
 

 

LINEAR TIME INVARIANT APPROXIMATIONS OF LINEAR TIME 

PERIODIC SYSTEMS FOR INTEGRATED FLIGHT AND VIBRATION 

CONTROL 

 

 

 

 

 

 

 

 

 

 

A Dissertation  

Presented to  

The Academic Faculty  

 

 

 

By 

 

 

 

Mark Joseph Santos Lopez 

 

 

 

 

In Partial Fulfilment 

Of the Requirements for the Degree 

Doctor of Philosophy in Aerospace Engineering 

 

 

 

 

 

 

Georgia Institute of Technology 

 

August 2016 

 

 

 

 

 

Copyright © Mark Joseph Santos Lopez 2016  



 

 

Linear Time Invariant Approximations of Linear Time Periodic Systems for Integrated 

Flight and Vibration Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by: 

 

Dr. J.V.R. Prasad, Advisor 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

Dr. Mark F. Costello 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

Dr. Marc D. Takahashi 

Aviation Development Directorate  

U.S. Army RDECOM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dr. Lakshmi N. Sankar 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

Dr. Mark B. Tischler 

Aviation Development Directorate  

U.S. Army RDECOM 

 

Date Approved: May 20, 2016 



 

 

 

 

 

 

 

 

To my parents and brother for all of their love and support 

 

 

 



iv 

 

ACKNOWLEDGEMENTS 

 

 

 

This work is partially supported under the NRTC Vertical Lift Rotorcraft Center 

of Excellence (VLRCOE) from the U.S. Army Aviation and Missile Research, 

Development and Engineering Center (AMRDEC) under Technology Investment 

Agreement W911W6- 06-2-0002, entitled National Rotorcraft Technology Center 

Research Program.   

This work also is partially funded under the NASA Cooperative Agreement # 

NNX11AK48G at the Georgia Institute of Technology with Dr. Mark B. Tischler as the 

technical monitor. 

I would like to thank my thesis advisor Dr. J.V.R. Prasad for his excellent 

guidance as both an advisor and mentor.  I would also like to thank Dr. Mark B. Tischler 

for his guidance and mentorship.  Furthermore, I would like to thank my other committee 

members Dr. Lakshmi N. Sankar, Dr. Mark F. Costello, and Dr. Marc D. Takahashi for 

their support, feedback, and the opportunity to work with them. 

I would like to thank Dr. Chengjian He, Dr. Ronald Du Val, Mr. Weibin Chen, 

and the rest of the team at Advanced Rotorcraft Technology for their technical support 

with both FLIGHTLAB® as well as the pilot simulator at the Georgia Tech Flight 

Simulation Laboratory.  I would also like to thank Mr. Kenny K. Cheung for his 

contributions and expertise in CONDUIT®.  I would like to thank my friends, colleagues, 

and collaborators that have supported me throughout my graduate studies: Dr. Gi Yun 

Chung, Dr. Reema Kundu, Mr. Yong-Boon Kong, Mr. Juan Pablo Afman, Mr. Wei Sun, 



v 

 

Mr. Nathaniel T. Morgan, Ms. Caitlin S. Berrigan, CW3 Nathon Woelke, CPT Robert 

Crapazano, Mr. Christopher Richardson, Mr. Thomas Nathan, and Mr. Christian Blake 

Hoover.   

Finally, I would like to thank my father Ramon, my mother Anicia, and my 

brother Martin for always believing in me and providing unconditional love and support. 

  



vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ............................................................................................................ x 

NOMENCLATURE ........................................................................................................ xiii 

SUMMARY ..................................................................................................................... xix 

CHAPTER 1. INTRODUCTION ................................................................................. 1 

1.1 Motivation ............................................................................................................ 1 

1.2 Present Work ........................................................................................................ 2 

1.3 Objective .............................................................................................................. 5 

CHAPTER 2. LTI MODEL FORMULATION ............................................................ 7 

2.1 LTI Formulation ................................................................................................... 7 

2.2 LTI Model Extraction........................................................................................... 7 

2.2.1 State Equation of the LTI Model .................................................................. 7 

2.2.2 Output Equation of LTI Model ................................................................... 11 

2.2.3 LTI Models in Matrix Form ........................................................................ 13 

2.2.4 Closed Form Expressions for LTI Model ................................................... 15 

2.3 LTI Numerical Example: UH-60A .................................................................... 19 

2.3.1 Nonlinear Model ......................................................................................... 19 



vii 

 

2.3.2 LTI Model Validation ................................................................................. 20 

CHAPTER 3. MODAL PARTICIPATION ............................................................... 23 

3.1 LTP Modal Participation .................................................................................... 23 

3.2 LTI Modal Participation ..................................................................................... 26 

3.3 Modal Participation Analytical Example ........................................................... 29 

3.4 Modal Participation Numerical Example ........................................................... 31 

CHAPTER 4. INPUT-OUTPUT FIDELITY ............................................................. 35 

4.1 Normalized Additive Error................................................................................. 36 

4.2 Nu-Gap Metric ................................................................................................... 37 

4.3 Open versus Closed Loop Validation................................................................. 39 

4.4 Model Reduction and Input-Output Fidelity Example ....................................... 41 

4.5 Balanced Model Reduction ................................................................................ 51 

CHAPTER 5. INTEGRATED FLIGHT AND VIBRATION CONTROL ................ 56 

5.1 Integrated Flight and Vibration Control ............................................................. 56 

5.2 Baseline Higher Harmonic Control Laws .......................................................... 58 

5.3 Optimized Higher Harmonic Control Laws ....................................................... 63 

5.4 Performance During a Realistic Maneuver ........................................................ 70 

5.5 Integrated HHC/AFCS Design ........................................................................... 73 

CHAPTER 6. ROBUSTNESS EVALUATIONS ...................................................... 82 

6.1 LTI Robustness Evaluations of Fixed Point Controller ..................................... 84 



viii 

 

6.2 NL Robustness Evaluations of Fixed Point Controller ...................................... 86 

CHAPTER 7. FULL FLIGHT ENVELOPE CONTROLLER ................................... 96 

7.1 Additional Scheduling Anchor Points ................................................................ 97 

7.2 Full Flight Envelope Evaluation ...................................................................... 103 

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS ............................ 113 

8.1 Conclusions ...................................................................................................... 113 

8.2 Recommendations ............................................................................................ 115 

REFERENCES ............................................................................................................... 117 

VITA ............................................................................................................................... 121 

 

 

  



ix 

 

LIST OF TABLES 

 

 

 

Table 1. Stability and Performance Specifications used in CONDUIT®.......................... 64 

Table 2. CONDUIT® Problem Size .................................................................................. 67 

Table 3. Stability and Performance Specifications from LTI in CONDUIT® .................. 69 

Table 4. Pullup/Pushover Performance for Fx4 ................................................................ 79 

Table 5. Pullup/Pushover Performance Averages ............................................................ 81 

Table 6. Robustness Test Matrix: Off-Design Conditions for Robustness Evaluation .... 84 

Table 7. Off-Design LTI Robustness Evaluations ............................................................ 85 

Table 8. Off Design Pitch Doublet Performance .............................................................. 91 

Table 9. Off Design Roll Doublet Performance ............................................................... 95 

Table 10. 80 kts Roll Doublet T-Matrix Performance ...................................................... 99 

Table 11. 40 kts Roll Doublet T-Matrix Performance .................................................... 100 

Table 12. Modified Roll Reversal Performance ............................................................. 112 

 

 

  



x 

 

LIST OF FIGURES 

 

 

 

Figure 1. Error Response Plot for  and  for LTIfull3577 ................................... 22 

Figure 2. Modal Participation  for Rotor Blade Flapping .............................................. 31 

Figure 3. Modal Participation  for Rotor Coning State ................................................. 33 

Figure 4. Modal Participation  for Average Inflow State .............................................. 33 

Figure 5. Modal Participation  for Pitch Attitude .......................................................... 34 

Figure 6. Example Open versus Closed Loop Response from Vinnicombe (Ref. 30) ..... 41 

Figure 7. Frequency Response Comparison for IBC4C to  ....................................... 44 

Figure 8. Frequency Response Comparison for IBC4C to  ...................................... 45 

Figure 9. Frequency Response Comparison for IBC4C to  ....................................... 46 

Figure 10. Frequency Response Comparison for IBC4C to  ................................... 47 

Figure 11. Frequency Response Comparison for IBC4C to  ................................... 48 

Figure 12. Normalized Additive Error Comparison for IBC4C to 4C Outputs ................ 49 

Figure 13. Nu-gap Metric Comparison for IBC4C to 4C Outputs ................................... 51 

Figure 14. Hankel Singular Values (State Energy) ........................................................... 53 

Figure 15. Bare Airframe Response IBC4C to Fz4C for LTIred100 ............................... 54 

Figure 16. Error Response Plot for Fz4C and Fz4S for LTIred100.................................. 55 

Figure 17. HHC/AFCS Architecture from Ref. 9 showing two independent loops ......... 58 

Figure 18. Weighted Steady State 4/rev Loads (Nonlinear Model).................................. 60 

Figure 19. IBC4C Broken-Loop Response for K=1 ......................................................... 61 

Figure 20. Fz4S Disturbance Rejection Response ............................................................ 63 

CzF 4 SzF 4







CxF 4

CyF 4

CzF 4

CxM 4

CyM 4



xi 

 

Figure 21. CONDUIT® Environment ............................................................................... 65 

Figure 22. CONDUIT® Specifications for IBC4C and Fz4S ........................................... 66 

Figure 23. IBC4C Broken-Loop Response ....................................................................... 68 

Figure 24. Pitch Stick Doublet Response ......................................................................... 70 

Figure 25. Pullup/Pushover Pilot Inputs ........................................................................... 71 

Figure 26. Pullup/Pushover Fz4S Response ..................................................................... 72 

Figure 27. Pullup/Pushover Fz4S Power Spectral Density ............................................... 73 

Figure 28. Crossfeed Architecture .................................................................................... 74 

Figure 29. Crossfeed for Longitudinal Cyclic to IBC3C .................................................. 76 

Figure 30. Pullup/Pushover Response .............................................................................. 78 

Figure 31. Power Spectral Density for Fx4S .................................................................... 80 

Figure 32. Pitch Stick Doublet for Robustness Evaluations ............................................. 88 

Figure 33. Doublet Response for 120 kts Nominal Conditions ........................................ 89 

Figure 34. Doublet Response for 140 kts Flight Condition .............................................. 90 

Figure 35. Roll Stick Doublet for Robustness Evaluations .............................................. 93 

Figure 36. Roll Stick Doublet Resulting Swashplate Inputs............................................. 94 

Figure 37. Doublet Response for Turning Flight Conditions ........................................... 95 

Figure 38. Roll Doublet Response at 40 kts Flight Speed .............................................. 101 

Figure 39. Modified Roll Reversal Pilot Inputs .............................................................. 106 

Figure 40. Modified Roll Reversal Higher Harmonic Control Inputs ............................ 107 

Figure 41. Modified Roll Reversal Translation Speed Response ................................... 108 

Figure 42. Modified Roll Reversal Attitude and Attitude Rate Response ...................... 109 

Figure 43. Modified Roll Reversal Load Factor Response............................................. 110 



xii 

 

Figure 44. Modified Roll Reversal 4/rev Amplitude Response ...................................... 111 

Figure 45. Modified Roll Reversal 4/rev Amplitude Response (Zoom In) .................... 112 

 

 

  



xiii 

 

NOMENCLATURE 

 

 

A  LTI state matrix 

B  LTI input matrix 

CPb ,1
 Generalized stability margin of the feedback connection ],[ 1 CP  

C  LTI output matrix 

nkjc ,,
 nth harmonic coefficient of )(, tV kj

 in complex-exponential form 

D  LTI direct transmission matrix 

)(F  LTP state matrix 

xF  Hub longitudinal shear 

yF  Hub lateral shear 

zF  Hub vertical shear 

1G  normalized right graph of 
1P  

2

~
G  normalized left graph of 

2P  

)(G  LTP input matrix 

H  Dynamic crossfeed controller 

J  Cost function 



xiv 

 

K  Feedback loop gain 

xM  Hub lateral moment 

yM  Hub longitudinal moment 

zM  Hub torque 

n
 Number of frequency points used in cost function computation 

)(P  LTP output matrix 

)(R  LTP direct transmission matrix 

T  Transfer matrix relating HHC inputs to 4/rev loads 

t  Time (sec) 

U  LTI augmented input vector 

u  LTP input vector 

)(, tV kj
 Periodic eigenvector element associated with the jth state and kth mode 

gW
 Relative weight for magnitude squared errors used in cost function computation 

pW
 Relative weight for phase squared errors used in cost function computation 

W
 Weighting function dependent on the coherence function used in cost function 

computation 

X  LTI augmented state vector 



xv 

 

x  LTP state vector 

Y  LTI augmented output vector 

y  LTP output vector 

  Flapping angle 

Z  Vertical displacement of the rotor hub 

DR  Disturbance associated with disturbance rejection response 

g  Gap metric 

  Nu-gap metric 

  Error-response function 

k  Floquet exponent associated with the kth mode 

  Blade pitch angle input 

0  Swashplate collective pitch input 

c1  Swashplate lateral cyclic pitch input 

s1  Swashplate longitudinal cyclic pitch input 

k  Characteristic multiplier associated with the kth mode 

)(t  State transition matrix 

nkj ,,  Modal participation for nth complex-exponential harmonic coefficient of )(, tV kj
 



xvi 

 

  Non-dimensional time, t  

  Rotor rotational speed (rad/sec) 

1  Starting frequency used in cost function computation 

c  Broken-loop crossover frequency 


n  Ending frequency used in cost function computation 

Operator 

 


 First derivative with respect to time 

],[ 1 CP  Feedback connection of 
1P  with compensator C  


  

H  norm 

||  Magnitude (dB) 

  Phase (deg)  

 *  Conjugate transpose 

   Pseudo inverse 

ncx  nth cosine harmonic component of x  

nsx  nth sine harmonic component of x  

oMH  Average harmonic analysis operator of periodic matrix )(M  

icMH  ith cosine harmonic analysis operator of periodic matrix )(M  



xvii 

 

isMH  ith sine harmonic analysis operator of periodic matrix )(M  

Subscript 

( )0 Average or 0th harmonic term 

( )𝑛𝑐 nth cosine harmonic component 

( )𝑛𝑠 nth sine harmonic component  

Abbreviations 

AFCS Automatic flight control system 

GM Gain margin 

HHC Higher harmonic control 

IBC Individual blade control input 

LTI  Linear time invariant  

LTP Linear time periodic 

MTE Mission task element 

NL Nonlinear 

P2P Peak-to-peak 

PM Phase Margin 

PSD Power spectral density 

RMS Root mean square 



xviii 

 

STD Standard deviation 

  



xix 

 

SUMMARY 

 

 

Recent developments in active rotor control have shown significant coupling 

between flight and vibration control systems which are traditionally designed 

independently.  This coupling results in performance degradation of the vibration 

controller particularly during maneuvering flight.  Thus, an integrated flight and rotor 

control design is desired to address coupling and improve performance.  Due to the 

strong periodic nature of rotorcraft at higher forward speeds, accurate models for 

rotorcraft must take the form of linear time periodic (LTP) models which are 

inconvenient for control design and handling qualities evaluations.  Instead, linear time 

invariant (LTI) model approximations are desired, as they provide a convenient and well 

understood framework for analysis, control design, and handling qualities assessments.  

