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ABSTRACT

Packing Sheet Materials into Cylinders and Prisms Using Origami-Based Approaches

Jared Thomas Bruton
Department of Mechanical Engineering, BYU

Master of Science

Packing sheet materials into cylinders and prisms using Origami-based approaches
(Soft Origami or traditional Origami) is of interest in fields where sheet materials need
folded into cylinders or prisms. Fully-dense packing has application in fields where a sheet
material is to be folded with minimal gaps into a cylinder or prism. Partially-dense packing is
applicable to fields where gaps are required between packed surfaces or where hollow volumes
are to be filled, such as in fluid filter design.

Soft Origami is explored as a method for folding soft-sheet materials into fully-dense
cylinders. Two fold patterns, the “flasher” and the “inverted-cone fold,” are explored for
packing soft-sheet materials into cylindricals. An application to driver’s side automobile
airbags is successfully performed, and deployment tests are completed to compare the in-
fluence of packing method and origami pattern on deployment performance. In total, two
origami patterns and six packing methods are examined for folding soft-sheet materials into
fully-dense cylindrical prisms, and it is shown that modifying the packing method impacts
deployment performance.

A special case of the Miura-ori, the ninety-degree case, is briefly explored as a tradi-
tional Origami method for packing arbitrary-shaped sheet materials into fully-dense arbitrary
prisms. Examples are shown and it is concluded that this pattern can be used to configure
a large number of fully-dense packed prisms with configurable characteristics.

Finally, patterns that fold into partially-dense cylindrical prisms are examined using
traditional Origami approaches and their efficiency compared. Efficiency is defined as the
ratio of the surface area of a pattern compared to an idealized high-surface-area model.
Patterns include traditional (non-Origami-based) fluid filter patterns (the Basic Pleat and
M-pleat) and cylindrical Origami patterns (the Accordion and Kresling). An offset crease
method is used to modify the Accordion and Kresling Origami patterns so the comparison
is objective. Results are presented that determine which individual pattern variations have
the highest efficiency at different outside-to-inside diameter ratios. Ranges over which each
pattern is most efficient are presented. It is concluded that based purely on geometry, the
M-pleat provides the highest overall efficiency, but depending on other factors each pattern
is viable for different purposes.

Keywords: Soft Origami, cylinder, airbag, prism, packing efficiency, fluid filter
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Packing sheet materials into cylinders and prisms using Origami-based approaches

(Soft Origami or traditional Origami) is of interest in fields where sheet materials need

folded into cylinders or prisms. These cylinders or prisms may be either fully-dense or

partially dense depending on application. A fully-dense cylinder is shown in Fig. 1.1(a) and

a partially-dense (hollow) cylinder is shown in Fig. 1.1(b). A fully-dense arbitrary prism is

shown in Fig. 1.2(a) and a partially-dense arbitrary prism is shown in Fig. 1.2(b).

Fully-dense packing has applications in fields where a sheet material is to be folded

with minimal gaps (no internal cavities) into a cylinder or prism. Fully-dense cylindrical

packing has application in fields such as parachute packing, tent packing, and airbag packing

where a soft-sheet material is packed into a cylindrical container. Fully-dense prism packing

has application in fields where a sheet material is to be folded with minimal gaps into a

prismatic shape, including possible application to the same fields such as parachute packing,

tent packing, and airbag packing if reconfigurable packing and specific shape-matching is

of interest (i.e. stowing these items in non-cylindrical containers). Partially-dense packing

has application in fields where a sheet material is to be folded into a shape with openings,

channels, or gaps for applications such as fluid flow. Partially-dense cylindrical packing is

applicable to fields where flow is required such as in fluid filter design. Partially-dense prism

packing, while mentioned in Chapter 3, is not explored in depth in this thesis.

Previous work has been done in both topics (cylinder and prism packing) primarily

from an industry perspective. However, approaching the design challenges inherent in these

topics from an Origami-based perspective (both Soft Origami and traditional Origami) is

a valuable addition in this field, and this thesis seeks to expand the Origami-based design

processes relating to this topic.

1



(a) (b)

Figure 1.1: (a) Fully-dense cylinder (b) partially-dense cylinder.

(a) (b)

Figure 1.2: (a) Fully-dense arbitrary prism (b) partially-dense arbitrary prism.

