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ABSTRACT

Position and Stiffness Control of Inflatable Robotic Links Using Rotary Pneumatic Actuation

Charles Mansel Best
Department of Mechanical Engineering, BYU

Master of Science

Inflatable robots with pneumatic actuation are naturally lightweight and compliant. Both
of these characteristics make a robot of this type better suited for human environments where
unintentional impacts will occur. The dynamics of an inflatable robot are complex and dynamic
models that explicitly allow variable stiffness control have not been well developed. In this thesis,
a dynamic model was developed for an antagonistic, pneumatically actuated joint with inflatable
links.

The antagonistic nature of the joint allows for the control of two states, primarily joint
position and stiffness. First a model was developed to describe the position states. The model was
used with model predictive control (MPC) and linear quadratic control (LQR) to control a single
degree of freedom platform to within 3◦ of a desired angle. Control was extended to multiple
degrees of freedom for a pick and place task where the pick was successful ten out of ten times
and the place was successful eight out of ten times.

Based on a torque model for the joint which accounts for pressure states that was devel-
oped in collaboration with other members of the Robotics and Dynamics Lab at Brigham Young
University, the model was extended to account for the joint stiffness. The model accounting for
position, stiffness, and pressure states was fit to data collected from the actual joint and stiffness
estimation was validated by stiffness measurements.

Using the stiffness model, sliding mode control (SMC) and MPC methods were used to
control both stiffness and position simultaneously. Using SMC, the joint stiffness was controlled
to within 3 Nm/rad of a desired trajectory at steady state and the position was controlled to within
2◦ of a desired position trajectory at steady state. Using MPC,the joint stiffness was controlled to
within 1 Nm/rad of a desired trajectory at steady state and the position was controlled to within 2◦

of a desired position trajectory at steady state. Stiffness control was extended to multiple degrees
of freedom using MPC where each joint was treated as independent and uncoupled. Controlling
stiffness reduced the end effecter deflection by 50% from an applied load when high stiffness (50
Nm/rad) was used rather than low stiffness (35 Nm/rad).

This thesis gives a state space dynamic model for an inflatable, pneumatically actuated joint
and shows that the model can be used for accurate and repeatable position and stiffness control with
stiffness having a significant effect.

Keywords: inflatable, soft robot, optimal control, contact, pneumatic actuation, model predictive
control
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CHAPTER 1. INTRODUCTION

There has been much interest in making robots more effective in interacting with humans or

human environments. Robots currently have limited uses in homes, hospitals, schools, or anywhere

people might be. One reason why robots are not common in these places is because robots can

be dangerous to people or property when there is an unintentional impact. Clever algorithms and

hardware modifications have been developed that reduce impact forces and avoid unintentional

contact. However, these methods often rely on high fidelity models with very specific applications.

What is wanted is a robotic platform that can freely bump, scrap, or nudge its surroundings without

damaging itself or its environment.

An inflatable robot with pneumatic actuation would be an ideal candidate for a more ver-

satile robot that is capable of human environments. The natural compliance and low inertia of the

system are ideal characteristics for a human environment friendly robot. These natural charac-

teristics come at the cost of an increase in complexity for control and sensing. This work shows

different control methods for an inflatable robot with pneumatic actuation, specifically with the

goal to control both position and actuator stiffness. Reasons that simultaneous position control and

actuator stiffness control are desirable include that stiffness can be used to dampen out unwanted

dynamics, store energy, increase or decrease end effector stiffness, and to minimize contact forces

all while performing tasks that require accurate position control. Specific examples are discussed

in Section 1.2.

1.1 Contributions

This work shows that both position and stiffness of inflatable structures with pneumatic

actuation can be controlled repeatedly and accurately. The following is a list of major contributions

in this work.

1



• Successful position control within 3◦ of the commanded joint angle using multiple control

methods for a single degree of freedom platform and a multiple degree of freedom platform.

(Chapter 2)

• Development of a minimal state space dynamic model that can be used to predict future posi-

tion, stiffness, and pressure states of an antagonistic, pneumatically actuated joint. (Chapter

3)

• Development of sliding mode control laws to track desired position and stiffness trajectories.

(Chapter 4.1)

• Development of a model predictive control method to track desired position and stiffness

trajectories. (Chapter 4.2)

• Extended the model predictive control method to multiple degrees of freedom and showed

end effecter displacement decreased by 50% when stiffness is controlled at 50 Nm/rad rather

than 35 Nm/rad showing that active stiffness control significantly effects the system behavior.

(Chapter 4.4)

This work presents an improved model and controller for an actuation design utilizing in-

flatable fabric-based joints for simultaneous position and stiffness control. For a more detailed

description of this platform see Section 2.1. This system applies a torque to the joint through ex-

panding chambers pressing upon an soft structure rather than a rigid armature. For this system, the

joint and link structure come from inflatable polymer bladders within non-rigid fabrics, resulting

in an entirely compliant platform. The model proposed in this work expands on the models devel-

oped in [1], [2], and [3] to account for and control joint stiffness. A fabric-based platform of this

nature is intrinsically lightweight, compact, and compliant due to the physical properties of the air

used for both actuation and structure.

1.2 Variable Stiffness in Current Robotic Platforms

Stiffness is a measure of how resistant to deflection a structure is and compliance is a

measure of how much deflection will occur from an external force. By definition stiffness and

2



compliance are inverses of each other but when applied mathematically in models, they give the

same result. For example if c is compliance, k is stiffness and x is a variable affected by stiffness

then kx = 1
c x so the terms stiffness and compliance are used interchangeably throughout this work

depending on context.

High compliance or low stiffness allow a system to deviate from its equilibrium point (or

where the system will naturally settle) when there are applied external forces. Position controlled

systems will continue to apply more force until the desired position is reached which can be dam-

aging to a person or workspace which is in the way. Controlling the stiffness of a system gives the

controller a secondary goal which allows for deviation. The amount of deviation will increase with

lower stiffness and will decrease with higher stiffness. Systems where the stiffness can be changed

through control or actuation are said to have variable stiffness or in other related research, variable

stiffness is referred to as variable impedance [4].

Significant research, both in terms of the amount and impact, has been completed in the

area of adding compliance to common robotic platforms. A system such as the DLR lightweight

robot [5,6] can simulate compliance with an impedance model by utilizing high-rate feedback and

low-level torque control [7]. Simulating compliance is mainly limited by control bandwidth and

torque capabilities while it can also introduce instabilities in the base controller.

Hardware designs seeking to avoid these limitations have introduced elastic elements be-

tween the actuator and load. The most well known method is the use of series elastic actuators

(SEA) as described in [8]. SEAs are limited in that the compliance of the actuator is passive and

the mechanical passive compliance cannot be changed. Any change in compliance must be done

in low-level torque control which is bandwidth and force limited due to the spring.

Designs for actuators that have variable compliance can be seen in [9], [10], and [11]. These

designs typically use variable spring lengths, non-linear springs, or pneumatic actuators to affect

stiffness. Optimal methods to vary compliance in [12] were shown to maximize impact forces from

hammering and in [13] unintentional contact forces with a human were minimized with controlled

stiffness.

Variable stiffness actuators can be put into four categories as defined by [9]. They are

equilibrium-controlled stiffness or series elastic actuators (SEA), antagonistic-controlled stiffness,

structure-controlled stiffness, and mechanically controlled stiffness. SEAs use a spring or other

3



compliant mechanism put in series with the actuator to provide compliance which cannot be phys-

ically altered and can only change stiffness through active impedance control. The other three have

some method of physically changing the compliant behaviour of the actuator. All four actuation

types can be seen in Figures 1.1, 1.2, 1.3, and 1.4. The actuator can be designed to apply a force,

displacement, or both.

Figure 1.1: Equilibrium-controlled stiffness (SEA)

Figure 1.2: Antagonistic-controlled stiffness

4



Figure 1.3: This is a structure-controlled stiffness example and by varying the length of the spring

L, the overall stiffness changes.

Figure 1.4: This is a mechanically controlled stiffness example and pre-stressing the springs results

in higher stiffness. In either configuration, the full length of the spring is used.

The variable compliance actuation method most relevant to the platform used in this work

is the antagonistic-controlled stiffness. The two actuators (see Figure 2.1) push independently on

5



the load but the resultant position and stiffness depends on the combined effort of both actuators.

For rigid, traditional servo-pneumatic actuators, work in [14] characterized models which made

different temperature assumptions. Constant temperature for servo-pneumatic actuators was shown

to be a good dynamic approximation at low pressures. In [15] constant temperature assumptions

were used to control force and stiffness for a linear pneumatic actuator. Then in [16], two linear

pneumatic actuator sets where used for antagonistic impedance control with an actuator in line

cable design. What separates the pneumatic bladder design from an actuator in line cable design

is that stiffness comes from a compressive force rather than a tensile force. In this thesis, similar

control to what was done in [16], was implemented with a single actuator set rather than two,

using a rotary actuator instead of linear actuators. One goal of this thesis is to use a modified linear

model and optimal control methods to control the rotary joint with an inflatable structure instead

of a rigid link and pin joint.

Similar to the actuation type used in this thesis, work has been completed on rotary elastic

chamber actuators in [17] and [18] and [19]. In these works two antagonistic bellows impart torque

on an armature rotating about a rigid rotary joint. A model for the system is developed and joint

position control is achieved for a multiple degree of freedom arm. Stiffness is even described in the

model developed in [17] but is not incorporated into control. The platforms used have rigid links

and pin joints which is fundamentally different from the inflatable structures used in this thesis. The

model development from these works and this thesis start from similar ideas but quickly diverge

because of differences in platform structure and the goal of this work to have stiffness control.

A different actuation approach proposed in [20] and [21] utilized McKibben Artificial Mus-

cles, which emulate human muscles. These artificial muscles expand and contract from pressur-

ized fluids. The fluidic properties give these actuators a natural compliance and the construction

of these actuators is more similar to the fabric actuators used in this work than the rigid cylinder

servo-pneumatic actuators in [15] and [16]. These type of actuators provide a linear force and are

used most often in line with a cable for rotational actuation.

1.3 Soft Robot Design

The unique advantages of soft, inflatable robots over rigid robots for specific applications

are what motivate this research. Applications include health care, living assistance, space explo-
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ration, search and rescue, orthotics, and prosthetics [22–24]. As shown in [22], a variety of soft

grippers, actuators, and structures have been designed and built with the intent of moving robotics

into environments that are not currently feasible. Not all of the designs use gas as a working fluid or

have inflatable components, but all are seeking an alternative approach to a rigid structural design.

Studies have been done to evaluate and quantify the dangers of unintentional impacts from

rigid robots. In [13] the Head Injury Criterion (HIC) is identified as a limit for serious head injury

upon robot impact, where inertia of the robot is a major driving contributor. This indicates with all

operating parameters constant, a reduction in robot inertia, such as for the fabric-based soft robot

joint in this thesis, directly reduces the HIC rating. Also in other research, [25] and [26], it has

been shown that contact forces from inflatable links can be controlled with cable driven actuators.

The ability to control forces can significantly reduce injuries or damage from unintentional impact.

One reason why robots with rigid joints and actuation have been used for so long is that

low level system dynamics and sensing methods are well developed. With a soft robotic system,

the dynamics are not straightforward and for each design new methods must be developed or

learned through data to describe how the system behaves when actuated. An example of this is

in [27], [28], and [29] where it was found that planning is viable for elastomer actuators using

dynamic and constant curvature kinematic models. Designs for rotary, fabric-based, pneumatic

actuated joints were proposed in [30] and the actuators used in this thesis are based on these

designs. One purpose of this research is to develop a model and more general method of control

for this type of system. The lack of literature on the control of inflatable structures where there is

a wide range of applications suggests a viable new area for research.

1.4 Control Methods

In this work, model predictive control (MPC) is the preferred control method, as will be

discussed in Chapter 2, and 4. MPC is compared to linear quadratic control (LQR) for position

control and then to sliding mode control (SMC) for simultaneous position and stiffness control.

One reason for this is to help identify weaknesses of the system model that the controller type might

compensate. Using multiple control methods also allows for the performance of each controller

to be compared which helps determine what type of controller is best for the system. MPC is

not a new control method but is relatively new in its utility in the field of robotics. LQR and
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SMC are standard control methods that are common and widely accepted in robotics. Comparing

the performance of the different controllers validates the use of MPC and shows when a standard

approach would be more appropriate. More detail about these control methods and how they are

implemented will be given in the following chapters.

MPC is an optimal control method originating from the process industry in chemical pro-

duction and oil refinement [31] and more recently in robotics [32–36] and UAV research [37–39].

Recent advances in computing power and optimization techniques such as those proposed in

[40, 41] have made this possible. MPC allows for the minimization of customizable cost func-

tion across a discrete finite time horizon given specific constraints. MPC not only allows for

model-based control but also for the consideration of real-world constraints such as joint limits,

pneumatic valve actuator limitations, and hardware pressure limits.

For position control as seen in Section 2.2, the model is linear. A common control method

for linear systems is LQR which is similar to MPC. MPC and LQR methods are the same in some

cases such as in [42] where constraints were added to the LQR controller with a finite horizon

making it MPC. It was seen in [43] that LQR methods are viable options for full body humanoid

robots. LQR methods have also been used for humanoid tasks such as balancing [44] and walking

[45].

When stiffness is added to the system model in Chapter 4, the stiffness terms are nonlinear.

