
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-03-01

Vision Based Multiple Target Tracking Using
Recursive RANSAC
Kyle Ingersoll
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Ingersoll, Kyle, "Vision Based Multiple Target Tracking Using Recursive RANSAC" (2015). All Theses and Dissertations. 4398.
https://scholarsarchive.byu.edu/etd/4398

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/4398?utm_source=scholarsarchive.byu.edu%2Fetd%2F4398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Vision Based Multiple Target Tracking Using Recursive RANSAC

James Kyle Ingersoll

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Randal W. Beard, Chair
Timothy W. McLain

Mark B. Colton

Department of Mechanical Engineering

Brigham Young University

March 2015

Copyright © 2015 James Kyle Ingersoll

All Rights Reserved



ABSTRACT

Vision Based Multiple Target Tracking Using Recursive RANSAC

James Kyle Ingersoll
Department of Mechanical Engineering, BYU

Master of Science

In this thesis, the Recursive-Random Sample Consensus (R-RANSAC) multiple target
tracking (MTT) algorithm is further developed and applied to video taken from static platforms.
Development of R-RANSAC is primarily focused in three areas: data association, the ability to
track maneuvering objects, and track management. The probabilistic data association (PDA) filter
performs very well in the R-RANSAC framework and adds minimal computation cost over less
sophisticated methods. The interacting multiple models (IMM) filter as well as higher-order lin-
ear models are incorporated into R-RANSAC to improve tracking of highly maneuverable targets.
An effective track labeling system, a more intuitive track merging criteria, and other improvements
were made to the track management system of R-RANSAC. R-RANSAC is shown to be a modular
algorithm capable of incorporating the best features of competing MTT algorithms. A comprehen-
sive comparison with the Gaussian mixture probability hypothesis density (GM-PHD) filter was
conducted using pseudo-aerial videos of vehicles and pedestrians. R-RANSAC maintains superior
track continuity, especially in cases of interacting and occluded targets, and has fewer missed de-
tections when compared with the GM-PHD filter. The two algorithms perform similarly in terms
of the number of false positives and tracking precision.

The concept of a feedback loop between the tracker and sensor processing modules is ex-
tensively explored; the output tracks from R-RANSAC are used to inform how video processing
is performed. We are able to indefinitely detect stationary objects by zeroing out the background
update rate of target-associated pixels in a Gaussian mixture models (GMM) foreground detector.
False positive foreground detections are eliminated with a minimum blob area threshold, a ghost
suppression algorithm, and judicious tuning of the R-RANSAC parameters. The ability to detect
stationary targets also allows R-RANSAC to be applied to a class of problems known as stationary
object detection. Additionally, moving camera foreground detection techniques are applied to the
static camera case in order to produce measurements with a velocity component; this is accom-
plished by using sequential-RANSAC to cluster optical flow vectors of FAST feature pairs. This
further improves R-RANSAC’s track continuity, especially with interacting targets.

Finally, a hybrid algorithm composed of R-RANSAC and the Sequence Model (SM), a
machine learner, is presented. The SM learns sequences of target locations and is able to assist
in data association once properly trained. In simulation, we demonstrate the SM’s ability to sig-
nificantly improve tracking performance in situations with infrequent measurement updates and a
high proportion of clutter measurements.

Keywords: multiple target tracking, computer vision, foreground detection, machine learning
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CHAPTER 1. INTRODUCTION

Target tracking continues to gain increasing relevance in the robotics and automation com-

munities. In fact, many emerging technologies implicitly rely on a robust, reliable, and computa-

tionally efficient tracker. Recent examples of this reliance include intelligent, cooperative control

of a team of unmanned air vehicles (UAVs) for tracking ground targets in urban environments [1],

target tracking and formation control by a team of mobile robots [2], and robot control based on

mutual information theory in order to localize an unknown number of targets [3]. In all of the

examples noted above, target tracking enables and motivates higher-level cooperative control and

motion-planning technologies. Another important example is simultaneous localization and map-

ping (SLAM), which inherently relies on multiple object estimation. SLAM is the underlying

technology behind GPS-denied navigation and is an especially active research area. Recent work

includes incorporating the Gaussian mixture [4] and single-cluster probability hypothesis density

(GM-PHD and SC-PHD) [5] filters into the SLAM framework.

A multiple target tracking (MTT) algorithm contains four, fundamental blocks (see Figure

1.1). The first block is track initialization. This block is responsible for initializing tracks and for

providing state estimates of the targets at these initialization instances. The second block is data

association. As measurements are received, this block determines which measurements should be

associated with which tracks. In more sophisticated data association schemes, this block assigns

association probabilities to each measurement (soft decision) instead of making hard decisions.

The third block is responsible for filtering. Incoming measurements to the tracker include noisy

true measurements as well as false positive measurements. Filtering should minimize the effect

of false positive measurements and smooth out the noisy true measurements. The fourth block is

track maintenance. This block has several responsibilities, all of which contribute to maintaining

track continuity. This block establishes a track merging criteria and merges tracks when they meet

the criteria. Also, this block identifies tracks that have ceased to exist and eliminates these tracks.
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Figure 1.1: The fundamental blocks of a multiple target tracking algorithm.

It is important to clearly differentiate between a multiple object filter and a multiple tar-

get tracker. A multiple object filter estimates the number of targets and their states. A multiple

target tracker is an extension of a multiple object filter in that it arranges the state estimates from

consecutive time steps into continuous, temporal sequences known as tracks. Consequently, mul-

tiple target trackers deal with maintaining track continuity, whereas multiple object filters are not

concerned with track continuity. Robustly maintaining track continuity in scenarios with closely

spaced, interacting or frequently occluded targets is a non-trivial task; this challenge is discussed

throughout this thesis.

Multiple target tracking algorithms generally fall into one of three broad categories: track-

based algorithms, multiple hypothesis tracking (MHT) algorithms, and random finite set (RFS)

based algorithms. Track-based algorithms maintain a set of distinct tracks that are updated recur-

sively, usually with a Bayesian filter. Two of the most widely applied algorithms in this class are

the global nearest neighbor (GNN) and the joint probabilistic data association (JPDA) filters [6].

Track-based algorithms perform data association and filtering, but require separate modules to

handle track initialization and track management. Other drawbacks suffered by this class of MTT

algorithms include poor accuracy in clutter (GNN) and poor performance in low detection envi-

ronments (GNN and JPDA). Multiple hypothesis tracking [7] propagates many data association,

track initiation, and track deletion hypotheses forward and allows future observations decide which

hypotheses are valid. Because MHT stores this hypothesis tree, it suffers from high computational

complexity. MHT is also subject to jittery or jumping tracks; this is a consequence of the current

estimate switching from one branch of the hypothesis tree to another. Attempts have been made

to solve this issue and make MHT results more intuitive to a real-time user [8]. The third class of

MTT algorithms, those based on RFS, is currently the most active area of research in the tracking

community. Significant milestones in this research include the sequential Monte Carlo probability

2



hypothesis density (SMC-PHD) filter [9] and the GM-PHD filter [10]. These algorithms are mul-

tiple object filters that, when applied to tracking, have yielded subpar results. The most recently

developed algorithm is the labeled multi-Bernoulli filter which is specifically formulated to output

tracks [11].

The recently developed Recursive-RANSAC (R-RANSAC) algorithm [12] overcomes many

of the deficiencies of currently available MTT algorithms in the following ways:

1. It successfully operates in scenarios with a high degree of clutter measurements and/or low

probability of detection.

2. It does not require prior information about the birth and death times or locations of the

targets.

3. It is easy to implement and computationally efficient.

4. It maintains exceptional track continuity [12].

5. It autonomously initiates and deletes tracks.

The standard RANSAC algorithm [13] has spawned an enormous number of variations

with applicability to a wide range of problems since it was first introduced. Here we cite four

RANSAC variations that share similarities with R-RANSAC and then emphasize R-RANSAC’s

uniqueness and novelty. Reference [14] introduces sequential-RANSAC, a method of estimating

multiple static signals from a single batch of data. R-RANSAC estimates multiple dynamic signals,

recursively, from incoming batches of data. Reference [15] introduces multiple-model RANSAC,

a technique for estimating ego-motion in dynamic environments. The premise of this technique

is that by segmenting both the moving and stationary parts of an image, a better estimate of ego-

motion can be obtained. Instead of directly sampling measurements like R-RANSAC, this tech-

nique coarsely segments the image into distinct objects and samples these objects. This technique

creates virtual scans by estimating the velocity of moving parts of the image with a backwards finite

differencing approach. These virtual scans are primarily used to classify objects as either moving

or non-moving, but presumably, are used to improve data association as well. However, the authors

do not specify how data association is performed or how the multiple models are initialized. R-

RANSAC, on the other hand, maintains full state estimates of the targets and has explicit methods
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for data association and track initialization. Reference [16] introduces incremental-RANSAC, an

algorithm designed to estimate the tranformation between local and global maps in SLAM appli-

cations. Incremental-RANSAC is similar to R-RANSAC in that hypotheses are generated at each

time step with a set of randomly selected features that must contain at least one newly arrived fea-

ture. However, incoming features are not classified as inliers or outliers to existing models. Also,

incremental-RANSAC only seeks to estimate one model rather than multiple models. Lastly we

cite [17] which introduces KALMANSAC. KALMANSAC seeks to find the best state estimate

xt and set of inliers χt for a single signal. This is accomplished by performing several iterations

in which a new state estimate is calculated via RANSAC using a refined set of inliers and the set

of inliers is then re-optimized given the new state estimate. R-RANSAC differs in that the state

estimate is not estimated via RANSAC at every time step, rather, the estimation is performed using

a dynamic filter.

The research presented in this thesis occupies an important position in a continuing line

of research taking place in Brigham Young University’s Multiple Agent Intelligent Coordination

and Control (MAGICC) Lab. The primary contribution of this thesis is to complete the devel-

opment of R-RANSAC; this includes further improvements to the data association, filtering, and

track management blocks of R-RANSAC. As a result of this research, future avenues of research

in the MAGICC Lab will be able to use R-RANSAC as a plug-and-play algorithm that robustly

tracks a wide range of targets. Concurrent research projects focusing on the development of a mov-

ing camera foreground detector and on the application of R-RANSAC to decentralized, multiple

agent tracking scenarios have already been able to use the research presented here in this manner.

Another major contribution of this thesis is the application of R-RANSAC to video taken from

static platforms. Several novel stationary foreground detection techniques were developed that al-

low R-RANSAC to track stationary objects and maintain track continuity in the case of crossing

objects. These techniques could be further developed to make them compatible with video taken

from moving platforms or could be implemented without modification on stationary surveillance

systems or on UAVs with automated landing zone detection software that primarily perform track-

ing while landed. The final contribution of this thesis is the application of machine learning to the

MTT problem.
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It should be noted that R-RANSAC is not a computer vision tracking algorithm. Rather,

it is an MTT algorithm that can process measurements received by a variety of sensors, including

cameras. Traditional computer vision approaches to tracking include feature matching, template

matching, and mean shift [18]. Feature matching approaches are often based on the Lucas-Kanade

tracker (for the pyramidal implementation found in OpenCV, see [19]). Reference [20] describes a

feature matching method that, similar to R-RANSAC, uses a Kalman filter to estimate the features’

future locations and to track objects through mild occlusions. Template matching approaches vary

widely, but common approahces include a course-to-fine searching method or using a sparser rep-

resentation of the image for improved efficiency [21], [22]. In general, computer vision tracking

approaches require the user to manually initialize tracks and would be prohibitively computation-

ally expensive to run on a small UAV. By applying R-RANSAC to measurements extracted from

video data, we hope to be able to efficiently and autonomously track objects in video.

This thesis is outlined as follows. Chapter 2 reviews the RANSAC algorithm and differ-

ent aspects of the original R-RANSAC algorithm. Chapter 3 describes the simulation environ-

ment used to test R-RANSAC and explains the metrics used to measure tracking performance.

Chapter 4 discusses improvements to the track management block of R-RANSAC, including the

conversion of R-RANSAC from a multiple object filter into a multiple target tracker. Chapter 5

describes the incorporation of several established data association techniques into the R-RANSAC

framework and presents simulation results showing improved tracking performance. Chapter 6 de-

scribes modifications to R-RANSAC designed to increase its ability to track highly maneuverable

targets. Chapter 7 presents a comprehensive comparison between R-RANSAC and the GM-PHD

filter. Chapter 8 gives background information on the video processing necessary to track objects

in video. Chapter 9 discusses several foreground detection techniques that create a feedback loop

between the tracker module (R-RANSAC) and the video processing module of a video tracking

system. Simulation results are presented that demonstrate the improvement in tracking perfor-

mance enabled by these techniques. Chapter 10 discusses how machine learning can be leveraged

to improve tracking performance and describes the incorporation of the Sequence Model into the

R-RANSAC framework. Chapter 11 provides conclusing remarks about the research presented

here.
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CHAPTER 2. THE ORIGINAL RECURSIVE-RANSAC ALGORITHM

In this chapter, the original R-RANSAC algorithm is reviewed. This discussion is preceded

by a review of RANSAC in Section 2.1. The filtering, track initialization, and track management

blocks of R-RANSAC are explained in Sections 2.2.1, 2.2.2, and 2.2.3 respectively. Section 2.2.4

discusses alternatives ways to view R-RANSAC in the context of other MTT algorithms. This

chapter contains the background information necessary to understand the developments made to

R-RANSAC presented in later chapters.

2.1 Random Sample Consensus

The Random Sample Consensus (RANSAC) algorithm [13] was designed to estimate the

parameters of a signal in the presence of gross errors. When gross errors are present, traditional

methods like least-squares regression often poorly model the signal of interest. RANSAC has been

successfully applied to a wide range of computer vision problems. One of the most well-known

applications of RANSAC is the computation of the homography, or geometrical transformation,

between two images. When computing a homography, feature points along with their accompa-

nying descriptors are found in each image. The feature points are then matched across the images

by comparing their descriptors. While many features are correctly matched, incorrect matches are

inevitable. Figure 2.1 demonstrates this situation1. Given this set of feature matches, RANSAC is

used to compute the true homography; the resulting panoramic image can be seen in Figure 2.2.

The RANSAC algorithm proceeds as follows. First, an assumed signal model is selected.

In the homography example, the chosen model is a 4 by 4 matrix encoding translation, rotation,

and scaling information. In the example presented in Figure 2.3, the chosen model is a line char-

acterized by its slope and vertical intercept. Second, a random subset of data points is selected.

1Images are from the windows dataset and can be accessed at https://canvas.instructure.com/courses/
743674/assignments/1929377
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Figure 2.1: Two overlapping images of a building are overlaid on top of each other. The transfor-
mation between these images is almost purely translational in the horizontal direction. Features in
one image are labeled in red and features in the other image are labeled in green. Matching fea-
tures are indicated by yellow lines. The majority of features are correctly matched, though some
incorrect matches do exist.

The number of data points selected is the minimum number needed to estimate the model’s param-

eters. In the homography case, four points are needed; in the case of Figure 2.3, only two points

are needed. Third, a model is constructed with this random subset of data points. Fourth, all re-

maining data points are classified as either inliers or outliers to this new model. This inlier/outlier

classification is performed by setting an inlier threshold; all points that fall within this threshold

are denoted as inliers and are stored as the new model’s consensus set. Steps two through four are

performed iteratively. During the iterations, the model with the largest consensus set, or in other

words, the model with the most support, is stored. At the end of the iterations, a smoothed model

is produced by performing a least-squares regression on the consensus set of the model with the

most support.
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Figure 2.2: The resulting panoramic image produced with the homography calculated from the
correctly matched feature pairs identified in Figure 2.1.

As mentioned earlier, the primary strength of the RANSAC algorithm is its robustness to

gross errors. Consider the situation in Figure 2.3. In this example, the majority of points follow a

monotonically increasing trend, but there do exist two outlier points. The result of a linear least-

squares regression is plotted in green. Note that even with just two outliers, the least-squares

estimate clearly diverges from the true signal. The RANSAC estimate is plotted in red and is not

influenced by the outlier data points (in this example, the RANSAC estimate is actually equivalent

to a least squares estimate of the true measurements).

To summarize, RANSAC generates several hypotheses of how to best model the available

data and relies on the data to determine which hypothesis has the most support.

2.2 Recursive-RANSAC

Recursive-RANSAC was originally developed as a multiple object filter by Dr. Randal

W. Beard and Dr. Peter C. Niedfeldt at Brigham Young University. The motivation behind R-

RANSAC was to design a filter that inherited RANSAC’s ability to robustly reject gross errors, but
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Figure 2.3: The data points (in blue) are modeled with RANSAC (red) and by a least-squares
regression (green). RANSAC is able to identify and ignore the outlier points.

that could be used to estimate multiple signals. Reference [23] introduces R-RANSAC as a method

of estimating multiple static signals that are updated via recursive-least squares. R-RANSAC is

extended in [12] to estimate time-evolving signals. The conversion of R-RANSAC to an MTT

algorithm is straightforward and is discussed in Chapter 4.

2.2.1 Filtering

R-RANSAC maintains a model set, a set of hypothesis tracks described by their state es-

timate x, error covariance P, and consensus set χ . At every time step, each hypothesis track is
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propagated forward using the predict step of the Kalman filter, given by

xt|t−1 = Axt−1 (2.1)

Pt|t−1 = APt−1 A>+Q (2.2)

where A is the state transition matrix of the assumed motion model and Q is the covariance of the

process noise.

Once all tracks have been propagated forward, an inlier threshold τR is set around each

track; the `1 norm is used as a threshold. An inlier region is created when the inlier threshold is

applied (IR = {z : ||z−C xt|t−1||1 < τR). For a given track, all measurements from the current scan

are classified as inliers or outliers to that track according to whether or not the measurements fall

within the track’s inlier region. Each inlier is used to update the track using the update equations

of the Kalman filter, given by

xt = xt|t−1 +K (z−C xt|t−1) (2.3)

Pt = (I−KC)Pt|t−1 (2.4)

where z is the measurement, C is the measurement observation matrix that relates the measurement

to the target states, I is an identity matrix of the same dimensions as A, and K is the Kalman gain

and is given by

K = Pt|t−1C> (R+C Pt|t−1C>)−1 (2.5)

where R is the covariance of the sensor noise. The term inlier region is phraseology borrowed

from RANSAC. In the tracking community, this region is more commonly referred to as a gate

or a measurement validation region (see, for example, [24]). R-RANSAC uses an inlier region of

fixed volume and bases the size of the inlier region on the assumed measurement noise covariance.
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2.2.2 Track Initialization

Measurements that are outliers to all existing tracks are used to initialize new tracks using a

RANSAC-based method. R-RANSAC stores all the measurements from the past Nw time steps in a

measurement history window. When a measurement is found to be an outlier to all existing tracks,

a random subset of measurements (which includes the outlier measurement under consideration)

is selected. Using this subset of measurements, a model is computed. The measurement history

window is then searched for other measurements that support this model, i.e. that meet the inlier

threshold. This process of creating hypothesis models is repeated iteratively and the model with the

largest consensus set is stored. At the end of ` iterations, the model with the most support is then

propagated forward in time to the current time step. As it is propagated forward, it is updated by the

measurements that compose its consensus set. These propagation and update steps are performed

with a Kalman filter. This new model is then appended to the model set. The RANSAC iterations

are also terminated if the cardinality of a model’s consensus set exceeds γ =
τρ

Nw . The equations

used to generate the hypothesis models are given in [25]. Due to the RANSAC-based initialization

method, tracks are often referred to as models in the R-RANSAC context. The two terms are used

interchangeably here.

