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SUMMARY 

Recent developments on individual blade control (IBC) and physics based reduced order 

models of various on-blade control (OBC) actuation concepts are opening up 

opportunities to explore innovative rotor control strategies for improved rotor 

aerodynamic performance, reduced vibration and BVI noise, and improved rotor stability, 

etc. Further, recent developments in computationally efficient algorithms for the 

extraction of Linear Time Invariant (LTI) models are providing a convenient framework 

for exploring integrated flight and rotor control, while accounting for the important 

couplings that exist between body and low frequency rotor response and high frequency 

rotor response. Formulation of linear time invariant (LTI) models of a nonlinear system 

about a periodic equilibrium using the harmonic domain representation of LTI model 

states has been studied in the literature. This thesis presents an alternative method and 

a computationally efficient scheme for implementation of the developed method for 

extraction of linear time invariant (LTI) models from a helicopter nonlinear model in 

forward flight. The fidelity of the extracted LTI models is evaluated using response 

comparisons between the extracted LTI models and the nonlinear model in both time 

and frequency domains. Moreover, the fidelity of stability properties is studied through 

the eigenvalue and eigenvector comparisons between LTI and LTP models by making 

use of the Floquet Transition Matrix.   For time domain evaluations, individual blade 

control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for 

vibration and noise control studies are used. For frequency domain evaluations, 

frequency sweep inputs are used to obtain frequency responses of fixed system hub 

loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the 



xx 

 

extracted LTI models, and thus, establish the validity of the LTI model extraction process 

for use in integrated flight and rotor control studies. 
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CHAPTER 1 INTRODUCTION 

1.1 Overview 

Active control of rotor blade sections or entire blades expands the control space of the 

rotorcraft applications as opposed to swashplate control. Individual Blade Control (IBC) 

and On-Blade Control (OBC) concepts have enabled researchers to show possibilities of 

extensive improvements for power consumption [1, 2, 3, 4, 5], vibration [1, 2, 3, 5, 6], 

noise [2, 3, 7, 6], gust response alleviation [8] and many other areas such as wind 

turbines [9]. These studies focused only on  rotor control, disregarding their effects on 

the handling qualities and stability of the entire vehicle. The control space of such 

applications has been explored either through parametric studies, in terms of magnitude 

and phasing, or by integrating input-output controllers in simulations and tests [10], 

missing all the essential benefits of having linear systems. While higher flight control 

bandwidth can be achieved through innovative integrated flight and rotor control designs 

with the aid of IBC and OBC concepts, the implications of such higher bandwidth control 

on handling qualities and vehicle-pilot-biodynamic coupling, etc. need to be carefully 

assessed before they can be fully realized.  

Due to the periodic nature of helicopter rotors, the linearized models extracted 

from nonlinear models of a rotorcraft will have periodic coefficients unless rotor states 

are omitted or the vehicle is in hover condition without any cyclic input. Though stability 

analysis of the extracted linear time periodic (LTP) models can be performed using the 

Floquet stability theory, this does not provide a convenient framework for controller 

synthesis and design as the available control design tools for LTP systems are few in 
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number [11]. Further, the handling qualities specifications for small amplitude maneuvers 

as prescribed in the Aeronautical Design Standard (ADS-33) are based on a linear time 

invariant (LTI) model, and thus cannot be directly accounted for in the controller design 

process using LTP models. If linearized models in time invariant form are made 

available, it will open up the choice of available design and analysis tools to a rotorcraft 

control designer [11]. The aim of this study is to fill this gap in the literature with a 

computationally more efficient method and provide thorough fidelity for the response and 

stability characteristics of the proposed LTI method.  

1.2 Literature Review 

Reformulation of Linear Time Periodic systems in order to arrive at Linear Time Invariant 

exists in the literature and has attracted attention in several areas of physics and 

engineering. The Floquet-Lyapunov transformation [12], which dates back to 1883, is the 

most known, and it has been used particularly for system stability estimations in the 

rotorcraft community. A series of works cited by Peters and Hohenemser in their 1970 

work [13] showed the emerging use of this method in the rotorcraft community in the 

1960’s by researchers such as Loewy [14], Sissingh [15], Lowis [16], and Wilde [17]. 

Authors also supported their work with citations of the works of Crimi [18] and Pirulli et. 

al [19], showing the relation between the Floquet Method [12] and the Hill’s Method [20] 

which is also from the same era and stems from another branch of reformulation, 

presented in the next paragraph.  

The Floquet-Lyapunov transformation takes the time varying periodic state 

matrices and creates a monodromy matrix by integration at the end of one period. 

Ultimately, this transition matrix determines the stability of the system such that if all the 



3 

 

eigenvalues of the monodromy matrix lie within the unit circle, the system is said to be 

stable. This property is due to the integration of a time periodic state matrix at one 

revolution. Mathematically it is an unfortunate mapping of the eigenvalues from 

imaginary domain by a tangent function whose inverse is actually a multivalued function 

and creates confusion during the reverse mapping. This confusion had been the focus of 

many researchers that sought a single integer part. Recently, Peters presented in his 

work [21] that indeed all integer multiples arising from the inverse tangent function are 

true, consistent with the fact that a Linear Time Periodic system does not have a single 

frequency for each mode; instead, there exist a infinite number of frequencies for every 

mode, and the multi-values of the inverse tangent function simply represent this. 

Another branch of reformulation methods deals with the structure and dimension 

of the system. These methods were collectively presented in a survey [22] by authors 

from the electrics community and were later adopted, extended and verified with 

contributions from the rotorcraft community [23]. This historical perspective is an 

example of the interdisciplinary importance of the subject. 

Of those adopted, the time lifting method is one of the earliest and still the most 

commonly used. It approaches the time varying problem by packing the discrete signals 

collected within a period into a vector. In this way, it creates a time invariant system of 

the sampled time periodic system with an increased size of input and output channels, 

as many as the number of sampled discrete time steps. Another approach, called cyclic 

reformulation, performs a similar job but this time not only the input and output vectors 

but also the state vector, thus the state matrix, are extended. These methods have been 

analytically proven to have consistent stability results with the system from which they 

are originated but none of the references used herein provided high fidelity work. 
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Frequency lifted and Fourier reformulations are analogous to the preceding 

methods, respectively, with the important caveat that they are directly represented in the 

frequency domain for all the harmonics. In frequency lifted reformulation, only inputs and 

outputs are processed for a harmonic representation similar to that of the time lifted 

reformulation. In the Fourier reformulation, this process is performed for inputs and 

outputs as well as for the states, under the assumption that the periodic system is in an 

Exponentially Modulated Periodic (EMP) regime. Both of these frequency domain 

reformulations coincide when their harmonic transfer function for the system is 

presented. 

These methods have certain characteristics which change either the structure or 

the dimension of the linear system, and reformulations always lead to a particular class 

of time invariant models. Likewise every time-periodic system can be reformulated as a 

time invariant form, but it is not necessarily true that every time invariant system has a 

corresponding time periodic representation. 

These mentioned methods available in the literature for transformation of LTP 

models to time-invariant form have certain disadvantages for control system design 

purposes. For instance, in the Lyapunov-Floquet transformation method [23, 24], the 

system matrix of the LTP model is transformed into a time-invariant form using the time 

varying Lyapunov-Floquet transformation matrix. However, the control matrix of the 

transformed model will still be time-periodic. In order to overcome this difficulty, an 

auxiliary system is constructed with pseudo control variables which bear no resemblance 

to the control vector of the LTP model. Controller design is carried out on the auxiliary 

system, and control laws for the time periodic system are constructed from feedback 

signals of the auxiliary system. However, this method suffers from the disadvantage of 

needing to compute the state transition matrices of the LTP model over one rotor period 
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in order to construct the Lyapunov-Floquet transformation matrix. Analytical 

approximations of the coefficient matrices using the shifted Chebyshev polynomials of 

the first kind provide an efficient means in the state transition matrix computations. While 

the computational effort is significantly improved by the use of such closed form 

approximations, the accuracy of the results is significantly influenced by the number of 

terms used in the analytical approximations, and such an approach becomes 

numerically very sensitive. The transformation using discrete-time methods, such as 

time lifting and frequency lifting methods [22], also suffer from the same disadvantage of 

a need for state transition matrices. 

Hill’s Method [20], which is a Fourier based frequency domain reformulation, is 

widely seen for stability assessment studies by authors from various areas of science 

including electrics [25], shaft and bearing design [26], wind energy [9] and rotorcraft. 

Although these studies showed remarkable success at assessing the stability properties 

of the system correctly, none of them mentioned a control system design. This is seen 

as a particular gap in the literature, and it may, in part, be the result of the fact that states 

represented in terms of Fourier coefficients do not resemble a physical meaning for the 

control system design, yet the transformation of such pseudo-states to a physically 

meaningful form adds similar disadvantages as those mentioned earlier for the other 

methods.  

The use of harmonic analyzers as part of the linearization step to extract a time 

invariant linear model for the specific application of flight control and higher harmonic 

control is explored by Cheng et. al in [11, 27]. The extracted LTI model consists of the 

body states, time averaged rotor states, harmonic analyzer states, pilot controls and 

higher harmonic controls. Using such a model, Cheng et al. [11, 27] showed that it 

becomes feasible to consider the important coupling between the body states and the 
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higher frequency rotor response in a combined flight and vibration controller design. By 

using numerical perturbations to individual harmonic components of periodic states of a 

nonlinear system, Cheng et al formulated LTI models with average and harmonic 

components of rotor response as pseudo states[27]. Although these publications 

presented a framework for control oriented LTI systems composed of physically 

meaningful pseudo-states, those studies were computationally inefficient due to entirely 

numerical perturbation schemes both for average and harmonics states and stability 

assessment based on their proposed methodology was missing. 

The evolution of the IBC and OBC concepts starts with Higher Harmonic Control 

(HHC). Although the term may literally imply for any type of input (swashplate, IBC or 

OBC etc.), it is particularly used for higher harmonic excitation of the swashplate controls 

in the rotorcraft community [1]. Earlier attempts go back to the 1950’s [28], when the 

effect of 2/rev inputs was analytically investigated and tested. Those researches showed 

beneficial results of 2/rev inputs on the power consumption, and it was assessed that the 

source of the improvement was due to the delay of the stall on the retreating side of the 

rotor. Analytical studies also show  that for an N-bladed rotor vibrations occur at N/rev 

frequency in the non-rotating frame are caused by the vibrations at N-1/rev, N/rev, and 

N+1/rev frequencies taking place in the rotating frame [29]. It was suggested that use of 

those three distinct frequencies could attenuate the vibrations, which was also tested in 

the HHC applications [1]. Although it was tested on actual size rotors [1], one major 

drawback of HHC through swashplate inputs was that the swashplate might have only 

three input channels, which was sufficient only for two or three bladed rotors. Advances 

in technology provided the ability to introduce Individual Blade Control [2, 3, 30] and On-

Blade Control [7, 8, 4] concepts on actual size rotors and helicopters that eventually 
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increased number of input channels. A comprehensive review of the methods for 

vibration reduction can be found in [31]. 

1.3 Present Work 

Linear system matrices of rotorcraft applications are dominated by periodic coefficients. 

Available tools for transformation of LTP models to time-invariant suffer from certain 

disadvantages and may not be suitable for larger size (number of states, and harmonics) 

applications as discussed in the literature review sections of this chapter. The present 

work intends to fill that gap in this area by making use of harmonic components of LTP 

model while constructing the LTI matrices of the same system, which makes the present 

method, a computationally efficient tool for studies concerning interactions between high 

and low frequency controllers. Moreover, a thorough validity check of the proposed LTI 

model, in terms of response and stability characteristics, is also studied.  The present 

work reformulates the LTI system matrices in terms of harmonic coefficients of the LTP 

matrices of the same system as opposed to earlier attempts by Cheng et al. [11] 

whereas perturbations are applied to the nonlinear model and harmonic decomposition 

of the response is extracted. The method is tested to prove its fidelity by observing both 

time and frequency domain responses using high fidelity rotorcraft models that contain 

IBC/OBC type input channels. Apart from the response validations, the stability 

characteristics of the LTI models are also observed using both simplified analytical and 

numerical models so that interpreting the relation between them becomes esier. The 

present work then concludes by carrying out parametric studies in order to determine the 

required number of harmonics to match the stability characteristics of high fidelity 

rotorcraft models under the proposed fidelity criteria.  



8 

 

The objective of this thesis is to develop, validate and assess certain 

requirements of the LTI models that can be used for controller synthesis and design. 

This thesis describes the development and validation of such an LTI model along with 

the model development milestones in order to make use of state-of-the-art innovative 

capabilities present in the literature. 

1.4 Organization of Dissertation 

Chapter 1 first gives an overview of the current problem that forms the basis of this 

thesis in context with the literature review and assessing the gap in the literature. Then, 

subsections review particular areas surrounding this problem in the literature. Chapter 1 

concludes by giving the ultimate goal of this thesis and explains the roadmap to achieve 

that goal. 

Chapter 2 deals with the models that were used in this thesis, explaining model 

properties and giving additional details if specific model selections or changes needed to 

be done, such as model development or simplification. Once the base FLIGHTLAB 

model is introduced, the chapter gives the formulation of LTP and LTI models. 

Chapter 3 studies the stability aspects of the LTI models as obtained from 

analytical and FLIGHTLAB models.  The objective is to understand the stability 

properties of the LTI models in contrast with the reference LTP model from which they 

are originated and to define viable fidelity criteria in terms of eigenvalue comparisons 

between LTP and LTI systems so that a concrete basis can be constructed for the 

fidelity of stability characteristics. 

Chapter 4 provides the evaluation results of the developed method for the 

extraction of LTI models from a nonlinear model of a generic helicopter when an IBC 
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input channel is used for excitation. First, the chapter introduces the metrics used in the 

LTI model fidelity evaluations. Next, it provides the fidelity evaluation results of response 

characteristics for the case of individual blade control applications. It then presents an 

evaluation of the response characteristics in two sections, time and frequency domain 

responses.  