Nonlinear MPC methods are available [46] but solve rates are often several seconds. To increase

the control rate to 30 Hz for simultaneous position and stiffness control, the dynamics are linearized

and then linear MPC is applied. The performance of MPC is then compared to SMC which is a

more conventional nonlinear control method. SMC applies a discontinuous control signal to a

system to force the dynamics to slide along a subset of the full dynamics of the system. One

advantage of using SMC is that system parameters do not have to be explicitly known in some

cases. Instead bounds on these parameters are used to form the control law. This is benificial

for soft robots with complicated dynamics where parameters are not always constant and can be

configuration dependent. Methods for using SMC in robotics have been well developed for decades

[47–49]. The method used in this work for the development of a sliding mode control law comes

from the methods described in [50] and [51].
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CHAPTER 2. MODEL DEVELOPMENT AND CONTROL WITHOUT STIFFNESS

In this Chapter, first a description of the platforms used for this thesis is given. Then a

two state (angle and angular velocity) model and control method is developed for an antagonistic,

pneumatic actuated, rotary joint. Model predictive control (MPC) and Linear Quadratic Control

(LQR) were applied for position control for a single degree of freedom and multiple degrees of

freedom within 3◦ of a commanded angle. For multiple degrees of freedom, a pick and place

task was performed where the pick is successful ten out of ten times and the place was successful

eight out of ten times. Next, how the model was extended from two states to four states to include

the pressures in each actuator in [1] is explained. MPC was applied and the authors of [1] show

the average rise time was reduced from 1.3 seconds to .6 seconds, the average settling time was

reduced from 3.0 seconds to 1.4 seconds, and the average overshoot was reduced from 24.6% to

2.6%. The cost function for MPC was modified to allow for a pressure target in each actuator and

stiffness was implicitly controlled. Finally, the work done in [3] for the development of a torque

model using the two pressure states is explained. In [3], MPC using the torque model was applied

to a single degree of freedom and when compared to the performance of the two state controller,

average rise time increased slightly by 3% but average settling time was reduced by 15.1% and the

average overshoot was reduced from 24.4% to 2.6%. Also in [3], when control is extended to a

multiple degree of freedom arm, end effector position was repeatable within 3 cm and for a pick

and place task the pick was successful ten out of ten times and the place was successful nine out

of ten times.

The author of this thesis was the primary researcher in [2] and the results are presented in

this thesis. The work in [1, 3] was collaborative, and the author of this thesis’s main role in [1]

was model development and in [3] was fitting the torque model to data and extending to multiple

degrees of freedom. The background from these works is necessary to motivate the work done in

Chapters 3 and 4.
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2.1 Platform Description

The platforms used for this research are a single degree of freedom joint called a grub (Fig-

ure 2.1) and a fourteen degree of freedom humanoid robot called King Louie (Figure 2.2). Both

were developed and built by Pneubotics, an affiliate of Otherlab. Besides internal electronics such

as IMU and pressure sensors, these platforms are entirely made of ballistic nylon fabric with inter-

nal bladders to prevent air leakage. The structure of these robots comes from an inflatable bladder

which is pressurized to between 1-2 PSI gage. At each joint, there are antagonistic actuators which

can be filled to pressures between 0-25 PSI gage. For this thesis, pressures between 0-17 PSI gage

are used because of pinching effects in the main chamber at higher pressures. These actuators are

similar to the designs mentioned in [30].

Figure 2.1: This is a single degree of freedom platform called a grub.

Air flow is controlled from the pressure source and vented to atmosphere through Enfield

LS-v25 five port spool valves. For the purpose of the paper, only one output port of the Enfield
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Figure 2.2: Inflatable humanoid robot named King Louie

valves is used, making these valves act as three port spool proportional flow valves. As seen in

Figure 2.3, each actuator or bladder has an individual valve for control, while sharing the same

pressure source.

Figure 2.3: Representative figure of valve and bladder configuration (used with permission from
[1])

Communication between the sensors and controller is achieved using ROS (Robot Operat-

ing System) operating in nonreal time on an Ubuntu workstation as seen in Figure 2.4. Valves are
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controlled from a low level ROS node with a high thread priority effectively making the process

soft real time. Sensors and driver modules are run in real time from embedded hardware. Sensor

values for the IMU and pressure are read and published at approximately 1 kHz. The IMUs used

are InvenSense MPU-9150, containing 3-axis accelerometer, gyro, and magnetometer sensors and

the pressure sensors are Honeywell HSCDRNN100PGSA3 with a 0 to 100 PSI range. The motion

capture system uses eight Kestrel digital cameras which operate up to 300 Hz and the data is pro-

cessed by MotionAnalysis’s Cortex software. Joint angles are measured on King Louie by using a

motion capture system and the joint angle for the grub is measured with an inertial measurement

unit IMU located on the link. King Louie has IMU sensors on each link and motion capture data

was purposefully used in a way such that it can be directly replaced by noisier IMU data in future

work. Pressure for each actuator is controlled by an underlying PID controller also operating at ap-

proximately 1 kHz. Desired pressures are published over ROS at the rate the controller is operating

and the valves are actuated to achieve commanded pressure values.

Figure 2.4: System chart showing nonreal time, soft real time, and real time operating system
sections

2.2 Two State Controller

For single degree of freedom control development, both MPC and LQR were used where

both controllers used the same dynamic model. The form of these two controllers is described in
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the next sections. A block diagram for the system can be seen in Figure 2.5. The controller sends

inputs in the form of θd which is the desired angle based on an impedance model for torque. These

angles are converted into pressure commands Pdes where Pdes = [P0,des,P1,des]
T . A PID pressure

controller then adjusts actuator pressures to track the pressure commands for each actuator by

manipulating electrical currents sent to spool proportional flow valves which adjusts air flow. A

Kalman filter is used to estimate joint angle and angular velocity from inertial measurement unit

signals. The formulation and results for this controller were published in [2].

Figure 2.5: Control system block diagram for complete system

2.2.1 Model Development

Initially the grub was modeled as an inverted pendulum with states θ̇ and θ which are an-

gular velocity and angle respectively defined as annotated in Figure 2.1. The differential equation

that was used to describe the motion of a single link as an inverted pendulum is

Iθ̈ +mg
L
2

sin(θ) = τa, (2.1)

where I is the moment of inertia of the link about its joint, m is the mass of the link, g is the gravity

constant, and L is the length of the link. The applied torque for the impedance control model is

τa = ks(θd−θ)− kd θ̇ , (2.2)
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where kd is a damping coefficient, ks is the stiffness coefficient and θd is the system input. This

equation for torque is a standard impedance model for a rotational actuator. An impedance model

acts as if a virtual spring with stiffness ks and damper with a viscous friction kd is placed between

the link and a virtual link at an angle θd . As the virtual link is moved or as θd changes, a virtual

torque will be applied to the actual link causing it to move with dynamics related to kd and ks.

If the virtual torque is applied as a control input to the joint through a rotary actuator, the actual

system dynamics will behave like the virtual system.

The input θd is assumed to be the steady state response of the impedance model but the

actual inputs to the system are pressures in the actuators. For a conventional robotic actuator,

θd would be determined by a controller and then used by Equation 2.2 to calculate a torque which

would then be sent to a motor controller to apply the necessary torque. The challenge for pneumatic

actuation is relating actuator pressures to torques. Instead of controlling the system in terms of

torque, a direct relationship between θd and actuator pressures was found. If θd is the steady state

response of the impedance model then θd can be related to actuator pressures by using the steady

state pressure response.

Pressure Dynamics and Steady State Angle Response

The first goal was to identify how the pressure dynamics behaved and how pressures in

the actuators relate to the joint angle. Figure 2.6 shows several step responses from the pressure

controller to desired pressure commands. The shape of the pressure curve shows a similar response

to a first order pressure model except there is odd behavior near 16 PSI. It is possible that this

is where flow shifts from choked flow to unchoked flow. The sharp transition from filling to

steady state just before reaching the goal suggests higher order pressure dynamics but draining

still appears to be first order. The response is expected to be faster for higher source pressures.

The steady state joint angle response for a step input of pressures in both chambers on

a single joint shows hysteresis and depends on the initial pressure and angle states. The angle

response to the pressure dynamics shown in Figure 2.6 can be seen in Figure 2.7. As P0 increases

in Figure 2.6 the joint angle increases as seen in Figure 2.7. When P0 decreases, the actuators relax

and the joint moves back towards its original position. In Figure 2.7 the angle response is constant

when there is a steady state pressure response in Figure 2.6.
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Figure 2.6: Plot showing several responses from desired pressures using the pressure controller

A sample mapping of the steady state response for angle dependency on commanded pres-

sures can be seen in Figure 2.8. This mapping was produced using the same initial conditions

which included atmospheric pressure in both actuators for each of the vertices on the P0 and P1

grid. The shape of the map distorts due to hysteresis when there are different initial conditions

such as switching directly from one pressure set to the next without first draining but the trend

stays the same. The map shown in Figure 2.8 contains hysteresis affected by how the pressure

states were iterated. The steady state response can vary from the average response by as much as

80◦ from what is seen in Figure 2.8 due to hysteresis. Hysteresis will be dealt with when consider-

ing a single line along the pressure mapping as will be explained later. For this mapping, an infinite

number of pressure combinations map to a single position output which requires a constraint on

the inputs for control.
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Figure 2.7: Plot showing the angle response to the pressure commands shown in Figure 2.6

Figure 2.8: This is a sample plot of resultant steady state angle given specific initial conditions and
two input pressures. Pressure 0 corresponds to the pressure in actuator 0 and pressure 1 corresponds
to the pressure in actuator 1.

To initially reduce the system to a single input single output system, the inputs were con-

strained from two dimensions to one dimension. This in effect is a slice or a line on the pressure

to angle mapping in Figure 2.8. A single pressure profile P was used to achieve a joint angle θ .
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If P0 is the pressure in one actuation chamber in absolute PSI and P1 is the pressure in the other

chamber also in absolute PSI, letting

P0 = 14+P (2.3)

and

P1 = 33−P, (2.4)

with the constraint

1≤ P≤ 18, (2.5)

the two pressure inputs P0 and P1 are combined into a single pressure input P which reduces the

controller from multi-input to single input. In Equation 2.3, the numbers 14 was determined based

on atmospheric pressure, and in 2.4 the number 33 was determined based on a maximum absolute

pressure where pinching effects in link structure were minimal. The bounds on P in Equation

2.5 were determined to keep P0 and P1 within 15 and 32 PSI. In Section 2.3 and Chapter 4, it is

shown how to use the full pressure set to account for stiffness and position making a multi-input

multi-output (MIMO) system.

Figure 2.9 shows the average steady state angle output of a single joint for different P values

collected with different initial conditions where hysteresis can be seen. The difference between

how the data over the average curve and under the average curve was collected was significant.

The reason why data was found over or under the average line is because of the direction the

pressures were incremented while data was collected. The data over the line was collected when

P started at 1 and incremented towards 18. For the data below the average line, P started at 18

and decremented towards 1. The difference between the data sets on the same side of the average

curve is dependent on the initial conditions which was whether or not the actuators were allowed

to drain between iterations.

The average of the data in Figure 2.9 can be used to map a desired angle such as θd to

desired pressures which will then be sent to the pressure controller. The average is used because

the data was collected in a way that would maximize hysteresis in one direction or the other. The
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Figure 2.9: This is a sample pressure profile for a single variable P.

average then mitigates the effects from hysteresis. The input-output relationship in Figure 2.9

closely resembles a sigmoid function. The equation

θd =
s2

1+ e(−s1(P−s4))
+ s3 (2.6)

is the general form of the sigmoid function used to map pressure inputs to input angles. The

coefficient s1 determines the slope of the curve and was fit to match the slope of the average curve

in Figure 2.9. The coefficients s2, s3, and s4 are determined by joint limits. The red line in 2.9

shows the sigmoid function fit to the average data line shown in blue. For position control in this

chapter, θ designates the joint angle and θd represents the system input. The system input θd is a

function of pressures that maps the pressure states to an angle which is necessary for the units in

the simplified impedance model to be consistent.

Equation 2.6 is needed to map the system input directly to value for P to be used in Equa-

tions 2.3 and 2.4. In Equation 2.6, P can either be solved for analytically or by using an optimiza-
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tion. An optimization was used to avoid the potential case where there is a natural logarithm of

a negative number. The algorithm used is sequential least squares programming which is useful

because the bounds on P can be set. Although this method simplifies the control input problem,

the constraint on commanded pressure in the two joint chambers also limits system capabilities.

The ability to use the full pressure range for each bladder could result in faster system response,

better dynamic behavior, and the ability to have variable stiffness at each joint.

State Space Model

For joint position control, several rigid body assumptions were made to simplify the model

for the soft robot system such as there being no lateral or torsional deflection along the links.

Deviations from this approximate model will degrade overall system performance, but they are

treated as disturbances on the system. Future work will include aspects within the model that

capture dynamics unique to an inflatable robot. However, the results of LQR and MPC for the

system presented here show that a rigid body model is sufficient for basic control of the system.

Substituting in the torque term and solving for θ̈ in Equation 2.1 gives

θ̈ =
−mgL

2 sin(θ)
I

+
ks(θd−θ)

I
− kd θ̇

I
. (2.7)

The damping and stiffness terms were estimated directly by applying a step response in desired

pressure to the real system and fitting the model Equation 2.7 in terms of kd
I , ks

I , and m. The link

mass m was found to be three orders of magnitude smaller than what the system identification

found for ks and kd so the mass terms were assumed to be negligible in the model. This reduces

Equation 2.7 to

θ̈ =
ks(θd−θ)

I
− kd θ̇

I
(2.8)

which is linear. The model can be represented in state space form as

θ̈

θ̇

= A

θ̇

θ

+Bθd (2.9)
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Y = C

θ̇

θ

 , (2.10)

where Y is the measured states and

A =

−kd
I

−ks
I

1 0

 (2.11)

B =

ks
I

0

 (2.12)

C =

1 0

0 1

 . (2.13)

Adding a more significant link-side load to a single joint (or a multi-joint robot), would require

re-examining this approximation.

With ∆t as the time step, the state space form was transformed from the continuous time-

domain to the discrete domain using the matrix exponential method found in [52], where

Ad = eA∆t (2.14)

and

Bd = (Ad− I)A−1B (2.15)

so that the complete discrete time state space equation is

θ̇ [t +1]

θ [t +1]

= Ad

θ̇ [t]

θ [t]

+Bdθd[t], (2.16)

where t is the discrete step index.

A single IMU is placed on the link of the grub to estimate the joint angle. With the grub

oriented upwards, the joint angle can be estimated from the measurements of two perpendicu-

lar accelerometers measuring the gravity vector. This is can be calculated using trigonometry as

follows:
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θ = atan
(

ay

ax

)
(2.17)

where ay is the accelerometer axis measurement parallel to the gravity vector and ax is the ac-

celerometer axis measurement perpendicular to the gravity vector and tangent to the joint rotational

degree of freedom while the grub is oriented at 0◦. This method for estimating joint angles is accu-

rate at steady state but during actuation there are more accelerations acting on the link than gravity.

