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ABSTRACT

An Analysis of the Effectiveness of a Multi-Disciplinary Decision Support System on
System-Level Decision Making

Troy Mario Seletos
Department of Mechanical Engineering, BYU

Master of Science

Decisions Support Systems (DSSs) are used to enhance decision maker speed and effec-
tiveness. However, without a view of an entire system, any decision may have unanticipated effects
such as sub-optimal outcomes. The purpose of this research is to show that with a system-level
analysis, more informed decisions can be made that take into account a larger system or greater
number of dimensions or objectives. This research also explores the benefits of using a DSS over
analysis of unprocessed data and the effectiveness of integrating a product design generator (PDG)
with a business DSS, creating a system DSS, where system-level effects can be analyzed. These
are connected using software which allows them to be interactive, and dynamically updating. After
this DSS was developed a variation was also made and decision makers evaluated these tools to
identify how they performed in comparison to each other. In one variation, aspects of the tool were
split up, guiding the decision maker through the analysis while the other did not. Using survey
questions and recording decision makers’ actions, it was found that decision makers are signifi-
cantly faster and came to better conclusions when using the DSS over unprocessed data. However,
it was also seen that the difference between the two variants of the System DSS tests was insignif-
icant. This suggests that the limits in potential interactions in the one variant of a system DSS did
not substantially reduce the ability of a decision maker to explore and make good design decisions.
Overall this research showed that having a system-level tool is better than the unprocessed data,
and that more extreme differences in a DSS are required for improved comparisons to establish
which visualizations and elements are most effective in a System DSS. Future effort should be
made to completely isolate different portions of the System DSS and see how well users are able
to make decisions with it compared to the full system analysis.

Keywords: decision support system, product design generator, System DSS, multi-disciplinary
decision making, engineering systems
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CHAPTER 1. INTRODUCTION

Decision Support Systems (DSSs) are widely used in industry today. DSSs are software

tools made for the purpose of assisting individuals in making decisions by giving them the ability

to analyze data rapidly [4, 5]. The use of DSSs helps decision makers improve their decisions in

terms of both speed and accuracy [6, 7].

The lack of a system view can hinder the decision maker from choosing an optimal solution

for the system [8, 9]. A common mistake can result from focusing on and optimizing a specific

sub-system or a portion of the design space, at the expense of a global optimum across the entire

system. Paradoxically, if every individual sub-system is optimized for efficiency, effectiveness,

etc., there is no guarantee that the total system would be optimized, in many cases it would be

impossible to optimize all sub-systems due to differing design objectives [10].

In the following research, a DSS was developed for the purpose of testing if a system

view can help the decision maker beyond the non-System DSS. The System DSS consists of an

integrated product design generator (PDG) and business DSS. The integration of the two show in-

teractions in the system that may not have been considered if the two were not connected and gives

a better view of the system that is being affected. Using this DSS, experiments were performed to

show whether or not it was effective in increasing decision making capability. It is hypothesized

that the System DSS is a better method than unprocessed data or a constrained DSS (i.e. limiting

views on interactions) as the former shows more trends and relationships on interactions between

systems.

1.1 Problem Statement

DSSs have been developed and are used to help with analysis, however, even with the use

of DSSs, data analysis can have many problems [11]. Some challenges regarding the data include:

inaccurate data [12], delayed data [13, 14], excessive data [15], and unorganized data [16]. In
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addition, a continuing problem in industry is making effective decisions that take into consideration

system-wide effects [17]. Therefore, the combination of inadequate data analysis coupled with a

limited view of system-wide effects can result in poor decisions and designs. Without proper

understanding of these challenges, many DSSs are underutilized and potentially ill-constructed

[18]. Furthermore, as systems get larger and communication become faster, individuals struggle

to understand how to interpret the exponentially increasing amount of information [19]. Large

amounts of poorly presented data can cause decision makers to make worse decisions than if they

were presented with less, but focused data, because of the inherent limitations on their ability to

interpret all of the data simultaneously [20]. In other words, the decision makers perspective of the

system is limited as the system grows, which further hinders their ability to make good system-

level decisions.

Having poor or limited systems analysis can cause problems in engineering and business

[21]. An example from the automobile industry illustrates the lack of system communication,

analysis, and integration. An automobile company in Detroit decided to analyze an imported car

from Japan to better understand why the Japanese parts had better precision and reliability at lower

cost than the American cars. In their analysis, among other things, they found that the Japanese

company had used the same bolt three times to mount the engine, whereas the US company had

used three different bolts for their assembly. The company in Japan did not need the additional

wrenches and bolt inventories, which were used by the company in Detroit, and as a result assembly

was faster and cheaper for the company in Japan. In the US there were three teams of engineers,

each responsible for their bolt and mounting process. Although, in their limited perspective, they

each achieved the requirement of mounting the engine, each team used a different type of bolt.

In contrast, there was one designer in charge of engine mounting for the entire company in Japan

[17]. The three teams in Detroit did not have a system-wide view of their configuration, while the

designer in Japan did, and because of this was able to make a better system-level decision [22].

Another example of this is found in older manufacturing practices where each discipline

seeks to find an optimal solution for their own objective, resulting in the system never reaching the

global optimum [23]. The general practice was to build “quantities of scale” to decrease the cost

for each part manufactured. This became an effective way to increase efficiency inside a single

process. Although the efficiency for each batch is very high as it runs, without observing the effect
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on the system as a whole, it is hard to see that this does not reach the system’s potential level of

efficiency. If there is an error in a batch of processed goods, then it may not be discovered until that

batch is worked on later, which could be after thousands of parts have already been made, rendering

all of them defective. Also, it creates problems when customers have demand for different types

of products coming through the same machine. Generally, it would take so long to switch over

the machine to the other die that batch processing was the only feasible way to accomplish the

goal. This strategy required the manufacturer of the part to look forward and estimate how many

sales they believed would be made before the next batch was run. Furthermore, inventory costs

would rise from this technique because all of the batch parts could not be processed immediately.

It took an analysis of the system to realize that a “pull” system is a better method, where the parts

being produced are regularly and rapidly switched. “Single piece flow” resulted from a system-

level view. This process, compared to batch processing, is shown in Figure1.1. With the capacity to

change over quickly to different products, smaller inventories could be made and customer demand

can be followed more closely [24]. All of this knowledge of how to truly become more efficient

was gained by considering the entire system rather than one section of it.

Figure 1.1: One piece flow is a better system choice than batch processing, though batch processing
can seem more efficient without a system-level perspective [1]

Furthermore, in optimization problems, there are sometimes many “good” or “local” op-

timal points. As can be seen in Figure 1.2, there are many local minima, but only one global

minimum found in the center. Many of these points may provide a feasible solution and suit the

requirements of the design. However, without examining the entire surface, one may miss a much
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better point, which is the global optimum across all design parameters. This is analogous with

systems design, when employees or engineers focus more heavily on one area and may not find the

optimal global solution [10]. If a poor optimization algorithm was to start at a particular corner of

the example function, it would descend into the nearest “valley” and converge onto a local mini-

mum and deem it as the optimal point. However, without a view of the entire surface, an algorithm

(and likewise the disciplinarians in multi-dimensional systems design problem) may not find the

better global optimum.

Figure 1.2: A design space with many local optima, but only one global optimum (for minimiza-
tion) [2]

1.2 Background Research

Some recent studies have investigated the enabling technology from DSSs for improving

data analysis in multi-objective spaces. One study explored the development of a DSS that aids

in the emotional process of decision making [25]. Another study explored performing dynamic

analysis on temporal (time-dependent) data to create a dynamically updating DSS [26]. Another

develops a system that is able to help the decision maker with situational awareness to better un-
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derstand the performance of different applications [27]. Others focus on optimization models for

business planning [28]. In the realm of product development, researchers experimented with how

decision makers implement new products effectively [29]. Finally, multiple articles discuss creat-

ing automated product designs through a product design generator (PDG) [30, 31]. An example

of a DSS is shown in Figure 1.3. This DSS was made to help the Upper Midwest Environmental

Sciences Center (UMESC) make decisions about “land acquisition, environmental review, man-

agement planning, and provide a valuable tool for communication and outreach”.

Figure 1.3: A DSS used by the UMESC

Though the use of DSSs is usually well received, the use of a system-wide DSS has not

been thoroughly explored. Most would agree that a DSS is more time effective than traditional

analysis with unprocessed data. However, the implementation and use of such tools is limited and

in many cases not developed to account for the entirety of the system it affects.