Figure 2.4 provides a snapshot of a single time step of R-RANSAC. At this time step, there

are three tracks in the model set, labeled by blue X’s. There are several incoming measurements,

drawn as circles. The inlier region of each track is indicated by a red square. Measurements

classified as inliers are drawn in cyan whereas outlier measurements are drawn in orange. Each

orange-colored measurement will be used to generate a new, hypothesis track which will then be

appended to the model set.

2.2.3 Track Management

The remaining steps of R-RANSAC fall under the umbrella of track management: identi-

fying valid tracks, merging redundant tracks, and pruning low-support tracks.

At the beginning of every time step, the consensus set of each track in the model set is

updated by removing older measurements that have left the measurement history window. Each

track’s inlier ratio ρ is also calculated by ρ = |χ|
Nw where |χ| is the cardinality of the consensus
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Figure 2.4: A single time step of R-RANSAC. Current state estimates are indicated by blue X’s.
Inlier measurements are indicated by cyan circles. Outlier measurements are indicated by orange
circles. The inlier regions are displayed as red squares.

set. Good, or valid, tracks are identified with a good model threshold and a timeline threshold.

The good model threshold τρ is the minimum inlier ratio for a model to be considered a good

model. Likewise, the timeline threshold τT is the minimum number of time steps a model must

have existed to be considered a good model. Models that meet both thresholds are outputted as

good models for that time step.

In order to limit the number of false positive tracks, redundant tracks must be identified

and removed from the model set. The Mahalanobis distance is used as a merging criteria. If two

tracks meet the merging criteria, the track with the higher inlier ratio is retained and the other one

is discarded. At the end of each time step, the tracks in the model set are ordered by their inlier

ratio. The model set has a fixed size M and is truncated at each time step, thereby removing the

least probable tracks.
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2.2.4 R-RANSAC: Alternative Viewpoints

R-RANSAC was initially developed as a standalone multiple object filter, a fully-integrated

package that was mutually exclusive with other tracking approaches such as JPDA and MHT.

However, in the process of further evolving R-RANSAC, it has been beneficial to view R-RANSAC

in other ways.

R-RANSAC can be viewed purely as a track initialization algorithm, albeit one that im-

poses certain constraints on the filtering and data association blocks of the tracker. As a track

initialization algorithm, R-RANSAC simply requires that each incoming measurement be classi-

fied as an inlier or an outlier. Given this requirement, any number of filters and data association

techniques may be used with R-RANSAC. Consequently, R-RANSAC becomes a modular al-

gorithm whose blocks can be substituted with application-specific replacements depending on the

tracking scenario. This idea does not diminish the impact or utility of R-RANSAC; rather, it makes

R-RANSAC highly adaptable, and applicable to an even greater number of situations. Figure 2.5

illustrates the modularity of R-RANSAC and includes several algorithms that can be used for data

association and filtering.

R-RANSAC can also be viewed as a way of truncating the hypothesis tree generated by

MHT. The un-truncated form of MHT would retain all track initialization, track death, and data as-

sociation combinations from the beginning of the tracking scenario. However, it quickly becomes

computationally intractable to maintain this tree. Consequently, the tree is continuously pruned

so as to only propagate forward the most probable (and compatible) branch combinations. R-

RANSAC, through its RANSAC-based track initialization method and fixed-size model set, only

propagates forward what it deems to be the most probable hypothesis tracks. Hypothesis tracks

that continue to receive support rise to the top of the model set whereas hypothesis tracks that fail

to receive further support are eventually removed from the model set.

This section has provided a high-level overview of R-RANSAC. Implementation details

including actual threshold values and motion models will be presented in later chapters as im-

provements and modifications to the original version of R-RANSAC are discussed. The chapters

to follow will discuss enhancements made to virtually all aspects of the original R-RANSAC algo-

rithm.
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CHAPTER 3. SIMULATION ENVIRONMENT

This chapter describes the general simulation environment used to test the variations of R-

RANSAC developed in later chapters. Section 3.1 describes the test videos used in the simulations.

Section 3.2 defines the metrics used to quantify tracking performance.

3.1 Test Videos

All of the videos described here are taken from static platforms high above the ground.

These videos were chosen so as to approximate the type of video that a small UAV might capture.

A UAV is a moving platform, or at the very least a jittery or shaky platform, and therefore video

taken from a UAV-mounted camera would require motion compensation, a subject that is beyond

the scope of this thesis. However, the techniques developed here are mostly applicable to motion

compensated video. Furthermore, the techniques developed here are directly applicable to UAVs

with automated landing zone detection capabilities that generally track objects after having landed.

Video data includes a plethora of tracking challenges and is an excellent way of stressing a

tracking algorithm. Common tracking challenges present in video include:

1. Occlusions. Objects of interest often pass behind physical occlusions such as trees and light

posts and are not detected by the camera. Additionally, shadows can fully occlude objects in

low probability of detection scenarios. A robust MTT algorithm should have the ability to

track targets through mild occlusions while maintaining consistent track labels.

2. Missed Detections. Missed detections, besides those that result from occlusions, occur fre-

quently in the case of slowly moving and small targets. When viewed from an aerial plat-

form, most targets appear to be small and slowly moving.

3. False Positives. False positives are especially prevalent in video data. In static, non motion-

compensated video, false positives result from camera motion. Motion in the image frame
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may results from motion of the camera platform or from the camera adjusting its focus. False

positives in video can be particularly difficult to compensate for because they are usually not

uniformly distributed throughout the field of view. For example, a slightly shifted camera

produces false positive measurements along most distinct edges in the video.

4. Closely Spaced or Interacting Targets. Videos often contain many closely spaced or interact-

ing targets. Video taken from an oblique angle might even contain targets that temporarily

occlude other targets. This poses a significant challenge for the data association method.

The videos described below were all taken with a Canon PowerShot SX500 IS point-and-

shoot camera at a frame rate of 29 frames per second (fps).

3.1.1 Pedestrian Video

The pedestrian video was taken from the fourth floor balcony of the Joseph F. Smith build-

ing on the BYU campus. It captures most of the open courtyard to the east of the building. The

objects of interest in this video are pedestrians. Figure 3.1 shows one frame from this video. The

resolution of this video is 1280 x 720. This video is 5 minutes and 48 seconds long (approximately

10,092 frames). A 600 frame sequence from this video was annotated. The beginning frame of the

annotated sequence is frame 4347 and was chosen randomly. The annotated sequence contains 15

objects of interest. The first minute of the video includes several closely spaced targets and is used

to test data association methods.

3.1.2 Vehicle Video

The vehicle video was taken from the top of Y Mountain. It is meant to simulate an aerial

video. It captures a trapezoidal area of residential Provo with side lengths of approximately 194,

354, 220, and 255 meters. The objects of interest are vehicles. Figure 3.2 shows one frame from

this video. The original resolution of this video was 1280 x 720, but it was post-processed to reduce

the resolution to 854 x 480. This video is 8 minutes and 50 seconds long (approximately 15,370

frames). As in the pedestrian video, a 600 frame sequence was annotated beginning at frame 7344.

The annotated sequence contains 18 objects of interest. The objects of interest are small and more

difficult to detect. There are shadows throughout the video that fully occlude the targets.
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Figure 3.1: One frame from the pedestrian video.

Figure 3.2: One frame from the vehicle video.
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Figure 3.3: One frame from the first parking lot video.

3.1.3 Parking Lot Videos

Two videos were taken from the roof of the Clyde Building on the BYU campus overlook-

ing the parking lot located between the Crabtree, Fletcher, and Clyde Buildings. Figures 3.3 and

3.4 show one frame from each video, respectively. Both videos were originally taken at a resolution

of 640 x 480. The first parking lot video is 2 minutes and 35 seconds long and the second parking

lot video is 18 minutes and 25 seconds long. Both videos contain moving objects of interest that

become stationary (parking cars) and were meant to test R-RANSAC’s ability to track stationary

objects. Neither video was annotated.
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Figure 3.4: One frame from the second parking lot video.

3.1.4 PETS 2006 Dataset

The PETS 2006 dataset was used to test R-RANSAC’s ability to track abandoned objects.

These videos were taken from a high-mounted static camera in a train station. This dataset can be

found http://www.cvg.reading.ac.uk/PETS2006/data.html.

3.2 Metrics

The optimal subpattern assignment (OSPA) and OSPA-track (OSPA-T) and the CLEAR

multiple object tracking (MOT) metrics are used to measure tracking performance. In computing

these metrics, we let M ∗
t be the set of good tracks, and let i = 1, . . . , |M ∗

t | be an index over

the good tracks. We define j = 1, . . . ,Mt as an index over all true targets at time t. We define

d(x̂i,x j) =
∥∥∥x̂i

t−x j
t

∥∥∥
2

as the Euclidean distance between good tracks and true targets. Also, we
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define the cutoff distance as

dc(x̂i,x j) =

d(x̂i,x j) if d(x̂i,x j)<c

∆ otherwise,
(3.1)

where c > 0 is a cutoff threshold describing the maximum allowable distance between estimated

tracks and true targets and ∆ is the distance value assigned when the distance exceeds the cutoff

threshold. In the formulation of the MOT and OSPA metrics used here, ∆ = c = 100. The set of all

cutoff distances is summarized by the |M ∗
t |×Mt matrix Dc, where each element Dc

i j = dc(x̂i,x j).

A modified Munkres algorithm [26] is used to solve the 2-D assignment problem that finds the

best track-to-target assignment pairs, given by At =Munkres(Dc), where At is the set of at ≤Mt

track-to-target pairs. For convenience A j
t is defined as the track assigned to the jth target.

3.2.1 OSPA and OSPA-T

The OSPA metric, first introduced in [27], is a single metric that measures the overall

performance of multiple object filters. It was designed to overcome several of the weaknesses of

the other concurrently available metrics. The authors of [27] note that competing metrics did not

deal with cardinality differences between the ground truth and filter estimate in an intuitive manner,

displayed geometric dependent behavior (i.e. differences in cardinality were penalized less heavily

for targets that were closely spaced together than for more widely spaced targets), were undefined

when the cardinality was zero, and were not actually metrics as defined by mathematical theory.

The OSPA-T metric [28], an extension of the OSPA metric, measures the performance of MTT

algorithms.

When Mt ≤ at , the OSPA-T metric is formulated as

OSPA-T= (3.2)[
1
at

(
Mt

∑
i=1

(
dc(x̂A j

t ,x j)+αOSPA-Tδ̄ [L̂ A j
t ,L j]

)p
+ cp(at−Mt)

)] 1
p

,

where c = 100 is the cutoff distance, p = 2 is the metric order parameter, and αOSPA-T = 75

determines the relative penalty assigned to incorrectly labeled tracks or mismatches; the OSPA-
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T metric reduces to the OSPA metric when the parameter αOSPA-T = 0. If Mt = at = 0 then

OSPA = OSPA-T = 0. Lower OSPA and OSPA-T scores correspond to better tracking perfor-

mance. Similar OSPA and OSPA-T scores indicate strong track continuity. These score are com-

puted for each frame in the annotated sequences and an average over all 600 frames is reported.

3.2.2 CLEAR MOT

The multiple object tracking precision (MOTP) and multiple object tracking accuracy (MOTA)

metrics [29] describe the precision and accuracy of an MTT algorithm in such a way that the pre-

cision of the algorithm has no effect on its accuracy score, and vice versa. The MOTP metric is the

sum of the root-mean square (RMS) errors of all of the successfully tracked objects in a consecu-

tive video sequence. A successfully tracked object is defined as a ground truth target which has a

track assigned to it by the modified Munkres algorithm. The metric is computed by

MOTP= ∑
t

∑
at
j=1 d(x̂A j

t ,x j)

at
. (3.3)

MOTA is a composite metric composed of the average ratios of missed detections, false

positives, and mismatches (track label switches). MDt = Mt −at is defined as the ratio of missed

detections. FPt =
∣∣∣M ∗/A j

t

∣∣∣ is defined as the ratio of false positives or the number of all unas-

signed tracks, where / is the set difference operator. Finally, MMt = ∑
at
j=1 δ̄ [L̂ A j

t ,L j] is de-

fined as the ratio of label mismatches, where δ̄ is the complement of the Kronecker delta, i.e.

δ̄ [L̂ i,L j] = 0 if L̂ i = L j and δ̄ [L̂ i,L j] = 1 if L̂ i 6= L j. The MOTA metric is then given by

MOTA= 1−∑
t

MDt +FPt +MMt

Mt
. (3.4)

This formulation of the MOT metrics deviates slightly from that presented in [29]. When

performing the track to ground truth mapping, [29] gives priority to previous labels; if the ground

truth target was assigned a given track at the previous time step, the same assignment is made at

the current time step provided that the distance between the ground truth target and the previously

assigned track does not exceed the cutoff threshold. For computational ease, the formulation used

here foregoes this step.
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Figure 3.5: R-RANSAC can be used as a centralized tracker if measurements from multiple cam-
eras are transformed into a common coordinate system. In this case, the measurements originating
from the left panel are transformed into the coordinate system of the right panel. The homography
is pre-calculated using manually selected feature pairs.

Lower MOTP and higher MOTA scores correspond to better tracking performance.

3.3 Other Notes on the Simulation Environment

In all of the experiments, tracking is performed in the image coordinate frame. Measure-

ments are (x,y) pixel values and state estimates are in units of pixels. If the targets are constrained

to a pseudo-planar surface, tracking in the world coordinate frame can be accomplished with a

simple homography transformation. Similarly, measurements from multiple cameras can be trans-

formed into a common coordinate frame, concatenated, and fed into a centralized R-RANSAC

tracker in order to increase the effective field of view; this is illustrated in Figure 3.5.

Because R-RANSAC uses a random number generator to select measurements with which

to initialize tracks, results may vary from simulation to simulation1. For many of the results, the

R-RANSAC version being considered was run through several simulations. Information about

the number of trials is included with the results. Details concerning video processing are also

provided with the results. In general, the video is processed by a foreground detector that segments

out moving objects and produces a foreground mask. This mask is then post-processed using a

combination of dilation and erosion morphological operations. Finally, a blob detector identifies

separate, contiguous blobs and outputs their centroids as measurements. The development of R-

1The results presented in Chapters 9 and 10 report the standard deviation of the OSPA-T metric for the various
simulations. Additionally, complete simulations results can be found in Appendices A and B. As the number of
RANSAC iterations ` increases, the results become more consistent, but computation time increases.
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RANSAC occurred in both Matlab and C++. As results are presented, the language used will also

be specified. All Matlab simulations use Matlab’s Computer Vision System Toolbox for video

processing. The C++ implementations use the OpenCV libraries for image handling and our own

computer vision algorithms.

In many figures, the R-RANSAC tracks are superimposed over a single video frame. Dif-

ferent tracks are represented as different colors. Sometimes, a single track (indicated by the same

color) is broken up into several fragments. This occurs when the inlier ratio drops below the in-

lier threshold (such as when an object passes behind an occlusion), and then rises above the inlier

threshold when the target resumes being detected. This is preferable to having the object’s path

described by several, different tracks.
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CHAPTER 4. TRACK MANAGEMENT IMPROVEMENTS

Several modifications were made to the track management system of R-RANSAC. These

improvements transform R-RANSAC from a multiple object filter into a multiple target tracker

and aid in maintaining track continuity. Improvements to track management also tend to have a

positive impact on the ratio of false positives. Section 4.1 describes the track labeling system used.

Section 4.2 describes the changes made to the track merging criteria. Section 4.3 describes changes

made to the RANSAC-based track initialization method.

4.1 Track Labeling System

The original version of R-RANSAC did not have a formal track labeling system. It outputs

a vector of valid model states at each time step, but the order of vector elements changed from time

step to time step as models gained and lost support. Thus, R-RANSAC was a multiple object filter

and not a multiple target tracker. The introduction of the good model number system transformed

R-RANSAC into an MTT algorithm; this section describes this labeling system.

R-RANSAC is well-suited to multiple target tracking because it propagates and updates

individual, discrete tracks at each time step; this makes implementing a track labeling system

straightforward. At the beginning of a tracking scenario, a good model counter is initialized to 0.

This good model counter ensures that all labels are unique. When a new model is initialized, the

good model number track variable (GMN) is initialized to zero. At the time step in which that track

first meets the good model criteria, its good model number is set to the good model counter and

the good model counter is incremented by one. That model retains the same good model number

during its entire existence unless it is merged with another track, which might cause a good model

number swap.
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4.1.1 Good Model Criteria

The good model criteria determines when a hypothesis track becomes a good or valid track.

The criteria should be sufficiently restrictive to reject spurious tracks, but not so restrictive as to

reject true tracks. In addition to the original inlier ratio and lifetime requirements, two other

constraints were added: a maximum velocity constraint and a consecutive missed detections con-

straint. The maximum velocity constraint rejects tracks that do not behave according to assump-

tions made about target dynamics. The consecutive missed detections constraint prevents false

tracks with overly inflated inlier ratios from being included in the good model set. Both of these

constraints were applied early in the development of R-RANSAC and have since been rendered

obsolete, to a degree, by the changes to the track initialization method described in Section 4.3

and by the changes concerning how the consensus set is updated described in Section 5.1.3. Still,

these constraints, along with the original constraints, have served as excellent debugging tools. As

demonstrated in Chapter 9, the optimal good model criteria is largely dependent on how sensor

processing is performed.