A Kalman filter using both accelerometer and gyro data was used during actuation to produce a

smoothed state estimate.

2.2.2 MPC

The model predictive controller uses the discrete model Equation (2.16) to predict future

states across the horizon T . The system is simulated over the horizon where the inputs θd are

picked in such a way that the cost function is minimized. The cost function minimized across the

horizon is

f (θ , θ̇ ,θd) =
T

∑
t=1

(
‖θ [t]−θgoal‖2

Q1
+‖θd [t]‖2

R1
+‖∆θd[t]‖2

R2

)
(2.18)

+‖θ [T ]−θgoal‖2
Q2

+‖θ̇ [T ]‖2
Q3
,

where θgoal is the angle that the controller is trying to drive the system towards and Qi, i = 1..3

and Ri, i = 1,2 are cost weights. The cost function minimization is subject to:

θ̇ [t +1]

θ [t +1]

= Ad

θ̇ [t]

θ [t]

+Bdθd[t] t = 1..T (2.19)

θmin ≤ θ ≤ θmax t = 1..T (2.20)

∆θd[t] = θd[t]−θd[t−1] t = 1..T (2.21)

21



|∆θd| ≤ ∆θd,max t = 1..T. (2.22)

The limit ∆θd,max was determined by the slope of the system response to a step input. From

saturating the valve command and recording the angle data the slope can be calculated by fitting

a line to two points along the linear region of the angle data. This limit is necessary because for

the two state controller, pressure dynamics were not part of the system model. For Equation 2.21,

when t = 0, θd[0] is the control input from the previous time step.

This optimization can be solved at rates up to 200 Hz with a horizon of T = 65 time steps

using C code generated by the online convex optimization code generation tool CVXGEN [53].

CVXGEN has limits on the Karush-Kuhn-Tucker conditions for which it can provide optimized

code. The horizon length was picked so that Karush-Kuhn-Tucker conditions were the most CVX-

GEN could handle which was about 7000. The first input from the optimized input trajectory is

applied as control to the actual system and the optimization is then reformulated and runs again

at the next time step with updated states from system measurements. With a fixed horizon of 65

time steps, fast control rates can be traded for a longer time horizon allowing the controller to look

at future states further out making the control rate a tunable parameter. In Equation (2.18), Q1

weights the error over the horizon, Q2 weights the final error, Q3 weights the the final velocity,

R1 weights the inputs over the horizon, R2 weights the change in input over the horizon and all

were tuned manually for acceptable performance. The weights for final error and final velocity

add a large cost at the final step in the horizon if the system has not reached the goal. Controller

performance is discussed in Section 2.2.4.

2.2.3 LQR Control

For position control using LQR, the discrete state space model from Equation (2.16) was

used. A new discrete state v[t], defined as

v[t +1] = v[t]+
(
θgoal[t +1]−θ [t +1]

)
(2.23)

was added to the system where θgoal is the commanded joint angle where the controller is to drive

the system. This was added as an discrete form of an integrator, using the method described in [52],
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to the system because there was significant steady state error using LQR. The new discrete state

space model then becomes


θ̇ [t +1]

θ [t +1]

v[t +1]

= Ai


θ̇ [t]

θ [t]

v[t]

+Biθd[t] (2.24)

where

Cd =
[
0 1

]
(2.25)

Ai =

 Ad 0

−CdAd 1

 (2.26)

Bi =

 Bd

−CdBd

 . (2.27)

In preliminary testing, it was seen that without a limit on the input θd , the controller would

command large changes in inputs that would instantly saturate the pressure controller in both di-

rections because the pressure dynamics are not accounted for in the model. In order to limit the

system input, θd was made a state as defined by

θd[t +1] = θd[t]+∆θd[t], (2.28)

where ∆θd[t] was the new system input. The discrete state space model for the LQR controller

then becomes

X[t +1] = AlqrX[t]+Blqr∆θd[t], (2.29)
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where

X =
[
θ̇ [t] θ [t] v[t] θd[t]

]T
(2.30)

Alqr =

Ai Bi

0 1

 (2.31)

Blqr =
[
0 0 0 1

]T
. (2.32)

The control input ∆θd[t] was found at each step using the LQR formulation

∆θd[t] =−KX, (2.33)

where K is found by using the solution to the discrete algebraic Riccati equation using Alqr, Blqr,

Q, and R where Q is diagonal positive semi-definite and contains the weights on the states and

R is the weight on the input. Both Q and R were tuned manually so the joint could achieve the

commanded angles.

2.2.4 Results and Discussion for Single Joint

The MPC response, as well as the LQR responses with and without an integrator can be

seen in Figure 2.10 for a single joint. The MPC response shows less overshoot and better track-

ing of the goal than the LQR response which for some inputs relies on the integrator for accurate

tracking. However the LQR response is faster and there is less oscillation around the goal. The

LQR response shows that the system model can be used for acceptable performance. Two advan-

tages that MPC has over LQR is the ability to add constraints, and add different terms to the cost

function without major changes to the system model. For example, to limit the system input, a

simple constraint was added to the MPC optimization where LQR required a new state and cost to

be added to the system model.
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Figure 2.10: Single joint control response using MPC and LQR

2.2.5 King Louie

As shown previously MPC and LQR are both acceptable preliminary position control meth-

ods for a single degree of freedom joint. Although, the performance between the two was fairly

comparable, there are pressure saturation limits and pressure dynamics that were not included in

the two state control formulation. This along with other constraints (such as joint limits) that are

currently included in the MPC model lead us to expect that MPC will be a better long term solu-

tion than LQR. However both MPC and LQR methods developed for a single joint were used to

develop and implement MPC and LQR controllers for King Louie (a 14-DOF inflatable robot).

Model

The same rigid body model that was used for the grub was used for each joint on King

Louie. Each joint was treated independently from the rest, even though inertia and gravity have a

25



much greater effect than they did on a single joint. However, ignoring these effects in the model

and treating them as disturbances does not prevent successful control of the arm. This is in part

due to the low total weight of the arm which is estimated to be between 10 and 15 pounds. When

compared to the actuator pressures which for this work have a maximum value of 17 PSI gage, the

reaction forces between the opposing bladders are expected to be orders of magnitude greater than

the forces due to mass and gravity so the system inputs will have a dominating effect on the system

response. Even for the shoulder joints 0 and 1 where inertia and gravity effects are the greatest,

control performance was affected by these assumptions but was still good.

Sensing

King Louie’s arm kinematics can be approximated with Denavit Hartenberg parameters

using an assumption of rigid links and compliant joints. These parameters are shown in Table 2.1

with values for DHa and DHd in meters, and DHθ and DHα in radians.

Table 2.1: DH parameters for King Louie

Base-0 0-1 1-2 2-3 3-4 4-End
DHθ

π

2 θ1 +
π

2 θ2 θ3 θ4 θ5 +π

DHd 0 -0.05 0 0 0 0
DHa 0 0.18 0.32 0.28 0.14 0.28
DHα

π

2 −π

2 0 0 π

2 0

For King Louie, motion capture sensors were used for joint angle estimates. The motion

capture system uses quaternions for link orientations relative to the base frame. Calculating how

the link quaternions were represented relative to each other allowed for joint angle estimation.

With q signifying a quaternion, the relative quaternion between quaternions represented in a base

frame is

∆q(0−1) = q1q−1
0 , (2.34)

as described in [54]. In other words, Equation 2.34 calculates the quaternion representation of q1

relative to q0. Using relative quaternions between joint quaternions and assuming rigid joints and
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links, the quaternion describing the rotation between two links was decomposed into the relevant

Euler angles which give reasonable joint angle estimates. The motion capture reflective markers

used to measure the joint angles can be seen in Figures 2.11, and 2.12.

Control

Similar to control for the grub, LQR with an integrator and MPC for controlling five degrees

of freedom simultaneously were compared. Only five degrees of freedom were controlled because

the gripper was treated as being either opened or closed and the hip joints were filled to maximum

pressure to increase stability of the torso.

For both MPC and LQR, system parameters and weightings were tuned manually at each

joint for acceptable performance. Each joint is controlled by a separate process and solves for

MPC at 200 Hz for each joint. Because the MPC cost function can be minimized at 200 Hz, both

the MPC and LQR controllers were operated at 200 Hz. A higher level controller passes desired

joint angles to each joint separately. For this work, only step commands were passed to the con-

trollers. One benefit to this type of controller developed for a single joint is that MPC can run at

faster rates with a longer time horizon. A single controller that accounts for all the joints and more

of the system dynamics would have slower solve rates and necessarily shorter horizons because

of computational limitations, severely limiting the low level controller bandwidth. However, ac-

counting for the low level control response in a higher level controller for future work, where high

bandwidth is not as important, may be beneficial for overall control.

Results and Discussion for King Louie

MPC and LQR were successfully implemented for joint angle control for a multiple joint

inflatable robot system. The system response to a step input sent to each joint can be seen in

Figure 2.13. In Figures 2.11 and 2.12, King Louie’s arm can be seen at the commanded angles.

This orientation was chosen to show that King Louie can grab and manipulate objects in front of

itself.

MPC and LQR with an integrator tracked the commanded joint angles with similar trends

as was seen in Figure 2.10. MPC is slower to achieve the commanded angle but tracks well for all
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Figure 2.11: King Louie arm down Figure 2.12: King Louie arm up

the joints with some oscillation. LQR has the faster response but does not track as well especially

for Joint 2. This joint was fabricated differently than the other joints so that motion is restricted in

one direction.

The slope of the sigmoid function in Equation 2.6, could be manipulated through s1 which

was important for stability. For the grub, the coefficients where chosen to match the profile in

Figure 2.9, but for King Louie the coefficients were tuned for each individual joint. A steeper

slope was necessary for the joints at the wrist which is likely because these joints are much smaller

than the shoulder joints, and are more sensitive to changes in pressure. A steeper slope forced the

inputs towards the center of the pressure range for these joints. A more shallow slope was necessary

for the shoulder joints where the full pressure range was needed to compensate for disturbances

caused by the mass of the arm.
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Using MPC, joint space commands were given in a sequence to perform a task. The task

involved picking up a board from a chair and placing it in a box behind King Louie (See video at

https://youtu.be/o044-KW921I). The board weighs 1.38 pounds (.63 kg), is 20.5 inches (52 cm)

long , 3.5 inches (9 cm) wide, and 1.5 inches (4 cm) thick. The task was completed eight out of ten

times successfully. For one of the failed attempts, the board bounced off the top of the box and fell

out of the box. For the other failed attempt, some of the IR reflective markers were not identified

by the motion capture system which caused the joint estimation to fail after already successfully

retrieving the object but before placing it in the box.

2.3 Four State MPC

After showing that joint position could be controlled using a simple angle to pressure con-

version in [2], collaborative work was done to include pressures as states. This was accomplished

using MPC and a block diagram for the system can be seen in Figure 2.14. For a full explanation of

the model formulation please see [1]. The author of this thesis was not the primary author of [1] but

was significantly involved. However the results from [1] are necessary background for Chapters 3

and 4.

As seen in Figure 2.14, θgoal and a pressure target PT for both actuators (PT = [PT,0,PT,1])

are used by MPC to determine desired pressures for a low level pressure controller. The values for

PT are determined by a desired stiffness pressure PS and the current joint angle. MPC determines

the desired pressures by minimizing the equation

f (θ̇ ,θ ,P0,P1,θgoal) = minimize
T

∑
t=1

(
‖θgoal−θ [t]‖2

Q +‖θ̇ [t]‖2
R (2.35)

+‖P0[t]−PT,0‖2
W +‖P1[t]−PT,1‖2

W

)
.

A small cost is given for pressures that vary from PT . This allows MPC to pick a desired pressure

combination that will achieve the desired angle but it will constrain the solution to a small section

of the angle mapping seen in Figure 2.8. The desired pressures are maintained by a low level PID

pressure controller operating at 1000 Hz which is faster than the MPC outer loop with a maximum

29

https://youtu.be/o044-KW921I


Figure 2.13: King Louie step response

rate of 200 Hz. The pressure controller and joint estimation is the same as described in Section

2.2.

The four state controller performance where P0 and P1 are introduced as states, compared to

the two state controller performance with only θ̇ and θ as states can be seen in Figure 2.15. There

was significant reduction in rise time, settling time, and overshoot using the four state controller.
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Figure 2.14: MPC control diagram for joint and stiffness control

A summary of the improved performance can be seen in Table 2.2. Using the pressures within the

model significantly improved the controller performance.

Table 2.2: Performance comparison between two state MPC and new four state MPC

Avg. Rise Avg. Settling Avg. %
Time Time Overshoot

2 State MPC 1.319 sec 2.985 sec 24.408%
4 State MPC 0.556 sec 1.357 sec 2.561%
Improvement 137.24% 119.89% 853.21%

Another significant result from this work is that position can be maintained while the pres-

sures are changed within the actuators using PT . Figure 2.16 shows that as the pressure target

changes for each actuator, the joint angle does not deviate from the desired angle. The actuator

pressures do not track the target pressures accurately because angle tracking is the primary objec-

tive, but the trends are the same.

2.4 Torque Model

The torque model developed in [3] was used to more effectively control joint position. The

equation used for this model was

Iθ̈ − kd θ̇ = ksθ +a0P0 +a1P1 = τ. (2.36)
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Figure 2.15: Comparison between 2 state MPC control and 4 state MPC from a series of step inputs

Reducing this equations gives

θ̈ =
kd

I
θ̇ +

ks

I
θ +

a0

I
P0 +

a1

I
P1. (2.37)

The torque coefficients were measured by constraining the grub as seen in Figure 2.17 and mea-

suring the output torque at different angles for an input pressure. The data collected from the test

can be seen in Figure 2.17 and was reported in [3]. The linear trend of the torque data in Figure

2.18 supports the linear model derived in Equation 2.36. The torque coefficients a0 and a1 were

calculated from the slope of a linear fit to the data.