With effective DSSs, employees at all levels can potentially make improved decisions be-

cause they have a better view of the entire system based on quantitative analysis. DSSs have
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become more common in the past years, especially with the advancement in computer technol-

ogy [32]. Research is ongoing into how DSSs increase effectiveness and help with decision making

by focusing the DSS on useful information [33]. These efforts have resulted in the development of

improved systems geared toward many different industries or needs, such as ambulance dispatch or

flood warnings in California [34,35]. DSSs facilitate data fusion to support better decision making

when time for additional data analysis is unavailable. One way to increase productivity is the effect

of having information dynamically update because it allows user to analyze the data faster [36].

PDGs have also been developed for instantaneous product design updates [37]. With these PDGs,

creating a product that is aesthetically pleasing, structurally sound, and meets design requirements

can be evaluated with respect to its predicted success in the market [38]. Despite these advance-

ments, the effectiveness of a dynamically updating, multi-disciplinary, integrated, decision support

system has not been fully explored across all possible interactions.

Building upon past efforts, this research explored if interactive, dynamically updating DSSs

based on engineering models helped decision makers ascertain better system-wide conclusions. In

many cases, engineers do not make optimal business decisions because they cannot see how their

decisions affect the business in the long run. This research aims to show that detailed systems

models can help all stakeholders (i.e. engineers, analysts, management, and operators) better un-

derstand the connection between the engineering processes and economic factors as well as make

faster decisions that take into account the effects of the whole system.

1.3 Research Questions and Objectives

The objective of this research is to test if an interactive, dynamically updating, multi-

disciplinary, integrated, decision support system which brings multi-disciplinary data together in

an organized way, assists in the decision-making process, specifically in the case where a new

product is under consideration to be added to a company’s current product lineup. Furthermore,

two questions this research seeks to answer are 1) How much better is a DSS for decision making

than using unprocessed data 2) In which ways is a view of system interactions more beneficial

than a singular view of a process? The ability to view interactions between DSSs, namely an in-

tegrated product design generator and integrated business decision support system, has also not

been sufficiently explored. To achieve this objective, a DSS was developed, based on business data
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and engineering models, and tested to evaluate its effectiveness in helping with decision making.

Experiments and survey questions from decision makers were executed and answered to evaluate

the DSSs measures of performance. To enable this testing, JMP [39] a dynamic graphical soft-

ware was integrated with Solidworks [40], for product engineering, and Matlab [41], for business

optimization, in a unified System DSS.

This research contributes to engineering design by evaluating how connecting automated

design models in DSSs can help decision makers better understand multi-dimensional systems. It

is hypothesized the decision makers can make better overall decisions because they have a better

understanding of the interactions between the engineering models and business relationships within

a company. Decision makers can see how their actions positively or negatively affect a system as

the DSS generates results in near real-time and analyzes effects from any change in the inputs. A

knowledge of these system-level impacts can improve the decision maker’s confidence in making

choices as well as help them choose more effective system solutions. If system models are adopted,

engineering companies can be more competitive with better designs from better decisions that take

into account interactions between engineering and business parameters.

The following are the hypotheses that the research explores:

• The DSS allows for the understanding of what trade-offs can be made between the business

and product design aspects

• The DSS increases the understanding of the effect of product design on a business

• The DSS shows that a system linked analysis improves system-level decisions

• Decision makers can see how small changes affect the system

• The DSS improves the ability to make decisions

• The DSS creates a better view of engineering and business interactions than unprocessed

data

• The integrated data supports reaching better decisions than unprocessed data

• More choices can be analyzed in the DSS than with the same amount of time using unpro-

cessed data
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1.4 Thesis Overview

The remainder of this thesis is organized with Chapter 2 discussing and presenting the

methodology and overall approach to address the research objective and contains all the informa-

tion about how the DSS was constructed, including the PDG, the business DSS, and the integration

of the two systems. Chapter 3, Evaluation and Assessment, presents information on the testing

plan to evaluate how decision makers use and assess the System DSS. It also discusses the differ-

ence between the two variants of the System DSS. The Results and Analysis chapter, Chapter 4,

contains the results from the testing and discusses the conclusions drawn from that analysis. A

conclusion chapter, Chapter 5, wraps up this research, presents limitations, and discusses potential

future work.
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CHAPTER 2. METHODOLOGY

2.1 Overview

A variety of DSSs could be used to address the questions posed in the previous chapter. It

could be one of seemingly infinite combinations of analysis tools crafted into system-level tools

further tested by comparing them to the unprocessed data with which they were developed. The

methodology described here was chosen for a number of reasons. It was preferred, though not

necessary, that the DSS could be used in a real setting, or to help in making a decision in a real-

world problem. This was achieved by working with a company who wanted to know if adding a

bariatric chair to their company’s current product lineup was a good idea. This real-world problem

met the criteria of what was needed to justify integrating a PDG and Business DSS into a System

DSS. The System DSS would be able to answer the question of what needed to be done to the

current business to increase profitability as well as what effects introducing this specific product

would have on the overall business given the chosen product design parameters. To make this

multi-objective system function, a DSS was constructed by creating an optimizer for the business

inputs. After this was done a product design generator was developed to help parametrically design

the bariatric chair. After the development of these two sections, they were integrated into one

System DSS inside JMP, where both systems could be analyzed. This section discusses in detail

the development of the PDG as well as the business DSS.

2.2 Approach

A number of requirements were established to develop a functional DSS for analysis. Most

importantly, the DSS includes all necessary information for the decision maker to make a system-

level decision. The DSS supports decisions about thr new engineering product line in which the

product can be designed from the ground up. It is parametrically developed with design param-
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eters for the various key dimensions. The input parameters are rendered in a CAD system for

visual analysis of the tool. The product’s structural integrity is also analyzed with the PDG. The

business data is analyzed to establish relationships between the number of product lines, adver-

tising expenses, raw materials cost, and their effects on the overall profitability of the company.

The parametric engineering model is connected to the business data and effects are shown on the

interaction between the two. For example, if the decision maker changes the wall thickness of the

product, the DSS illustrates the decisions impact on the overall profitability of the company. In

another decision, if new product lines are added, it displays how the total revenue is affected. Inte-

grating this information, decision makers are able to make better informed system-level decisions

from a variety of perspectives, including technical and non-technical views.

The product design generator parametrically modifies a bariatric shower chair similar to

the one shown in Figure 2.1. Although, shower chairs are a common item on the market, shower

chairs with weight capacities of over 500 pounds are not commonly available. Using the parametric

design tool, a person can easily create a chair which has the ability to support weights of well over

500 pounds. With the product design generator there are many combinations for the design of the

chair and an optimal solution can be found.

The business DSS is tailored to a company that works in making bariatric bathroom prod-

ucts. The product lines and sales are modeled after the real data from the company. The inputs

include elements such as advertising spent, product lines per product family, and advertising distri-

bution per product family. Using these parameters, items such as overall profit, number of employ-

ees, and various expenses can be readily calculated. Integrating the business data with the product

design generator shows more effectively how the designer can make a system conscious decision.

Processing the data facilitates understanding as decision makers interact with the System

DSS to see how changing input parameters effect other aspects of the system. A high-level, concept

map, displayed in Figure 2.2, shows the linkage between the engineering and business modules.

The elements from the PDG are outlined on the left in dashed purple and the Business DSS is

outlined on the right in dashed pink. The input parameters to each of the various modules are

shown in red boxes, with the analysis programs in orange, the System DSS module in green, and

the final output information in blue. Each of the inputs are sent to their respective analysis program,

then from those two modules information is passed into the System DSS. The System DSS then
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Figure 2.1: A real shower chair similar to the one that can be designed in the PDG. This chair
design has a maximum weight capacity of 350lbs [3]

provides the output values. This process enables the decision maker to iterate quickly on all input

parameters, explore the effects across the system, and identify optimal solutions. In summary, the

following tasks were completed to meet the research objective:

• Develop a dynamically updating product design tool (PDG) based on engineering models

and analysis (CAD, structural analysis, and product visualization).

• Develop a dynamically updating business DSS to display impacts from business operation

inputs.

• Integrate the PDG and business DSS into the system-level DSS.

• Analyze the effectiveness of the system-level DSS by measuring speed and accuracy of de-

cisions and collect evaluations from test subjects on DSS usefulness and performance.
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Figure 2.2: Conceptual diagram of the System DSS with the PDG on the left and business DSS on
right

2.3 Product Design Generator

The product design generator (PDG) is used to assist in the product design process with the

capability of generating thousands of potential designs in near real-time [37,42]. The PDG accepts

user-defined inputs and updates the product and all of its specifications dynamically. As mentioned

above, a parametrically designed bariatric shower chair was selected to support the current decision

faced by the sponsoring company’s decision makers.