4.2 Track Merging Criteria

Perfect track continuity occurs when an object of interest is tracked by a track, or set of

tracks, that have the same model number. For this to happen, an effective track merging criteria is

necessary. R-RANSAC originally used the Mahalanobis distance between tracks as the merging

criteria. Although the Mahalanobis distance provided a rigorous way of using the state estimate

and error covariance in determining model similarity, it proved to be unintuitive and severely lim-

ited customizing the merging criteria for different scenarios. The merging criteria presented in

Algorithm 1 allows the user to set intuitive similarity thresholds on the percent difference in target

speeds, τv, target headings, τθ , and target positions, τx and τy. The τxmin and τymin parameters are

necessary to merge duplicate models tracking a stationary target. When tracking a stationary or

nearly stationary target, the speed estimates of the target will be very small, but the percent differ-

ent in speed and the difference in heading might be quite large; these minimum position difference

thresholds account for this. The track merging criteria is as follows (line 9 of Algorithm 1). Tracks

are merged if their percent difference in speed and their absolute differences in heading, x position,
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and y position meet their respective thresholds (τv = 0.25, τθ = 15,τx = 30, and τy = 30). Tracks

may also be merged if their absolute differences in x position and y position meet the τxmin = 3 and

τymin = 3 thresholds.

In Algorithm 1, GMN stands for good model number, ∧ is the logical and symbol, and

∨ is the logical or symbol. Much of the logic in Algorithm 1 ensures that the correct track label

persists during merging. In deciding which track survives, the first and most important criteria is

inlier ratio. The second criteria is lifetime; if both tracks meet the inlier threshold, preference is

given to the older track. Giving preference to the older track occasionally results in a track label

switch (track fragmentation), but it performs as intended in the majority of merging situations.

Although this track merging heuristic adds several new parameters, which is somewhat

undesirable, it allows the user to customize the merging criteria for the situation at hand. Tracking

objects where object shadows are present is one example in which the ability to customize the

merging criteria is important. In this situation, the object and its shadow should be tracked by

a single track, not by multiple tracks. To compensate for the shadow, the user can relax the τx

and τy constraints and tighten the τv and τθ constraints, working under the assumption that the

object and its shadow should have essentially the same velocity vector. Another example in which

customization is important is in tracking targets confined to a network, such as a road system. In

this case, the speed and heading constraints could be relaxed and the τx and τy constraints could be

adjusted to reflect anticipated target size.

4.3 Changes to Track Initialization

Two changes were made to the RANSAC-based track initialization method. The first

change is a way of using assumed target dynamics to produce more probable hypothesis tracks.

The second change helps preserve the inlier ratio as a true measure of a track’s support.

Given assumed target dynamics and a known measurement history window length Nw, a

guided sampling threshold can be used in track initialization. The RANSAC algorithm is designed

to find the best model of data containing gross errors. If some gross errors can be identified and

removed from the data, it only increases the probability that RANSAC find the correct model. With

the guided sampling threshold, a randomly chosen measurement must fall within a certain radius of

the outlier measurement currently under consideration. This is a logical change because a slowly

26



Algorithm 1 Track Merging Heuristic
1: Place all active tracks in a new array→ activeModels. An active track is one with a positive

lifetime value.
2: Initialize another array→ mergedModels.
3: while length(activeModels) > 0 do
4: Select the model with the highest inlier ratio→ highestRhoModel.
5: for each model in activeModels except for highestRhoModel do
6: Calculate the percent difference in speed between the current model and

highestRhoModel→ percentSpeedDiff.
7: Calculate the absolute difference in heading between the current model and

highestRhoModel→ absoluteHeadingDiff.
8: Calculate the absolute difference in x and y positions between the current model and

highestRhoModel→ absoluteXdiff and absoluteYdiff, respectively.
9: if the track merging criteria is satisfied then

10: if highestRhoModel.ρ > τρ ∧ (current model).ρ > τρ then
11: if highestRhoModel.T > (current model).T then
12: if highestRhoModel.GMN == 0 then
13: highestRhoModel.GMN = (current model).GMN.
14: end if
15: Remove current model from activeModels.
16: else
17: if (current model).GMN == 0 then
18: (current model).GMN = highestRhoModel.GMN.
19: end if
20: Remove highestRhoModel from activeModels. Current model becomes

highestRhoModel.
21: end if
22: else if highestRhoModel.ρ > τρ ∧ (current model).ρ < τρ then
23: if highestRhoModel.GMN == 0 then
24: highestRhoModel.GMN = (current model).GMN.
25: end if
26: Remove current model from activeModels.
27: else
28: if highestRhoModel.GMN == 0 then
29: highestRhoModel.GMN = (current model).GMN.
30: end if
31: Remove current model from activeModels.
32: end if
33: end if
34: Place highestRhoModel in mergedModels.
35: Remove highestRhoModel from activeModels.
36: end for
37: end while
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moving target cannot have produced a measurement on the other side of the field of view within

the most recent Nw time steps. This threshold reduces the number of hypothesis tracks generated

because a measurement inside the sampling radius must be randomly selected to produce a new

model. Because fewer tracks are being initialized, the ratio of false positives is improved at the

slight expense of the ratio of missed detections. The threshold also inhibits the initialization of very

high velocity tracks which reduces the number of false positive tracks without a negative effect on

any other metric.

In the track initialization method of the original version of R-RANSAC, all inlier measure-

ments are used to update the state estimate and consensus set of the new model as it is propagated

forward to the current time step. In tracking scenarios with a high number of clutter measurements,

with objects of interest that produce multiple measurements per time step, or with closely spaced

targets, tracks are often initialized with inlier ratios greater than one. To normalize the inlier ratio

and preserve it as a true measure of a track’s support, the consensus set is only updated with a sin-

gle measurement per time step as the model is propagated forward to the current time step. Which

measurement is used for the update is inconsequential; the first measurement per time step is an

easy-to-implement choice.

As will become more clear in Sections 5.2.2 and 5.2.3, an obvious potential change to the

track initialization method would be to propagate the new, hypothesis track to the current time step

using a more sophisticated data association method such as the probabilistic data association filter.

This change was not explored because the current approach is efficient and its performance satis-

factory. Another potential change would be to initialize tracks with the nearly constant jerk (CJ)

or nearly constant acceleration (CA) motion models instead of the nearly constant velocity (CV)

motion model. This change would allow tracks to be initialized for continuously maneuvering

targets, but also has a significant disadvantage. When randomly selecting measurement subsets,

all measurements need to be generated by the same target that generated the outlier measurement

under consideration. The CV model only requires one target-generated measurement to be chosen

whereas the CA and CJ models require two and three target-generated measurements to be chosen,

respectively. In practice, this drastically reduces the likelihood of generating a track that correctly

models an object of interest. Initializing tracks with the CV model does require that the target has

constant velocity benign behavior and that it spends a majority of time in this mode. Fortunately,
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both of these assumptions are valid for the targets considered in this research. Consequently, the

CV-based track initialization method is retained even when higher-order motion models are used

for the filtering block. In these cases, the higher-order terms of the state estimate and error covari-

ance are initialized to zero.
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CHAPTER 5. DATA ASSOCIATION TECHNIQUES

Data association, the task of assigning measurements to tracks, is one of the essential blocks

of a MTT algorithm. Although somewhat trivial in situations with easily-detectable and widely-

spaced targets and low clutter, data association becomes one of the most difficult tasks associated

with MTT in more complicated tracking scenarios. The modularity of R-RANSAC allows for the

inclusion of practically any data association method, several of which are highlighted in Section

5.1. A comprehensive comparison of the different data association techniques is presented in

Section 5.2.

5.1 Data Association Techniques

Four widely used data association techniques were incorporated into the R-RANSAC frame-

work. They include the all neighbors (Section 5.1.1), nearest neighbor (Section 5.1.2), probabilistic

data association (Section 5.1.3), and joint probabilistic data association (Section 5.1.4) methods.

As mentioned in Section 2.2.4, the only requirement that R-RANSAC imposes on the data asso-

ciation method is that every incoming measurement be classified as an inlier or outlier. Instead

of using an `1-norm based gate that results in a rectangular inlier region, an `2-norm based gate

is used. The size of this gate is determined by the assumed measurement noise covariance. This

results in an elliptical inlier region, or a circular inlier region if the measurement noise covariance

is diagonal.

5.1.1 All Neighbors

The original version of R-RANSAC presented in Chapter 2 uses a gated all neighbors (AN)

approach to perform data association. In this method, each of the validated measurements (mea-

surements that fall within a track’s inlier region) are used to update the track via the update step

30



of the Kalman filter. The update step is performed for each validated measurement; the measure-

ments are not combined into an average residual. The track’s consensus set and inlier ratio are

also updated by all validated measurements. When working with video data, where multiple de-

tections of the same object are common (i.e. a person’s torso and other appendages are detected

separately), this leads to inlier ratios greater than one. This has the unintended consequence that

larger targets often appear to have more support than smaller targets simply because their size leads

to fragmented segmentation.

Although the AN approach is the simplest method, it is arguably the most consistent with

the idea of R-RANSAC as a dynamic extension of RANSAC. Recall that when the iterations

of RANSAC have been completed, the final model is computed by performing a least-squares

regression using the entire consensus set. Similarly, with AN data association, R-RANSAC tracks

are updated with each, fully-weighted measurement.

5.1.2 Nearest Neighbor

The nearest neighbor (NN) data association method integrated into the R-RANSAC frame-

work is a gated, local version of the method as opposed to the popular global nearest neighbor

(GNN) method. In this version of NN, the validated measurement with the smallest residual to the

track’s position is the sole measurement used in the update step of the Kalman filter; this is also the

only measurement that updates the consensus set and inlier ratio. Using only the nearest neighbor

measurement to update the consensus set prevents the inlier ratio from becoming overly inflated.

Thus, the inlier ratio is preserved as a true measure of a track’s support.

In GNN, the measurement-to-track assignment is performed using a Munkres- or Hungarian-

type of algorithm that minimizes total measurement-to-track difference. The GNN method was not

explored with respect to R-RANSAC.

5.1.3 Probabilistic Data Association Filter

The probabilistic data association (PDA) filter calculates the measurement association prob-

ability for each validated measurement based on a track’s state estimate and error covariance. The

validated measurements are then combined into a weighted residual which is used to update the
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Kalman filter. The PDA filter also uses information about the probability of detection, gate proba-

bility, and the Poisson parameter describing the clutter distribution when updating the state estimate

and covariance [24]. The PDA filter assumes each measurement originates from a single target and

that a target can only produce one measurement. With video tracking, it should be noted that both

of these assumptions occasionally break down. The association probabilities for the ith validated

measurement are given by

β
i
t =


Li

t

1−PD PG+∑
|M ∗t |
j=1 L j

t

, if i = 1, ..., |M ∗
t |.

1−PD PG

1−PD PG+∑
|M ∗t |
j=1 L j

t

, if i = 0.
(5.1)

where PD is the probability of detection, PG is the gate probability and Li
t is the likelihood ratio and

is given by

Li
t =

N[zi
t ; ẑt|t−1,St ]PD

λ
(5.2)

where λ is the spatial density of the assumed Poisson clutter model, N represents a Gaussian

probability density function (pdf), ẑt|t−1 =C xt|t−1, and St is the covariance of the innovation and

is given by

St =C Pt|t−1C>+R. (5.3)

The state estimate is given by

xt = xt|t−1 +Wt νt (5.4)

where νt is the combined residual and is given by

νt =
|M ∗

t |

∑
j=1

β
j

t ν
j

t , (5.5)
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where ν
j

t is an individual residual and is given by ν
j

t = z j
t − ẑt|t−1 and Wt is given by Wt =

Pt|t−1C> S−1
t . The error covariance is given by

Pt = β
0
t Pt|t−1 +[1−β

0
t ]P

c
t + P̃t (5.6)

where Pc
t = Pt|t−1−Wt St W>t , and P̃t is given by

P̃t =Wt [
|M ∗

t |

∑
j=1

β
j

t ν
j

t (ν
j

t )
>−νt ν

>
t ]W>t . (5.7)

The equations presented above were taken from [30]. The PDA filter traditionally uses

a covariance-based validation region, however, because R-RANSAC initializes a new hypothesis

track with every outlier measurement, a static validation region is preferred. A covariance-based

validation region causes the initialization of many redundant tracks as the covariance shrinks. In

employing the PDA filter in the R-RANSAC framework, only the measurement with the highest

measurement association probability is used to update the inlier ratio and consensus set.

In Section 5.1.1, it was noted that AN data association provides the closest analog to tra-

ditional RANSAC. The RANSAC analog of the PDA filter would use a weighted least-squares re-

gression as opposed to an un-weighted regression. When the final, smoothed model is computed,

members of the consensus set would be weighted according to their residual with the original

model, i.e. the model estimated with the minimum subset of data.

The likelihood ratio of the PDA filter can be used to create a simpler weighted residual

without taking into account detection and gate probabilities or clutter distribution. Furthermore,

if position and velocity measurements are received, the likelihood ratio can indicate the nearest

neighbor measurement in a probabilistic sense.

5.1.4 Joint Probabilistic Data Association Filter

The joint probabilistic data association (JPDA) filter calculates the measurement associ-

ation probabilities jointly across all targets. The JPDA filter makes the same assumptions about

the nature of the measurements as does the PDA filter. A validation matrix is constructed which

helps to delineate all of the association hypotheses [6]. One known weakness of the PDA filter is
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its tendency to coalesce closely spaced tracks; the JPDA filter was designed in part to overcome

this tendency. The JPDA filter was implemented using starter code found http://www.control.

isy.liu.se/student/graduate/TargetTracking/. The consensus set and inlier ratio are only

updated with the nearest neighbor measurement.

5.2 Comparison of Data Association Techniques

A comprehensive comparison of the four data association methods described in Section

5.1 was conducted using the vehicle video. This comparison used Matlab implementations of R-

RANSAC. Two dynamic models were used in this comparison, the nearly constant jerk (CJ) model

and the nearly constant velocity (CV) model; dynamic models are discussed in greater detail in

Chapter 6. The R-RANSAC parameters used were Nw = 25, m = 30, τρ = 0.5, τT = 3, τR = 30,

` = 40, and τCMD = 5. The merging parameters used were τθ = 25°, τv = 0.2, and τx = τy = 35.

The PDA filter parameters used were PD = 0.80, PG = 0.95, and λ = 10−2.

5.2.1 Numerical Results

Table 5.1 contains results for the MOTP and MOTA metrics which were taken from one

experimental run. MOTP scores among the R-RANSAC implementations are all similar, with CJ-

PDA R-RANSAC having the best score. The different implementations all have very similar ratios

of missed detections. More discrepancy exists in the ratios of mismatches. NN data association is

known to diverge in scenarios with noisy measurements and missed detections, a tendency illus-

trated by its higher ratio of mismatches. CV-AN R-RANSAC has the highest ratio of mismatches

because it consistently experiences a track label switch during target maneuvers (tracking maneu-

verable targets is treated further in Chapter 6). There is also considerable range in the ratio of false

positives, the best score being achieved by CJ-JPDA R-RANSAC.

Table 5.2 contains results for the OSPA metrics. These results are averaged over 10 exper-

imental runs. The small difference between OSPA and OSPA-T scores indicates that R-RANSAC

generally maintains track continuity very well. The OSPA scores show that the CJ-JPDA and CJ-

PDA R-RANSAC implementations perform better than the other R-RANSAC implementations.

34

http://www.control.isy.liu.se/student/graduate/TargetTracking/
http://www.control.isy.liu.se/student/graduate/TargetTracking/
http://www.control.isy.liu.se/student/graduate/TargetTracking/
http://www.control.isy.liu.se/student/graduate/TargetTracking/


Table 5.1: MOT Results

MOTP MOTA MD FP MM
RR CJ-JPDA 21.8574 0.8617 0.1063 0.0173 0.0147
RR CJ-PDA 17.7733 0.8594 0.1046 0.0211 0.0149
RR CJ-NN 25.3310 0.8437 0.1022 0.0367 0.0174
RR CJ-AN 23.1678 0.8509 0.1018 0.0308 0.0166
RR CV-AN 23.6848 0.8413 0.1185 0.0225 0.0177

Table 5.2: Average OSPA Scores

OSPA OSPA-T
RR CJ-JPDA 40.3093 41.7940
RR CJ-PDA 40.1244 41.3469
RR CJ-NN 41.0989 42.3409
RR CJ-AN 40.4496 42.0448
RR CV-AN 42.7384 44.2893

Table 5.3 reports the execution times per frame. These times are only for the trackers and

do not include the accompanying video processing times. The execution times are all very similar,

except for the JPDA implementation which takes about twice as long to run.

5.2.2 Track Examples

This section contains several examples of tracks produced by the various implementations

of R-RANSAC. The tracks highlighted in this section are taken from the 600 frame annotated

sequence of the vehicle video.

Figures 5.1 and 5.2 show the R-RANSAC tracks associated with the fifth target in the an-

notated video sequence for the CJ-NN and CJ-PDA implementations, respectively. The fifth target

presents a difficult tracking challenge because, as it approaches the upper-middle intersection, it

simultaneously crosses paths with two other targets and becomes occluded by a shadow. With NN

data association, the track is updated by and converges to the measurements originating from the

crossing targets. When the fifth target emerges from the occlusion and resumes being detected, its

associated measurements are not used to update the original track because they are no longer the

nearest neighbor measurements. In the CJ-PDA implementation, the post-occlusion measurements
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Table 5.3: Execution Times - Seconds Per Frame

CJ-JPDA CJ-PDA CJ-NN CJ-AN CV-AN
0.0329 0.0188 0.0180 0.0169 0.0171

Figure 5.1: Three tracks produced by R-RANSAC with the nearly constant jerk model and nearest
neighbor data association. The target of interest is briefly lost during the occluded intersection and
then reacquired shortly thereafter.

are given sufficient weight to pull the original track back onto the fifth target’s true trajectory. The

CV-AN implementation also successfully tracks the fifth target in this situation because it uses all

validated measurements to update the Kalman filter and because the dynamics of the CV model

help prevent the track from converging to the incorrectly associated measurements.

Figure 5.3 displays two advantages of the PDA filter approach over the AN approach. First,

the PDA filter is able to maintain track continuity even in the presence of occluding shadows and

other nearby targets. On the other hand, the AN track is unable to maintain track continuity and

jumps from one target to another. Second, the measurement association probabilities calculated by

the PDA filter are able to distinguish between correctly and incorrectly associated validated mea-

surements, whereas AN data association has no mechanism to do this. In Figure 5.3, immediately
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Figure 5.2: A single track produced by R-RANSAC with the nearly constant jerk model and proba-
bilistic data association. The PDA filter provides robust tracking through the occluded intersection
as evidenced by the single, continuous track.

after the vehicle makes the U-turn, it passes by two other vehicles. The measurements from the

other vehicles fall within the inlier region of the U-turn vehicle. With AN data association, this

causes the U-turn track to be “pulled” towards the other tracks, resulting in less tracking precision.

This “pulling” effect may also lead to track fragmentation if the first track converges onto the sec-

ond track; this event is very likely if the first target is not detected for one or more time steps during

the track interaction.