Using the developed torque model, MPC was applied to the system assuming a first order

pressure model for the closed-loop PID pressure controller dynamics. Figure 2.19 shows the block

diagram for the system which is similar to the control scheme used in [1].
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Figure 2.16: Results for Grub holding a constant angle with a sinusoidal pressure command which
is related to stiffness

MPC determines desired pressures for good tracking of a desired angle signal. The desired pres-

sures are maintained by a low level PID pressure controller operating at 1000 Hz. The pressure

controller sends current commands to valves which controls air flow to each of the actuators. A

Kalman filter for the grub then estimates the joint angle and angular velocity from IMU sensor

data.

Controller performance can be seen in Figure 2.20 along with the performance of the two

state controller. From the figure, it is clear that the torque model has significantly less overshoot

33



Figure 2.17: Testing setup with force sensor mounted at 0◦

Figure 2.18: Actuator force at different pressures and angles

than the two state controller and faster initial rise times. A summary of controller improvement

from the two state controller from Section 2.2 can be seen in Table 2.3.

Table 2.3: Performance comparison two state MPC and the four state MPC with the torque model

Avg. Rise Avg. Settling Avg. %
Time Time Overshoot

2 State MPC 1.319 sec 2.985 sec 24.408%
4 State Torque-based MPC 1.360 sec 2.592 sec 2.587%
Improvement -3.02% 15.13% 843.35%

Using the torque model, MPC was then applied to King Louie with the same method de-

scribed in Section 2.2.5 and the results can be seen in Figure 2.21. Although position control is
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Figure 2.19: MPC control diagram for joint control

Figure 2.20: Controller comparison results for a single joint

not perfect, the four state controller does much better at tracking the desired angle and reducing

oscillations than the two state controller, especially for joints 0 and 1 at the shoulder.

Joint space control was used on King Louie in [3] to show that the end effecter can re-

peatably reach to the same position within 3 cm. A video of these reaching trials is available at

https://youtu.be/4T-FN581RkA. Also, like in Section 2.2.5, a pick and place task was com-
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Figure 2.21: This is a step response comparison between the four state MPC response from Section
2.4 and the two state MPC response from Section 2.2.5 for King Louie’s right arm.

pleted to pick up a ball and drop it in a bucket. The pick was successful ten out of ten times

and the place task was successful nine out of ten times. A video of these trials is available at

https://youtu.be/p30jKn7_pV4.
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CHAPTER 3. STIFFNESS MODEL DEVELOPMENT

One goal of this research is to be able to control joint stiffness. In order to explicitly control

stiffness, a model must be developed to quantify and relate stiffness to other states. In this chapter,

first an angle to volume relationship is developed that describes how actuator volumes change

with the joint angle of the grub. Next, equations describing the stiffness of the joint and the time

derivative of the joint stiffness are formulated. These equations are used to model both stiffness

and position for the joint. Lastly, the model is fit to data collected from the grub. Test results are

shown that validate the stiffness model by comparing the actual joint stiffness to the estimated joint

stiffness at specific pressures in the actuation chambers.

3.1 Assumptions and Basic Principles

In order to develop a model for joint stiffness, several assumptions must be made about the

dynamics of the system. The first assumption made is that since air is the working fluid in the joint

the ideal gas law can be used to model fluid properties. Also since the actuation pressures and mass

flows are relatively small, constant temperature can also be assumed. Constant temperature for this

type of actuator was shown to be a valid assumption in [14]. Results in [14] showed that models

with constant temperature had almost identical results as higher fidelity models that accounted for

changes in temperature. Using these assumptions, the actuator pressure can be described by the

equation

Pi =
miRD

Vi
, i = 0,1 (3.1)

where mi is the mass of the air in the ith actuator, R is the ideal gas constant for air (287Jkg−1K−1),

D is the temperature of the air (assumed room temperature 294 K), and Vi is the volume of the

actuator.
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An important relationship for the model development was how the joint angle relates to

actuator volume. The antagonistic nature of the joint makes it so as the angle increases, one

actuator expands in volume and the other compresses. Because the joint is made from fabric and

is manually fabricated, it is impractical to measure the actuator bladder volume geometrically.

However, by using another chamber with a known volume (.0028 m3 or 170 in3), the volume of

the actuator bladder can be calculated. This was done by filling the rigid black chamber shown in

Figures 3.1 and 3.2 to a known pressure and releasing the air into the empty actuator bladder. The

ideal gas law can be used to calculate the total mass of air from the filled rigid tank and then again

using the mass of air from the first calculation to calculate the final total volume. The actuator

volume is then simply the rigid tank volume subtracted from the total volume. The test setup can

be seen in Figures 3.1 and 3.2 and the procedure diagram can be seen in Figure 3.3.

Figure 3.1: The rigid tank is connected to
the valve by the orange hose (left) and is
filled to a known pressure. The rigid tank
pressure is measured by a pressure sensor
connected by the blue tube (right). The back
actuator (unseen) is filled to a known pres-
sure and maintained.

Figure 3.2: The rigid tank is allowed to
empty into the front actuator (seen) which
pushes the link to the opposite side.
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Figure 3.3: This represents how the volume in the bladder changes when the pressurized air in the
rigid chamber is released. For the rigid tank, Vr is the volume, mr is the mass of the air, and Pr is
the pressure. For the bladder, Vb is the volume, mb is the mass of air, and Pb is the pressure.

For Phase 1 in Figure 3.3, the mass of the air can be calculated by

mr1 =
Pr1Vr1

(RD)
. (3.2)

Since the actuator is made from fabric, there will still be pockets of air and the hose cannot be

completely emptied. The initial volume and mass in the actuator for Phase 1 will not be exactly

zero but is assumed to be zero because the actuator is compressed by the opposite actuator. For

Phase 2, it is known that Pr2 = Pb2 = P2 and mr2 +mb2 = mr1 because it was assumed that no air

was lost so the total volume of the system must be

Vsys =
mr1RD

P2
. (3.3)

Since Vsys =Vr +Vb2, the volume of the actuator bladder is

Vb2 =Vsys−Vr. (3.4)

Each actuator bladder volume corresponds to a certain angle. Different initial pressures

in the rigid tank resulted in different settling angles for the joint. To get the full range of angles,
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the opposite actuator was maintained at different pressures. Figure 3.4 shows a linear relationship

(albeit noisy) between joint angle and volume of the actuator

Figure 3.4: Linear fit from joint angle to actuator volume

and the linear expression for this relationship is

Vi = Miθ +b. i = 0,1 (3.5)

Substituting this into Equation 3.1 gives

Pi =
miRD

Miθ +b
, i = 0,1 (3.6)

for pressure in the ith actuator bladder. The values for Mi and b can be found in Table 3.1 in Section

3.3.

The variability in the data shown in Figure 3.4 is caused by many factors. The largest

variability is expected to come from the physical characteristics of the joint. Each time the joint

rotates, different folds within the actuators fill and shift making the actuator volume different for

each test. Because there is not a rigid separation between each of the actuators, the folds can sig-

nificantly affect actuator interaction by how they push on each other. Complicating the problem

40



even further, the actuators push on the central column which is an inflated chamber that can also

fold and shift as the joint rotates. Future designs that allow for the actuator to fill and empty more

uniformly without the central column are expected to reduce the volume measurement variability.

Other factors that could affect the variability include noise on the pressure and angle signals, pos-

sible leakage around the pressure sensors, valves, or fittings, assuming ideal gas conditions with

constant temperature.

3.2 Stiffness Equation Derivation

Using the torque model that was developed in [3] a model for joint stiffness can be devel-

oped. The output stiffness for a rotary joint with compliant actuation can be defined as

k =− ∂τ

∂θ
, (3.7)

where

τ = a0P0 +a1P1. (3.8)

Using a negative in the equation keeps the stiffness term k positive and is the convention for this

thesis. The reaction torque from the joint is dependent on how the applied joint torque (τa) changes

with angle. The equation for stiffness becomes

k =− ∂

∂θ
(a0P0 +a1P1) , (3.9)

which when using the pressure expression from Equation 3.6 and taking the partial derivative with

respect to θ becomes

k =
a0M0m0RD

(M0θ +b)2 +
a1M1m1RD

(M1θ +b)2 . (3.10)

This stiffness equation can be reduced by substituting back in pressures P0, and P1 using Equation

3.6 to get

k =
a0M0P0

M0θ +b
+

a1M1P1

M1θ +b
. (3.11)
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Letting

αi =
Mi

Miθ +b
, i = 0,1 (3.12)

where i corresponds to the actuator index, and k becomes

k = a0α0P0 +a1α1P1. (3.13)

By taking the derivative of Equation 3.13 with respect to time gives

k̇ = a0α0Ṗ0 +a1α1Ṗ1− θ̇
(
a0α

2
0 P0 +a1α

2
1 P1
)
. (3.14)

However, by assuming a first order model on the PID pressure controller dynamics or

Ṗi = c0Pi + c1Pi,des, i = 0,1 (3.15)

which represents the PID pressure controller dynamics and using Equation 3.13 gives

k̇ = c0k+a0α0c1P0,des +a1α1c1P1,des− θ̇
(
a0α

2
0 P0 +a1α

2
1 P1
)
. (3.16)

A model was developed using equations describing the gas dynamics but the performance of model

based control was poor. More on the development of the equations describing the gas dynamics

can be seen in Appendix A.

Using the torque model Equation 2.37, the full set of state space equations for a model of

angular velocity, angle, stiffness, and pressures as states becomes

θ̈ =
kd

I
θ̇ +

ks

I
θ +

a0

I
P0 +

a1

I
P1 (3.17)

θ̇ = θ̇ (3.18)

k̇ = c0k+a0α0c1P0,des +a1α1c1P1,des− θ̇
(
a0α

2
0 P0 +a1α

2
1 P1
)

(3.19)

Ṗ0 = c0P0 + c1P0,des (3.20)

Ṗ1 = c0P1 + c1P1,des. (3.21)
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3.3 Model Validation

The set of Equations 3.17 through 3.21 is expected to be a simplified set of dynamics of

the actual inflatable joint. As such, it must be shown to represent a majority of the joint dynamics.

Model parameters were fit to data collected from the grub using least squares methods. Table 3.1

contains the parameters used within the state space model. The sign for the stiffness and damping

coefficients is based on the convention set by the torque model in Equation 2.37 where these terms

are positive.

Table 3.1: Stiffness model parameters and units

Parameter Units

kd −10.85 Nms/rad

ks −51.77 Nm/rad

a0 .0011 Nm/Pa

a1 −.0011 Nm/Pa

I .0174 kg m2

c0 −5.301 s-1

c1 5.301 s-1

M0 1.4857e−04 m3/rad

M1 −1.4857e−04 m3/rad

b 1.222e−03 m3
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3.3.1 Model Simulation Compared to Actual Data

Figure 3.5 shows how the fitted model compares to data collected from the grub. For the

simulation, only the initial conditions are known to the model and the same desired pressures that

were applied to the grub are applied to the model. Most of the discrepancy between the model and

measured data from the grub most likely come from the first order pressure model. There are gas

dynamics and actuator interaction dynamics that are not included in this model.

Figure 3.5: Model simulation compared to actual data collected from the grub
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Work was done to include more of the gas dynamics such as mapping valve commands

to mass flow rates and using mass flow rates as system inputs. This was an effective model for

control in simulation where model discontinuities such as choked and unchoked flow could be

easily handled but actual control implementation failed. The two main reasons why it failed using

a model that included more of the gas dynamics were because of failed convergence for MPC

and because the valves used were better suited for PID pressure control rather than providing

reliable mass flow because there is not any feedback on the spool position. The valve command

signal is noisy and the effective valve area which is necessary for reliable mass flow estimates is

not consistent for the same valve current commands at different times. Future work to model gas

dynamic affects can improve the accuracy of the system model but as seen in Chapter 4, the current

model is sufficient for control of both joint position and stiffness.

3.3.2 Stiffness Validation

The joint stiffness for the inflatable joint cannot be measured directly so it is estimated

using Equation 3.13. In order to validate that the estimated stiffness follows the same trends as the

actual joint stiffness, the joint was controlled to a stiffness and a torque was applied. The actual

stiffness could then be calculated by dividing the applied torque by the measured deflection. Two

methods were used to measure the joint stiffness. Both methods were accomplished at two angles

where the joint mounting was oriented and constrained so that weights could be hung from the link

at a known distance from the joint center which was .3 m. The set-up can be seen in Figures 3.6

and 3.7.

For the first method, two different weights were applied five times and the stiffness was

calculated for each test. This method was designed to show the repeatabilty of the stiffness mea-

surement. All calculated values for stiffness were then averaged together. The results for the first

method can be seen in Table 3.2. The second column shows the two applied torques used for the

desired stiffness specified in the third column. Two different torques were applied to show that

the average measured stiffness was not configuration dependent. At both the 0◦ and 45◦ config-

urations, the total stiffness or measured stiffness matches the estimated stiffness for all but low

stiffnesses.
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Figure 3.6: Experimental set-up for stiffness
validation at aproximatly 0◦

Figure 3.7: Experimental set-up for stiffness
validation at aproximatly 45◦

Table 3.2: Stiffness data at 0◦ and 45◦

Angle (deg) Torque* (Nm) k Des (Nm/rad) k (Nm/rad) Average Total k (Nm/rad)
for Applied Torque Average

0
4.67

50
52.41

49.76
6.00 47.11

0
4.00

45
46.37

46.16
5.34 45.94

0
3.34

40
42.17

39.33
4.67 36.48

0
2.67

35
34.12

30.22
4.00 26.32

45
4.67

50
43.11

44.14
6.00 45.17

45
4.00

45
41.04

41.28
5.34 41.51

45
3.34

40
35.94

36.51
4.67 37.08

45
2.67

35
32.49

31.62
4.0 30.74

* The applied torque corresponds to the force applied times the distance to the application
point which was .3 meters.

For the second method, weights were applied from 0.5 lbs to 6 lbs in 0.5 lb increments

and the deflection was recorded. This test was designed to show that the stiffness measurement is

consistent for different applied torques. A least squares linear fit was applied to the data and the
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slope of the fit was the measured stiffness. The results of this method can be seen in Figures 3.8

and 3.9.

Figure 3.8: Stiffness validation at 0◦

The stiffness measurement in Figure 3.9 matches closely the result found in Table 3.2.