While LTI approximations for LTP systems have been recently developed to include 

states to represent the vibrations of the rotor harmonics, the fidelity of such LTI systems 

has not been well validated.  Furthermore, the current formulation of a full LTI state 

space approximation relies on an LTP system which is in second order form; this presents 

difficulties for degrees of freedom not explicitly in second order form such as body and 

inflow degrees of freedom.  

This work develops methodologies for assessing the fidelity of LTI 

approximations of LTP systems.  Having a complete fidelity assessment, these LTI 

approximations are then used in the development and evaluation of a full flight envelope 

integrated flight and vibration reduction controller.  This full flight envelope integrated 
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controller is evaluated in a nonlinear simulation using realistic piloted maneuvers. 

Specifically, this work accomplishes the following: 1) Development of a generalized LTI 

approximation of first order LTP models.  2) Verification of the LTI approximation 

against the original nonlinear model.  3) Evaluation of the fidelity of LTI system 

dynamics compared to LTP system dynamics using modal participation.  4) Formulation 

of reduced order models based on modal participation.  5) Evaluation of input-output 

fidelity of reduced order models using additive uncertainty, nu-gap metric, and 

generalized stability margin techniques.  6) Design and analysis of a single fixed point 

vibration controller, integrated with a stabilized flight control system, that is assessed 

using realistic maneuvers.  7) Robustness evaluations of the fixed point controller, and 8) 

Further improvements using controller scheduling to create a full flight envelope 

controller.  

An example is given for each step using a UH-60A rotorcraft model in the context 

of development of an integrated flight and vibration controller. 

 

 

 



1 

 

CHAPTER 1.  INTRODUCTION 

 

 

1.1 Motivation 

Active rotor control is an ongoing area of research which has been shown to allow 

vast improvements in many areas currently plaguing rotorcraft.  Applications of active 

rotor control include improvements in power consumption, vibration reduction, noise 

reduction (Refs. 1 and 2), gust response alleviation, and reduction of blade vortex 

interactions (Ref. 3).  This work focuses on the application to active vibration control.  

Implementations of active rotor control include: 1) swashplate higher harmonic control 

(HHC) where the swashplate is actuated at higher harmonic frequencies (Ref. 4), 2) 

individual blade control (IBC) where each blade input is actuated independently (Refs. 5 

and 6), and on-blade control (OBC) where HHC inputs are created by actuators or 

devices on each blade – such as blade flaps or micro-flaps (Ref. 1).  Although IBC and 

OBC implementations have the most promise, the HHC approach is effective and thus 

many active rotor controls rely on an HHC control system architecture (Ref. 1).  The 

majority of previous work concentrates on the HHC itself and not its interaction with the 

automatic flight control system (AFCS).  Although active rotor control has shown much 

promise, significant coupling between the AFCS and vibration control systems has been 

observed.  Therefore, when the AFCS and vibration control system are designed 

independently, a resulting performance degradation of the latter may occur when they 

interact.  This was demonstrated in flight tests (Ref. 7) and in analysis using linear 
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simulation models (Refs. 8 and 9), which showed significant performance degradation of 

vibration controllers using HHC during maneuvering flight.  

To address coupling between the AFCS and active rotor control system while 

maintaining performance, an integrated flight and rotor control system is needed.  To 

facilitate design of an integrated flight and rotor control system, models are needed which 

accurately capture both flight and rotor dynamics. 

Due to the strong periodic nature of helicopter rotors, rotorcraft nonlinear (NL) 

models can often be linearized and represented by linear time periodic (LTP) models.  

These LTP models have matrix coefficients which are time varying but periodic with a 

period of one rotor revolution.  There are several established techniques for analysis of 

linear time periodic (LTP) systems.  One such method is Floquet Theory, developed by 

Gaston Floquet (Ref. 10).  This theory has been shown to provide a thorough analysis of 

LTP system dynamics through the use of modal participation factors as by Peters and 

Lieb (Ref. 11).  Modal participation factors describe the mode shapes (periodic 

eigenvectors) through the relative magnitude of each harmonic component for each state 

and mode.  Although this theory has been shown to provide a thorough analysis of LTP 

systems (Ref. 11), they are still very inconvenient when trying to perform controller 

design or evaluate handling qualities.  Therefore, a linear time invariant (LTI) model is 

still desired for both controller synthesis and handling qualities assessments because of 

the availability of numerous techniques to handle LTI systems. 

 

1.2 Present Work 
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Analysis of LTP systems were also examined for discrete time systems using both 

LTP methods and LTI reformulation methods.  Varga and Van Dooren discussed the 

stability analysis of discrete time periodic systems using the periodic Schur 

decomposition (Ref. 12).  Bittanti, Colaneri, and Varga discussed linear time invariant 

reformulations using cyclic, Fourier, time and frequency lifting techniques (Refs. 13 and 

14).  Most recently, Lovera and Celi et al explored LTI reformulations of rotorcraft LTP 

systems for applications to active rotor control (Refs. 15 and 16).    

In continuous time, an LTI model approximation can be formulated by expansion 

of the LTP system states into various harmonic state coefficients and formulating 

corresponding linear time invariant models.  This harmonic decomposition of LTP states 

was first demonstrated by Hill for motions of the sun and moon (Ref. 17), with Crimi, 

Piarulli, and White being the first to do so for rotorcraft (Refs. 18 and 19).   

Alternatively, Cheng, Tischler, and Celi (Ref. 8) developed a numerical method to 

directly extract an LTI model by including higher harmonic states from a nonlinear (NL) 

system.  They accomplished this by making higher harmonic perturbations directly in a 

nonlinear simulation.  While the LTI extracted using this direct higher harmonic 

perturbation method showed promise, the model used in the study was limited to rigid 

blades and a 3 state Pitt-Peters dynamic inflow model. 

Most recently, Prasad and Olcer et al (Refs. 20-23) use a two-step approach for 

formulating an LTI model from a nonlinear system model.  An accurate LTP model about 

a selected periodic equilibrium is obtained first, and then, an LTI model of selected order 

is constructed from the LTP model using the derived closed form expressions for the 

system matrices.  The advantage of using this method is that it provides a means to 
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characterize the system as an LTI system, where controller synthesis and design methods 

are well understood.  

The models developed by Prasad et al were studied and used in design by 

Friedmann et al (Ref. 24) for OBC implementations of HHC.  In addition, Abraham et al 

(Ref. 9) used these LTI models to develop an integrated HHC/AFCS design through the 

use of dynamic crossfeeds.  

Although the method developed by Prasad et al has shown success, the fidelity of 

the LTI approximations with respect to the LTP system has not been comprehensively 

addressed.  Current studies of fidelity for these LTI approximations were primarily time 

response comparisons and eigenvalue comparisons, with some limited frequency 

response comparisons.  Although the eigenvalue comparisons do give some indication of 

fidelity in terms of the system dynamics, a more thorough approach is needed.  Previous 

time response comparisons may not adequately excite the full spectrum of the system 

dynamics, and previous frequency response comparisons were focused on body response 

and total loads which may not adequately reflect the richness of the rotor dynamics seen 

in vibratory response.  

Furthermore, the formulation developed by Prasad et al relies on a second order 

formulation of the original LTP system.  This second order formulation can prove 

problematic for degrees of freedom not explicitly represented in second order form.  

Specifically, difficulties arise when performing the harmonic decomposition of body and 

inflow states as well as interpretation of LTI model velocities.  Thus, a more general 

formulation is desired in order to capture and study higher harmonic dynamics associated 

with degrees of freedom that are not explicitly in second order form.  Once a generalized 
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LTI formulation has been developed, its fidelity can be assessed thoroughly using modal 

participation to evaluate system dynamics and also additive uncertainty techniques and 

nu-gap metric analysis to evaluate input-output fidelity.  

Once the fidelity of these LTI approximations are studied, they will be used to 

develop an integrated flight and rotor control system at specific design flight speeds.  

This integrated flight and rotor control system design will address control interaction and 

improved performance.  Full evaluation of each design point will be performed for 

performance and robustness with the original nonlinear model using realistic piloted 

maneuvers.  These design point evaluations will then be used to develop a full flight 

envelope integrated flight and vibration controller using a speed schedule.   

 

1.3 Objective 

The purpose of this work is to develop methodologies for assessing the fidelity of 

LTI approximations of LTP systems, and then using them for integrated flight and rotor 

control design. Specifically, the following objectives are to be examined: 

1) Develop a generalized linear time invariant (LTI) approximation of linear time 

periodic (LTP) models using first order form of the LTP model 

2) Validate the linear time invariant approximation against the original nonlinear 

model 

3) Evaluate the fidelity of LTI system dynamics compared to LTP system dynamics 

using modal participation 
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4) Formulate reduced order models for computational efficiency based on modal 

participation and state energy 

5) Evaluate input-output fidelity of reduced order models 

6) Develop a closed-loop HHC system based on a reduced order LTI approximation, 

and evaluate against the nonlinear (NL) model 

7) Analyze the interactions between AFCS and HHC using piloted NL simulation 

maneuvers 

8) Optimize closed-loop HHC performance using CONDUIT®  

9) Develop dynamic crossfeeds to improve HHC performance during a maneuver 

10) Evaluate the robustness of the improved HHC with respect to changes in flight 

condition, weight, and C.G. location 

11) Develop a full flight envelope integrated flight and vibration controller using 

controller scheduling techniques 

12) Verify improved HHC performance on a NL model with a realistic piloted 

maneuver  
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CHAPTER 2.  LTI MODEL FORMULATION 

 

 

2.1 LTI Formulation 

In 2008, Prasad et al developed a process to approximate LTP state space models 

as a LTI state space models using harmonic decomposition techniques.  This 

methodology was successfully used and studied in Refs. 9, 20-24.  However, the fidelity 

of these models has not been comprehensively addressed.  Furthermore, the method 

relied on a second order representation for the original LTP system, and extra work is 

required to address degrees of freedom not explicitly in second order form (e.g adding 

pseudo states or coming up with a mixed representation).  An easier approach is used 

herein, where a first order representation for the LTP system is used to extract LTI 

approximations of LTP systems.  This first order representation of the LTP system is 

more generic and allows for an overall simplified calculation since all states 

(displacements and velocities) are treated identically. 

 

2.2 LTI Model Extraction 

The LTI model extraction for an LTP model using the first order formulation is 

now discussed.  

2.2.1 State Equation of the LTI Model 

Consider a linear time periodic (LTP) model with the state equation given as  
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uGxFx )()(    (1) 

An LTP model can be obtained from a nonlinear model using a perturbation 

scheme, linearizing about a periodic equilibrium at every azimuthal position (Ref. 20).  In 

order to extract an approximate LTI model from Eq. (1), consider the following 

approximation of x: 





N

n

nsnco nxnxxx
1

sincos   (2) 

where xo is the average component and xnc and xns are respectively the n/rev cosine and 

sine harmonic components of x.  Likewise, the control u is expanded in terms of 

harmonic components as  





M

m

msmco mumuuu
1

sincos   (3) 

Differentiation of Eq. (2) with respect to time results in 





N

n

nsnco nxnxxx
1

sincos   (4) 

where 

Nnxnxx nsncnc .....,,2,1   (5) 

Nnxnxx ncnsns .....,,2,1   (6) 

Substituting Eq. (2) through Eq. (6) into Eq. (1) results in 
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))sincos()](([
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)sincos(

1

1

1



















M

m

msmco

N

n

nsnco

N

n

nsnco

mumuuG

nxnxxF

nxnxx







 (7) 

Equations for the individual harmonic components of x can be obtained by 

multiplying Eq. (7) on both sides by cos iψ or sin iψ, i= 1, 2, …, N, and integrating the 

result over one rotor revolution.  The equation for the average component xo is obtained 

by integrating Eq. (7) over one rotor revolution. 








dmumuuG

nxnxxFx

M

m

msmco

N

n

nsncoo

)})sincos()](([

))sincos()](({[
2

1

1

1

2

0












 (8) 

Likewise, the equation for the ith harmonic cosine component xic can be obtained as 

Ni

dimumuuG

nxnxxFx

M

m

msmco

N

n

nsncoic

.....,,3,2,1

cos}))sincos()](([

))sincos()](({[
1

1

1

2

0






















 (9) 

and the equation for the ith harmonic sine component xis can be obtained as 

Ni

dimumuuG

nxnxxFx

M

m

msmco

N

n

nsncois

.....,,3,2,1

sin)})sincos()](([

))sincos()](({[
1

1

1

2

0






















 (10) 

Using the following notation  
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MmandNn

mGG

mGG

nFF

nFF

ms

mc

ns

nc

,.....,2,1,.......,3,2,1

sin)()(

cos)()(

sin)()(

cos)()(



















 (11) 

and substituting Eq. (11) into Eqs. (8) – (10) yields  








duGuGuG

xFxFxFx

M

m

ms

ms

mc

mc

o

N

n

ns

ns

nc

nc

oo

}))()(()(

))()(()({
2

1

1

1

2

0












 (12) 

Ni

diuGuGuG

xFxFxFxix

M

m

ms

ms

mc

mc

o

N

n

ns

ns

nc

nc

oisic

.....,,3,2,1

cos}))()(()(

))()(()({
1

1

1

2

0
























 (13) 

Ni

diuGuGuG

xFxFxFxix

M

m

ms

mc

o

N

n

ns

ns

nc

nc

oicis

ms

mc

.....,,3,2,1

sin}))()(()(

))()(()({
1

1

1

2

0
























 (14) 

Now defining the following operators 

Ni

diMH

diMH

dMH

isM

icM

oM

....,,3,2,1

sin)(
1

cos)(
1

)(
2

1

2

0

2

0

2

0






























 (15) 
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Eqs. (12), (13), and (14) can be written as 













M

m

msoGmcoGooG

N

n

nsoFncoFooFo

uHuHuH

xHxHxHx

msmc

nsnc

1

1

)(

)(

 (16) 

Ni

uHuHuH

xHxH

xHxix

M

m

msicGmcicGoicG

N

n

nsicFncicF

oicFisic

msmc

nsnc

.....,,3,2,1

)(

)(

1

1



















 (17) 

Ni

uHuHuH

xHxH

xHxix

M

m

msisGmcisGoisG

N

n

nsisFncisF

oisFicis

msmc

nsnc

.....,,3,2,1

)(

)(

1

1



















 (18) 

2.2.2 Output Equation of LTI Model 

Given the output equation of a LTP model as 

uRxPy )()(    (19) 

an approximation to y in terms of its harmonic components is sought as 





L

l

lslco lylyyy
1

sincos   (20) 
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where yo is the average component and ylc and yls are respectively the lth harmonic cosine 

and sine components of y.  Substituting Eqs. (2), (3) and (20) into Eq. (19) results in 

))sincos()](([

))sincos()](([

)sincos

1

1

1



















M

m

msmco

N

n

nsnco

L

l

lslco

mumuuR

nxnxxP

lylyy







 (21) 