2.3.1 PDG Model Development and Formulation

The PDG uses many different calculations and assumptions to generate designs and spec-

ifications. One key calculation is an estimate of a maximum load Fl in normal conditions on the

bariatric shower chair. This is calculated by using equations 2.1 and 2.2 where the acceleration

found in the first equation is substituted into the second equation:

V 2 =V 2
0 −2a∆y (2.1)
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Fl = ma+m(
V 2

0
2∆y

) (2.2)

where V is the final velocity (set to 0), V0 is the initial sit velocity (assumed to be 3ft/s), a is

acceleration, ∆y is the slowing distance (assumed to be .25ft), and m is the mass of the user. This

equation is then split across the four legs, and the worst case scenario occurs when the user of the

chair sits with most of their weight onto one leg. This worst case assumes that the user applies 77%

to one leg, with 90% of their weight onto the back portion and 85% of that weight on one of the

sides. The factors of safety for buckling in the legs were calculated using the buckling equation:

Fb =
πEI
(KL)2 (2.3)

where F is the maximum critical force, E is the modulus of elasticity, I is the area moment of

inertia, l is the length of the column, and K is the effective column length factor (which is 2 in

this case). The maximum critical force was then divided by the worst case force Fl to calculate

the factor of safety FoSb shown in equation 2.4. All factors of safety under two were considered

unacceptable to the design and would add penalties to the final profitability if selected.

FoSb =
Fb

Fl
(2.4)

The factors of safety for stress in the width and depth of the seat base, strength of the back

post, and bending in the back were also calculated. The stress in the seat base was calculated in

the x and z directions with y pointing in the vertical direction. Boundary conditions were created

such that points are fixed at the position of the legs with the weight placed at the center of the seat

base. This was the case for the x and z analysis. Bending in the back of the seat was calculated

assuming fixed points at the left and right edges where the supports are located. Lastly, a bending

calculation was made on the seat support posts, where the weight was focused onto the top middle

of the seat back and the supports were fixed to the top of the seat base.

The maximum stress σm on the material was calculated using the stress equation:

σm =
Mc
I

(2.5)
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where M is the bending moment, c is the distance to the neutral axis from the edge of the material,

and I is the second moment of inertia. The factor of safety FoSs was calculated using equation 2.6

where the yield stress σy was that of PVC (5000 PSI [43]) and it was divided by the maximum

stress σm from above.

FoSs =
σy

σm
(2.6)

The chair model was updated by a connection to Solidworks. This was done by sending

the 10 chair parameters (shown in Figure 2.3) to Solidworks, reevaluating the CAD model, and

passing back the new information including the picture and volume information. Using this tool

multiple parametric designs could be generated when changing design variables, with examples of

chairs from changing two parameters shown in Figure 2.4. In these examples the seat thickness is

changed on the y-axis and the back height is changed on the x-axis.

However, since it required about twenty seconds per run to render each of these chairs,

the objective for a real-time analysis capability was not reached. To enable near real-time anal-

ysis, 1500 designs were created using a Latin hypercube to uniformly explore the design space.

Pictures and values were saved for each design setting. A nearest neighbors algorithm was then

implemented in the System DSS to enable the comparison of the current chair parameters to the

closest parameters of a saved design and then load the saved picture of that design in near real-time.

The code for the connection to Solidworks is shown in the URL contained in Appendix A.1

Without running the Solidworks model every time, the volume could not be adequately

calculated. Therefore, a separate method was needed to calculate that output. Although using

a nearest neighbors algorithm on the 1500 chair designs provided the associated volumes, which

could be used to interpolate different design volumes, a neural network was used to provide greater

accuracy. Using the same 1500 runs a neural network was run which created an equation that could

predict the volume of the chair for any input configuration. Once this neural net equation was

integrated with the DSS, the full PDG could run in near real-time. The equation general from the

neural network is shown in the URL in Appendix A.2.
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Figure 2.3: The adjustable parameters of the chair are shown in their respective places

Finally, the unit cost was calculated by the amount of material used in the chair and an

estimated added manufacturing cost. The investment cost was estimated from similar products

that the company had designed previously.

2.3.2 PDG Description and Operation

The product design generator has multiple inputs as shown in Figure 2.5 such as chair

load, leg height, leg diameter, leg wall thickness, seat width, seat depth, seat thickness, seat wall

thickness, back height, back thickness, and back wall thickness. Using mouse actions the decision

maker is able to adjust any of these values through the control element accordingly. As the various

sliders update, the picture and output parameters also change. Using these sliders, the decision
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Figure 2.4: Bariatric chairs that can be parametrically designed through Solidworks changing 1)
the seat thickness (varied in the y-axis) and 2) the back height (varied in the x-axis)

maker can quickly find a chair that is suitable based on desired objectives and preferences for

the company. In addition to adjusting parameters, the decision maker can generate both random

models as well as create an exact model of the design in SolidWorks by clicking the “Create

Exact CAD” button just below the sliders on the input section of the PDG. The right hand side

of the PDG displays a number of output design values, including the factors of safety for the legs

buckling, back bending, posts bending, and seat bending in width and depth (see Figure 2.6).

Other outputs of the PDG include weight, appearance, unit cost, potential design errors,

and investment cost to build the chair. Using all of these outputs the decision maker can decide on
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Figure 2.5: A detailed view of the input design parameters for the PDG

a design that is suitable for the needs of the customer while focusing on minimizing costs for the

company. Also, if they want the chair to be extra robust in certain areas, they can easily make this

change. The point of this kind of interactivity is to enable a decision maker to select exactly what

they want and understand what the parameters they change are affecting.

The decision maker also has the ability to save their designs into one of the five save slots,

entering the save number they want to use, and then pressing “Save Product Values.” They could

then recall that saved chair by clicking the respective number in the five save slots.

As input parameters are changed an image of the product can also be viewed inside the

PDG. This image updates according to how close it is to one of the 1500 designs that are pre-

processed. A few of these designs are shown in Figure 2.7.

Once these sections are combined the PDG is complete with a screenshot shown in Fig-

ure 2.8.
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Figure 2.6: A detailed view of the output design parameters for the PDG

Figure 2.7: 28 possible designs among the 1500 different chairs pre-processed by the PDG
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Figure 2.8: The PDG portion of the System DSS

2.4 Business Decision Support System

Optimization is a growing field with increasing areas of application. One of these areas

has been to optimize and improve business performance [44–46]. Due to the complex nature of a

business, the actual application of various optimization methods is difficult and generally involves

data mining and the hiring of analysts to break the business down into manageable and related

components [47, 48]. The costs of such tools can be prohibitively expensive for small, start-up

companies [49]. In order for these companies to remain competitive and have an opportunity to

survive in such a market, simplified optimization methods with readily available information and

tools need to be developed. Silva et al. provided one such example of how optimization can be

used to find effective business parameters [50].

An analysis on a small business [51] was performed using income and expenditure data

from 2006-2014 to identify critical parameters and relationships that influence the overall prof-

itability of the company. Optimizing these critical parameters, a business can make more profitable

choices specifically in areas of product development and investment [52].

2.4.1 Parameter Relationships

A business is a complicated conglomerate of many different facets of income and expen-

ditures [16].The methodology for setting up the small business model involved mapping out the

inputs and outputs of the business to determine how these facets relate in a company. The model
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also involved determining the constraints of the business which could reflect the long-term finan-

cial or growth goals of the company as well as any resource limitations.

The inputs of the business have been defined to include those aspects of the company that

are determined or controlled by those operating the company. In this case, the inputs included:

• Number of employees

• Employee Salaries

• Floor size of working location

• Advertising investment

• Product lines being sold in the various product families

• Product sales markup

• Inventory retained

• Advertising split among product families

Each of these inputs are dependent on each other to some extent. The top level variables

which would be changeable by the user inside the DSS were chosen by observing which depen-

dencies existed among all the variables and which would be able to update without inputs beyond

what had already been given. The top level inputs include the total money spent on advertising, the

markup per product family, the advertising percentage for each product family, and the number of

product lines per product family. The products were separated into four different families for anal-

ysis on product types rather than individual product lines because each product family performed

differently in terms of sales revenue. This created a total of thirteen input variables.