However there is a discrepancy between the stiffness measurements for the two methods at 0◦. The

reason for this is a hardware limitation. A crease in the actuator that formed between tests caused

a pinch point which decreases the joint stiffness as deflections increase. For small deflections, the

effects of the pinch point are minimal and the stiffness is a linear trend. For deflections that result

in a reaction torque less than 3.336 Nm, the joint stiffness appears to be linear and can be seen in

Figure 3.10. The stiffness measurement from this region matches the measurements obtained from

the first method where the pinch point was not a problem. This problem will be mitigated with
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Figure 3.9: Stiffness validation at 45◦

future designs where uniform filling within the actuator chamber will prevent pinch points from

forming.

Because the measured stiffness matches the estimated stiffness, it is reasonable to claim

that when the joint is controlled to a desired stiffness, that the stiffness estimation is a sufficient

representation of the actual joint stiffness. This is important for control because stiffness cannot

be measured in-line. Much work was done to tune parameters for the joint so that the estimated

stiffness matched the measured stiffness. For some joints the stiffness cannot be measured as

easily making it difficult to tune parameters. However, even though the joint estimation may not

be accurate, if the estimated stiffness increases, the actual joint stiffness will increase and if it

decreases, the actual joint stiffness will decrease.
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Figure 3.10: Linear region stiffness validation at 0◦
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CHAPTER 4. SIMULTANEOUS POSITION AND STIFFNESS CONTROL

This chapter looks at different control methods for controlling both position and stiffness

simultaneously. The stiffness equations in the model developed in Chapter 3 are nonlinear so a

sliding mode control law is formulated in Section 4.1. The sliding mode control (SMC) law was

implemented both in simulation and on the grub by dividing the system into an angle controller and

a torque and stiffness controller. For implementation on the grub, position was controlled within

2◦ of the desired angle, and stiffness was controlled within 3 Nm/rad at steady state. In Section

4.2, linear model predictive control (MPC) is formulated and was then implemented in simulation

and on the grub. Position was controlled within 2◦ of the desired angle and stiffness was controlled

within 1 Nm/rad of the desired stiffness at steady state. Both of the numerical results for SMC and

MPC exclude the step responses where the desired stiffness and position form an unreachable pair

based on joint angle and pressure limits and become competing objectives. In Section 4.3 SMC

and MPC results are discussed and based on the performance, MPC is applied to multiple degrees

of freedom in Section 4.4. Applying stiffness control to King Louie’s right arm, it was shown that

the deflection of the end effector was reduced by 50% when controlled near maximum stiffness

rather than minimum stiffness which validates that stiffness is actually being controlled and has a

significant effect on the system.

4.1 Sliding Mode Control

Sliding mode control (SMC) is a nonlinear control method where a discontinuous control

signal is applied to a system to force the dynamics to slide along a subset of possible states. As

described in [50], SMC works by first constraining a state trajectory to a manifold or surface and

then driving the states to zero. The sliding surface is an arbitrary function of the states and may

include system parameters. The control law is formed by looking at the stability of the surface in

terms of Lyapunov and by picking the system input to be of the form
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u =−β (x)sgn(s), (4.1)

where u is the system inputs, β (x) is a function of the system states and sgn(s) is the signum

function as a function of the sliding surface. The signum function is discontinuous and takes the

form sgn(s) = s
||s|| If a control law in the form of Equation 4.1 can be found that shows Lyaponuv

stability, then sliding mode control has been established.

4.1.1 Controller Development

There are different procedures for developing a SMC control law. This work looks at the

method described in [50] and [51]. Applying the method in [50] to the entire model (Equations 3.17

through 3.21) led to an uncontrollable mode. However, by dividing the model into two systems in

series, an effective SMC control law was developed.

Method 1

This section shows how the standard method used [50] to establish a sliding mode control

law led to an uncontrollable mode. Transforming the system model (Equations 3.17 through 3.21)

into error states x = [θ̇− θ̇goal,θ−θgoal,k−kgoal,P0,P1]
T with inputs u = [P0,des,P1,des]

T gives the

following:

ẋ1 =
kd

I

(
x1− θ̇goal

)
+

ks

I

(
x2−θgoal

)
+

a0

I
x4 +

a1

I
x5 (4.2)

ẋ2 = x1 (4.3)

ẋ3 = c0
(
x3 + kgoal

)
+ c1a0α0u0 + c1a1α1u1−

(
x1 + θ̇goal

)(
a0α

2
0 u0 +a1α

2
1 u1
)
− k̇goal(4.4)

ẋ4 = c0x4 + c1u0 (4.5)

ẋ5 = c0x5 + c1u1. (4.6)
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This set of equations fits the form

ẋ = f(x)+B(x) [G(x)u+δ (t,x,u)] , (4.7)

where

B(x) =



0 0

0 0

a0α0 a1α1

1 0

0 1


(4.8)

G(x) =

c1 0

0 c1

 . (4.9)

The term f(x) contains the nonlinear, unforced dynamics and δ (t,x,u) contains the model uncer-

tainties. A diffeomorphism of the system or a continuously differentiable map with a continuously

differentiable inverse as defined by [50], is formed so that

∂T
∂x

B(x) =

0

I

 , (4.10)

where if B(x)n×m, then I is an m by m matrix. The most obvious choice for T is

T1 = x1

T2 = x2

T3 = x3−a0α0x4−a1α1x5 (4.11)

T4 = x4

T5 = x5.
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As described in [50], the change of variables


η

· · ·

ξ

= T(x) =



T1

T2

T3

· · ·

T4

T5


, η ∈ Rn−m, ξ ∈ Rm, (4.12)

transforms the system into the form

η̇ = fa (η ,ξ ) , ξ̇ = fb (η ,ξ )+G(x)u+δ (t,x,u) . (4.13)

The sliding manifold is then picked to be s = ξ − φ (η) where φ (η) is picked so that

when the states are restricted to the sliding surface, the reduced-order model η̇ = fa (η ,φ (η)) is

asymptotically stable at the origin. Differentiating η with respect to time and doing the change of

variables from x to η and ξ gives

η̇1 =
a0

I
ξ1 +

a1

I
ξ2 +

kd

I

(
η1 + θ̇goal

)
+

ks

I

(
η2 +θgoal

)
− θ̈goal

η̇2 = η1 (4.14)

η̇3 = c0
(
η3 + kgoal

)
− k̇goal.

It is impossible to pick φ (η) so that the reduced order model is asymptotically stable. The reason

for this is found when η̇3 is expanded. First substitute in η3 = x3−a0α0x4−a1α1x5 into Equation

4.15 to get

η̇3 = c0
(
x3−a0α0x4−a1α1x5 + kgoal

)
− k̇goal. (4.15)

Then substitute in x3 = k− kgoal , x4 = P0, and x5 = P1 to get

η̇3 = c0
(
k− kgoal−a0α0P0−a1α1P1 + kgoal

)
− k̇goal. (4.16)
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Then substitute the stiffness expression Equation 3.13.

η̇3 = c0
(
k− kgoal− k+ kgoal

)
− k̇goal (4.17)

Simplifying results in

η̇3 =−k̇goal. (4.18)

Since η̇3 is only dependent on k̇goal , the derivative is arbitrary and asymptotic stability is

not possible because no choice of φ (η) will guarantee that η̇3 will go to zero. This shows that

the diffeomorphism T(x) chosen leads to an uncontrollable mode. This does not imply that there

does not exist a diffeomorphism that does lead to asymptotic stability of the subsystem, but that the

obvious transformation does not work. It will be shown in the next section that when successive

loop closure is used, finding a transformation is not necessary and that control can be achieved.

Cascade Model and Successive Loop Closure

Representing the system as a cascade and using successive loop closure allows for the de-

velopment of a sliding mode control law without the need for a transformation. Figure 4.1 is the

block diagram of the two controller system. The SMC Angle Control block in the diagram deter-

mines a torque in order to achieve the desired angle. The desired torque (τdes) and desired stiffness

(kgoal) is fed into the inner loop SMC Torque and Stiffness Control where desired pressures (P0,des

and P1,des) are determined to achieve the desired torque and stiffness. To determine valve com-

mands (CMD), the desired pressures are then fed into a low level PID pressure controller that is

running at 1000 Hz. The outer loop with the sliding mode control runs at 100 Hz. The same

Kalman filter used in Section 2.2.1 is used to estimate angular velocity (θ̇ ) and angle (θ ) states.

These are used with pressure data (P0 and P1) in Equation 3.13 to estimate the stiffness state (k) for

the time step.
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Figure 4.1: SMC flow chart

Position Through Torque Control

The first SMC designated as SMC Angle Control in Figure 4.1, determines the necessary

torque to track a desired angle signal. The output from this controller is a desired torque that

the second SMC, designated as SMC Torque and Stiffness Control in Figure 4.1, will track. The

second SMC determines pressures necessary to track both a desired torque and a desired stiffness

signal. Without a second controller, the desired torque output from the first SMC is useless since

pressure is controlled and not torque directly.

To derive the SMC Angle Control, equations similar to state Equations 3.17 and 3.18 from

the system model are used. The difference is that torque is considered instead of pressure states.

This is essentially a controller for a simple rotary joint with torques applied at the joint or τdes

taking the form

Iθ̈ − kd θ̇ − ksθ = τdes. (4.19)

The goal is to find a control law for τdes to stabilize the joint. The torques applied at the joint are

the controlled torque (τsmc) and a returning spring torque (−ksθ ) from the physical structure of the

joint. To compensate for steady state error an integrator (−Ki
∫ (

θ −θgoal
)
) can be added so that

τdes = τsmc− ksθgoal−Ki

∫ (
θ −θgoal

)
. (4.20)
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Combining Equations 4.19 and 4.20 gives

θ̈ =
kd

I
θ̇ +

ks

I

(
θ −θgoal

)
− Ki

I

∫ (
θ −θgoal

)
. (4.21)

A change of variables to error states where x =
[
θ̇ ,θ −θgoal,

∫ (
θ −θgoal

)]T gives

ẋ1 =
kd

I
x1 +

ks

I
x2−

Ki

I
x3 +

τsmc

I
(4.22)

ẋ2 = x1− θ̇goal (4.23)

ẋ3 = x2 (4.24)

as a set of state equations. Using these equations the sliding surface was picked to be

s = x1 +Kex2 +
Ki

I
x3. (4.25)

There is not a direct method for picking a surface but this surface follows the form of the sum of

the states multiplied by coefficients. Taking the time derivative of Equation 4.25 and substituting

in from Equations 4.22 through 4.22 gives

ṡ =
kd

I
x1 +

ks

I
x2−

Ki

I
x3 +

τsmc

I
+Ke

(
x1− θ̇goal

)
+

Ki

I
x2, (4.26)

where Ke and Ki are SMC tunable gains. The control input τsmc is then picked to be

τsmc =−I
(

Kex1 +
Ki

I
(x2− x3)+ν

)
(4.27)

to stabilize the system where ν contains the model uncertainties. If this is substituted into Equation

4.26, it becomes

ṡ =−ν +
kd

I
x1 +

ks

I
x2−Keθ̇goal. (4.28)

The goal is to have ṡ go to zero by sliding along the manifold described in Equation 4.25. This is

done by picking ν to be
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ν = β (x)
s
||s||

. (4.29)

The term β (x) is determined by finding a bound on |ν | which is done by starting with the ν that

makes ṡ = 0. The bound on |ν | can be found from the following:

ν = −Keθ̇goal +
ks

I
x2 +

kd

I
x1 (4.30)

|ν | = |−Keθ̇goal +
ks

I
x2 +

kd

I
x1| (4.31)

|ν | ≤ Ke|θ̇goal|+
ks,max

I
|x2|+

kd,max

I
|x1|. (4.32)

Because it was shown that |ν | is bounded, the sliding mode control law can be formed by

τsmc =−I
(

Kex1 +
Ki

I
(x2− x3)+β (x)sat

(
s
µ

))
, (4.33)

where

β (x) = Ke|θ̇goal|+
kd,max

I
|x1|+

ks,max

I
|x2|+β0. ks,max,kd,max,β0,µ ≥ 0 (4.34)

and sat
(

s
µ

)
is the saturation function which is an approximation of s

||s|| from Equation 4.29. The

terms µ and β0 are tunable controller parameters. Now that there is a control law for the control

torque (τsmc), the desired torque for the joint can be calculated at each time step using Equation

4.20.

Torque and Stiffness Control

The goal of the second SMC is to track the desired torque (τdes) from the first controller

and a desired stiffness (kgoal) from a reference signal. The torque at the joint is defined as

τ = a0P0 +a1P1. (4.35)
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Taking the time derivative of Equation 4.35 and using Equations 3.19 through 3.21 gives the fol-

lowing model for torque and stiffness:

τ̇ = c0τ +a0c1P0,des +a1c1P1,des (4.36)

k̇ = c0k+a0α0c1P0,des +a1α1c1P1,des− θ̇
(
a0α

2
0 P0 +a1α

2
1 P1
)

(4.37)

Ṗ0 = c0P0 + c1P0,des (4.38)

Ṗ1 = c0P1 + c1P1,des. (4.39)

Equations 4.36 and 4.37 form a two-input two-output model so a sliding mode control approach

can be used to control both joint torque and stiffness. This method is the same approach used

in [15] for force and stiffness control of a linear pneumatic actuator, but the control law in this

work is for a rotary actuator rather than a linear actuator.

The sliding surface is first defined as the error between the joint torque (τ) and the desired

torque (τdes) defined as

S1 = τ− τdes, (4.40)

and the error between the joint stiffness (k) and the desired joint stiffness (kgoal) defined as

S2 = k− kgoal. (4.41)

As described in [51] the MIMO sliding mode control law is given as

u = B−1
(

ẋr− f−Ksat
(

S
µ

))
, (4.42)

where u is the system inputs, B contains input dynamics, ẋr is the derivative of the input trajectories

which can be calculated using numerical methods, f contains the nonlinear state dynamics, K is the

controller gains and sat
(

S
µ

)
is the saturation function of the manifold signals where the saturation

function is defined as
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sat(y) =

 y i f ||y|| ≤ 1
y
||y|| i f ||y||> 1.