Equation (21) is multiplied with coslψ or sinlψ, l=0, 1, 2,..,L and is integrated over one 

rotor revolution, resulting in the following expressions for yo, ylc and yls.  








dmumuuR

nxnxxPy

M

m

msmco

N

n

nsncoo

})sincos()](([

))sincos()](({[
2

1

1

1

2

0













 (22) 

Ll

dlmumuuR

nxnxxPy

M

m

msmco

N

n

nsncolc

,......,3,2,1

cos})sincos()](([

))sincos()](({[
1

1

1

2

0






















 (23) 

Ll

dlmumuuR

nxnxxPy

M

m

msmco

N

n

nsncols

,.....,3,2,1

sin})sincos()](([

))sincos()](({[
1

1

1

2

0






















 (24) 

Using similar notation as before, for example, Pnc=P(ψ)cosnψ, etc., and the H operator, 

yields 
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











M

m

msoRmcoRooR

N

n

nsoPncoPooPo

uHuHuH

xHxHxHy

msmc

nsnc

1

1

)(

)(

 (25) 

Ll

uHuHuH

xHxHxHy

M

m

mslcRmclcRolcR

N

n

nslcPnclcPolcPlc

msmc

nsnc

.....,,3,2,1

)(

)(

1

1















 (26) 

Ll

uHuHuH

xHxHxHy

M

m

mslsRmclsRolsR

N

n

nslsPnclsPolsPls

msmc

nsnc

.....,,3,2,1

)(

)(

1

1















 (27) 

2.2.3 LTI Models in Matrix Form 

Equations (16) – (18) and (25) – (27) can be represented in matrix form by 

defining the augmented state vector as 

 TT

js

T

jc

T

is

T

ic

T

o xxxxxX ......  (28) 

and the augmented control vector as 

 TT

ms

T

mc

T

o uuuU ......  (29) 

where xo is the zeroth harmonic component, xic, xis are the ith harmonic cosine and sine 

components of x, xjc, xjs are the jth harmonic cosine and sine components of x, and umc, 
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ums are the mth harmonic cosine and sine components of u, respectively.  It is important to 

note that all states are considered individually (hence, a first order formulation); there is 

no difference in treatment between any kinematically related states such as in a second 

order formulation, where velocities and displacements are treated differently.  The state 

equation of the resulting LTI model is 

   UBXAX   (30) 

Likewise, the augmented output vector of the LTI model is defined as 

 TT

ls

T

lc

T

o yyyY .....  (31) 

Then the output equation of the LTI model can be written as 

   UDXCY   (32) 

The LTI model matrices of Eqs. 30 and 32 are obtained as 













































......................................................................

.........

.........

...............................................................

....................

...............

......................................................................

..........................

jsjcisic

jsjcisic

jsjcisic

jsjcisic

jsjcisic

jsFjsFjsFjsFjsF

jcFjcFjcFjcFjcF

FisFisFisFisisF

FicFicFicFicicF

FoFoFoFooF

HHjHHH

HjHHHH

HHHHiH

HHHiHH

HHHHH

A
 (33) 
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



































.....................................

......

......

..................................

......

......

...................................

......

msmc

msmc

msmc

msmc

msmc

jsGjsGjsG

jcGjcGjcG

isGisGisG

icGicGicG

oGoGoG

HHH

HHH

HHH

HHH

HHH

B

 (34) 



























............................................................................

.............

...........

.........................................................................

................

jsjcisic

jsjcisic

jsjcisic

lsPlsPlsPlsPlsP

lcPlcQlcPlcPlcP

oPoPoPoPoP

HHHHH

HHHHH

HHHHH

C

 (35) 



























..................................

......

......

..................................

......

msmc

msmc

msmc

lsRlsRlsR

lcRlcRlcR

oRoRoR

HHH

HHH

HHH

D  (36) 

where the LTI matrices can be expressed in closed form using linear combinations of the 

LTP matrix Fourier coefficients.  These matrix Fourier coefficients can be computed via 

a fast Fourier transform method to avoid any issues of computation via integration.  

2.2.4 Closed Form Expressions for LTI Model 

Closed form expressions for various terms in the A, B, C and D matrices above 

can be obtained if one considers harmonic expansions of the LTP model matrices.  If a 

time periodic matrix M(ψ) is expanded in terms of its harmonic components as 
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





1

)sincos()(
k

kskco kMkMMM   (37) 

then it can be shown that 

.......,32,1

2
sin)(

2

1

2
cos)(

2

1

)(
2

1

2

0

2

0

2

0















i

M
diMH

M
diMH

MdMH

is

oM

ic

oM

ooM

is

ic
















 (38) 

.......,32,1

sin)(
1

cos)(
1

2

0

2

0











i

MdiMH

MdiMH

isisM

icicM











 (39) 

..,2,1..,2,1

,

2

,

2

2

coscos)(
1 2

0



















 

jandi

ijmjikwhere

ijandjifor
MM

jiljikwhere

jiandjifor
MM

jikwherejifor
M

M

dijMH

mckc

lckc

kc
o

jcicM






 (40) 
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....,2,1..,2,1

,

2

,

2

2

cossin)(
1 2

0



















 

jandi

ijmjikwhere

ijandjifor
MM

jiljikwhere

jiandjifor
MM

jikwherejifor
M

dijMH

msks

lsks

ks

jsicM






 (41) 

....,2,1...,2,1

,

2

,

2

2

sincos)(
1 2

0



















 

jandi

ijmjikwhere

ijandjifor
MM

jiljikwhere

jiandjifor
MM

jikwherejifor
M

dijMH

msks

lsks

ks

isM jc






 (42) 

..,2,1..,2,1

,

2

,

2

2

sinsin)(
1 2

0



















 

jandi

ijmjikwhere

ijandjifor
MM

jiljikwhere

jiandjifor
MM

jikwherejifor
M

M

dijMH

kcmc

kclc

kc
o

jsisM






 (43) 
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The key difference between the newly presented first order formulation, Eqs. (30) 

and (32), and the previous second order formulation (Ref. 20) is the treatment of the 

velocity states.  In the previous second order formulation, the LTI harmonic states 

associated with velocities are not directly the harmonic decomposition of the LTP 

velocity states.  Rather, they are kinematically related via terms involving multiples of 

the rotor speed Ω as shown in Eqs. (5) and (6).  Thus, to properly determine information 

about the LTP velocities, one would need to perform extra work to relate the LTI 

harmonic states and the harmonic decomposition of the LTP velocity states.  In 

particular, to determine modal participation (Ref. 11) from the LTI appropriately, one 

would need to convert the LTI harmonic terms associated with velocities into the 

harmonic decomposition of the LTP velocities.  Furthermore, since LTP body and inflow 

states do not readily come in the second order form required for the second order 

formulation (where the time derivatives of the displacement states are exactly given by 

the velocity states), extra work is again needed to transform those states into a usable 

form.  

In the first order LTI formulation presented here, there is no difference in the 

treatment of LTP velocity and displacement states.  This allows for an overall simplified 

calculation, and any information about LTP velocities can be given directly by the LTI 

states associated with velocities (such as modal participation of velocity states).  

Consequently, since there is no difference in treatment between any LTP states, this 

formulation easily encompasses body and inflow states which are often formulated in a 

more generalized first order form.  Thus, this first order LTI formulation directly and 

efficiently approximates any LTP which can be cast in first order form. 
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2.3 LTI Numerical Example: UH-60A 

2.3.1 Nonlinear Model 

The model examined here is a full vehicle nonlinear (NL) model in 

FLIGHTLAB® (Ref 25.)  The full vehicle model is a 4 bladed UH-60A with coupled 

elastic blade flap-lag degrees of freedom in multi blade coordinates (MBC) and a 33 state 

Peters-He dynamic inflow model.  The model has previously been validated (Ref. 9) and 

been found to be consistent in the prediction of harmonic hub loads with trends from 

wind tunnel data.  The NL is linearized at each azimuthal position with a discrete 

increment of 1.875 degrees of azimuth about a periodic equilibrium at 120 knots to 

generate an LTP model.  The azimuth step size of 1.875 degrees is selected as a multiple 

of the default step size in FLIGHTLAB® which accurately captures at least the 8th 

harmonic terms.  

The example here is considered in the context of N/rev vibration reduction.  

Specifically, for the 4 bladed rotor examined here, the objective of vibration reduction 

would be to reduce the 4/rev sine and cosine components of hub shears and hub moments 

except rotor torque (
SySxSzSySxCyCxCzCyCx MMFFFMMFFF 4444444444 ,,,,,,,,, ).  To achieve 

this, individual blade control (IBC) inputs are considered; specifically, the cosine and 

sine components of 3rd, 4th, and 5th harmonic individual blade controls (IBC3C, IBC3S, 

IBC4C, IBC4S, IBC5C and IBC5S) are the most effective at reducing 4/rev loads. The 

IBC inputs can be combined with swashplate inputs ( sc 110 ,,  ) to achieve the total pitch 

input for the kth blade 
)(k as follows: 
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






5

3

)()(

)(

1

)(

10

)()(

)]sin()cos([

)sin()cos()(

n

kk

k

s

k

c

kk

nIBCnSnIBCnC 



 (44) 

2.3.2 LTI Model Validation 

The full order LTI is extracted from the LTP using the first order methodology 

developed here, including the 0th up to the 24th harmonic states for each body, inflow, and 

rotor state resulting in a total of 3577 LTI states (LTI model referred to as LTIfull3577).  

The linear model is compared against the nonlinear model using the error-response 

functions  , described by Tischler (Ref. 26), between linear and nonlinear model bare 

airframe (open-loop) responses.  Specifically, the error-response   is the difference 

between the truth (NL model) and the approximation (LTI model).  The error response 

can be computed by sweeping each IBC input and comparing the resulting responses in 

the frequency domain using CIFER® (Ref. 26).   

An example error-response plot is given in Figure 1 in capturing the transfer 

function of the LTP model from individual blade control, 4th harmonic cosine (IBC4C) 

input to the 4/rev cosine and sine components of vertical hub shear (
CzF 4

 and 
SzF 4

 

respectively) by the LTI model.  These particular transfer functions would be most 

relevant to vibration reduction.  It is important to note that while the HHC inputs are 

pitch variations that occur at 3 , 4 , and 5 , HHC systems normally operate with 

crossover frequencies 
c  between 1 and 3 rad/s.  What this means is that for a 4/rev 

signal, the controller modulates the amplitude of a 4/rev signal at up to 3 rad/s.  Thus, the 

actual frequency range of interest for the controller is 1 to 10 rad/s (approximately 3 

times the maximum expected crossover frequency).   
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The mismatch bounds in the Figure 1 are known as the Maximum Unnoticeable 

Added Dynamics (MUAD) bounds.  The MUAD bounds are used here as a guideline to 

indicate how much error can be tolerated without any significant changes in dynamics on 

a point wise frequency basis.  Although the MUAD bound guidelines are based on flight-

dynamics modeling, they are also used here as a guideline for the purposes of vibration 

controller design.   

The error-response can also be measured using a single cost function as J  

described by Tischler (Ref. 26).  The cost function J  can be computed as  

 











n

pg WWW
n

J
1

])(|)(|[
20 22  (45) 

where   is the error-response function, 1  and  


n are the starting and ending 

frequencies used in the cost function computation, 
n is the number of frequency points 

used in cost function computation, and gW , pW , W are weights associated with the 

magnitude, phase, and coherence respectively.  It is important to note that while  

Guidelines for the cost function J are given as follows: J < 100 represents an 

acceptable level of accuracy for flight-dynamics modeling, while J < 50 is expected to 

produce a model that that is nearly indistinguishable from flight data (Ref. 26).  These 

flight-dynamics modeling guidelines are also taken as guidelines here for the purposes of 

predicting vibratory hub loads.  Here, the average cost function over all IBC input and 

4/rev output transfer functions is 4.92, meaning that the LTIfull3577 data is nearly 

indistinguishable from the nonlinear model data. 
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At this point, the LTIfull3577 model has been validated to be nearly 

indistinguishable from the nonlinear model in terms of IBC inputs and 4/rev output 

transfer functions.   

 

 

 

Figure 1. Error Response Plot for  and  for LTIfull3577 
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CHAPTER 3.  MODAL PARTICIPATION 

 

 

3.1 LTP Modal Participation 

There are several established techniques for analysis of linear time periodic (LTP) 

systems.  One such method is Floquet theory which has been shown to provide a 

thorough analysis of LTP system dynamics through the use of modal participation factors 

as discussed by Peters and Lieb (Ref. 11).  Modal participation factors describe the mode 

shapes (periodic eigenvectors) through the relative magnitude of each harmonic 

component for each state and mode.  Modal participation factors are also referred to as 

“modal participation” or “participation factors.”  The computation of modal participation 

using Floquet theory may involve bookkeeping and computational issues, although Peters 

and Leib have shown that the actual harmonic content described by modal participation is 

invariant of any bookkeeping choices made.  One method for computation of modal 

participation using traditional Floquet theory can be done through the following steps 

(Ref. 11): 

1) Consider an LTP model with the state equation given as  

)()(,)( tFTtFxtFx    (46) 

where x, is the state vector, )(tF is the system matrix of the periodic system and T  is 

the period of the LTP system. 
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2) Compute the state transition matrix by solving the following matrix differential 

equation over one period 

IttFt  )0(,)()()(   (47) 

where I is the identity matrix.  The state transition matrix evaluated at the end of one 

period is known as the Floquet transition matrix )(T . 

3) Solve for the eigenvalues and eigenvectors of the Floquet transition matrix.  The 

eigenvalues of the Floquet transition matrix are commonly known as the 

characteristic multipliers of the LTP system.  The characteristic multiplier associated 

with the kth mode is denoted as k .  The eigenvector matrix of the Floquet transition 

matrix is denoted as )(TV . 

4) Compute the Floquet exponents and periodic eigenvectors.  The Floquet exponents 

are also known as the characteristic exponents, Floquet system exponents, or system 

eigenvalues.  The Floquet exponent associated with the kth mode 
k  is computed as 

 kk Log
T


1

   (48) 

where the logarithm is a complex logarithm.  The Floquet exponents have non-unique 

imaginary parts which come about as a result of a multivalued arctangent used in 

taking the complex logarithm of the characteristic multipliers.  The periodic 

eigenvector matrix )(tV  can be computed as 



25 

 

   






















)exp()()()( tTVttV k   (49) 

It should be noted that when the periodic eigenvector matrix )(tV  is evaluated at both 

0t and Tt  , the periodic eigenvector matrix is simply the eigenvector matrix of the 

Floquet transition matrix )(TV . 

5) Expand each periodic eigenvector element into its corresponding complex Fourier 

series  







H

H

Nn

Nn

nkjkj tinctV )exp()( ,,,
  (50) 

where )(, tV kj
 is the periodic eigenvector element corresponding to the jth state and the 

kth mode, 
nkjc ,,
  is the nth complex-exponential harmonic coefficient of  )(, tV kj

, and

HN  is the maximum harmonic term number used in the harmonic decomposition. 

