous profile from the present study is similar

to other commonly used models of human vocal folds and the EPI profile is remarkably similar to

the canine data of Berry et al [27]. Differences can be seen in the inlet and exit radii and the slopes

of the inferior regions. The data of Sidlof et al. [28] exhibited notable differences compared with

that of the others, possibly because the larynx was from a female and/or due to the folds having

been postured for phonation prior to casting. More data are clearly needed in order to accurately

quantify vocal fold geometry, including the vast individual variations that are known to occur.

2.3.2 Tissue and Airway Volume

The changes in tissue and airway area in all three dimensions due to freezing are here

reported and discussed. Plots of area at each transverse cross section along the inferior-superior

direction for the room temperature and frozen larynges are shown in Figure 2.12. In this plane the

tissue generally seems to expand when frozen.

The percent difference in area between the room temperature and frozen larges at each

cross section for each of the five larynges is shown in Figure 2.13. The difference is on the order

of 5%, but none of the larynges exhibit a uniform level of expansion at each cross section.

The tissue volume was calculated by summing all of the areas from all of the cross sections,

and the changes in volume between the room temperature and frozen larynges were calculated; see

Table 2.1. All changes are positive, meaning that the tissue expanded, as would be expected. The

average change in volume for all the larynges was 5%, but as shown in Figure 2.13, the expansion
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(a)

(b)

Figure 2.10: (a) Location of planes anterior and posterior to the mid-membranous plane. (b)
Profiles from three planes: 2 mm anterior (dashed lines), mid-membranous (solid lines), 2 mm
posterior (dotted lines).

is not uniform throughout the volume. Therefore, one cannot predict a change of 5% in any given

dimension, even if it lies in the transverse plane.

The area of each airway is shown in Figure 2.14. Note that the areas of the secretory

laryngeal gland ducts or other sinus ducts were not considered. The distortion in the geometry

caused by freezing is much less uniform. For example, in some places the airway constricted due

to inward displacement of the tissue, while in other places the airway was enlarged.

Figures 2.15 and 2.16 show the area of the tissue at cross sections in the sagittal and coronal

plane, respectively, along with the area of the airway. No consistent changes in area between room

temperature and frozen specimens are observable. The tissue expansion in the transverse plane is
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Figure 2.11: Medial surface profile from present study along with profiles from human and canine
data as well as with models from other studies.

accompanied by non-uniform distortions in the other areas. Given the wide variety of tissue types

present in the larynx, including cartilage, muscle, and soft tissue, each of which would likely tend

to expand differently when frozen, such variation is not surprising. It is therefore evident that no

generalizable description of the expected direction of distortion in a single coronal cross section

can be given, which is unfortunate given that a single coronal cross section of the vocal folds

provides the most detail regarding the distribution of the internal layers of the vocal fold tissue.

However, the present data do provide some idea of the degree of distortion that could be expected.

The data in Table 2.1 suggest that freezing can be expected to cause distortion on the order of five

percent.
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Figure 2.12: Area of the tissue in the transverse plane for each of the five larynges (a through
e), including room temperature (solid lines) and frozen (dashed lines). The horizontal and vertical
scales of plots (a) through (d) are the same as those denoted by the axis labels in plot (e).
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Figure 2.13: Normalized difference between room temperature and frozen larynges. The numbers
1-5 in the legend denote which of the five larynges.

Table 2.1: Percent change in volume between room temperature and frozen larynges.

Larynx % Volume Change
1 4.6
2 5.1
3 4.4
4 4.5
5 3.0

Mean 4.5
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Figure 2.14: Cross-sectional area of the airway in the transverse plane for each of the five larynges
(a through e) when the tissue was at room temperature (solid lines) and frozen (dashed lines).
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Figure 2.15: Tissue (larger) and airway (smaller) areas (e.g., as illustrated in plot e) in the sagittal
plane for each of the five larynges (a through e), including room temperature (solid lines) and
frozen (dashed lines)
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Figure 2.16: Tissue (larger) and airway (smaller) areas in the coronal plane for each of the five
larynges (a through e), including room temperature (solid lines) and frozen (dashed lines).
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2.4 Conclusion

Despite the fact that the geometry plays such an important role in phonation, relatively little

quantitative information is available regarding the shape of the vocal folds, particularly that of the

internal layers. This is due to the challenge of obtaining such information-the difficulty associated

with obtaining sufficient spatial resolution in medical imaging and the distortion associated with

histological processing. The present work addresses one part of the challenge of obtaining accurate

geometrical information from histological processing by quantifying the overall three-dimensional

effect of freezing, one step in a common method of fixation shown to have less distortion, on tissue

geometry.

By comparing the medial surfaces at the mid-membranous section of the vocal folds, it

is shown that freezing does cause a geometrical distortion of the tissue, but not in a consistent

manner. Overall, the tissue experiences about a 5% change in volume in the entire larynx, but this

does not appear to cause consistent or uniform shrinkage or expansion in any one direction in the

region of the vocal folds.

The present work also quantifies the geometry of the medial surface of porcine vocal folds,

and compares it with human and canine vocal folds and various synthetic model geometric data.

The shape is similar to the other comparisons, though the porcine folds appear to be slightly thicker.

It is difficult to compare exactly since the human data was from females; thus more human geo-

metric data is needed for a more general comparison. Other obvious differences between porcine

and human vocal folds exist, such as the underlying tissue structure and the 40◦ downward angle

of the porcine folds, but otherwise it is evident that the geometry of porcine vocal folds is relatively

similar to that of canine and human vocal folds.

As model development and geometrical quantification of the vocal folds becomes more

sophisticated and extends into three dimensions, description of the vocal folds with drawings and

simple splines becomes quite limiting. Therefore, to facilitate access by other researchers, all

data described in this chapter will be made available at www.larynxdata.org, including the original

microCT scans and the curve describing the medial surface of the porcine vocal folds.

Though traditional medical imaging does not yet allow the differentiation of tissue layers,

the technology is continually improving and the future development of such capabilities seems

likely. The method outlined in this chapter to go from medical images to a 2D profile describing
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the geometry could be applied to obtain descriptions of the different tissue layers on excised human

larynges, and even to in vivo humans, once this level of detail becomes technologically feasible.

One obvious limitation of histological processing is that the excised tissue cannot be postured for

voicing in precisely the same way as that which occurs in vivo. Even when the vocal folds are

adducted via sutures or other means for phonation, the nerves controlling muscles activation are

not stimulated, thus geometry obtained in this manner is still only a limited representation of in

vivo conditions. The ability to posture the folds for speech is a major advantage of in vivo medical

imaging and will certainly be used in the future to obtain more accurate geometrical models of the

vocal folds. However, until that time, the methods described in this chapter can contribute to an

overall estimate of the accuracy of future geometries derived from histological section processing.

27



CHAPTER 3. VALIDATING A STEREO-ENDOSCOPE WITH A SYNTHETIC VOCAL
FOLD MODEL

3.1 Introduction

Stroboscopy and high-speed video endoscopy have been used for decades in both research

and clinical settings to gain insight into the dynamics of the vocal folds and to diagnose voice

disorders [44–46]. However, such tools are limited to providing information regarding glottal

movement in the transverse plane. Yet, information outside of that plane would be of benefit to both

clinicians and researchers, allowing the observation of left-right vertical asymmetry, measurement

of absolute lengths, and providing further insight into the motion of the mucosal wave, which has

been shown to be very important in phonation [47].

Various techniques have been employed to obtain three-dimensional information of the

vocal fold dynamics. Three-dimensional measurement of vocal fold vibration has been obtained

by observation of the medial surface of the vocal folds in a hemi-larynx setup, where half of the

larynx is removed to allow visual access to the medial surface. Such a technique is limited to

excised larynges, or at best in vivo canine [48–50]. Excised larynges lack the muscle activities

present in in vivo vocal folds, and the material properties of the tissue begins to change upon

excision. Although valuable insight into the motion of the mucosal wave is gained, this technique

cannot completely capture the dynamics of real human vocal fold vibration. Moreover, these

studies have attached small markers to the vocal folds in order to track their movement, which is

not possible with human subjects.

Non-invasive techniques with high-frame-rate ultrasound [51] or stroboscopic x-ray lami-

nagraphy [52] have allowed the observation of bulk motion; however, these techniques are not suf-

ficiently sensitive to capture detailed vocal fold surface movements. Other researchers have used

various optical techniques to augment traditional endoscopy systems to obtain three-dimensional

information [53–57]. Luegmair et al. used a high-speed camera and a laser projection system to
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reconstruct the surface of the vocal folds during vibration [57]. However, the technique has not

been applied to a real subject in vivo because a tedious and complicated calibration procedure is

needed every time the laser grid system is utilized. Furthermore, laser systems provide only point-

wise information and cannot trace the medial edge when it falls between the laser dots, rendering

the capture of surface dynamics, such as tracing the moving location of the medial edge, impossi-

ble. Optical coherence tomography (OCT) has also been utilized to reconstruct in vivo vocal fold

motion at a point [58]. The advantage of OCT methods is that it can penetrate into the vocal fold

tissue approximately 2 mm and show the movement of both the epithelium and underlying tissue.

Although triggered OCT has been successful in reconstructing three-dimensional displacement of

excised calf larynges, it requires scanning of the vocal fold tissue over many periodic cycles, and

artifacts can be introduced if the signal is not perfectly periodic [59].

The present work focuses on a stereo-endoscopic observation of the vocal folds as an al-

ternative approach to non-invasive three-dimensional measurements [60–62]. Stereo-endoscopy

provides two views of the larynx from different angles, enabling three-dimensional viewing of the

laryngeal structure. With its compact design, the stereo-endoscope has a relatively low impact

on articulators and controlling musculature of the vocal folds, thus enabling a natural vocaliza-

tion. Once the camera is calibrated, it does not require further adjustment between other measure-

ment devices, e.g., alignment of lasers or unique calibration for each subject. To recover three-

dimensional dynamics from the stereo-endoscopic measurement of vocal folds in vivo, Tokuda et

al. [53] and Sommer et al. [63] used stereo-matching, a widely developed technique in computer

vision research. They extracted quantitative information regarding vocal fold movement in three

dimensions. However, their work has not yet been extensively validated.

The purpose of the work described here was to evaluate the accuracy of the stereo-endoscopy

technique by comparing it with a standard stereo vision technique using two high-resolution cam-

eras. In a controlled environment, three-dimensional motion of a synthetic vocal fold model was

simultaneously recorded by the two imaging techniques and compared to evaluate the efficacy of

the stereo-endoscopy system.

Synthetic vocal fold models are ideally suited for the task of evaluating the stereo-endoscope.

Their motion is similar to the vibration of in vivo vocal folds, but their location outside of the lar-

ynx provided a more controlled environment and permitted the use of a secondary imaging system
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to evaluate the accuracy of the stereo-endoscope. Without limitations on the size or location of

cameras, the secondary imaging system was able to have a much higher resolution and wider base-

line, making it more accurate than the stereo-endoscope. Because of this, the secondary imaging

system was considered “ground truth” in evaluating the stereo-endoscope. The accuracy of the

stereo-endoscope is heavily influenced by the distance from the imaging surface, but patient com-

fort often precludes ideal placement of the endoscope during an exam. However, synthetic models

allow for fixed and ideal placement of the endoscope. Additionally, models allow a controlled

lighting system without the spectral reflections commonly encountered in an in vivo environment.

Correspondence between left and right camera views is a major challenge encountered in using

stereo-vision inside the larynx. With models, tracking markers can be used, eliminating this chal-

lenge, as well as allowing precise comparison of points between the stereo-endoscope system and

the evaluating system. With many of the challenges of stereo-vision eliminated by the use of syn-

thetic models, the accuracy of the stereo-endoscope was more easily evaluated, thus providing

voice researchers a tool to study the three-dimensional vibration of the vocal folds.

3.2 Method

3.2.1 Experimental Setup

A synthetic vocal fold model was created, based on the geometry of Drechsel and Thomson

[64] and following the methods of Murray and Thomson [16,65]. Rather than using a commercial

release agent to prevent the silicone models from sticking to the rubber molds, a thin, precisely

sized sheet of plastic was adhered to the mold with vacuum grease to prevent the silicone from

adhering to the mold. A grid of black dots was painted onto the surface in order to match points

between recording systems, as shown in Figure 3.1. The model vibrated at an onset pressure of 0.74

kPa with a frequency of 108 Hz, comparable to that of Drechsel and Thomson [64]. The frequency

is comparable to that of human phonation [66], though the onset pressure is slightly higher than

human threshold pressure, as is common with many synthetic models [67]. The length of the

duct upstream from the vocal folds was 70 cm. Further details regarding the experimental setup

can be found in [68]. The vibrating surface of the model was recorded simultaneously with the

stereo-endoscope (Nagashima Medical Instrument Corporation) and two digital single lens reflex
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Figure 3.1: Grid of dots painted on the model to reduce error due to the correspondence problem.

Side View Top View

SLR cameras
Air Supply

Stereo-endoscope

Vocal Folds

Stereo-endoscope

Flash

SLR

Figure 3.2: The surface of the vocal folds was recorded simultaneously with two DSLR cameras
and the stereo-endoscope.

(DSLR) cameras (Nikon D5100) as shown in Figure 3.2. The two DSLR cameras with 105 mm

lenses (AF Micro Nikkor) comprised the secondary imaging system used to evaluate the stereo-

endoscope. The centers of the two DSLR cameras were approximately 20 cm apart and 60◦ apart.