(4.43)

Putting Equations 4.36 and 4.37 into the form of Equation 4.42 gives the following control law:

P0,des

P1,des

 =

 c1a0 c1a1

c1a0α0 c1a1α1

−1

 τ̇des

k̇goal

−
 c0τ

c0k− θ̇
(
a0α2

0 P0 +a1α2
1 P1
)
 (4.44)

−

K1 0

0 K2

sat
(

S1
µ

)
sat
(

S2
µ

)

 .

4.1.2 Simulation Results

Both sliding mode controllers were shown to be successful in simulation separately and

then together for overall control of both angle and stiffness. The SMC Angle Control for position

was able to track steps in desired position and the SMC Torque and Stiffness Control was able to

track steps in both desired torque and stiffness. SMC for the system was simulated in MATLAB.

Forward simulations are based on an explicit Runge-Kutta method based on the Dormand-Prince

pair [55] by using MATLAB’s ode45 function.

SMC Angle Control Simulation

The first simulation was SMC Angle Control where the output τdes was used in a plant

simulated using only Equation 4.19. The controller gains for angle control are in Table 4.1 and they

were tuned manually for good performance. The controller response to a series of step commands

can be seen in Figure 4.2 and how the sliding surface evolves can be seen in Figure 4.3. The joint

angle response behaves exactly how it was expected. The desired torque spikes and pulls back just

before reaching the desired angle. The plot of the sliding surface s in Figure 4.3 goes to zero after

each step which shows stability of the system.
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Table 4.1: Controller gains for independent angle controller

Gain
Ke 10.0
Ki 0.1
β0 1.0
µ1 10.0

kd,max 15.0
ks,max 60.0

SMC Torque and Stiffness Control Simulation

For simulation of SMC Torque and Stiffness control, arbitrary step commands in desired

torques (τdes) and desired stiffnesses (kgoal) were used as reference trajectories and the plant was

simulated using Equations 4.36 through 4.39. The controller gains for torque and stiffness control

are in Table 4.2 and they were tuned manually for good performance with a higher priority on

torque tracking. Good tracking of the desired torque signal is necessary for good angle tracking.

The controller response to a series of step commands can be seen in Figure 4.4 and how the sliding

surface evolves can be seen in Figure 4.5. The spikes in desired pressure are expected but because

of the first order pressure model, these spikes have little effect on the pressure dynamics. There is

good tracking of both the desired torque signal and the desired stiffness signal. For high torques

and high stiffnesses such as the region from 50 seconds to 70 seconds, the tuning preference for

torque tracking can be seen. The model used for torque, Equation 3.8, allows for the high torques

seen in Figure 4.4. The actual torque applied by the joint is expected to be less than the estimated

value. In Figure 4.5 both S values trend to zero which shows that sliding mode control is stabilizing

the system.

Table 4.2: Controller gains for independent torque and stiffness controller

Gain
K1 30.0
K2 4.0
µ2 10.0
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Figure 4.2: Simulated independent angle control response

Full System SMC Simulation

For full state simulation arbitrary angle and stiffness goals as step commands are used

and the plant is simulated using Equations 3.17 through 3.21. The controller gains for angle and

stiffness control are in Table 4.3. The controller gains in this table are the same as the gains in

Tables 4.1 and 4.2. This shows that the dynamics between the two controllers do not change much.

The controller response to a series of step commands can be seen in Figure 4.6 and how the sliding

surface evolves can be seen in Figure 4.7. There is good tracking for both position and stiffness
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Figure 4.3: Sliding surface for simulatied independent angle control

which validates the use of the successive loop closure control system. There are again spikes that

occur in desired torque signal which gets passed onto the desired pressure signal. In simulation,

these spikes have little effect on the system states. In Figure 4.7, again all three surfaces are driven

to zero showing stability of the system.

Table 4.3: Controller gains for sliding mode control in simulation

Gain
Ke 10.0
Ki 0.1
β0 1.0
µ1 10.0

kd,max 15.0
ks,max 60.0

K1 30.0
K2 4.0
µ2 10.0

Simulation results show that the successive loop closure sliding mode control scheme can

work to control both joint angle and stiffness. In Figure 4.7 the three sliding surfaces trend to zero

which is one of the goals for sliding mode control. The pressure states and desired pressures are
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Figure 4.4: Simulated independent torque and stiffness control response

within the range of achievable pressures for the grub. Actual control on the grub is not expected to

perform as well as simulation because the simulation results use the developed model for the plant

dynamics. In order to prevent integrator wind up, the integrator was set to zero for any absolute

error greater than 5◦ so that the integrator starts at zero for each new step command. This also

prevents windup before the integrator initially moves toward the goal from a step in the reference

signal.
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Figure 4.5: Sliding surfaces for simulated independent torque (S1) and stiffness (S2) control

4.1.3 Grub Implementation

Since it was shown in simulation that SMC worked for the system model, SMC was applied

to the one degree of freedom grub platform seen in Figure 2.1. The controller gains for angle and

stiffness control used on the grub are in Table 4.4 and they were tuned manually with position

control being weighted more important. The grub response to a series of step commands can be

seen in Figure 4.8 and how the sliding surface evolves can be seen in Figure 4.9. The preference

towards position tracking can be easily seen in Figure 4.8 especially from 60 seconds to 75 seconds.

During this time, the angle is achieved but actuator pressures are saturated in a way that prevents

stiffness from increasing without changing the joint angle. The steady state error for position is

within 2◦ of the desired angle and the stiffness was controlled to within 3 Nm/rad of the desired

stiffness signal at steady state except for the region between 60 seconds and 75 seconds.
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Figure 4.6: Simulated angle and stiffness control response

The differences between the simulated SMC as seen in Figure 4.6 and actual SMC on the

grub as seen in Figure 4.8 are quite apparent. In simulation, both angle and stiffness are tracked

quickly and accurately. Even the desired torque is tracked quite well.

Actual control on the grub is not as good as simulation which is to be expected. There

is significant overshoot in the angle tracking and there is poor tracking of the stiffness signal.

The poor stiffness tracking is the cost for the accuracy in tracking the torque trajectory which is

necessary for accurate angle tracking. The controller was tuned in this way because for many
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Figure 4.7: This is the sliding surfaces for simulation angle and stiffness control. s corresponds to
Equation 4.25, S1 corresponds to Equation 4.40 and S2 corresponds to Equation 4.41.

Table 4.4: Controller gains for sliding mode control on the grub

Gain
Ke 10.0
Ki 0.5
β0 1.0
µ1 200.0

kd,max 15.0
ks,max 60.0

K1 30.0
K2 8.0
µ2 10.0

applications, position accuracy is very important to complete a task. Even though the stiffness

tracking on the grub does not have as fast of a response time as the stiffness tracking in simulation,

given enough time the desired stiffness is achieved for most step commands after the desired angle

has been achieved.
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Figure 4.8: SMC response on the grub

The grub is more sensitive to changes in the commanded pressure than the model predicts

when the valves first open or close. There is a sudden change of pressure in the actuators probably

due to fluid capacitance within the lines. As seen from simulation in Figure 4.6, large control

spikes up to 100 Nm in magnitude per time step occur when there is a change in the desired angle

trajectory. In order to prevent these spikes for SMC on the grub, a slew rate was implemented on
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Figure 4.9: Sliding surfaces from SMC on the grub

the output of SMC to prevent the desired torque from changing too quickly. The slew rate was 100

Nm/rad or since the controller was running at 100 Hz, the slew rate was 1 Nm/rad.

To prevent overshoot from integrator wind up, just like in simulation, the integral was

zeroed for error greater than 25◦ to restart the integrator for new large step commands and so that

the integrator does not start to build until the position is close to the goal. The larger integrator

region than simulation was necessary for actual control because of hysteresis in how the grub

responds to different torques at different angles.

The controller performance can be greatly improved with a better model. Although there

are robust features of SMC, this type of control is still susceptible to bad performance when there

are errors in the model. For example, the model used does not include specific gas dynamics or

how the actuators interact with each other. The performance of SMC on the grub shows that the

model used captures a majority of the actual grub dynamics. A model that includes more of the

gas and fabric dynamics would allow for the development of a better sliding mode control law,

but would greatly increase the complexity of the controller and would require more complicated
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system identification for each new joint or actuator. The reason for this is because the gas and

fabric dynamics are discontinuous and the controller would need to adapt to each dynamic mode.

Choked flow and unchoked flow, filling or draining, pinched actuators or open actuators are all

different modes that would require different control laws. Instead of capturing all of these details,

a minimal set of dynamics where both joint angle and stiffness can be controlled was developed.

4.2 Model Predictive Control

The main idea of model predictive control is that system inputs are determined by minimiz-

ing a cost function over a finite time horizon subject to the dynamics of the system expressed as an

equality constraint. This optimization occurs for every time step and only the first resultant control

input is applied. This allows the controller to benefit from both closed-loop feedback control and

optimal control. The ability to look forward at future states and using an updated trajectory from

the current states at each time is what makes this control method good at overcoming disturbances

and discrepancies in the model. The main limitations to MPC are the ability to find a solution to

the optimization problem and solving the optimization at fast enough rates for control.

4.2.1 Controller Development

The controller development for MPC is much simpler than the controller development for

SMC. The model predictive controller takes in the estimated states and uses a linearized and dis-

cretized version of the system model to determine commands for desired pressures at 30 Hz to

track a desired angle and stiffness trajectory. The control rate was limited to how fast the optimizer

could find a solution which on average was between 40 and 50 Hz. The desired pressures are

determined by minimizing a cost function that accounts for the system states and inputs across a

horizon. The desired pressures are fed into a PID pressure controller running at 1000 Hz to control

the actuator pressures. A flow chart for this process can be seen in Figure 4.10.

4.2.2 Linearization and Discretization

Although there are solvers that are capable of minimizing a cost function for nonlinear

dynamics, linearized dynamics have been chosen for faster solve times and for simplicity. System
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Figure 4.10: MPC flow chart

states are defined as x =
[
θ̇ ,θ ,k,P0,P1

]T and system inputs are defined as u =
[
P0,des,P1,des

]
.

Writing the dynamics in the form ẋ = F(x)+G(u), the system unforced dynamics are

F =



kd
I θ̇ + ks

I θ + a0
I P0 +

a1
I P1

θ̇

c0k− θ̇
(
a0α2

0 P0 +a1α2
1 P1
)

c0P0

c0P1


, (4.45)

and the forced dynamics are

G =



0

0

a0α0c1P0,des +a1α1c1P1,des

c1P0,des

c1P1,des


. (4.46)

The linearized unforced response becomes

A =
∂F
∂x

∣∣∣
xinit ,uinit

, (4.47)

and the linearized forced response becomes
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B =
∂G
∂u

∣∣∣
xinit ,uinit

, (4.48)

where xinit and uinit are the states and inputs that the system is linearized about. For MPC, xinit and

uinit are the states and inputs from the previous time step. The linearized dynamics then becomes

∆ẋ = A∆x+B∆u, (4.49)

with derivatives ∆ẋ = ẋ− ẋinit , states ∆x = x−xinit , and inputs ∆u = u−uinit .

Discretizing the system allows using the system model to predict future states at the next

time step with given inputs. One method to change to a discrete system is the matrix exponential

which is formulated as

Ad = e(A∆t), (4.50)

where ∆t is the time step between discrete states. As long as A is invertible, the discrete form of

the forced dynamics becomes

Bd = A−1 (Ad− I)B, (4.51)

where I is the identity matrix with the same dimensions as A. The linearized discrete dynamics for

the system model then becomes

∆x[t +1] = Ad∆x[t]+Bd∆u[t], (4.52)

where t is the discrete step index. The actual states and inputs of the system can then be calculated

by adding the change in linearized state to the initial condition or

x[t] = xinit +∆x[t] (4.53)

u[t] = uinit +∆u[t]. (4.54)
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4.2.3 MPC Simulation

MPC for the system was simulated in MATLAB as proof of concept that MPC can control

both stiffness and angle and to find a set of controller weights to use for actual implementation.

Forward simulations are based on an explicit Runge-Kutta method based on the Dormand-Prince

pair [55]. The control law for the system is the minimization of a cost function that is dependent on

a desired trajectory, system states, and inputs. The cost function is minimized using MATLAB’s

fmincon function which is an interior-point algorithm [56–58] where the input bounds are atmo-

spheric pressure 14.7 PSI (101.4 kPa) absolute and the source pressure which is regulated to 30

PSI (206.8 kPa) absolute. The results of the simulation can be seen in Section 4.2.3.

Cost Function

Using the system states x and inputs ∆u from Equation 4.49, the cost function becomes

min
∆u

J (x) =
T

∑
t=1

(
||θ̇ [t]||2Qvel

+ ||θ [t]−θgoal||2Qpos
+ ||k[t]− kgoal||2Qst f

(4.55)

+||∆P0,des[t]||2R0
+ ||∆P1,des[t]||2R1

+H (∆u[t])
)
,

where θgoal is the desired angle, kgoal is the desired stiffness, Qvel is the velocity weighting, Qpos is

the position error weighting, Qst f is the stiffness error weighting, R0 is the weighting on the change

in P0,des, and R1 is the weighting on the change in P1,des. To prevent ocillations, a cost is added for

large changes in the inputs. This cost is defined by

H (∆u[t]) =
1

∑
i=0

h
(
∆Pi,des[t]

)
, (4.56)

and
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if : ∆Pi,des[t]> hr

h
(
∆Pi,des[t]

)
=
(
∆Pi,des[t]−hr

)2

else if : ∆Pi,des[t]<−hr

h
(
∆Pi,des[t]

)
=
(
∆Pi,des[t]+hr

)2

else :

h
(
∆Pi,des[t]

)
= 0

. (4.57)

The parameter hr is a tunable value that determines how big ∆P0,des or ∆P1,des can be before cost

starts to be accrued. Before ∆P0,des or ∆P1,des get too big, no cost is added from this term in the

cost function. The cost function Equation 4.55 is subject to:

∆x[t +1] = Ad∆x[t]+Bd∆u[t] t = 1..T (4.58)

x[t] = xinit +∆x[t] t = 1..T (4.59)

θmin ≤ θ [t]≤ θmax t = 1..T (4.60)

Pmin ≤ Pi[t]≤ Pmax, t = 1..T (4.61)

where θmin and θmax are joint limits.