1.2 Objective

The objective of this research is to show methods and metrics that help designers

use innovative Origami-based folding methods to achieve various objectives associated with

sheet-material packing. Methods for packing soft-sheet materials into fully-dense packed

cylinders using Soft Origami will be considered. A method for packing sheet materials

into fully-dense arbitrary prismatic shapes using traditional Origami is considered. Finally,

methods for designing and metrics for comparing cylindrical partially-dense packing patterns

using traditional Origami are to be developed. Through application to fields of interest

including automotive airbags and fluid filters, the impact of original pattern design and

folding and packing methods on performance is considered.

2



1.3 Thesis Outline

The approach taken in this thesis focuses on subdividing cylinder and prism packing

into fully-dense and partially-dense categories and exploring each in turn.

Chapter 1 introduces the topic, objective, and motivation behind the research.

Chapter 2 explores configurable packing of fully-dense cylinders with Soft Origami.

Such packing is useful for applications where a soft-sheet material needs packed into a cylin-

drical container or volume. Through application to automobile airbags, the effect of both

original pattern and packing method on both stowed position characteristics and deployment

characteristics are examined. This chapter has been submitted for publication in the Royal

Society Open Science journal.

Chapter 3 explores configurable packing of fully-dense arbitrary prisms using tradi-

tional Origami. A special case of the Miura-ori, the ninety-degree Miura-ori, is used to show

one potential method for packing materials into arbitrary-shaped prisms. Another consider-

ation addressed in brief is that of arbitrary-shaped sheet materials, and the ability to fold a

continuous arbitrary-shaped sheet into arbitrary prismatic shapes.

Chapter 4 explores configurable packing of partially-dense (hollow and with gaps

between folded surfaces) cylindrical patterns from a traditional Origami perspective. A

method of comparison between different patterns is shown, and application to fluid filters

is considered. Optimal values for designing such cylindrical patterns are considered. This

chapter will be submitted for publication in the International Journal of Mechanical Sciences.

Chapter 5 presents conclusions drawn from the research and areas of possible future

work.
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CHAPTER 2. PACKING AND DEPLOYING SOFT ORIGAMI TO AND
FROM CYLINDRICAL VOLUMES WITH APPLICATION TO AUTOMO-
TIVE AIRBAGS

2.1 Introduction and background

Packing and deployment of Soft Origami (soft-sheet materials folded into origami

patterns) to and from cylindrical volumes is of interest in industries where a flexible sheet of

material needs to fit into a confined cylindrical shape prior to being deployed via mechanisms

or internal pressure.

For the purpose of this research, soft-sheet material is defined as material of constant

thickness with approximately zero stiffness (for example textiles, fabrics, and thin-sheet

polymers). Soft-sheet materials can easily wrinkle, bend, and crease locally, which can be

advantageous when using them with origami fold patterns.

2.1.1 Origami and engineering design

Applying patterns extracted from or inspired by origami to engineering design can

inspire new approaches to design problems. Possible benefits of applying origami to en-

gineering design include predictable deployment, compact packing, and a large number of

available patterns. Previous research has explored rigid-foldable pattern applications and

methods for applying origami patterns to materials thicker than paper [1–3], the use of

flasher patterns for space applications [4], design of developable surfaces and other patterns

based on curved-crease origami [5–7], use of computational methods to design complex fold

patterns and shapes [8, 9], and general methods for selecting origami patterns and applying

them to design problems [10].

Another topic that has been considered in origami and engineering is that of scalable

and easily configurable packing and pattern design. If designers need to fit a common pattern

4



(which may be scaled proportionately larger or smaller) into a specific container or packed

shape, this characteristic is particularly valuable, and origami provides a method for creating

such scalable designs. Examples of scalable packing and pattern design within the realm of

cylindrical designs include deployable solar arrays [4], heart stents [11], and a heart structure

support system for patients experiencing heart failure [12].