The stereo-endoscope included two independent, ordinary, rigid optical systems with diameters of

4 mm, a fiber-optic light guide, an optical connector, a light source, and a camera [53,63]. The tips

of the optical systems house objective lenses with prisms designed for 70◦ oblique-angled view,

with a field angle of 40◦. The distance between the optical axes of the tips was 6 mm. The stereo-
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endoscope was attached to a CCTV lens with a focal length of 50 mm, which was connected to the

high-speed digital camera (Photron FASTCAM 1024PCI). The high-speed recordings were made

at 10,000 frames per second with a shutter speed of 1/1,000,000 second. A flash (Bolt VX-760N)

was used to synchronize timing between the two imaging systems. While the stereo-endoscope

was recording, the shutter on both DSLR cameras was opened, the flash was fired at 1/8 power,

and the shutters were closed. The camera settings and ambient lighting were adjusted such that

only the light from the flash was visible in both systems. As described in Chapter 1, the vocal folds

vibrate in a periodic manner, creating a glottal cycle. The phase of the glottal cycle is referred

to as φ , where the zero phase corresponds to maximum glottal pressure. Because the vibration is

periodic, images of vibrating folds were captured over the course of hundreds of glottal cycles.

As long as the phase is known, images from different glottal cycles can be compared as if they

came from the same cycle, negating the need for high speed imaging in the secondary imaging

system. However, even though the vibration was periodic, it should be noted that the images from

the two imaging systems were both recorded at the same instant due to the fact that the model was

illuminated by the flash.

3.2.2 Stereo-endoscopy System

A representative stereo-endoscopic image from the high-speed camera is shown in Fig-

ure 3.3. Additional details regarding the three-dimensional reconstruction of coordinates from this

system can be found in [53]. Pixel-based coordinates x and y are defined, with the origin located at

the top left of the stereo image. With respect to a feature point indicated by diamonds in both left

and right images, the main parameters needed to recover its three-dimensional location are their

vertical distance, DV , and horizontal distances, DL and DR, from the corresponding center of the

optical field (circles). Locations of the center of the optical field, (xLC,yLC) and (xRC,yRC), in left

and right images are determined through calibration, and they remain constant for a given optical

set-up. Note that lowercase coordinates x and y correspond to pixel locations in the image, whereas

uppercase coordinates X , Y , and Z represent physical dimensions relative to the endoscope probe

head as defined in Figure 3.4. X and Y are in the plane normal to the stereo-endoscope and Z is

orthogonal to that plane. In terms of physiological coordinates, X is in the medial-lateral direction,

Y is in the anterior-posterior direction, and Z is in the inferior-superior direction. Given the pixel
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Figure 3.3: Representative image from the stereo-endoscope.

Figure 3.4: Photograph of the stereo-endoscope

coordinates of the feature in the left and right images, (xL,yL) and (xR,yR), the quantities DL, DR,

and DV are given by:

DL = xL− xLC, (3.1)

DR = xR− xRC, (3.2)

DV = yLC−0.5(yL + yR). (3.3)
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The left-right disparity is defined as ∆ = DL−DR. The Cartesian coordinates of the feature point

are then estimated as:

Z̃ = 1/(k1∆+ k2), (3.4)

X̃ = k3Z̃DL + k4, (3.5)

Ỹ = k5Z̃DV + k6, (3.6)

where the constants k1 through k6 are calibrated for a given optical set-up. Equation 3.1 is, in

general, valid for an idealistic situation. To account for optical distortion inherent in the lens and

camera systems, a modified version of Equation 3.4 having higher-order polynomials is used, as

follows [53]:

Z̃ = 1/(k1[∆+ c1D2
L + c2DL + c3D2

v + c4Dv]+ k2). (3.7)

The calibration constants {ki} and {ci} were optimized for the current camera setup with the

following procedure. Images on a Cartesian graph paper with a grid of 5 mm by 5 mm were

captured at distances ranging from Z = 32 mm to Z = 52 mm. At each distance, the X-, Y -, and

Z-coordinates of the grid points with known dimensions DL, DR, and DV were obtained. The

calibration constants were then determined by the least squares method to best fit the data. The

average calibration errors were 〈|X− X̃ |〉= 0.11 mm, 〈|Y −Ỹ |〉= 0.088 mm, and 〈|Z− Z̃|〉= 0.18

mm in X-axis, Y -axis, and Z-axis, respectively, where 〈·〉 denotes averaging over all calibration

points. The average calibration error in all three dimensions was 〈
√
(X− X̃)2 +(Y − Ỹ )2 +(Z− Z̃)2

〉 = 0.27 mm.

3.2.3 DSLR System

The image space for the DSLR system was calibrated using a direct linear transformation

(DLT), as described by Abdel-Aziz and Karara [69]. A checkerboard pattern (10 cm by 10 cm,

Fig. 3.5) was placed in view of both cameras, a picture was taken, and then the target was moved

forward manually 2 mm. The target was adhered to a block of aluminum, which was machined

to have square edges, and moved along a grid of Cartesian graph paper to ensure movement only
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Figure 3.5: Sample calibration image

in the inferior-superior direction. This was repeated six times. The centers of the white portions

of the checkerboard were found automatically using connected components, a common computer

vision technique. Appendix B further describes this procedure and contains the MATLAB code

used in the calibration.

Twenty-eight points were visible in the field of view of each image for a total of 196 cal-

ibration points. Calibration points from the left and right camera images are denoted as (uL,vL)

and (uR,vR), respectively, whereas the corresponding three-dimensional location is represented

by (X ,Y,Z). For all calibration points, the Moore-Penrose pseudo-inverse method determined

the DLT, which maps (uL,vL) and (uR,vR) to (X̂ ,Ŷ , Ẑ), the three-dimensional coordinates recon-

structed from the DSLR system. In order to ascertain the accuracy of the transform, the aver-

age error was calculated for all calibration points. The programs were written and executed in

MATLAB (MathWorks, Inc., V7.13 (R2011b)). Further details can be found in Appendix B. The

obtained errors were 〈|X − X̂ |〉 = 0.031 mm, 〈|Y − Ŷ |〉 = 0.016 mm, 〈|Z− Ẑ|〉 = 0.073 mm, and

〈
√

(X− X̂)2 +(Y − Ŷ )2 +(Z− Ẑ)2 〉= 0.0808 mm. This error represents the average amount that the

actual location of the calibration points differed from their location calculated using the transfor-
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mation. The error could come from inaccuracies in selecting the location of the calibration points

in the image, as well as from any error caused by not precisely moving the calibration target. Be-

cause the magnitude of the error in each direction was small, the calibration was deemed sufficient

to provide a ground-truth estimation of the location of any point within the calibration volume in

three-dimensions.

3.2.4 Application to Synthetic Vocal Fold Model

For each point in time, three-dimensional locations of the markers on the synthetic vocal

fold model were estimated as follows. In the stereo-endoscopy system, the locations of the corre-

sponding points were selected manually. To improve the accuracy, cross-correlation was computed

between the left and right images when selecting the corresponding points. A Gaussian 3-point

curve was fitted to the surface to achieve sub-pixel accuracy. The estimated three-dimensional lo-

cations of the points were then calculated by Eqs. 3.1-3.7. In the DSLR system, the locations of

the markers were automatically selected using connected components, as summarized below.

• Each image was converted to black and white with a user defined threshold and inverted.

• A filter was applied so that only the marker points remained in the image.

• The points were sorted such that they were always in the same order.

• MATLAB’s connected components algorithm was used to find the location and centroid of

each marker point.

The three-dimensional locations of the marked points were then computed using the DLT algo-

rithm. Appendx B contains additional details regarding the conversion to three-dimensional points

for both systems.

3.3 Results and Discussion

The coordinate spaces of the two systems, i.e., DSLR cameras and stereo-endoscope, were

shifted to the same origin and rotated to match the anatomical directions. Example images of the

SLRs and stereo-endoscope, along with the three-dimensional locations of the marker points from
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Figure 3.6: Image of the vocal fold model surface at φ = 92.6◦, taken with the (a) DSLR and
(b) stereo-endoscope and the (c,d) locations of the markers plotted in three-dimensions. Note the
different scales on the vertical axes.

the right vocal fold are plotted in Fig. 3.6. The locations of the marker points on the right side

of the vocal folds are plotted in Figure 3.7. The three-dimensional locations of the points were

compared using Eqs. 3.8-3.10 for the error in each direction and Eq. 3.11 (for the total error):

εX =
1
N

N

∑
i=1
|X̃i− X̂i| (3.8)

εY =
1
N

N

∑
i=1
|Ỹi− Ŷi| (3.9)

εZ =
1
N

N

∑
i=1
|Z̃i− Ẑi| (3.10)

εXY Z =
1
N

N

∑
i=1

√
(X̃− X̂)2 +(Ỹ − Ŷ )2 +(Z̃− Ẑ)2 (3.11)
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Figure 3.7: Locations of the marker points on the right vocal fold when (a) φ = 0◦, (b) φ = 43.5◦,
and (c) φ = 73.1◦. Note the different scales on the vertical axes.
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Here, (X̃i,Ỹi, Z̃i) and (X̂i,Ŷi, Ẑi) represent three dimensional location of the i-th marker estimated by

stereo-endoscopy and DSLR camera systems, respectively. The errors are summarized in Table 3.1

for four different images, taken at varying points in the periodic cycle of the vocal fold model

vibration.

Because of the differences in lighting between the left and right sides of the model, the two

sides were analyzed and summarized separately. The average error in the X- and Y -directions is

relatively small compared to the error in the Z-direction. This is not surprising, given the small

baseline between the cameras on the stereo-endoscope (6 mm). Such a small baseline is necessary

for the endoscope to be small enough for use in vivo. The error in the Z-direction also agrees quite

well with that calculated by Sommer et al. [63], in which average errors of 2.1, 2.0, and 0.74 mm

were reported for the three different subjects tested. The relatively low error in the measurement of

absolute distances in the transverse (X ,Y )-plane suggests that a potential application for the stereo-

endoscope would be to obtain measurements of distances in that plane, such as glottal length,

width, and area. It is impossible to measure absolute distances with a single camera without a

mechanism for calibrating, such as placing a ruler or object of known size in the same plane as the

measurements. However, the placement of such an object is very difficult in vivo. Even though the

absolute error in the inferior-superior (Z) direction is greater than in the transverse plane, stereo-

endoscopy may still provide useful information regarding the relative heights of features along the

surface of the vocal folds, as well as the surface movement during one cycle of the vocal fold

oscillation (e.g., [63]).

3.4 Conclusion

This chapter utilized a synthetic vocal fold model as an idealistic object to evaluate the ac-

curacy of stereo-endoscopy to make three-dimensional measurements. The results were compared

with those of two DSLR cameras, used as a secondary imaging system to provide a more accurate

geometrical description of the object. Reconstruction of the three-dimensional coordinates using

stereo-vision techniques is fraught with potential sources of error, including error from calibration

and correspondence. Typically, finding good correspondence between left and right images is the

most challenging aspect of three-dimensional imaging. This problem is compounded inside the

glottis; poor lighting, smooth, continuous, and monochromatic tissue surface, non-distinct edges,
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Table 3.1: Averaged estimation of error in each direction (mm) measured by distance between the
stereo-endoscope and DSLR cameras. The phase of the glottal cycle is indicated by φ , where the

zero phase corresponds to maximum glottal pressure.

Data # side Medial-lateral Anterior-posterior Inferior-superior Total # points
(X) (Y) (Z)

φ = 0◦ right 0.175 mm 0.232 mm 0.443 mm 0.599 mm N = 15
left 0.287 mm 0.280 mm 0.574 mm 0.778 mm N = 24

φ = 43.5◦ right 0.199 mm 0.254 mm 1.266 mm 1.366 mm N = 15
left 0.252 mm 0.347 mm 0.331 mm 0.575 mm N = 8

φ = 73.1◦ right 0.161 mm 0.229 mm 0.375 mm 0.530 mm N = 15
left 0.312 mm 0.245 mm 0.320 mm 0.583 mm N = 8

φ = 92.6◦ right 0.188 mm 0.183 mm 0.527 mm 0.636 mm N = 15
left 0.325 mm 0.284 mm 0.618 mm 0.815 mm N = 21

Mean 0.237 mm 0.257 mm 0.557 mm 0.735 mm

spectral reflections from the mucosa, etc. make finding good correspondence especially challeng-

ing. Sommer et al. [63] have focused on this part of the problem, significantly improving the

accuracy of the results. The present study focused on the triangulation aspect of the process, evalu-

ating the error that comes mainly from hardware limitation and calibration of the stereo-endoscope.

In order to significantly reduce any error due to correspondence between images, specific points

were marked on the surface of the vocal folds; this work focused on finding the location of those

specific points, rather than on a dense reconstruction of the entire surface.

In addition to reducing the correspondence challenge (matching locations in left and right

images) imaging synthetic models provided the ideal imaging situation. The images were recorded

an optimal distance from the stereo-endoscope to the surface of the vocal folds. In an in vivo envi-

ronment, optimal placement of the endoscope is rarely possible, and the challenges with correspon-

dence are still present. Such ideal conditions should be kept in mind when considering the present

results. By focusing on the hardware capability (i.e., sensitivity of the stereo lens and resolution of

the high speed camera) as the sources of error in the process of three-dimensional reconstruction,

the present results highlight the potential and limitations of the current stereo-endoscope, suggest-

ing directions for future development and areas in which the current endoscope may be of utility.

The fine precision of the absolute distance measurements in the transverse plane is of particular

note. Though further development might be needed before highly accurate information regarding
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the dynamics of the mucosal wave or of small features on the surface of the vocal folds can be

extracted from the present stereo-endoscope, stereo-endoscopy still could potentially be used to

measure absolute distances in vivo.