5.2.3 Conclusions

R-RANSAC has been shown to be compatible with numerous data association techniques

including NN, PDA, and JPDA. Although the JDPA filter was specifically designed to overcome

some of the deficiencies of the PDA filter, CJ-PDA R-RANSAC achieved higher OSPA and OSPA-

T scores than CJ-JPDA R-RANSAC. This shows that there exists a coupling between the RANSAC

track initialization method of R-RANSAC and the data association method utilized. R-RANSAC

is inherently subject to duplicate tracks because every outlier measurement generates a new track;
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Figure 5.3: The CJ-PDA R-RANSAC is drawn in magenta and the CJ-AN R-RANSAC track is
drawn in cyan.

outlier measurements located just outside of an existing track’s validation region will likely gen-

erate redundant tracks. With the JPDA filter, both an existing and a newly-generated (possibly)

redundant track will be updated by only partially weighted measurements. This lengthens the time

needed for these tracks to meet the merging criteria. In essence, R-RANSAC relies on a certain de-

gree of track coalescence to limit the number of false positive tracks. The CJ-PDA implementation

of R-RANSAC is shown to be the best balance between performance and computational efficiency.
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CHAPTER 6. TRACKING HIGHLY MANEUVERABLE TARGETS

This chapter describes improvements made to R-RANSAC to enhance its ability to track

highly maneuverable targets. Section 6.1 discusses higher-order linear models that can be used

with R-RANSAC. Section 6.2 reviews the interacting multiple models (IMM) algorithm and dis-

cusses its integration into the R-RANSAC framework. Finally, Section 6.3 provides concluding

remarks about how to best track maneuvering targets with R-RANSAC.

6.1 Higher-Order Linear Models

The original version of R-RANSAC uses a nearly constant velocity motion model (here-

after referred to as the CV model) where the state transition matrix A in Eqns. (2.1) and (2.2) is

given by

ACV =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 , (6.1)

where dt is the time step1. The process noise covariance Q accounts for variations in the velocity.

This motion model is used both to initialize tracks and as the state transition matrix for the Kalman

filter. Early experiments with R-RANSAC found that this model was well-suited to the task of

initializing tracks, but was incapable of tracking maneuverable objects (see Figure 6.1). Instead of

replacing the CV model with a non-linear model (and the Kalman filter with an extended Kalman

filter) to increase R-RANSAC’s ability to track maneuvering objects, two other options were ex-

plored: higher-order linear models and the IMM algorithm. These two options were favored over a

non-linear model because they allow tracks to continue to be initialized by the CV model, whereas

1In video tracking, dt is the inverse of the video frame rate
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Figure 6.1: The R-RANSAC tracks associated with a car performing a U-turn. This version of
R-RANSAC used the nearly constant velocity motion model.

a non-linear model combined with an EKF would have required a fundamental reworking of the

RANSAC-based track initialization algorithm.

The nearly constant acceleration model and the nearly constant jerk model (referred to

throughout as the CA and CJ models, respectively) were considered to replace the CV model. The

state transition matrix A of the CA model is given by

ACA =



1 0 dt 0 dt2

2 0

0 1 0 dt 0 dt2

2

0 0 1 0 dt 0

0 0 0 1 0 dt

0 0 0 0 1 0

0 0 0 0 0 1


, (6.2)
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and A of the CJ model is given by

ACJ =



1 0 dt 0 dt2

2 0 dt3

3 0

0 1 0 dt 0 dt2

2 0 dt3

3

0 0 1 0 dt 0 dt2

2 0

0 0 0 1 0 dt 0 dt2

2

0 0 0 0 1 0 dt 0

0 0 0 0 0 1 0 dt

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (6.3)

These models, like the CV model, include process noise to account for variations in target dy-

namics. A comprehensive discussion of the CJ model, including its application to tracking highly

maneuverable targets, can be found in [31]. Figures 6.2 and 6.3 show the increased ability to track

maneuvering objects by replacing the CV model with the CJ model in the R-RANSAC framework.

6.2 Interacting Multiple Models

Multiple model (MM) algorithms are a useful tool for tracking targets that deviate from

a single motion model. A simple example is that of tracking a vehicle constrained to an orthog-

onal road network. This vehicle exhibits acceleration, deceleration, constant speed, and turning

behaviors, all of which would be difficult to characterize with a single model. MM algorithms use

several motion models to characterize the various behavior modes. Figure 6.4 displays the general

layout of an MM algorithm. The central feature of MM algorithms is a bank of m Kalman filters.

At every time step, each filter is predicted forward and updated. The outputs of the individual

filters are assigned a posterior probability which is used to combine the filter outputs into a fused

state estimate and error covariance. Model switching is usually governed with a Markov transition

matrix. The IMM algorithm is unique in that it stores the individual filter outputs from the previous

time step and uses them to create “mixed estimates” which serve to re-initialize the Kalman filters
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Figure 6.2: The R-RANSAC tracks associated with a car negotiating a left hand turn. This ver-
sion of R-RANSAC uses the nearly constant velocity motion model and requires two new track
initializations to complete the turn.

Figure 6.3: The R-RANSAC tracks associated with a car negotiating a moderate left hand turn.
This version of R-RANSAC uses the nearly constant jerk motion model and completes the turn
with a single track.
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at the next time step. In the IMM, the filter outputs are fused according to

xt =
m

∑
i=1

xi
t µ

i
t (6.4)

Pt =
m

∑
i=1

[Pi
t +(xt−xi

t)(xt−xi
t)
>]µ i

t (6.5)

where xi
t and Pi

t are the individual filter outputs and µ i
t are posterior probabilities assigned to each

model and are given by

µ
i
t =

µ i
t−1 Li

t

∑
m
j=1 µ

j
t−1 L j

t
(6.6)

where Li
t is the likelihood ratio given in Equation (5.2). The “mixed estimates” x̂t−1 and P̂t−1 are

given by

x̂t−1 =
m

∑
j=1

x j
t−1 µ

j|i
t (6.7)

P̂t−1 =
m

∑
j=1

[P j
t−1 +(x̂i

t−1−x j
t−1)(x̂

i
t−1−x j

t−1)
>]µ

j|i
t−1 (6.8)

where µ
j|i

t−1 =
π ji µ

j
t−1

µ i
t|t−1

, µ i
t|t−1 = ∑

m
j=1 π ji µ

j
t−1, and π ji is the ( j, i) element of the Markov transition

matrix π .

Other well-known MM algorithms include the autonomous multiple models (AMM) and

the first- and second-order generalized pseudo-Bayesian filters (GPB-1 and GPB-2). In the AMM,

the filters are initialized with their own output from the previous time step. In GPB-1, the filters

are initialized with the fused output from the previous time step. In GPB-2, the filters are initial-

ized with each of the m individual outputs from the previous time step, resulting in m2 filtering

operations.

Three different IMM algorithms were implemented. The first implementation used three

CV models, but with varying levels of process noise: medium, the same level of process noise used
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KF 1 KF 2 KF 3 KF 4 KF 5 KF m

----------------------------------------------------Inputs ----------------------------------------------------

---------------------------------------------------Outputs---------------------------------------------------

--------------------------------------Assign posterior probability--------------------------------------

---------------------------Fuse KF outputs to produce state estimates ---------------------------

Figure 6.4: The general layout of a multiple models algorithm.

in the standard CV model; low, 1/100 of the medium level process noise; and high, 100 times the

medium level noise. The two other IMM implementations employed the CA and CJ models in the

same way. Reference [32] conducts a comparison between IMM and several other popular MM

algorithms and concludes that IMM is a good balance between tracking accuracy, computational

complexity, and robustness to model mismatch. The IMM equations presented above are taken

from [32]. Reference [32] uses a total of 9 models for its model set: a CV model along with four

constant tangential acceleration models and four constant turn models. A contrasting approach

is presented in reference [30] which suggests using only three models: one characterizing the

target’s benign behavior, one characterizing the maneuver behavior, and one characterizing the

onset of a maneuver. Simulations run with both approaches showed that the approach in [30]

performs better and, because it uses fewer models, was more computationally efficient. Therefore,

the IMM implemented in this paper follows the three model approach, with the low, medium, and

high process noise models corresponding to the benign, maneuvering, and onset of maneuvering

behavior modes. Furthermore, each behavior mode is realized with a PDAF instead of a Kalman

filter, resulting in an IMMPDAF.
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Table 6.1: Magnitude in Changes in IMM Mode Weighting

CJ-IMM CA-IMM CV-IMM
Low process noise 5.3014e-07 6.6692e-07 4.2828e-05
Medium process noise 3.3619e-07 4.2933e-07 2.4902e-05
High process noise 1.9428e-07 2.3792e-07 1.7926e-05

Figures 6.5 and 6.6 illustrate the performance of the CV, CA, and CJ IMM filters. Figure 6.5

shows the path of a vehicle undergoing a U-turn. Figure 6.6 plots the weighting of the three

different modes while the vehicle maneuvers for the CV-based IMM case. While the vehicle is in

its benign motion mode, the weights settle to their steady-state values. During the maneuver, the

low process noise mode is weighted less heavily and more weight is transferred to the medium and

high process noise modes. The weights return to their steady-state values after the maneuver. It is

also interesting to note the changes in IMM mode weighting among the three different IMM filters.

Table 6.1 displays the magnitude of the weighting change for each mode in each IMM during the

maneuver shown in Figure 6.5. As expected, the CV-based IMM must transfer more weight (about

two orders of magnitude more) to its medium and high process noise modes in order to track the

vehicle than the other IMMs do. Because the CA and CJ models are better approximations of the

vehicle behavior during this maneuver, the CA- and CJ-based IMMs rely more on their underlying

motion models to track the maneuvering vehicle than the medium and high process noise modes.

Figure 6.7 provides a simulated comparison between the CV, CA, and CJ models and their

IMM counterparts. In this figure, the RMS error of the estimated path is plotted (see Figure 6.8

for the path). It is shown that a three model IMM using an n-order linear model exhibits a level of

tracking performance between that of an n+1-order linear model and an n+2-order linear model.

For example, the performance of the CV-based IMM falls in between that of the CA and CJ models.

The CA- and CJ-based IMM algorithms showed acceptable tracking error throughout the duration

of the path; both were able to track the true path during the benign and maneuvering sections. The

CJ-based IMM algorithm was integrated into R-RANSAC and was extensively compared with the

Gaussian mixtures probability hypothesis density filter (see Chapter 7.
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(a) CV-based IMM

(b) CA-based IMM

(c) CJ-based IMM

Figure 6.5: Resulting tracks (red) and the associated measurements (green) for the 3 interacting
multiple models implementations. The CV-based IMM struggles to track the vehicle during the
U-turn (evidenced by the track overshoot) whereas the CA- and CJ-based IMMs prove more suc-
cessful.
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Figure 6.6: The weights given to the low, medium, and high process noise modes during the
maneuver shown in Figure 6.5a for the CV-IMM implementation of R-RANSAC. The horizontal
axis is the time axis. The change in weighting directly corresponds to the vehicle’s maneuver.
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Figure 6.7: The RMS error over a randomly generated path consisting of 100 time steps for the
different motion models and IMM implementations.
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Figure 6.8: The randomly generated path used to produce the RMS error results of Figure 6.7. The
path begins at (0,0). The spikes in RMS errors, seen most clearly in the CV track, correspond to
the more extreme maneuvers in the simulated path.

6.3 Conclusions

R-RANSAC has been shown to be compatible with different linear motion models and

MM algorithms without requiring modifications to the track initialization or track management

blocks. However, the IMM is not fully utilized in the R-RANSAC framework, as evidenced by

the small variation in mode weights reported in Table 6.1 and plotted in Figure 6.6. For a greater

degree of model switching to occur, the measurement noise covariance matrix R and process noise

covariance matrix Q need to be more restrictive. However, this would negatively effect two other

parts of the algorithm. First, R-RANSAC depends on smooth tracks in order to accurately predict

target location at future time steps. A more restrictive R matrix would result in more jittery tracks

and less accurate predictions. Second, the performance of the PDA filter degrades significantly

as the values of the R matrix are reduced. With the current R matrix, the performance of the CJ-

IMMPDAF R-RANSAC can be replicated by a CJ-PDAF R-RANSAC with a process noise matrix

set to an approximate weighted average of the IMM process noise matrices. The IMM is also
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accompanied by a substantial increase in computational complexity; the increase in execution time

is roughly proportional to the number of additional filters employed.

In light of these observations, development of the IMM R-RANSAC has been discontinued.

A single, properly-tuned CJ model is capable of tracking most objects of interest viewed from a

UAV platform. Additionally, it is a fast and elegant solution to the problem of tracking highly

maneuverable objects. One potential use of the IMM in the R-RANSAC framework is in the

identification of different behavior states or as an indication of when a target begins to deviate

from its benign behavior. Figure 6.6 shows that the IMM mode weighting could be used to clearly

indicate the onset and completion of the U-turn.
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CHAPTER 7. COMPARISON WITH THE GAUSSIAN MIXTURE PROBABILITY
HYPOTHESIS DENSITY FILTER

A comprehensive comparison was conducted between the CJ-IMMPDAF R-RANSAC im-

plementation and the Gaussian mixture probability hypothesis density (GM-PHD) filter. The im-

plementation of the GM-PHD filter is described in Section 7.1 and numerical results are presented

in Section 7.2.

7.1 Implementation of the GM-PHD Filter

The implementation of the GM-PHD filter was performed by Dr. Peter C. Niedfeldt. A

linear jump Markov model GM-PHD filter was implemented to compare the performance of R-

RANSAC with a state-of-the-art alternative. The GM-PHD filter implementation closely follows

the algorithm in [10, Table I]. The only difference is that the track labeling capability suggested

in [33] is also incorporated, where each new Gaussian mode is assigned a label which is passed to

its children modes from time step to time step. As with the R-RANSAC merging criteria, merged

Gaussian modes keep the label of the mode with the longest lifetime to maximize track continuity.

The linear jump Markov model GM-PHD filter was introduced in [34].

To make the comparison as valid as possible, the parameters used in this implementation

of the GM-PHD filter parallel those of the CJ-IMMPDAF R-RANSAC implementation. The IMM

parameters of motion models, noise covariance matrices, and Markov transition matrix used in

the CJ-IMMPDAF R-RANSAC are carried over here. No assumptions are made about the birth

distribution on the targets; instead, measurements from the previous time steps are used to seed

the target birth models. This allows for rapid tracking of new targets at the expense of increased

computational complexity, which is proportional to the number of measurements squared [12].

The probability of survival is 0.999, PD = 0.8, and the clutter density is set to 5×10−6. The Ma-

halanobis distance is used as the merging criteria; this threshold is set at 6. The pruning threshold
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is equal to 10×10−5. The birth target weight is set to 0.1 and the birth target covariance is equal

to 102
[

I2 0
0 I2/4

]
. The maximum number of tracks stored between time steps (equivalent to the M

parameter of R-RANSAC) is set to Jk = 50.

7.2 Numerical Results

This comparison used the Matlab implementation of the CJ-IMMPDAF version of R-

RANSAC. The R-RANSAC parameters used were Nw = 25, m = 30, τρ = 0.5, τT = 3, τR = 30,

` = 40, and τCMD = 5. The merging parameters used were τθ = 25°, τv = 0.2, and τx = τy = 35.

The PDA filter parameters used were PD = 0.80, PG = 0.95, and λ = 10−2. The Markov transition

matrix of the three IMM modes (low, medium, and high process noise) is given by

π =


0.7 0.2 0.1

0.3 0.5 0.2

0.3 0.4 0.3

 . (7.1)

7.2.1 MOTP & MOTA

Table 7.1 displays the MOTP and MOTA metrics for the pedestrian and vehicle videos.

These results indicate that R-RANSAC and the GM-PHD filter are similarly precise, i.e. correctly

tracked objects are tracked with comparable RMS errors. However, R-RANSAC produced sig-

nificantly fewer missed detections than the GM-PHD filter. It should be noted here that because

R-RANSAC continues to propagate tracks forward in time without receiving measurements and

continues to classify those tracks as good tracks until their inlier ratios fall below the good model

threshold, it has the ability to track objects through short occlusions. Because the two test se-

quences contain occlusions which cause missed detections, R-RANSAC should have a lower ratio

of missed detections than the GM-PHD filter. The results verify this supposition, as indicated by

column 4 of Table 7.1.

R-RANSAC and the GM-PHD filter produced a similar number of false positives in the

pedestrian video; however, R-RANSAC produced noticeably fewer false positives in the vehicle

video. The GM-PHD filter produced many duplicate tracks in the vehicle video leading to the
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Table 7.1: MOT Results

Vehicle Video

MOTP MOTA MD FP MM
GM-PHD 6.7180 0.4119 0.3149 0.1383 0.1349
R-RANSAC 6.3610 0.7306 0.1662 0.0932 0.0100

Pedestrian Video

MOTP MOTA MD FP MM
GM-PHD 17.8665 0.3535 0.5122 0.0893 0.0449
R-RANSAC 19.2215 0.5550 0.3690 0.0726 0.0023

high number of false positives. The largest difference in the performance of the two algorithms

can be seen in the ratio of mismatches (column 6, Table 7.1). This difference is most pronounced

in the vehicle video: the closely spaced and frequently interacting targets lead to very poor track

continuity for the GM-PHD filter. On the other hand, R-RANSAC proved to have very robust track

continuity even in this challenging scenario. Because of the ratio of mismatches, R-RANSAC is

much more accurate than the GM-PHD filter.

Figures 7.1 and 7.2 illustrate the stark contrast in the ratio of mismatches between the

GM-PHD filter and R-RANSAC with an example from the pedestrian video. These figures plot

the different tracks associated with a child walking along the border of a planter. R-RANSAC

generates only one track whereas the GM-PHD filter generates 55 different tracks. Figures 7.3 and

7.4 present a similar example from the vehicle video.

7.2.2 OSPA & OSPA-T

Table 7.2 displays the average OSPA and OSPA-T scores over the 600 frame test sequences

from the vehicle and pedestrian videos. R-RANSAC achieved a lower OSPA score than the GM-

PHD filter in both cases. Because R-RANSAC has superior track continuity, its OSPA-T scores

are only slightly higher than its OSPA scores. On the other hand, the poor track continuity of the

GM-PHD filter translates into OSPA-T scores that are significantly higher than its OSPA scores.
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Figure 7.1: The GM-PHD tracks associated with one of the people from the annotated section of
the pedestrian video.

Figure 7.2: The single R-RANSAC track associated with one of the people from the annotated
section of the pedestrians video.
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Figure 7.3: The GM-PHD tracks associated with one of the cars from the annotated section of the
vehicle video.