6) The modal participation is then the normalized magnitude of a particular harmonic 

(normalized with respect to the sum of the magnitudes of all harmonics for that 

particular state and mode)  

1

,,,,,,


















 

H

H

Nl

Nl

lkjnkjnkj cc   (51) 

Computation of the state transition matrix and Floquet transition matrix 

themselves can involve integrating the matrix differential equation, Eq. (47).  This 

process itself may introduce computational errors and may also result in ill-conditioned 
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state and Floquet transition matrices.  An ill-conditioned state transition matrix can result 

in inaccuracies in the Floquet exponents and periodic eigenvectors.  These numerical 

errors can be mitigated by instead using fast Floquet theory (Refs. 27 and 28), which can 

reduce time over which Eq. (47) is integrated from T  to 
BN

T
, where BN  is the number 

of blades.  Furthermore, singular value decompositions (Ref. 27) can be also used to 

reduce spurious eigenvalues of heavily damped modes.  

Besides numerical issues, computing the Floquet exponents can involve a 

complex logarithm (multivalued arctangent) of the characteristic multipliers that 

introduces bookkeeping issues (Ref. 11).  Specifically, the imaginary part of the Floquet 

exponents can be shifted by any integer multiple of  .  Adding multiples of   does not 

change the actual harmonic content of each mode, rather it is a bookkeeping decision that 

simply affects the naming of each harmonic term.  Often, the bookkeeping integer choice 

is selected as one that best suits the mode of interest.   

Alternatively, LTI can also be used to directly compute the LTP modal 

participation, which is simpler and avoids many of the issues that may be encountered in 

the Floquet method. 

 

3.2 LTI Modal Participation 

Once the LTI state matrix has been formed, the modal participation can be 

computed by the following procedure: 
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1) Solve for the eigenvectors and eigenvalues of the LTI state matrix 𝐴.  kX is the 

eigenvector corresponding to the kth mode which will be in the form 

 TT

nsk

T

nck

T

okk xxxX ,,, ..  (52) 

 where xk,o is the zeroth harmonic component, and xk,nc, and xk,ns are the nth harmonic 

cosine and sine components of the periodic eigenvector corresponding to the kth mode 

)(tVk
.  The eigenvalues of the 𝐴 matrix are equavelent to the Floquet exponents of 

the LTP system (hence the alternative name: system eigenvalues).   

2) Convert eigenvector harmonic states from real-trigonometric Fourier coefficients into 

complex-exponential Fourier coefficients 

3) The modal participation is then the normalized magnitude of a particular harmonic 

(normalized with respect to the sum of the magnitudes of all harmonics for that 

particular state and mode) 

Once the LTI eigenvectors kX  have been computed, the LTI eigenvector 

components are the harmonic components of the LTP periodic eigenvector.  It is 

important to note that while the LTI model is formulated using real-trigonometric 

harmonic series in Eq. (2), modal participation is evaluated using a complex-exponential 

harmonic series in Eq. (50).  Thus, to compute modal participation, the Fourier 

coefficients should be in the complex-exponential form in Eq. (50).  The LTI eigenvector 

harmonic states can be converted from real-trigonometric to complex-exponential form 

via the following equations: 

0,,0,,   kjkj xc  (53) 
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nskjnckj

nkj

xix
c




 (54) 

2

,,,,

,,

nskjnckj

nkj

xix
c




 (55) 

where 
0,, kjx , 

nckjx ,,
, and 

nskjx ,,
are respectively the 0th, nth cosine, and nth sine real-

trigonometric harmonic LTI eigenvector elements corresponding to the jth LTP state and 

kth mode. 

Once the complex-exponential harmonic coefficients have been obtained, the 

modal participation can then be directly computed via the definition of modal 

participation in Eq. (51). 

It should be noted that the LTI modes corresponding to system eigenvalues with 

imaginary parts between 
2


 are referred to as the base modes.  These base modes are 

equivalent to taking the principal Arctangent and not adding any multiples of   to the 

imaginary part of the Floquet exponents in the Floquet method.  Only the base modes are 

needed to completely describe the system with the understanding that higher frequency 

modes simply shift the naming of harmonics and do not affect the actual modal 

participation content; this is equivalent to book keeping issues of adding integer multiples 

of   to the imaginary part of Floquet exponents in the Floquet method.   This is 

advantageous over the Floquet method in that instead of making a bookkeeping decision 

for the integer multiple to add to the Floquet exponent before any eigenvector analysis is 

performed, the LTI method computes all valid Floquet exponents (system eigenvalues) 

and the corresponding eigenvectors.  Thus one can simply select the mode with the 
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corresponding imaginary part that is most relevant since all modes have already been 

computed. 

 

3.3 Modal Participation Analytical Example 

For illustrative purposes, simplified rotor blade flapping of a single blade is 

examined here.  The modal participation of this example has been previously examined 

using the Floquet method by Peters and Leib (Ref. 11).  Here, the modal participation 

computed using the LTI methodology is compared with the Floquet method results.  The 

equation of motion for rotor blade flapping is given by  

0)()()()()(  ttKttCt    (56) 









 )sin(

3

4
1

8
)( ttC


 (57) 









 )2sin()cos(

3

4

8
)( 22 ttptK 


 (58) 

where )(t  is the flapping angle,   is the Lock number,   is the advance ratio, and p  is 

the non-dimensional blade flapping frequency.  For illustrative purposes, a Lock number 

  of 12 and a flapping frequency p of 1.0 is used, with advance ratio   varying from 0 

to 3.   

The modal participation was computed using both the Floquet method and the 

LTI method.  Figure 2 shows the flapping angle modal participation for harmonics 0 

through 4 as they change with advance ratio.  Each harmonic term is indicated by 
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brackets labelling each line segment.  For example, the line segment labeled [+0] for 

advance ratios 0 to 0.3 corresponds to the modal participation of the +0 harmonic term 

for )(t . At advance ratio 0.3, the branches labeled [+0] and [-1] merge.  For advance 

ratios 0.3 to 0.9, the branch labeled [-1/+0] indicates the same modal participation for 

both -1 and +0 harmonic terms.  Both -1 and +0 are the harmonics with the highest modal 

participation for advance ratios from 0.3 to 0.9.  At advance ratio 0.9, the -1 and +0 

harmonics separate, and the +0 harmonic continues on by itself for advance ratio 0.9 to 3 

as indicated by the [+0] label.  

In Figure 2, the solid lines correspond to the Floquet method results, the circles 

correspond to the LTI method results, and colors correspond to particular harmonic 

numbers.  For every point, the LTI and LTP methods result in nearly the same modal 

participations as shown by the circles (LTI method) laying on top of the solid line (LTP 

method).  This indicates that the LTI method can be used to compute modal participation 

as accurately as the LTP method.  
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Figure 2. Modal Participation  for Rotor Blade Flapping 

 

 

3.4 Modal Participation Numerical Example 

For the UH-60A, the modal participations were computed for each state, each 

harmonic term, and each mode using both Floquet theory and the LTI direct method 

presented here.  Each of the 73 modes were examined and found to have similar trends.  

For brevity, only 5 sample modes are shown here.  These 5 sample modes reflect the 

modal participation trends seen in all 73 modes.  The modal participation is shown for 

rotor coning state in Figure 3 as computed both by the LTP and LTI methods.  For a 4 
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bladed rotor, the harmonics with the highest modal participation are the 0 th, 1st, and even 

numbered harmonics up to 8.   

An example for reading the modal participation in Figure 3 is as follows: the top 

sub-plot shows the modal participation for mode 61, for the rotor coning state, for 

harmonics -12 through +12.  The modal participation for rotor coning state, mode 61, +2 

harmonic is 0.5; the modal participation for rotor coning state, mode 61, -2 harmonic is 

0.4.  Mode 61 and mode 62 are complex conjugate pairs, so the modal participations are 

reflected across the 0th harmonic (positive and negative harmonics are interchanged).  

Hence, as shown in the sub-plot second from the top in Figure 3, the modal participation 

for rotor coning state, mode 62, -2 harmonic is 0.5, and the modal participation for rotor 

coning state, mode 62, +2 harmonic is 0.4.  Also, the LTI and LTP computations result in 

nearly identical rotor coning modal participations, indicating that the LTI captures modal 

participation as accurately as the LTP.  

The modal participation for average inflow state is shown in Figure 4 and the 

modal participation for pitch attitude is shown in Figure 5.  Again, the LTI and LTP 

computations show similar results, indicating that the LTI captures modal participation to 

be very close to that of the LTP.  It is clear that similar to rotor degrees of freedom, body 

and inflow degrees of freedom also have contributions from harmonics 0, 1, and even 

numbered harmonics up to 8 (i.e. harmonics 0, 1, 2, 4, 6, and 8).  These trends were 

observed for all modes and for every rotor, body, and inflow state.  Thus, it is clear that in 

addition to rotor harmonics, body and inflow harmonics are important and need to be 

included in the LTI approximation.  
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Figure 3. Modal Participation  for Rotor Coning State 

 

 

 

Figure 4. Modal Participation  for Average Inflow State 

 

 




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Figure 5. Modal Participation  for Pitch Attitude 

 

  


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CHAPTER 4.  INPUT-OUTPUT FIDELITY 

 

 

At this point, two different evaluation techniques have been used to analyze the 

LTI model. The error response and cost functions have been used to show that the 

LTIfull3577 model is nearly indistinguishable from the nonlinear model in terms of IBC 

inputs and 4/rev output transfer functions.  Having shown that the LTIfull3577 model is 

accurate, modal participation is then used as an indication of which harmonic terms are 

important for each state.  

Often for control design, state information itself is not necessary, but rather the 

input-output fidelity is what is important.  This can be characterized using error response 

functions as shown previously, which indicate the relative differences or errors between 

two bare airframe (open-loop) models.  Alternatively, the bare airframe frequency 

responses themselves can be compared, which also provides insight on the actual transfer 

functions themselves.  In addition, metrics such as the normalized additive error (Ref. 29) 

from additive uncertainty analysis and the nu-gap metric (Ref. 30) can be computed 

directly from the open-loop frequency responses and used to evaluate input-output 

fidelity.  In contrast to error response and cost functions which indicate bare airframe 

fidelity, normalized additive error and nu-gap metric focus on fidelity with respect to 

controller synthesis and design.  
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4.1 Normalized Additive Error 

Although for the examples presented in this work the LTI reduction was formed 

using the methodology previously described, all of the input-to-output fidelity analysis 

described in this paper can be performed to compare any full and reduced LTI models 

irrespective of how the reduced LTI model was formed from the full LTI model.  In fact, 

one could use the input-to-output fidelity as a basis for the LTI model order reduction 

itself.  However, in this study the modal participation criterion is first applied to obtain a 

reduced order LTI model and then the resulting reduced LTI model is analyzed for input-

to-output model fidelity.  

Once an LTI reduction has been selected, the input-to-output fidelity of the 

reduced LTI model can be compared to the full LTI model by considering the normalized 

additive error to be the normalized additive uncertainty (Ref. 29).  The full LTI model is 

considered as the truth model and the reduced LTI model is considered as the 

approximation.  Additive uncertainty is used because the truth model is known.  

Although the normalized additive error can be calculated for a multiple input and 

multiple output (MIMO) system, here it is calculated for a single input and a single 

output (SISO) using the 𝐻∞ norm of the difference between the full and reduced LTI 

models normalized by the 𝐻∞ norm of the full LTI model:  







1

21

P

PP
ErrorAdditiveNormalized  (59) 

where, 𝑃1 is the full LTI model transfer function, 𝑃2 is the reduced LTI model transfer 

function, and 


  is the 
H  norm. 
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The normalized additive error is interpreted to be a measure of the percentage 

difference between the full and reduced LTI models.  A small error corresponds to full 

and reduced LTI models being close.  The additive uncertainty value so obtained can 

form the basis for additional controller robustness to be considered in the design process. 

 

4.2 Nu-Gap Metric 

The nu gap metric is used to evaluate the change in generalized stability margin 

between the full and reduced LTI systems (Ref. 30).  The nu-gap metric 
  is defined as 

follows: 


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 

 

otherwise
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  (60) 

where wno(g) denotes the winding number about the origin of g(s), as s follows the 

standard Nyquist D-contour.  1G  is the normalized right graph of 1P  and 2

~
G  is the 

normalized left graph of 2P .  Alternatively, the nu gap metric can be computed directly 

from the transfer function matrices without the normalized coprime factorization or 

graphs.  This can be done through the following relations: 

1221

~
),( GGPP   (61) 
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38 

 

where )()(* sPsP T  for real rational )(sP  which is the case here.  Similarly, the 

winding number condition for 1),( 21 PP can also be formulated in an alternative 

manner and is easier to compute: 

 0)det( 1

*

2 PPI  (63) 

0)()()()det( 20211

*

2  PPPPPIwno   (64) 

Here, the winding number condition is formed into the requirement of both Eqs, 

(63) and (64) to be satisfied for 1),( 21 PP .  Like the normalized additive error, the nu 

gap metric can be computed as a MIMO system, but it is computed here as a SISO 

system.  The nu gap metric calculation can be further simplified for the SISO case as 

2
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,21
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





 (65) 

The nu gap metric is a number from 0 to 1 where 0 corresponds to the models being close 

(Ref. 30).  It is bounded from above by the gap metric g , which can be useful if there is 

numerical difficulty in calculating the nu gap metric.  The nu gap metric relates the 

generalized stability margins through the following inequality: 

),(arcsinarcsinarcsin 21,, 12
PPbb CPCP   (66) 

where CPi
b ,  is the generalized stability margin of the feedback connection of iP  with 

compensator C, ],[ 1 CP .   
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It is clear from Eq. (66) that if the nu gap metric between 1P  and 2P  is small, then 

any compensator designed to stabilize 2P  will also stabilize 1P  since the change in 

generalized stability margin will be small.  It is common to consider that a gap metric less 

than 1/3 corresponds to the models being close.  Any input-to-output mappings with 

small nu gap metrics would be good candidates for closing loops for feedback.  Any 

input-to-output mappings with comparatively larger nu gap metric would need additional 

stability margin designed into the compensator for closing feedback loops.  