Imagawa et al. [70] applied stereo-endoscopy to estimate absolute glottal dimensions such

as the glottal width, length and area functions. For vocalization of a female subject (fundamental

frequency of 230 Hz), the maximal glottal length, width, and area were estimated as 7 mm, 2

mm, and 11 mm2, respectively. The averaged errors of 0.257 mm and 0.237 mm obtained in

the present study for the anterior-posterior and medial-lateral directions imply that the estimation

errors would be less than 4%, 12%, and 8% for the glottal length, width, and area, respectively.

Therefore, the present technique is of practical use for measuring the vocal fold dimension in the

transverse plane. Since the vertical range of the vocal fold movement is reported to be around 1.76

to 2.75 mm [49, 57], the averaged error of 0.557 mm in the inferior-superior direction is greater

than 30%. Not only is the stereo-endoscope is less sensitive in the inferior-superior direction,

but the scale of movement in that direction is smaller, making it insufficient to provide a reliable

estimate on the vertical dynamics with the present hardware. Further hardware improvements,

such as higher image resolution, brighter luminosity, and less optical distortion, would improve the

accuracy of the stereo-endoscope. Until such advancements in hardware are realized, future work

could include examining the spatial distribution of error, studying the error in absolute position

relative to the error in tracking a point’s displacement over time, or further theoretical study of the

stereo-endoscope algorithms to identify the largest sources of error.
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CHAPTER 4. POISSON’S RATIO OF SILICONE

4.1 Introduction

As described in Chapter 1, voice research entails a harmony of clinical, computational,

experimental, in vivo and ex vitro studies. One area in particular where cooperation is vital is

between the use of physical models and computational models, i.e., using physical models to vali-

date computational models and exploring how changing model parameters affects output [15, 18].

Knowledge of model material properties is crucial for this comparison. Recently, self-oscillating

silicone models have become popular for vocal fold experimental work [6, 16, 17, 64, 65, 71, 72].

A significant quantity of data regarding Young’s modulus [18, 65, 68, 72, 73] and limited data con-

cerning the rheological properties of silicone [16] is available, but to the author’s knowledge no

information on Poisson’s ratio specific to the silicone used in vocal fold modeling has been pub-

lished. Poisson’s ratio is an essential parameter for computational modeling; therefore, data re-

garding Poisson’s ratio would be beneficial. This chapter provides data from which a function for

strain-varying Poisson’s ratio is obtained for silicone frequently used in vocal fold experimental

studies that will enable computational modeling.

In addition to being used in computational model development, Titze [74] advocated that

Young’s modulus, rheological properties, and Poisson’s ratio are all important parameters that

govern vocal fold oscillation. Knowing how the Poisson’s ratio of silicone compares with that of

excised tissue could lead to the development of better models.

Traditional engineering materials have a Poisson’s ratio of 0.25 to 0.5. A perfectly incom-

pressible material would have a Poisson’s ratio of 0.5. For an isotropic material, it is theoretically

possible to have ratios from -1.0 to 0.5. However, recently, many new materials, including many

biomaterials [75], have been found to have directional ratios much higher than 0.5 due to their

anisotropic nature. It is well known that the Poisson’s ratio of rubber and rubber-like materials

is close to 0.5 [76, 77]. However, Smith et al. [8] showed that for highly deformable materials at
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large strains, Poisson’s ratio varies with strain; therefore, a strain-varying Poisson’s ratio model

is needed, and traditional calculation methods may not be applicable. This chapter includes a

brief review of relevant material property definitions followed by a discussion of several meth-

ods of calculating Poisson’s ratio. The Poisson’s ratio of silicone is calculated using each method

and compared, and a strain-varying function for the Poisson’s ratio of silicone is provided. The

nomenclature used by Smith [10] was adopted throughout the chapter.

4.2 Poisson’s Ratio Estimates

Poisson’s ratio, in general terms, is a ratio of the transverse to axial strain in a material. Any

definition of Poisson’s ratio depends on the definition of strain used. Strain is a relative measure

of deformation, i.e., it is the displacement of regions of a body normalized by a reference length.

Which definition of strain is used depends on the level of deformation induced in the material, as

described below.

Logarithmic, true, natural, or Hencky strain, ε log, of a specimen subjected to stress in-

duced deformation is a measure of the specimen’s extension relative to its instantaneous length.

Incremental strain is defined as

δε =
δ li
li
, (4.1)

where δ li is the change in length of a given line element to its current or instantaneous length, li.

The logarithmic strain is the integral of infinitely small incremental strains [78],

ε
log =

∫ li

lo

δ li
li
. (4.2)

The logarithmic strain takes into account the strain path and is the correct strain to use when the

deformation takes place in a series of increments.

Engineering, or Cauchy strain, e, is an approximation of logarithmic strain but is often used

in engineering practice for convenience. It is a measure of the extension relative to the original

length,

e =
li− lo

lo
, (4.3)
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where lo, is the original length. For small strains (<2%), such as those typically encountered

in traditional engineering materials like metals, engineering strain is very similar to logarithmic

strain. However, at large strains, the logarithmic strain, ε log, is preferred and for uniaxial strain is

often calculated from the engineering strain, e, using the output of strain gages:

ε
log = ln(1+ e). (4.4)

Smith [8] point out that a summative measure of strain (Eqns. 4.2 and 4.4) do not provide

a tangent value of the deformation and propose using the instantaneous true strain, ε int . They

consider the incremental strain proposed in the original definition of strain, and state that with

sequential experimental data, ε int could be calculated as

ε
int =

δ l
li

=
li− li−1

li−1
, (4.5)

where li−1 is the instantaneous length at the previous increment. For a sufficiently small step size

between data points, the summation of ε int equals ε log. Smith et al. [10] refer to the summation of

ε log as the total instantaneous true strain, ε tot :

ε
tot =

i

∑
1

li− li−1

li−1
. (4.6)

With the variety of definitions of strain available, corresponding definitions of Poisson’s

ratio are possible. The standard definition of Poisson’s ratio is

ν
log
xy =

−ε
log
x

ε
log
y

, (4.7)
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Figure 4.1: Sample image of the DS6a sample after measuring the length and width. Triangles
indicate the location of the edges used to calculate length; red and green points indicate the location
of the edges used to calculate width over time as the sample was stretched.

where y is the direction of applied strain and x is the orthogonal direction. Accordingly, using the

definitions of strain given in Equations 4.3, 4.5, and 4.6 one obtains the following Poisson’s ratios:

ν
eng
xy =

−ex

ey
, (4.8)

ν
int
xy =

−ε int
x

ε int
y

, (4.9)

ν
tot
xy =

−ε tot
x

ε tot
y

. (4.10)

Data calculated using each of the definitions of Poisson’s ratio are compared in this chapter.
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4.3 Method

Two types of silicone (three-part addition cure silicones, Ecoflex 00-30 and Dragon Skin,

from Smooth-on, Inc.) frequently used to fabricate self-oscillating vocal fold models [16–18, 65,

68,72,73] were tested. Equal amounts of parts A and B of the silicone were mixed together with a

thinning agent (Silicone Thinner, Smooth-On) to achieve varying degrees of stiffness; the addition

of more thinning agent creates softer silicone. Two sets of samples were prepared, which will be

referred to as sets (a) and (b). The type of silicone will be referred to as DS or EF, for Dragon Skin

or Eco-Flex, followed by a number indicating the ratio (by weight) of thinning agent to parts A

and B. For specific samples in this chapter, an (a) or (b) will be appended to indicate the data set

from which the sample came. For example, EF8a would be Ecoflex with one part A, one part B,

and eight parts thinning agent, and from the first set of data. The various mixtures of silicone are

commonly used to fabricate model layers that correspond to the tissue layers of the vocal folds.

For example, Murray [16] used DS1 in a layer representing the epithelium, EF9 in a cover, or

superficial lamina propria layer, EF4 in a ligament layer, and EF1 in a body layer.

The silicones were thoroughly mixed, vacuumed to remove air bubbles, poured into cylin-

drical molds (diameter 8.33 mm, 650 mm long), and baked in an oven for 30-45 minutes at 240-

250◦F then allowed to cool in the mold. The samples were cured to aluminum holders which were

used to mount the samples in a tensile test machine (Instron 3342). Most of the samples were

stretched from 0 to 40% strain, as measured by the Instron software, at a rate of 2 mm/min. The

EF6 and EF8 samples were so soft they were unable to support their weight without sagging exces-

sively at 0% strain; therefore they were stretched to 60 and 70 mm, respectively, prior to beginning

the tests, and stretched from approximately 10 to 50% strain during the tests. In order to compare

with the other silicone samples, the beginning of each EF6 and EF8 elongation test is reported as

if it were 0% strain in subsequent figures. During the extension, 65 pictures of the samples were

taken with a tripod-mounted DSLR camera (Nikon 5100).

The images were analyzed in MATLAB as follows. The upper and lower edges of the

sample, as indicated by triangles in Figure 4.1, were manually selected in the first frame. The

location of the lower edge remained in the same position throughout the test. The location of the

upper edge was tracked through time using cross-correlation as follows. A subset of the original

image, or a window, centered on the upper edge was cross-correlated with a window located in the
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Figure 4.2: (a) Window from previous image with edge marked. (b) Window from present image,
showing the location of the edge at the previous step and the present step. (c and d) The cross-
correlation with the peak, which indicates the location of the new edge, marked.

same position in the next image, as shown in Figure 4.2. The location where the cross-correlation

was a maximum was considered to be the location of the edge in that image. The difference

between the location of the upper and lower edge was considered to be the length.

The width was measured by creating a vertically centered window, beginning approxi-

mately 20% of the way from the upper edge and extending to approximately 20% of the way from

the lower edge of the sample, as shown in Figure 4.3. This window was located in the vertical
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Figure 4.3: (a) Horizontal green lines indicate the location of the window used to find the width.
(b) Sample at the location of the window, after thresholding.

center so that the width would be measured at the same point along the length of the sample as it

was stretched; this was important because the degree of sagging of the EF6 and EF8 samples was

such that the width changed along the length of the sample. A threshold was applied to the window

from grayscale intensities to binary numbers, and the left and right edges of the sample were found

by searching across a row until a transition from black to white occurred. The width was taken

as the average difference between the left and right edges and was measured at 200 points, evenly

spaced along the length of the sample. This was done to minimize the effect of the rough edges of

the sample on the accuracy of the width. The average width was used as the width of the sample

in the subsequent strain calculations. The locations of the upper and lower edges (triangles) and

left and right edges over time can be seen in Figure 4.1. The MATLAB code used in the image

processing and to calculate Poisson’s ratio can be found in Appendix C.

4.4 Results and Discussion

4.4.1 Length and Width Measurements

Accurate measurements of the length and width of the sample were required in order to

calculate the axial and transverse strain in the sample, and thereby obtain Poisson’s ratio. The
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Figure 4.4: Length (a) and width (b) of one sample before and after smoothing.

measured length and width were nearly linear, and little noise was present; in an attempt to further

reduce experimental noise, a linear regression was performed on the points, smoothing the length

and width, as shown in Figure 4.4.

4.4.2 Poisson’s Ratio

Poisson’s ratio was calculated according to Eqns. 4.3-4.9 for the original and smoothed

data. Despite the smooth appearance of the original data, the linear regression had a large effect

on the Poisson’s ratio, as can be seen in Figure 4.5 for DS1a. Poisson’s ratio calculated with en-

gineering or Cauchy strain has a constant value of approximately 0.4 for ν
eng
xy , whereas with the

original, or non-smoothed data ν
eng
xy decrease to approximately 0.4. The true and total instanta-

neous Poisson’s ratios, ν
log
xy , ν tot

xy are nearly indistinguishable in both cases, as observed by Smith

et al. [8]. However, they have a nearly constant value of about 0.5 with the non-smoothed data,

whereas the value increases gradually for the smoothed data. The instantaneous strain, ν int
xy is very

sensitive to experimental noise, which Smith et al. [8] saw in their data as well. In the smooth case,

ν int
xy increases with strain at a much higher rate than any of the other strains. Similar trends were

observed across all samples.
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Figure 4.5: Poisson’s ratio calculated four different ways, before (a) and after (b) smoothing. The
legend is the same for (a) and (b).

4.4.3 Comparison Between Types of Silicone

In order to compare samples, an appropriate definition of Poisson’s ratio must be selected.

For the present data, ν int
xy was often greater than 0.5, which is impossible for isotropic materials.

Smith et al. [8] found that ν int
xy best captured abrupt changes in the gradient of the strain. Such

behavior can occur for auxetic (expanding laterally when stretched, yielding a negative Poisson’s

ratio) materials. However, in the case of the present data, since the silicone displayed linear strain

behavior, it seems that the more traditional definition of strain and Poisson’s ratio would be more

appropriate. Accordingly, ν tot
xy is shown for all the samples tested in Figures 4.6 and 4.7. With the

exception of the EF8 samples, there was fairly good agreement (< 2.6% difference) between the

samples created from the same type of silicone, as can be seen in Figure 4.6. It is not surprising that

EF8 would not have very consistent data since it was so soft that it sagged excessively and offered
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Figure 4.6: Comparison of ν tot
xy between sets (a) and (b), showing the repeatability of the measure-

ments. Set (b) is a duplicate of set (a).

very little resistance to elongation. It is questionable whether a tensile extension test even applies

for such a soft material. However, despite this, both sets of EF8 follow the same trend as the other

samples, and while the y-intercept of the curve may be uncertain, it is apparent that even this very

soft silicone behaves similarly to the other types. In all cases, Poisson’s ratio increases with strain.

There appears to be no consistent variation in Poisson’s ratio with type of silicone, though there is

a strong variation with strain, as is apparent from Figure 4.7. For the type of silicone tested in this
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Figure 4.7: Poisson’s ratio, ν tot
xy , for the six types of silicone tested. (a) and (b) represent two

separate sets of data. Note that the average of all the samples is also plotted and represents the
behavior of the individual samples well.

study, reporting a single value for Poisson’s ratio is insufficient, and a strain-varying function is a

more appropriate metric.