The outputs of the business have been defined to be those things which occur as a result

of the business operation inputs but are not directly controlled by the business. The main outputs

include the quantity of each product sold and the overall profit of the company. All equations and

values used in this model were in terms of a annual summations, e.g. the annual quantity sold,

annual salary, or annual advertising cost.
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2.4.2 Business Model Formulation

Profit is sensitive to all of the chosen design variables. It was found that advertising, prod-

uct lines, and markup are all connected to the number of sales. As advertising increases, sales also

increase. With too much spent on advertising, however, the return on investment from that adver-

tising drops. The relationship profit has with advertising is best described by the law of diminishing

returns [53]. Marking up the product also affected the quantity of sales. With an excessive markup,

no one buys the product; with too little of a markup, the business is not profitable.

JMP® statistical software was used [39] to determine the relationships between the many

mentioned parameters provided by the sponsoring company. The equations relating the various

parameters were determined using fit models of actual past data discretized by year. The equations

determined using JMP® for use in the optimizer include the markup multiplier per product family

and the quantity of products sold per product family.

The markup multiplier equation per product family Ki was obtained using data of the quan-

tity sold of the product family versus markup at that quantity sold Mi. The regression equation

for this data followed a reciprocal trend meaning that as the markup increased the quantity sold

decreased. Five of these equations were needed, one for each of the five product families. An

example of one of these equations is shown in equation 2.7. All other examples are values used for

the bariatric chair equations which were derived from scaling one of the the other product lines.

Ki =
(−200+2000)∗ 1

Mi

50
(2.7)

The quantity of products sold per product family Qi was developed using a 2-dimensional linear

surrogate model which is a function of advertising expense per product family Ai and number

of product lines per family Li. Markup ratio was considered to be added into the surrogate but

was not included due to its low correlation according to step-wise regression. It was later added

more appropriately as a normalized scaling factor. Equation 2.8 shows a formula generated by the

regression process.

Qi = 5∗(Ki∗((−50)+0.0004065∗Ai+200∗Li+((Li)− .1125)∗((Ai−200)∗0.00039193))/10)

(2.8)

21



Other equations used but determined through means other than JMP include revenue per

line, total revenue, product investment cost, total product investment cost, total number of sales,

number of employees, inventory, office size, office cost, total salary cost.

Revenue from one line Ri was calculated by multiplying the projected quantity of sales by

the production cost Pc and the markup ratio as shown in equation 2.9. The production cost for the

chair in this instance is passed in by the PDG. In other lines it is already determined by the current

cost for the company to make that product.

Ri = Qi ∗Pc ∗Mi (2.9)

The total revenue Rt for the company was calculated by adding all the revenue from the individual

lines as shown in equation 2.10.

Rt =
5

∑
i=1

Ri (2.10)

Product investment cost Ii for that year was given by the number of new product lines multiplied

by the cost of adding a product line Di, divided over the number of years Y the company plans to

pay off the investment as shown in equation 2.11.

Ii = Li ∗Di/Y (2.11)

The total investment It for the company was calculated by adding all the investment costs from the

individual lines as shown in equation 2.12.

It =
5

∑
i=1

Ii (2.12)

The total number of sales Qt was calculated by adding the five product line sales together as shown

in equation 2.13

Qt =
5

∑
i=1

Qi (2.13)

The number of employees E was determined to be a function of how much work was available

which was given by the quantity sold. The number of employees was defined as the total quantity

sold in the company divided by a fixed number of quantity sold per employee. The company stated
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that the parameter that increased their need for employees was more sales. Based on their current

setup 8000 sales were assumed. The employee calculation is shown in equation 2.14.

E = Qt/8000 (2.14)

The inventory Y was calculated as a small fraction of the total annual quantity sold comparable to

their current sales to inventory ratio. This is shown in equation 2.15.

Y = .05∗Qt (2.15)

The office floor size F was calculated such that it allowed a given square footage per employee

and a given square footage per inventory item shown in equation 2.16.

F = E ∗400+Y ∗ .375 (2.16)

The office cost C was simply an annual rental square footage cost per month multiplied by the

calculated office size in terms of square footage multiplied by 12 months as shown in equation 2.17.

C = .75∗F ∗12 (2.17)

The total salary cost St was calculated as the sum of the salaries of each employee. The salary S of

each employee was assumed to be $75000. This is shown in equation 2.18.

St = E ∗S (2.18)

For further information on the optimization code, including the equations for the other product

lines, refer to the URL in Appendix A.3

2.4.3 Problem Constraints

In total sixteen constraints were needed to run the optimizer. The constraints focused on

important business details as well as other aspects necessary for the optimizer to run correctly.
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The constraints related to business operation included a maximum yearly office cost, a maximum

yearly salary cost, a minimum number of employees, and a maximum annual product investment

cost. These are shown in equations 2.19, 2.20, 2.21, and 2.22 respectively. The advertising cost

was also constrained to be 11% of the total gross revenue which has been shown to be an optimal

percentage [54]. These constrained equations were defined to encourage sustainable growth of the

company since growing too quickly can be detrimental to a business [55].

C < $35000 (2.19)

St < $350000 (2.20)

E > 3 (2.21)

It < $100000 (2.22)

Other constraints used which were required only for successful optimizer operation included the

quantities sold, salary costs, and revenue had to be positive. Also, the markup multiplier used in

calculating the markup ratio must be greater than zero, and the total percentage of advertising costs

for the different product families needed to sum to 100%.

Constraints were also used to ensure the optimizer operated within reasonable limits and

provided other constraints on the business operation. These bounds provided limits on advertising,

number of product lines that could be added per year, markup ratio, and percentage of advertising

cost that could be used per product family. The lower bound for product lines per family is the

current amount of products for a given category (it is assumed that no cost is required in research

and development of existing product lines). The upper bound for product lines per family is two

more than the lower bound (except for the bariatric chair which only has the current design that

can be added). Two is considered the maximum number of product lines that can be added in a

year for a product family due to resources and time required for development. The upper bound

for advertising allocation to a single line is 80% assuming all of the advertising should not be spent

on one line.

24



2.4.4 Optimization

While it is possible to attempt a multi-objective optimization through maximizing revenue

and minimizing expenditures, a single-objective optimization to maximize the companys profit was

deemed sufficient. This approach retains both the aforementioned desired objectives of minimizing

expenses and maximizing sales revenue while only using one objective in the optimization. By

reducing the number of objectives to a single-objective problem, a relatively simple constrained

optimization was able to be utilized to maximize desired profit. The total profit P was calculated

using outputs from many of the previous equations as shown in equation 2.23 where At is total

money spent on advertising and Tt is the total material cost.

P = Rt− It−At−Tt−C−St (2.23)

An optimizer was used to vary the inputs while adhering to constraints to find optimum

input values to maximize profit of the business. The gradient-based sequential quadratic program-

ming (SQP) algorithm was used within this optimizer and provided an optimum within 19 major

iterations and 343 function calls. For this application, the fmincon optimizer in Matlab® [41] was

implemented. The optimizer converged to a single solution consistently which suggests a properly

formulated problem that avoids ill-conditioned functions. Design variables and constraint scaling

was used to provide improved optimizer performance.

The outputs of the optimizer included optimum values for total advertising expenditure and

product lines added, markup percentage, and distribution of advertising funds in each of the four

product families. Other outputs calculated by the optimizer, which were not design variables but

provide very useful information to the company, included the yearly projected profit, number of

employees, inventory amount, office costs, and salaries of each employee.

The problem included four product lines, with the fifth for the bariatric chair modeled later

using a similar formulation as the previous four. The chair had no prior sales information to base its

markup ratios and advertising effectiveness, so similar models to a comparable product line were

used. This line was scaled down to about one-twentieth comparatively, because of an assumed

lower demand for the bariatric chair.
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Once the chair CAD models were built, the optimizer took in the output values that were

previously generated by the designed chair and calculated the outputs for the business based on

those parameters. These parameters affected the base cost of the product as well as added or

removed value depending on whether or not the design met certain market requirements. Doing

this, the decision maker could change the chair as much as they wanted and could see the changes

it would make in the business each time the optimizer was run.

2.4.5 Business DSS Description

The business DSS has two main parts used for finding the optimal inputs for the business:

the inputs and outputs sections.