2.1.2 Soft Origami and use of soft-sheet materials

Use of soft-sheet materials with origami patterns falls under the umbrella of “Soft

Origami” based on a qualitative understanding of the compliance of the soft-sheet materials

being used with origami patterns. Soft Origami has recently been explored as a method for

applying origami design methods to flexible materials or substrates, with potential applica-

tions in bio-engineering (e.g. 3D tissue scaffolding), flexible electronics, and other applica-

tions where highly compliant hinges are required or useful and it is desirable to impose an

origami pattern using negligible force [13]. Using origami patterns is a valuable approach due

to the ability to pack soft-sheet materials into a desired packed position and subsequently de-

ploy them from that position. Because soft-sheet materials are extremely compliant and can

wrinkle, bend and crease locally to accommodate for inexact folding of the origami pattern

fold lines, no strictly defined fold lines or “hinges” are needed, which simplifies manufac-

turing. Soft Origami yields possible benefits in fields including airbag manufacturing and

packing, air filter design and manufacture, parachute packing and deployment, deployable

inflated structure design (including inflatable space habitats such as the BEAM module in-

stalled in 2016 on the International Space Station [14–17]), inflatable watercraft, inflatable

personal amusement equipment, bounce houses, slides, and hot air balloons), tent packing,

umbrella packing and deployment, shade covers (e.g. track tents), and emergency blanket

packing.

Deployment performance also requires consideration when applying Soft Origami to

design problems. In some cases deployment will happen many times throughout the life-

time of the product (e.g. a camping tent) and in others deployment will happen only once

(e.g. automotive airbags). Depending on how critical repeat deployment performance is,

different levels of care need to be taken when selecting packing patterns. In cases such as
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automotive airbags and parachutes where human life is dependent on the accurate unfolding

of the structure, extensive testing and refinement is key to ensure that the final deployment

performance meets required standards. In other cases, many different patterns may be used

to accomplish the same purpose so long as the final packed product fits in the required

space or package (e.g. tent in a tent bag, umbrella in a storage bag, emergency blanket

in a storage package). In applications where deployment occurs via a pressure differential

(e.g. being filled with air or another gas) and where the products cannot have rigid items

inside them for safety reasons (e.g. airbags), a crucial requirement which Soft Origami and

soft-sheet materials can meet is a packing method wherein any rigid members used in the

folding process are removed before the product is functional or deploys. This allows the

design of an intentional deployment sequence (via the imposed origami pattern) while not

requiring dangerous internal rigid mechanisms inside the product, and adds to the benefits

of using Soft Origami and soft-sheet materials.

2.1.3 Objective

In this research, fold patterns and packing methods are considered that efficiently

pack soft-sheet materials using Soft Origami techniques into cylindrical packed shapes with

configurable folded (packed) height and diameter, deployed (unfolded) shape, and deployed

size. Deployment performance and the impact of packing method on deployment are also ex-

plored. Two fold patterns and associated packing methods each are investigated as potential

solutions for packing a soft-sheet material into a desired cylindrical shape. As a demonstra-

tion, these patterns and packing methods are applied to an automotive airbag case study,

and deployment performance considered and compared.

2.2 Cylindrical Packing And Deployment

One common current method used to pack a soft-sheet material into a cylinder is

to directly compress the soft-sheet material into the desired packed shape and container

without specific fold patterns (similar to how a sleeping bag is often forced into a cylindrical

“stuff sack”). However, this technique can lead to unpredictability in deployment. Depend-
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Figure 2.1: An undeployed flasher pattern with cylindrical envelope shown around it. Spec-
ified height H and diameter D are variables of interest.

ing on the application, this may or may not be acceptable. Other basic fold patterns exist

(such as the “tri-fold” method commonly used to fold tents where the object is folded like a

tri-fold brochure prior to rolling the material up into a tightly-packed cylinder) which may

be sufficient depending on the application. This research proposes two origami patterns that

can be applied to soft-sheet materials to achieve a similar packed shape and size while allow-

ing for different deployment performance, and it is shown that specific desired deployment

characteristics can be dictated by modifying packing (folding) methods.

The desired parameters for the final packed shape are the diameter D and height H

of a cylinder circumscribed around the folded pattern, shown in Figure 2.1. In the follow-

ing subsections, our pattern selection, packing methods, and deployment considerations are

presented. Origami patterns are used in this research as a mechanism to generally predict

packed shape and deployment characteristics.

2.2.1 Pattern selection and modelling

A search of origami patterns was conducted with a focus on finding patterns that

fold into a generally cylindrical shape and can be mathematically modelled and modified.