Figure 7.4: The two R-RANSAC tracks associated with one of the cars from the annotated section
of the vehicle video. The first track is drawn in orange and appears on the top edge of the image.
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Table 7.2: Average OSPA Scores

(a) Vehicle Video

OSPA OSPA-T
GM-PHD 55.0926 61.4158
R-RANSAC 40.2504 41.7389

(b) Pedestrian Video

OSPA OSPA-T
GM-PHD 70.3005 71.9871
R-RANSAC 59.5268 60.4030

Table 7.3: Execution Times - Time Per Frame

Vehicle Video Pedestrian Video
GM-PHD 0.0942 0.0738
R-RANSAC 0.0234 0.0230

7.2.3 Execution Times

The average execution time per frame for both algorithms (excluding video processing

time) over the full videos is reported in Table 7.3. The execution times are generally comparable.

Reference [12] reports that R-RANSAC becomes increasingly more efficient than the GM-PHD

filter when the ratio of clutter to true target measurements is low; conversely, the GM-PHD filter

is more efficient in high clutter environments. In high clutter environments, R-RANSAC forms

many tracks modeling the clutter that are unused. When the clutter-to-target ratio is lower, R-

RANSAC efficiently updates tracks without generating many new tracks. The results presented

here support this finding. However, even though the PHD filter is more computationally efficient

than R-RANSAC in high clutter scenarios, there is an obvious trade off with track continuity.
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CHAPTER 8. BACKGROUND ON VIDEO PROCESSING

To understand the innovations to video processing presented in Chapter 9, standard video

processing techniques are reviewed here. To produce measurements for the R-RANSAC tracker,

the objects of interest are segmented from the image using a foreground detection / background

subtraction algorithm. This step produces a foreground mask in which foreground pixels are white

and background pixels are black. Foreground detection is described in Section 8.1. This mask

might then be post-processed by a combination of morphological operations. The mask is then

fed into a blob detector which detects contiguous groups of foreground pixels and outputs certain

geometrical information about them. Blob detection is described in Section 8.2. The centroids of

the blobs are used as (x,y) position measurements for the tracker.

8.1 Foreground Detection

Foreground detection involves classifying pixels as either foreground or background. Gen-

erally, foreground pixels are those that belong to moving objects, although this definition is ex-

tended in Chapter 9 to include pixels belonging to any object of interest, whether it be moving or

stationary. A successful foreground detector is able to fully segment moving objects without leav-

ing ghosts in the objects’ previous positions, account for gradual changes in background lighting,

and account for cyclical variations in the background.

Foreground detection algorithms range from the very simple to the vastly more complex.

Basic techniques include frame-to-frame subtraction and subtraction from an empty background

image. In frame-to-frame subtraction, the previous frame, or a frame from several time steps prior

to the current time step, is subtracted from the current frame. A threshold is then applied to the

difference image to identify foreground pixels. This method struggles to fully segment objects in

video with high frame rate and leaves ghosts in video with low frame rate. Another simple method

is subtraction from an empty background. In this method, an image of the empty background is
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obtained prior to tracking. This method can fully segment new additions to the scene, but cannot

account for changes in scene lighting.

More effective methods of foreground detection construct a background model and com-

pare incoming images with this model. The background is often modeled with an assumed pixel

distribution or a sample set of pixels. The principal tenet of the latter approach is that the true pixel

distribution inevitably deviates from the assumed distribution, and that it is more accurate to model

the background with a sample set of actual pixel values. One interesting example in the sample set

class of algorithms is ViBe [35]. ViBe uses temporal and spatial sub-sampling as well as a unique

method of discarding samples to construct the background model. Incoming background-labeled

pixels have a one in 16 chance of being included into the background model. When a pixel’s

sample set is updated, a neighboring pixel is selected and its sample set is also updated with that

same pixel. Instead of using a first-in, first-out approach to discard sample pixels, the sample to be

discarded is randomly chosen according to a uniform distribution. This allows older pixels, which

might still contain useful background information, to remain in the sample set instead of being

systematically discarded.

Although the sample set class of foreground detectors have certain desirable features, the

most popular foreground detection algorithms use an assumed pixel distribution. In fact, the Gaus-

sian mixture models (GMM) or Stauffer’s method [36], has become the ubiquitous foreground

detector. This method uses a mixture of Gaussian distributions to model each pixel. An incoming

pixel that supports any of the existing Gaussian modes is used to update the mean, variance, and

weight of those modes. An incoming pixel that does not match any of the existing modes is used

to initialize a new mode that replaces the mode with the least support. The modes are ordered ac-

cording to their sortkey and the highest ranked modes comprise the background. If a current pixel

matches one of the background modes, then that pixel belongs to the background and is colored

black in the foreground mask. Otherwise, the pixel is foreground and is colored white. GMM can

be tuned to achieve excellent segmentation results, handles slow changes in environmental lighting

well, and models cyclical background elements through its several Gaussian modes.

Many variations on the original GMM algorithm have been proposed. One variation of

particular note was developed by Kaewtrakulpong and Bowden and was introduced in [37]. They

add shadow detection capability to the GMM and modify the update equations to more quickly
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learn the background upon start up. Optimized implementations of their method are available in

Matlab’s Computer Vision System Toolbox and in the OpenCV libraries

GMM was re-implemented in C++ so that it could be modified to better detect slowly

moving and stationary objects. Our implementation follows the OpenCV implementation and

several of the key equations are given here. Each pixel is modeled with three Gaussian modes.

The Gaussian modes are 3-dimensional, representing the red-green-blue (RGB) color channels.

Each Gaussian mode is characterized by a mean array of length three, µRGB, a variance array of

length three, σRGB, a weight, w, and a sortkey, sk. In using individual variance values instead of

a covariance matrix it is assumed that the color channels are independent from each other. This

assumption also precludes a costly matrix inversion in the update step. Pixel p from the current

frame matches the ith Gaussian mode if

∆ ·∆ < τsimilarity (σ
i
RGB[1]+σ

i
RGB[2]+σ

i
RGB[3]) (8.1)

where ∆ is the current pixel values subtracted from µ i
RGB and τsimilarity is the similarity threshold

and is set at 6.25. The weight update equation is

wi = wi +α (1−wi) (8.2)

the mean update equation is given by

µ
i
RGB = α ∆ (8.3)

and element j of the variance is updated by

σ
i
RGB[ j] = max(σ i

RGB[ j]+α (∆[ j]∆[ j]−σ
i
RGB[ j]),σmin) (8.4)

where the σmin parameter is set at 225. The sortkey is re-calculated at each time step with

si
k =

wi∣∣σ i
RGB

∣∣ . (8.5)
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Figure 8.1: A foreground mask produced by the Gaussian mixture models foreground detection
algorithm from the pedestrian video.

The following equation determines which Gaussian modes comprise the background model

B = argbmin

(
b

∑
j=1

w j > T

)
(8.6)

where the parameter T is set at 0.7 and B represents the background model. In our implementa-

tion, we use three Gaussian modes and we only allow a maximum of two modes to represent the

background. An example foreground mask produced using GMM is shown in Figure 8.1. This

foreground mask has been post-processed using morphological operations. The basic morpho-

logical operations are dilation and erosion. The opening operation is performed by an erosion

followed by a dilation and the closing operation is performed by a dilation followed by an erosion.

An effective combination of morphological operations can reduce noise in the foreground mask

and connect closely spaced blobs originating from the same object. One iteration of erosion with

a 2 by 2 rectangular element followed by three iterations of dilation with the same element was

performed on the foreground mask in Figure 8.1.
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Algorithm 2 Blob Detector
1: for each row of pixels do
2: for each column of pixels do
3: if current pixel is foreground then
4: if neither pixel to the left or pixel above are foreground then
5: Initialize new blob class. Add current pixel.
6: In blob map, update current pixel’s position with newly initialized blob class.
7: else if pixel to the left is foreground ∧ pixel above is background then
8: Add current pixel to blob class to which left pixel belongs.
9: Current pixel position in blob map assigned pointer to left pixel’s blob class.

10: else if pixel to the left is background ∧ pixel above is foreground then
11: Add current pixel to blob class to which above pixel belongs.
12: Current pixel position in blob map assigned pointer to above pixel’s blob class.
13: else if both pixel to the left and pixel above are foreground then
14: if left and above pixels belong to the same blob class then
15: Add current pixel to shared blob class.
16: Current pixel position in blob map assigned pointer to shared blob class.
17: else if left and above pixels belong to different blob classes then
18: Add contents of left blob class to above blob class. Pixels belonging to left

pixel’s blob class assigned pointer to above pixel’s blob class in blob map.
19: Deactivate left blob class.
20: Add current pixel to shared blob class.
21: Current pixel position in blob map assigned pointer to shared blob class.
22: end if
23: end if
24: end if
25: end for
26: end for
27: Apply minimum blob size threshold.

8.2 Blob Detection

A blob detector is a connected component labeling algorithm; it detects connected groups,

or blobs, of foreground pixels. The blob detector we implemented in C++ is given in Algorithm 2.

A key feature of this algorithm is the blob map. The blob map is a matrix of the same dimensions

as the image that contains pointers to blob classes. The blob map is an efficient way of looking up

which blob a given pixel belongs to, and of merging two newly connected blobs. After a new blob

class is initialized, it is inserted into a linked list. When a blob class is deactivated, its currBlob

variable is set to 0. In the last step of the blob detector, a minimum blob area threshold is applied

that filters out purely noise associated blobs.
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Blob detectors can generate a myriad of useful information about the blobs. For example,

Matlab’s blob detector can compute blob area, centroid, bounding box, orientation, eccentricity,

extent, and several other geometrical measures (see Matlab’s Blob Analysis documentation). Un-

fortunately, OpenCV’s blob detector only outputs blob centroids and radii, thus necessitating the

customized blob detector of Algorithm 2. The blob class of Algorithm 2 stores the entire set of

pixels that compose the blob. After the foreground mask is processed, the centroid, area, and

bounding box are calculated and stored in the blob class. The perimeter pixels of the blob are also

stored in the blob class. Much of this information is used in Chapter 9 to improve video processing.
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CHAPTER 9. FOREGROUND DETECTION VARIATIONS

Satisfactory tracking performance can be achieved with the CJ-PDAF R-RANSAC; a prob-

abilistic data association filter is responsible for filtering and data association and the nearly con-

stant jerk model is used as the motion model. The R-RANSAC algorithm could be further devel-

oped, but we are of the opinion that future improvements in performance would be only incremen-

tal. Consequently, our research focus shifted to refining the video processing block of the system.

Section 9.1 describes ways of linking the tracker and video processing blocks through a feedback

loop. Also included in Section 9.1 are methods to obtain velocity measurements (Section 9.1.5),

a simple ghost suppression algorithm (Section 9.1.6), and concluding remarks about foreground

detection 9.1.7. Section 9.2 discusses the application of R-RANSAC to a class of problems known

as stationary object detection.

9.1 Tracker-Sensor Feedback

The foreground detection techniques developed and described in this section are based on

the concept of a tracker-sensor feedback loop, an idea first presented in “Kalman Tracking with

Target Feedback on Adaptive Background Learning” by Aristodemos Pnevmatikakis and Lazaros

Polymenakos [38]. This concept is displayed in Figure 9.1. Normally, the tracker and sensor pro-

cessing blocks of an MTT system are independent. In a tracker-sensor feedback loop, the tracking

results are sent through a feedback loop and serve to inform how sensor processing is performed.

In [38], the authors propose two modifications to Stauffer’s Method. First and foremost, they mod-

ify the background update rate α of each pixel according to its proximity to slowly moving targets.

Pixels that are closer to such a target are updated more slowly (i.e. α is reduced) than pixels fur-

ther away from such targets. This modification is designed to enhance GMM’s ability to detect

slowly moving targets that would otherwise fade or be incorporated into the background. In [38],

a target’s extent is approximated with its error covariance. The modified background update rate is
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Figure 9.1: The tracker-sensor feedback loop.

applied to all pixels that fall within this estimated extent. Their second change involves varying the

T parameter to account for situations with flickering backgrounds. Several techniques developed

in this section extend their first modification.

The following sections describe the progression of foreground detection techniques ex-

plored during the course of this research. Tables 9.1 and 9.2 display the average MOT and OSPA

scores for several simulation runs with the pedestrian video using the different foreground detec-

tors. Full MOT and OSPA results for all simulation runs are included in Appendix A. Unless

otherwise noted, the following parameters were used in the simulations. The R-RANSAC parame-

ters used were Nw = 25, m = 30, τρ = 0.55, τT = 3, τR = 30, `= 25, and τCMD = 4. The merging

parameters used were τθ = 15°, τv = 0.25, and τx = τy = 40. The PDA filter parameters used were

PD = 0.80, PG = 0.99, and λ = 5×10−6.

9.1.1 Uniform Background Update Rate

The standard Stauffer’s method was run with a uniform background update rate of 0.1 and

0.005 to establish baseline performance. These methods are abbreviated as “Baseline - high” and

“Baseline - low” in the results tables. Five simulations runs were conducted with each method.
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9.1.2 Non-Zero Adaptive Background Update Rate

In this variation, the standard background update rate is set at 0.1. All pixels belonging

to the nearest neighbor blob of a valid R-RANSAC track during the previous time step have their

background update rate reduced to 0.005. This method is abbreviated as “Adaptive” in the results

table. Five simulation runs were conducted with this method.

This method is roughly equivalent to the first modification made by Pnevmatikakis and

Polymenakos in [38]. Instead of estimating target extent with the error covariance, the target

extent is directly measured from the foreground mask. This requires a custom blob detector (see

Section 8.2). This technique is superior to that of [38] because only target-associated pixels have

their update rates modified. Pnevmatikakis and Polymenakos concede that their method results in

non-target associated pixels having their update rates modified and that this is undesirable. For

this reason, they limit modifying the background update rate to slowly moving targets only. Using

direct measurements of target extent allows the background update rate to be modified across all

valid tracks without any negative side effects and thus eliminates a fast/slow target classification

step.

9.1.3 Zero Background Update Rate

To be able to indefinitely detect stationary objects of interest, the background update rate

must be zeroed at the associated pixel locations. This section’s method is similar to that of Section

9.1.2 except that α is set to zero for all valid track-associated pixels from the previous time step.

For pixel’s whose update rates are set to zero, the current Gaussian modes of the GMM are retained;

a new mode is not initialized for a non-matching current pixel.

Reference [35] provides an insightful discussion on the difference between conservative

and blind background update schemes. In a conservative update scheme, only background labeled

pixels are used to update the background. Conversely, all incoming pixels update the background

model in a blind scheme. A conservative update scheme is inherently unstable because background

pixels falsely labeled as foreground will be incorrectly labeled indefinitely. However, a conserva-

tive scheme is capable of indefinitely detecting stationary objects and a blind scheme is not. The
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method described in this section and in the following sections are examples of conservative update

schemes.

This method was run with several combinations of different α and τT values. These include

“Zero - α = 0.1,τT = 3”, “Zero - α = 0.1,τT = 20”, “Zero - α = 0.005,τT = 3”, and “Zero -

α = 0.005,τT = 20”. Ten simulation runs were conducted with each method.

9.1.4 Zero Background Update Rate with Minimum Blob Area Threshold

This method is the same as that described in Section 9.1.3, but with the addition of an

adaptive threshold on the minimum allowable blob area. This adaptive threshold is designed as

a safeguard against background pixels being mistakenly labeled as foreground, i.e. it is a way of

bringing stability to a conservative background update scheme. If a small group of background pix-

els is mistakenly labeled as foreground, the associated blob will not be considered a measurement

and those pixels will continue to be updated until they are re-incorporated into the background.

The distribution of blob sizes is modeled as a Kalman filter with A = 1 and C = 1, i.e.

Bt|t−1 = Bt|t−1 (9.1)

Pt|t−1 = Pt−1 +Q (9.2)

Bt = Bt|t−1 +K (bi
t−Pt|t−1) (9.3)

Pt = (I−K)Pt|t−1 (9.4)

where B is the average blob area, bi
t is the ith blob produced at the t th time step, and K is the

Kalman gain and is given by

K = Pt|t−1 (R+Pt|t−1)
−1. (9.5)

The parameters used are R = 0.001 and Q = 10. At each time step, the Kalman filter is updated

with every blob bi
t and the minimum blob area threshold is set at three variances Pk below the

mean. Because the camera is stationary in these simulations, a fixed threshold would function just
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as well. However, if this MMT system were mounted on a UAV, an adaptive threshold would be

required.

This method was run with several combinations of different α and τT values. These include

“Zeromin - α = 0.1,τT = 3”, “Zeromin - α = 0.1,τT = 20”, “Zeromin - α = 0.005,τT = 3”, and

“Zeromin - α = 0.005,τT = 20”. Ten simulation runs were conducted with each method.

9.1.5 Velocity Measurements

All of the previous methods use position-only measurements, i.e. the blob centroids. How-

ever, it is possible to obtain measurements with a velocity component, although it does add com-

plexity to the algorithm. In obtaining velocity measurements, we follow the general procedure

outlined in [39]. In [39], the authors use Harris corner detection to find image features in the pre-

vious frame and match those features in the current frame using the Lucas-Kanade optical flow

algorithm. For each matched feature pair, the length and direction of the optical flow vectors are

calculated. The optical flow vectors are then clustered using k-means block-based clustering. The

authors select the most “scattered” cluster as the background cluster and label all other clusters

as moving object clusters. Outliers are removed from the moving object clusters with RANSAC,

and Delaunay Triangulation is used to produce a more fully segmented foreground mask. This

technique is specifically meant for moving object detection with a non-stationary background, but

it can be simplified and usefully applied to stationary background situations. In our application of

this method, FAST features [40] are used instead of Harris corners because of their speed. Fea-

tures in consecutive frames are matched using the Lucas-Kanade tracker implemented in OpenCV

and the optical flow vectors are characterized by their speed and heading. The features in the

current frame are then superimposed on the foreground mask and are pre-clustered according to

the blob which they belong to. Features that do not fall on a blob are discarded (these features

would be used to calculate the background transformation in the case of a moving camera). For

each blob, the features are further clustered using sequential-RANSAC [14]. Our implementation

of sequential-RANSAC is given in Algorithm 3. The similarity criteria (Algorithm 3, line 10) is

very similar to the merging criteria used in Algorithm 1; several parameters are re-used and the

similarity criteria accounts for moving and stationary targets. Measurements are similar if their

percent difference in speed or their absolute difference in speed meet their respective thresholds
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Figure 9.2: A foreground mask showing the foreground pixels (white), the blob bounding boxes
(yellow rectangles), the matched features (small red circles), and clustered measurements (green
circles).

(τv = 0.25 and τ|v| = 10) and their absolute differences in heading, x position, and y position meet

their respective thresholds (τθ = 15,τxcluster = 20, and τycluster = 20). Measurements are also similar

if both of the measurement speeds meet the minimum velocity threshold (τvmin) and the absolute

position differences meet their thresholds.