Chapter 5 first explains the reduced order aerodynamic modeling of a flap 

actuator. It then explains how, in order to model the sensitivity of the aerodynamics of 

blade sections due to actuation of trailing edge flap elements, adaptive neural networks 

are trained using an extensive CFD data. These models are then tested before they are  

integrated into the FLIGHTLAB model. The chapter continues by discussing how various 

scenarios are tested in the FLIGHTLAB environment to extract time and frequency 

response data. For validation purposes, Chapter 5 then extracts an LTI model of the 

FLIGHTLAB model by incorporating a reduced order aerodynamic model, and concludes 

by evaluating time and frequency responses.  
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CHAPTER 2 LTI MODEL FORMULATION 

The purpose of this chapter is to provide the details of the proposed augmented linear 

time invariant model formulation along with the required prior steps for formulation and 

application. These steps include the modeling properties of the FLIGHTLAB model and 

the extraction of the Linear Time Periodic model of the FLIGHTLAB model at a desired 

trim condition. The first section of this chapter covers the baseline modeling details used 

in this thesis. It first describes the generic helicopter model (GHM) available in 

FLGIHTLAB, and then gives in detail the enhancements of the GHM, such as inflow 

model, elastic blades. A brief introduction to the modeling of the input channels 

concludes this section. 

The following model enhancements are based on practical application purposes 

in that all of them are tied to the HHC of the rotor blades for vibration reduction and other 

active rotor control applications. In a hierarchical order, HHC, IBC, and OBC have been 

used for such purposes, and following the timeline both the application and modeling of 

these concepts evolved from simple to complex. HHC is an application particularly 

related with higher harmonics used on a swashplate, whereas IBC resembles the 

additional pitch input to the individual blades either on top of swashplate input or on its 

own. Therefore, modeling of such inputs is fairly simple in comprehensive rotor codes in 

contrast to the OBC. An OBC is a generic name for the active controller located on the 

blade that alters the aerodynamic properties of the sections on which they are mounted. 

The integrated trailing edge flap is the type of OBC concept used in this study in a 

dedicated chapter where its details are given prior to the applications. 
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Friedman and Millott [[31] suggested that HHC had reached its maturity, however 

the lack of its practical use was also mentioned relating to its cost and technical 

limitations. In order to represent analytical and experimental studies of the HHC era 

following articles are selected. Molusis [32] had analytical studies for optimal controls, 

Hammond [33] had extensive wind tunnel tests on the HHC concepts and Taylor [34] ran 

simulations with HHC concepts integrated models. 

Following the same survey article by Friedman it is know that Kretz [35] had 

pioneered the IBC approach in the literature. IBC concept could overcome some 

disadvantages of the HHC which were experienced during the practical application 

phase while taking advantage of all the analytical and experimental findings HHC 

concepts achieved. Eventually one of the targets was reduction in vibration levels seen 

on the helicopter fuselage along with the other benefits such as gust alleviation, attitude 

stabilization, and augmentation for lag damping as they were seen in works by Ham [36, 

37]. 

As it was stated here, HHC and IBC concepts are identical in the analytical sense 

as they excite the entire blade. On-Blade Control (OBC) concepts in general encompass 

trailing edge flaps [7], deployable gurney flaps [38], blowing-and-suction concepts [39], 

Miniature Trailing-Edge Effectors [40] and many more. As it was stated by Friedman 

[[31] that the importance of these concepts is that required excitations which may rise up 

to 100s of rotational speed can be provided by these concepts without having the need 

for exciting the entire blade, thus saving significant power requirement. Although these 

methods emerging more recently than the former two it was noticed in the survey paper 

[[31] that indeed in 1972, Lemnios and Smith [41] presented the servo-flap concept. 

Friedman and Millott also caught an important aspect on the OBC concepts in their 1994 

survey paper, referring it to the former studies such as presented by Robinson in [42, 43] 
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that when modeling of OBC concepts are concerned unsteady aerodynamic effects 

becomes essential for the entire system, through particularly affecting torsional 

response.  

Elastic blade and higher fidelity inflow models have a significant impact on the 

higher harmonics of the rotor; therefore, they are considered a baseline for the response 

studies. During the research for this work it is noticed and also reported in the literature 

[44, 45] that having not only one of these modeling options but both at the same time 

has a much more significant impact on the correlations between the predicted and wind 

tunnel test vibration levels. Similar results were also obtained in another recent work 

[46], where an unsteady lifting line model and and a prescribed wake model are used 

together. 

The second section of this chapter presents the formulation of the LTP model 

from a nonlinear model.  

The final section of this chapter presents the formulation of LTI in terms of 

harmonic coefficients of the LTP model. In order to demonstrate the use of analytical 

equations presented here, the appendix presents an LTI model of a generic LTP model 

with limited number of harmonics. 

2.1 Baseline Helicopter Model in FLIGHTLAB 

The Generic Helicopter Model (GHM) available in FLIGHTLAB is a roughly 15,000 

pounds gross weight, 4 bladed helicopter model with rigid blades attached to the hub 

through flap and lag hinges. It has a canted tail rotor providing both anti-torque and lift, a 

stabilator designed to anticipate pitch attitude and rate, and a vertical fin to reduce the 

work load of the tail rotor in forward flight. GHM has very similar characteristics to the 
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UH-60 Blackhawk helicopter which is studied in the literature extensively. GHM of 

FLIGHTLAB is also studied in the literature, used as a reference model in Padfield’s 

book [48], also appeared on the articles by Voskuijl et. al in [49, 50] and can be found in 

similar studies.  

The controller of the stabilator is turned off in this study; likewise, all the other 

stability augmentation systems (analog and digital SAS and pitch bias actuator) are 

turned off. This enables the use of pilot inputs during linearization since there is no 

interference between the swashplate and pilot inputs. A 3-state inflow model is 

incorporated in the model to account for the induced velocities through the rotor disk, 

and no interference effects are turned on. This model is used as the baseline throughout 

this thesis except where any model enhancements or simplifications are needed for the 

particular study. The main rotor angular speed is 27 radian per second or 4.3 hertz 

approximately.  

2.1.1 Inflow Model Enhancements 

FLIGHTLAB provides both variants of Peters-He inflow model which is a dynamic wake 

inflow model and vortex-wake models. Vortex-wake models includes source terms in 

their governing equations [51] which makes them not suitable for linearization purposes 

whereas dynamic inflow models are linear in nature. Therefore, considering the 

linearization purposes of this study Peters-He inflow [52] model with 3 different levels of 

modeling (3-state, 15-state and 33-state) are selected. 

The GHM uses a 3-state inflow model which is a reduced version of the Peters-

He Dynamic Inflow model that accounts for the average and first harmonic azimuth 

variation and a linear radial variation of the induced velocities. The equivalent model to 

this can be found in the early literature and it is known as Pitt-Peters model [53]. This 
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inflow model is used in the stability investigations of the LTI models during this study for 

its simplicity.  

The 3-state inflow model is a 1st order approximation and comes short when the 

input bandwidth is increased to at least 4/rev. Therefore, during the response 

characteristics investigations of this study higher fidelity alternatives, both 15-state and 

33-state models are used. The former has an up to 4 harmonic azimuth variation and a 

4th order polynomial representation of the radial distribution, whereas the latter one has 

an increased polynomial variation to the 8th order. 

2.1.2 Elastic Blade Modeling 

As already stated, the GHM has 4 blades, each modeled as a rigid body attached to the 

hub through flap and lag hinges. Although this model is sufficient for performance and 

some vibration applications, the elastic blade option is required for modeling much 

higher vibrations and to improve fidelity at 4/rev vibrations. In FLIGHTLAB, elastic blade 

modeling can be achieved by two methods, the finite element blade model, which is 1D 

beam modeling, and modal reduction. Modal representation makes use of the modal 

analysis results such as modal frequencies, damping, and mode shapes associated with 

each mode. In case of full rotorcraft model application for the purpose of LTI model 

generation, modal representation is sufficient; hence, it is selected with available generic 

modal data that has 2 elastic modes, 1 for flapping and 1 coupled flap and lag mode. 

Each elastic mode is an additional cost of 8 states in the linearized model therefore 2 

elastic modes doubles the size of the rotor states to 32 in total. 

2.1.3 Modeling of the Input Channels 

This section gives brief details on the modeling of the used input channels. Individual 

Blade Control was used as the baseline input channel in order to obtain the response 
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characteristics of FLIGHTLAB and LTI models. On-blade control concept by means of 

Trailing-Edge Flaps was selected as the secondary input channel that LTI studies are 

carried out in this study. Since modeling of the OBC required much more comprehensive 

study, its details are given in a dedicated chapter later where Reduced Order Modeling 

TEFs is explained and verified.  

Individual Blade Control modeling in FLIGHTLAB is done by existing individual 

blade pitch components, which are normally controlled by the swashplate inputs only. In 

order to retain the trim algorithms of FLIGHTLAB, swashplate controls were preserved 

but additional input channels were created that directly excited the individual blade pitch 

angles. Thus, this modeling technique did not alter the modeling fidelity in any form. 

In contrast to Individual Blade Modeling, On-Blade Control is a more advanced 

concept that requires additional modeling information in order to incorporate the 

configuration properties of OBC elements and to account for the aerodynamic effects 

depending on the selected OBC concept. This study used quarter chord trailing edge 

flap type OBC elements for application purposes. Each blade was enhanced with such 

elements between 50% to 95% radial position where OBC inputs were considered.  

2.2 Linear Time Periodic Model Formulation 

Consider a nonlinear system of the form 

0),,,( =UXXXf &&&  

where X , X&  and X&&  are respectively the position, velocity, and acceleration vectors, 

and  U is the control vector. Let ( ))(),(( ψψ UX ) represent a periodic equilibrium of the 

system of Eq. (1) such that 

(1) 

(2) 
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)()2(),()2( ψπψψπψ UUXX =+=+  

A linearization of Eq. (1) can be obtained by considering changes from equilibrium as  

)()()(),()()( ψψψψψψ UUuXXx −=−=  

and expanding Eq. (1) about the periodic equilibrium in its Taylor series to first order as 
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The partial derivatives in Eq. (4) are obtained at the selected periodic equilibrium.  Since 

the periodic equilibrium also must satisfy Eq. (1), the above equation reduces to 
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which can be rearranged into the form  
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Likewise, the output equation of the nonlinear system of Eq. (1)  is defined as 

),,,( UXXXgY &&&=  

where Y is the vector of outputs. At a periodic equilibrium, the value of the output is 

given in Eq. (9). 
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),,,( UXXXgY
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A linearized form of the output equation is obtained by expanding Eq. (8) about the 

periodic equilibrium in its Taylor series to first order as 
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Substituting Eqs. (6) and (9) into Eq. (10) results in  

uRxQxPy )()()( ψψψ ++= &  

where y represents a change in the output Y from its equilibrium value Y , and  P, Q and 

R matrices can be obtained using 
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2.3 Linear Time Invariant Model Formulation 

The linear time periodic (LTP) model of Eqs. (6) and (11) is converted into a linear time 

invariant (LTI) form using the following approximation of x; 

∑
=

++=
N

n
nsnco nxnxxx

1

sincos ψψ  

where xo is the average component and xnc and xns are respectively the n/rev cosine and 

sine harmonic components of x. Likewise, control (u) and output (y) of Eq. (11) are 

expanded in terms of  harmonic components as  

(11) 
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Now defining an augmented state, control and output vectors in terms of their respective 

average and harmonic components as  
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where xo is the average component, xic, xis are respectively the ith harmonic cosine and 

sine components of x, uo is the average component and  umc, ums are respectively the mth 

harmonic cosine and sine components of u, and yo is the average component and ylc, yls 

are respectively the lth harmonic cosine and sine components of y. Using the augmented 

state, control and output vectors as described above, the LTP model of Eqs. (6) and (11) 

can be approximated into an LTI form as  
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For consideration of Eq. 6, Eq. 13 is differentiated with respect to time twice, 
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Substituting Eqs.(21) and (22) into Eq. (6) results as in Eq. (23)  
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The average and individual harmonic components of Eq. (23) can be obtained by 

employing the harmonic analysis on the both sides of the equation. Average component 

(xo) is obtained by averaging the integration of Eq. (23) over one period. 
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Likewise, the equation for the ith harmonic cosine (xic) and sine (xis) components are 

obtained in Eqs. (25) and (26), respectively. 
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Using the notation given in Eq. (27), 
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Eqs. (24), (25) and (26) can be rewritten in the following form: Eqs. (28), (29) and 

(30). 