These patterns included a six-sided origami flasher model, Miura, Arc-Miura and tapered
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Miura [18], cylindrical Kresling pattern [19], waterbomb magic ball [20], and the fold pattern

of a collapsible umbrella.

Several of these patterns do not scale well to different heights. That is, some of the

patterns (such as the arc-Miura) do not contract in both directions (radially and axially)

when deployed. For these patterns, if the deployed structure has to be a certain packed

height, the packed height is the same as the height of the deployed pattern. As a result,

patterns that do not scale well to different packed heights (e.g. the Miura and derivatives)

were not selected for this research.

Two patterns were selected based on their reconfigurability and ability to pack closely

into a cylinder: the flasher pattern and the “umbrella fold” pattern. The flasher pattern,

shown in Fig. 2.2, is desirable due to its scalable height and deployed surface area, shape, and

size. Because there exist rigid-foldable versions of the flasher [21], we can create a method

using rigid panel folding devices to fold a soft-sheet material into a tightly packed cylinder

with the ability to select specific dimensions such as packed height and unfolded diameter.

The “umbrella fold,” also desirable for its scalable height and configurable deployed surface

area and shape, is a soft-sheet material approximation of a developable surface curved-crease

pattern, the cone inversion [5, 22], shown in Fig. 2.3. The developable cone inversion that

exists in the umbrella fold is shown in Fig. 2.3(b) along with a semi-transparent overlay

of a generic umbrella. This pattern, or variations of it, has been previously used in art

pieces [23]. In particular, this is a simple version of a developable surface pattern wherein a

cone is inverted several times between the peak and the base. To distinguish this particular

pattern from other patterns that are used to fold umbrellas, this pattern (when folded in

soft-sheet materials) will be referred to as the “inverted-cone fold.” The curved crease version

shown in Fig. 2.3(a) has some final angle between inverted layers and cannot compress into

a cylinder as a result. Using soft-sheet materials enables us to compress the pattern past

the curved crease version’s final angle into a compact cylinder.

The selected patterns both allow for reconfigurable surface area, size and shape, and

packed height. By changing selected parameters of each pattern, a near-infinite number of

variations can be created that pack and deploy in the desired fashion. When these patterns

are imposed on soft-sheet materials, the materials can be compressed into an approximately
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Figure 2.2: Flasher flat pattern (left) and matboard physical prototype with plastic backing
hinge layer, in various stages of deployment (right).

(a) (b)

Figure 2.3: Inverted-cone fold (a) curved-crease origami pattern and 3D model of folded
pattern (b) umbrella photo overlaid on inverted-cone fold shape.

cylindrical packed shape. This feature is the most important factor used in selection of these

two patterns for pursuing further. In the following section potential manufacturing (packing)

methods for applying both patterns to soft-sheet materials are explored.
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2.2.2 Packing Methods

Packing methods were constructed to pack a soft-sheet-material into the selected

patterns. In this case, origami patterns were used as inspiration for the packing methods,

and the methods are effectively origami-inspired tooling for folding soft-sheet materials into

the desired shape. Individual packing methods for each pattern are detailed as follows.

Flasher

The flasher fold pattern, with fold pattern and physical prototype shown in Fig.

2.2, consists of an origami pattern that can be reconfigured to pack in a shape close to

a cylinder. The example used here is a hexagonal flasher with reconfigurable height and

deployed shape. Although a hexagonal pattern is shown here, other polygonal shapes are

also possible. This pattern has previously been applied to space solar arrays using thickness-

accommodation techniques [4] and other applications where a large deployed-area-to-packed-

shape is desirable. Another benefit of the flasher pattern is that the soft-sheet-material

contracts equally in the radial direction at all points around the circle of material, so there

are no uneven flaps left over such as occurs with a common collapsible umbrella.

One possible packing method for the flasher fold pattern is to use a flasher such as

that made of matboard shown in Fig. 2.2 as a folding structure with the soft material on top

of it; the material is folded into the flasher shape on top of the structure and then removed.

A variation on this packing method is to use two folding tables with the material sandwiched

in between. A second method would be to create a series of rigid links that are constrained

to fold in the same method as the flasher.