4.4.4 Poisson’s Ratio Function

All of the samples except EF8a and EF8b were used to create a single strain-varying func-

tion for Poisson’s ratio. The total instantaneous true strain, ν tot
xy , of all the samples were fit to a
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second order polynomial and averaged together, and the averaged curve can also be seen in Figure

4.7. A second order polynomial was fit to the averaged curve to create a strain-dependent Poisson’s

ratio, as follows:

ν
tot
xy = 0.22(ε log

y )2 +0.26ε
log
y +0.38 (4.11)

The polynomial fit the averaged curve so well that it was indistinguishable from the original curve

and is not shown. Equation 4.11 deviates from the original data by less than 3%. Equation 4.11

can be used to estimate Poisson’s ratio as a function of strain for Dragon Skin or Eco-Flex 00-30

silicone from Smooth-On for mixture ratios of 100-600% silicone to thinning agent. Given the fact

that changing the ratio of silicone to thinning agent did not significantly influence Poisson’s ratio,

it seems reasonable to apply this relation to silicone or similar materials outside this range, though

caution should be exercised beyond the reported range. Equation 4.11 can be used, for example, to

define Poisson’s ratio in computational models of vocal folds using silicone.

4.5 Conclusion

The present data indicate that Poisson’s ratio for silicone varies significantly with strain.

Therefore, a function for Poisson’s ratio as a function of the true strain is provided. This ratio

varies from 0.4 to 0.5 over a strain range of 0 to 35%. Alipour [79] measured the Poisson’s ratio of

human vocal fold tissue to be 0.57, thus the present silicone Poisson’s ratios are reasonably close,

at least at high strains, to those of vocal fold tissue during voice production. Until an anisotropic

material is used in physical models, the Poisson’s ratio of silicone reasonably approximates that of

human tissue.

4.5.1 Future Work

The present study measured Poisson’s ratio for a constant rate of deformation; since vocal

fold tissue is a viscoelastic material, exploration of the effect of varying strain rate on Poisson’s

ratio might be of interest. This is especially true for the softer varieties of silicone, which exhibit

significant viscoelastic properties. Furthermore, the samples were all prepared under similar con-
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ditions, particularly the step of curing in the oven. It has been observed that curing temperature

and time can affect the Young’s modulus of silicone; future work could involve exploring if curing

conditions affect the Poisson’s ratio as well.
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CHAPTER 5. CONCLUSION

5.1 A Mother’s Lullaby

The ultimate purpose for the analysis in this thesis is to increase understanding of the struc-

ture that allows mothers to sing their babies to sleep, Abraham Lincoln to deliver the Gettysburg

Address, and actors to entertain and inspire. The chapters in this thesis were intended to develop

knowledge that will allow voice researchers to better understand vocal fold dynamics. In Chapter

2, porcine vocal folds were shown to be qualitatively similar in shape to human vocal folds and

may thus constitute a suitable model. Further, the level of distortion freezing induces in laryngeal

tissue, which is relevant information for those doing histological processing of the vocal folds,

was quantified. In Chapter 3, the accuracy and potential applicability of a stereo-endoscope, an

imaging tool designed to provide three-dimensional information about the vibrating surface of in

vivo vocal folds, was explored. The stereo-endoscope was shown to be most accurate in the trans-

verse plane, and it is apparent that more development is needed before the stereo-endoscope can

provide clinically relevant information in the inferior-superior direction. In Chapter 4, a function

for a strain-varying Poisson’s ratio was provided for use in computer models and for comparison

with actual tissue. Such information has the potential to help voice researchers in their quest to

understand how the humans produce sound, like the sound of a mother’s lullaby.

5.2 Chapter 2: Quantification of Porcine Vocal Fold Geometry

In Chapter 2, the medial surfaces at the mid-membranous section of the vocal folds were

compared, showing that freezing does cause a geometrical distortion of the tissue, but not in a

consistent manner. Overall, the tissue experiences about a 5% change in volume in the entire

larynx, but this does not appear to cause consistent or uniform shrinkage or expansion in any one

direction in the region of the vocal folds.
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The geometry of the medial surface of porcine vocal folds was also quantified and com-

pared with human and canine vocal folds and various synthetic model geometric data. The shape

is similar to the other geometries, though the porcine folds appear to be slightly thicker. It is appar-

ent that more human geometric data is needed for a better comparison. Some obvious differences

between pig and human vocal folds exist, such as the underlying tissue structure and the 40◦ down-

ward angle of the porcine folds, but otherwise it is evident that the geometry of porcine vocal folds

is relatively similar to that of canine and human vocal folds.

Despite the fact that the geometry plays such an important role in phonation, relatively

little quantitative information is available regarding the shape of the vocal folds, particularly of the

internal layers. This is due to the difficulty associated with obtaining sufficient spatial resolution

in medical imaging and the distortion associated with histological processing. The present work

addressed one part of the challenge of obtaining accurate geometrical information from histological

processing by quantifying the overall three-dimensional effect of freezing, one step in a common

method of fixation shown to have less distortion, on tissue geometry.

Though traditional medical imaging does not yet allow the differentiation of tissue layers,

the technology is continually improving and the future development of such capabilities seems

likely. The method outlined in this chapter to go from medical images to a 2D profile describing

the geometry could be applied to obtain descriptions of the different tissue layers on excised human

larynges, and even to in vivo humans, once this level of detail becomes technologically feasible.

One obvious limitation of histological processing is that the excised tissue cannot be postured for

voicing in precisely the same way as that which occurs in vivo. Even when the vocal folds are

adducted via sutures or other means for phonation, the nerves controlling muscles activation are

not stimulated, thus geometry obtained in this manner is still only a limited representation of in

vivo conditions. The ability to posture the folds for speech is a major advantage of in vivo medical

imaging and will certainly be used in the future to obtain accurate geometrical models of the vocal

folds. However, until that time, the methods described in this chapter can contribute to an overall

estimate of the accuracy of future geometries derived from histological section processing.

56



5.3 Chapter 3: Validating a Stereo-Endoscope with a Synthetic Vocal Fold Model

In this chapter a synthetic vocal fold model was utilized as a test subject to evaluate the

accuracy of stereo-endoscopy to make three-dimensional measurements. The locations of specific

three-dimensional coordinates found using the stereo-endoscope were compared with locations

obtained using two DSLR cameras that constructed a secondary imaging system to provide a more

accurate geometrical description of the object. Using stereo-vision techniques to reconstruct three-

dimensional coordinates is prone to several potential sources of error, including error from calibra-

tion and correspondence. The error that comes mainly from hardware limitation and calibration

of the stereo-endoscope was evaluated. The error was low in the transverse plane, but high in the

inferior-superior direction. Therefore, it was concluded that stereo-endoscopy still could poten-

tially be used to measure absolute distances in the transverse plane in vivo. Further improvements,

such as higher image resolution, brighter luminosity, and less optical distortion, are awaited. Un-

til then, future work could include examining the spatial distribution of error, studying the error

in absolute position relative to the error in tracking a point’s displacement over time, or further

theoretical study of the stereo-endoscope algorithms to identify the largest sources of error.

5.4 Chapter 4: Poisson’s Ratio of Silicone

A strain-varying function for Poisson’s ratio was proposed for silicone, a material com-

monly used in vocal fold model making. The ratio varies from about 0.4 to 0.5 for strains from 0

to 35%, which is close to that of human tissue. The present study measured Poisson’s ratio for a

constant rate of deformation; since vocal fold tissue is a viscoelastic material, it would be of inter-

est to explore the effect of varying strain rate on Poisson’s ratio, particularly for the softer varieties

of silicone that exhibit viscoelastic properties. Furthermore, the samples were all prepared under

similar conditions, particularly the step of curing in the oven. It has been observed that curing tem-

perature and time can effect the Young’s modulus of silicone; future work could involve exploring

whether curing conditions affect the Poisson’s ratio as well.
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APPENDIX A. RELAVENT MATLAB CODE FROM CHAPTER 1

MATLAB was used calculate the volume of the tissue and airway. The CT images were

converted into tiffs in Analyze, then opened in MATLAB. The image was converted to black and

white using a threshold selected in PickThreshAuto.m, based off of the value at the edge of the air-

way. Connected components was used to find the area of the tissue or airway. ExtractAreaALL.m

runs the function PickThreshAuto and plots the results.

A.1 ExtractAreaALL.m

close all

clear all

clc

%% User input

temp='R';

Lnum=5;

if temp=='R'

colNum=Lnum*2-1;

else

colNum=Lnum*2;

end

orientation='trans';

%% Code:

filename=['F:\...\RotTiff\' num2str(Lnum) '\' temp num2str(Lnum) orientation];

limits=load('MASTERLIMITS.txt');

savename=['Anatomical ' temp num2str(Lnum) orientation '.txt'];

if strcmp(orientation,'trans')

mult=0;
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elseif strcmp(orientation,'sag')

mult=1;

elseif strcmp(orientation,'cor')

mult=2;

else

ERROR='TRUE'

end

start=limits(1+mult*15,colNum);

increment=1;

finish=limits(2+mult*15,colNum);

image2view=limits(3+mult*15,colNum);

T0=limits(4+mult*15,colNum);

Tf=limits(5+mult*15,colNum);

xlim0=limits(6+mult*15,colNum);

xlimf=limits(7+mult*15,colNum);

ylim0=limits(8+mult*15,colNum);

ylimf=limits(9+mult*15,colNum);

AW0=limits(10+mult*15,colNum);

AWf=limits(11+mult*15,colNum);

twoArea0=limits(12+mult*15,colNum);

twoAreaf=limits(13+mult*15,colNum);

twoAreaA=limits(14+mult*15,colNum);

twoAreaB=limits(15+mult*15,colNum);

%% find maximum value for the entire volume (for all slices)

for i=start:increment:finish

ImageName=[filename num2str(i,'%.4d') '.tif'];

im=imread(ImageName);

if ndims(im)>1

im=im(:,:,1);

end

im=double(im);

N(i)=max(max(im));

end

N=max(max(N));
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%% pick a point in the center of the airway

ImageName=[filename num2str(image2view,'%.4d') '.tif'];

im=double(imread(ImageName));

im=im/N;

figure, imshow(im), title('Shifted image. Pick point in airway')

[x y]=ginput(1);

figure

%% T for each image

for i=T0:Tf

ImageName=[filename num2str(i,'%.4d') '.tif'];

im=imread(ImageName);

if ndims(im)>1

im=im(:,:,1);

end

im=double(im);

im=im/N;

T(i-T0+1)=PickThreshAuto(im,x,y);

end

Tavg=mean(T);

Tstd=std(T);

newlist=[];

newlist2=[];

for i=1:length(T)

if T(i)>Tavg-std(T) && T(i)<Tavg+std(T)

newlist=[newlist T(i)];

end

if T(i)>Tavg-2*std(T) && T(i)<Tavg+2*std(T)

newlist2=[newlist2 T(i)];

end

end

T68=mean(newlist);

T95=mean(newlist2);

figure, plot(1:length(T),T,1:length(T),T68), xlabel('slice number'),
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ylabel('threshold used')

AAW=zeros(1,finish-start+1);

AAW2=AAW;

figure,

%% Calculate and Plot the area for all the images

for i=start:increment:finish

ImageName=[filename num2str(i,'%.4d') '.tif'];

im=imread(ImageName);

if ndims(im)>1

im=im(:,:,1);

end

im=double(im);

im=im/N;

imbw=im2bw(im,T68);

A(i-start+1)=sum(sum(imbw));

%% find the area of the airway

if i>AW0 && i<AWf

imbw=abs(imbw-1);

imbwc=imbw(ylim0:ylimf,xlim0:xlimf);

% imc=im(ylim0:ylimf,xlim0:xlimf);

stats=regionprops(logical(imbwc),'Area','PixelList');

AW=zeros(size(imbwc));

Alist=cat(1,stats.Area);

%find biggest area and set to zero (background)

if strcmp(orientation,'trans')

Alist(find(max(Alist)==Alist))=0;

end

%find next biggest area, add to Airway Area, add to plot, and set to zero

AAW(i-start+1)=max(Alist);

ConCompNum=find(max(Alist)==Alist);

list=getfield(stats(ConCompNum),'PixelList');

for j=1:size(list,1)

AW(list(j,2),list(j,1))=1;

end

Alist(find(max(Alist)==Alist))=0;
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AW2=AW;

AAW2(i-start+1)=AAW(i-start+1);

if (i>=twoArea0 && i<=twoAreaf) | | (i>=twoAreaA && i<=twoAreaB)

if length(Alist)>1 && max(Alist)>5

AAW2(i-start+1)=max(Alist)+AAW2(i-start+1);

ConCompNum=find(max(Alist)==Alist);

list=getfield(stats(ConCompNum),'PixelList');

for j=1:size(list,1)

AW2(list(j,2),list(j,1))=1;

end

end

end

else

imbwc=zeros(size(imbw));

AW=zeros(size(imbw));

AW2=AW;

end

subplot(2,1,1),imshowpair(AW,AW2,'montage'), title(['slice #' num2str(i) ' L:1 area,

R: 2 areas'])

subplot(2,1,2),imshowpair(im,imbw,'montage'), title('L: original image,

R: thresholded area')

if i>150 && i<170

% pause(.0000005)

% waitforbuttonpress

else

pause(.0001)

end

end

slicenum=start:increment:finish;