(25) 

(26) 

(27) 



21 

 

( ) ( )

( ) ( ) ψψψψψψψ
π

ψψψψψψ
π

π

π

duGuGuGxKxKxK

dxDnxDnxDxDxDx

M

m

ms

ms

mc

mc

o

N

n

ns

ns

nc

nc

o

N

n

nc

ns

ns

nc
N

n

ns

ns

nc

nc

oo

∫ ∑∑

∫ ∑∑









++++−−+









Ω−Ω−+−−=

==

==

2

0 11

2

0 11

)()()()()()(
2

1

)()()()()(
2

1
&&&&&

 

( ) ( )

( ) ( )

Ni

diuGuGuGxKxKxK

dixDnxDnxDxDxD

xixix

M

m

ms

ms

mc

mc

o

N

n

ns

ns

nc

nc

o

N

n

nc

ns

ns

nc
N

n

ns

ns

nc

nc

o

isicic

.....,3,2,1

)cos()()()()()()(
1

)cos()()()()()(
1

2)(

2

0 11

2

0 11

2

=









++++−−+









Ω−Ω−+−−+

Ω−Ω=

∫ ∑∑

∫ ∑∑

==

==

ψψψψψψψψ
π

ψψψψψψψ
π

π

π

&&&

&&&

 

( ) ( )

( ) ( )

Ni

diuGuGuGxKxKxK

dixDnxDnxDxDxD

xixix

M

m

ms

ms

mc

mc

o

N

n

ns

ns

nc

nc

o

N

n

nc

ns

ns

nc
N

n

ns

ns

nc

nc

o

icisis

.....,3,2,1

)sin()()()()()()(
1

)sin()()()()()(
1

2)(

2

0 11

2

0 11

2

=









++++−−+









Ω−Ω−+−−+

Ω+Ω=

∫ ∑∑

∫ ∑∑

==

==

ψψψψψψψψ
π

ψψψψψψψ
π

π

π

&&&

&&&

 

After defining the operators given in Eq. (31), equations for the state vectors of 

LTI take their final form in Eqs. (32), (33) and (34). 
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Likewise, approximation to the output vector y given in Eq. (15) can be 

substituted into the output equation of LTP model, Eq. (11).  
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Extraction of the average and harmonic components of Eq. (35) yields the 

individual expressions for yo, ylc and yls as given in Eqs. (36), (37) and (38), respectively. 
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Using the notation defined in Eq. (39) and also making use of the same operator 

defined in Eq. (31), harmonic components of the output vector are obtained in Eqs. (40), 

(41) and (42). 
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The final expressions that form the elements of Eqs. (19) and (20), presented 

also in [54], are included in the following: 
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Closed form expressions for the various elements of A12, A22, B2, C1, C2 and E 

can be obtained in terms of the harmonic components of the LTP model matrices D, K, 

G, P, Q and R. For example, if the matrix D(ψ) is expanded in terms of its harmonic 

components as 

∑ ++=
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Likewise, expressions similar to the above can be obtained for the elements of 

the LTI model matrices involving “K”, “G”, “P”, “Q” and “R”. Following two examples and 

a generic example for even harmonic coefficients up to 8/rev  in the Appendix titled as 

"LTI* Example" are given in order to support the understanding of LTI equation derived 

in this study. 

Example 1. 

For example, if one considers only the average component (xo) and the 4th 

harmonic components (x4c, x4s) for an approximate LTI model, with 
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Example 2. 

If one considers only the average and the 1st  harmonic components only, with 

[ ]TT

s

T

c

T

o

T

s

T

c

T

o xxxxxxX 1111
&&&=  

then 



31 

 









+








=

2

1

2221

1211

B

B
X

AA

AA
X&  

where 

















=

















=

I

I

I

AA

00

00

00

000

000

000

1211
 

 



















Ω−−ΩΩ+−−

Ω−−Ω+−Ω−

Ω−−Ω+−−

=

)()(

)()(

)()(

1111

1111

1411

11

2

111

1111

2

112

cssc

cssc

cssc

sDKssDKssK

cDKccDKccK

oDKooDKooK

HHIHHH

HHHHIH

HHHHH

A  

 

















−−Ω−

−Ω−−−

−−−

=

sc

sc

sc

sDsDsD

cDcDcD

oDoDoD

HHIH

HIHH

HHH

A

14

11

11

111

11122

)2(

)2(  

 

























++

++

++

=

















=

∑

∑

∑

=

=

=

M

m

mssGmcsGosG

M

m

mscGmccGocG

M

m

msoGmcoGooG

uHuHuH

uHuHuH

uHuHuH

BB

msmc

msmc

msmc

1

111

1

111

1

21

)(

)(

)(

0

0

0

 

 

2.3.1 LTI Models from FLIGHTLAB 

The LTI model extraction method described in the previous section is implemented 

within FLIGHTLAB [55] using the generalized force formulation written as 

),,,( XXXUfQ &&&=  (60) 
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where Q is the equation imbalance of Eq. (60). The control at each time step is 

iteratively solved to drive Q to zero for trim. The nonlinear model is first trimmed at a 

specified flight condition.  Then a reference blade is set to the zero azimuth position and 

the periodic trim condition is recorded over one rotor revolution. With the reference blade 

at selected azimuthal steps, the values of Q due to perturbations in state/control are 

computed at each azimuthal step, and system matrices are obtained by computing the 

partial derivatives of Q with respect to individual state/control through central finite 

differencing. For example, 
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UXXXXfUXXXXf
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∂

2
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where ∆X is the selected value of the numerical perturbation. Likewise, partial 

derivatives of the output with respect to state/control perturbations are obtained. The 

numerically computed partial derivatives are used to assemble the LTP model matrices 

D(ψ), K(ψ), etc., using  Eqs. (7) and (12) at the current azimuthal step. Also, additional 

components, such as D(ψ).cos(kψ), D(ψ).sin(kψ), K(ψ).cos(kψ), K(ψ).sin(kψ), etc.,  k=0, 

1, 2,… required for harmonic decomposition (see Eq. 53) are also generated at each 

azimuthal step of the linearization.  Therefore, once the linearization process is 

completed over one rotor revolution, it only takes a few algebraic operations (using Eqs. 

43 through 51 and 53 through 59) to obtain an LTI model of selected order. The 

linearization can be configured to generate either a full, linearized model or a reduced 

order model as desired. For reduced order models, particularly the full rotorcraft models 

in this study, a quasi-static model reduction technique is applied by selecting the 

dynamically retained states while residualizing the neglected dynamics. 

(61) 
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2.3.2 Computational Efficiency 

Individual blade control (IBC) and On-Blade Control (OBC) inputs excite higher 

frequencies. A careful study is required to make an assessment of the number of 

harmonic states needed for good fidelity.  As the required number of harmonic rotor 

states increases, the computational effort involved in the extraction of LTI model also 

increases. An assessment was made of the number of floating point operations (FLOP, 

see [69]) needed for an LTI model extraction. It was seen that with the current approach, 

the number of FLOP increases linearly with an increase in the number of harmonic 

states of the LTI model. This is in contrast to roughly a quadratic increase in number of 

FLOP with the number of harmonic states using the numerical scheme proposed in [11, 

27] which involved individual harmonic component perturbations. 
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CHAPTER 3 LTI MODEL STABILITY PROPERTY 

EVALUATIONS 

In this chapter, stability aspects of the LTI models as obtained from analytical and 

FLIGHTLAB models are studied. The objective is to understand the stability properties of 

the LTI models in contrast with the reference LTP model from which they are originated 

and to define viable fidelity criteria in terms of eigenvalue comparisons between LTP and 

LTI systems so that a concrete basis can be constructed for the fidelity of stability 

characteristics. 

The chapter first introduces the models used for stability property evaluations. 

These are analytical models used to gain a fundamental understanding of  and to test 

the validity of the methodology for stability characteristics of LTI models.  The 

FLIGHTLAB models progressively improved to reach the generic helicopter model. Then 

the chapter continues by demonstrating the stability aspects of the LTI models, with 

results similar to the available results in the literature. The third section defines the self- 

claimed metric for the fidelity of the stability properties, including the rationale behind it. 

The accuracy of LTP results poses a challenge in this study, which was also noted in the 

literature review section, and the methodology for better accuracy of LTP models and 

achieved accuracy is explained in the forth section.  

The fifth section explains in detail the proposed methodology, which covers the 

process of eigenvalue and eigenvector extraction from LTP and LTI models, and 

explains how the eigenvalues from each model are selected for comparison. Here, the 

self-claimed criteria is used. Sections 6 and 7 apply this methodology to analytical and 

FLIGHTLAB models, respectively. The analytical models and isolated rotor models of 
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FLIGHTLAB are intended to build an understanding of LTI stability characteristics and to 

help identify possible issues that may arise in a more complicated way in rotorcraft 

models. 

3.1 Stability Aspects of Linear Time Invariant Models 

Similar to the sine and cosine harmonic decomposition of rotor states as pseudo states 

considered in [11,27,47,56,54], a complementary approach known as Hill’s Method [20, 

57], which uses a complex representation of the harmonic decomposition of rotor states, 

has been developed in the literature. The stability properties of the resulting reduced 

order LTI models from Hill’s Method have been investigated for non-rotorcraft 

applications, such as wind turbines [9], rotating bladed  disks [58], and power electronics 

[59], etc., very few such results exist for rotorcraft applications in the literature in regard 

to the literature review made for this study. Further, stability results from such non-

rotorcraft applications may not be directly transferrable to rotorcraft applications, as 

those non-rotorcraft applications are mostly void of the important and often complex 

rotor/body dynamic interactions present in a rotorcraft. Moreover, former [11, 27] and 

current LTI methods treat the body and inflow states with only average portion of the 

harmonic decomposition. The focus of this section is to fill this void in the literature 

through a systematic evaluation of the stability properties of reduced order LTI models 

extracted from a helicopter nonlinear model. The stability evaluations are carried out with 

different levels of LTI model approximations of the coupled rotor, inflow and body 

dynamics using a generic helicopter model available in FLIGHTLAB.  The importance of 

this study is an understanding of the minimum number of harmonic rotor states needed 
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in the LTI model formulation in order to capture the stability properties, to a required 

level of fidelity, of selected modes of a nonlinear helicopter model. 

In this study, the LTI model stability investigations were carried out using 

analytical and numerical FLIGHTLAB models. First, the stability properties of the 

nonlinear model about a selected equilibrium flight condition were obtained through a 

Floquet analysis of linear time periodic (LTP) models extracted from the nonlinear model 

in the vicinity of a periodic equilibrium. In order to arrive at the same level of accuracy 

with the analytical model, the study performed harmonic decomposition on the LTP 

model and used a sufficiently high number of harmonics to represent an equivalent LTP 

model that bore most of the fidelity of the original LTP in an analytical form. Next, LTI 

models of different orders (to include different harmonic components of rotor states) 

were formulated using the same harmonic coefficients of the LTP model, and a 

conventional eigenvalue analysis of the resulting LTI models was carried  out using the 

function “EIG” available in FLIGHTLAB based on LAPACK routines[60]. A comparison 

was then made between the eigenvalues of the LTP model and those of the LTI model in 

order to assess the accuracy and modal properties of the constructed LTI models. 

Although Floquet theory has the drawback of ambiguity on the imaginary part of the 

system eigenvalues, error estimation on the eigenvalues of the LTI model is still possible 

through a comparison of the real parts of the eigenvalues from LTP and LTI models. The 

imaginary parts can be compared between LTP and LTI if a reference eigenvalues 

selection can be made. 

The stability aspects of the LTI models were studied through the analysis of 

eigenvalues and eigenvectors. As was learned from Hill’s Method studies [57, 9], the 

eigenvalues of the LTI models with reformulation based on frequency domain had their 

number of states increased; thus, number of eigenvalues also increased. These studies 
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showed that when the number of Fourier coefficients approaches infinity, the 

eigenvalues are aligned at the same value on real axis for the same mode but their 

imaginary part increases in both positive and negative directions by integer products of 

fundamental frequency, essentially at integers when eigenvalues are normalized with 

respect to the fundamental frequency. It was also shown that all the eigenvectors 

associated with the same mode matched. These properties are adopted by the current 

LTI formulation as it is also a frequency domain reformulation except for the fact that it 

makes use of the harmonic components, whereas in Hill’s Method, Fourier coefficients 

are used. As in Hill’s Method studies, the Floquet Transition Matrix method was chosen 

as the tool to create reference eigenvalues of the system to be compared with those of 

the LTI. Unfortunately there is not an explicit solution for FTM, even for the analytically 

represented state matrices, since it is the solution of a set of time-periodic ordinary 

differential equations. The best option could be adopting a power series solution method, 

but it is unlikely to find a solution that resembles a power series of a known analytical 

function. Therefore, the only choice left for the user is numerical integration. 

3.2 Models for Stability Analysis 

Apart from the time and frequency domain oriented models, a more fundamental 

modeling breakdown is followed for stability assessment purposes. These models are 

grouped into two, first analytical isolated rotor models available in the literature [61] are 

constructed for basic understanding of stability assessment issues, and then full 

rotorcraft models are incorporated at several modeling and configuration levels in order 

to make parametric assessments on the stability properties that can be captured by the 

LTI. 
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3.2.1 Analytical Model for Stability Assessment Purposes 

The analytical representation of 3 and 4 bladed isolated rotors was adopted from 

Biggers [61]. These equations are formed under the uniform blade properties 

consideration and they account only for limited aerodynamic effects through the Lock 

number, and most importantly through the advance ratio but they do not incorporate 

inflow dynamics.  

The flapping equation, Eq. (62), of a single blade in the rotating frame is used for 

a 1-DOF model for the simplest analytical study that can exhibit time periodic 

characteristics, which is analogous to the “Mathieu Equation” [62] used in the studies on 

stability of the time periodic systems. 

When this equation is transformed to the non-rotating frame using Multi Blade 

Coordinate Transformation for 3 and 4 bladed rotors, the  following forms arise having 

the same number of equations with the number of blades. These equations in MBC form 

still exhibit the periodic characteristic, but the frequencies are multipled by the number of 

blades.  
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3.2.2 FLIGHTLAB Models for Stability Assessment Purposes 

Three different levels of modeling were used in order to address modeling related issues 

for stability assessment purposes (see Figure 1). The first two were isolated rotor 

models with and without inflow dynamics; therefore, an equivalent model of the earlier 

analytical model was constructed in the FLIGHTLAB environment and inflow dynamics 

were integrated to that. The objective of these 2 lesser fidelity models was to isolate 

model-related issues, understand the problem, and then step up the model fidelity. An 

equivalent model (4-bladed rotor with flap DOF) to the analytical isolated rotor was 

constructed first in order to verify the characteristics of the stability properties obtained 

with the earlier model. The fundamental difference between those two is that analytical 

model is limited, having only 2 harmonic components in its LTP model, whereas the 

numerical model has a much higher number of harmonics. Even though it is truncated 

(32 harmonics) for the purpose of accuracy of FTM construction, difference in the 

number of harmonics is still too large. In the next step, a 3-state inflow model was 

integrated to the isolated rotor model. Apart from creating a more realistic isolated rotor 

model, the inflow model provided non-rotor states in the system which were treated with 

average components only in the LTI model. This was an important step which revelaed 

how the stability properties are affected by average representation of non-rotor states  

since in the next step, the rotorcraft model; there were 8 more non-rotor states in 

addition to the inflow states. Finally, the GHM in FLIGHTLAB was used for stability 

assessment purposes for the LTI models. The rotor model was enhanced with lag DOF 

for a generic helicopter representation while preserving the other properties mentioned 

for the isolated rotor models (the flap DOF and the 3-state inflow) and rigid body 

properties added. Out of all the states related to rigid body only 8 conventional states 
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were included in the linearization, resulting in a full rotorcraft model with 27 states in its 

LTP model.  