The inputs of the business DSS contain slider bars to change various input parameters

shown in detail in Figure 2.9. The input parameters include:

• Total advertising expense

• Products in each specified line

• Sales markup from cost of goods

• Advertising split among the five product lines

The five product lines are the support stop, toilet seat, hygienic sprayer, window, and

bariatric chair lines. After the optimizer has completed, the decision maker is able to see the

values for the optimal solution to the right of the initial values to facilitate comparison. The user

also has two buttons that can be used. The first is the “Set Inputs to Optimal” button, which sets

the inputs to the optimal values that were recently calculated. The second, “Reset Inputs” button,

can reset the the slider bars to the middle values.

The outputs of the business DSS shown in Figure 2.10 include information to make a more

informed decision on whether or not to add the chair. The outputs include projections for profit,

revenue, advertisement expenses, materials cost, office cost, salary cost, inventory quantity, total

employees, and total products sold. For further help with deciding specifically what to do with

the chair, there are outputs for the chair’s cost, revenue, profit, years to pay off, and quantity sold.

These are all based on a one year time frame. The optimized values for each of these outputs is also
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Figure 2.9: The input section of the business DSS and optimization platform

shown after the optimizer button is clicked. Similar to the PDG, the decision maker has the ability

to save their inputs and outputs by clicking the “Save Business Values” button and can reload those

saved values at any time by clicking the appropriate load button.

With the input and output section of the business DSS combined, there is a useful way to

iterate on business values to facilitate faster analysis than unprocessed data. The entire business

optimization platform is shown in Figure 2.11

2.5 Monte Carlo Analysis

A Monte Carlo analysis with 500,000 different scenarios was executed for design explo-

ration. Within this section, decision makers are able to view a scatterplot of all the preprocessed

data with an x and y axis of their choice for inputs and outputs. They can then select points of in-

terest in the scatterplot and push the data from the selected point back into the System DSS to see
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Figure 2.10: The output section of the business DSS and optimization platform

Figure 2.11: The input and output sections of the business DSS and optimization platform

what system model was used to create that point. This enables a variety of design space analyses.
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A Monte Carlo was chosen to enable an exploration of both good and bad designs rather than just

the trade-space with points along the Pareto frontier. With a view of the design space users could

see trends in the data, especially when the ability to color the scatterplot by a third data set was

added as an analysis factor.

2.5.1 Input and Output Parameters

Figure 2.12 shows 27 different inputs possibilities and 20 outputs possibilities. Along with

this, the decision maker has the ability to color the graph with any of those 47 variables. This

allows a considerable amount combinations that can be explored, which allows for further insight

into the data. As the decision maker change these parameters the scatterplot updates in near real-

time to help them better understand the design space. Four examples of these combinations are

shown in Figure 2.13.

Figure 2.12: The inputs and outputs for the Monte Carlo analysis are shown here

Decision makers are able to then select any point on the scatterplot and select the “Analyze

Selected Point” button to get the data that is contained in that point. The image of the chair at that

point automatically updates on that page. The remaining data is pushed into the System DSS if
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Figure 2.13: Four out of the thousands of possible design analysis scenarios using the Monte Carlo
analysis

the decision maker desires to look further into that design. The decision maker can further explore

the scatterplot data by selecting different subsets of the data and performing additional statistical

tests. The decision maker has the ability to “Hide Unprofitable” which hides all designs that gave

less than $500,000 of profit. They can also “Hide Bad Chair Designs”, which would remove those

designs that give error messages when created in the PDG. For example, if it chair that does not

meet the required factors of safety, it would be removed. Lastly, the decision maker can hide all

scenarios that contain both of those conditions. The full Monte Carlo analysis tool is shown in

Figure 2.14.
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Figure 2.14: The Monte Carlo used to assist decision makers in validating their conclusions

2.6 System DSS

The integration of the business DSS and the product design generator is called the System

DSS. The System DSS is developed in JMP to allow interactivity and automatic updating, such

that whenever any input value changes it will update any outputs that are affected by it in near

real-time. For example if certain input parameters of the chair are changed, the System DSS will

changs all affected outputs, including the outputs of the business DSS. The code for the System

DSS can be found in the URL shown in the Appendix A.4

The data flow of all of the parameters is shown in Figure 2.15. This is the general flow of

all the data passed throughout the entire DSS. If a user only changes a value in the second or third

box down then it only flows from there onward. The values in the first box flow through the entire

system to affect all of the data.

The fully connected DSS can be used to determine whether or not it is financially attractive

to add a bariatric chair line to an existing business. With the integration of all the various subcom-
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Figure 2.15: A diagram of inputs to intermediate values to final outputs

ponents, the system-level tool is now able to assist users in system-level decisions. A screenshot

of the entire System DSS can be seen in Figure 2.16. The Monte Carlo scatterplot is shown on a

different tab inside the full system.

32



Figure 2.16: The final System DSS with the PDG on top and the business DSS on the bottom.
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CHAPTER 3. DSS EVALUATION AND ASSESSMENT PROCESS

Experimentation and tests were performed to see if an interactive System DSS was effective

in improving decision making. This was done by providing the DSS to users who were unfamiliar

with the product and process to see if they could make a better decision with just the use of the

System DSS. The System DSS was presented in a specific manner and survey questions were

also given to the user to answer at the conclusion of the experiment. This chapter discusses the

following various aspects of the testing strategy:

1. Experimental Procedures

2. Unprocessed Data

3. Design Decision Recordings

4. Survey Questions

5. Event Recordings

6. Data Collection Process

3.1 Experimental Procedure

Tests subjects were to be selected from any number of individuals over the age of 18. There

was no needed background or requirement to be a tester for this research other than age and basic

cognitive abilities. The test would take place mostly in the BESD Lab on BYU campus, where

it was developed. It also could be remotely given to those in reach of the BYU internet network.

Testing would take place based on the schedule of the participant which occurred at various times

of the day.
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The testing started with the decision maker being given one of two different types of tests.

The first or “unconstrained” test is the full System DSS including the unprocessed data, PDG, busi-

ness DSS, and scatterplot. The second “constrained” test is similar except the PDG and business

DSS are no longer on the same viewing area, which means a user cannot watch how making small

changes in the product directly affect the details of the business metrics. Some interactions cannot

be observed because the constrained test is guided, meaning that once a user moves on to the next

portion they cannot return and view changes or what was previously entered. Furthermore, the

constrained test does not have the Monte Carlo analysis section for further data analysis.

Once the decision maker is given a test, they start by viewing the survey questions for

the test, to familiarize themselves on the questions that will be asked at the end. They are given

instructions to discover if it is a good idea to add the bariatric chair product line to the business.

The next portion of the test is the unprocessed data portion. During this stage the decision

maker is able to look at all the unprocessed data of the company in an Excel sheet. The decision

maker can do whatever any analysis with this data that they wish, keeping in mind that they need

to decide if it is a good idea to add the bariatric chair. Once they look through this data they can

then answer the question if they think it is a good idea to add the chair or not. After this question

is answered, they move on to the System DSS. Here they can change values as they desire, and

they also have the option of using the Monte Carlo analysis if they are given the unconstrained

test. Once they are finished with analysis they answer the questions regarding the tool and how

this type of tool was useful or not. Questions were written to try to discourage decision makers

from evaluating this tool specifically and focused on the concept and functionality available in this

tool.

3.2 Unprocessed Data

The unprocessed data is a simplified record of all the transactions of the company for the

past eight years. The information contained in this data set includes all sales of products, including

the item category, date, quantity, sales price, and total transaction amount. It also includes the costs

spent on advertising, investment in product materials, payroll, and rent, all on the respective days

that any transaction in any of those categories occurred. This information was tallied in the excel

sheet to give the decision maker some totals, as well as an estimation that it would cost $60,000 to
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create the tooling for the chair. Additional information was given on equations that could be used

to calculate stresses for the chair. The decision maker was told they could do whatever analysis

they wanted on the unprocessed data to help with their analysis.

3.3 Parameter Recording

As the decision maker goes through the test they are required to save their final design for

the chair and for the business in save slot #5 for each system respectively. This gives, at a minimum,

two points that can show what information the decision makers were basing their decisions off. The

decision maker has the ability to save up to five designs for each system, meaning that there is a

possibility of ten saves that can be used to go back and forth between designs that the decision

maker may have wanted to analyze in the future before making a final decision. When the decision

maker completes the test, all of the items that are saved into slots are saved to a document that

is able to be reviewed to try and draw further conclusions about what the decision maker was

thinking.