 

4.3 Open versus Closed Loop Validation 

It is important to note that although both normalized additive error and nu-gap 

metric measure differences in the input-output characteristics of two systems, the 

characteristics that they measure are not the same.  The nu-gap metric is a measure of the 

loss of stability margin between the two systems, and thus is related to the closed loop 

behavior of the two systems.  The normalized additive error is associated only with the 

open loop behavior of the two systems, and hence, can provide a basis for additional 

controller robustness to be considered in the design process.  A small normalized additive 

error would indicate that the open loop behaviors of the two systems are similar.  On the 

other hand, a small nu-gap metric indicates that there is minimal change in generalized 

stability margin, thus closed loop behaviors of the two are similar; that is to say, any 

controller that stabilizes one will also stabilize the other.  It has been shown in Ref. 30 

that closeness in one measure does not imply the closeness in the other measure, thus 

both should be considered to evaluate the full input-output characteristics.  This is 

demonstrated in Figure 6, where P0 and P2 behave similarly in open loop, but very 
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differently in closed loop.  The normalized additive error between P0 and P2 (taking P0 as 

the truth model) is 1 and the nu-gap is 0.8988.  The nu-gap of 0.8988 is very large, which 

is reflected in the very different closed loop behaviors.  In addition, P0 and P1 behave 

very similarly in closed loop, but very differently in open loop.  The normalized additive 

error between P0 and P1 (taking P0 as the truth model) is 2, which is larger than the 

normalized additive error between P0 and P2 and results in very different open loop 

behaviors.  The nu-gap between P0 and P1 is 0.02 which is very small and is reflected in 

the very different closed loop behaviors.  Thus, both open and closed loop fidelity needs 

to be evaluated.  
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Figure 6. Example Open versus Closed Loop Response from Vinnicombe (Ref. 30) 

 

 

4.4 Model Reduction and Input-Output Fidelity Example 

Looking again to the UH-60A model, the significance of particular harmonic states 

can then be evaluated by comparing the full model LTIfull3577 with reduced LTI models 

that do not include particular harmonic states.  The first reduction is formed by excluding 

the least significant harmonics, as shown by the modal participation evaluations.  
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Specifically, harmonics 3, 5, 7, 9 and all above 9 are removed.  The resulting LTI retains 

the 0th, 1st, and 2-8 even numbered harmonics of all body, inflow and rotor states, 

resulting in 803 states (referred to as LTIred803).  The second reduction is formed by 

starting with LTIred803 and removing any body harmonic states.  The resulting LTI has 

only 723 states (referred to as LTIred703) and contains only the 0th harmonic body states, 

and the 0th, 1st, and 2-8 even numbered harmonic inflow and rotor states.  The third 

reduction is formed by starting with LTIred803 and removing any inflow harmonic 

states.  The resulting LTI has only 473 states (referred to as LTIred473) and contains only 

the 0th harmonic inflow states, and the 0th, 1st, and 2-8 even numbered harmonic body and 

rotor states.  Finally, the fourth reduction is formed by starting with LTIred803 and 

removing both body and inflow harmonic states.  The resulting LTI has only 393 states 

(referred to as LTIred393) and contains only the 0th harmonic body and inflow states, and 

the 0th, 1st, and 2-8 even numbered harmonic rotor states.   

The frequency responses for the various LTI model approximations considered above 

are used in evaluating the individual model fidelity.  For example, comparisons of bare 

airframe frequency responses from various LTI model approximations from IBC4C input 

to hub force and moment outputs 
CxF 4

, 
CyF 4

, 
CzF 4

, 
CxM 4

, and 
CyM 4

 are shown in Figures 

7, 8, 9, 10 and 11, respectively.  For all of the frequency responses examined, LTIred803 

is nearly indistinguishable from LTIfull3577.  Thus it is clear that in this case, any 

harmonic terms 3, 5, 7, 9 and any above 9 do not significantly influence overall model 

fidelity.  Comparing LTIred723 with LTIfull3577, there is a maximum of a 3 dB 

difference in magnitude at 6 rad/s for 
CxF 4

, and otherwise a maximum of 1 dB 

differences in magnitude over all frequency responses examined.  Comparing LTIred473 
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with LTIfull3577, for 
CyM 4

 there is a maximum difference of 26 dB at 16 rad/s, and for 

all other outputs a maximum of 9.5 dB differences in magnitude below 7 rad/s, and 2.5 

dB differences above 7 rad/s.  Comparing LTIred393 with LTIfull3577, differences are 

similar to those from LTIred473 with 
CyM 4

 having a maximum difference of 26 dB at 16 

rad/s, and for all other outputs a maximum of 10 dB differences in magnitude below 7 

rad/s, and 2.5 dB differences above 7 rad/s.  Thus, it is clear that inclusion of harmonics 

terms for both body and inflow states are important, although body harmonic terms less 

so than inflow harmonic terms.   

 

 



44 

 

 

Figure 7. Frequency Response Comparison for IBC4C to  

 

 

CxF 4
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Figure 8. Frequency Response Comparison for IBC4C to  
CyF 4
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Figure 9. Frequency Response Comparison for IBC4C to  

 

 

CzF 4
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Figure 10. Frequency Response Comparison for IBC4C to  
CxM 4
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Figure 11. Frequency Response Comparison for IBC4C to  

 

 

The normalized additive error (Ref. 29) for IBC4C input for each reduction is 

shown in Figure 12 for 
CxF 4

, 
CyF 4

, 
CzF 4

, 
CxM 4

, and 
CyM 4

.  Each reduction is compared 

with LTIfull3577, with LTIfull3577 taken as the truth model.  Here it is clear that there is 

very small normalized additive error for LTIred803, meaning that virtually no additional 

robustness would be needed for designing a controller based on the LTIred803 model 

compared to the LTIfull3577 model.  Normalized additive error for LTIred723 is on the 

CyM 4
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order of 0.01~0.05 meaning that some additional robustness would be needed for 

designing a controller using the LTIred723 model compared to the LTIfull3577 model.  

Normalized additive error for LTIred473 and LTIred393 are both on the order of 0.2, 

meaning that additional robustness would be needed for designing a controller using 

either reduced model compared to the LTIfull3677 model.  Thus, it is again clear that 

retaining harmonic terms for body and inflow states is important for reducing additional 

robustness needed in controller design. 

 

 

 

Figure 12. Normalized Additive Error Comparison for IBC4C to 4C Outputs 
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The nu-gap metric (Ref. 30) for IBC4C input for each reduction is shown in 

Figure 13 for 
CxF 4

, 
CyF 4

, 
CzF 4

, 
CxM 4

, and 
CyM 4

.  Each reduction is compared with 

LTIfull3577, with LTIfull3577 taken as the truth model.  Here it is clear that there is very 

small nu-gap metric for LTIred803, meaning that there would be very little losses in 

stability margin if a controller were designed using the LTIred803 model and applied to 

the LTIfull3577 model.  Nu-gap metric for LTIred723 is at most on the order of 0.1 

meaning that there would be very little loss in stability margin if a controller were 

designed using the LTIred723 model and applied to the LTIfull3577 model.  Nu-gap 

metric for LTIred473 and LTIred393 are both at most on the order of 0.2, meaning that 

there would be small losses in stability margin if a controller were designed using either 

model and applied to the LTIfull3577 model (small, but still larger compared to the 

LTIred723 and LTIred803 cases).  Thus, it is again clear that retaining harmonic terms 

for body and inflow states is important for reducing losses in stability margin when 

designing controllers based on the reduced models.  In the context of vibration reduction 

considered here, the LTIred803 model is used for further analysis and control design.   
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Figure 13. Nu-gap Metric Comparison for IBC4C to 4C Outputs 

 

 

4.5 Balanced Model Reduction 

For the purposes of CONDUIT® optimization (Ref. 31), a model of approximately 

100 states or less is desired for computational efficiency.  The reduction techniques 

discussed in Section 4.4 have the benefit of preserving the physical meaning of each 

state, which is useful when state information is important (e.g. modal analysis or state-

feedback control design).  For cases where only input-output information is important 

and state information is not important (e.g vibration reduction), an alternate realization 
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for the LTI model can be used for model reduction.  For the example examined here, 

LTIred803 is reduced by first putting it into a balanced realization form (Ref. 32), which 

makes the input, output, and state energies all equal.  Although it is possible to directly 

put LTIfull3577 into a balanced realization form, for computational efficiency LTIred803 

is used instead.  The associated Hankel Singular Values reflect the overall importance of 

each state for controllability and observability, thus states with low energy can be 

truncated.   

The Hankel Singular Values for each state are shown in Figure 14 on a log scale.  

The maximum Hankel Singular values are nearly 50,000, while the minimum singular 

values for the 200 states with the least amount of energy are too small to be computed 

accurately due to machine precision.  It was found that most of the energy is contained in 

approximately 100 states, corresponding to Hankel Singular Values of 20 or larger.  

Thus, only these 100 states with the most state energy are kept in the reduction (referred 

to as LTIred100).   
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Figure 14. Hankel Singular Values (State Energy) 

 

 

The bare airframe response for IBC4C to Fz4C is shown in Figure 15 for the LTI 

models before and after the balanced reduction.  The two models are essentially identical 

in terms of frequency response with any differences being negligible.  It is also important 

to note that there are 2 modes that severely affect HHC performance: a mode at 9 rad/s 

and another mode at 17 rad/s.  Both modes can clearly be seen as very large peaks in the 

bare airframe response.  These modes have been previously identified to be coupling 

between the dynamic inflow and body response (Ref. 33) and must be taken into account 

in the HHC and crossfeed design.  
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Figure 15. Bare Airframe Response IBC4C to Fz4C for LTIred100 

 

 

The 100 state reduced order linear model is compared against the nonlinear model 

using error response plots between linear and nonlinear model bare airframe responses.  

An example error response plot is given in Figure 16.  In Figure 16, the cost functions J 

are 0.137 and 2.219 for IBC4C to Fz4C and Fz4S respectively.  The average cost 

function over all IBC input and 4/rev output transfer functions is 4.92, meaning that the 

LTIred100 model time response data is nearly indistinguishable from the nonlinear model 

time response data in the frequency range of concern to the controller (ωc ≈ 3 rad/s). 
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Figure 16. Error Response Plot for Fz4C and Fz4S for LTIred100  
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CHAPTER 5.  INTEGRATED FLIGHT AND VIBRATION CONTROL 

 

 

Having developed a methodology for extracting and validating reduced order linear 

time invariant approximation models, the next step is to use these models in the design 

and validation of an integrated flight and vibration controller.   

 

5.1 Integrated Flight and Vibration Control 

Vibration reduction is an important and well understood field of rotor dynamics as 

demonstrated by the fundamental work of Friedmann and Teves (Refs. 1 and 2).  Using 

the LTI models developed here, a higher harmonic controller (HHC) using a nominal T-

Matrix (Ref. 34) architecture can easily be extracted which will reduce steady state 

vibrations. 

The model examined is the UH-60A full vehicle nonlinear model (NL) in 

FLIGHTLAB® (Ref 25.)  The NL model is used in conjunction with a control system in 

Simulink.  The flight control system used is the Advanced Digital Optical Control System 

(ADOCS) (Ref. 35) shown in the top loop of Figure 17.  Additionally, the HHC loop is 

shown as the bottom loop of Figure 17.   

The ADOCS architecture includes feedback for stabilization as well as explicit 

model following which uses feed forward and inverse plant dynamics.  Piloted handling 

qualities are desirable or adequate for all low, medium, and high gain pilot tasks.   
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The HHC considered here is implemented for the purpose of vibration reduction.  

Specifically, the objective of the HHC is to minimize outputs consisting of the 4/rev 

cosine and sine components of hub forces and moments except rotor torque (Fx4C, Fy4C, 

Fz4C, Mx4C, My4C, Fx4S, Fy4S, Fz4S, Mx4S, My4S).   

Both the AFCS and HHC loops are traditionally designed independently, as 

shown in Figure 17.  Because they are designed independently, there may be one way 

coupling from the AFCS onto the HHC.  This coupling can result in significantly 

degraded vibration reduction performance during maneuvering flight.  This coupling is 

addressed in this chapter by development of an integrated flight and vibration controller 

though the use of dynamic crossfeeds. 
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Figure 17. HHC/AFCS Architecture from Ref. 9 showing two independent loops  

 

 

5.2 Baseline Higher Harmonic Control Laws 

The HHC design uses a Transfer matrix (T-Matrix) approach (Ref. 34), which 

assumes that the 4/rev harmonic load outputs PZ4  are a linear static mapping from the 

higher harmonic control inputs   

TZ P 4  (67) 
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where, the T-matrix is extracted directly from the linear model as it is simply the 

DC gain matrix between IBC inputs and 4/rev outputs.  To put the 4/rev moments into 

comparable units as the 4/rev forces, the 4/rev moments are weighted by 1/Δ𝑍 where Δ𝑍 

is the vertical displacement of the rotor hub from the vehicle center of gravity.  These 

weightings are used when computing the pseudo inverse T  (Ref. 8) and for any 4/rev 

load comparisons.  The T-Matrix controller can be implemented using either a 

proportional or an integral type of controller.  Here, an integral controller is preferred as 

integral controllers can better address steady state errors and thus better reduce steady 

state vibrations levels.  The resulting integral controller in the Laplace domain is then 

simply defined as  

PZT
s

4

1   (68) 

Substituting Eq. (67) back into the T-matrix controller Eq. (68) results in the 

broken-loop response ef   as indicated in Figure 18 

s

K

s
TT

se

f
  11




 (69) 

where K/s is the broken-loop response with K set to 1 for the nominal T-matrix case and 

results in a crossover frequency of 
c  = 1 rad/s. 

The nominal T-matrix was implemented both in the nonlinear and linear systems 

to verify the linear analysis is consistent with the nonlinear analysis.  Figure 18 shows the 

weighted nonlinear steady state 4/rev loads for the no T-Matrix case and the nominal T-

matrix case (K = 1).  All 4/rev loads are decreased in the K = 1 case except Fz4.  In the 
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no T-matrix case Fz4 is much smaller compared to all other 4/rev loads which 

corroborates comparisons with wind tunnel data (Ref. 9).  Therefore, Fz4 is allowed to 

increase for overall increased benefit of minimizing the average 4/rev loads in the K = 1 

case.   

 

 

 

Figure 18. Weighted Steady State 4/rev Loads (Nonlinear Model)  

 

 

The broken-loop and disturbance rejection responses are now compared for the 

nonlinear and linear models.  For the K = 1 case, both nonlinear and linear models predict 

similar broken-loop responses (Eq. (69)) as shown in Figure 19.  For the IBC4C broken-

loop response both linear and nonlinear models have similar crossover frequencies c  of 

about 1 rad/s (as expected for the K = 1 T-matrix controller).  The margins using the 

linear and nonlinear models are in good agreement, where the nonlinear gain margin 
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(GM) is 10.48 dB and the linear gain margin is 10.42 dB.  Likewise, the nonlinear phase 

margin (PM) is 78 deg and the linear phase margin is 79 deg.  

 

 

 

Figure 19. IBC4C Broken-Loop Response for K=1  

 

 

The disturbance rejection response is the 4/rev load response to a 4/rev load 

disturbance which is defined in Figure 17 as DRPZ 4 .  The disturbance rejection 

bandwidth (DRB) is the frequency at which the disturbance rejection response falls below 
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-3 dB (Ref. 26).  The disturbance rejection peak (DRP) is the largest magnitude of the 

disturbance rejection response.   

For the K = 1 case, both nonlinear and linear models also predict similar 

disturbance rejection responses, as shown in Figure 20 for the Fz4S.  For Fz4S the DRB 

for the nonlinear model is 0.75 rad/s while the DRB for the linear model is 0.79 rad/s, 

which is as expected near the broken-loop crossover frequency 1c .  Similarly, the 

DRP for the nonlinear model is 0.81 dB while the DRP for the linear model is 0.76 dB.  