 

Figure 1. FLIGHLTAB Model Buildup for Stability Purposes 

3.3 Metric for Stability Properties 

The stability properties of the LTI model were assessed in terms of eigenvalues, and 

their fidelity was defined depending on how good the estimated eigenvalues were with 

respect to the eigenvalues of the reference LTP model. Fidelity is expected to improve 

when the number of harmonics increases as observed both in the current study and in 

the literature [9] as well. A self claimed metric is defined here to make an overall 

assessment of the fidelity of the LTI model.  

It is observed that different modes can have distinct orders of magnitude, and 

consequently their absolute error can be different as well. Therefore a metric is needed 

that takes into account this variation among the different modes. Additionally, error 

criteria are needed that can aid in the observation of the improvement of the eigenvalues 

in terms of harmonic coefficients used in the LTI model. 

With regard to these expectations, a decrease ratio is defined with respect to the 

error of the same mode compared to one when constant coefficient approximation is 

made. Good fidelity in the validation studies requires a decrease ratio of 0.001 or less. 
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3.4 Accuracy of LTP Eigenvalues 

Eigenvalues of the LTP model were obtained through a process during which FTM was 

obtained first by integrating the LTP system matrix over one period. Then, the 

eigenvalues of this matrix were converted to the system domain. The computationally 

challenging part of this process arises if if the LTP system matrix is discrete, as it is 

observed for the FLIGHTLAB models. Since such a model would allow only constant 

time integration, its time resolution must be kept very fine; therefore, the computational 

cost of obtaining an LTP model out of a nonlinear model (i.e. FLIGHTLAB) becomes too 

expensive, whereas for an analytical model, built-in variable time integration schemes of 

commercial programs (i.e. MATLAB) can be utilized easily. Therefore analytical 

representation of LTP system matrices are used by putting the discrete LTP model 

through a harmonic analyzer and representing it by a very high number of harmonics, 32 

in this study. This process provides the same level of accuracy in LTP eigenvalues 

between the analytical and numerical models while not much compromising the high 

fidelity of LTP model.  

The accuracy of the FTM eigenvalues as obtained from an analytical form of 

system matrices are represented in Figure 2.  An ODE solver available in MATLAB was 

used for time integration at the end of one period, and parametric studies were made for 

two available inputs of the function, absolute and relative tolerances. In Figure 2, each 

line represents a selection of different relative error varying between 10-1 and 10-12, 

where the x axis is the absolute tolerance index. It was found that using 10-12 for the 

relative tolerance and 10-15 for the absolute tolerance will be the optimum choice and 

provide an accuracy of 10-15 overall for the eigenvalues of the FTM. 
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Figure 2. Error sensitivity with respect to Relative and Absolute Tolerances 

3.5 Methodology 

Prior to attacking the problem, one should first be aware of the known issues while 

making a comparison between eigenvalues of LTP and LTI. Eigenvalues of the LTP 

model can be obtained through the FTM by reverse mapping, which includes a multi-

valued function, referred to as “inverse tangent”, on the other hand there are more 

eigenvalues after eigenanalysis of the LTI system matrix than the number of states that 

result from the use of the LTP model. However, consistent eigenvalues can be obtained 

from both methods for comparison if proper mathematical manipulation is performed. 

These manipulations, such as adding or subtracting a proper integer to or from the 

imaginary part of FTM result or picking the base eigenvalues of the LTI, do not alter 

fidelity since similar manipulations can be performed on both models and the absolute 

difference is always the same.  As the number of eigenvalues increase, however, 

another problem emerges, that of which eigenvalue should be compared to which since 
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there are very close eigenvalues of different modes. This problem is also aggravated 

due to the fact that selection of base eigenvalues performs a remainder-like operation; 

thus, even if there is a significant difference between the imaginary parts of two distinct 

modes, they might be very close as they all end up between +/-1 range in non-

dimensional form due to the FTM inverse mapping and the LTI base eigenvalue 

selection processes. In order to overcome that problem eigenvectors are used to relate 

the eigenvalues. 

The methodology for assessing the fidelity of stability properties of reduced order 

LTI models followed in this study begins with stability analysis using the Floquet Method 

of a linear time periodic model extracted from a nonlinear model of a helicopter or rotor 

in the vicinity of equilibrium condition. FTM is obtained by making use of the variable 

time resolution ODE solver of MATLAB. This is directly possible for an analytical model 

and it is made possible for the discrete LTP models obtained from FLIGHTLAB after 

harmonic analysis as explained in the previous section. FTM eigenvalues are then 

transformed to the system-plane. While the real parts of a system eigenvalue can be 

uniquely determined in this step, the imaginary part becomes non-unique because of the 

multi-valued arctan relation involved in its determination. As noted in [9, 21], the non-

uniqueness of the imaginary part is a consequence of the fundamental characteristic of a 

periodic system in which the oscillation contained in a modal solution derives from both 

the modal frequency as well as from the associated time dependent periodic mode 

shape without constraint on the distribution between the two. Various methods for 

addressing this ambiguity have been proposed in the literature (see [21]). The method 

put forward in [63] for the determination of modal frequency assumes that, when 

periodicity is mild, typical of cases with advance ratios in the range of 0.1 or less, the 

composition of eigenvector components, at least with respect to the dominant motions, 
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does not significantly deviate from the corresponding composition obtained from the 

constant coefficient approximation. A similar assumption is made in the present study in 

order to arrive at a basis for comparison between eigenvalues of LTI and LTP models. 

Base eigenvalues of LTP (λLTP) for comparison are arrived at by using the smallest in 

magnitude of the imaginary part (principal frequency) while transforming the FTM 

eigenvalues into the system-plane. LTI models of different orders (to include different 

harmonic components of rotor states) are formulated by using the algorithms developed 

in [47] and presented in this study. A conventional eigenvalue analysis of the resulting 

LTI models is carried out using the function “EIG,” which is available in FLIGHTLAB [55] 

based on LAPACK routines [60]. For each of the selected LTI models, a set of base 

eigenvalues (λLTI) is obtained by matching the composition of the eigenvector elements 

associated with the 0th harmonic components of states with the eigenvector elements of 

the FTM. The LTI model fidelity is assessed in this study by comparing the base 

eigenvalues of the LTI model (λLTI) with the base eigenvalues of the LTP (λLTP). Error in a 

base eigenvalue of an LTI model (λiLTI) is defined as its distance from the corresponding 

base eigenvalue of LTP (λiLTP) and is given by 

 

When comparing more than one eigenvalue, a composite error (E) is used for the 

isolated rotor model with flap DOF only since the order of magnitude for all eigenvalues 

of that model are the same.  

 

(64) 

(65) 
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This averaging process can simplify the post-processing of the results, but if the 

eigenvalues and consequently their absolute errors are far apart, then this process might 

cause deficiencies in the judgment of their fidelity. Therefore, the usage of this averaging 

process is limited to the 8-state analytical model only where all eigenvalues and their 

absolute error is in the same order of magnitude and only in an analytical model for 

which a wide range of parametric studies are performed.  

3.6 Stability Assessment Using Analytical Models 

3.6.1 Limit to Constant Coefficient 

Initially, an analytical model is studied as it approaches the 0 advance ratio, where 

periodicity disappears and the system becomes a constant coefficient.  In other words 

where LTI representation with 0 harmonics is sufficient. This is shown in Figure 3 as the 

constant coefficient approximation produced results as good as those of any higher 

harmonic LTI representation after the advance ratio is reduced to 10-7, whereas LTI with 

harmonics up to Nb/rev is good enough for an advance ratio of 0.01 and below, and LTI 

with harmonics up to 4Nb/rev is always good for advance ratios starting at 1. This study 

verifies that the constant coefficient approximation is a subset of LTI methods with a 

limited number of harmonics, and it suggests that increasing the number of harmonics 

gradually will result in attaining sufficient stability. 
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Figure 3. Error sensitivity analysis of LTI models 

3.6.2 Effect of Higher Number of Harmonics on Eigenvalues 

In Figure 4 and its close-up view, Figure 5, which  focuses only on base values, a 4 

bladed isolated rotor, as expressed in Eq. (63) in MBC form, is analyzed at 0.15 advance 

ratio. This study shows a typical result of an LTI stability analysis as compared to the 

FTM solution using a different numbers of harmonics. The eigenvalues, twice as many 

for each mode in LTI, are approximately aligned around the same real part with integer 

multiples of omega resulting in integer multiples in a non-dimensional form here, on the 

imaginary axis. A limited number of eigenvalues, associated with the highest frequency 

at each case, are slightly scattered along the real axis, but the rest of the eigenvalues 

can be visually identified at the same real part. This can be contributed to the effect of 

the higher harmonics of the original model on the highest harmonic modeled in the LTI, 

say when the LTI has harmonics up to 12/rev scattering of real part occurs only on the 

12/rev ±2/rev where the effect of the higher harmonics (>12rev) of the original model is 

largest. 
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Figure 4. Eigenvalues of a generic LTI model with harmonics 1, 2, 3 times the number of 
blades 

 

Figure 5. A zoom-in of Figure 4 

3.6.3 Fidelity Estimations with Respect to Advance Ratio 

In this section, average error is studied with 3 and 4 bladed analytical isolated rotor 

models. The trend of error is investigated against the use of the number of harmonics 

varying between 0 and 4.Nb. In both Figure 6 and Figure 7, there is a very steep 
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increase in error with constant coefficient and Nb harmonic representations at the first 

interval between 0 and 0.1 advance ratios. In contrast with this behavior, higher 

harmonic representations starting at 2Nb show better error results and a more moderate 

increase in the error. This suggests that less than Nb harmonic representation is almost 

as crude an approximation as occurs  with the constant coefficient and should not be 

used for stability purposes. This might also be interpreted as modeling only the modes 

that exist in the system equations is not sufficient. The highest frequency found in the 

state equations is 1Nb/rev, but due to modulation of the frequencies in the state 

response can go up to 2Nb/rev. Therefore, harmonics up to 2Nb/rev have to be modeled 

in order to obtain a reliable stability characteristic. 

Investigation shows that error lines with different numbers of harmonics tend to 

preserve the differences in error as the advance ratio increases, which leads to the 

conclusion that asymptotically, there should be a constant error difference between 

them.  In other words, the modeling of each additional harmonic corresponds to a 

significant error improvement in the stability estimations. An important point to remember 

here is that analytical models are no longer valid in moderate and high advance ratios 

(roughly higher than 0.2). Therefore, these results should be considered in a 

mathematical form instead of as a physical assessment.   
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Figure 6. Error index of a 3 bladed isolated rotor (analytical model) as a function of 
advance ratio. 

 

Figure 7. Error index of a 4 bladed isolated rotor (analytical model) as a function of 
advance ratio. 
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3.6.4 Fidelity Estimations with Respect to Model Parameters 

In this section, the effect of model parameters other than the advance ratio is 

investigated. These are nondimensional frequency “ν” and Lock number “γ,”  which 

represent the stiffness and aerodynamic effects, respectively. The non-dimensional 

frequency of the blade is a structural (blade stiffness) and mechanical property (hinge 

offset) of the blade that should not affect the required number of harmonics, while Lock 

number, the ratio of aerodynamic effects to the inertia effects, is more likely to produce 

periodic structures, and it can ultimately impact the required number of harmonics.  

Figure 8 reveals that the practical Lock numbers of helicopter rotor blades are 

varied.  The estimated errors are plotted against the number of harmonics used in the 

LTI, while other model properties such as advance ratio and non-dimensional frequency 

are shown to keep constant. There is a clear difference between the error levels when 

same number of harmonics are used in the LTI. In other words in order to capture the 

same level of fidelity, a different number of harmonics need to be used in the LTI. 
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Figure 8. Error index as a function of number of harmonics with 3 different Lock numbers. 

Figure 9 displays the results of a similar parametric study that was performed by 

interchanging the Lock number with non-dimensional frequencies. Non-dimensional 

frequencies, which varied here (0.9, 1.1, 1.3), are also practical values that can be found 

on operational helicopter rotor blades. In this case, all three lines associated with 

different parameters showed almost the same fidelity at every level of harmonics. This 

leads to the conclusion that for an LTI stability analysis, it is not the non-dimensional 

rotational frequency but rather only the Lock number and advance ratio that should be 

considered in order to determine the required number of harmonics.  
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Figure 9. Error index as a function of number of harmonics with 3 non-rotating 
frequencies. 

These results lead to the following question: “What is the combined effect of Lock 

number and advance ratio on the required number of harmonics?”. These two 

parameters appear in the system equitation (see Eq. (63)) in product form. Therefore, as 

seen in Figure 10, this multiplication is kept constant while individual parameters 

composing the multiplication are varied. The same fidelity is observed with every case, 

and combining this with the earlier results shows that neither the Lock number nor the 

advance ratio has a sole effect on the required number of harmonics. What this does 

show is that their multiplication must be changed. 

A physical reconsideration of these results suggests that given a rotor model, the 

advance ratio should be considered as the dominant effect on the required number of 

harmonics but that a change in the altitude can also effect the fidelity through the change 
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of density. Another aspect is that if comparisons need to be done between two helicopter 

models, one needs to carefully calibrate the advance ratio depending on the Lock 

number difference between those two models. 

 

Figure 10. Error index as a function of the number of harmonics with 3 different 
combinations of Lock number and advance ratio for the same product. 