A and x=[slicenum' A' AAW2' padarray(T,[0 finish-start+1-length(T)],0,'post')'];

figure, plot(slicenum,A,slicenum,AAW,slicenum,AAW2), xlabel('slice'),

ylabel('Area in pixels')

save(savename,'A and x','-ascii')

volume=0;
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for i=start:finish

volume=volume+A(find(slicenum==i));

end

volume

sliderGUI(filename,start,finish,N,T68,xlim0,xlimf,ylim0,ylimf,AW0,AWf,twoArea0,twoAreaf,

twoAreaA,twoAreaB,orientation)

A.2 PickThreshAuto.m

function [ newT ] = PickThreshAuto(im,x,y)

%% edge finding

[Eim,T]=edge(im,'Sobel');

Eim=edge(im,'Sobel',T);

while Eim(round(y),round(x))==0

x=x+1;

end

%% do connected components on the edge image

L = bwlabel(Eim,8);

stats=regionprops(Eim,'PixelList');

ConCompNum=L(round(y),round(x));

list=getfield(stats(ConCompNum),'PixelList');

rows=[list(:,2)];

cols=[list(:,1)];

for j=1:length(rows)

Eim(rows(j),cols(j))=0;

end

%% put all the points that lie on the edges into list, plot histogram of the values,

take mode

both=im;

for i=1:length(rows)

Elist(i)=im(rows(i),cols(i));

both(rows(i),cols(i))=1;
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end

imshow(both), title('Edges picked super-imposed on original image')

pause(.01)

xvect=0:.01:1;

% figure, plot(xvect,hist(Elist,xvect)), title('Histogram of Values on the edges picked')

hold on

% plot(mean(Elist),0:140,mean(Elist)-std(Elist),0:140,mean(Elist)+std(Elist),0:140,

mean(Elist)-2*std(Elist),0:140,mean(Elist)+2*std(Elist),0:140)

hold off

% M(1)=xvect((find(hist(Elist,xvect)==max(hist(Elist,xvect)))));

M(2)=mean(Elist);

newlist2=[];

newlist1=[];

for i=1:length(Elist)

if Elist(i)>M(2)-2*std(Elist) && Elist(i)<M(2)+2*std(Elist)

newlist2=[newlist2 Elist(i)];

end

if Elist(i)>M(2)-std(Elist) && Elist(i)<M(2)+std(Elist)

newlist1=[newlist1 Elist(i)];

end

end

M(3)=mean(newlist1);

M(4)=mean(newlist2);

newT=M(2);

% M'

end
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APPENDIX B. IMAGE PROCESSING DETAILS FROM CHAPTER 3

B.1 Overview

MATLAB was used to calibrate the ground-truth system, reconstruct the three-dimensional

locations of the coordinates in both the ground-truth and stereo-endoscope systems, and to compare

the agreement between them. This appendix contains all the MATLAB code that was used. An

overview of the steps used is included below. See each section for more details.

B.2 Ground-Truth System Calibration

In order to calibrate the ground-truth system, 7 calibration images of a checkerboard target

were used. The calibration target was 2 mm apart in each image. The center of the white squares in

the calibration images are found. The direct linear transform between 2-D and 3-D space is found

using the Moore-Penrose pseudo-inverse method. The original calibration points are mapped into

3D space using this transformation and compared with the known points in order to obtain the

accuracy of the transformation.

• FindCalibrationPtsAuto.m–finds the calibration points in each image and saves them. Calls

on function getCalPts.m

• getCalPts.m–uses connected components to find each of the white squares in the calibration

image, then finds and returns the center of each. Calls on function ThreshSlider.m

• ThreshSlider.m–creates an image with a slider bar to help the user determine the appropriate

threshold to use to convert the images to black and white. A different threshold was required

for each calibration image because of poor lighting and spectral reflections.

• Calibrate.m–loads the calibration points, calculates the calibration matrices, then checks the

accuracy.
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FindCalibrationPtsAuto.m

% 1.) Allows the user to crop around the calibration images to crop the image such that

%all parts of the checkerboard pattern that should be used for calibration are included,

%excluding errant reflections on the edges.

%2.) The function calls a function, getCalPts, which returns the centroid of each

%white square in the calibration image.

% 3.) The user is allowed to accept or re-do the calculation of the centroids for each

%image.

close all

clear all

clc

%% User defined variables

N=28; %Number of points to find in each image

startL=242; %frame numbers of the left and right images

endL=248;

startR=257;

endR=263;

FileDirL=['F:/.../Left/'];

FileNameL=[' DSC'];

FileDirR=['/.../'];

FileNameR=FileNameL;

for i=startL:endL

ImageName=[FileDirL FileNameL num2str(i,'%.4d') '.jpg'];

imL=imread(ImageName);

[xnew, ynew] = getCalPts(imL,i);

% savename=['calibrationL' num2str(i)];

% save(savename, 'xnew', 'ynew')

U1((i-startL)*N+1:(i-startL)*N+N)=xnew;

V1((i-startL)*N+1:(i-startL)*N+N)=ynew;

end

save calibrationPoints7 16 L U1 V1
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close all

for i=startR:endR

ImageName=[FileDirR FileNameR num2str(i,'%.4d') '.jpg'];

imR=imread(ImageName);

[xnew, ynew] = getCalPts(imR,i);

U2((i-startR)*N+1:(i-startR)*N+N)=xnew;

V2((i-startR)*N+1:(i-startR)*N+N)=ynew;

end

save calibrationPoints7 16 R U2 V2

getCalPts.m

% The image is converted to black and white using an user specified

% threshold. The function ThreshSlider is used to assist the user in

% selecting the appropriate threshold. The white areas are found using

% connected components. Only areas greater than a certain threshold are

% used (to eliminate noise), then the centroid of the remaing areas is

% calculated.

function [xnew, ynew] = getCalPts(im,i)

happy=0;

while happy==0

areas=[];

listCen=[];

ThreshSlider(im,1)

T=input('Which threshold should be used?');

BW=im2bw(im,T);

imshow(BW); axis image; title(['Click on the upper left and lower right corners where

you would like to crop. You are on calibration target ' num2str(i)])

[x y]=ginput(2);

x=round(x);
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y=round(y);

BWcrop=zeros(size(BW));

BWcrop(y(1):y(2),x(1):x(2))=BW(y(1):y(2),x(1):x(2));

BWcrop=logical(BWcrop);

imbw = bwareaopen(BWcrop,3.4e4);

stats = regionprops(imbw,'Centroid');

cen= cat(1,stats.Centroid);

xnew=cen(:,1);

ynew=cen(:,2);

figure, imshow(imbw)

hold on

plot(xnew, ynew, '*')

hold off

%% rearrange so that the points are in the same order as the known matrix--------

[sortednewy,indy] = sort(ynew);

sortednewx = xnew(indy,:);

a=1;

b=0;

for r=1:7

a=1+b;

if rem(r,2)

b=a+3;

else

b=a+3;

end

[sortednewx(a:b) indx]=sort(sortednewx(a:b));

sortednewyShort=sortednewy(a:b);

sortednewy(a:b)=sortednewyShort(indx,:);

end

xnew=sortednewx;

ynew=sortednewy;

%% end rearrange-------------------

figure, imshow(im)
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hold on

plot(xnew,ynew,'*',xnew,ynew), title(['Press a key if you are happy, click the

mouse to restart this image. There are ' num2str(length(xnew)) ' points.'])

happy=waitforbuttonpress;

hold off

end

end

ThreshSlider.m

function ThreshSlider(im, calibrate)

hFig = figure('menu','none');

hAx = axes('Parent',hFig);

uicontrol('Style', 'slider', 'Value', .7, 'Position',[150 5 300 20], 'Callback',

@sliderCallback);

T=.7;

if calibrate==1

imbw=im2bw(im,T);

else

imbw=~im2bw(im,T);

end

imshow(imbw,'Parent',hAx), title('Choose threshold by using slider.')

function sliderCallback(hObject, evt)

T=get(hObject, 'Value');

if calibrate==1

imbw=im2bw(im,T);

else

imbw=~im2bw(im,T);

end

imshow(imbw), title(['Threshold: ' num2str(T)])

end
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Calibrate.m

%loads calibration points obtained using one of the FindCalibration codes and

%saves the L&R matrix, then checks the accuracy.

% error is calculated in mm

clear all

close all

clc

load calibrationpoints7 16 L.mat;

load calibrationpoints7 16 R.mat;

N=length(U1);

calcCen=1;

%% create the matrices of known points

% % Code for the 7/14 calibration

% knownX=[0 1 2 .5 1.5 2.5];

% knownX=[knownX knownX knownX knownX(1:3)];

% knownY=[];

% for i=0:6

% rowVect=ones(1,3);

% knownY=[knownY rowVect*i];

% end

%Code for the 7/16 calibration

knownX=[0 1 2 3 .5 1.5 2.5 3.5];

knownX=[knownX knownX knownX knownX(1:4)];

knownY=[];

for i=0:6

rowVect=ones(1,4);

knownY=[knownY rowVect*i];

end

knownX=knownX*6; %convert to mm
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knownY=knownY*3; %convert to mm

knownZ=[];

X=[];

Y=[];

for i=0:6

X=[X knownX];

Y=[Y knownY];

rowVect=ones(1,length(knownX))*i;

knownZ=[knownZ rowVect];

end

knownZ=knownZ*2; %convert to mm

knownY=Y;

knownX=X;

known=[knownX' knownY' knownZ'];

%% calibrate to find R and L

Fl=zeros(2*N,11);

gl=zeros(2*N,1);

Fr=zeros(2*N,11);

gr=zeros(2*N,1);

for i=1:N

Fl(2*i-1,1:3)=known(i,:);

Fl(2*i-1,4)=1;

Fl(2*i-1,9:11)=-known(i,:)*U1(i);

Fl(2*i,5:7)=known(i,:);

Fl(2*i,8)=1;

Fl(2*i,9:11)=-known(i,:)*V1(i);

gl(2*i-1,1)=U1(i);

gl(2*i,1)=V1(i);

end

L=inv(Fl'*Fl)*Fl'*gl;
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for i=1:N

Fr(2*i-1,1:3)=known(i,:);

Fr(2*i-1,4)=1;

Fr(2*i-1,9:11)=-known(i,:)*U2(i);

Fr(2*i,5:7)=known(i,:);

Fr(2*i,8)=1;

Fr(2*i,9:11)=-known(i,:)*V2(i);

gr(2*i-1,1)=U2(i);

gr(2*i,1)=V2(i);

end

R=inv(Fr'*Fr)*Fr'*gr;

save calibrationMatrix7 16 L R

%% check how good the calibration is

%find Q, q to get location of point

for i=1:N

Q=[

L(1)-L(9)*U1(i) L(2)-L(10)*U1(i) L(3)-L(11)*U1(i)

L(5)-L(9)*V1(i) L(6)-L(10)*U1(i) L(7)-L(11)*V1(i)

R(1)-R(9)*U2(i) R(2)-R(10)*U2(i) R(3)-R(11)*U2(i)

R(5)-R(9)*V2(i) R(6)-R(10)*V2(i) R(7)-R(11)*V2(i)

];

q=[

U1(i)-L(4)

V1(i)-L(8)

U2(i)-R(4)

V2(i)-R(8)

];

location(i,:)=inv(Q'*Q)*Q'*q;

end

% error=sum(sum(sqrt((known-location).ˆ2)))/(N*3);

errorInEachCoordinate=sqrt((known-location).ˆ2);

errorInEachPoint=sqrt(sum(errorInEachCoordinate.ˆ2,2));

averageError=sum(errorInEachPoint)/N;

figure,
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grid on

plot3(known(:,1),known(:,2),known(:,3),'*',location(:,1),location(:,2),

location(:,3),'*'), xlabel('x, mm'), ylabel('y, mm'), zlabel('z, mm'),

legend('known location of calibration points','location found with DLT from

calibration points')

B.3 Ground-Truth System Reconstruction

The location of the reference points in three dimensions was found with the script track-

dot3D.m.

1.) The location of reference points in each of the images was found using the script

getPts.m. Using a user-selected threshold, the images are converted to black and white. The loca-

tions of the reference points each image from the left camera is found using connected components.

2.) Once the centroid of the reference points are found in each image, they are converted

to three-dimensions using the mapping calculated in the calibration in the script DLT.m.

trackdot3D.m

%% trackdot3D--program that tracts the 3D position of 1 or more points in 3D using a DLT

% Before running this program, several other steps must be completed first.

% 1.) Find calibration points. Run the program FindCalibrationPtsAuto.m

% (or FindCalibrationPts.m--semi-automatic or manual or

%FindCalibrationSimple.m--manual only) to

% select and save the locations of known points in space.

% 2.) Find the calibration matrices L & R. Run the program Calibrate.m,

% which calulates and saves calibration matrices L and R based on the DLT

%algorithm.

% This program then loads calibration matrices L and R.

%

% Written by Kim Stevens, 6/25/14. Contact: kimst12@gmail.com for

% questions or comments

close all

clear all
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clc

startImageL=191;

startImageR=startImageL+15;

Npoints=24;

Name='M5 mark 3';

saveName=['/.../' Name 'L ' num2str(startImageL)];

saveName2D=['/.../2D' Name 'L ' num2str(startImageL)];

FileDirL=['/.../' Name '/'];

FileDirR=['/.../' Name '/'];

FileNameL=[' DSC'];

FileNameR=FileNameL;

TL=.78;

TR=.75;

f=500;

ImageName=[FileDirL FileNameL num2str(startImageL,'%.4d') '.jpg'];

imL=(imread(ImageName));

imshow(imL)

method=input('By hand? 1 for yes, 0 for no ');

if method

Npoints=input('How many points? ');

[xl, yl]=ginput(Npoints);

else

[xl, yl] = getPts(imL,0,'left',f);

end

ImageName=[FileDirR FileNameR num2str(startImageR,'%.4d') '.jpg'];

imR=(imread(ImageName));

imshow(imR)

method=input('By hand? 1 for yes, 0 for no ');

if method

Npoints=input('How many points? ');

[xr, yr]=ginput(Npoints);

else
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[xr, yr] = getPts(imR,0,'right',f);

end

%Put in clauses to ensure that there are the same number of points from

%the left and right images.

if length(xr)<length(xl)

im=imread('stop.jpg');

figure, imshow(im), title('You have more points from the left image than the right. Go

back and redo the left with fewer points.')