Having validated the bare airframe, broken-loop, and disturbance rejection responses of 

the linear model against the nonlinear, the linear model is considered accurate to the 

nonlinear model.  Thus, the linear model can be used to make further HHC performance 

improvements, such as use in CONDUIT® (Ref. 31) for optimization of the T-matrix 

controller.   
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Figure 20. Fz4S Disturbance Rejection Response  

 

 

 

5.3 Optimized Higher Harmonic Control Laws 

Having developed and verified the baseline K=1 T-Matrix performance, further 

vibration reduction performance can be achieved through optimization using the LTI 

model in CONDUIT® (Control Designer's Unified Interface) (Ref. 31).  CONDUIT® is a 

state-of-the-art computational software tool for flight control design and optimization.  It 

is jointly developed by the U.S. Army Aeroflightdynamics Directorate (AFDD) and the 

University Affiliated Research Center (UARC).  CONDUIT® provides a comprehensive 
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analysis environment which allows for rapid evaluation of control law design against a 

defined set of handling-qualities and performance specifications.  A multi-objective 

function optimization engine is also integrated into CONDUIT® which provides the 

capability to automate tuning of user-defined design parameters in order to meet these 

competing specifications.  A collage of the CONDUIT® environment is shown in Figure 

21. 

CONDUIT® optimization is performed by first determining which handling 

qualities specifications to use.  The stability and performance specifications used here are 

given in Table 1.  Specifications include classic broken-loop gain margin and phase 

margin for stability; in addition, broken-loop crossover frequency, disturbance rejection 

peak and disturbance rejection bandwidth specifications are included to improve 

performance.  Furthermore, damping ratio specifications for specific frequency ranges are 

used to address the coupled inflow/body modes at 9 rad/s and 17 rad/s.  

 

 

Table 1. Stability and Performance Specifications used in CONDUIT® 

Description of Specifications Used Comments 

Broken-Loop Gain and Phase Margins Ensure adequate stability margins 

Broken-Loop Crossover Frequency 
Ensure good controller crossover 

frequencies 

Disturbance Rejection Bandwidth 
Ensure good disturbance rejection 

bandwidth 

Disturbance Rejection Peak 
Ensure satisfactory damping of 

disturbance response 

Damping Ratio 
Ensure coupled inflow/body modes well 

damped 
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Figure 21. CONDUIT® Environment  

 

 

Having identified the desired handling qualities specifications, the next step is to 

define the Level 1 handling qualities specification boundaries.  Here, this is defined as 

having in each broken-loop at least 7.5 dB of gain margin and 55 degrees of phase 

margin.  Also, for each crossover frequency, DRB, and 3 damping ratio specifications (1-

8 rad/s, 8-12 rad/s, and 12-20 rad/s), the Level 1 specifications are defined to perform at 

least as well as the K = 1 case.  For each DRP, the Level 1 boundary is defined as 10% 

higher than the K = 1 case.  For illustrative purposes, the handling qualities specifications 
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for IBC4C and Fz4S are shown in Figure 22 while the entire size of the CONDUIT® 

problem is summarized in Table 2 as defined by Mansur et al (Ref. 36). 

 

 

 

Figure 22. CONDUIT® Specifications for IBC4C and Fz4S  
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Table 2. CONDUIT® Problem Size 

Total Number of States in CONDUIT® System 118 

Number of Specifications 41specn  

Number of Design Parameters 20DPn  

Total Size of CONDUIT® Problem 820DPspecnn  

 

 

Optimization was attempted for only the T-matrix gains, but no significant 

improvement was found.  Instead more sophisticated compensation is needed to improve 

each of the performance specifications while maintaining stability margin; specifically, a 

first-order dynamic compensator was added to each loop of the form: 

)(

)(

4 bs

as

s

K

Z P 





 (70) 

The dynamic compensators trade phase margin against gain margin.  Also, a 

second-order Bessel filter is added on Fz4C and Fz4S to prevent the controller from 

amplifying responses associated with the 9 and 17 rad/s modes.  Optimization is then 

performed to tune each dynamic compensator, forming a lead or lag filter.  This design is 

referred to as the “Opt” design.   

The optimized controller design was then implemented in the nonlinear 

simulation.  Figure 23 shows a sample broken-loop response for the K = 1 and the Opt 

cases for IBC4C.  The linear broken-loop responses match well with the nonlinear 

responses.  Also, the Opt case has the same IBC4C crossover frequency as the K=1 case 

while still maintaining gain and phase margin for IBC4C.   
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Figure 23. IBC4C Broken-Loop Response  

 

 

Table 3 compares the specifications between the K = 1 and Opt cases based on the 

LTI model in CONDUIT®.  The Opt case has the improved average crossover frequency 

by 11% resulting in the average DRB improving by 12%. Similarly, the Opt case has a 

17% improvement in the 12-20 rad/s damping ratio. 
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Table 3. Stability and Performance Specifications from LTI in CONDUIT® 

Specs K = 1 Opt 

IBC4C 𝜔𝑐 [rad/s] 1.06 1.07 

IBC4S 𝜔𝑐 [rad/s] 0.95 1.00 

Average 𝜔𝑐 over all IBC 3,4,5 inputs [rad/s] 0.98 1.09 

IBC4C GM [dB] 10.39 9.84 

IBC4S GM [dB] 11.55 10.47 

Average GM over all IBC 3,4,5 inputs [dB] 16.11 14.98 

IBC4C PM [deg] 79.09 77.65 

IBC4S PM [deg] 80.17 78.19 

Average PM over all IBC 3,4,5 inputs [deg] 76.89 77.67 

Damping Ratio [1-8 rad/s] 0.968 0.957 

Damping Ratio [8-12 rad/s] 0.120 0.110 

Damping Ratio [12-20 rad/s] 0.0596 0.0700 

Fz4C DRB [rad/s] 0.832 0.830 

Fz4S DRB [rad/s] 0.804 0.800 

Average DRB over all 4/rev load components [rad/s] 0.760 0.851 

 

 

The baseline K = 1 and Opt cases are then compared in the nonlinear simulation 

using pulse responses.  Figure 24 shows the Fz4S response to a 3-inch pitch stick doublet 

which starts at 35 seconds and has a period of 6 seconds.  The Opt case is clearly 

improved over the baseline K = 1 case, having significantly reduced oscillatory response.  

Specifically, the Opt case has a 7 percent reduction in peak-to-peak magnitude compared 

to the K = 1 case, where the peak-to-peak value is considered the largest value throughout 

the entire response as indicated in Figure 24.  It should be noted that the vehicle starts in 

trim at 35 seconds at 120 knots. Due to the doublet input the vehicle has changed flight 

condition and finished 20 knots slower resulting in a different steady state condition at 

the end. 
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Figure 24. Pitch Stick Doublet Response  

 

 

5.4 Performance During a Realistic Maneuver 

The piloted pullup/pushover maneuver implemented here is based on ADS-33E 

Mission Task Elements (MTEs) (Ref. 37) which are representative of realistic pilot 

maneuvers.  The maneuver starts at 120kts, followed by a pullup which subjects the 

vehicle to a high load factor, and then transitions to a pushover and a low load factor. The 
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ADS-33 pullup/pushover MTE is similar to the Utility Tactical Transport Aircraft System 

(UTTAS) maneuver (Ref. 38).  Both result in the same desired specifications for duration 

and load factors, except the ADS-33 maneuver has extra specifications on maintaining 

roll and yaw attitudes.  

The maneuver was performed in a real-time piloted simulator; the recorded pilot 

inputs were then used to reproduce the maneuver in the high-fidelity nonlinear simulation 

offline.  Figure 25 shows the pilot inputs that were recorded and replayed to perform the 

identical maneuver in the high fidelity simulation case.  The HHC is turned on 15 

seconds before the maneuver to allow the vehicle to reach a new steady state condition.  

 

 

 

Figure 25. Pullup/Pushover Pilot Inputs  
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The Fz4S response during the maneuver is shown in Figure 26.  The Opt case is 

improved over the K = 1 case in terms of having reduced oscillatory response.  

Specifically, the Opt case has a 10 percent reduction in peak-to-peak magnitude 

compared to the K = 1 case during the pullup/pushover maneuver.  This is clearly 

illustrated in Fz4S power spectral density in Figure 27.  After 3 rad/s, the Opt case has 

consistently the same or less activity than the K = 1 case as shown in the green dotted 

circle.  Therefore, for Fz4S, the Opt case is better than the K = 1 case (being the same at 

low frequency, but improved at high frequency).  

 

 

 

Figure 26. Pullup/Pushover Fz4S Response 
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Figure 27. Pullup/Pushover Fz4S Power Spectral Density 

 

 

5.5 Integrated HHC/AFCS Design 

Having improved the T-Matrix controller using optimization techniques, piloted 

inputs were taken into consideration to further improve performance during maneuvering.  

Specifically, an integrated controller using dynamic crossfeeds further improved the 

transient response.  Dynamic crossfeeds were developed and shown to be effective on 

LTI models in Abraham et. al. (Ref. 9).  The idea is to feed pilot or swashplate inputs 

from the AFCS loop into the HHC inputs in the HHC loop.  Thus, the 4/rev outputs 

caused by swashplate inputs can be anticipated and cancelled out via the HHC. 

Specifically, the crossfeed design considered here is with the AFCS open-loop 

swashplate inputs crossfed into the HHC closed-loop input as shown in Figure 28, where 

H  is the dynamic crossfeed controller.  
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Figure 28. Crossfeed Architecture 

 

 

From Abraham et. al. (Ref. 9) the ideal crossfeed is given by 

1,2 GGH CLideal

  (71) 

P

SP

Z

U
G

4

1   (72) 

P

CLHHC

CL
Z

U
G

4

,

,2   (73) 

CLG ,2  is the CONDUIT® optimized closed-loop HHC design (Opt).  The pseudo 

inverse 


CLG ,2  weights are selected to be the same as those used in the T-Matrix 

controller, minimizing all 4/rev cosine and sine components of hub forces and moments 

except torque, and weighting moments by Z1 .  The ideal crossfeeds idealH  can be 
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calculated pointwise at every frequency and then fitted using low-order approximations 

(Ref. 26).  For longitudinal swashplate to IBC3C, the low order approximation is 

 
  4.9,39.08.1,86.0

2.3,21.0
,3


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

nn
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LonCIBCH




 (74) 

where  n ,  represents a complex pair of poles or zeros with  

12

2,1   nns  (75) 

The ideal crossfeed and low-order approximation for longitudinal cyclic to IBC3C is 

shown in Figure 29 and is shown as the red dashed, whereas the ideal crossfeed is the 

solid black line.  The low order approximation matches very well with the ideal crossfeed 

with a cost function J of 9.7 indicating a near exact match.  

 

 

 

 

 



76 

 

 

 

Figure 29. Crossfeed for Longitudinal Cyclic to IBC3C  

 

 

These ideal crossfeeds are fitted such that the approximations are causal, 

asymptotically stable, and bounded-input-bounded-output stable.  It should be noted that 

there is no requirement for the low order fits to be minimum phase.  The low-order fits 

are then implemented in the NL model.  This case is referred to as the Opt + H case and 

is used in the pullup/pushover maneuver.  The 4/rev loads are the magnitude of the 4/rev 

cosine and sine components, therefore, for Fx, the 4/rev load can be calculated as: 
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A similar calculation can be performed on the Fy4, Fz4, Mx4, and My4 outputs.  

The 4/rev load responses of the Opt + H case are shown in Figure 30 for the 

pullup/pushover maneuver.  It is important to note that the body response is unchanged 

with the inclusion of both the T-Matrix and dynamic crossfeeds, and that there is little 

influence of the HHC on body response.  Specifically, as shown in Figure 30, the primary 

body response parameters, maneuver airspeed and load factor, remain unchanged when 

the vibration controller is active.  Thus, for the maneuver shown, there is little or no 

compensation needed by the pilot or in the AFCS design for HHC inputs, thus, there is no 

effect on handling qualities.  This result is in agreement with Cheng et. al. (Ref 8).   
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Figure 30. Pullup/Pushover Response  
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where ix  is the ith value of the sequence of values ),....,,...,,( 21 Ni xxxx and N is the 

number of values considered.  Furthermore, standard deviation (STD) is defined as:  

 



N

i

i xx
N

STD
1

21
 (78) 

where x  is the arithmetic mean of the sequence ),...,,( 21 Nxxx  defined as:  
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The STD is a good measure of how much transient and oscillatory response 

exists, while RMS is a good measure of how much total response exists. 

Fx4 has the largest response for the No T-Matrix case, and the HHC performance 

is examined with the RMS, STD, and peak-to-peak values given in Table 4.  It is clear 

from the table that, the Opt case has improved RMS, STD, and peak-to-peak values over 

the No T-Matrix case for Fx4.  Furthermore, despite large variations in flight condition, 

the crossfeeds in Opt + H have further improved RMS, STD, and peak-to-peak values 

compared to the no crossfeeds Opt case.  

 

 

Table 4. Pullup/Pushover Performance for Fx4 

Specs No T-Matrix Opt Opt+H 

Fx4 RMS [lb] 844.3 206.2 191.0 

Fx4 STD [lb] 460.7 124.5 102.3 

Fx4 Peak-to-Peak [lb] 1696.9 680.0 572.0 
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It was determined that Fx4S has the largest maximum PSD value among all 4/rev 

hub load components for the Opt case.  The Fx4S PSD for both the Opt case and the Opt 

+ H case is shown in Figure 31.  Here it is clear that the Opt + H case has improved the 

PSD up until the crossover frequency (
c =1 rad/s).  The difference is as large as 8 dB at 

0.7 rad/s.  Past the crossover frequency, the HHC has little effect.  

 

 

 

Figure 31. Power Spectral Density for Fx4S  
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RMS for Mx4 and My4 are then weighted by 1/Δ𝑍, the same weights chosen for both 

pseudo inverse calculations.  The weighted values are then averaged over Fx4, Fy4, Fz4, 

Mx4, and My4 to give a single weighted average value for RMS.  Specifically, the 

weighted average for RMS is calculated as follows: 

5

44
444

Z

RMS

Z

RMS
RMSRMSRMS

RMS

MyMx
FzFyFx

avg







  (80) 

A similar process can be done to calculate the averages for STD and peak-to-peak.  

The average RMS, STD, and peak-to-peak 4/rev load values are given in Table 5 

along with the percent improvement of the HHC cases over the No T-Matrix case shown 

in parenthesis.  It is clear that in terms of average RMS, STD, and peak-to-peak, the Opt 

case is improved over the No T-matrix case and the Opt + H case is further improved 

over both cases.  Specifically, the Opt + H case has the following improvements over the 

Opt case: 5% improvement in average RMS, 15% improvement in average STD, and 

24% improvement in average peak-to-peak.  Overall, the Opt + H case has the following 

improvements over the No T-Matrix case: 61% improvement in average RMS, 58% 

improvement in average STD, and 44% improvement in average peak-to-peak.  

 

 

Table 5. Pullup/Pushover Performance Averages 

Specs No T-Matrix Opt Opt + H 

Average RMS [lb] (%) 349.8 143.4 (5%) 135.7 (61%) 

Average STD [lb] (%) 180.4 89.3 (15%) 75.5 (58%) 

AveragePeak-to-Peak [lb] (%) 692.3 507.4 (24%) 384.4 (44%) 
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CHAPTER 6.  ROBUSTNESS EVALUATIONS 

 

 

Having developed an integrated flight and vibration controller to improve 

vibration reduction performance during maneuvering flight, the next step will be to 

evaluate the robustness of the vibration controller.  Previous studies examined the 

sensitivity of vibration levels to flight conditions as well as robustness of traditional HHC 

designs.  Studebaker used flight test data of a UH-60A and found that advance ratio had a 

significant impact on steady state vibration levels (Ref. 39).  Patt et. al. studied the 

traditional HHC algorithm and found that the fixed-gain HHC performed satisfactorily 

within 20 kts of design speed (Ref. 40).  Fan and Hall recently examined the use of gain-

scheduling techniques to develop a full flight envelope vibration controller (Ref. 41).  