3.7 Stability Assessment Using FLIGHTLAB Models 

In this section, FLIGHTLAB models of both isolated rotor models and a full rotorcraft 

model with sufficient fidelity are investigated in order to assess the stability of LTI 

models. Model properties are given in the earlier section though it is important to note 

that for the full rotorcraft model, a model reduction occurs for the body states by focusing 

on the conventionally used states, i.e. if only pitch and roll attitudes are considered and 
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body yaw attitude is omitted. All the other states involving rotor and inflow are included in 

the model reduction. 

The results are broken down into 3 subsections, which relate each section with a 

particular model at a single advance ratio of 0.15. In each section, the eigenvalues are 

studied individually, starting with their fidelity as a function of the number of harmonics 

included in the LTI, top subplot ‘a’. The accuracy of the reference LTP eigenvalue is 

approximately 10-15. This means that all the results presented here are above that 

threshold. In middle subplot ‘b’, the eigenvalue of  mode of interest is indicated with 

bigger symbols; all other compared eigenvalues are plotted as well. The last figure, ‘c’, 

of the each individual eigenvalue study shows the associated eigenvectors as obtained 

from both FTM and LTI results, which were used for associating the eigenvalues 

between the two methods. 

3.7.1 Isolated Rotor Model with Flap DOF Only 

This is the simplest rotor model that could be achieved in FLIGHTLAB. The analytical 

isolated rotor model studied earlier is an approximation of this model using some 

assumptions such as uniform blade mass distribution. Thus, the FLIGHTLAB model is 

designed and used as a step between the analytical model and numerical rotorcraft 

model in order to understand issues that may arise due to numerical modeling, a 

discrete LTP model, and realistic rotor properties.  

Figures 11 through 14 show respective results for each mode obtained with its 

fidelity with respect to number of harmonics, its eigenvalue indicated in the system 

domain, and its modeshape comparison between FTM and LTI. Similar trends with the 

earlier analytical model results are observed in all of the eigenvalues though the 

difference here is that adopted method based on eigenvector matching worked well for 

selecting the right eigenvalues between LTI and LTP. An important aspect that differs 



 

from the analytical model results is 

much bigger impact on the error 

effect at all on the accuracy of the LTI. Although this claim stands valid for the current 

model, it is known that 

discourages the creation

harmonics only. A final abrupt decrease observed at 

be due to the analytical representation of the LTP in terms of harmonics up to this value. 

Finally, it is concluded so far 

supports the direction of the study towards a rotorcraft model.

Figure 11. Isolated rotor 8
Imaginary Domain,
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from the analytical model results is that some harmonics (2, 4, 8, and 16 per rev) have 

much bigger impact on the error and that other harmonics seem to have barely 

at all on the accuracy of the LTI. Although this claim stands valid for the current 

it is known that an abundance of significant 1/rev harmonics in real

on of less costly LTI models that are compose

harmonics only. A final abrupt decrease observed at the 32/rev harmonic is believed 

due to the analytical representation of the LTP in terms of harmonics up to this value. 

so far that the numerical model and its results are v

of the study towards a rotorcraft model. 

. Isolated rotor 8-states. Mode 1 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 1, FTM and LTI

some harmonics (2, 4, 8, and 16 per rev) have a 

that other harmonics seem to have barely any or no 

at all on the accuracy of the LTI. Although this claim stands valid for the current 

abundance of significant 1/rev harmonics in real-life rotors 

composed of these even 

32/rev harmonic is believed to 

due to the analytical representation of the LTP in terms of harmonics up to this value. 

numerical model and its results are valid and 

 

states. Mode 1 : a) Error Sensitivity of LTI, b) Eigenvalues on 
1, FTM and LTI 



 

Figure 12. Isolated rotor 8
Imaginary Domain,

 

Figure 13. Isolated rotor 8
Imaginary Domain,
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. Isolated rotor 8-states. Mode 2 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 2, FTM and LTI

Isolated rotor 8-states. Mode 3 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 3, FTM and LTI

 

states. Mode 2 : a) Error Sensitivity of LTI, b) Eigenvalues on 
2, FTM and LTI 

 

Sensitivity of LTI, b) Eigenvalues on 
3, FTM and LTI 



 

Figure 14. Isolated rotor 8
Imaginary Domain,

 

3.7.2 Isolated Rotor Model with Flap 

In this section, the former isolated rotor model is enhanced with the 3

order to study the effects of non

LTI process. In order to keep this focus on the differences due to 

rotor states, only 2 modes are studied. Mode 1 of the isolated rotor model with 11

is a mostly inflow dominated 

mode that is strongly coupled with the inflow. 

Figure 15 and Figure 

eigenvector matching based method worked fine here as well in both modes. Although 

significant improvement in the error can be seen up to 

representation, after that value, 

entirely lost. A combination of significant periodicity in the non
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Isolated rotor 8-states. Mode 4 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 4, FTM and LTI

Isolated Rotor Model with Flap DOF and 3-State Inflow 

former isolated rotor model is enhanced with the 3

order to study the effects of non-rotor states whose harmonic content is omitted in 

LTI process. In order to keep this focus on the differences due to the presence of non

rotor states, only 2 modes are studied. Mode 1 of the isolated rotor model with 11

is a mostly inflow dominated mode, whereas the other one (Mode 3) is a cycl

mode that is strongly coupled with the inflow.  

Figure 16 show the results with the current LTI model. 

igenvector matching based method worked fine here as well in both modes. Although 

significant improvement in the error can be seen up to the 

after that value, sensitivity to the number of harmonics in the LTI is 

ombination of significant periodicity in the non-rotor states (inflow) and 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
4, FTM and LTI 

former isolated rotor model is enhanced with the 3-state inflow in 

rotor states whose harmonic content is omitted in the 

presence of non-

rotor states, only 2 modes are studied. Mode 1 of the isolated rotor model with 11-states 

(Mode 3) is a cyclic flapping 

results with the current LTI model. The 

igenvector matching based method worked fine here as well in both modes. Although 

the 4/rev harmonic 

ty to the number of harmonics in the LTI is 

rotor states (inflow) and 
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the representation of those states with an average state is thought to be the source of 

such early saturation in the accuracy estimates of LTI. Therefore a hypothetical LTP 

model is extracted from this original one, where periodicity of the non-rotor related parts 

of the system matrix are suppressed. The LTP model and FTM obtained from this 

hypothetical case are called LTPo and FTMo, respectively; likewise, the LTI obtained 

from the LTPo is called LTIo. Figure 17 and Figure 18 show the results after that 

process, evidently revealing that even if there is no harmonic content in the portions of 

A(ψ) corresponding to the non-rotor states, the stability characteristics are still sensitive 

to the harmonic representation of those states in the LTI. In order to examine this issue, 

an extended LTI (LTI*) model that includes same number of harmonics for both rotor and 

non-rotor states is constructed. Figure 19 and Figure 20 give example results with such 

an LTI model that includes an equal number of harmonics for all the states. 

Theoretically, this is the same level of modeling with the isolated rotor model with 8-state 

since within both models all the states decompose into the same number of harmonics. 

Consequently, similar results are observed here with the 11-state model as those in the 

8-state model. One can use the LTI model with the non-rotor states treated with their 

average component only, as long as the stability properties are sufficiently accurate, as 

those obtained in Figure 17 and Figure 18 for the sake of low computational cost (lower 

size LTI due to lesser pseudo-states). In cases which require better accuracy, t one 

needs to switch to the extended version of the LTI model.  

 



 

Figure 15. Isolated rotor 11
Imaginary Domain,

 

Figure 16. Isolated rotor 11
Imaginary Domain,
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Isolated rotor 11-states. Mode 1 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 1, FTM and LTI

Isolated rotor 11-states. Mode 3 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 3, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
1, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
3, FTM and LTI 



 

Figure 17. Isolated rotor 11
Imaginary Domain,

 

Figure 18. Isolated rotor 11
Imaginary Domain,
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Isolated rotor 11-states. Mode 1 : a) Error Sensitivity of LTIo, b) Eigenvalues on 
Imaginary Domain, LTPo and LTIo c) Modeshape 1, FTMo and LTIo

Isolated rotor 11-states. Mode 3 : a) Error Sensitivity of LTIo, b) Eigenvalues on 
omain, LTPo and LTIo c) Modeshape 3, FTMo and LTIo

 

, b) Eigenvalues on 
1, FTMo and LTIo 

 

, b) Eigenvalues on 
3, FTMo and LTIo 



 

Figure 19. Isolated rotor 11
Imaginary Domain,

 

Figure 20. Isolated rotor 11
Imaginary Domain
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Isolated rotor 11-states. Mode 1 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 1, FTM and LTI*

Isolated rotor 11-states. Mode 3 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI*, c) Modeshape 3, FTM and LTI*

 

, b) Eigenvalues on 
1, FTM and LTI* 

 

, b) Eigenvalues on 
3, FTM and LTI* 
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3.7.3 Full Rotorcraft Model 

The full rotorcraft model studied here is the simplest representation of a full rotorcraft 

with sufficient fidelity. The modeling properties are explained in section 2.1 but it is 

important to note it here that during the process of linearization (LTP), not all of the 

states are included in the linear model. In other words, both the LTP and LTI models 

disregard states such as body yaw angle. The included states are the 8 body states (Φ, 

θ, Vx, Vy, Vz, p, q, r), the 3-state inflow (λo, λc, λs ), and the 16 rotor states, which are the 

MBC transformation of the rigid flap and lag degrees of freedom for 4 blades. The 

proposed LTI model treats non-rotor states (body and inflow) with the average 

component only, and the rotor states are modeled up to the specified number of 

harmonics. 

Figures 21 through 35 show the results with the LTI model proposed here and, 

Figures 36 through 50 show the results with the extension of the LTI model by 

representing all states up to the same number of harmonics. Although it was already 

shown in the section 3.7.2 that the former treatment of non-rotor states leads to a 

fundamental deficiency in the LTI stability properties, the accuracy obtained with that 

level of modeling might be sufficient depending on the purpose. Therefore, both results 

are presented here for the current objective rotorcraft model.  

In the LTI model, accuracy saturated as early as 2/rev harmonics, as shown in 

Figures 21, 22, 26 and 27. Especially for the mode shown in Figures 22, 26 and 27 

where there is coupling between rotor and non-rotor states, not only did accuracy 

saturate at 2/rev, but the obtained accuracy is also around 10% of the error when a 

constant coefficient approximation is made. This ratio is selected for the fidelity 

estimation purposes since the absolute error of a mode is dependent on the order of 
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magnitude of the eigenvalue of that mode. Therefore, such a scale can provide a more 

generic merit. 

The absolute values obtained for these modes are on the order of 0.01 and 

0.001, which might be sufficient for a particular study, but it is apparently not useful for a 

trade study due to the saturation regardless of its absolute value. On the plus side of this 

method, it is observed that all the modes that involved only body and inflow states in 

their modeshape profile showed progressively improving trend for their accuracy as the 

number of harmonics increased up to 8/rev where they saturated. Those saturated 

values are on the order of 10-5 and when compared to their error with constant coefficient 

representation the decrease ratio is about 0.001 which is an acceptable ratio. 

Moreover all the estimations (Figures 21-35) performed using LTI method except 

for modes 2, 6 and 7 (Figures 22,26 and 27) showed excellent correlation between their 

eigenvectors and those tree comparisons match only the dominant component of the 

eigenvector. Therefore, overall statement for the eigenvector comparison is very good.  

Considering the fidelity criteria together with the content of the modes it can be 

assessed that the LTI model can be used for vehicle stability and handling qualities 

requirements. Lack of accuracy for the other modes which all have rotor coupling would 

be a limiting factor for the use of the method for integrated flight and rotor control. Thus, 

these findings suggest that it is vital to extend the theory to include all the states (both 

rotor and non-rotor) in harmonic decomposition to further study the accuracy of 

eigenvalues. 

  



 

Figure 21. Rotocraft Model
Imaginary Domain,

Figure 22. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 2, FTM and LT
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Rotocraft Model. Mode 1 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 1, FTM and LTI

Rotocraft Model. Mode 2 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 2, FTM and LT

 

vity of LTI, b) Eigenvalues on 
1, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 2, FTM and LTI 



 

Figure 23. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 3, FTM and LTI

Figure 24. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 4, FTM and LTI
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Rotocraft Model. Mode 3 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 3, FTM and LTI

Rotocraft Model. Mode 4 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 4, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 3, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 4, FTM and LTI 



 

Figure 25. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modesh

 

Figure 26. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 6, FTM and LTI
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Rotocraft Model. Mode 5 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 5, FTM and LTI

Rotocraft Model. Mode 6 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 6, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
ape 5, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 6, FTM and LTI 



 

Figure 27. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 7, FTM and LTI

 

Figure 28. Rotocraft Model
Imaginary Domain, LTP and LTI c) 
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Rotocraft Model. Mode 7 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 7, FTM and LTI

Rotocraft Model. Mode 8 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 8, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 7, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Modeshape 8, FTM and LTI 



 

Figure 29. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 9, FTM and LTI

 

Figure 30. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 10, FTM and LTI
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Rotocraft Model. Mode 9 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 9, FTM and LTI

Rotocraft Model. Mode 10 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 10, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 9, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 10, FTM and LTI 



 

Figure 31. Rotocraft Model
Imaginary Domain, LTP and LTI c)

 

Figure 32. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 12, FTM and LTI
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Rotocraft Model. Mode 11 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 11, FTM and LTI

Rotocraft Model. Mode 12 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 12, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Modeshape 11, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 12, FTM and LTI 



 

Figure 33. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 13, FTM and LTI

 

Figure 34. Rotocraft Model
Imaginary Domain, LTP and 
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Rotocraft Model. Mode 13 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 13, FTM and LTI

Rotocraft Model. Mode 14 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 14, FTM and LTI

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 13, FTM and LTI 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
LTI c) Modeshape 14, FTM and LTI 



 

Figure 35. Rotocraft Model
Imaginary Domain, LTP and LTI c) Modeshape 15, FTM and LTI

 

The results for the extended LTI model (LTI*) 

50. All of the results show a monotonic decrease in error for all modes except a few 

temporary situation explained later, whereas all of the results obtained with the former 

method saturated between 2/rev and 8/rev harmonics

can be seen as a suitable tool for the parametric studies of stability properties.