The average x and y velocity components and position for each cluster, as well as informa-

tion indicating which blob the cluster belongs to, is sent to R-RANSAC as a measurement. Figures

9.2 and 9.3 display several steps of the process used to obtain velocity measurements.

Instead of using the full PDA filter with the velocity measurements, a simple weighted

residual is computed; each measurement’s association probability is calculated using the covari-

ance of the innovation. Validation gating is still based solely on position, but the measurement

association probabilities take velocity into account. Measurements that are outliers to all existing

tracks are used to initialize hypothesis tracks with the standard CV track initialization scheme. The

zero background update rate scheme of Section 9.1.3 is retained and a static minimum blob area

threshold of 10 is used. This method was run with two combinations of α and τT values: “Velocity
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Figure 9.3: The video frame corresponding to Figure 9.2. Shown are the R-RANSAC tracks, their
inlier regions, and the clustered measurements (in green).

- α = 0.005,τT = 3” and “Velocity - α = 0.005,τT = 20”. Ten simulation runs were conducted with

each method. In these simulations, the guided sampling threshold for the RANSAC-based track

initialization scheme was set to 100. Using this threshold improved the average OSPA-T scores by

2.1601 and 7.3506 for the two methods, respectively.

The method described above allows us to solve the merged measurement problem. A

merged measurement occurs when two targets pass sufficiently close to each other that their in-

dividual blobs merge into a single blob during the morphological operations. Figure 9.4 shows a

merged measurement from the pedestrian video. The resulting measurement does not accurately

describe the position of either closely spaced target and using this measurement in the track update

can have serious consequences. Figure 9.5 displays a set of tracks from Trial 2 of the “Zeromin

- α = 0.005,τT = 3” simulations (the best performing trial from this set). In this portion of the

video, multiple targets pass near each other and produce merged measurements. The effects of us-

ing these merged measurements in the track update is obvious in Figure 9.5; several R-RANSAC

tracks are momentarily pulled off of the true path of their target and several R-RANSAC tracks

switch targets entirely. When the method described in this section is used, a merged measurement
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Algorithm 3 Sequential-RANSAC
1: for each blob do
2: while less than 80% of the features have been accounted for do
3: for `sequential iterations do
4: Randomly pick a feature.
5: for all other unaccounted for features in that blob do
6: Calculate the percent difference in speed between the randomly selected and

current features, percentSpeedDiff.
7: Calculate the absolute difference in speed between the randomly selected and

current features, absoluteSpeedDiff.
8: Calculate the absolute difference in heading between the randomly selected and

current features, absoluteHeadingDiff.
9: Calculate the absolute difference in x and y positions between the randomly

selected and current features, absoluteXdiff and absoluteYdiff, respectively.
10: if the measurement similarity criteria is satisfied then
11: Add current feature to the consensus set of the new cluster.
12: end if
13: end for
14: if the new consenus set is larger than the previously largest consensus set then
15: The new consensus set becomes the largest consensus set.
16: end if
17: end for
18: Remove features belonging to the new cluster from the remaining feature set.
19: end while
20: Calculate average speed, heading, and position information for the refined clusters.
21: end for

is decomposed into several measurements based upon the distribution of optical flow vectors. This

allows targets traveling in different direction to pass closely by each other without negatively af-

fecting the tracking. Figure 9.6 demonstrates this by showing the same set of tracks taken from

Trial 1 of the “Velocity - α = 0.005,τT = 20” simulations.

9.1.6 Ghost Suppression

Ghosts can be defined as foreground artifacts located in previous target locations. For ex-

ample, if each new frame were subtracted from the first frame of a video sequence, foreground

pixels would appear in the current locations of moving objects as well as the location of all

moving objects present in the first frame. Ghost suppression is the task of removing these arti-

facts. Additionally, ghost suppression aids in removing falsely labeled background pixels from
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Figure 9.4: Three closely-spaced targets produce a single merged measured measurement (in blue).

Figure 9.5: Updating tracks with merged measurements causes R-RANSAC tracks to deviate from
the true path of their targets (all but the purple track) and oftentimes causes tracks to switch targets
(green, blue, and yellow tracks).
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Figure 9.6: Tracks updated with velocity measurements. The tracks of closely spaced targets are
not affected by each other.

the foreground mask. In our ghost suppression algorithm, a foreground pixel can be updated by

a Manhattan neighbor background pixel if the pixels meet a similarity threshold. This similarity

threshold prevents true stationary objects of interest from fading into the background. The ghost

suppression algorithm was run with the methods described in Sections 9.1.4 and 9.1.5. These sim-

ulations are labeled Zerominghost - α = 0.005,τT = 3; Zerominghost - α = 0.005,τT = 20; Velocityghost

- α = 0.005,τT = 3; and Velocityghost - α = 0.005,τT = 20. Each set of simulations included ten

trials.

9.1.7 Conclusions on Foreground Detection

Instead of analyzing the results of every simulation, we will present more general state-

ments about how to optimize tracking performance through improvements to video processing.

• Given a stable camera platform and a mostly stationary background, a low α value is prefer-

able to a high α value. The pedestrian video meets both of these requirements and con-

sequently, the “Baseline - low” method performed much better than the “Baseline - high”
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Table 9.1: MOT Results - Foreground Detection Techniques

Foreground Detection Method MOTP MOTA MD FP MM
Baseline - high 8.0027 0.6927 0.2441 0.0112 0.0520
Baseline - low 11.5430 0.8251 0.0770 0.0635 0.0344
Adaptive 10.3353 0.7907 0.1597 0.0173 0.0324
Zero - α = 0.1,τT = 3 10.9410 0.8590 0.0463 0.0806 0.0141
Zero - α = 0.1,τT = 20 10.7260 0.8599 0.0981 0.0292 0.0128
Zero - α = 0.005,τT = 3 11.1266 0.8290 0.0070 0.1540 0.0100
Zero - α = 0.005,τT = 20 11.2642 0.8630 0.0155 0.1120 0.0096
Zeromin - α = 0.1,τT = 3 11.0029 0.8741 0.0736 0.0389 0.0134
Zeromin - α = 0.1,τT = 20 11.0820 0.8759 0.0736 0.0389 0.0116
Zeromin - α = 0.005,τT = 3 11.0992 0.8851 0.0223 0.0844 0.0083
Zeromin - α = 0.005,τT = 20 11.1878 0.8934 0.0363 0.0630 0.0072
Velocity - α = 0.005,τT = 3 9.0759 0.8828 0.0656 0.0329 0.0188
Velocity - α = 0.005,τT = 20 8.6681 0.8721 0.1203 0.0011 0.0064
Zerominghost - α = 0.005,τT = 3 11.0997 0.8689 0.0465 0.0750 0.0096
Zerominghost - α = 0.005,τT = 20 11.1283 0.8201 0.0440 0.1215 0.0144
Velocityghost - α = 0.005,τT = 3 8.7794 0.8805 0.0770 0.0242 0.0184
Velocityghost - α = 0.005,τT = 20 8.4825 0.8575 0.1341 0.0012 0.0071

Table 9.2: Average OSPA Scores - Foreground Detection Techniques

Foreground Detection Method OSPA OSPA-T Standard Deviation (OSPA-T)
Baseline - high 57.4211 58.5812 0.5042
Baseline - low 46.9291 48.7273 1.4966
Adaptive 49.5333 50.9470 0.5131
Zero - α = 0.1,τT = 3 39.0721 39.6491 3.0584
Zero - α = 0.1,τT = 20 42.3569 43.2007 3.9522
Zero - α = 0.005,τT = 3 37.2976 37.7397 1.8199
Zero - α = 0.005,τT = 20 35.4954 36.0667 3.5353
Zeromin - α = 0.1,τT = 3 40.1993 41.3096 4.7428
Zeromin - α = 0.1,τT = 20 40.1993 41.3096 4.7428
Zeromin - α = 0.005,τT = 3 31.9620 32.5188 3.9421
Zeromin - α = 0.005,τT = 20 32.8622 33.4488 4.5913
Velocity - α = 0.005,τT = 3 35.3888 36.8415 3.5248
Velocity - α = 0.005,τT = 20 36.4746 36.8038 1.1841
Zerominghost - α = 0.005,τT = 3 36.2479 36.9295 4.1253
Zerominghost - α = 0.005,τT = 20 41.3798 42.3361 4.3892
Velocityghost - α = 0.005,τT = 3 36.6000 37.3656 4.1585
Velocityghost - α = 0.005,τT = 20 38.2099 38.8664 3.7430
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method. Furthermore, a low, uniform α value performs better than the “Adaptive” method

that alternates between high and low α values depending on target position.

• Zeroing out α for pixels associated with targets brings significant improvements in perfor-

mance over a low, uniform α value. Zeroing out α without taking appropriate measures to

stabilize the algorithm generally results in a high ratio of false positives and a very low ratio

of missed detections. Adding a minimum blob area threshold helps to restore the balance

between the ratio of false positives and missed detections. With respect to the metrics used

here, the zero background update rate methods with a minimum blob area threshold achieve

the best performance.

• The methods involving velocity measurements also produced excellent tracking results. They

consistently give greater tracking precision (less tracking error), as was seen in Figure 9.6.

The “Velocity” methods, when tuned correctly, can deliver phenomenal track continuity as

well. The one weakness of the “Velocity” methods is their tendency to merge close spaced

stationary targets; this is the source of their high ratios of missed detections. The “Velocity”

methods require that the targets be large enough and distinctive enough to obtain several

features on the target.

• The ghost suppression algorithm resulted in poorer performance with every algorithm it

was applied to. Its effect on the “Zeromin” methods was more serious than its effect on

the “Velocity” methods. We conclude that the ghost suppression algorithm should not be

used continuously in a tracking scenario. Rather, it should be used in the beginning of

the scenario to remove foreground artifacts caused by moving objects present in the first

frame and occasionally, but infrequently, throughout the tracking scenario to maintain an

unpolluted foreground mask.

Given the results presented in the previous sections, we further tuned the R-RANSAC pa-

rameters and ran two final sets of simulations. The first method, “Zeroopt”, is the “Zeromin” method

with α = 0.005 and τT = 10. A guided sampling threshold of 100 was implemented for this method

as well. The second method, “Velocityopt”, is the “Velocity” methed with α = 0.005 and τT = 10

and the Kalman filter-based adaptive minimum blob area threshold of the “Zeromin” methods. For

73



both methods, the number of RANSAC iterations was increased to 35 and the following merg-

ing parameters were used: τθ = 45°, τv = 0.25, and τx = τy = 15. For the “Velocityopt” method,

τxcluster = τycluster = 30. The full simulation results for these methods are presented in Tables 9.3 and

9.4 respectively. Through a subtle adjustment of a few key parameters and the inclusion of the

guided sampling and adaptive blob thresholds, we were able to obtain phenomenal tracking per-

formance. The “Velocityopt” method achieved lower ratios of false positives and mismatches along

with greater tracking precision than the “Zeroopt” method achieved at the expense of a slightly

higher ratio of false positives. The full results video of the “Velocityopt” method can be viewed at

https://www.youtube.com/watch?v=VTcFrkFSkko.

Table 9.3: Full Simulation Results - Zeroopt

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.6970 0.9243 0.0679 0.0027 0.0051 26.7741 27.0538
Trial 2 11.0014 0.9233 0.0541 0.0191 0.0035 27.5537 28.0510
Trial 3 10.7252 0.9263 0.0673 0.0001 0.0063 28.3572 28.6917
Trial 4 10.8108 0.9389 0.0518 0.0059 0.0034 26.8634 27.3925
Trial 5 10.9063 0.9185 0.0655 0.0079 0.0081 28.4710 28.8572
Trial 6 10.9014 0.9224 0.0736 0.0001 0.0039 29.1099 29.4908
Trial 7 10.9562 0.9295 0.0648 0.0003 0.0054 27.1458 27.4584
Trial 8 10.9221 0.9262 0.0691 0.0012 0.0035 26.9714 27.2982
Trial 9 10.6869 0.9270 0.0655 0.0020 0.0055 27.5627 27.8690
Trial 10 10.8834 0.9174 0.0755 0.0039 0.0032 28.8240 29.1175
Average 10.8491 0.9254 0.0655 0.0043 0.0048 27.7633 28.1280

Overall, we are most impressed with and see the most potential in the “Velocity” meth-

ods; these methods are also the most applicable to video taken from a moving platform. A true

parameter analysis of the R-RANSAC parameters and further tuning of the sequential-RANSAC

parameters would likely yield further improvements in performance.

9.1.8 Execution Times

We report the average execution times for the “Positionopt” and “Velocityopt” methods on

the 1280 x 720 pedestrian video. The simulations were performed in Visual Studio 2010 on an

Intel i7-2600 CPU @3.40 GHz with 8.00GB of RAM. For the “Positionopt” method, the entire
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Table 9.4: Full Simulation Results - Velocityopt

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.0862 0.9169 0.0787 0.0000 0.0044 28.2333 28.4372
Trial 2 10.1924 0.9201 0.0763 0.0000 0.0036 27.7801 28.0205
Trial 3 10.2260 0.9294 0.0675 0.0000 0.0031 27.0152 27.2210
Trial 4 10.0941 0.9170 0.0807 0.0000 0.0023 27.8676 28.0497
Trial 5 10.2893 0.9259 0.0710 0.0000 0.0031 27.3188 27.5216
Trial 6 10.2287 0.9227 0.0751 0.0000 0.0023 27.0621 27.2455
Trial 7 10.1593 0.9259 0.0713 0.0000 0.0028 27.0661 27.2484
Trial 8 10.2930 0.9245 0.0724 0.0000 0.0031 27.2270 27.4104
Trial 9 10.1977 0.9245 0.0726 0.0000 0.0028 27.1272 27.3352
Trial 10 9.9890 0.9251 0.0721 0.0000 0.0028 26.7647 26.9494
Average 10.1756 0.9232 0.0738 0.0000 0.0030 27.3462 27.5439

code takes 0.15885 seconds per frame to run. For the “Velocityopt” method, the entire code takes

0.17678 seconds per frame to run. The R-RANSAC portion of the code is identical for both

methods and takes 0.0010 seconds per frame to run. The bulk of the execution time is due to the

un-optimized foreground detector code. This portion of the code, when fully optimized, should

only be incrementally slower than OpenCV’s implementation of the GMM foreground detector.

With OpenCV’s foreground detector, the system runs at about 20 Hz.

9.2 Stationary Object Detection

R-RANSAC in conjunction with a foreground detector employing tracker-sensor feedback

can be used to address a class of problems known as stationary object detection (SOD). SOD is an

important topic in tracking because objects of interest often remain stationary for extended periods

of time (e.g. a parked car). SOD in its truest sense, however, is not directly related to tracking.

Rather, it is the problem of locating newly placed objects in a scene. SOD is especially relevant

to the surveillance of public areas such as airports and train stations where abandoned luggage is a

serious security concern.

Reference [41] provides a comprehensive survey on proposed stationary foreground object

detection algorithms. Some notable examples include the use of dual backgrounds [42], SOD via

tracking [43], and foreground mask sampling [44]. In [42], two background models are main-

tained, a short-term and a long-term model. Both models are based on the GMM architecture,
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but the long-term model is updated at a lower frequency than the short-term model. Temporarily

stationary objects are quickly assimilated into the short-term model, but persist as foreground for a

longer duration in the long-term model. Eventually, stationary objects fade into the background of

both models. In [43], the single background model is based on a mixture of average and running

average models. A connected component algorithm groups foreground pixels into blobs which

are then tracked over time. A blob which has remained in the same place for 50 seconds is con-

sidered a stationary object. The authors do not specify how frequently the background model is

updated, but it appears that stationary objects eventually fade into the background. Reference [44]

uses foreground mask sampling to detect stationary objects. Six frames from the most recent 30

seconds of video are sampled and corresponding foreground masks are created by subtracting the

six images from the background model. Stationary objects are objects that appear in all six of the

foreground masks. The authors do not mention how their background model is created or updated.

We observe that the examples cited here are only capable of temporarily detecting stationary ob-

jects. R-RANSAC in conjunction with the tracker-sensor feedback loop is capable of indefinitely

detecting stationary objects.

9.2.1 Detecting Parked Cars

R-RANSAC was applied to two parking lot videos; the “Zeroopt” method was applied to

the first video and the “Velocityopt” methd was applied to the second video. In the first video, the

parking cars are well-separated thus allowing R-RANSAC to both track the individual cars and

detect areas occupied by stopped objects. These results can be seen in Figure 9.7. Several points

of interest should be noted in this figure. Track 3, a moving and then parked car, persists during the

entire length of the video (almost 3000 frames); it can been seen in the top right and bottom panels.

Track 2, seen in the top right and bottom left panels, is a motorcyclist donning his protective gear

and then riding away. Track 14, a moving and then parked car, is seen driving through the parking

lot in the bottom left panel and then fully parked in the bottom right panel.

The results for the second parking lot video are shown in Figure 9.8. In this video, R-

RANSAC is able to track individual cars for much of the video, but as the concentration of parked

cars increases, tracks begin to coalesce. Still, by using R-RANSAC as the underlying mecha-

nism, we are able to detect areas occupied by parked cars. Panels 1-3 of Figure 9.8 show tracks
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Figure 9.7: Parked car detection in the first parking lot video.

corresponding to individual cars. The tracks in the fourth panel are more convoluted, but the fore-

ground mask clearly shows areas occupied by parked cars. Also of note is the stark change in

environmental lighting during the video, transitioning from a sunrise orange to a shadowy blue.

9.2.2 Abandoned Luggage Detection

The “Velocityopt” method was applied to the “3” image sets of the PETS 2006 dataset. In all

seven of the image sets, R-RANSAC is able to detect the abandoned piece of luggage throughout

the entire duration of the image sets. We present example images from the four most difficult

image sets: S7-T6, S4-T5, S6-T3, and S2-T3. Corresponding results videos can be viewed at

https://www.youtube.com/playlist?list=PLxxDVxiyDNvt7tMJIE0Spa5btnppKlHip. As

described on the PETS 2006 website, the S7-T6 image set “contains a single person with a suitcase

who loiters before leaving the item of luggage unattended. During this event five other people move
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in close proximity to the item of luggage.” Figure 9.9 shows that the abandoned piece of luggage is

detected prior to the five people passing in its vicinity and continues to be detected after this event

as well.

The S4-T5 image set “contains a person placing a suitcase on the ground. Following this

a second person arrives and talks with the first person. The first person leaves the scene without

their luggage. Distracted by a newspaper, the second person does not notice that the first persons

luggage is left unattended.” Figure 9.10 shows that the abandoned piece of luggage as well as the

two people are detected during the entire image set.

The S6-T3 image set “contains two people who enter the scene together. One person places

a rucksack on the ground, before both people leave together (without the rucksack).” Figure 9.11

shows the people entering and leaving the scene together; the rucksack continues to be detected

after their departure.