They found that HHC performance is strongly dependent on advance ratio, and weakly 

dependent on shaft angle and blade loading.  They developed a full flight envelope 

controller using a gain-scheduling techniques.  The controller was scheduled at 4 advance 

ratios (0.15, 0.2, 0.3, and 0.375).  An H-infinity controller at each scheduled anchor point 

was continuously run, and their outputs were blended together using linear interpolation.   

Robustness of the integrated flight and vibration controller will be examined in 

off-design conditions selected based on the previous studies of Studebaker, Patt, and Fan 

et al.  The robustness results will then be used to develop a full flight envelope controller. 

The nominal design conditions for the integrated flight and vibration controller 

developed here are at a true air speed of 120 kts, steady level flight, sea level, standard 
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day, with gross vehicle weight of 16,300 lb, and a 360 inch moment arm from the nose to 

the C.G.  From previous literature, it is expected that there will be gradual changes of 

HHC performance as flight speed deviates away from the design speed.  From Patt et. al. 

(Ref. 40), the fixed-gain HHC is expected to perform well within approximately 20 kts of 

the design speed, thus, deviations of 20 and 30 kts will be examined.   

To explore other flight conditions, descending flight, turning flight, variations in 

altitude and an alternate weight and C.G. configuration will also be examined.  From the 

UH-60 service manual, the UH-60A operating limits define a maximum descent rate of 

1,000 feet per minute.  Descent rates of 425 and 850 feet per minute, corresponding to 

flight path angles of 2 and 4 degrees respectively at 120 kts, are chosen to fall safely 

within the operating limits.  The UH-60 service manual also defines a max bank angle of 

30 degrees, thus 2 different turning conditions are examined: 4 and 27 degree bank angles 

at 120 kts.  From Tobias and Tischler, gradual variations in flight dynamics due to 

altitude changes were observed (Ref. 42).  This will also be explored for the HHC by 

considering alternative altitudes of 3,000 and 6,000 feet.  Finally, to explore alternate 

vehicle inertial configurations a gross vehicle weight of 20,000 lb with a 350 inch C.G. 

moment arm is examined, which falls within the acceptable operating C.G. limits defined 

by the UH-60 service manual.  The full off-design conditions for robustness evaluation 

are given in Table 6, known as the robustness test matrix. 
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Table 6. Robustness Test Matrix: Off-Design Conditions for Robustness Evaluation 

Case Number Off-Design Type Deviation From Nominal Conditions 

1 Speed 140 kts (20 kts increase) 

2 Speed 150 kts (30 kts increase) 

3 Descent 2 deg flight path angle (425 fpm) 

4 Descent 4 deg flight path angle (850 fpm) 

5 Turning 4 deg bank angle 

6 Turning  27 deg bank angle 

7 Altitude 3,000 ft 

8 Altitude 6,000 ft 

9 Inertia 20,000 lb, 350 inch moment arm 

 

 

6.1 LTI Robustness Evaluations of Fixed Point Controller 

With the 9 off-design cases defined in the robustness test matrix, the robustness of the 

optimized HHC is evaluated first using LTI evaluations.  For each off-design condition, 

an LTI model is extracted at those conditions, and this model is then used as the plant in 

CONDUIT® while keeping the controller fixed at the design based on nominal 

conditions.  This is similar to how a fixed-gain HHC would operate under different 

operating conditions (the HHC is fixed, but the plant varies due to changes in operating 

conditions).  For every off design case, each CONDUIT® design specification was 

examined in terms of crossover frequency, gain margin, phase margin, disturbance 

rejection bandwidth, disturbance rejection peak, and eigendamping specifications.  The 

average crossover, GM, PM, DRP, and DRP are listed for each case in Table 7.   
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Table 7. Off-Design LTI Robustness Evaluations 

Case Conditions 
Average 

Crossover (rad/s) 

Average 

GM (dB) 

Average 

PM (deg) 

Average 

DRB (rad/s) 

Average 

DRP (dB) 

- Nominal  1.085 14.98 77.67 0.851 0.991 

1 140 kts 1.109 14.53 78.47 0.875 0.993 

2 150 kts 1.120 14.49 78.68 0.890 1.018 

3 2 deg descent 1.092 14.72 77.97 0.856 0.979 

4 4 deg descent 1.099 14.25 78.63 0.864 0.991 

5 4 deg bank 1.084 14.98 77.77 0.850 0.990 

6 27 deg bank 1.065 14.74 76.77 0.844 1.058 

7 3,000 ft 

altitude 
0.968 15.41 78.61 0.764 0.909 

8 6,000 ft 

altitude 
0.856 15.88 79.37 0.680 0.858 

9 Weight and 

C.G. 
1.084 14.98 77.74 0.850 0.991 

 

 

Compared to the nominal conditions case, all CONDUIT® specifications 

examined showed minor changes in stability and performance specifications for 

descending flight, turning flight, and the alternate weight and C.G. configuration.  It is 

very clear, however, that there are gradual changes in stability and performance when 

there are changes in flight speed and altitude as indicated by the small changes seen in 

cases 1 and 2.  For example, the average crossover frequency for the nominal conditions 

(120 kts) is 1.085 rad/s, but this increases to 1.109 rad/s at 140 kts (case 1), and further to 

1.120 rad/s for 150 kts (case 2).  Similarly, there are gradual changes with average 

crossover as altitude changes: at sea level (nominal conditions) the average crossover is 

1.085 rad/s, but at 3,000 ft the average crossover drops to 0.968 rad/s, and further drops 

to 0.856 rad/s at 6,000 ft.  
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6.2 NL Robustness Evaluations of Fixed Point Controller 

At this point, the LTI results showed that very little impact on stability and 

performance of the HHC for descending flight, turning flight, alternate weight and C.G. 

configuration. However; the LTI results do show gradual changes in stability and 

performance of the HHC with respect to changes in speed and altitude. The robustness of 

the HHC has been examined with respect to stability and performance using CONDUIT®; 

however, this CONDUIT® evaluation has not included dynamic crossfeeds.  To evaluate 

the full integrated controller, performance evaluations using the nonlinear model during 

maneuvering flight will be used here.  

For simplicity, the integrated flight and vibration controller is evaluated using 

generic pilot doublets.  The generic maneuvers will be performed at each off-design test 

condition both with and without the fixed-gain vibration controller active.   Figure 32 

shows the pilot stick inputs, with the pitch stick doublet starting at 35 seconds and ending 

at 41 seconds. Figure 33 shows the response to the pitch stick doublet at the nominal 

design conditions (120 kts). The response with the HHC off is shown by the red solid 

line, while the response with the fixed-gain integrated flight and vibration controller 

(optimized with dynamic crossfeeds) is shown in dashed black.  Figure 34 shows the 

pitch stick doublet 4/rev magnitude response at 140 kts (test case 1). In off design cases, 

the vibration controller is the same fixed-gain integrated design (designed at the 120 kts, 

nominal conditions), but the controller is used at off-design conditions – in the case 

Figure 34, 140 kts.   

The steady state vibration levels are different between the 120 kts (Figure 33) and 

140 kts responses (Figure 34) making direct comparison of responses difficult. Instead, 
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the performance is evaluated using a percent improvement compared to the HHC off 

cases.  Table 8 shows the average 4/rev magnitude RMS, STD, and peak-to-peak (P2P) 

values for each off design case.  The values are listed for HHC and no HHC, and also the 

HHC percent improvement is shown, which allows off-design cases to be compared with 

the nominal design HHC percent improvement.  For example, for the nominal conditions, 

the fixed-gain HHC improves average RMS by 61%, STD by 42%, and peak-to-peak by 

30%.  At 140 kts flight conditions, the fixed gain HHC (designed at 120 kts) improves 

average RMS by 59%, STD by 41%, and peak-to-peak by 32%.  At 150 kts flight 

conditions, the fixed gain HHC (designed at 120 kts) improves average RMS by 50%, 

STD by 21%, and peak-to-peak by 17%.   

From Table 8 it is clear that for a pitch stick maneuver, there are gradual changes 

in HHC performance as flight speed and altitude deviate from the design conditions.  

Also, descending flight, turning flight, and alternate weight and C.G. location has very 

little impact on HHC performance.   
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Figure 32. Pitch Stick Doublet for Robustness Evaluations 
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Figure 33. Doublet Response for 120 kts Nominal Conditions 

 

 

35 40 45
0

500

1000
Fx4 (lb)

35 40 45
0

500

1000
Fy4 (lb)

35 40 45
0

100

200
Fz4 (lb)

35 40 45
0

500

1000
Mx4 (ft-lb)

35 40 45
0

1000

2000
My4 (ft-lb)

35 40 45
0

1000

2000
Mz4 (ft-lb)

 

 
No HHC

HHC



90 

 

 

Figure 34. Doublet Response for 140 kts Flight Condition 
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Table 8. Off Design Pitch Doublet Performance 

 
No HHC HHC 

HHC  

% Improvement 

Case Conditions RMS STD P2P RMS STD P2P RMS STD P2P 

- Nominal 279.4 79.99 307.7 109.7 46.69 216.9 61% 42% 30% 

1 140 kts 385 102.1 411.2 158.7 60.22 280.1 59% 41% 32% 

2 150 kts 448.6 129 516.6 225.7 101.6 426.2 50% 21% 17% 

3 2 deg descent 281.7 78.66 292.1 112 45.75 211 60% 42% 28% 

4 4 deg descent 297.8 83.49 302.2 115.3 46.31 218.2 61% 45% 28% 

5 4 deg bank 286.7 75.65 287.4 114.6 41.16 193.8 60% 46% 33% 

6 27 deg bank 345.7 102.1 403.5 163.3 71.1 323.7 53% 30% 20% 

7 3,000 ft altitude 266 72.71 271.3 104.4 41.97 193.8 61% 42% 29% 

8 6,000 ft altitude 307 84.33 339.1 145.9 65.08 271.4 52% 23% 20% 

9 Weight and C.G. 338.9 89.9 326.5 127 54.67 272.2 63% 39% 17% 

 

 

For turning flight conditions, a more useful maneuver to evaluate robustness 

would be a roll type of maneuver.  A generic roll stick doublet is shown in Figure 35, 

where the doublet starts at 35 seconds and ends at 41 seconds.  Figure 36 shows the 

resulting swashplate inputs during the generic roll doublet maneuver.  Figure 37 shows 

the roll doublet 4/rev magnitude response for 3 different flight conditions: black 

corresponds to nominal straight level flight at 120 kts, red corresponds to turning flight 

with a 4 deg bank angle, and blue corresponds to turning flight with a 10 deg bank angle.  

For all 3 flight condition cases, the response is presented with no vibration controller 

(solid lines) and with the fixed-gain integrated flight and vibration controller active 

(dashed lines).  The fixed-gain vibration controller again is designed using the nominal, 

straight and level flight condition, but the same controller is used in both nominal and 

turning flight conditions.   
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Table 9 shows the average 4/rev magnitude RMS, STD, and peak-to-peak (P2P) 

values for each off design case.  The values are listed for HHC and no HHC, and also the 

HHC percent improvement is shown, which allows off-design cases to be compared with 

the nominal design HHC percent improvement.  For example, for the nominal conditions, 

the fixed-gain HHC improves average RMS by 53%, STD by 25%, and peak-to-peak by 

26%.  At 4 deg bank angle turning flight conditions, the fixed-gain HHC (designed at 

straight level flight) improves average RMS by 65%, STD by 46%, and peak-to-peak by 

34%.  One thing to note is that it may appear that the fixed-gain HHC actually performs 

better at 4 deg compared to nominal level flight when comparing the percentage 

improvements; however, this is due to the No-HHC case having significantly higher 

vibrations at 4 deg bank angle compared to nominal level flight conditions.  When 

comparing the raw HHC RMS, STD, and peak-to-peak shows the fix-gain HHC does 

show small performance degradation.  At 10 deg bank angle turning flight conditions, the 

fixed-gain HHC (designed at straight level flight) has larger performance degradation 

with the percent improvements at 44% for RMS, 13% for STD, and only 4% for peak-to-

peak.  Thus, for reasonable turning flight roll maneuvers, there is little effect on vibration 

reduction performance. 

It is clear that both LTI and NL robustness evaluations indicate that there are 

gradual changes in HHC performance as flight speed and altitude deviate from the design 

conditions.  Specifically, controller performance is satisfactory out to approximately +/- 

20 kts, which corroborates previous literature (Ref. 40).  Also, descending flight, turning 

flight, and alternate weight and C.G. location has very little impact on HHC performance.   
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Figure 35. Roll Stick Doublet for Robustness Evaluations 
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Figure 36. Roll Stick Doublet Resulting Swashplate Inputs 
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Figure 37. Doublet Response for Turning Flight Conditions 
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CHAPTER 7. FULL FLIGHT ENVELOPE CONTROLLER 

 

 

Having conducted robustness evaluations using both LTI and NL models, it is 

clear that the integrated flight and vibration controller is robust to reasonable changes in 

descent, turning, as well as vehicle weight and C.G. location.  There are gradual changes 

in controller stability and performance due to changes in speed and altitude.  To address 

these changes, a full flight envelope controller was developed using controller scheduling 

techniques.   

Based on the robustness evaluations, the controller performance is satisfactory out 

to approximately +/- 20 kts.  Thus, the controller was scheduled with speed at every 40 

kts – specifically 40, 80, and 120 kts were chosen as the scheduling anchor points (design 

points at which a particular controller is extracted for use in the scheduled controller).  

Based on the robustness evaluations, it is also suggested that the controller should be 

scheduled with altitude.  This could likely be done by simply linearly scheduling with 

altitude, as Tobias and Tischler have demonstrated for the purposes of a model-stitched 

full flight envelope simulation (Ref. 42).  However, the purpose here is to illustrate a 

methodology to develop a full flight envelope controller– not to actually provide a field-

ready full flight envelope controller.  Thus, although scheduling with altitude is 

suggested, here only speed was used for scheduling.   
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7.1 Additional Scheduling Anchor Points 

To construct a scheduled full flight envelope controller, an integrated flight and 

vibration controller (including optimization and dynamic crossfeeds) were extracted at 

each scheduling anchor point.  Since the initial integrated controller design was first done 

at a nominal design condition of 120 kts, the controller corresponding to the 120 kts 

anchor point was already complete.  However, the integrated flight and vibration 

controllers were also needed at 40 and 80 kts.   

At 40 and 80 kts, obtaining the integrated flight and vibration controllers was 

straightforward as one can simply repeat the process performed for extracting the 120 kts 

design.  As demonstrated for 120 kts, the design procedure is as follows: 

1) Trim the NL model about the design conditions (40 or 80 kts). 

2) Generate a LTP model about the periodic equilibrium for which the NL model 

has been trimmed. 

3) Construct an LTI approximation from the LTP model using the LTP in first 

order form as developed here. 

4) If necessary for computational efficiency, formulate a reduced order LTI 

approximation.  This can be done using modal participation or using state 

energy via Hankel Singular Values. 