[xl, yl] = getPts(imL,i,'left',f);

end

if length(xr)>length(xl)

im=imread('stop.jpg');

figure, imshow(im), title('You have more points from the right image than the left. Go

back and redo the right with fewer points.')

[xr, yr] = getPts(imR,i,'right',f);

end

save(saveName2D, 'xl', 'xr', 'yl','yr')

%% convert points to 3D real space

% make sure you run the findcalibration function first, which gets the

% calibration points and saves them. Then run calibraionMatrix to get L & R

load calibrationMatrix7 14.mat

location3D=DLT(xl,yl,xr,yr,L,R);

figure, hold on

for i=1:length(xl)

plot3(location3D(i,1),location3D(i,2),location3D(i,3),'*')

end

hold off

xlabel('x'), ylabel('y'), zlabel('z'), grid on

save(saveName, 'location3D')
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getPts.m

function [xnew, ynew] = getPts(im,i,LorR,f)

happy=0;

while happy==0

% image pre-processing

im=im(:,:,1);

figure(1), imshow(im), title(['Click on the upper left and lower right corners where

you would like to crop. You are on ' LorR ' image ' num2str(i+1)])

[x y]=ginput(2);

x=round(x);

y=round(y);

imcrop=uint8(ones(size(im)));

imcrop(y(1):y(2),x(1):x(2))=im(y(1):y(2),x(1):x(2));

% figure, imshow(imcrop), title('Cropped Image');

% imcrop=imadjust(imcrop);

% figure, imshow(imcrop), title('Adjusted Image');

ThreshSlider(imcrop,0)

T=input('Which threshold should be used?');

imbw=im2bw(imcrop,T);

% figure, imshow(imbw), title('black and white');

imbw=logical(imbw);

imbw=~imbw;

% get rid of specs and non-dots

imbw = bwareaopen(imbw,f);

figure(1), imshow(imbw), title('filtered. Click once to the right of each of the rows.');

stats = regionprops(imbw,'Area','Centroid');
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areas = cat(1, stats.Area);

cen= cat(1,stats.Centroid);

% get rid of largest area, which comes from the cropped edges.

cen(find(max(areas)),:)=[];

xnew=cen(:,1);

ynew=cen(:,2);

%% rearrange--the purpose of this is to make sure points from the left and right images

%are in the same order. You could do some kind of matching thing to get the same result.

col1=[];

col2=[];

col3=[];

[x2,y2]=ginput(2);

c1=x2(1);

c2=x2(2);

for j=1:length(xnew)

if xnew(j)>1 && xnew(j)<c1

col1=[col1; ynew(j) xnew(j)];

elseif xnew(j)>c1 && xnew(j)<c2

col2=[col2; ynew(j) xnew(j)];

else

col3=[col3; ynew(j) xnew(j)];

end

end

col1=sortrows(col1,1);

col2=sortrows(col2,1);

col3=sortrows(col3,1);

xnew=[col1(:,2); col2(:,2); col3(:,2)];

ynew=[col1(:,1); col2(:,1); col3(:,1)];

%% end rearrange-------------------

if strcmp(LorR,'left')

figure(3)

else

figure(4)
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end

imshow(imbw)

hold on

plot(xnew,ynew,'*',xnew,ynew), title(['Press a key if you are happy, click the

mouse to restart this image. There are ' num2str(length(xnew)) ' points.']), xlabel(['You are on ' LorR ' image ' num2str(i)])

happy=waitforbuttonpress;

hold off

if happy

% if length(xnew) > Npoints

skip=input('Enter any points you would like to skip. You may enter multiple

points, but separate them by a space, and list them from largest to smallest. ','s');

skip=str2num(skip);

for i=1:length(skip)

xnew(skip(i))=[];

ynew(skip(i))=[];

end

imshow(imbw)

hold on

plot(xnew,ynew,'*',xnew,ynew), title(['Press a key if you are happy, click the

mouse to restart this image. There are ' num2str(length(xnew)) ' points.']), xlabel(['You are on ' LorR ' image ' num2str(i)])

happy=waitforbuttonpress;

hold off

end

end

end

DLT.m

function [ answer ] = DLT(U1,V1,U2,V2,L,R)

%DLT converts x and y points in picture space from 2 cameras into 3D space

%using the calibration matrices L&R which are obtained from the Calibrate

%function

numpts=length(U1);

for i=1:numpts
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Q=[

L(1)-L(9)*U1(i) L(2)-L(10)*U1(i) L(3)-L(11)*U1(i)

L(5)-L(9)*V1(i) L(6)-L(10)*U1(i) L(7)-L(11)*V1(i)

R(1)-R(9)*U2(i) R(2)-R(10)*U2(i) R(3)-R(11)*U2(i)

R(5)-R(9)*V2(i) R(6)-R(10)*V2(i) R(7)-R(11)*V2(i)

];

q=[

U1(i)-L(4)

V1(i)-L(8)

U2(i)-R(4)

V2(i)-R(8)

];

locationpt(i,:)=inv(Q'*Q)*Q'*q;

end

answer=locationpt;

end

B.4 Stereo-endoscope Reconstruction

The location of the reference points in three dimensions was found with the script track-

dot3DStereo.m.

1.) The location of reference points in each of the left images manually because the resolu-

tion of the images and poor lighting prevented automatic selection as in the ground-truth system.

The location of each point in the left image is matched to the corresponding point in the right image

using a cross-correlation in XCorrPts.m. Sub-pixel accuracy is obtained by fitting a Gaussian 3-pt

curve to the cross-correlation.

2.) Once the centroid of the reference points are found in each image, they are converted

to three-dimensions using the script ReconstructStereoKS.m.

B.4.1 trackdot3DStereo.m

close all

clear all
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clc

Name='m5 d 116000001';

FileDir=['/.../' ];

saveName=[FileDir Name];

saveName2D=[FileDir '2D' Name];

SLR2DL='/.../2DM5 mark 2L 168';

SLR2DR='/.../2DM5 mark 2 168';

SLR Lim='/.../M5 mark 2/ DSC0168.jpg';

SLR Rim='/.../M5 mark 2/ DSC0183.jpg';

load(SLR2DL);

imshow(imread(SLR Lim))

hold on

plot(xl,yl,'*')

load(SLR2DR);

plot(xl,yl,'*')

hold off

% subplot(212), imshow(imread(SLR Rim))

% subplot(212), plot(xr,yr,'*')

% subplot(212), plot(xr,yr,'*')

f=25; %filter size--how small of areas do you want to not consider?

ImageName=[FileDir Name '.tif'];

im=(imread(ImageName));

method=1;

% method=input('By hand? 1 for yes, 0 for no ');

if method

Npoints=input('How many points? ');

figure, imshow(im)

title(['pick ' num2str(Npoints) ' on the left. (In the same order as the SLRs)'])

[xl, yl]=ginput(Npoints);

title(['pick the same ' num2str(Npoints) ' on the right, in the same order.'])
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[xr, yr]=ginput(Npoints);

[ Xint,Yint,X,Y ] = XCorrPts( im,xl,xr,yl,yr );

figure, imshow(im)

hold on

plot(xl,yl,'r*',xr,yr,'r*',Xint,Yint,'g*',X,Y,'b*'), legend('left', 'by

hand','matched','matched sub-pixel')

hold off

xr=X';

yr=Y';

else

[xl, yl] = getPts(im,0,'left',f);

[xr, yr] = getPts(im,0,'right',f);

end

save(saveName2D, 'xl', 'xr', 'yl','yr')

%% convert points to 3D real space

[Stereox Stereoy Stereoz]=ReconstructStereoKS([xl yl xr yr], zeros(2), zeros(2));

figure, plot3(Stereox,Stereoy,Stereoz,'*'),xlabel('x'), ylabel('y'), zlabel('z'),

grid on

save(saveName, 'Stereox', 'Stereoy', 'Stereoz')

B.4.2 XCorrPts.m

function [ Xint,Yint,X,Y ] = XCorrPts( im,xl,xr,yl,yr )

% User defined variables

intwindx=64; %choose the interrogation window size in pixels

intwindy=64;

xr=round(xr);

xl=round(xl);
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yr=round(yr);

yl=round(yl);

for i=1:length(xl)

imL=im(yl(i)-intwindy/2:yl(i)+intwindy/2,xl(i)-intwindx/2:xl(i)+intwindx/2);

imR=im(yr(i)-intwindy/2:yr(i)+intwindy/2,xr(i)-intwindx/2:xr(i)+intwindx/2);

phi=fftshift(ifft2( fft2(imL).*conj(fft2(imR))) ); %use here the cross correlation

%of the fft; but you could easily use something more simple

[npeakint,mpeakint] = find(max(max(phi))==phi);

%pick just one in case there are multiple peaks

npeakint = npeakint(1);

mpeakint = mpeakint(1);

%convert into x/y coord

xint=intwindx+1-mpeakint;

yint=intwindy+1-npeakint;

%calculate subpixel accuracy

mstar = (log(phi(npeakint,mpeakint+1)) -

log(phi(npeakint,mpeakint-1)))/(4*log(phi(npeakint,mpeakint)) -

2*log(phi(npeakint,mpeakint-1)) - 2*log(phi(npeakint,mpeakint+1)));

nstar = (log(phi(npeakint+1,mpeakint)) -

log(phi(npeakint-1,mpeakint)))/(4*log(phi(npeakint,mpeakint)) -

2*log(phi(npeakint-1,mpeakint)) - 2*log(phi(npeakint+1,mpeakint)));

mpeak = mpeakint + mstar;

npeak = npeakint + nstar;

%convert into x/y coord

x=intwindx+1-mpeak;

y=intwindy+1-npeak;

% figure,

% subplot(221), imshow(imL), title('left'), grid on

% hold on
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% plot(intwindx/2+1,intwindx/2+1,'r*')

% hold off

% subplot(222), imshow(imR), title('right'), grid on

% hold on

% plot(xint, yint,'g*',x,y,'b*')

% plot(intwindx/2+1,intwindy/2+1,'r*')

% hold off

% subplot(223), mesh(phi), xlabel('m'), ylabel('n'), shading interp

% hold on

% plot3(mpeakint, npeakint, max(max(phi)),'g*',mpeak,npeak,max(max(phi)),'b*')

% hold off

% subplot(224), axis square, pcolor(phi), xlabel('m'), ylabel('n'), shading interp

% hold on

% plot(mpeakint, npeakint, 'g*')

% hold off

%

% figure, surf(phi), xlabel('m'), ylabel('n'), shading interp

% hold on

% plot3(mpeakint, npeakint, max(max(phi)),'g*',mpeak,npeak,max(max(phi)),'b*')

% hold off

%convert back into global coordinates

Xint(i)=xint+xr(i)-intwindx/2;

Yint(i)=yint+yr(i)-intwindy/2;

X(i)=x+xr(i)-intwindx/2;

Y(i)=y+yr(i)-intwindy/2;

% figure, imshow(im);

% hold on

% plot(Xint(i),Yint(i),'g*',X(i),Y(i),'b*')

% hold off

% waitforbuttonpress

end

end

B.4.3 ReconstructStereoKS.m
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function [estimate Xp estimate Yp estimate Zp] =

ReconstructStereoKS(Iresult,coord l,coord r)

Nfeat=size(Iresult,1);

estimate Xp = zeros(Nfeat,1);

estimate Yp = zeros(Nfeat,1);

estimate Zp = zeros(Nfeat,1);

%%%%%%%%%%%%%%%%%%%%%%%

K1 = 3.19748609652514E-04;

K2 = -3.24774404879771E-03;

K3 = 1.71312215887679E-03;

K4 = -2.06852241297674;

K5 = 1.72418519136038E-03;

K6 = -5.08296987326447E-02;

C1 = 0.00014;

C2 = -0.0023;

C3 = 0.000062;

C4 = 0.0026;

LOriginX = 160.5;

LOriginY = 141;

ROriginX = 534;

ROriginY = 139;

cn = 1;

for n = 1:Nfeat,

XL = coord l(1,1)+double(Iresult(n,1));

YL = coord l(1,2)+double(Iresult(n,2));

XR = coord r(1,1)+double(Iresult(n,3));

YR = coord r(1,2)+double(Iresult(n,4));

DL = XL - LOriginX;

DR = XR - ROriginX;
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Dv = -((YL + YR) / 2 - LOriginY);

Dv = -(YL - LOriginY);

estimate Zp(cn) = 1/(K1*((DL-DR)+C1*DL*DL+C2*DL+C3*Dv*Dv+C4*Dv)+K2);

estimate Xp(cn) = K3 * (estimate Zp(cn) * DL) + K4;

estimate Yp(cn) = K5 * (estimate Zp(cn) * Dv) + K6;

cn = cn+1;

end

end

B.5 Comparison Between Stereo-endoscope and Ground-truth Systems

In order to compare between the stereo-endoscope and ground-truth systems, the origins of

the coordinate frames from each system were shifted to the centroid of the reference points. Each

frame was then rotated to be in line with the anatomical coordinate systems.