Figures 39 through 42, there is an increase in error at 2/rev harmonics which can 

be explained as the increase in numerical error is much hig

the eigenvalues due to 2/rev harmonics in those 4 modes, 

 Only one mode (

harmonic. In the higher number of harmonic representations rare increases in error is 

also seen but much lesser amounts which can be explained by the same rational. With 

the exception of this problem a monotonic decrease in error is seen mostly until the 

highest number of harmonic, 32/rev. As explained in earlier results abrupt decrease in 
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Rotocraft Model. Mode 15 : a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 15, FTM and LTI

The results for the extended LTI model (LTI*) presented in Figures 36 through 

50. All of the results show a monotonic decrease in error for all modes except a few 

temporary situation explained later, whereas all of the results obtained with the former 

method saturated between 2/rev and 8/rev harmonics. Therefore, extended LTI model 

can be seen as a suitable tool for the parametric studies of stability properties.

Figures 39 through 42, there is an increase in error at 2/rev harmonics which can 

be explained as the increase in numerical error is much higher than the improvement of 

the eigenvalues due to 2/rev harmonics in those 4 modes,  

Only one mode (Figure 38) shown did not have any change at that level of 

c. In the higher number of harmonic representations rare increases in error is 

also seen but much lesser amounts which can be explained by the same rational. With 

the exception of this problem a monotonic decrease in error is seen mostly until the 

number of harmonic, 32/rev. As explained in earlier results abrupt decrease in 

 

a) Error Sensitivity of LTI, b) Eigenvalues on 
Imaginary Domain, LTP and LTI c) Modeshape 15, FTM and LTI 

presented in Figures 36 through 

50. All of the results show a monotonic decrease in error for all modes except a few 

temporary situation explained later, whereas all of the results obtained with the former 

. Therefore, extended LTI model 

can be seen as a suitable tool for the parametric studies of stability properties. 

Figures 39 through 42, there is an increase in error at 2/rev harmonics which can 

her than the improvement of 

) shown did not have any change at that level of 

c. In the higher number of harmonic representations rare increases in error is 

also seen but much lesser amounts which can be explained by the same rational. With 

the exception of this problem a monotonic decrease in error is seen mostly until the 

number of harmonic, 32/rev. As explained in earlier results abrupt decrease in 
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error at 32/rev can be related with the fact that LTP is represented with harmonics up to 

32/rev. 

Stability evaluation of LTI and LTI* had the same correlation at every mode for 

the eigenvector. This is an expected result since the reference modeshapes in both 

cases are identical as they were originated from the same LTP model. Even though LTI 

and LTI* evaluations are different, portion of the eigenvectors that extracted from each 

model for the comparison is the same, that corresponds to the 0th harmonics of states. 

Therefore, improvement in the overall comparison between the LTP and LTI is only for 

the eigenvalues, yet eigenvector comparisons between LTP and LTI model were already 

found in a very good correlation. 

With the improvement in the LTI estimation while switching from to LTI* not only 

saturation problem was resolved but also remarkable improvement in the error 

estimations is also seen at the number of harmonics is equal to the saturation point with 

the earlier method. Mode 9, as obtained from LTI and LTI* methods in Figrues 29 and 

44, respectively, has the same error levels up to the 8/rev harmonics but when number 

of harmonics is reached up to this value where earlier method (LTI) saturated error is 

observed on the order of 10-5, whereas error is even lower (10-6 ) when LTI* method was 

used. This result suggest that decomposition of non-rotor states into their harmonics is 

vital even for the lesser number of harmonics. 

When all of the modes are reviewed for their damping ratio least damped modes 

are grouped as translational velocity (Vx, Vy, and Vz) associated ones shown in Figures 

48, 49 and 50. Then, in Figures 46 and 47, least damped modes are seen with coupling 

of inflow in addition to the same content (Vx, Vy, and Vz). It is interesting to experience 

the least damped modes with association of such states, body translational velocities 
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and inflow, which happen to be naturally damped states. This condition can be related to 

the aerodynamic modeling and lack of rotor wake interaction of the fuselage.  

Figures 41 and 45 show the eigenvalues and eigenvectors for the modes least 

damped that involves states other than or in addition to the body translational velocities 

and inflow. Largest contribution within these modes is due to cyclic lag modes, which are 

also known regressive lag and progressive lag modes. Especially regressive lag mode is 

known for its part in the ground and air resonance phenomena. 

As it was noticed in the sections 3.7.1, 3.7.2 and repeated in this section that 

progressive decrease in error can be observed only on particular number of harmonics, 

at 2/rev and higher even number of harmonics. This condition was contributed to the 

effect of 2/rev and 4/rev dominant dynamics of a four-bladed rotor. Since this behavior is 

also observed with the rotorcraft model in the current section of this study it can be 

stated that body dynamics do not alter this characteristic. 

In all of the eigenvalues obtained using extended LTI (LTI*) very small error can 

be achieved (on the order of 10-9 or less), and it is possible to observe a progressive 

decrease in error as the number of harmonics is increased. Therefore, overall fidelity 

estimation can be made on these results in terms of the definition given in “Methodology” 

section 3.4. When the desired error decrease ratio is set to 10-3, the minimum number of 

harmonics that needs to be used for good fidelity is 8/rev, and if this target value is 

decreased to 10-4, then the requirement goes up to 10/rev. 



 

Figure 36. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 1, FTM and LTI*

 

Figure 37. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 2, FTM and LTI*
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Rotocraft Model. Mode 1 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 1, FTM and LTI*

Rotocraft Model. Mode 2 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 2, FTM and LTI*

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 1, FTM and LTI* 

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 2, FTM and LTI* 



 

Figure 38. Rotocraft Model
Imaginary Domain, LTP and LTI* 

 

Figure 39. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 4, FTM and LTI*
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Rotocraft Model. Mode 3 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 3, FTM and LTI*

Rotocraft Model. Mode 4 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 4, FTM and LTI*

 

, b) Eigenvalues on 
c) Modeshape 3, FTM and LTI* 

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 4, FTM and LTI* 



 

Figure 40. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 5, FTM and LTI*

 

Figure 41. Rotocraft Model
Imaginary Domain, LTP an
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Rotocraft Model. Mode 5 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 5, FTM and LTI*

Rotocraft Model. Mode 6 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 6, FTM and LTI*

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 5, FTM and LTI* 

 

, b) Eigenvalues on 
d LTI* c) Modeshape 6, FTM and LTI* 



 

Figure 42. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 7, FTM and LTI*

 

Figure 43. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 8, FTM and LTI*
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Rotocraft Model. Mode 7 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 7, FTM and LTI*

Rotocraft Model. Mode 8 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 8, FTM and LTI*

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 7, FTM and LTI* 

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 8, FTM and LTI* 



 

Figure 44. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 9, FTM and LTI*

 

Figure 45. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 10, FTM and LTI*
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Rotocraft Model. Mode 9 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Domain, LTP and LTI* c) Modeshape 9, FTM and LTI*

Rotocraft Model. Mode 10 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 10, FTM and LTI*

 

, b) Eigenvalues on 
Domain, LTP and LTI* c) Modeshape 9, FTM and LTI* 

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 10, FTM and LTI* 



 

Figure 46. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 11, FTM and LTI*

 

Figure 47. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 12, FTM and LTI*
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Rotocraft Model. Mode 11 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 11, FTM and LTI*

Rotocraft Model. Mode 12 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 12, FTM and LTI*

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 11, FTM and LTI* 

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 12, FTM and LTI* 



 

Figure 48. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape13, FTM and LTI*

 

Figure 49. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 14, FTM and LTI*
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Rotocraft Model. Mode 13 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape13, FTM and LTI*

Rotocraft Model. Mode 14 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 14, FTM and LTI*

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape13, FTM and LTI* 

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 14, FTM and LTI* 



 

Figure 50. Rotocraft Model
Imaginary Domain, LTP and LTI* c) Modeshape 15, FTM and LTI*
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Rotocraft Model. Mode 15 : a) Error Sensitivity of LTI*, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 15, FTM and LTI*

 

, b) Eigenvalues on 
Imaginary Domain, LTP and LTI* c) Modeshape 15, FTM and LTI* 
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CHAPTER 4 LTI MODEL RESPONSE EVALUATIONS FOR IBC 

INPUTS 

This chapter provides evaluation results for the method developed for the extraction of 

LTI models from a nonlinear model of a generic helicopter when an IBC input channel is 

used for excitation. The metrics used in the LTI model fidelity evaluations are introduced 

first. Next, the fidelity evaluation results for response characteristics are provided for the 

case of individual blade control applications. An evaluation of the response 

characteristics is presented in two sections for the time and frequency domain 

responses.  

4.1 Metrics for Evaluation of Model Fidelity 

Tischler and Remple [64] suggested the use of the metrics used here for checking the 

fidelity of flight mechanics models identified from test data in time and frequency 

domains. 

The metrics below are adapted in this study by treating ydata as the response from the 

nonlinear model and y as the response from the LTI model. ∆y in Eq. (67) is the 

perturbation time history of response from trim, nt is the number of response points and 

no is the number of outputs. In Eq. (68), “Tc” is the transfer function from the nonlinear 

model, “T” is the transfer function from the LTI model, “γxy” is the coherence function, and 

“nω” is the number of discrete frequency points used.   

The normalized fixed system hub forces and moments are used as outputs for 

model evaluations in this study as expressed in Eq. (66). 
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It is suggested in [64] that 1 deg/s error is equivalent to 1 ft/s or 1 ft/s2. Here, this 

equivalence is extended to 1 deg/s2 as well. Hence, the fixed system hub forces and 

moments are normalized by the vehicle mass and the corresponding mass moments of 

inertia, respectively, as shown in Eq. (66). The elements of the weighting matrix “W” in 

“J” of Eq. (67) are appropriately selected to achieve this equivalency.  It is suggested in 

[64] that for good model fidelity, the value of the time domain error index (J(1)) needs to 

be less than 1 ~ 2 and that the value of the frequency domain error index (J(2)) needs to 

be less than 100. 
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4.2 Validation Studies for Response Characteristics 

The following two sections investigate the response characteristics of the LTI models. 

Time and frequency domain responses to known practical input types and profiles are 

tried in the time domain, whereas a conventionally sine sweep is used for gathering the 

required time history for frequency domain validation studies.  
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The number of average states in the LTI model is 55, including 15 inflow and 8 

body states (vehicle mass center velocity components, angular velocity components, 

body pitch and roll attitudes).It has 32 Multi Blade Coordinate (MBC) rotor states (16 for 

the rigid flap and lead-lag motions and 16 for the elastic flap and lag motions). The 

number of harmonic components of the rotor MBC states is 256 for the case when 1/rev 

to 4/rev sine and cosine harmonic components are included (64 for rigid mode flap, 64 

for elastic mode flap, 64 for rigid mode lead-lag and 64 for elastic mode lead-lag) 

resulting in an LTI model order of 311. When the 1/rev to 8/rev sine and cosine 

harmonics of rotor MBC states are included, the resulting LTI model order becomes 567, 

which includes 55 average states and 512 harmonic sine and cosine components of the 

rotor MBC states. In the case of an isolated rotor representation, the body states are 

absent, thus reducing the LTI model order by 8. In general the number of states “Ns” for 

the extracted LTI model is given by Eq. (69) 

( )12 +⋅+= hros nnsnsN
 

where nh is the number of harmonics, nso is the number of non-rotor (body and inflow) 

states, and nsr is the number of rotor MBC states. 

4.2.1 Time Domain Validation 

This section uses the generic helicopter model (GHM) available in FLIGHTLAB with the 

enhancements mentioned earlier is used for the LTI model fidelity evaluations.  The 

vehicle weighs 15,000 lbs and has a four bladed articulated rotor, a conventional tail 

rotor, a horizontal stabilizer, and a vertical fin. The analog and digital SAS portions of the 

control system are disabled in this study. The nonlinear model includes one rigid plus 

one elastic mode per flap as well as the lead-lag motions of each blade and a 15-state 

dynamic inflow model. The blade feathering is assumed to be rigid. 

(69) 
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The LTI model fidelity evaluations are carried out for a forward flight case of a 

0.15 advance ratio. The types of IBC inputs used are assumed to be similar to those 

used in the literature for vibration and noise control applications (for example, see [2, 3, 

7]). In the time domain evaluations, the simulation time is set at 5 seconds for all cases. 

In each case, the simulation begins at trim, and the selected input is applied at 1 sec into 

the simulation. The input is turned off at 3 seconds into the run, and the simulation 

continues until 5 seconds.  

Higher harmonic inputs (2/rev, 3/rev, 4/rev, etc.) are used in the literature for 

reductions in vibration, noise, and rotor power [2, 3, 7]. For reducing rotor power, a 2/rev 

individual blade control (IBC) input is suggested in [1]. In order to evaluate the fidelity of 

the extracted LTI models for their use in active rotor power reduction studies,  a 2/rev 

IBC input of 2o magnitude (similar in magnitude to what has been tried in [2]) and  (an 

arbitrarily selected) 125o phase is used in the LTI model fidelity evaluations. The 

resulting fixed hub load variations with time (as predicted from FLIGHTLAB and from the 

extracted LTI model) are compared in Figure 51. The LTI model includes up to 4/rev 

harmonic components of the rotor MBC states. Figure 52 is a zoom-in of the results from 

Figure 51. The time-domain error index computed using Eq. (67) is obtained as 0.316, 

indicating good fidelity of the extracted LTI model. Expected results are observed when 

2/rev IBC inputs beneficially impact the steady state components of rotor thrust and 

torque as evident from the response predictions of Fz and Mz in Figure 51. 