5) Extract a T-Matrix from the LTI model.  Here the DC gain matrix is used as 

the T-Matrix which is consistent with interpretations of the T-Matrix from 

previous literature; however, other frequency points along the bode plot can 

also be chosen.   
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6) Use the LTI model and extracted T-Matrix in CONDUIT® to add dynamic 

compensation and optimize performance (broken-loop crossover frequency, 

DRB, DRP, and damping) while maintaining adequate stability margins.  

7) Compute the ideal dynamic crossfeeds at various frequency points using the 

optimized HHC 

8) Extract low order fits of the dynamic crossfeeds which can be implemented in 

the integrated flight and vibration controller. 

This design procedure was followed with no issues for both 40 and 80 kts flight 

conditions.   

To further demonstrate the effects of speed variations on the HHC, the baseline 

closed-loop T-Matrices are examined (without any optimization or dynamic crossfeeds) 

using roll doublet maneuvers.  Table 10 shows the 4/rev average RMS, STD, and peak-

to-peak (P2P) values of a roll doublet maneuver at a 80 kts flight speed using: no HHC, 

the T-Matrix extracted at 120 kts (extracted at 120 kts, but used here at 80 kts), and also 

the T-Matrix extracted at 80 kts (extracted and used here at 80 kts).  At 80 kts flight 

condition, there is little improvement of the 80 kts design over the 120 kts design.  This is 

likely due to the estimate of satisfactory controller performance within +/- 20 kts being a 

conservative estimate, and in actuality the HHC may have satisfactory performance 

outside of the +/- 20 kts estimate. 
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Table 10. 80 kts Roll Doublet T-Matrix Performance 

 No HHC T-Matrix 120 kts T-Matrix 80 kts 

4/rev RMS Average 160.6 21.7 19.2 

4/rev STD Average 8.38 4.39 3.95 

4/rev P2P Average 37.4 18.7 18.6 

RMS Percent Improvement - 86.5% 88.0% 

STD Percent Improvement - 47.6% 52.9% 

P2P Percent Improvement - 50.0% 50.3% 

 

 

Table 11 shows the performance of a roll doublet maneuver at 40 kts flight speed 

using no HHC, the T-Matrix extracted at 120 kts (extracted at 120 kts, but used here at 40 

kts), and also the T-Matrix extracted at 40 kts (extracted and used here at 40 kts).  At 

such extreme deviations from the design conditions, the T-Matrix designed at 120 kts and 

used at 40 kts actually performs worse than having no HHC looking at transient 

performance measures of average STD and peak-to-peak.  Although the actual raw values 

are small, the percent degradations are large, with 22.8% and 24.3% losses in 

performance for STD and peak-to-peak respectively.  The T-Matrix designed and used at 

40 kts performs as well as expected, having greatly improved percentage improvements 

of 72.7% for RMS, 44.7% for STD, and 37.4% for peak-to-peak.   

Figure 38 shows the time response of the 4/rev magnitudes for the roll doublet 

maneuver at 40 kts.  It is clear that the T-Matrix designed at 120 kts has very poor closed-

loop transient response at 40 kts flight condition, as indicated by the dashed black line.  

The case with the T-Matrix designed at 120 kts has very large oscillations, likely due to 

poor damping and stability, which results in the poor STD and peak-to-peak performance 

from as seen in Table 11.  It should also be noted that similar to the 120 kts design 
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evaluated at 120 kts (Figure 18), not all steady state vibration levels are improved for the 

40 kts design evaluated at 40 kts.  Specifically, for the 40 kts design in , Mx4 is allowed 

to have increased steady state loads to allow for an overall improvement.   

 

 

Table 11. 40 kts Roll Doublet T-Matrix Performance 

 No HHC T-Matrix 120 kts T-Matrix 40 kts 

4/rev RMS Average 80.5 26.5 22.0 

4/rev STD Average 3.47 4.26 1.92 

4/rev Peak to Peak Average 13.6 16.9 8.52 

RMS Percent Improvement - 67.1% 72.7% 

STD Percent Improvement - -22.8% 44.7% 

P2P Percent Improvement - -24.3% 37.4% 
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Figure 38. Roll Doublet Response at 40 kts Flight Speed 
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which are implemented are low order approximations of the ideal crossfeeds.  While the 

ideal crossfeeds may smoothly vary with flight condition, the low order approximations 

may not be smoothly varying and can change structure, yielding interpolated controllers 

that may have no meaning.  A discrete controller schedule avoids this issue as the 

controllers are not interpolated.   

To implement the discrete controller schedule, only the controller with the anchor 

point nearest to the current speed is active.  Specifically, the controller designed at 40 kts 

is active when the vehicle is below 60 kts, the controller designed at 80 kts is active when 

the vehicle is between 60 and 100 kts, and the controller designed at 120 kts is active 

when the vehicle is above 100 kts.  It is also suggested that a hysteresis loop be added to 

avoid issues when the vehicle is operating close to the switching points.  No issues with 

controller switching were observed during this work, but a hysteresis loop would help to 

alleviate any issues with switching should they arise.   

Furthermore, it should be noted that all 3 controllers (40, 80, and 120 kts) are 

actually continuously running; however, each controller only receives inputs when the 

vehicle is within the activation envelope of that particular controller.  This is in contrast 

to other discrete controller strategies, where either 1) all controllers receive the total 

input, and the controller outputs are interpolated, or 2) the inputs to controllers are 

interpolated, and the outputs of the controller are summed.  All of these strategies were 

explored, and having only one controller receiving the entire input at any given moment 

was found to be the simplest and have the best performance.   

At this point, a full flight envelope integrated flight and vibration controller has 

been developed and has been examined at each of the 3 design anchor points.  However, 
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to fully examine the full flight envelope performance, a maneuver which covers the full 

flight envelope is necessary. 

 

7.2 Full Flight Envelope Evaluation 

To demonstrate the full flight envelope performance of the scheduled controller, a 

realistic maneuver is constructed based on the ADS-33 roll reversal MTE (Ref. 37).  The 

standard ADS-33 roll reversal maneuver is a pullup/pushover maneuver followed by a 

roll and then back to level flight.  The standard roll reversal maneuver however has two 

issues that require attention for the purposes of demonstrating full flight envelope 

performance.  First, although the pullup/pushover maneuver phase subjects the vehicle to 

a wide range of speeds, the roll phase of the maneuver occurs after the pullup/pushover 

phase.   To evaluate the roll performance of the full flight envelope controller, the roll 

maneuver must occur simultaneously with changes in speed.  Secondly, the 

pullup/pushover that was previously examined here subjects the vehicle to a flight speed 

range of approximately 80 to 120 kts.  As shown in the evaluation of the 80 kts anchor 

point design, the 120 kts anchor point design may actually have satisfactory performance 

at 80 kts.  Thus, to show the full performance of the scheduled controller, it is desirable to 

lower the range of flight speed to reach the 40 kts anchor point.   

To address issues with the standard ADS-33 roll reversal MTE, a modified roll 

reversal maneuver is constructed for the evaluation of the full flight envelope controller 

evaluation.  First, the previously used pullup/pushover maneuver is used as a starting 

point.  Next, the pilot inputs are extended to cover approximately 40 to 120 kts speeds 

during the entire maneuver.  For the standard pullup/pushover maneuver, the pilots 
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tended to use most of the control authority nearly saturating the pitch stick inputs.  Rather 

than increasing the magnitude of inputs and saturating the pilot authority, the duration of 

inputs is extended by 65% (pilot inputs are stretched over an additional 65% of time).  

This duration increase subjects the vehicle to speeds ranging from 40 to 120 kts during 

the maneuver.  Next, the generic roll doublet is superimposed during the pushover phase.  

Thus, the pushover and roll doublet actually occur at the same time.  The roll doublet is 

added during the pushover phase to avoid large deviations during the latter portions of the 

maneuver (i.e., despite the roll doublet, the vehicle returns back to level at the end of the 

maneuver without additional modification of the pilot inputs).  It should be noted that 

although the entire maneuver covers 40 to 120 kts, the roll portion of the maneuver 

covers only 40 to 80 kts.   

The resulting maneuver is referred to as the “modified roll reversal maneuver” 

and has the following key features: 

1) Based on ADS-33 roll reversal MTE which is representative of realistic 

maneuvers. 

2) Generated from realistic piloted inputs. 

3) Excites both longitudinal and lateral dynamics via the pullup/pushover and 

roll reversal portions respectively. 

4) Covers a wide range of flight speeds from 40 to 120 kts. 

The modified roll reversal maneuver is examined for 3 cases: with no HHC, with 

the fixed-point HHC (fixed at the 120 kts design – optimized with dynamic crossfeeds), 

and with the full flight envelope HHC (scheduled, optimized, and with dynamic 

crossfeeds).  The pilot inputs are shown in Figure 39.  The maneuver starts at 41 seconds, 
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and completes at 75 seconds when the vehicle is back to level.  The roll doublet portion 

starts at 50 seconds and completes at 58 seconds.  The HHC inputs are shown in Figure 

40.  The No HHC case is shown in solid red lines, the HHC Fixed at the 120kts design is 

shown in black dashed lines, and the scheduled HHC is shown in blue dashed-dotted 

lines.  The HHC is turned on at 20 seconds to allow the HHC to reach a steady state 

before the maneuver starts.   

Translational speed response is shown in Figure 41.  The vehicle starts at 120 kts, 

slows down to 40 kts during the pullup portion, and then accelerates back up to 80 kts 

during the pushover portion before leveling out.  Figure 42 shows the attitude and attitude 

rate response with the vehicle reaching 45 deg in pitch attitude and 25 deg in roll attitude.  

Figure 43 shows the load factor, with the vehicle being subjected to a high load factor 

during the pullup portion followed by a low load factor during the pushover portion.   

Similar to the pullup/pushover maneuver, again it can be seen that the addition of 

scheduled HHC, optimized with dynamic crossfeeds has little impact on the body 

response and needs little or no compensation by the pilot inputs and AFCS design.   

Figure 44 shows the 4/rev weighted amplitude response, with Figure 45 showing 

a zoom in of the 4/rev weighted amplitude response to better illustrate the HHC cases.  

From Figure 44, it is clear that both HHC cases perform better than compared to No 

HHC, with both HHC cases being mostly below the No HHC case.  From Figure 45, it is 

clear that the scheduled HHC does consistently better than the 120 kts fixed-design HHC.  

Table 12 shows the performance measures of 4/rev amplitude average RMS, STD, and 

peak-to-peak as well as the percentage improvements for both HHC designs over the No 

HHC case.  The HHC using a fixed-point, 120 kts design does considerably well, having 
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a 52% improvement in average RMS, 50% improvements in average STD, and 42% 

improvement.  Scheduling further improves performances by an additional 5% for RMS, 

8% for STD, and 11 % for peak-to-peak.  Thus the full flight envelope controller clearly 

outperforms the fixed-point controller design for the maneuver considered here.  

 

 

 
Figure 39. Modified Roll Reversal Pilot Inputs 
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Figure 40. Modified Roll Reversal Higher Harmonic Control Inputs 
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Figure 41. Modified Roll Reversal Translation Speed Response 
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Figure 42. Modified Roll Reversal Attitude and Attitude Rate Response 
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Figure 43. Modified Roll Reversal Load Factor Response 
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Figure 44. Modified Roll Reversal 4/rev Amplitude Response 
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Figure 45. Modified Roll Reversal 4/rev Amplitude Response (Zoom In) 
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CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 

 

 

A generalized linear time invariant (LTI) approximation is developed from a 

linear time periodic (LTP) model using a first order formulation for the LTP system.  

Explicit formulas for LTI state space matrices are presented.  A complete numerical 

example is given for a generic UH-60A rotorcraft configuration.  The resulting LTI is 

validated against the original nonlinear model, and is shown to be very accurate in the 

frequency domain.  The modal participation is calculated directly from the LTI and 

compared with modal participation calculated from the LTP.  Modal participation, 

additive uncertainty, and nu-gap metric analysis are used to evaluate the significance of 

particular harmonic terms. The LTI model is then used for vibration control design and 

optimization.  Dynamic crossfeeds are constructed to formulate an integrated flight and 

vibration controller.  The integrated flight and vibration controller is evaluated for 

performance using generic and realistic piloted maneuvers in a nonlinear simulation.  The 

robustness of the integrated controller is evaluated and a full flight envelope controller is 

designed and evaluated. 

 

8.1 Conclusions 

The results presented here support the following conclusions: 

1) A nonlinear time periodic rotorcraft model can be accurately approximated by a linear 

time invariant model, using harmonic decompositions and a first order representation. 
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2) Modal participation can be accurately and easily obtained from a linear time invariant 

approximation, avoiding ambiguities of obtaining modal participation from the linear 

time periodic model.  

3) Body and inflow degrees of freedom have harmonic terms with significant modal 

participation.  For the 4 bladed rotor considered here, body, inflow, and rotor 

harmonic terms with the highest modal participation are harmonics numbered 0, 1, 2, 

4, 6, and 8.  

4) Coupling of harmonic terms for body, inflow, and rotor degrees of freedom have a 

significant role in the input-output fidelity for the purpose of predicting vibratory 

loads. 

5) Using Hankel Singular Values, a linear time invariant model can be significantly 

reduced to less than 100 states while maintaining adequate accuracy for the purpose 

of CONDUIT® optimization of vibration controllers. 

6) HHC has little impact on body response and needs little or no compensation by pilot 

inputs and AFCS design for the realistic piloted maneuvers considered here. 

7) Optimized HHC design improves average RMS by 59%, STD by 50%, and peak-to-

peak 4/rev loads by 27% for the pullup/pushover maneuver considered here. 

8) Ideal crossfeeds can be accurately represented using low-order approximations. 

9) As compared to a no crossfeed design, a crossfeed design improved average RMS by 

5%, STD by 15%, and peak-to-peak 4/rev loads by 24% for the pullup/pushover 

maneuver considered here. 
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10) HHC performance gradually varies with speed and altitude, but is robust to turning 

maneuvers, weight and C.G. changes, and descent rate.   

11) Controller scheduling can be used to create a full flight envelope integrated flight and 

vibration controller. 

12) As compared to no scheduling, a scheduled HHC design further improved average 

RMS by 5%, STD by 8%, and peak-to-peak 4/rev loads by 11% for the modified roll 

reversal maneuver considered here.  

 

8.2 Recommendations 

The following are recommendations for future work: 

1) Application of the LTI methodologies developed here for advanced configurations 

such as compound coaxial rotorcraft which have added complexity and travel at much 

higher speeds. 

2) Application of the LTI methodologies developed here for estimator design such as for 

hub load harmonics estimation or rotor state estimation.  The delay associated with 

the harmonic estimator is thought to be the largest limitation for improving HHC 

performance; addressing the harmonic estimator delay will allow for larger HHC 

improvements. 

3) Consideration of HHC methodologies developed here for other purposes such as 

performance, BVI reduction, noise reduction, or coaxial rotor tip clearance.  
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4) Consideration of the HHC methodologies developed here combining LTI model with 

online identification of T-Matrix and real-time HHC control updates.  Inclusion of 

realistic identification issues such as noise and limitations on inputs used for 

identification. 
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