The S2-T3 image set “contains two people who enter the scene from opposite directions.

One person places a suitcase on the ground, before both people leave together (without the suit-

case).” Figure 9.12 shows the people entering and leaving the scene as well as the continued

detection of the suitcase. The detections seen above the suitcase are from the movement of a chain

of garbage bins behind the fence.
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CHAPTER 10. MACHINE LEARNING TO IMPROVE TRACKING

This chapter describes how tracking performance can be improved using machine learn-

ing. Section 10.1 briefly describes the machine learner used here, the Sequence Model. Section

10.2 explains how the Sequence Model was incorporated into the R-RANSAC framework. Sec-

tion 10.3 describes the simulation that was developed to test the Sequence Model/R-RANSAC

(SM/R-RANSAC) algorithm. Section 10.4 presents simulation results and Section 10.5 discusses

conclusions about the SM/R-RANSAC algorithm and future research directions.

10.1 Sequence Model

The Sequence Model is an extension of the Sequence Memoizer, a machine learner first

proposed by Wood, Gasthaus, et. al. in [45]. The Sequence Memoizer is a hierarchical Bayesian

model designed to capture long-range dependencies in discrete data. The Sequence Memoizer is

very appropriately named: it learns sequences of data. A classic application of such a learner

would be in language prediction.

The SM was applied to a multiple agent, MTT problem in an urban environment in [1].

The SM, like the Sequence Memoizer, learns sequences of discrete data. Tracking usually takes

place in a continuous field of view, so the first step in applying the SM to tracking is to discretize

the field of view. In tracking, the SM learns sequences of target locations instead of continuous

target paths. The grid size chosen to discretize the field of view is very important; an overly

fine discretization makes it more difficult for the SM to learn sequences whereas an overly coarse

discretization reduces the amount of usable information in the SM’s prediction.

The SM creates a belief model of the field of view. For each grid location in the belief

model, the probability that a target occupies that location in the future is estimated. The SM

constructs this belief model in a Monte Carlo-like way by propagating forward several probable

trajectories into the future. Propagating more possible trajectories forward creates a belief model

84



 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 10.1: An example belief model constructed by the Sequence Model. The probability of a
target occupying a given grid location at the next time step is indicated by the color scale.

that better estimates the true distribution, but also results in longer execution times. The number of

possible trajectories was set at 100 in our simulations. The value of the belief model at a given grid

location is the proportion of probable trajectories that passed through that location. An example

belief model from the simulations presented in Section 10.3 can be seen in Figure 10.1.

Conceptually, the SM can be a powerful tool in tracking. It has the natural ability to learn

road networks, including details like the locations of stoplights, one-way streets, and common U-

turn locations. The SM, because it requires a discretization of the environment, can also easily

incorporate prior knowledge one might have of the tracking environment. Grid locations corre-

sponding to no travel areas (buildings instead of streets, for example), can have their probability

mass zeroed out or greatly reduced. Incorporating prior knowledge about the environment into a

Kalman filter estimate is much more difficult.

The SM does, however, present some difficulties when applying it to tracking. First, the

SM, like all machine learning algorithms, requires a training period before it begins to make ac-

curate predictions. Care must also be taken to only train the SM with tracks that have a high

probability of representing true targets to prevent spurious tracks from corrupting the training data.
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The most significant shortcoming of the SM in its current state is that it produces a single belief

model describing the distribution of future locations for all targets. In [1], the SM is used to per-

form path planning for a cooperative team of UAVs with the goal of maximizing the number of

targets seen. The shared belief model does not conflict with this objective. The authors also as-

sume perfect data association; unfortunately, data association is one of the most difficult problems

in real tracking scenarios. Because of this shared belief model, R-RANSAC cannot leverage the

SM to associate measurements of closely spaced targets; the SM can only be used to distinguish

between clutter measurements and target-associated measurements of widely spaced targets.

10.1.1 Other Learning Approaches

Machine learning is often applied to video-based target tracking in order to learn a visual

appearance model of the targets. Reference [46] provides a representative example of this class

of algorithm; when targets are not interacting, they are tracked with individual trackers and an

appearance model is constructed. This appearance model includes positive examples (templates of

the correct target) and negative examples (templates of other targets). When targets interact, the

appearance models are used to distinguish between the targets. This use of machine learning is

fundamentally different to the use proposed here. We seek to learn target trajectories as opposed

to target appearances.

In our literature review, we only came across one other example of using machine learning

to learn target trajectories. In [47], a motion map is used to learn non-linear motion patterns

in the scene. This motion model helps to connect small sequences of associated measurements

known as tracklets into larger sequences known as tracks. An affinity score is calculated between

tracklets and learned motion patterns using the head and tail positions and velocities of the different

segments. The motion pattern that receives the highest affinity score is used to connect the tracklets.

This is an online learning algorithm; the motion model is constructed during tracking with high

confidence tracklets. Reference [48] extends this method by using a Conditional Random Field to

model the track affinities and dependencies, and by calculating the affinity scores globally. This

method differs from our method in that it is a post-processing algorithm.
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10.2 Incorporating the Sequence Model with R-RANSAC

When incorporating the SM into the R-RANSAC framework, we primarily use it as a tool

to improve data association. We expect using the SM to be most advantageous in situations with

infrequent measurement updates and a high proportion of clutter measurements. R-RANSAC re-

lies entirely on its assumed dynamic model to perform data association. In the case of infrequent

measurement updates, a target can deviate significantly from its assumed model, thereby making

it much less probable that R-RANSAC correctly associates measurements. The SM does not share

this inherent weakness of R-RANSAC; its belief model is constructed entirely from past obser-

vations of the target. Consequently, provided the SM has been sufficiently trained and the target

does not deviate from its previous paths, the SM should be able to correctly associate measure-

ments independent of the time between measurement updates. The simple example of a road with

a right-hand turn clearly illustrates this point. Just prior to the turn, R-RANSAC propagates the

state estimate forward and off the road. The SM, on the other hand, has never observed a target

continuing straight on this section of road. Instead, it has observed targets making a right hand turn

at that location and thus it assigns probability mass to the right.

R-RANSAC measurement association probabilities are calculated using the covariance of

the innovation, as was done in Section 9.1.5. The SM association probabilities are calculated by

interpolating between grid locations in the belief model. Both sets of association probabilities are

normalized. A weighting between the R-RANSAC and SM association probabilities is computed.

Several approaches have been suggested on how to best weight these probabilities including using

mean-based, entropy-based, or random weightings. Ideally, the weighting would be based on the

certainty of each prediction. We attempt to approximate this ideal weighting by allowing the SM

weight to grow linearly from zero to an upper bound P(SM)max. The SM weight reaches P(SM)max

when the track’s age reaches `SM time steps; after `SM time steps we are confident the SM has been

sufficiently trained. In the simulations presented here, P(SM)max = 0.9 and `SM = 300.

When used with R-RANSAC, the SM is initialized with an arbitrarily large number of

targets. All valid tracks outputted by R-RANSAC are used to update the SM. The R-RANSAC

track with good model number i updates the belief model for the ith target in the SM. A high τT

value of 15 is used to prevent spurious tracks from corrupting the SM. The SM is updated with

the highest probability measurement associated with a track instead of the track’s state estimate.
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Valid tracks that were not updated at the current time step are not used to update the SM. The

inlier region of R-RANSAC is expanded to account for possibly extreme intra-time step target

maneuvers (τR = 70). A grid size of 15 is used to discretize the environment.

Because the SM/R-RANSAC algorithm is designed to excel in tracking situations with

infrequent measurement updates, the CV model is used in place of the CJ model. The CJ model

performs poorly in these situations because its sensitive higher-order terms result in inaccurate

predictions of future target locations far into the future. The CV model, although it does not model

turning behavior, is less sensitive to errors in the state estimate and oftentimes more accurately

predicts future target locations. The CV model also behaves in a more stable fashion when a target

has maneuvered between time steps. In the case of a right hand turn, the CJ model requires several

post-turn measurements to converge to the true path. Conversely, the CV model snaps to the true

path after receiving a single post-turn measurement.

10.3 Learning Simulation Environment

As described in Section 10.1, the SM is still under active development and can only be

reasonably expected to improve tracking performance in certain situations. To fairly evaluate the

performance of the SM/R-RANSAC combination, the simulated MTT scenario was designed to

showcase the expected strengths of the new algorithm.

A MTT scenario was simulated in Matlab in order to test the SM/R-RANSAC algorithm.

The simulation environment consists of a 550 x 550 field of view with four targets. Each target

travels in a rectangular path, with each path being located almost wholly in one of the quadrants

of the field of view. The target measurements are corrupted by normally-distributed noise with a

standard deviation of 0.5. The simulation begins with a 600 time step learning period; this learn-

ing period contains no clutter measurements. After the learning period, alternating 400-time step

periods with clutter and 200-time step periods without clutter occur until time step 2800 (the end

of the simulation). The time periods with clutter are referred to as the “jamming” periods through-

out this discussion. The periods without clutter measurements are designed to allow R-RANSAC

to reacquire the targets and establish context for the learner. Figure 10.2 displays the number of

clutter measurements over the entire simulation. The number of clutter measurements during each

“jamming” period builds to a peak and then falls back to zero. Each successive “jamming” period
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Figure 10.2: The number of clutter measurements at each time step in the learning simulations.

rises to a higher maximum number of clutter measurements resulting in more difficult tracking as

the simulation progresses. Figure 10.3 shows a snapshot of the simulation environment during a

period of clutter measurements.

To make R-RANSAC compatible with this particular simulation, two modifications are

necessary. First, tracks’ consensus sets are updated with all of the inlier measurements instead of

only with the nearest neighbor measurement. Second, an adaptive τρ is used. A baseline value

of 0.8 is assumed for τρ ; this baseline value is added to the average number of expected inlier

measurements based on the average size of the measurement scans in the measurement history

window, the area of the field of view, and the inlier region area. This adaptive τρ appears to work

well during all stages of the simulation. These two modifications are necessary to distinguish valid

tracks from spurious tracks during the “jamming” stages of the simulation.

10.4 Learning Results

Three sets of simulations were run in order to compare R-RANSAC with the SM/R-RANSAC

algorithm. The simulations are differentiated by the length of their time steps: 9, 13, and 17 sec-

onds, respectively. In Tables 10.1 and 10.2, the simulations are labeled as “Learning - dt” and
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Figure 10.3: A snapshot of the simulation environment during a period of clutter measurements.
The measurements of the current time step are shown as green circles. The most recent 25 mea-
surements generated by the true targets are shown as smaller, blue circles. The good R-RANSAC
tracks are displayed as randomly colored, larger crosses. The hypothesis tracks are displayed as
smaller, magenta crosses.

“No Learning - dt” where dt indicates the time step length. Five trials were run with each simu-

lation; full simulation results can be found in Appendix B. Results were only extracted from the

post-learning period interval of the simulation (i.e. the last 2200 time steps). The R-RANSAC

parameters were kept constant across all of the trials, except for the measurement noise covariance

which was increased by one order of magnitude for the 17 second time step trials.

For all time step lengths, the SM/R-RANSAC algorithm outperformed R-RANSAC. As

expected, the disparity in performance increases as the time step grows larger. This is because

the Kalman filter estimate of future target location used by R-RANSAC becomes increasingly less

trustworthy with longer time steps, whereas the SM estimate is less affected by longer time steps.

One interesting observation is that SM/R-RANSAC’s performance remained relatively constant
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Table 10.1: MOT Results - R-RANSAC with the Sequence Model

Simulation MOTP MOTA MD FP MM
Learning - 9 0.4960 0.9793 0.0000 0.0203 0.0004
No Learning - 9 0.4452 0.9428 0.0207 0.0281 0.0083
Learning - 13 1.1883 0.9818 0.0000 0.0174 0.0007
No Learning - 13 1.7101 0.7896 0.1500 0.0088 0.0515
Learning - 17 11.2009 0.8690 0.0085 0.0911 0.0314
No Learning - 17 15.3591 0.5766 0.2718 0.0233 0.1284

Table 10.2: Average OSPA Scores - R-RANSAC with the Sequence Model

Simulation OSPA OSPA-T Standard Deviation (OSPA-T)
Learning - 9 4.1499 4.1786 0.4883
No Learning - 9 12.8371 13.0207 1.0472
Learning - 13 4.3613 4.3839 0.5872
No Learning - 13 35.8561 36.4852 1.2125
Learning - 17 20.3627 20.5861 0.7797
No Learning - 17 60.5101 61.4912 0.3926

between the 9 and 13 second simulations. This result is especially relevant to UAVs which often

have strict limits on computational power: the same level of tracking performance can be achieved

even when receiving measurements and updating the model set much less frequently.

Figure 10.4 plots the average OSPA-T scores at each time step for the five trials of the

“Learning - 17” and “No Learning - 17” simulations. During the periods without clutter measure-

ments, R-RANSAC tracks very well and SM-R-RANSAC tracks perfectly. During the periods with

clutter measurements, SM/R-RANSAC performs noticeably better than R-RANSAC. Figure 10.4

also shows that R-RANSAC’s performance degrades as soon as the clutter measurements begin

and its performance only improves after the clutter measurements have ended. SM/R-RANSAC,

on the other hand, maintains excellent performance through the early stages of the “jamming”

periods and strongly recovers before the “jamming” periods are over.

There is a significant time penalty associated with using the SM. R-RANSAC averaged

2.6111× 10−6 seconds per time step whereas the SM/R-RANSAC algorithm averaged 2.3889×

10−5 seconds per time step.
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Figure 10.4: The OSPA-T scores for a single trial of “Learning - 17 (blue)” and “No Learning -
17” (red).

10.5 Conclusions

The ideas and results presented in this chapter are more proof-of-concept than fully de-

veloped. The simulation results showed that the SM significantly improved data association in

situations with infrequent measurement updates and high amounts of clutter. However, this simu-

lation was very simplistic: the targets were constrained to easily-learned and widely spaced paths.

Future research should include simulations with interacting targets that deviate occasionally from

their nominal paths. Eventually, experiments should be run on video where the objects of interest

do not follow constrained paths. Future work will also need to look at determining the optimal dis-

cretization of the environment and the optimal way of combining the SM and R-RANSAC belief

models. All of this future work, though, hinges on the continued development of the SM. The SM

needs to be able to maintain separate belief models for individual targets for it to be successfully

applied to more realistic tracking scenarios.
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CHAPTER 11. CONCLUSION

This thesis has three primary contributions: completion of the development of R-RANSAC,

the development of several novel stationary foreground detection techniques, and the application

of machine learning to the MTT problem.

We focused our development of R-RANSAC in three areas: data association, filtering, and

track management. Our work with data association consisted of:

• Incorporating the all neighbors, nearest neighbor, probabilistic data association, and joint

probabilistic data association filters into the R-RANSAC framework.

• Conducting a comparison between the data association methods which included specific

track examples demonstrating the strengths and weaknesses of the different methods.

We conclude that, of the data association methods investigated, the probabilistic data association

filter is the most well-suited to R-RANSAC. Track examples show that is is more robust in situa-

tions with closely spaced targets and occlusions than less sophisticated data association methods.

In our data association study, we also observed that R-RANSAC relies on track coalescence to

a certain degree to reduce the number of false positive tracks. For this reason, the JPDA filter

performs worse than the PDA filter in the R-RANSAC framework.

Our work with filtering consisted of:

• Replacing the nearly constant velocity model with higher-order linear models.

• Incorporating the interacting multiple models algorithm into R-RANSAC.

We conclude that the nearly constant jerk model is capable of efficiently tracking most objects of

interest. We also observed that the IMM filter is not fully utilized in the R-RANSAC framework.

R-RANSAC requires a large sensor noise covariance to produce smooth tracks and accurately

predict future target locations. We demonstrated that a large sensor noise covariance significantly

limits the amount of IMM mode switching, even during extreme maneuvers.
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Our work with track management consisted of:

• Converting R-RANSAC from a multiple object filter into a multiple target tracker through

the good model number track labeling system.

• Introducing an intuitive and customizable track merging heuristic.

• Using a guided sampling threshold in the RANSAC-based track initialization algorithm to

improve the quality of new hypothesis tracks.

• Changing the way the consensus set is updated to preserve the inlier ratio as a true measure

of a track’s support.

We also explored the concept of a tracker-sensor feedback loop: R-RANSAC tracking re-

sults inform how video processing is performed. We developed several variations of the Gaussian

mixture models foreground detector with the goal of being able to detect stationary objects and

resolve merged measurements produced by interacting targets. By zeroing out the background

update rate of target-associated pixels we are able to indefinitely detect stationary objects. Further-

more, by placing a threshold on the minimum blob area we are able to prevent large groups of false

positive foreground pixels from persisting.

In order to resolve merged measurements, we borrowed a technique from moving camera

foreground detection. We perform frame-to-frame feature matching, superimpose the foreground

mask, and cluster the optical flow vectors according to which blob they belong to. The opti-

cal flow vector clusters are further refined using sequential-RANSAC, thus decomposing a single

merged measurement into several distinct, target-associated measurements. Additionally, by using

sequential-RANSAC inside the R-RANSAC framework, we irrefutably show that the two algo-

rithms are fundamentally different.