Compare.m

close all

clear all

clc

%user input

NameStereo='m5 d 115000001';

numSLR L=165;

numSLR R=180;

Stereo3D=['F:/.../' NameStereo];

Stereo2D=['F:/.../2D' NameStereo];

FileDir=['F:/.../' ];

startPt=1;

endPt=8;

SLR3D=['F:/.../M5 mark 2L ' num2str(numSLR L)];

SLR2D=['F:/...2DM5 mark 2L ' num2str(numSLR L)];
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SLR Lim=['F:/.../ DSC0' num2str(numSLR L) '.jpg'];

SLR Rim=['F:/.../ DSC0' num2str(numSLR R) '.jpg'];

ImageName=[FileDir NameStereo '.tif'];

im=(imread(ImageName));

load(Stereo3D)

load(Stereo2D)

Stereox=Stereox(startPt:endPt);

Stereoy=Stereoy(startPt:endPt);

Stereoz=Stereoz(startPt:endPt);

%shift the coordinates so the first point is at the origin

Stereox=Stereox-Stereox(1);

Stereoy=Stereoy-Stereoy(1);

Stereoz=Stereoz-Stereoz(1);

Stereox=Stereox-mean(Stereox);

Stereoy=Stereoy-mean(Stereoy);

Stereoz=Stereoz-mean(Stereoz);

%load SLR data

location3D=load (SLR3D);

%shift so that the first point has the origin located at zero. Also flip

%the y axis so that it matches the stereo coordinate system.

SLRx=location3D.location3D(:,1)-location3D.location3D(1,1);

SLRy=-location3D.location3D(:,2)+location3D.location3D(1,2);

SLRz=location3D.location3D(:,3)-location3D.location3D(1,3);

%shift so that the centroid is located at the origin. Also flip

%the y axis so that it matches the stereo coordinate system.

SLRx=location3D.location3D(:,1)-mean(location3D.location3D(:,1));

SLRy=-location3D.location3D(:,2)+mean(location3D.location3D(:,2));

SLRz=location3D.location3D(:,3)-mean(location3D.location3D(:,3));
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%plot the 2D coordinates from the stereo-endoscope

figure,

subplot(233), imshow(im)

hold on

plot(xl(startPt:endPt),yl(startPt:endPt),'*',xr(startPt:endPt),yr(startPt:endPt),'*')

hold off

%plot the 2D coordinates from the SLR cameras

load(SLR2D);

subplot(231), imshow(imread(SLR Lim))

hold on

plot(xl,yl,'*')

hold off

subplot(232), imshow(imread(SLR Rim))

hold on

plot(xr,yr,'*')

hold off

subplot(234), plot3(SLRx,SLRy,SLRz,'*'), xlabel('x'), ylabel('y'), zlabel('z'),

grid on, title('SLR')

subplot(235), plot3(Stereox,Stereoy,Stereoz,'*'), xlabel('x'), ylabel('y'),

zlabel('z'), grid on, title('Stereo-endoscope')

subplot(236), plot3(SLRx,SLRy,SLRz,'*',Stereox,Stereoy,Stereoz,'*'), xlabel('x'),

ylabel('y'), zlabel('z'), grid on, legend('SLR','Stereo-endoscope')

% calculate difference

SLR=[SLRx SLRy SLRz];

Stereo=[Stereox Stereoy Stereoz];

errorInEachCoordinate=sqrt((SLR-Stereo).ˆ2);

averageerrorInX=mean(errorInEachCoordinate(:,1))

averageerrorInY=mean(errorInEachCoordinate(:,2))

averageerrorInZ=mean(errorInEachCoordinate(:,3))

errorInEachPoint=sqrt(sum(errorInEachCoordinate.ˆ2,2));

averageError=sum(errorInEachPoint)/length(SLR)
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result(1,1:4)=[averageerrorInX averageerrorInY averageerrorInZ averageError];

%% rotate points about the y axis so the z-points are in the same plane.

%PROCEDURE

% Create a line in the anterior-posterior direction

% Create a line in the medial lateral direction, using the 3 most anteior

% points

% Use these two lines to create a plane

% Define an angle for this plane

% Create a roation matrix to rotate the planes to be normal to z direction

% FOR SLRS

% % Set1--if 8 points in first column

% [m,p,s] = best fit line(SLRx(1:8),SLRy(1:8),SLRz(1:8));

% [pt1]= m+p*5;

% [pt2]= m+p*-10;

% [m,p,s] = best fit line([SLRx(1) SLRx(9) SLRx(17)]',[SLRy(1) SLRy(9)

%SLRy(17)]',[SLRz(1) SLRz(9) SLRz(17)]');

% [pt3]= m+p*5;

% [pt4]= m+p*-10;

% thetaSLR=-atan((pt3(3)-pt4(3))/(pt3(1)-pt4(1)));

% RSLR=[cos(thetaSLR) 0 -sin(thetaSLR); 0 1 0; sin(thetaSLR) 0 cos(thetaSLR)];

% figure,

% subplot(221), plot3(SLRx,SLRy,SLRz,'*',[pt1(1) pt2(1)],[pt1(2) pt2(2)],[pt1(3)

%pt2(3)], [pt3(1) pt4(1)],[pt3(2) pt4(2)],[pt3(3) pt4(3)]), xlabel('x'),

%ylabel('y'), zlabel('z'), grid on, title('SLR-original')

%Set2--if 7 points in first column

% [m,p,s] = best fit line(SLRx(1:7),SLRy(1:7),SLRz(1:7));

% [pt1]= m+p*5;

% [pt2]= m+p*-10;

% [m,p,s] = best fit line([SLRx(1) SLRx(8) SLRx(13)]',[SLRy(1) SLRy(8)

%SLRy(13)]',[SLRz(1) SLRz(8) SLRz(13)]');

% [pt3]= m+p*5;

% [pt4]= m+p*-10;

% thetaSLR=-atan((pt3(3)-pt4(3))/(pt3(1)-pt4(1)));
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% RSLR=[cos(thetaSLR) 0 -sin(thetaSLR); 0 1 0; sin(thetaSLR) 0 cos(thetaSLR)];

% figure,

% subplot(221), plot3(SLRx,SLRy,SLRz,'*',[pt1(1) pt2(1)],[pt1(2) pt2(2)],[pt1(3)

%pt2(3)], [pt3(1) pt4(1)],[pt3(2) pt4(2)],[pt3(3) pt4(3)]), xlabel('x'),

%ylabel('y'), zlabel('z'), grid on, title('SLR-original')

% %Set3--for 2 & 3 left (Stereo images 115 and 116)

% [m,p,s] = best fit line(SLRx(1:8),SLRy(1:8),SLRz(1:8));

% [pt1]= m+p*5;

% [pt2]= m+p*-10;

% thetaSLR=-atan(pt2(3)-pt1(3)/(pt2(1)-pt1(1)))

% RSLR=[cos(thetaSLR) 0 -sin(thetaSLR); 0 1 0; sin(thetaSLR) 0 cos(thetaSLR)];

% figure,

% subplot(221), plot3(SLRx,SLRy,SLRz,'*',[pt1(1) pt2(1)],[pt1(2) pt2(2)],[pt1(3)

%pt2(3)]), xlabel('x'), ylabel('y'), zlabel('z'), grid on, title('SLR-original')

% Set 4

[m,p,s] = best fit line(SLRx,SLRy,SLRz);

[pt1]= m+p*15;

[pt2]= m+p*-15;

thetaSLR=-atan((pt2(3)-pt1(3))/(pt2(1)-pt1(1)))

RSLR=[cos(thetaSLR) 0 -sin(thetaSLR); 0 1 0; sin(thetaSLR) 0 cos(thetaSLR)];

figure,

subplot(221), plot3(SLRx,SLRy,SLRz,'*',[pt1(1) pt2(1)],[pt1(2) pt2(2)],[pt1(3)

pt2(3)]), xlabel('x'), ylabel('y'), zlabel('z'), grid on, title('SLR-original')

% FOR STEREO-ENDOSCOPE

%set1

% [m,p,s] = best fit line(Stereox(1:8),Stereoy(1:8),Stereoz(1:8));

% [pt1]= m+p*5;

% [pt2]= m+p*-10;

% [m,p,s] = best fit line([Stereox(1) Stereox(9) Stereox(17)]',[Stereoy(1)

%Stereoy(9) Stereoy(17)]',[Stereoz(1) Stereoz(9) Stereoz(17)]');

% [pt3]= m+p*5;

% [pt4]= m+p*-10;
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% thetaStereo=-atan(((pt3(3)-pt4(3))/(pt3(1)-pt4(1))));

% RStereo=[cos(thetaStereo) 0 -sin(thetaStereo); 0 1 0; sin(thetaStereo) 0

%cos(thetaStereo)];

% subplot(222), plot3(Stereox,Stereoy,Stereoz,'*',[pt1(1) pt2(1)],[pt1(2)

%pt2(2)],[pt1(3) pt2(3)], [pt3(1) pt4(1)],[pt3(2) pt4(2)],[pt3(3) pt4(3)]),

%xlabel('x'), ylabel('y'), zlabel('z'), grid on, title('SLR'),

%title('Stereo-original')

%set2

% [m,p,s] = best fit line(Stereox(1:7),Stereoy(1:7),Stereoz(1:7));

% [pt1]= m+p*5;

% [pt2]= m+p*-10;

% [m,p,s] = best fit line([Stereox(1) Stereox(8) Stereox(13)]',[Stereoy(1)

%Stereoy(8) Stereoy(13)]',[Stereoz(1) Stereoz(8) Stereoz(13)]');

% [pt3]= m+p*5;

% [pt4]= m+p*-10;

% thetaStereo=-atan(((pt3(3)-pt4(3))/(pt3(1)-pt4(1))));

% RStereo=[cos(thetaStereo) 0 -sin(thetaStereo); 0 1 0; sin(thetaStereo) 0

%cos(thetaStereo)];

% subplot(222), plot3(Stereox,Stereoy,Stereoz,'*',[pt1(1) pt2(1)],[pt1(2)

%pt2(2)],[pt1(3) pt2(3)], [pt3(1) pt4(1)],[pt3(2) pt4(2)],[pt3(3) pt4(3)]),

%xlabel('x'), ylabel('y'), zlabel('z'), grid on, title('SLR'),

%title('Stereo-original')

% %Set3--for 2 & 3 left (Stereo images 115 and 116)

% [m,p,s] = best fit line(Stereox(1:8),Stereoy(1:8),Stereoz(1:8));

% [pt1]= m+p*5;

% [pt2]= m+p*-10;

% thetaStereo=-atan(pt2(3)-pt1(3)/(pt2(1)-pt1(1)))

% RStereo=[cos(thetaStereo) 0 -sin(thetaStereo); 0 1 0; sin(thetaStereo) 0

%cos(thetaStereo)];

% subplot(222), plot3(Stereox,Stereoy,Stereoz,'*',[pt1(1) pt2(1)],[pt1(2)

%pt2(2)],[pt1(3) pt2(3)]), xlabel('x'), ylabel('y'), zlabel('z'), grid on,

%title('Stereo-original')

% Set 4
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[m,p,s] = best fit line(Stereox,Stereoy,Stereoz);

[pt1]= m+p*5;

[pt2]= m+p*-10;

thetaStereo=-atan((pt1(3)-pt2(3))/(pt1(1)-pt2(1)))

RStereo=[cos(thetaStereo) 0 -sin(thetaStereo); 0 1 0; sin(thetaStereo) 0

cos(thetaStereo)];

subplot(222), plot3(Stereox,Stereoy,Stereoz,'*',[pt1(1) pt2(1)],[pt1(2)

pt2(2)],[pt1(3) pt2(3)]), xlabel('x'), ylabel('y'), zlabel('z'), grid on,

title('Stereo-original')

for i=1:length(Stereox)

row=[Stereox(i) Stereoy(i) Stereoz(i)];

Stereo(i,:)=RStereo*row';

row=[SLRx(i) SLRy(i) SLRz(i)];

SLR(i,:)=RSLR*row';

end

errorInEachCoordinate=sqrt((SLR-Stereo).ˆ2);

averageerrorInX=mean(errorInEachCoordinate(:,1))

averageerrorInY=mean(errorInEachCoordinate(:,2))

averageerrorInZ=mean(errorInEachCoordinate(:,3))

errorInEachPoint=sqrt(sum(errorInEachCoordinate.ˆ2,2));

averageError=sum(errorInEachPoint)/length(SLR)

averageError=sqrt(averageerrorInXˆ2+averageerrorInYˆ2+averageerrorInZˆ2)

subplot(223), plot3(SLR(:,1),SLR(:,2),SLR(:,3),'*'), xlabel('x'), ylabel('y'),

zlabel('z'), grid on, title('SLR-rotated')

subplot(224), plot3(Stereo(:,1),Stereo(:,2),Stereo(:,3),'*'), xlabel('x'),

ylabel('y'), zlabel('z'), grid on, title('Stereo-rotated')

figure, plot3(SLR(:,1),SLR(:,2),SLR(:,3),'*',Stereo(:,1),Stereo(:,2),Stereo(:,3),'*'),

xlabel('x (mm)'), ylabel('y (mm)'), zlabel('z (mm)'), grid on, legend('SLR',

'Stereo'), title('Rotated points')

result(2,1:4)=[averageerrorInX averageerrorInY averageerrorInZ averageError];

save(['resultL' NameStereo])
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APPENDIX C. MATLAB CODE FROM CHAPTER 4

C.1 Overview

MATLAB was used for the image processing, strain, and Poisson’s ratio calculations in this

chapter. FindWidths.m called on XCorrPtsPoisson.m to find the lengths and widths of the images

at each point, using cross-correlation and simple thresholding. Poisson.m calculates Poisson’s ratio

in the four ways described in the chapter, using Smooth.m to fit the data to a line. Compare.m fits

averages the the resulting Poisson’s ratio curves into one and fits them to a 2nd order polynomial.