It is well known that N/rev vibration in the fixed system arises from blade force 

variations in the rotating frame at (N-1)/rev, N/rev and (N+1)/rev vibrations, where N is 

the number of blades [29]. Hence, as suggested from several studies in the literature (for 

example, [2]), it is expected that the IBC inputs at these frequencies can be used for 

vibration control. An IBC input consisting of 3/rev, 4/rev and 5/rev components is used 
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as a way to test the fidelity of the extracted LTI models for their use in active vibration 

control studies. The magnitudes of the harmonic components of the IBC are selected to 

be 1.5o of 3/rev, 1o of 4/rev and 0.5o of 5/rev. These values are similar to the IBC 

harmonic component magnitudes used in [2]. The phases of the individual harmonic 

components of the IBC are selected arbitrarily. The extracted LTI model includes up to 

4/rev harmonic components of rotor states. The fixed system hub load responses to the 

selected IBC input as predicted from FLIGHTLAB are compared with those predicted 

using the LTI model in Figure 53 with a zoom-in of the results shown in Figure 54. The 

time-domain error index computed using Eq. (67) is obtained as 0.612, indicating good 

model fidelity of the extracted LTI model, suggesting that the proposed LTI model 

extraction process can be used in active vibration control studies. 

It is suggested in [3] that a combination of 6/rev and 7/rev may be used for 

simultaneous vibration and noise control. In order to verify the LTI model fidelity for its 

use in active vibration and noise control studies, a test case IBC input with 6/rev and 

7/rev components of magnitudes (0.5o of 6/rev and 0.5o of 7/rev) similar to those 

considered in [3] is used. Two different orders of LTI model approximations are used, 

one that includes up to 4/rev harmonic components of rotor states and one that includes 

up to 8/rev harmonic components of rotor states.  The predicted fixed system hub load 

responses from FLIGHTLAB are compared with those from the LTI model predictions in 

Figure 55 with a zoom-in of the results shown in Figure 56. The figures reveal that the 

inclusion of up to 8/rev harmonic components of rotor states in the LTI model improves 

the LTI model fidelity significantly (error index of 0.037) when compared to that of the LTI 

model with only up to 4/rev harmonic components of rotor states (error index 0.71). The 

higher frequency variations in the fixed hub load responses seen in the FLIGHTLAB 
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results are well captured in the predictions from the LTI model that includes up to 8/rev 

harmonic components of rotor states (see Figure 56).  

Next, the LTI model fidelity is evaluated using pulse inputs of the IBC when a 

blade is passing through a selected azimuthal range. This input has been suggested in 

the literature [7] for avoidance of blade vortex interactions (BVI) by using a trailing edge 

flap actuation. A similar type of input is used with the IBC in the present study. The 

selected IBC input as a function of rotor azimuth angle is shown in Figure 57. The 

isolated rotor with the elastic blade and 15-state dynamic inflow model is used in this 

case in order to focus on the accuracy of the method. The predicted flapping response is 

shown in Figure 58 in terms of vertical deflection from the hub (shown in inches) at three 

different locations along the radius of a reference blade. A visual comparison of the 

isolated rotor elastic blade flapping responses from FLIGHTLAB and those from the LTI 

model indicates that the fidelity of the extracted LTI model is good, suggesting that the 

proposed LTI model extraction process can be used in active BVI control studies. 
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Figure 51. Predicted Fixed System Hub Load Variations to 2/rev IBC Input. 
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Figure 52. A zoom-in of Figure 51. 
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Figure 53. Predicted Fixed Stem Hub Load Variations to IBC Inputs with 3/rev, 4/rev and 
5/rev Components. 
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Figure 54. A zoom-in of Figure 53 
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Figure 55. Predicted Fixed Stem Hub Load Variations to IBC Inputs with 6/rev and 7/rev 
Components. 
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Figure 56. A zoom-in of Figure 55 

 

Figure 57. Selected Azimuth Dependent IBC Input. 
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Figure 58. Predicted Elastic Blade Vertical Deflection (inches) in Response to the Selected 
IBC Pulse Input. 

4.2.2 Frequency Domain Validation 

The Comprehensive System Identification from Frequency Responses (CIFER) [64] is 

used to obtain frequency responses between the fixed system hub loads and the 

respective input channels, IBC or OBC. For frequency domain evaluations, time 

response is extracted using a sine sweep excitation with varying frequency in the 

respective input channel in order to obtain a frequency response. The initial and final 

frequencies are selected to obtain a broad band of frequency response. The starting 

frequency is assumed to be close to the lowest body mode, and the final frequency is 

assumed to be Nb/rev harmonic, where Nb is the number of blades. The duration of the 

signal is based on the CIFER guideline [64] as 2.5 times the highest period. The 

tabulated time data is transferred as an input to CIFER [64]. CIFER performs frequency 

response analyses using up to 5 different window sizes within its FRESPID module. 

Each FRESPID result with a different window size becomes an input to the 

COMPOSITE module in order to obtain a frequency response from a set of input/output 

data. 
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Both the FLIGHTLAB and LTI (up to 8/rev harmonics) models are excited 

through a single blade IBC frequency sweep input. The frequency sweep magnitude is 

set at 1 deg, and the frequency is linearly varied from 0.3 rad/sec to 135 rad/sec (=5Ω) 

with time. The duration of the frequency sweep is set at 120 seconds and the azimuthal 

increment (sampling rate) is set at ∆ψ=2.5o. Five different sizes of moving windows (24 

sec, 12sec, 8 sec, 2 sec and 1 sec) are used in the construction of a composite 

frequency response from the frequency sweep input and output data.  The generic 

helicopter with enhancements, elastic blade, and 15-state dynamic inflow model is used 

as in the time domain studies with the IBC input channel. 

The predicted frequency responses between the fixed system rotor thrust (Fz) 

and rotor torque (Mz) to single blade IBC input are shown in Figure 59 and Figure 60, 

respectively. The frequency domain error indices for model fidelity in Figure 59 and 

Figure 60 are computed using Eq. (68), which are obtained as 17.6 and 16.8 for Fz and 

Mz outputs, respectively. These values are well within the bound of 100 suggested in 

[64], indicating a good fidelity of the extracted LTI model. 
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Figure 59. Predicted Frequency Response of Rotor Thrust to a Single Blade IBC Input. 

 

Figure 60. Predicted Frequency Response of Rotor Torque to a Single Blade IBC Input. 
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CHAPTER 5 LTI MODEL RESPONSE EVALUATIONS FOR 

OBC INPUTS 

This chapter first explains the reduced order aerodynamic modeling of a flap actuator.  In 

order to model the sensitivity of the aerodynamics of blade sections due to actuation of 

the trailing edge flap elements, adaptive neural networks are trained using extensive 

CFD data. These models are tested before being integrated into the FLIGHTLAB model. 

Then various scenarios are tested in the FLIGHTLAB environment to extract time and 

frequency response data. LTI model of FLIGHTLAB model incorporating reduced order 

aerodynamic model is extracted, and the time and frequency responses are evaluated 

for validation purposes. 

5.1 NNET Model for Unsteady Aerodynamics 

The current study adopts the development of a NNET based reduced order model for 

capturing the unsteady aerodynamic effects of a trailing edge flap actuator presented in 

the literature [65, 66].  The reduced order model is arrived at by first obtaining the 

changes that result from a trailing edge flap deflection on 2D airfoil data through CFD 

analysis. The compressible Navier-Stokes solver OVERFLOW version 2.0y is used in 

[67]. These changes are combined with existing baseline 2D airfoil data without a trailing 

edge flap.  The changes in 2D airfoil data due to the deflection of a trailing edge flap are 

captured using a pre-trained NNET model from extensive CFD analysis data.  Even for a 

limited range of inputs (see Table 1), a large amount of CPU time is required to produce 
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all the training data required for the NNET model. However, this is needed only once for 

a given airfoil and TEF configuration.  

For the selected distribution of the input parameters of Table 1, CFD runs are 

designed for an airfoil (SC1095) with an integral quarter chord trailing edge flap (TEF) 

concept. Both airfoil and TEF angle are defined as sinusoidal functions as 

 

where ω is the oscillation frequency of the airfoil angle of attack, ωδ is the 

oscillation frequency of the trailing edge flap deflection, and  ψδ is the phase angle 

between the angle of attack and the TEF angle. The reduced frequency of the airfoil 

angle of attack and the trailing edge flap deflection are obtained using 
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Reduced frequency, defined in general is a measure of unsteadiness (see [70] 

for rotorcraft applications and [71] for general unsteady aerodynamics) such that flow 

can be assumed steady only if the reduced frequency is below 0.05. Under this 

consideration, review of the reduced frequency numbers presented in Table 1 reassures 

the requirement of unsteady aerodynamic modeling in case of OBC applications.  

The discrete sets of parameter values considered in the CFD analysis are given 

in Table 1. Each CFD run is conducted with a combination of these input parameters for 

a complete cycle. The values of the NNET input variables and the computed 

aerodynamic coefficients from the CFD analysis are extracted at each of the integration 

steps used. 
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Table 1. Parameters for CFD runs 

Mach Number Airfoil AoA OBC Angle 

M=[0.3   0.4] 

αo=[15   10   5   0   -6] δc=[7   4   0] 

αc=[10   5   2.5] φδ=[0   90   180] 

k=[0   0.03   0.05   0.10] kδ=[0.5   1.0]k 

M=[0.5   0.6] 

αo=[7   3   0   -3] δc=[5   3   0] 

αc=[4   2] φδ=[0   90   180] 

k=[0   0.03   0.05   0.10] kδ=[0.5   1.0]k 

M=[0.7] 

αo=[5   2   0   -2] δc=[3   1.5   0] 

αc=[2   1] φδ=[0   90   180] 

k=[0   0.03   0.05   0.10] kδ=[0.5   1.0]k 

 

The baseline aerodynamic coefficient values are subtracted from the CFD data in 

order to obtain the changes that result from the effect of a TEF deflection. Separate 

databases are recorded for each aerodynamic coefficient since individual training for 

each set is found to be computationally more efficient as each set may require different 

settings for the NNET training. Construction of the developed ROM is given in a generic 

equation form as 
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The NNET model training is performed with a dedicated module within the 

FLIGHTLAB [55]. The NNET training makes use of the Levenberg-Marquardt algorithm 

[55] for the training of all three coefficients, i.e., ∆Cl, ∆Cm, and ∆Cd.  The selected 

values of various parameters such as the number of neurons, type of basis function, 

error tolerance, etc., for the NNET training are shown in Table 2. The number of neurons 

is selected to be much higher for the drag coefficient as compared to those for the lift 

and moment coefficients since the drag coefficient data from the CFD analysis shows 

significantly higher nonlinearity when compared to lift or pitching moment coefficients. 
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Table 2. Parameters for NNET training 

 ∆Cd ∆Cl ∆Cm 

Hidden Neurons 34 17 17 

Hidden Activation 

Function 

Tangent     

Hyperbolic 

Tangent 

Hyperbolic 

Tangent 

Hyperbolic 

Output Activation Function 
Linear 

(-∞,+∞) 

Linear 

(-∞,+∞) 

Linear 

(-∞,+∞) 

Error Tolerance 10-6 10-6 10-6 

Maximum number of iterations 10 10 10 

 

In order to make use of the reduced order model component of the trailing edge 

flap element in the form of the baseline plus the NNET airfoil data, the aerodynamic 

modules within the FLIGHTLAB are modified to include the effects of trailing edge flaps 

at user defined locations along a rotor blade.  The selected baseline component in 

FLIGHTLAB makes use of Mach number and angle of attack as inputs. The   NNET 

component makes use of the TEF deflection, TEF deflection rate, local value of the 

Mach number, angle of attack and its time rate as inputs in order to run the NNET model 

for evaluating incremental changes of aerodynamic coefficients due to TEF deflections.  

5.2 Fidelity of the Reduced Order Model 

The accuracy of the reduced order model was evaluated through comparisons with the 

CFD results from which the ROM was extracted. Sample results for the case of an SC-

1095 airfoil with a trailing edge flap are shown in Figures 61 through 64. Figure 61 

compares the ROM prediction of the lift coefficient of an SC-1095 airfoil with zero flap 
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deflection in a deep dynamic stall. The ROM result correlates well with the CFD 

simulation in terms of regarding both trend and magnitude. The ROM prediction also 

closely follows the trend of the secondary oscillation of lift coefficient during the early 

stage of the stall recovery as shown in the CFD results, but it is not as oscillatory as the 

CFD data. This could be improved by refining the NNET neuron structure.  However, 

such a minor discrepancy is not a concern for practical applications. Similarly, good 

correlation of the pitch moment coefficient prediction by ROM with CFD was also 

achieved (See Figure 62). Figure 63 and Figure 64 compare ROM results with the CFD 

data for the case of SC-1095 plus flap combination. After the model was trained using 

CFD data, it was tested for additional data sets that were not used in the training.  In 

general, very good agreement was found as shown in Figure 61 and Figure 62. 

The fidelity of the trained NNET model in capturing the individual components of 

airloads, i.e., lift, drag and pitching moment, is evaluated after it is integrated with the 

baseline model within FLIGHTLAB. Example cases of CFD runs from Table 1 are used 

in the NNET fidelity evaluations. Figure 65 through Figure 67 show example 

comparisons between the CFD results and results from the NNET plus the baseline 

model. These results indicate that the lift and moment coefficient comparisons show very 

good correlation, while the drag coefficient comparisons show similar trends with a larger 

relative error. 
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Figure 61. Computed and Predicted Lift Hysteresis Loops for a SC-1095 Airfoil in Deep 
Stall 

 

Figure 62. Computed and Predicted Moment Hysteresis Loops for a SC-1095 Airfoil in 
Deep Stall 
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Figure 63. Computed and Predicted Lift Hysteresis Loops for a SC-1095 Airfoil +Flap 
Combination 

 

 

Figure 64. Computed and Predicted Moment Hysteresis Loops for a SC-1095 Airfoil +Flap 
Combination 
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Figure 65. Drag Coefficient NNET Estimations Compared to CFD Data 

 

 

Figure 66. Lift Coefficient NNET Estimations Compared to CFD Data 
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Figure 67. Moment Coefficient NNET Estimations Compared to CFD Data 

5.3 LTI Model Response Evaluations for OBC Inputs 

LTI model fidelity evaluations are carried out for an advance ratio of 0.15 TEF type OBC 

inputs. The types of inputs used in this study are taken from vibration and performance 

enhancement studies from the literature.  In all cases considered, each simulation is 

carried out for 2.5 seconds with the selected TEF input turned on for 1 second from the 

0.5 second to 1.5 second interval. The predicted fixed system hub forces and moments 

are shown for each evaluation case. As the scope of this study is limited to validation of 

LTI models and not necessarily to determine the optimum input needed for vibration 

reduction etc.,  arbitrary phasing is used for the harmonic input, while the magnitudes of 

the inputs are taken to be relatively similar to those used in past experimental studies. 
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All fidelity evaluations in this study are carried out using the modified version of a generic 

helicopter model with an elastic blade representation and a 33-state inflow model. 