The final contribution of this thesis is an explanation and demonstration of how machine

learning can improve target tracking. The Sequence Model learns target trajectories and is lever-

aged to improve data association in tracking scenarios with infrequent measurement updates and a

high proportion of clutter measurements.
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APPENDIX A. FULL SIMULATION RESULTS FROM CHAPTER 9

Table A.1: Full Simulation Results - Baseline- high

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 7.5822 0.6990 0.2641 0.0023 0.0347 57.4381 58.5284
Trial 2 7.5999 0.6696 0.2717 0.0145 0.0441 57.7698 58.6401
Trial 3 8.7440 0.6961 0.2190 0.0152 0.0697 57.6521 59.0511
Trial 4 8.0920 0.6957 0.2405 0.0147 0.0491 57.7091 58.9248
Trial 5 7.9957 0.7033 0.2250 0.0096 0.0621 56.5362 57.7615

Table A.2: Full Simulation Results - Baseline - low

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.7485 0.8175 0.0783 0.0860 0.0183 48.9670 50.1087
Trial 2 11.4553 0.8524 0.0533 0.0498 0.0445 45.0487 46.2762
Trial 3 11.8237 0.8315 0.0756 0.0718 0.0211 46.6476 48.8707
Trial 4 11.2651 0.8197 0.0815 0.0550 0.0437 47.1359 49.7353
Trial 5 11.4224 0.8043 0.0964 0.0550 0.0443 46.8461 48.6458

Table A.3: Full Simulation Results - Adaptive

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.2743 0.7963 0.1512 0.0100 0.0425 48.4815 50.7288
Trial 2 10.7178 0.8039 0.1359 0.0397 0.0206 50.2255 51.6448
Trial 3 10.2809 0.7836 0.1410 0.0269 0.0486 48.7575 50.3411
Trial 4 10.1307 0.7801 0.1967 0.0059 0.0174 50.6869 51.2779
Trial 5 10.2729 0.7895 0.1737 0.0040 0.0328 49.5152 50.7423
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Table A.4: Full Simulation Results - Zero - α = 0.1,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.7194 0.8884 0.0648 0.0408 0.0061 36.8021 37.1853
Trial 2 10.8873 0.8738 0.0531 0.0538 0.0192 36.1374 36.3658
Trial 3 11.1601 0.8844 0.0530 0.0560 0.0066 38.4471 39.5978
Trial 4 10.9012 0.7959 0.0316 0.1494 0.0230 42.0576 42.5725
Trial 5 10.7703 0.8758 0.0794 0.0393 0.0055 37.1769 37.8734
Trial 6 10.8518 0.8278 0.0270 0.1258 0.0194 42.4530 42.8581
Trial 7 11.3942 0.8206 0.0206 0.1525 0.0063 42.7442 43.3957
Trial 8 10.8412 0.8917 0.0560 0.0311 0.0213 36.4326 36.7550
Trial 9 10.9195 0.9185 0.0437 0.0315 0.0063 35.5460 36.5712
Trial 10 10.9651 0.8130 0.0338 0.1256 0.0276 42.9238 43.3160

Table A.5: Full Simulation Results - Zero - α = 0.1,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.8341 0.9054 0.0838 0.0058 0.0050 35.3456 36.1758
Trial 2 10.8347 0.8917 0.0543 0.0350 0.0190 37.6649 38.4433
Trial 3 10.3914 0.8242 0.1676 0.0016 0.0066 44.7717 45.4048
Trial 4 10.5373 0.8526 0.1107 0.0215 0.0152 45.6632 46.7002
Trial 5 11.3600 0.8436 0.0654 0.0834 0.0077 43.0433 44.0596
Trial 6 10.4612 0.8306 0.1470 0.0102 0.0121 44.9793 45.9544
Trial 7 10.8627 0.9097 0.0642 0.0192 0.0069 38.5395 38.8406
Trial 8 10.5977 0.8310 0.1036 0.0369 0.0285 47.3138 47.8596
Trial 9 10.6208 0.8666 0.1077 0.0172 0.0085 43.5148 44.5180
Trial 10 10.7600 0.8438 0.0765 0.0612 0.0184 42.7328 44.0505

Table A.6: Full Simulation Results - Zero - α = 0.005,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.4075 0.8002 0.0000 0.1979 0.0019 41.0846 41.4172
Trial 2 11.2557 0.8413 0.0132 0.1298 0.0157 35.0781 35.6587
Trial 3 11.1032 0.8345 0.0003 0.1629 0.0023 36.4955 36.9032
Trial 4 11.3082 0.8374 0.0035 0.1442 0.0149 36.9775 37.5921
Trial 5 11.1636 0.8126 0.0036 0.1812 0.0026 39.6542 39.9542
Trial 6 11.0314 0.8110 0.0028 0.1723 0.0139 37.8119 38.3079
Trial 7 11.0176 0.8514 0.0126 0.1332 0.0028 36.4305 36.8051
Trial 8 10.9914 0.8168 0.0118 0.1529 0.0184 38.0112 38.3493
Trial 9 11.0180 0.8341 0.0063 0.1349 0.0246 35.6971 36.3612
Trial 10 10.9692 0.8506 0.0160 0.1303 0.0031 35.7349 36.0481
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Table A.7: Full Simulation Results - Zero - α = 0.005,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.0739 0.8511 0.0188 0.1275 0.0026 36.3337 36.9539
Trial 2 11.2492 0.8200 0.0184 0.1474 0.0141 38.2564 38.9401
Trial 3 11.1336 0.8468 0.0047 0.1460 0.0026 38.8191 39.1225
Trial 4 11.0901 0.8936 0.0098 0.0819 0.0147 31.1897 31.7011
Trial 5 11.1958 0.8867 0.0017 0.1087 0.0028 33.4682 33.8183
Trial 6 11.1482 0.8998 0.0194 0.0686 0.0122 32.8995 33.8968
Trial 7 11.5115 0.9029 0.0414 0.0513 0.0044 35.0763 35.6078
Trial 8 11.0683 0.8820 0.0038 0.1002 0.0140 32.0743 32.4885
Trial 9 11.4672 0.8610 0.0157 0.1196 0.0036 34.4249 34.9311
Trial 10 11.7045 0.7856 0.0207 0.1687 0.0250 42.4117 43.2065

Table A.8: Full Simulation Results - Zeromin - α = 0.1,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.5172 0.8816 0.0798 0.0309 0.0077 40.6464 41.8900
Trial 2 10.6984 0.8937 0.0913 0.0040 0.0109 36.4449 36.7442
Trial 3 10.7624 0.9040 0.0757 0.0151 0.0052 35.3957 36.7978
Trial 4 10.7615 0.8672 0.0772 0.0417 0.0139 38.4657 39.9197
Trial 5 10.9192 0.8041 0.1223 0.0597 0.0139 51.6094 52.1750
Trial 6 11.2688 0.8540 0.0488 0.0678 0.0293 42.8794 43.8836
Trial 7 10.9328 0.9056 0.0474 0.0416 0.0055 36.4340 36.8229
Trial 8 10.8717 0.9167 0.0599 0.0108 0.0126 36.9677 39.5807
Trial 9 11.0082 0.8772 0.0911 0.0254 0.0063 40.2323 40.6879
Trial 10 11.2889 0.8372 0.0428 0.0916 0.0284 42.9172 44.5943

Table A.9: Full Simulation Results - Zeromin - α = 0.1,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.5172 0.8816 0.0798 0.0309 0.0077 40.6464 41.8900
Trial 2 10.6984 0.8937 0.0913 0.0040 0.0109 36.4449 36.7442
Trial 3 10.7624 0.9040 0.0757 0.0151 0.0052 35.3957 36.7978
Trial 4 10.7615 0.8672 0.0772 0.0417 0.0139 38.4657 39.9197
Trial 5 10.9022 0.7875 0.1223 0.0597 0.0305 51.6094 52.1750
Trial 6 11.5835 0.8769 0.0488 0.0678 0.0065 42.8794 43.8836
Trial 7 10.9122 0.8966 0.0474 0.0416 0.0145 36.4340 36.8229
Trial 8 10.8717 0.9167 0.0599 0.0108 0.0126 36.9677 39.5807
Trial 9 11.0082 0.8772 0.0911 0.0254 0.0063 40.2323 40.6879
Trial 10 11.8030 0.8574 0.0428 0.0916 0.0082 42.9172 44.5943
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Table A.10: Full Simulation Results - Zeromin - α = 0.005,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.9250 0.8284 0.0323 0.1254 0.0140 37.1294 37.8760
Trial 2 11.0898 0.9284 0.0066 0.0628 0.0022 27.0845 27.5767
Trial 3 11.0034 0.8555 0.0151 0.1160 0.0135 35.4752 36.2123
Trial 4 11.1282 0.8896 0.0262 0.0815 0.0027 31.5082 32.1901
Trial 5 10.9062 0.8999 0.0301 0.0608 0.0091 29.9748 30.2187
Trial 6 11.0314 0.8816 0.0429 0.0726 0.0028 33.7401 34.0207
Trial 7 11.1937 0.8590 0.0215 0.1043 0.0152 33.4871 34.3611
Trial 8 11.1496 0.9376 0.0192 0.0397 0.0035 26.3833 26.8060
Trial 9 11.5192 0.8516 0.0148 0.1160 0.0176 36.4004 36.7720
Trial 10 11.0457 0.9193 0.0141 0.0646 0.0020 28.4367 29.1544

Table A.11: Full Simulation Results - Zeromin - α = 0.005,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.2794 0.8241 0.0685 0.1037 0.0038 42.0920 42.7454
Trial 2 11.2309 0.8523 0.0714 0.0581 0.0182 39.0569 39.3263
Trial 3 11.2547 0.9088 0.0222 0.0665 0.0026 29.2292 29.7014
Trial 4 10.9515 0.9045 0.0354 0.0495 0.0106 31.5353 32.2946
Trial 5 11.0251 0.9142 0.0118 0.0713 0.0027 32.5043 32.7694
Trial 6 11.2093 0.9050 0.0375 0.0492 0.0082 30.8149 31.7922
Trial 7 11.2095 0.8729 0.0296 0.0938 0.0038 35.3686 36.1199
Trial 8 11.1493 0.9298 0.0417 0.0214 0.0071 27.3853 28.1566
Trial 9 11.2533 0.9026 0.0245 0.0698 0.0031 31.1935 31.4603
Trial 10 11.3151 0.9200 0.0204 0.0472 0.0124 29.4415 30.1220

Table A.12: Full Simulation Results - Velocity - α = 0.005,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 8.7964 0.8789 0.0674 0.0288 0.0249 35.7624 39.8710
Trial 2 9.0627 0.9022 0.0398 0.0465 0.0114 31.8726 32.5877
Trial 3 8.9928 0.8676 0.0725 0.0382 0.0217 36.4804 37.2353
Trial 4 9.5302 0.9104 0.0313 0.0490 0.0093 30.8351 31.3276
Trial 5 9.3188 0.8805 0.0600 0.0358 0.0237 35.9392 37.9527
Trial 6 9.0237 0.8484 0.1036 0.0284 0.0196 41.4958 42.3791
Trial 7 8.7584 0.8760 0.0776 0.0229 0.0235 35.2213 35.7987
Trial 8 9.3145 0.8820 0.0753 0.0262 0.0164 37.1895 40.7401
Trial 9 8.9922 0.9031 0.0525 0.0289 0.0155 33.7638 34.6261
Trial 10 8.9690 0.8784 0.0759 0.0239 0.0218 35.3279 35.8971
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Table A.13: Full Simulation Results - Velocity - α = 0.005,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 9.0142 0.8979 0.0960 0.0001 0.0059 34.1064 34.5179
Trial 2 8.7665 0.8764 0.1162 0.0005 0.0069 36.0859 36.3887
Trial 3 8.7632 0.8597 0.1361 0.0000 0.0042 38.1389 38.3296
Trial 4 9.0270 0.8703 0.1204 0.0016 0.0077 36.4818 36.8726
Trial 5 8.2211 0.8750 0.1189 0.0003 0.0058 35.7138 36.0790
Trial 6 8.8402 0.8719 0.1161 0.0044 0.0075 36.8910 37.2414
Trial 7 8.6675 0.8625 0.1297 0.0003 0.0075 37.4888 37.7733
Trial 8 8.4561 0.8664 0.1273 0.0001 0.0062 36.6757 37.0652
Trial 9 8.6743 0.8792 0.1103 0.0016 0.0089 35.2488 35.6300
Trial 10 8.2509 0.8620 0.1324 0.0017 0.0039 37.9146 38.1402

Table A.14: Full Simulation Results - Zerominghost - α = 0.005,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.1100 0.8472 0.0305 0.1056 0.0167 35.8987 37.0320
Trial 2 10.9301 0.8422 0.1108 0.0441 0.0028 39.7450 39.9684
Trial 3 11.2189 0.8647 0.0651 0.0586 0.0116 36.7196 37.4342
Trial 4 11.2272 0.8932 0.0174 0.0865 0.0030 33.5375 34.2893
Trial 5 11.1872 0.9240 0.0301 0.0331 0.0128 26.9779 28.0600
Trial 6 10.9044 0.8141 0.1157 0.0654 0.0048 43.8552 44.2550
Trial 7 10.8594 0.8793 0.0098 0.0936 0.0172 36.6675 37.1632
Trial 8 11.3404 0.8879 0.0553 0.0521 0.0047 37.4255 37.8949
Trial 9 10.9876 0.8364 0.0180 0.1275 0.0180 36.8599 37.8545
Trial 10 11.2320 0.8995 0.0125 0.0838 0.0042 34.7922 35.3431

Table A.15: Full Simulation Results - Zerominghost - α = 0.005,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 10.8791 0.8600 0.0623 0.0546 0.0231 42.2754 42.6909
Trial 2 10.9804 0.8319 0.0562 0.1069 0.0050 41.0038 41.4043
Trial 3 10.7066 0.7846 0.1180 0.0737 0.0237 45.0680 45.4858
Trial 4 11.8990 0.7759 0.0484 0.1691 0.0066 44.6145 47.7048
Trial 5 11.1095 0.7600 0.0091 0.2077 0.0231 42.9632 43.3607
Trial 6 11.2778 0.9157 0.0359 0.0432 0.0052 31.1265 32.0680
Trial 7 10.8116 0.8089 0.0311 0.1375 0.0226 43.8788 44.9683
Trial 8 11.2057 0.8388 0.0180 0.1390 0.0042 38.1748 39.1816
Trial 9 11.3983 0.8175 0.0077 0.1500 0.0249 39.8669 41.1724
Trial 10 11.0153 0.8078 0.0530 0.1338 0.0054 44.8262 45.3243
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Table A.16: Full Simulation Results - Velocityghost - α = 0.005,τT = 3

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 8.2183 0.8284 0.1344 0.0116 0.0257 43.7518 44.2249
Trial 2 8.0944 0.9194 0.0592 0.0124 0.0090 29.6698 30.0724
Trial 3 8.6719 0.8483 0.0935 0.0312 0.0270 39.7048 40.0592
Trial 4 9.0550 0.9058 0.0483 0.0350 0.0109 32.2706 33.4757
Trial 5 9.0467 0.9009 0.0542 0.0296 0.0153 33.9578 34.6820
Trial 6 9.4188 0.8917 0.0695 0.0214 0.0174 35.7672 37.8909
Trial 7 8.5143 0.8491 0.1051 0.0203 0.0256 41.8884 42.2496
Trial 8 8.6617 0.8898 0.0693 0.0257 0.0152 35.5528 36.2906
Trial 9 8.6590 0.8750 0.0786 0.0233 0.0231 37.2588 37.8664
Trial 10 9.4544 0.8963 0.0576 0.0317 0.0144 36.1780 36.8443

Table A.17: Full Simulation Results - Velocityghost - α = 0.005,τT = 20

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 8.5582 0.8828 0.1073 0.0011 0.0087 34.7554 34.9799
Trial 2 8.9095 0.8773 0.1156 0.0019 0.0052 36.7952 37.3108
Trial 3 8.6067 0.8733 0.1189 0.0001 0.0077 36.1418 36.5784
Trial 4 7.8213 0.8051 0.1886 0.0000 0.0063 45.2819 45.6383
Trial 5 8.6588 0.8710 0.1172 0.0020 0.0098 36.7155 37.1597
Trial 6 8.5598 0.8616 0.1312 0.0013 0.0059 37.6023 38.0048
Trial 7 8.5792 0.8706 0.1181 0.0034 0.0079 36.6521 39.8571
Trial 8 8.6190 0.8707 0.1244 0.0000 0.0048 36.4084 36.7789
Trial 9 7.9821 0.7973 0.1936 0.0000 0.0091 45.1434 45.5250
Trial 10 8.5306 0.8656 0.1266 0.0026 0.0052 36.6034 36.8314
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APPENDIX B. FULL SIMULATION RESULTS FROM CHAPTER 10

Table B.1: Full Simulation Results - Learning - 9

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 0.4925 0.9736 0.0000 0.0264 0.0000 4.6875 4.7111
Trial 2 0.4960 0.9810 0.0000 0.0183 0.0007 3.8230 3.8567
Trial 3 0.4995 0.9784 0.0000 0.0216 0.0000 4.5513 4.5850
Trial 4 0.4963 0.9794 0.0000 0.0194 0.0011 4.1712 4.1950
Trial 5 0.4959 0.9840 0.0000 0.0160 0.0000 3.5164 3.5452

Table B.2: Full Simulation Results - No Learning - 9

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 0.4460 0.9449 0.0261 0.0209 0.0081 12.9076 13.1079
Trial 2 0.4365 0.9538 0.0147 0.0252 0.0064 11.0228 11.1990
Trial 3 0.4449 0.9406 0.0206 0.0309 0.0080 13.2314 13.4156
Trial 4 0.4520 0.9394 0.0211 0.0290 0.0105 13.5637 13.7473
Trial 5 0.4463 0.9356 0.0211 0.0345 0.0088 13.4601 13.6339

Table B.3: Full Simulation Results - Learning - 13

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 1.1867 0.9857 0.0000 0.0139 0.0005 3.9609 3.9904
Trial 2 1.1875 0.9747 0.0000 0.0238 0.0016 5.3056 5.3351
Trial 3 1.1857 0.9833 0.0000 0.0156 0.0011 3.7952 3.8247
Trial 4 1.1950 0.9819 0.0000 0.0176 0.0005 4.4193 4.4434
Trial 5 1.1867 0.9836 0.0000 0.0164 0.0000 4.3256 4.3256
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Table B.4: Full Simulation Results - No Learning - 13

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 1.6484 0.7768 0.1660 0.0061 0.0510 36.4406 37.0450
Trial 2 1.6780 0.7955 0.1520 0.0082 0.0443 36.3604 36.9657
Trial 3 1.7240 0.7784 0.1603 0.0103 0.0509 37.0060 37.6476
Trial 4 1.7008 0.8005 0.1322 0.0111 0.0563 33.8424 34.5008
Trial 5 1.7992 0.7969 0.1397 0.0083 0.0551 35.6311 36.2673

Table B.5: Full Simulation Results - Learning - 17

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 11.1847 0.8784 0.0082 0.0832 0.0302 19.5406 19.7282
Trial 2 11.3019 0.8653 0.0108 0.0903 0.0335 21.2663 21.5220
Trial 3 11.1630 0.8727 0.0081 0.0875 0.0317 19.6854 19.9011
Trial 4 11.1782 0.8733 0.0076 0.0886 0.0305 20.3652 20.6013
Trial 5 11.1768 0.8552 0.0076 0.1059 0.0313 20.9560 21.1778

Table B.6: Full Simulation Results - No Learning - 17

MOTP MOTA MD FP MM OSPA OSPA-T
Trial 1 15.4279 0.5852 0.2642 0.0250 0.1256 60.3042 61.2909
Trial 2 15.3267 0.5711 0.2772 0.0225 0.1292 60.8655 61.8626
Trial 3 15.1853 0.5788 0.2770 0.0202 0.1240 60.1878 61.1615
Trial 4 15.4464 0.5692 0.2716 0.0282 0.1310 61.0113 61.9687
Trial 5 15.4093 0.5786 0.2689 0.0203 0.1322 60.1818 61.1723
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