Inverted-Cone Fold

The inverted-cone fold pattern is shown in Fig. 2.3(a). This pattern is a series of cones

that have been inverted multiple times, resulting in a series of concentric rings if viewed from

above, and is also referred to as a developable surface cone inversion [24]. While the pattern

shown here has only one valley and one mountain fold between the central peak and the
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outside edge, more rings could be added to increase the diameter of the shape. This curved-

crease fold has been used for many years, particularly as art. Variations (many of which

are more complex) on this pattern can be seen in Ron Resch’s work entitled “Yellow Cones

Kissing” as well as in multiple pieces by David Huffman such as “Cone Reflected 7 Times”

and pieces by Hiroshi Ogawa [6].

If the fully-developable inverted-cone pattern is made of a soft-sheet material that can

wrinkle, bend, and crease locally, this pattern is viable for making a packed cylindrical shape

where the original shape, surface size, diameter, final packed height, and packed diameter

are all selectable. Using material that can wrinkle, bend, and crease locally allows us to

use the “skeleton” of the developable cone inversion shape to fold the fabric. A rigid link

mechanism “skeleton” can be created based on the curved crease pattern which can be used

to fold soft-sheet materials into a close approximation of a cylinder. The rigid mechanism

used for folding can be removed prior to deployment.

Several options are viable for manufacturing or folding a soft-sheet material into the

inverted-cone pattern. One method was inspired by a common mechanism used to fold

collapsible umbrellas. Collapsible umbrellas typically have a series of rigid links that control

the fabric (a soft-sheet material). Because the fabric can wrinkle, bend, and crease locally,

the approximate cone inversion can go from fully packed to open, unlike a non-soft-sheet

material version. Typically, an umbrella does not go completely flat when open (rather

making a sloped shape to ensure that water runs off at the outside). The rigid links overlayed

on an inverted-cone fold with two exterior rings are shown on the developable surface curved

crease cone inversion in Fig. 2.4. The length of the links can be scaled to achieve a specified

packed height and the number of layers dictates the deployed surface area and size. The

designer can change the number of layers and layer height to achieve highly reconfigurable

packed and deployed sizes. There is a trade-off between number of layers (how many rings

there are viewed from the top) and packed diameter. Specifically, each ring adds at least 4t

in overall thickness to the diameter, where t is the thickness of the material.

In the case of the umbrella, the links correspond to ruling lines inherent in a devel-

opable surface cone inversion [25]. If the number of links corresponding to ruling lines is

increased to infinity, the lines would approach the form of a developable cone inversion sur-
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(a)

4 Spokes 8 Spokes

(b)

Figure 2.4: Inverted-cone fold (a) rigid links (similar to an umbrella) that allow an umbrella
made of extensible fabric to transition from fully open to fully closed position and (b) two
different spoke configuration options.

H

H

H

Fabric (cutaway view)

(a)

Fabric (cutaway view)

3)

4)

H1)

2)

(b)

Figure 2.5: Inverted-cone fold folding methods (a) linkage mechanism packing method, with
fabric laid on a linkage mechanism formed of rigid links where height H of the packed pattern
can be selected by choosing desired link lengths, and the mechanism can be removed from
the material when folding is completed (b) slider mechanism packing method, with fabric
laid on top of the slider assembly in Step 1, and folded into the layers, progressing through
Step 2, Step 3, and Step 4. In both (a) and (b), the final packed height H of the mechanism
is equal to the length of the links and sliders respectively.

face. However, there is a physical limit due to the size and interference of the necessary link

arms. Having some evenly spaced number of “spokes” that are used as folding mechanisms

is a potential manufacturing method, and more spokes may lead to a more accurate fold

pattern, as shown in Fig. 2.4(b).

Using the idea of spokes, two different manufacturing methods, shown in Fig. 2.5, were

investigated. Each could be done with any desired number of spokes greater than three, as
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allowed by physical manufacturing limits. In physical prototypes we created, the number of

spokes used was four. The first manufacturing method is to use a linkage similar to the link

overlay previously shown in Fig. 2.4(a). Figure 2.5(a) details this linkage, wherein fabric is

laid on top of the mechanism spokes, secured using suction or weak adhesion and the linkage

then folded up. In this case, the height H of the folded pattern will be approximately equal to

the length of each link. One common mechanism that could be adapted for this purpose is a

scissor mechanism or linkage, which would reduce the required degrees of freedom compared

to the linkage mechanism shown.