3.4 Survey Questions

Survey questions were given to the decision maker to read before taking the test and then

given again afterwards for them to answer. It was shown before to help them prepare elements of

the tool to explore. Again, the questions were aimed at evaluating the usefulness of this kind of tool

and not evaluating this tool specifically. The questions also helped see if the research hypotheses

were supported. The survey contains the questions shown in Table 3.1.

3.5 Event Recording

For analysis purposes, all of the decision maker’s interactions with the tool were recorded by the

DSS. As each decision maker used the DSS, all mouse clicks, information entered, and times of these events

were recorded. This enabled observation into any patterns of the decision maker’s interactions with the

tool. Also this data can be analyzed to see if decision makers spending time on certain sections was more

beneficial than using time on others. It could also be ascertained if and where the user was confused while
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Table 3.1: The survey questions given to all testers

# Survey Questions
1 The tool is interactive in such a way that I was able to make effective trade-offs

between the business and product.
2 The tool helped me make effective decision on which product to design.
3 The tool helped me find better solutions than the unprocessed data.
4 The tool is structured in a way that it helped with making system level deci-

sions.
5 Business and engineering data are connected in such a way that the interactions

between the two can be seen.
6 The integration of the engineering and business system into one GUI improved

my decision making ability.
7 I was able to analyze more possibilities for designs using the tool than over the

unprocessed data.
8 The tool saved time over using the raw data.
9 The DSS help me gain a better understanding of the effect of product design on

a business.
10 What did you find most useful in the DSS?
11 Is it a good idea to add the bariatric chair line? Why or why not?
12 How does the overall business change as individual parameters are changed for

the chair?

taking the test. Using this information more conclusions can be made about the usefulness of the tool and

the different test types. A visual of the recording is shown in Figure 3.1.

3.6 Data Collection Process

Data was stored automatically when the decision maker clicked the button to say that they were

finished with the survey questions. The data was saved into four files, the first showed their basic answers

from the survey questions, time required to finish the test, and the written answer from the unprocessed data

portion, along with their name and the date. The second file contained all their saved answers from the PDG

portion of the test. The third is similar to the second except it contains all data from the business DSS. The

fourth file contains the time stamp information which is the time of the click and the value entered from that

click or from typing.
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Figure 3.1: Users’ clicks and in what section of the DSS they were made are shown in the order they were clicked
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CHAPTER 4. RESULTS AND ANALYSIS

This chapter presents some of the key findings from the user testing described in the previous chap-

ter. Various conclusions and observations are made that support some of the hypotheses and answer some

of the questions previously presented in Chapter 1.

4.1 User Testing Sample and Time

A majority of the test subjects or “decision makers” were college students in the 18-27 year-old age

range due to availability at BYU Campus. Although the age and skill level may have some effect on the

results, and many of the users’ work experience differs from someone in industry who has been working for

much longer, the difference in experience should not significantly change the outcome of the study.

There was a total of 44 testers who volunteered a combined total of 15.11 hours to evaluate the

data and System DSS. The average decision maker took 20.60 minutes, the longest 55.07 minutes, and the

shortest 8.80 minutes.

4.2 Unprocessed Data vs. System DSS

Using the unprocessed data, most decision makers made no additional analysis to the dataset but

made a decision based only on the information they were given. A few decision makers summed up items

that were not explicitly stated like total expenditures, but that was the most anyone did as far as further

analysis. In general, decision makers looked at the company and how it was performing and decided if it

was a good investment with little to no quantitative analyses. The data indicated that the company was doing

well over the past eight years with consistent growth in revenue and profit each year. Many of the testers

stated it would be a good idea to add a new product based on the fact that the company had previously been

doing well. One user states when asked if the chair should be added, “Yeah. The Profit seems high enough

that you might as well go for more!” This attitude was similar among other users.

A large number of other users stated that there was not enough information to gauge the demand for

this sort of item. When asked the same question, one user stated, “No, because there is not enough evidence
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that there is demand for this product.” which was also a common answer. A measurement was taken of each

user’s confidence in their answer where a 0 indicates they had no confidence, 1 they had some confidence,

and 2 meant they were fully confident. This was then compared to the confidence of those same users after

they had used the System DSS. The results showed that the decision makers were statistically more confident

with a p-value of .021 after using the system portion as shown in Figure 4.1. It is important to note that the

increased confidence did not necessarily result in a better answer, since adding the chair cannot be proven

perfectly to be a good or bad decision because of the uncertainty in future markets. However, there was

enough information to suggest that it could be profitable within two years. Still, a business owner could

choose not to add this chair regardless of this fact, and it would not necessarily be a bad decision.

Using the unprocessed data 73% of the users came to a conclusion. 59% of people would add the

chair and 14% would not. After using the System DSS 45% of the users changed their answer. In the end

61% of people would add the chair, 30% would not, and 9% still did not know. After using the System DSS

91% of decision makers came to a conclusion. Meaning that 75% of people were able to make a decision

after using the DSS who beforehand were unsure. With 45% of users changing answers, the data suggest

that users were not sure of their original decision using just the unprocessed data. With the System DSS

they were able to analyze information that caused them to change their answer, which further supports the

confidence they were able to gain after using the System DSS. In the end most people decided to add the

chair to the business. The distribution of choices and the changes of choices is shown in Figure 4.2.

4.3 Parameter Recording Analysis

Using the parameters that were saved, analysis was possible on how the decision maker performed

using the tool. The final answer for whether or not to add the chair could be justified as a good or bad

idea depending on many different factors, and either could be the right answer. The data suggested that it

might not be a bad choice because it would pay itself off within 2 or 3 years. Some users deemed this to

be too slow while others thought this was a good investment. The tool’s purpose was to help the user make

a decision, not to make the decision for them. Regardless, correctly using the tool to make good choices

was something that could be analyzed. For example, did the decision maker create a chair that was optimal

to the situation? Some of this was based on opinion, but there were some designs that were dominated by

others. For example a chair that would break if a 500 lbs person sat on it was clearly not a useful design

while there were many other designs that could accomplish this requirement. Each decision maker’s final

save was analyzed to see if they chose an optimal solution. For the product this meant that they designed
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Figure 4.1: Significance between the decision maker’s confidence after the unprocessed data and
then after the System DSS portion of the test

a product that had no errors which would cause it to either break, not fit in the tub, weigh too much, or

have unsuitable dimensions. For the financial side it meant that the decision maker created a business that

was not significantly worse than the value the optimized business would give. In Figure 4.3 it is seen that

77% of decision makers made an optimal analysis of the chair and 73% of decision makers made an optimal

analysis of the business meaning that their profitability was over $1,000,000 for the year. Of all the decision

makers, 57% made an entirely optimal analysis meaning they had an optimal chair and business saved when

they finished their analysis. This is interesting because it shows that most of the users were able to make

a good analysis on something that they had known nothing about in as little as eleven minutes. One user

reports when asked about the DSS, “I was able to understand the data better when it was presented in the

DSS I had a hard time understanding what the data meant before it was presented visually.” This was a

common response among users.
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Figure 4.2: The difference between testers’ answers as to whether or not to add the chair after
using the unprocessed data and the DSS. The change of answers after experimentation with the
System DSS is also shown on the right.

4.4 Survey Analysis

As presented in Chapter 3, decision makers were asked 12 questions; three were free response

questions and the other nine were questions that were able to be rated using the following scale: Strongly

Agree - 5; Agree - 4; Neutral - 3; Disagree - 2; Strongly Disagree - 1.

The survey questions and the average rating for each question is shown in Table 4.1.

Each of these questions was linked to one or more of the initial hypotheses and conclusions

can be drawn from this information. It was found that a decision maker could see the interactions

between the business and the product design. One tester stated, “I thought the interaction between

business and engineering data was very helpful in seeing the connection between the two.” It was

interesting to note that comments like these were found for both system tests even though there was

less of an interactive view in the constrained version of the System DSS. Furthermore, in regards

to the tool improving the user’s decision making ability, one user states, “I liked being able to
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Figure 4.3: Proportion of decision makers who made optimal decisions in the DSS.

manipulate the product and the allocation of funds. It was useful and allowed me to make a better

decision.”

Based on the high average rating for some of the questions, it was observed that decision

makers found the tool to be more effective than using the unprocessed data. Decision makers also

found that they had a better view of the system with the DSS than with the unprocessed data. Based

on the survey responses, many of the hypotheses about the System DSS were in general supported,

meaning the System DSS was more effective in assisting a decision maker find an accurate answer.