Results

The weights used in the cost function are in Table 4.5 and the simulation was run at 30 Hz

with a horizon of five steps. The control rate and horizon length for simulation were determined

by the possible control rate and horizon length of actual implementation on the grub. Actual

implementation is limited by how fast the solver can find a solution where this is not a constraint in
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simulation. Ten random desired angle and stiffness step commands with a duration of 10 seconds

were sent to the controller. The results of the simulation can be seen in Figure 4.11.

Table 4.5: Controller gains for model predictive control for grub simulation

Qpos 50.0
Qst f .2
Qvel 2.0
R0 0.05
R1 0.05
hr 2.298e3
T 5

rate 30 Hz
θmin −120◦

θmax 120◦

In simulation both angle and stiffness are controlled quite well for random desired angles

and stiffnesses. From 20 seconds to 30 seconds in Figure 4.11 neither the desired angle or stiffness

is achieved because of system limits. Large angles with either high or low stiffness is hard for the

system to achieve. This can be seen in the fast oscillations in the command signal for Desired P1

in this duration. A similar system limit effect is seen in from 40 to 50 seconds. Higher weights

for either stiffness or angle error will give better tracking at the expense of poorer tracking of the

other. Increasing the pressure limits would allow for better position and stiffness tracking but the

current limits are set based on the current hardware design.

There was significant oscillations in the control signal immediately following the step input.

The reason for this is most likely the linearized dynamics which could be rectified by using a

nonlinear solver. These oscillations were not present in simulation when using APMonitor [46] as

a nonlinear solver but the solve rate was between 1 and 5 Hz. APMonitor is optimization software

that uses linear, nonlinear, and mixed integer programming solvers specifically built for problems

like nonlinear MPC. The solver used in MATLAB for the linearized dynamics has a comparable

solve rate between 1 and 6 Hz. However, as will be shown later, the solve rate for actual control on

the grub using a Python solver with a different algorithm was between 40 and 50 Hz. APMonitor

will have the same solve rate whether used in MATLAB or Python so using it as a nonlinear solver
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at this time is not feasible. APMonitor did however outperform a Python nonlinear solver which

took 3 to 5 seconds to find a solution per time step.

Figure 4.11: MPC simulation of one degree of freedom grub
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4.2.4 Grub Implementation

MPC was implemented on the grub using a similar method as the simulation. The control

law for implementation is also the minimization of a cost function that is dependent on a desired

trajectory, system states, and inputs. The cost function was minimized using a sequential least

squares programming algorithm (SLSQP) [59]. The bounds on the inputs were the same as in

simulation which were atmospheric pressure 14.7 psi (101.4 kPa) and the source pressure which is

regulated to 30 psi (206.8 kPa).

Cost Function

Using the system states x and inputs ∆u from Equation 4.49, the cost function becomes

min
∆u

J (x) =
T

∑
t=1

(
||θ̇ [t]||2Qvel

+ ||θ [t]−θgoal||2Qpos
+ ||k[t]− kgoal||2Qst f

(4.62)

+||∆P0,des[t]||2R0
+ ||∆P1,des[t]||2R1

)
,

where θgoal is the desired angle, kgoal is the desired stiffness, Qvel is the velocity weighting, Qpos is

the position error weighting, Qst f is the stiffness error weighting, R0 is the weighting on the change

in P0,des, and R1 is the weighting on the change in P1,des. The cost for large inputs (H(∆u)) that

was include in Equation 4.55 for simulation was not needed for implementation on the grub. This

is most likely because of unmodeled dynamics such as friction or the first order pressure model

approximation which dampen out oscillation that occur in simulation. The cost function Equation

4.62 is subject to:

∆x[t +1] = Ad∆x[t]+Bd∆u[t] t = 1..T (4.63)

x[t] = xinit +∆x[t] t = 1..T (4.64)

θmin ≤ θ ≤ θmax t = 1..T (4.65)
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Pmin ≤ Pi[t]≤ Pmax, t = 1..T (4.66)

where θmin and θmax are joint limits.

Results

The weights used in the cost function are in Table 4.6 and the simulation was run at 30

Hz with a horizon of five steps. The weights used for the grub are similar to the weights used in

simulation. The weights for position and stiffness are about half of what they were in simulation

but this effectively doubles the weighting on velocity. The weights on the system inputs decreased

from .05 to .001 suggesting that the inputs have a stronger effect in the system model than they do

on the actual grub.

The same desired angle and stiffness commands that where used in Figure 4.8 for SMC

were used with MPC for comparison between SMC and MPC. The results of the implementation

on the grub can be seen in Figure 4.12.

Table 4.6: Controller gains for model predictive control on the grub

Qpos 28.75
Qst f .1
Qvel 2.0
R0 0.001
R1 0.001
T 5

rate 30 Hz
θmin −120◦

θmax 120◦

Both angle and stiffness are controlled on the grub using MPC. Just like in simulation

there is a region where a certain desired angle and stiffness combination is not achievable. From

60 seconds to 75 seconds the dynamics don’t allow both a large angle and large stiffness. The

controller seems to be limited by source pressure of 30 psi (206.8 kPa) during this period because

P1 is saturated. The controller could lower P0,des to achieve the desired angle but this would lower
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the joint stiffness. Changing the weights in the cost function to favor angle or stiffness would give

better tracking at the expense of the other. It is interesting to note that as seen in Figure 4.12, the

solve time during this period increases.

Another interesting occurrence is the angle response near 30 seconds and 90 seconds just

before reaching the desired angle. This occurs when the forward simulation predicts that the joint

angle will cross over the desired angle trajectory. As expected, MPC then reduces desired pressures

to reduce error accrued by overshoot. Unfortunately, MPC reduces the pressure too much. A higher

order pressure model and a torque model that accounts for actuator interactions would better predict

this behavior. Small step sizes in the desired angle trajectory do not exhibit this behavior. However,

even with a model that does not account for all of the grub dynamics, position and stiffness can be

controlled.

4.3 MPC and SMC Discussion

The grub response for both MPC and SMC can be seen in Figure 4.13. Both control

methods show similar performance for angle and stiffness tracking and the desired pressure control

signals from both controllers follow similar trends. Between MPC and SMC with the current

model, MPC is a better method for control of the grub because MPC is not as affected by model

discrepancies and MPC solve rates are fast enough for good control.

Angle tracking is a higher priority for the tuning of the SMC so it does better than MPC but

worse for stiffness tracking. It was found that SMC did better when either angle or stiffness was

weighted higher. When weighted equally, tracking was poor for both states because of considerable

oscillations. MPC was much easier to tune for equal tracking priority.

SMC seemed to rely heavily on the integrator state for angle tracking with large steps where

hysteresis in the grub dynamics differed from how the model predicted the system would behave.

MPC did not have this problem but was limited by saturation pressures.

The main strength of SMC is that nonlinear dynamics are accounted for and control rates

can be relatively fast compared to MPC. The control laws developed in this chapter are easy to

implement in code and solve quickly. Control performance however depends greatly on the accu-

racy of the original model. A higher fidelity model would improve SMC performance and could

possibly eliminate the need for the integrator or even the split controller.
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Figure 4.12: MPC response on the grub

While SMC was able to control at a rate of 100 Hz consistently, MPC is limited by how

fast the solver can find solutions. The control rate for MPC was set to 30 Hz which is achievable,

but in regions where the dynamics are complicated, the solve time increases significantly. This

did not seem to affect control in a significant way for this test but shows the main limitation of

MPC. A higher fidelity model with more states and state interactions could make MPC infeasible
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or intractable with the current hardware and solver algorithms because solve times would be too

slow for good control performance.

Figure 4.13: MPC and SMC response on the actual grub
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4.4 MPC for Multiple Degrees of Freedom

Control for a single degree of freedom shows proof of concept but applications are limited.

Extending control to multiple degrees of freedom is necessary to show the value of the ability

to control stiffness and position. This section applies stiffness and position control to the right

arm of King Louie seen in Figure 4.14, and shows that the end effector stiffness changes when

stiffness in the joints is changed. Deflection was reduced by approximately 50% when the arm was

commanded at 50 Nm/rad stiffness rather than 35 Nm/rad stiffness.

Figure 4.14: Inflatable humanoid robot named King Louie

4.4.1 Implementation

MPC for both position and stiffness was applied using the same controller as the grub on

each individual joint on King Louie’s right arm. This was done in Section 2.2.5 for two state MPC

and Section 2.4 for four state MPC that accounts for torque with good results. The cost function

used for each joint was
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min
∆u

J (x) =
T

∑
t=1

(
||θ̇ [t]||2Qvel

+ ||θ [t]−θgoal||2Qpos
+ ||k[t]− kgoal||2Qst f

(4.67)

+||∆P0,des[t]||2R0
+ ||∆P1,des[t]||2R1

+ ||k̇[t]||2Qdst f

)
,

where θgoal is the desired angle, kgoal is the desired stiffness, Qvel is the velocity weighting, Qpos is

the position error weighting, Qst f is the stiffness error weighting, R0 is the weighting on the change

in P0,des, R1 is the weighting on the change in P1,des and k̇ [t] was calculated using Equation 3.19.

The cost function Equation 4.67 is subject to:

∆x[t +1] = Ad∆x[t]+Bd∆u[t] t = 1..T (4.68)

x[t] = x0 +∆x[t] t = 1..T (4.69)

k̇ [t] = c0k [t]+a0α0 [t]c1P0,des [t]+a1α1 [t]c1P1,des [t] (4.70)

−θ̇ [t]
(
a0α

2
0 [t]P0 [t]+a1α

2
1 [t]P1 [t]

)
t = 1..T

θmin ≤ θ ≤ θmax t = 1..T (4.71)

Pmin ≤ Pi[t]≤ Pmax, t = 1..T (4.72)

where θmin and θmax are joint limits. The cost on k̇ [t] with the weight Qdst f was added to reduce

oscillations about the desired stiffness trajectory.

When applied to each joint on King Louie, the controller weights and the first order pressure

model coefficients were tuned manually for each joint for best performance and the results can be

seen in Table 4.7. The process for picking weights and parameters for each joint would be improved

with system identification.
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Table 4.7: MPC weights and parameters used for each joint on King Louie

Joint 0 Joint 1 Joint 2 Joint 3 Joint 4
Qvel 2.0 1.0 2.0 2.0 2.0

Qpos 100.0 100.0 28.75 28.75 28.75

Qst f 2.0 2.0 1.0 1.0 1.0

Qdst f 0.05 0.05 0.05 0.05 0.05

R0 0.002 0.002 0.0005 0.0005 0.0005

R1 0.002 0.002 0.0005 0.0005 0.0005

θmax 120◦ 120◦ 120◦ 120◦ 120◦

θmin −120◦ −120◦ −120◦ −120◦ −120◦

c0 −2.65 −2.65 −5.301 −5.301 −5.301

c1 2.65 2.65 5.301 5.301 5.301

Using the same SLSQP method described in Section 4.2.4 to minimize the cost function,

Equation 4.67, MPC was implemented at 30 Hz to track a step command in position for each joint

while maintaining a constant stiffness. The results can be seen in Figure 4.15. Joint 2 or the elbow

is not included in Figure 4.15 because it was constructed differently than the other joints. The

elbow was sewn so that the applied torque is restricted in one direction. The current model does

not account for this and position tracking is poor for this joint.

Looking at Figure 4.15, stiffness is tracked well for all four joints for the duration of the

test. Position tracking is good for Joints 1, 3, and 4 but Joint 0 shows poor tracking. There is

8◦ overshoot after the step at 15 seconds and the joint moves 23◦ in the wrong direction after the

step at 30 seconds. The reason for this is most likely because of the independent and decoupled

joint controllers. The orientation of Joint 0 with the shoulder makes it so this joint works directly

against gravity and because it is the first joint, the inertia effects from the other links are most

apparent. The desired pressure signal shows that the controller is applying a pressure combination

that should produce a torque that will drive the joint angle to the desired angle. However that torque
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is not significant enough to overcome the gravity and inertia forces of the other links. Once the

other links get close to their desired angles, the inertial forces decrease enough that Joint 0 moves

toward the desired angle. The pressure controller shows good tracking of the desired pressure

signal from MPC. The solve times for the optimization average just over .02 seconds for all four

joints which show that the controller can run effectively at 30 Hz.

Figure 4.15: Angle step response of King Louie’s right arm while maintaining a constant stiffness
of 40 Nm/rad
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Even though stiffness is controlled to a desired value for each joint, the actual stiffness

of the joint is not expected to be the estimated value. Extensive testing was done on the grub

as shown in Section 3.3.2 to validate that the controlled stiffness was the actual stiffness of the

joint. For good estimation of joint stiffness as seen in Equation 3.13, accurate torque coefficients

(a0 and a1) and a good angle to volume relationship (Mi and b) must be determined. Because of

the construction of King Louie’s arm, these parameters are difficult to determine for each joint.

Instead, the grub parameters are used and tests were performed to show that overall arm stiffness

can be increased or decreased. Future work where actuator designs allow for these coefficients to

be determined analytically from geometry would greatly simplify this problem.

4.4.2 Stiffness Test

The stiffness of King Louie’s arm was tested by commanding a joint angle for each joint

and a single stiffness to be applied to all the joints. Once all the joints achieve the stiffness and

joint angles, a 4 lb weight was applied to the end effector. Figure 4.16 shows the arm in the initial

position and Figure 4.17 shows the arm at maximum deflection for a commanded stiffness of 35

Nm/rad. The desired joint angles for this configuration are θ0 =−30◦, θ1 = 60◦, θ2 = 0◦, θ3 = 20◦,

and θ4 = 20◦.

The maximum deflection is measured by first recording the XYZ coordinates of the end

effector before the load is applied and then tracking the end effector coordinates using motion

capture data during the joint controller response to the load. The deflection vector can then be

calculated by subtracting the initial coordinate vector from the end effector coordinates while under

load. The deflection magnitude for the test is then the magnitude of the deflection vector with the

biggest euclidean norm. This test was completed for stiffnesses from 35 Nm/rad to 50 Nm/rad in

increments of 1 Nm/rad. For each tested stiffness, three trials were completed and the results can

be seen in Figures 4.18 and 4.19.