Due to the discretised manner of the spokes used in this method, there will be leftover

flaps that need to be dealt with, which are minimised by increasing the number of spokes.

These portions result from discretising the developable cone inversion, and are shown in Fig.

2.6.

The second potential manufacturing method for performing the same fold is to use

slider mechanisms for spokes, as shown in Fig. 2.5(b). In this method, the fabric is pushed

down between the sliders in progressive steps, with each slider constraining it against the

previous (more interior) one. The height of the packed pattern will be approximately equal

to the height of the sliders. This pattern will have similar leftover flaps of fabric.

One way to account for the leftover flaps resulting from both methods is to wrap

them in a clockwise or counterclockwise fashion around the compacted shape, similar to a

collapsible umbrella. After the folding has taken place, the folding frame can be removed

from the compacted fabric before packing the fabric into a cylindrical housing by wrapping

the remaining flaps around the central portion and securing the fold with a restraint.

2.2.3 Deployment Rotation

When Soft Origami is used, rotation may occur during deployment. In the flasher

and inverted-cone fold patterns, the main predictor of deployment rotation is whether flaps

of material were wrapped in a circular pattern at any point in the packing process. In the

case of the flasher pattern, as the pattern folds up, each portion of the soft-sheet-material

experiences rotation due to the nature of the basic flasher pattern, which can be seen in three

stages of deployment Figure 2.2. A packed Soft Origami flasher will rotate when deployed
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Figure 2.6: The inverted-cone fold shown in the middle of the folding process. Note the
flaps of cloth that are unconstrained, which are then wrapped around the central portion to
achieve the cylindrical packing.

as it travels through the reverse of its folding motion. Depending on how the inverted-cone

fold was packed, there may or may not be rotation. If there are leftover flaps that must be

wrapped around the central portion, as shown in Figure 2.6, there will be a corresponding

rotation when deployed.

2.3 Application: Automotive Airbags

Driver’s side airbags have previously been packed in rectangular prism shapes and

the steering wheel shape designed to fit around the airbag unit. Recent trends point toward

automakers using cylindrical steering columns and cylindrical central portions of steering

wheels. As a result, current fold patterns have been modified to fit cylindrical mounts instead

of rectangular mounts, which has resulted in less-than-ideal use of space due to gaps around

the edges. Another approach that has been successfully used is a compression fold wherein

the airbag is compressed into a cylindrical shape using a cylindrical mould and thousands

of pounds of applied force. A base pattern that more closely approximates a cylinder is of
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interest to improve packing efficiency. As such, airbags are a prime example of a soft-sheet

material that needs to be folded into a cylinder and has critical deployment characteristics.

In collaboration with an automotive airbag manufacturer, Autoliv, the inverted-cone

fold and flasher fold patterns were imposed on three driver’s side airbag modules and deployed

using standard test procedures. The original (baseline) fold pattern is shown in Fig. 2.7(b),

where a rectangular prism fold pattern is packed into a cylindrical shape. Both cylindrical

packing efficiency and deployment performance were tested to compare the different folds to

the baseline. In this application, a comparison of “bag pack space used,” or the height of

space available for an inflator (the gas generating device, which typically is a metal cylinder)

after the folded airbag was inserted into the airbag module, was also performed.

2.3.1 Packing Methods Applied

The aforementioned packing methods were applied to automotive driver’s side airbags

consisting of two circular soft-sheet-material disks sewn together around the outer edge and

having an inflator inserted through a central hole in the bottom layer of material.

Flasher

The folding table method was applied to the airbag to pack the flasher pattern into

a cylindrical shape. In this case, a folding table made from rigid matboard panels glued

to a flexible substrate (to act as hinges along the fold lines) was created from calculated

dimensions matching the desired stowed height and diameter. An airbag folded with the

flasher pattern applied to it is shown in Fig. 2.7(a) with a comparison image of the baseline

fold in Fig. 2.7(b). The flasher fold shows improvement in cylindrical packing efficiency.