C.2 XCorrPtsPoisson.m

function [ Xint,Yint,X,Y ] = XCorrPtsPoisson( imold,imnew,x,yold,ynew )

% User defined variables

intwindx=600; %choose the interrogation window size in pixels

intwindy=300;

x=round(x);

ynew=round(ynew);

yold=round(yold);

for i=1:length(x)

imold=imold(yold-intwindy/2:yold+intwindy/2,x-intwindx/2:x+intwindx/2);

imnew=imnew(ynew-intwindy/2:ynew+intwindy/2,x-intwindx/2:x+intwindx/2);

phi=fftshift(ifft2( fft2(imold).*conj(fft2(imnew))) );

[npeakint,mpeakint] = find(max(max(phi))==phi);
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%pick just one in case there are multiple peaks

npeakint = npeakint(1);

mpeakint = mpeakint(1);

%convert into x/y coord

xint=intwindx+1-mpeakint;

yint=intwindy+1-npeakint;

%calculate subpixel accuracy

mstar = (log(phi(npeakint,mpeakint+1)) - log(phi(npeakint,mpeakint-1)))/

(4*log(phi(npeakint,mpeakint)) - 2*log(phi(npeakint,mpeakint-1)) -

2*log(phi(npeakint,mpeakint+1)));

nstar = (log(phi(npeakint+1,mpeakint)) - log(phi(npeakint-1,mpeakint)))/

(4*log(phi(npeakint,mpeakint)) - 2*log(phi(npeakint-1,mpeakint)) -

2*log(phi(npeakint+1,mpeakint)));

mpeak = mpeakint + mstar;

npeak = npeakint + nstar;

%convert into x/y coord

x=intwindx+1-mpeak;

y=intwindy+1-npeak;

%convert back into global coordinates

Xint(i)=xint+x(i)-intwindx/2;

Yint(i)=yint+ynew(i)-intwindy/2;

X(i)=x+x(i)-intwindx/2;

Y(i)=y+ynew(i)-intwindy/2;

% figure, imshow(im);

% hold on

% plot(Xint(i),Yint(i),'g*',X(i),Y(i),'b*')

% hold off

% waitforbuttonpress

% close

end

end
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C.3 FindWidths.m

%This program is designed to step through a series of images of silicone

%tensile samples, finding the length and width of each sample.

close all

clear all

clc

warning('off', 'Images:initSize:adjustingMag');

FileDir=('F:\...\');

savename='EF1a';

if savename=='DS1a'

startpt=2;

endpt=65;

elseif savename=='EF1a'

startpt=67;

endpt=131;

elseif savename=='EF2a'

startpt=133;

endpt=197;

elseif savename=='EF4a'

startpt=199;

endpt=263;

elseif savename=='EF6a'

startpt=265;

endpt=329;

elseif savename=='EF8a'

startpt=331;

endpt=395;

elseif savename=='DS1b'

startpt=397;

endpt=461;

elseif savename=='EF1b'

startpt=463;

100



endpt=527;

elseif savename=='EF2b'

startpt=529;

endpt=593;

elseif savename=='EF4b'

startpt=595;

endpt=659;

elseif savename=='EF6b'

startpt=661;

endpt=725;

elseif savename=='EF8b'

startpt=727;

endpt=791;

end

center=0;

for i= startpt : endpt

ImageName=[FileDir num2str(i) '.tif'];

A=imread(ImageName);

A=imrotate(A,2,'bilinear','crop');

%convert to greyscale to speed up operations

A=rgb2gray(A);

%Start at a point within the sample

x=1765;

if i==startpt

imshow(A), title('click at the top, then the bottom')

[junk, y]=ginput(2);

y1=y(1);

y2=y(2);

Aorig=A;

y1Orig=y1;

else

%find upper point for subsequent points
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[ Xint,Yint,X,Y ] = XCorrPtsPoisson( Aorig,A,x,y1Orig,y1 );

y1=Yint;

end

%calculate the center point

leng(i)=y2-y1;

center(i)=y1+(leng(i)/2);

%find the edges

subset=A(round(center(i))-700:round(center(i))+700,1:size(A,2));

B=im2bw(subset,80/255);

numdiv=200;

space=round(1400/numdiv);

% figure(2), imshow(B)

for j=1:numdiv-1

x1(j)=x;

ycord=space*j;

while B(ycord,x1(j))==1

x1(j)=x1(j)+1;

end

x2(j)=x;

while B(ycord,x2(j))==1

x2(j)=x2(j)-1;

end

% hold on

% plot(x1(j),ycord,'o',x2(j),ycord,'o')

end

x1avg(i)=mean(x1);

x2avg(i)=mean(x2);

%calculate the width of the sample

wid(i)=x1avg(i)-x2avg(i);

figure(1),

imshow(A);

hold on

plot(x,y1,'ˆ',x,y2,'ˆ',x1avg,center,'o',x2avg,center,'o');
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hold off

end

wid=wid(startpt:endpt);

leng=leng(startpt:endpt);

figure, plot(wid), xlabel('image #'), ylabel('width, pixels')

figure, plot(leng), xlabel('image #'), ylabel('length, pixels')

save(savename)

C.4 Smooth.m

function [ yfit ] = Smooth( x,y )

%SMOOTH accepts a function y=f(x) and returns a linear function yfit=f(x)

%using Matlab's linear regression algorithm.

%smooth butterworth

fs=65;

w=10/(.5*fs); %the numerator is the cuttoff frequency

[b,c]=butter(2,w);

lengB=filtfilt(b,c,y);

% linear regression:

p=polyfit(x,y,1);

yfit=polyval(p,x);

yresid=y-yfit;

SSresid=sum(yresid.ˆ2);

SStotal=(length(y)-1)*var(y);

rsq=1-SSresid/SStotal;

% figure, plot(1:length(leng),lengB,1:length(leng),lengyfit,1:length(leng),wid)

% legend('butterworth','linear regression','original')

end
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C.5 Poisson.m

function [ vTot,vInt,eyLog ] = Poisson( name )

load(name)

leng=Smooth(1:length(leng),leng);

wid=Smooth(1:length(wid),wid);

%paper

% wid=[10:-.002:9.98 9.98:-.006:9.92];

% leng=[10:.001:10.01 10.01:.0015:10.025];

eyEng=(leng-leng(1))/leng(1);

exEng=(wid-wid(1))/wid(1);

vEng=-exEng./eyEng;

eyLog=log(1+eyEng);

exLog=log(1+exEng);

vLog=-exLog./eyLog;

eyTot(1)=0;

exTot(1)=0;

for i=2:length(leng)

eyInt(i)=(leng(i)-leng(i-1))/leng(i-1);

exInt(i)=(wid(i)-wid(i-1))/wid(i-1);

eyTot(i)=eyTot(i-1)+eyInt(i);

exTot(i)=exTot(i-1)+exInt(i);

end

vTot=-exTot./eyTot;

vInt=-exInt./eyInt;

end
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C.6 Compare.m

close all

clear all

clc

[ vTotDS1a,vIntDS1a,eylogDS1a ] = Poisson('DS1a');

[ vTotDS1b,vIntDS1b,eylogDS1b ] = Poisson('DS1b');

[ vTotEF1a,vIntEF1a,eylogEF1a ] = Poisson('EF1a');

[ vTotEF1b,vIntEF1b,eylogEF1b ] = Poisson('EF1b');

[ vTotEF2a,vIntEF2a,eylogEF2a ] = Poisson('EF2a');

[ vTotEF2b,vIntEF2b,eylogEF2b ] = Poisson('EF2b');

[ vTotEF4a,vIntEF4a,eylogEF4a ] = Poisson('EF4a');

[ vTotEF4b,vIntEF4b,eylogEF4b ] = Poisson('EF4b');

[ vTotEF6a,vIntEF6a,eylogEF6a ] = Poisson('EF6a');

[ vTotEF6b,vIntEF6b,eylogEF6b ] = Poisson('EF6b');

[ vTotEF8a,vIntEF8a,eylogEF8a ] = Poisson('EF8a');

[ vTotEF8b,vIntEF8b,eylogEF8b ] = Poisson('EF8b');

%% Figure out what fit

p2=polyfit(eylogDS1a(2:end),vTotDS1a(2:end),2);

yfit2=polyval(p2,eylogDS1a);

p3=polyfit(eylogDS1a(2:end),vTotDS1a(2:end),3);

yfit3=polyval(p3,eylogDS1a);

figure, plot(eylogDS1a,vTotDS1a,eylogDS1a,yfit2,eylogDS1a,yfit3);

legend('Original','2nd order','3rd order')

%% Average over all except 1:1:8

yfit1=polyval(polyfit(eylogDS1a(2:end),vTotDS1a(2:end),2),eylogEF1a);

yfit2=polyval(polyfit(eylogDS1b(2:end),vTotDS1b(2:end),2),eylogEF1a);

yfit3=polyval(polyfit(eylogEF1a(2:end),vTotEF1a(2:end),2),eylogEF1a);

yfit4=polyval(polyfit(eylogEF1b(2:end),vTotEF1b(2:end),2),eylogEF1a);

yfit5=polyval(polyfit(eylogEF2a(2:end),vTotEF2a(2:end),2),eylogEF1a);

yfit6=polyval(polyfit(eylogEF2b(2:end),vTotEF2b(2:end),2),eylogEF1a);

yfit7=polyval(polyfit(eylogEF4a(2:end),vTotEF4a(2:end),2),eylogEF1a);
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yfit8=polyval(polyfit(eylogEF4b(2:end),vTotEF4b(2:end),2),eylogEF1a);

yfit9=polyval(polyfit(eylogEF6a(2:end),vTotEF6a(2:end),2),eylogEF1a);

yfit10=polyval(polyfit(eylogEF6b(2:end),vTotEF6b(2:end),2),eylogEF1a);

meanFunc=(yfit1+yfit2+yfit3+yfit4+yfit5+yfit6+yfit7+yfit8+yfit9+yfit10)/10;

%% fit curve to average

p=polyfit(eylogEF1a,meanFunc,2);

figure, plot(eylogEF1a,meanFunc,eylogEF1a,polyval(p,eylogEF1a))

xlabel('Longitudinal True Strain (\epsilon yˆ{log})','FontSize',10,'FontName','Times')

ylabel('\nu {tot}','FontSize',10,'FontName','Times')

legend('Average of all curves','2nd order polynomial fit to average')

%% plot ratio

figure,

subplot(211), plot(eylogDS1a,vTotDS1a,eylogEF1a,vTotEF1a,eylogEF2a,vTotEF2a,eylogEF4a,

vTotEF4a,eylogEF6a,vTotEF6a,eylogEF8a,vTotEF8a,eylogEF1a,polyval(p,eylogEF1a),'k')

xlabel('Longitudinal True Strain (\epsilon yˆ{log})','FontSize',10,'FontName','Times')

ylabel('\nu {tot}','FontSize',10,'FontName','Times')

legend('DS1a','EF1a','EF2a','EF4a','EF6a','EF8a','Average','Location','EastOutside')

set(gca,'FontSize',10,'FontName','Times');

subplot(212), plot(eylogDS1b,vTotDS1b,eylogEF1b,vTotEF1b,eylogEF2b,vTotEF2b,eylogEF4b,

vTotEF4b,eylogEF6b,vTotEF6b,eylogEF8b,vTotEF8b,eylogEF1a,polyval(p,eylogEF1a),'k')

xlabel('Longitudinal True Strain (\epsilon yˆ{log})','FontSize',10,'FontName','Times')

ylabel('\nu {tot}','FontSize',10,'FontName','Times')

legend('DS1b','EF1b','EF2b','EF4b','EF6b','EF8b','Average','Location','EastOutside')

set(gca,'FontSize',10,'FontName','Times');

set(gcf,'PaperPosition',[1 1 5 6]); % ? ? width height (inches)

hold(gca,'all');

print('-dpng','-r300','ratio.png');

%% plot aAndb

figure,

subplot(321), plot(eylogDS1a,vTotDS1a,'k',eylogDS1b,vTotDS1b,'--k')

legend('DS1a','DS1b','Location','NorthWest')
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ylim([.32 .55])

xlim([0 .4])

set(gca,'FontSize',10,'FontName','Times');

subplot(322), plot(eylogEF1a,vTotEF1a,'k',eylogEF1b,vTotEF1b,'--k')

legend('EF1a','EF1b','Location','NorthWest')

ylim([.32 .55])

xlim([0 .4])

set(gca,'FontSize',10,'FontName','Times');

subplot(323), plot(eylogEF2a,vTotEF2a,'k',eylogEF2b,vTotEF2b,'--k')

legend('EF2a','EF2b','Location','NorthWest')

ylim([.32 .55])

xlim([0 .4])

set(gca,'FontSize',10,'FontName','Times');

subplot(324), plot(eylogEF4a,vTotEF4a,'k',eylogEF4b,vTotEF4b,'--k')

legend('EF4a','EF4b','Location','NorthWest')

ylim([.32 .55])

xlim([0 .4])

set(gca,'FontSize',10,'FontName','Times');

subplot(325), plot(eylogEF6a,vTotEF6a,'k',eylogEF6b,vTotEF6b,'--k')

legend('EF6a','EF6b','Location','NorthWest')

ylim([.32 .55])

xlim([0 .4])

set(gca,'FontSize',10,'FontName','Times');

xlabel('Longitudinal True Strain (\epsilon yˆ{log})','FontSize',10,'FontName','Times')

ylabel('\nu {tot}','FontSize',10,'FontName','Times')

subplot(326), plot(eylogEF8a,vTotEF8a,'k',eylogEF8b,vTotEF8b,'--k')

legend('EF8a','EF8b','Location','NorthWest')

ylim([.32 .55])

xlim([0 .4])

set(gca,'FontSize',10,'FontName','Times');

set(gcf,'PaperPosition',[1 1 6 6]);
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hold(gca,'all');

print('-dpng','-r300','aAndb.png');
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