The data shown in Figure 4.18 shows a downward trend in deflection as stiffness is in-

creased. This means that controlling joint stiffness affects end effector stiffness in a predictable

way. Figure 4.19 shows the settling error for each joint after the load is applied. Because MPC de-

termines the control input based on weightings between stiffness error and position error, at some

point there is a balancing effect. In order to achieve high stiffnesses, the joint angle is limited
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Figure 4.16: King Louie with arm up Figure 4.17: Deflection from 4 lb load
(weight is circled)

and there is high steady state error. That is why position error increases for all joints for stiffnesses

between 47 Nm/rad and 50 Nm/rad. Joint 3 shows significant error for these tests for all but around

40 Nm/rad. The actuators in the wrist are significantly smaller than the actuators in the grub or in

King Louie’s shoulder. The smaller size suggests that not enough torque can be applied to support

the final links at low and high stiffnesses. These figures show that deflection and steady state error

at this configuration can be minimized if the joints are maintained at about 45 Nm/rad.

Controlling at a single constant stiffness defeats the purpose of using variable stiffness

actuators. A higher fidelity model that accounts for the link and joint interactions could be used

to determine what stiffnesses are best for specific objectives. The model developed in this work is

limited to a single degree of freedom but future work that expands the model to multiple degrees of

freedom would be valuable for this type of system and could greatly improve the performance of

the controller for an arm like King Louie’s. The model would have to account for cross coupling

in the joints and gravity effects but this is standard for any robotic arm with more than one degree

of freedom.
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Figure 4.18: Deflection of King Louie’s right arm from a 4 lb weight at different stiffnesses

Figure 4.19: Settling error relative to commanded position after load
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CHAPTER 5. CONCLUSION

This thesis gives different methods for simultaneous stiffness and position control of an

inflatable robot with pneumatic actuation. The reason why the control of a robot of this type is

of interest is because it is naturally lightweight and the antagonistic nature of the actuator with air

as the working fluid gives the joint natural compliance. Compliance and low inertia are desirable

characteristics for robots that operate around humans or in human environments. Robots of this

type have not been used in the past because of the difficulty in modeling of the system and because

the sensing and actuation are very different from standard techniques. However, this thesis shows

that the system is controllable and has value and potential for future work.

5.1 Future Work

All dynamic modeling and control for this thesis was done for a single degree of freedom

joint. This was sufficient for the control of multiple degrees of freedom but performance can be

significantly improved if the dynamic model and controller took into account cross coupling in the

joints and gravity affects. Also a model that accounts for deflections in the links from the inflatable

structure could also improve performance.

Control could also be improved if the dynamic model also accounted for more of the gas

dynamics. The gas dynamics are discontinuous in terms of choked and unchoked flow, and the

behavior of the valve. This would require a controller that could account for the dramatic shift in

dynamics as the system shifts from one mode to another. In this thesis, all of the gas dynamics are

modeled as a first order pressure model. Simply increasing the order of the model and including

cross coupling terms between the pressures in each actuator could improve performance rather

than a direct model of the working fluid.

A higher fidelity model would significantly improve the performance of SMC at the same

time reducing the effectiveness of MPC if the current solve rates for optimization stayed the same.
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SMC implementation is not as computationally taxing as MPC which would be limited by solve

rates as the model becomes more complex. Work can be done to improve the efficiency of the

MPC solver for higher fidelity models. A higher fidelity model will only increase the complexity

of the controller so identifying an efficient SMC structure will be important.

For this thesis, motion capture was necessary for joint angle estimation of multiple degrees

of freedom. One motivation for this work is to make robots better suited for human environments

and relying on motion capture does not help with this goal. Future work to develop sensing tech-

niques that will free the robot from its dependency on motion capture will help make this platform

usable in human environments.

5.2 Contributions

This thesis first showed that the position of an inflatable, pneumatically actuated joint can

be controlled using a two state model in Chapter 2. LQR and MPC methods were used to control

within 3◦ of a desired position for a single degree of freedom in Section 2.2. Control was then

implemented on multiple degrees of freedom to repeatably accomplish a pick and place task in

Section 2.2.5. As explained in Sections 2.3 and 2.4, the authors of [1] and [3] showed that the two

state model could be extended to four states to include actuator pressures for significant improve-

ment in control performance. This chapter concludes that inflatable robots can have accurate and

repeatable position control.

Then in Chapter 3, a state space dynamic model was developed that can be used to predict

future position, stiffness, and pressure states of an antagonistic, pneumatically actuated joint. The

model was fit to data collected from the grub such as the angle to volume relationship, damping

and stiffness terms, and a first order pressure model. Figure 3.5 shows how the model compares to

actual data collected from the grub. The stiffness state was validated by comparing the estimated

joint stiffness with the measured joint stiffness in Section 3.3.2. This chapter concludes that system

states for angular velocity, angle, stiffness, and pressures can be used to model the dynamics of the

system.

Lastly in Chapter 4, the state space dynamic model was used to control stiffness and po-

sition using both MPC and SMC methods. The SMC implementation on the grub was described

in Section 4.1 and it was able to control the joint angle to within 2◦ of the desired angle at steady
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state and within 3 Nm/rad of the desired stiffness. MPC was implemented on the grub which is

described in Section 4.2, and was able to control the joint angle to within 2◦ of the desired an-

gle at steady state and within 1 Nm/rad of the desired stiffness. Based on the results of the two

controllers, it was concluded that for the current dynamic model that MPC is the preferred con-

trol method as discussed in Section 4.3. MPC was then implemented on King Louie in Section

4.4, and it was shown that by controlling to higher stiffnesses, the deflection of the end effector

decreases. Specifically, the deflection decreased by approximately 50% when controlled at the

maximum stiffness around 50 Nm/rad than at 35 Nm/rad. This chapter concludes that stiffness can

be controlled and that its effects are predictable and significant.
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APPENDIX A. STIFFNESS MODEL WITH GAS DYNAMICS

In this appendix, the torque model that was developed in [3] was used to develop a model

for joint stiffness which accounts for the gas dynamics in each actuator of a rotary pneumatic

actuator. This model uses the gas dynamics rather than the first order pressure model for the low

level PID controller as was done in Chapter 3. The input variables for the gas dynamics model are

the mass flows in each of the actuators or ṁ0 and ṁ1. These inputs depend on the effective valve

area for the real system. The gas dynamics model was used with model predictive control (MPC)

to track both a desired position and stiffness signal in simulation. A relationship between effective

valve area and a commanded valve current was developed so that MPC could be applied to a single

degree of freedom on the grub.

There are several reasons why the first order pressure model was used more extensively than

the gas dynamics model. The main reason was the control signal produced by the gas dynamics

model was erratic which did not give good performance. The first order pressure model had a

smooth control signal that was capable of good tracking of both the desired angle and stiffness

signals. The gas dynamic model is much more complex when implemented on the grub than the

first order pressure model as will be discussed in Section A.3. The results of the exploratory work

in this appendix show a viable option for position and stiffness control using the gas dynamics.

A.1 Model Derivation

The gas dynamics model uses the same dynamic equations for the position states as were

used in the system model developed in Chapter 3. The derivation for the stiffness dynamic equation

starts using the torque model developed in [3]. The output stiffness for a rotary joint with compliant

actuation can be defined as

k =− ∂τ

∂θ
, (A.1)
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where

τ = a0P0 +a1P1. (A.2)

Using a negative in the equation keeps the stiffness term k positive and is the convention for this

work. The equation for stiffness when the torque model is substituted then becomes

k =− ∂

∂θ
(a0P0 +a1P1) . (A.3)

Then taking the partial derivative with respect to θ and using the ideal gas law and the angle to

volume relationship Vi = Miθ +b developed in Chapter 3, stiffness becomes

k =
a0M0m0RT
(M0θ +b)2 +

a1M1m1RT
(M1θ +b)2 . (A.4)

Taking the derivative with respect to time then gives

k̇ =
a0M0RT

(M0θ +b)2 ṁ0 +
a1M1RT

(M1θ +b)2 ṁ1−2θ̇

(
a0M2

0m0RT
(M0θ +b)3 +

a1M2
1m1RT

(M1θ +b)3

)
, (A.5)

and substituting in the ideal gas law gives

k̇ =
a0M0RT

(M0θ +b)2 ṁ0 +
a1M1RT

(M1θ +b)2 ṁ1−2θ̇

(
a0M2

0P0

(M0θ +b)2 +
a1M2

1P1

(M1θ +b)2

)
, (A.6)

which defines the stiffness dynamics.

The derivative with respect to time of the angle to volume relationship is

V̇i = Miθ̇ . i = 0,1 (A.7)

Now taking the derivative of the ideal gas law with respect to time gives

Ṗi =
RT
Vi

ṁi−
Pi

Vi
V̇i. i = 0,1 (A.8)
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Substituting the angle to volume relationship then gives

Ṗi =
RT

Miθ +b
ṁi−

Pi

Miθ +b
Miθ̇ . i = 0,1 (A.9)

Now the system of equations used to describe the dynamics are the following:

θ̈ =
kd

I
θ̇ +

ks

I
θ +

a0

I
P0 +

a1

I
P1 (A.10)

θ̇ = θ̇ (A.11)

k̇ =
a0M0RT

(M0θ +b)2 ṁ0 +
a1M1RT

(M1θ +b)2 ṁ1−2θ̇

(
a0M2

0P0

(M0θ +b)2 +
a1M2

1P1

(M1θ +b)2

)
(A.12)

Ṗ0 =
RT

M0θ +b
ṁ0−

P0

M0θ +b
M0θ̇ (A.13)

Ṗ1 =
RT

M1θ +b
ṁ1−

P1

M1θ +b
M1θ̇ (A.14)

with states x = [θ̇ ,θ ,k,P0,P1] and inputs u = [ṁ0, ṁ1].

A.2 Model Simulation and Control

The system of equations was used to simulate the system. Forward simulation was done

using MATLAB’s ODE45 function and the system inputs were determined by using a MPC algo-

rithm to track a series of step inputs in desired stiffness and position for a single degree of freedom

joint. The results can be seen in Figure A.1. The simulation results show that the system model can

be used to track both a desired position and stiffness signal. Because this was preliminary work,

the controller was not tuned for good performance but the results are shown for proof of concept.

The oscillations around the desired angle can be reduced and the poor stiffness tracking can be

improved by tuning the MPC weights and by customizing the cost function.
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Figure A.1: Step response using MPC in simulation

A.3 Grub Implementation

The inputs to the system for the gas dynamics model developed are mass flows into each

of the actuator bladders (ṁ0 and ṁ1). The challenge for implementation on the grub is to then find

a way to map flow rates to a desired electrical current in mA used to operate the valves. The mass

flow into each chamber using bidirectional spool valves was described in [15] to be a piecewise

continuous function which was
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ṁ(Pu,Pd,Av,C f ) =



AvC f

√
γ

RT

(
2

γ +1

)(γ+1)/(γ−1)

Pu

if
Pd

Pu
≤Cr (choked)

AvC f

√
2γ

RT (γ−1)

√
1−
(

Pd

Pu

)(γ−1)/γ(Pd

Pu

)(1/γ)

Pu

otherwise (unchoked)

, (A.15)

where Av is the valve area command or effective area, Pu and Pd are upstream and downstream

pressures, γ is the ratio of specific heats (γ = 1.4), R comes from the universal gas constant for air,

T is the air temperature which is assumed to be constant, C f is the discharge coefficient, and Cr

determines sonic and subsonic flow (Cr = .528).

All variables in the model for mass flow through the valve can be measured or predeter-

mined as properties of air except the effective area and discharge coefficient. The discharge coef-

ficient is unitless and is measured for the valve. The model described by Equation A.15 assumes

an ideal nozzle, so the discharge coefficient is a fudge factor to scale the true effective area of the

valve to an equivalent effective area for an ideal nozzle. Even though there are ways to determine

the discharge coefficient separately from the effective area, they will be combined into a single

term designated for the rest of this appendix as simply the effective area. Determining how the

effective area changes with the valve electrical current commands was determined experimentally.

For the experiment, a rigid chamber was used with a known volume because this allows the

mass of the air to be known based off of ideal gas and constant temperature assumptions. The valve

was then used to vary the pressure in the chamber. The data collected includes the tank pressure

and actual valve commands in mA. The mass of the air in the tank could then be calculated from

the ideal gas law as a function of pressure. Numerically differentiating the air mass measurement

gives an estimate for the mass flow into the rigid chamber. Knowing the mass flow means the only

unknown variable in Equation A.15 is (AvC f ) or the effective area. Calculating the effective area

from Equation A.15 and plotting it with the valve command at each time step gives Figure A.2.

The trend of the data in Figure A.2 is that of a sigmoid function with a dead band where

the valve is effectively closed. A sigmoid fit to the data takes the form
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Figure A.2: The effective valve inlet area is directly related to mass flow. This graph then shows
how a mass flow is converted to a valve command.

AvC f =
s2

s3 + e(s1∗cmd)
+ s4, (A.16)

where AvC f is the effective area, cmd is the commanded valve current and s1, s2, s3, and s4 deter-

mine the fit. Using the sigmoid fit with proper logic to handle the dead band, mass flows from the

model can be mapped to a current to be applied at the valves.

Using MPC to determine the desired mass flows, Equations A.15 and A.16 can be used to

determine valve electrical currents to maintain the desired mass flow effectivly controlling angle

and stiffness. The results can be seen in Figure A.3 when applied to the grub using CVXGEN as

a solver for the controller. The solver fails to converge until around 24 seconds. When the solver

does converge, the controller saturates the commands back and forth like a bang bang controller.

By switching from the mass flow rate to a first order pressure model, where the pressures in

each actuator are maintained by a PID pressure controller, the controller performance is much bet-

ter. The controller performance on the grub using a first order pressure model for the gas dynamics
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Figure A.3: MPC response on the grub using mass flow rates as the system input

can be seen in Figure A.4. The optimizer used was the sequential least squares programming op-

tion in the python package scipy using the minimize function within the optimization tool. There is

much better tracking of the desired stiffness and angle signals and there is not the same saturation

on the inputs as was seen in Figure A.3. Even though a first order pressure model does not describe

the gas dynamics perfectly, it is accurate enough for good initial control of the grub.
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Figure A.4: MPC response on the grub using a first order pressure model for the gas dynamics
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