Considering how well the flasher fold stays within the boundary of the mount, compared to

the baseline fold, there is a marked improvement. The bag pack spaces were not equivalent,

with the flasher fold providing 2.5mm (10%) less bag pack space, shown in Table 2.1. Due

to the bag pack space being worse, the flasher fold had mixed results in the requirement to

fit into a cylindrical space efficiently in this particular application.
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(a) (b) (c)

Figure 2.7: Top view of (a) flasher pattern imposed on an airbag in a housing, packed using a
rigid folding table made of matboard and flexible hinge substrate for the flasher pattern, (b)
baseline fold imposed on an airbag in a housing, folded using a traditional rectangular fold
that has the corners compressed or forced inward in order to fit within the circular perimeter
of the airbag housing, and (c) inverted-cone fold imposed on an airbag in a housing, packed
using four slider mechanisms for the inverted-cone fold pattern. All patterns were compressed
to the same height prior to images being taken. Note the black housing visible under (a)
and (c) but not (b), preliminarily indicating more efficient cylindrical packing for the flasher
and inverted-cone patterns.

Inverted-Cone Fold

The slider method was applied to the airbag to pack it into a cylindrical shape, with

the resulting airbag shown in Fig. 2.7(c), alongside a comparison of the baseline fold in Fig.

2.7(b). For this prototype, the extra flaps left over when using a 4-spoke folding mechanism

were wrapped in a clockwise direction around the rest of the airbag upon removal from the

folding frame. Upon inspection, the inverted-cone fold shows improvement in the cylindrical

packing efficiency. One comparison is to evaluate how well the inverted-cone fold stays within

the boundary of the mount. In the case of the baseline fold, the outside edge of the mount

Table 2.1: Comparison of bag pack space (height) for baseline, inverted-cone fold,
and flasher fold.

Fold Pattern Bag Pack Space (height, mm) % Less Than Baseline

Baseline 26 0
Inverted Cone Fold 25.8 0.8
Flasher Fold 23.5 10
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is only visible in a few spots due to the folded airbag overhanging the outside edge of the

shape. Furthermore, the packed height was approximately equal, with the inverted-cone fold

providing only 0.2mm (0.8%) less bag pack space, shown in Table 2.1.

2.3.2 Deployment performance

The airbag modules were tested in airbag test facilities in collaboration with Autoliv.

Figure 2.8 shows images taken of the deployments using high-speed video. Tests were run

at ambient (room) temperature and followed common deployment test protocols. Desirable

deployment characteristics were noted and observed in each test. Some of the more crucial

characteristics, such as the central panel of the airbag presenting itself first to the occupant

as well as minimal spin when deploying, were monitored closely. To compare rotation of the

airbags, centrelines were added to each photo where the central panel is visible in order to

make rotational comparisons more convenient.

Flasher

Comparing the flasher (F) performance to the baseline (B) in Fig. 2.8, at Time 1

(8ms) there is differing deployment status in B1 (baseline pattern) and F1 (flasher pattern).

F1 is still in a cylindrical packed shape, and has begun to extend outward (toward the

camera) but not radially.

Continuing the comparison at Time 2 (11.25ms), the majority of radial deployment

has occurred in the Baseline pattern in B2, while the flasher folded airbag in F2 has not

deployed far enough radially for the central panel to be clearly visible. F2 also shows unde-

sirable rotation, binding, and whipping as it opens.

At Time 3 (22.25ms), B3 has completed its deployment and stabilised as desired. F3

is barely fully deployed and is twisted and off-centre. Following the frames shown here, F3

did not fully stabilise until after at least 30ms.

Analysis of the results by Autoliv personnel after multiple tests including the test

shown in Fig. 2.8 concluded that the flasher pattern, while showing promising cylindrical

packing efficiency, underwent approximately 180 degrees of rotation, which is undesirable
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Figure 2.8: Images of three fold patterns implemented in airbags in live deployment tests.
Patterns include the baseline fold, flasher fold, and the inverted-cone fold. Centrelines are
imposed to show orientation of central panel. Columns represent different fold patterns, as
labelled. Rows represent three different times: 1 - 8 ms; 2 - 11.25 ms; 3 - 22.25 ms. Images
were taken at times when important deployment characteristics could be compared. All
images were obtained in collaboration with Autoliv.

for the airbag application. It also did not deploy fast enough radially or present its central

panel to the occupant as quickly as desired. For these reasons, additional work is necessary

before it could be a viable fold option for application with a driver’s side airbag. As a result

of its poor performance in this application, the Flasher fold was removed from consideration

as research moved forward.
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Inverted-Cone Fold

Comparing the inverted-cone (IC) performance to the baseline (B) in Fig. 2.8, at Time

1 (8ms) we see similar deployment in B1 (baseline pattern) and IC1 (inverted-cone pattern).