Since each of the decision makers were presented with one of the two treatments for the

System DSS (constrained or unconstrained), the differences in answers to the questions across

the two groups could be ascertained. As shown in Table 4.2 it is seen that only one of the nine

questions from the survey questions showed statistical difference in the answers. The first question

(QV1), regarding trade-offs, showed a statistical difference between the perceived interactivity of

the constrained and unconstrained System DSSs.
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Table 4.1: The average rating for the survey questions from all testers

# Survey Question Average Rating
1 The tool is interactive in such a way that I was able

to make effective trade-offs between the business and
product.

3.95

2 The tool helped me make effective decision on which
product to design.

3.98

3 The tool helped me find better solutions than the unpro-
cessed data.

4.41

4 The tool is structured in a way that it helped with mak-
ing system level decisions.

4.05

5 Business and engineering data are connected in such a
way that the interactions between the two can be seen.

4.16

6 The integration of the engineering and business system
into one GUI improved my decision making ability.

4.18

7 I was able to analyze more possibilities for designs us-
ing the tool than over the unprocessed data.

4.64

8 The tool saved time over using the raw data. 4.57
9 The DSS help me gain a better understanding of the

effect of product design on a business.
4.23

10 What did you find most useful in the DSS? Open Response
11 Is it a good idea to add the bariatric chair line? Why or

why not?
Open Response

12 How does the overall business change as individual pa-
rameters are changed for the chair?

Open Response

Table 4.2: The statistical test of differences in the survey questions show that there is no
significant difference except in question 1
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For the other eight questions requiring numeric ratings, the difference between the two

treatments was statistically insignificant with p-values of greater than 0.05. However, the p-value

for question 2 (QV2) was comparatively lower than the other questions suggesting a potential

correlation with a perception of making better decisions with DSSs that are more integrated (i.e.

unconstrained).

This may suggest that providing access to all data concurrently and allowing decision mak-

ers to return and explore parameters, make changes, and perform “what-if” analyses quickly, sup-

ports a higher-level of confidence in their ability to comprehend the design space and make design

decisions.

Finally, it was interesting that Question 5 did not show significance because of the close

nature and wording of Questions 1 and 5, both which addressed the interaction between the two

major elements of the System DSS. No difference was expected for the other six questions which

addressed more specifically the differences between the unprocessed data and the System DSS.

4.5 Event Recording Analysis

Using the timestamp data, a variety of tests were performed, many of them involving how

many clicks decision makers made or what things were being clicked. The items and their rankings

on how many times they were clicked in total throughout all of the testing is shown in Figure 4.4.

There is also a view of the clicks in the different test types shown in Figure 4.5 and an example of

a single user’s click distribution shown in Figure 4.6. Viewing the clicks on the different sections

of the test, it is seen that the System DSS is used the most followed by the some of the parameters

that are within the PDG (i.e. the chair parameters). It is interesting to note that more clicks were

made analyzing the chair than the business, and more people made a better analysis of the chair

than the business.

It was explored if the amount of clicks and the time took using the tool made a difference on

the answers they made. Results indicate there was no significant difference between time or clicks

taken on the DSS vs. quality of the answer as shown in Figure 4.7 where -1 means that neither

the PDG or business DSS had optimal values saved, 0 means they had one of the two systems

analyzed well, and 1 means that both of their analyses were optimal. It can be seen in the figure

that there are three circles on the right side. The more a circle is overlapped the less chance that
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Figure 4.4: A total distribution of what items were clicked in the DSS

Figure 4.5: A distribution of what items were clicked in the DSS among the two tests

Figure 4.6: A distribution of a single user’s clicks in the DSS
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it is statically different at a .05 p-value, whereas circles that are not touching would certainly be

different. It is interesting to note that the users who took the most time and made the most clicks

did not have completely optimal solutions. Although inconclusive, this suggests that perhaps they

may have been confused in their analysis and additional tests could be preformed in the future to

identify this trend. It is also interesting to note the users who made the most clicks and took the

most time are not the same users. Finally, it can be seen in the unconstrained test, users liked to flip

back to the System DSS tab after looking at other tabs. Data also suggests that the unconstrained

users clicked the optimize button more often, which may suggest that they were making changes

to their chair and wanted to see how its analysis would optimize the business. This process was

not permitted in the constrained version of the test.

The distribution of time and clicks for all the decision makers is shown in Figure 4.8. Some

decision makers made as few as 28 clicks while others made as many as 195. This information

along with all of the decision makers times and clicks is shown in Figure 4.9.

An analysis was performed to see whether or not there was a difference between the times

in-between clicks for the two test types and also if there was a difference in the optimality of the

test results by the amount of clicks made per minute. It was found that both of these turned out to

be insignificant as shown in Figure 4.10. From the testing performed on time or clicks taken there

is no significance which suggests that users ability for analysis could not be measured by the time

taken or interactions with the tool.

There was also analysis performed to see whether there was a correlation between the test

times and the number of clicks, as shown in Figure 4.11. This shows something contrary to what

might be assumed, that it would seem that the more clicks that were made the more time it would

take to make the clicks. However, the correlation is only .23, which means that there is not a very

strong relationship.

The final test performed using the event recording data was a test to see whether or not

the users spent their clicks in a manner that was statistically different when using one test variant

or the other. It was found with a p-value of less than .0001 that there was a difference between

the two tests as far as what the user was clicking. This is shown in Figure 4.12. The was an

interesting finding because it showed that the users had different focuses as they used the two

different tests. It is seen that the constrained users spent a lot more time clicking parameters that
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Figure 4.7: A Tukey-Kramer test analyzing the correctness of decision makers’ answers compared
to the time and clicks taken show no significant difference.

were within the business DSS section. This may have been because users felt overwhelmed with

all the information in the unconstrained test and the business section was presented on the same

page as the PDG, whereas in the constrained test it was on its own tab. However it is also seen

that users with the unconstrained test looked at the survey questions more frequently, which might

suggest that they were more interested in what they were trying to answer than the constrained

users.

4.6 Constrained vs. Unconstrained DSS Analysis

A contingency test was also made on whether or not having an optimal or non-optimal

solution was dependent on the test type given. This is shown in Figure 4.13. Observing the data
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Figure 4.8: A distribution of time and clicks taken for the test

Figure 4.9: Each decision maker’s time in seconds and clicks over the use of the tool are shown
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Figure 4.10: The decision maker’s clicks per minute tested against the test type and against opti-
mality of results both show that there is no significance
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Figure 4.11: There is not a strong correlation between the decision makers clicks compared against
the time taken to complete the test

it can be seen that there is no significant difference between the test type and the optimality of the

solution.

It was also tested as to whether decision makers had more confidence in their final answers

using one test or another. This was done by rating the users written answers, asking whether

they would add the chair or not, on a scale of surety where 0 was that they did not know, 1 was

somewhat confident, and 2 was fully confident. The results of this test are shown in Figure 4.14.

It was concluded that the two test types were not different as far as results were concerned. This

was an interesting finding because there are many things different inside the two DSSs which were

initially thought to result in a difference.

4.7 Discussion of Results

Reasons for the test not showing any difference may have been that all of the necessary in-

formation was passed from the PDG to the business DSS whether or not the decision maker noticed

it. This included the base cost of the chair, the investment cost, and all the penalties for poor chair

design. Most decision makers designed a suitable chair and moved on to the business optimization

portion. Many of the decision makers at this point simply applied the built in optimization feature
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Figure 4.12: There is a statistical difference between the items that the users clicked between
the two test variants, where constrained users clicked the business DSS options more and the
unconstrained testers clicked the survey tab more.

which gave them good answers because the optimizer took into account the system interactions.

The users were then able to read what the values were and make a decision based on what the

optimizer provided. While answering the questions about trade-offs they may have not understood

that the two systems were connected even if while changing the parameters in the PDG they could

not see how the business was affected.

From analysis it can be concluded by the decision makers rating of this kind of software that

the DSS was quite helpful in helping them make decisions. The System DSS would be considered

a useful tool, and is much more effective than not having the tool and using different analysis

techniques. It saves time and helps the decision makers come to a better conclusion in the end.

The DSS provided better answers and allowed decision makers to view interactions that were not

able to be analyzed without the tool. One downside to the DSS however, is the time required for

DSS development. This leaves the potential developer of a DSS with the questions of: is it worth
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Figure 4.13: A contingency test showed that the optimality of solutions was not dependent on the
test type.

the time to create this tool? Does the time and resources required for development outweigh the

benefits gained of a better decision?