5.3.1 Time Response to On-Blade Control 

Due to the nature of the aerodynamic effects from TEF deflections, higher harmonic 

excitations are expected, and hence, up to 8/rev harmonic representation is used in all of 

the evaluations. Similar to those used in the IBC applications, higher harmonic OBC 

inputs (2/rev, 3/rev, 4/rev, etc. where 1/rev is approximately 4.3 hertz) are also used in 

the literature for reductions in vibration, noise and rotor power [7, 4]. The TEF input “δ” 

tried for every case is embedded in the figures (Figure 68 - Figure 73) as a function of 

azimuth position “ψ”. 

For reducing rotor power, a 2/rev excitation is suggested in [2]. In order to 

evaluate the fidelity of the extracted LTI models for their use in active rotor power 

reduction studies, a 2/rev TEF input of 0.5° magnitude and (an arbitrarily selected) 70° 

phase is used in the LTI model fidelity evaluations. The resulting fixed hub load 

variations with time, as predicted from FLIGHTLAB and from the extracted LTI model, 

are compared in Figure 68. The LTI model includes up to 8/rev harmonic components of 

the rotor MBC states.  These include rigid (flap & lag) and elastic modes (first elastic flap 

and first elastic lag), both. Figure 69 is a zoom-in of the results from Figure 68. The time-

domain error index computed using Eq. (67) is less than 0.001, indicating good fidelity of 

the extracted LTI model.  

As suggested from several studies in the literature (for example, [2]) and likewise 

inChapter 5, where IBC inputs were considered, it is expected that OBC inputs at these 

frequencies can be used for vibration control. A TEF input consisting of 3/rev, 4/rev and 

5/rev components is used as a way to test the fidelity of the extracted LTI models for 

their use in active vibration control studies. The magnitudes of the harmonic components 
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of the TEF inputs are selected to be 1.0° of 3/rev, 0.5° of 4/rev and 0.25° of 5/rev. The 

phases of the individual harmonic components are selected arbitrarily. The extracted LTI 

model includes up to 8/rev harmonic components of the rotor states. The fixed system 

hub load responses to the selected TEF input as predicted from FLIGHTLAB are 

compared with those predicted using the LTI model in Figure 70, with a zoom-in of the 

results shown in Figure 71. Even though there is slight deviation in terms of both 

magnitude and phase visible in the zoom-in plot in Figure 71, the computed time-domain 

error index of 0.0135 indicates good model fidelity of the extracted LTI model. 

Following the same background with the IBC applications, 6/rev and 7/rev may 

be used for simultaneous vibration and noise control. In order to verify the LTI model 

fidelity for its use in active vibration and noise control studies, a test case TEF input with 

6/rev and 7/rev components of magnitudes (0.25° of both 6/rev and 7/rev) similar to 

those considered in [2] is used. The predicted fixed system hub load responses from 

FLIGHTLAB are compared with those from the LTI model predictions in Figure 72, with a 

zoom-in of the results shown in Figure 73. Once again, these results demonstrate the 

fidelity of the extracted LTI models. 
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Figure 68. Predicted Fixed System Hub Load Variations to 2/rev TEF Input. 

 

Figure 69. A zoom-in of Figure 68. 
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Figure 70. Predicted Fixed System Hub Load Variations to Combination of 3,4 & 5/rev TEF 
Input. 

 

Figure 71. A zoom-in of Figure 70. 



112 

 

 

Figure 72. Predicted Fixed System Hub Load Variations to Combination of 6 & 7/rev TEF 
Input (1-8/rev). 

 

Figure 73. A zoom-in of Figure 72. 
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5.3.2 Frequency Response to On-Blade Control 

Figure 74 and Figure 75 show the computed frequency responses of rotor thrust and 

torque due to TEF inputs. The selected TEF deflection magnitudes and rates considered 

as inputs are adjusted to ensure that the resulting aerodynamic effects due to TEF 

deflections stay within the linear range of the trained NNET.  The composite responses 

of rotor thrust and torque along with the TEF inputs are used in CIFER [64] to arrive at 

frequency responses from the TEF input to rotor thrust and the TEF input to rotor torque. 

Figure 74 and Figure 75 provide frequency response comparisons between the 

FLIGHTLAB and LTI model results.  The value of the frequency domain error index 

computed using Eq. (68) is 22.86 for the rotor thrust frequency response results (Figure 

74) and 4.57 for the rotor torque response results (Figure 75). These values are well 

within the suggested value of less than 100 for good model fidelity [64]. 

 

Figure 74. Predicted Frequency Response of Rotor Thrust to a Single Blade TEF Input. 
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Figure 75. Predicted Frequency Response of Rotor Torque to a Single Blade TEF Input. 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

The formulation of linear time invariant (LTI) models of a nonlinear system about a 

periodic equilibrium using the harmonic domain representation is well established in the 

literature. A computationally efficient scheme for extraction of linear time invariant (LTI) 

models of a nonlinear helicopter model about a periodic equilibrium is developed during 

this study and presented in the literature [47, 56]. The developed computational 

approach makes use of closed form expressions relating various elements of an LTI 

model with the harmonic components of a corresponding linear time periodic (LTP) 

model. The developed numerical scheme is seen as improving computational speed by 

an order of magnitude when it is compared with the numerical scheme from the literature 

involving perturbations of individual harmonic components of state/control. 

The developed computational scheme is implemented within FLIGHTLABTM and 

is used to extract LTI models of a generic helicopter nonlinear model in forward flight. 

The fidelity of the extracted LTI models is evaluated for stability properties against a self 

claimed error criterion, and response characteristics are verified in both time and 

frequency domains against the error metrics from the literature [64, 68]. Stability 

properties are compared in terms of the eigenvalues of the LTI and LTP models. 

Simulation comparisons are made between the nonlinear model and the extracted linear 

models using predicted fixed system hub load responses to typical individual blade 

control (IBC) and On-Blade Control (OBC) inputs that have been suggested in the 

literature for vibration, noise control, and BVI avoidance applications. The evaluation 

results demonstrate the fidelity of the extracted LTI models for response characteristics, 

but the fidelity is limited for the stability characteristics. Although LTI can be used with 
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this limited fidelity, extension of the method is found to be vital for the fidelity of the 

stability properties in order to make use of the LTI model in integrated flight and rotor 

control studies. For this reason, an extended LTI model is also proposed in this study. 

A methodology for assessing the fidelity of reduced order LTI models that include 

different number of harmonic rotor states is also presented. The methodology is rooted 

in the assumption that when periodicity is mild, which is typical of advance ratios in the 

range of 0.1, the composition of eigenvector components, at least with respect to the 

dominant motions, does not significantly deviate from the corresponding composition 

obtained from the constant coefficient approximation. The methodology is evaluated 

using two types of isolated rotor rigid blade flapping dynamic models (an analytical 

model and a generic model available in FLIGHTLAB). The methodology is also 

evaluated using the generic helicopter model available in FLIGHTLAB, which includes 

body, rigid blade flapping and lead-lag, and three-state inflow dynamics. The evaluation 

results presented indicate that the proposed methodology provides a framework for 

assessing the fidelity of reduced order LTI model formulations in capturing the stability 

properties of a time periodic system with mild periodicity.  

A methodology for developing reduced order airload models of on-blade control 

concepts based on artificial neural networks (NNET) is also described in this study. It is 

evaluated for a selected case of airfoil and trailing edge flap combination to validate the 

ROM of airloads. It is successfully integrated into FLIGHTLAB to model the Trailing 

Edge Flap type On-Blade Control concepts, and LTI validity studies are performed on 

GHM, which is enhanced with such OBC concepts. 
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6.1 Conclusions 

Specific conclusions of this study are numbered as follows, 

1. This computationally efficient method for generating LTI models from the 

nonlinear model made it possible to arbitrarily change the number of 

harmonics, hence, facilitating the parametric studies. 

2. It is assessed that the minimum number of harmonics of the LTI model 

needs to be twice the number of the rotor blades (8 for GHM studied 

here) in order to achieve the best results for time and frequency domain 

response characteristics as well as for the stability properties if only 

vehicle’s stability is considered.  

3. Increasing  the number of harmonics beyond 8/rev does not improve the 

LTI results for the stability properties due to the saturation of the fidelity 

which was contributed to the average component based modeling of non-

rotor states. Therefore, for a complete fidelity achievement extended LTI 

model must be used with harmonics up to at least 10/rev. 

4. LTI model is observed to have overall good fidelity if the interest in the 

stability properties is limited to the vehicle’s stability and handling 

qualities, leaving the rotor portion out. 

5. Overall good fidelity can be achieved only with the extension of the LTI 

model to LTI* such that it includes the harmonics of all states up to the 

same level. Overall good fidelity for all characteristics is obtained when 

harmonics up to 8/rev are included in LTI*. 

6. The increment in the number of harmonics to obtain better fidelity should 

be performed by half the number of rotor blades for even bladed rotors. 
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Although it was seen in the analytical model studies that each harmonic 

included increased the fidelity (or decreased the error), the conclusion 

was limited to the analytical models since it was not repeated in the 

FLIGHTLAB model results. The fundamental difference between the 

analytical and the numerical models is that there are many more 

harmonics in the numerical model than the analytical representation used 

here. 

7. It was noticed during this study that the combination of an elastic blade, a 

higher state inflow model, and unsteady aerodynamics has a significant 

effect on the vibration levels. A study [44] conducted for this purpose 

showed that this effect is in the positive direction to capture the actual 

vibration levels. 

8. The computational cost of an LTI model linearly increases with the 

number of harmonics. This cost is driven by the harmonic decomposition 

of the LTP model. The cost of algebraic manipulations, such as one half 

of “nth” sine harmonic component of K(ψ), is a small fraction of the cost of 

obtaining that component itself through harmonic analysis. 

9. It is noticed that even though the reference model has very good 

accuracy (10-15 in this study), it was not possible to reach that accuracy in 

the eigenvalue estimation of the LTI models since the absolute error of 

the eigenvalue analysis of the ALTI (10-10 in this study) is much higher 

when a high number of harmonics is used in the LTI.  

10. A large number of neurons is required for the training of drag coefficient 

data compared to the number of neurons needed for the training of lift 
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and moment coefficient. Therefore, NNET training of airfoil coefficients 

should be performed separately in order to create ROM aerodynamics. 

11. Although successful response characteristics could be achieved using LTI 

models with respect to the available criteria, it is also important to note 

that expected trends could be captured as well using the LTI model. 

These trends include power reduction due to 2/rev inputs, control over 

Nb/rev vibrations through Nb-1, Nb, Nb+1 excitations of IBC or OBC input 

channels, and blade deflection using azimuth dependent input in order to 

avoid Blade Vortex Interaction (BVI). 

12. In the analytical model studies of the LTI stability properties, it is 

understood that in order to achieve the same order of fidelity at the same 

number of harmonics, the multiplication of the advance ratio and Lock 

number should be kept constant. This finding can be generalized to the 

studies of GHM in terms of amplitudes of the ALTP matrix such that same 

order of fidelity can be achieved with the same level LTI models if the 

amplitudes of the ALTP matrices are matched. 

13. Even if the portions of ALTP corresponding to the non-rotor states are time 

invariant, treating those non-rotor states with their average components 

only leads to an error that cannot be corrected by increasing the number 

of harmonics used for the rotor states. This result can also be verified with 

the LTI model presented in the Appendix. Assuming all the cosine and 

sine components of A11, A12 and A13 to be zero, the time derivative of 

the harmonic components of non-rotor states (left hand side of the 

equation) will still have non-zero values (on the right hand side of the 

equation) due to multiplication of average components of A12 and A13 
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with the harmonic components of rotor states; hence, there will always be 

a harmonic component of the non-rotor states as long as there exists a 

harmonic component of rotor states. Briefly, there is always coupling 

between the rotor harmonic states and the non-rotor harmonic states as 

long as coupling between rotor and body is present. 

6.2 Recommendations 

Recommendations for future work are listed in this section. 

1. Depending on the fidelity requirement, either LTI or its extension LTI* can 

be used for integrated flight and rotor controller synthesis and design. 

2. Fidelity studies of stability properties rely on matching the eigenvectors of 

FTM to the dominant portion of the LTI eigenvectors. This method is 

limited by the low periodicity of the eigenvectors. Thus, it is expected to 

fail at high advance ratios even though LTI models still can be 

constructed with a finite number of harmonics without additional penalty. 

Therefore, more generic tools are needed to make the comparison 

between the eigenvalues.  

3. Further extension of the proposed methodology is needed using modal 

participation factors suggested in the literature to address cases involving 

higher levels of periodicity. 
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APPENDIX: LTI* EXAMPLE 

An example generic LTI* model in purely analytical form is shown here. Number of 

harmonics is limited to 2, 4, 6 and 8 per rev. This example is intended to guide for 

programming of the analytical equations given in this thesis and to show a compact form 

of the LTI in terms of harmonics of the LTP as they appear in the LTI.  
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