4.7.1 Data Quantity

The absence of variance between the constrained and unconstrained tests encourages asking

the question, why was there no difference? One possible explanation is in the potential overload

of data that users were exposed to in the unconstrained test. The users in the unconstrained variant

were given the extra information contained within the Monte Carlo analysis as well as the ability

to interactively view system interactions, which the constrained users did not. Another possibility
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Figure 4.14: User’s confidence was tested for each of the test types. There is no statistical signifi-
cance

for the absence of differentiation in the final analyses is perhaps the information in the constrained

test was sufficient to make a fully formulated decision. When users were given the unconstrained

test, they used the least amount of information necessary to make an informed decision and moved

forward with little interest in doing more analysis than necessary. This would in the end make

it such that users would have the same results because they were more or less doing the same

analysis, even though some users had freedom to do more.
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4.8 Hypotheses Revisited

The original eight hypotheses taken earlier from this thesis are revisited below with infor-

mation, comments or data that supports these statements. The rating scale for the survey questions

was 1 to 5 where 5 was strongly agree and 1 was strongly disagree.

1) “The DSS allows for the understanding of what trade-offs can be made between business

and product design”. This is supported from the user’s rating in questions 1 which spoke about

system interactions and was rated at 3.95.

2) “The DSS increases the understanding of the effect of product design on a business”.

This is supported from answers in question 9 of the survey questions where users agree at a rating

of 4.23 that the DSS helped them gain a better view of how engineering design affects a business.

3) “The DSS shows that a system linked analysis improves system-level decisions”. This

is supported from viewing survey question number 4 where users state with a rating of 4.05 that

the tool helps with system level decisions. However, with the outcome of the results shown in

Figure 4.13, it shows that users did not, in practice, find a difference between the system where

there was a true system link as opposed to only a partial system linkage, which was presented in

the constrained DSS. This may be due to an overabundance of data which was given to users in the

unconstrained test.

4) “Decision makers can see how small changes affect the system”. Question 12 in the

survey asked about small changes in the system, however many of the users were not able to

satisfactorily answer this question and not much could be derived from it. Furthermore, users who

tested with the unconstrained variant were not able to directly see what changes were made and

could not answer this question very well. In the end, no conclusions were drawn from this question.

5) “The DSS improves the ability to make decisions”. The was supported in questions 2 and

6 of the survey questions where users gave ratings of 3.98 and 4.18 to the tool helping them make

more effective decisions. Furthermore, 91% of users who were not able to make a decision with

the unprocessed data were able to make a decision with the System DSS as is shown in Figure 4.2.

This shows that their ability to make a decision was increased greatly over the unprocessed data.

6) “The DSS creates a better view of engineering and business interactions than unpro-

cessed data”. This was supported as is demonstrated in Figure 4.1, where user’s confidence was

shown to be statistically higher with the System DSS as far as making a decision was concerned.
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This is also shown in question 5 in the survey questions which states that the interactions between

the two can be seen, which was rated at 4.18.

7) “The integrated data supports reaching better decisions than unprocessed data”. As

shown in the survey question number 3, the users rated at 4.41 that the tool helped them find better

solutions, which supports this hypothesis. However, since the answer to add the chair contained

two correct answers, it was hard to make any conclusions beyond that the users felt that they had

made a better decision.

8) “More choices can be analyzed in the DSS than with same amount of time using unpro-

cessed data” In the survey, viewing questions 7 and 8, it is seen that users found that the tool saved

time and helped them make more analyses quicker, which supports this hypothesis.

Many of the hypotheses were directly addressed by the survey questions. It is clear that

the System DSS, regardless of the variant, was a better favored choice than using the unprocessed

data for the analysis. The absence of variation between outcomes of the two test variants was

unexpected however.

4.9 Further Information

Not included in the 44 testers was one of the employees of the sponsoring company who

was able to use the tool and do analysis for himself. He remarked in the survey about whether or

not to add the chair, “Based on the payback time, it does appear to be a good product to add to our

line. We are currently in the process of adding a chair similar to the one in Troy’s program based

on his recommendations.”
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CHAPTER 5. CONCLUSION

5.1 Summary

DSSs have been developed and used in the past, however the effectiveness of integrating

the DSS with other systems so that it better showed system effects has had little attention, specifi-

cally in the area of product design and business integration. The System DSS which was developed

for this research was developed to see if a system view is truly more useful than just having un-

processed data or a non-System DSS. The DSS consisted of an integrated PDG and business DSS

to show the effects of product design on the system through user testing. Testing was performed

on the System DSS to see if it in fact increased the effectiveness of decision makers. Results

confirmed that the DSS increases the effectiveness of decision maker decisions by helping them

better understand the choices they were making over using the unprocessed data. However, the

limitations on the constrained DSS did not hinder the users’ ability to make confident decisions,

nor was it shown in the survey that such was the case. Decision makers rated the tool quite well

in all the areas that were questioned regardless of the test type. From this, it can be concluded that

many of the hypotheses were correct and that the System DSS is in fact more useful. However, an

interesting conclusion was also made that the two test variants showed no statistical difference on

the decision maker’s ability to make decisions.

5.2 Recommendation

Since this sort of tool was shown to be preferred by users in this testing scenario, the author

considers the design and usage of a System DSS to be useful in industry. Furthermore, the more

complex a system is and when decisions are repeated more than once, a tool such as the one in this

research becomes even more beneficial. With designing a simpler product like a chair, the benefits

are somewhat reduced since developing an entire PDG takes significant time and efforts relative
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to how long it takes to make a good design for a chair. However, in a system where the product

being analyzed is affected by many factors that are hard to visualize (e.g. flash memory, military

systems) a tool similar to the one developed in this research could be very beneficial because it

will allow the designer to account for interactions that would not otherwise be able to be seen.

5.3 Limitations

There are certain limitations to the testing performed in this study. The first is that testers

were generally college students from colleges in Utah Valley. This could bias the results because

many of these people have not worked in a position where they had to analyze data to make

decisions in a workplace setting, though giving them unprocessed data may have helped them

understand to some degree what it is like. Lastly, the variants that were created had insufficient

differences to alter the users testing outcomes. Among the variant differences, decision makers had

less ability to see how small changes affected the system, but could still see the system as a whole,

meaning that with further limitations in the constrained system, there could be different outcomes.

5.4 Future Work

There is a large amount of work that has been performed in the area of decision support

systems which is evidenced by the many articles and journals entirely dedicated to the subject.

More than simple DSSs, but the integration of systems into multi-disciplinary analysis tools could

be further explored. Adding to this, standardizing decisions support system by creating an easy

to use framework that can accept numerous types of equations to assist in the decision maker’s

ability to more efficiently make an interactive DSS is a research topic that could provide significant

benefits in this area. Finally, the principles of visualization, optimization, and dynamic analysis are

used in many DSSs and when these principles are applied to additional datasets the results could

open up new avenues of data fusion and decision making techniques.

Other additions to this sort of tool could include Pareto frontiers on the Monte Carlo analy-

sis. This could allow users to view only good designs rather than having to sift through the design

space. These additions would enable improved solution definition, and reduce the time users spend

analyzing dominated designs of which the decision maker may not be interested.
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Furthermore, the product design generator has the ability to be optimized for minimum

material conditions within design constraints. This would allow for a system that is completely

optimizable through computer aided engineering techniques. Optimization that takes into consid-

eration all systems could be of greater analytical benefit for identifying the global optimum across

even more dimensions than included in the above research.
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APPENDIX A. CODE

All code can be viewed by vising https://goo.gl/sPls9V. To copy the code for usage, use

the links under the individual sections. If you have questions about the code, send me an email at

TroySeletos@gmail.com

A.1 Solidworks Code

Code was used to run a macro in Solidworks to update the model and push certain data out

to text. This code can be viewed online by visiting https://goo.gl/2g3YLD

A.2 Weight Equation

This is the equation generated by the neural network for calculating the weight of the chair.

This equation can be seen in the JMP Code on page 65, line 4069. (Page 64 if in view-only mode)

A.3 Matlab Code

This is the code that contains all the equations for the business. This code is iterated through

the fmincon optimizer to find the optimal values for the business. The code can be viewed online

at https://goo.gl/XL6Gkl

A.4 JMP Code

The code contains all necessary information to reproduce the “unconstrained” test as talked

about in the report. By manipulating the code slightly to hide the scatterplot, force the decision

maker to move forward after making answers (and not being able to go back), and separating the

product design DSS and business DSS onto separate tabs, the “constrained” test can be reproduced

as well. The code can be found online at https://goo.gl/i76Yrj
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