Both B1 and IC1 show favourable presentation of the central panel (blue rectangular outline

in the centre) and similar, good deployment progression.

Continuing the comparison at Time 2 (11.25ms), we see that the majority of radial

deployment has occurred in the Baseline pattern in B2, while the inverted-cone folded airbag

in IC2 shows similarities but is slightly behind and is exhibiting less-than-ideal radial de-

ployment. Specifically, B2 shows a more circular deployment while IC2 is deploying in a

slightly oval shape.

At Time 3 (22.25ms), B3 has completed its deployment and stabilised as desired. IC3

is slightly behind in its deployment, and while it has deployed fully in the radial direction

(it is presenting a fully circular front panel it can be seen that the central panel is rotated

when compared to B3. This rotation shows that it is not completely stable. Following

the frames shown here, IC3 did not fully stabilise until approximately 38ms, well after the

acceptable time limit for stabilisation. Overall, it performed similarly to the Baseline pattern

but showed some unfavorable rotation and stabilisation issues.

Analysis of the results by Autoliv personnel after multiple tests including the test

shown in Fig. 2.8 concluded that the inverted-cone fold performed better than the flasher. It

showed good radial deployment and promising deployment speed, and performed the closest

to the baseline pattern. However, it did show an unwanted 90 degree twist which should be

minimised before it can be implemented in commercial airbags. One cause of this twist is

that the folding process results in multiple portions of the bag not packing into the original

cylinder (flaps that extend out after the slider or slider link mechanisms are used to compress

the material to the centre) and instead needed to be wrapped around the central shape to

fit (thus leading to a spin when unwrapping). This is analogous to wrapping the remaining

cloth around a collapsible umbrella when the arms are folded in and then using a strap

to secure the wrapped cloth. Figure 2.6 shows an image of an airbag at this point in the

folding process. Based on the promising performance and evaluation of the inverted-cone

fold, research moving forward focused solely on improving the performance of this pattern.
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2.3.3 Packing Method Modification Based On Deployment Performance

To address deployment performance, new packing methods were created for the

inverted-cone fold to minimise rotational problems. The patterns remain the same, but new

methods can be used to achieve performance closer to the desired function of this particular

application. While the following methods can be used to improve the airbag deployment

performance, other methods may be more appropriate for different applications. One of the

main benefits of using Soft Origami is that the same base pattern can be used with different

packing methods to achieve different deployment performance.

Two new packing methods were created to pack the inverted-cone pattern in a way

that reduces rotational deployment spin. The first new packing method is called the Offset

Cross Method, and it aims to increase the discretisation of the folds, that is, to increase the

number of spokes (mentioned in Section 2.2 and shown in Fig. 2.4(b)). In this case, eight

spokes were used to decrease the size of the flaps, thereby minimising the level of resulting

deployment spin. The apparatus for this method consists of two cross mechanisms and two

panels shown in Fig. 2.9(a)). In this method, the airbag is laid between the panels, and

the first cross is inserted from the bottom into the bottom slots to generate the first fold.

The cross is then actuated to compress the fold toward the centre. The second cross is then

inserted from above into the opposite panel at a 45 degree offset, and actuated using the

same process. The first cross is then removed, and the process is repeated until the airbag

is completely folded. Figure 2.9(b) further depicts the offset nature of the panel slots, and

the motion of the cross paddles.

This method was developed primarily for its ability to decrease flap size, but also

because of its ability to be automated. Eight wide paddles (above and below) are re-used

for each fold, which significantly decreases the number of degrees of freedom of the folding

apparatus. The same airbag model used for to the baseline folded with the inverted-cone

fold applied to it is shown in Fig. 2.10(a), alongside a comparison of the baseline fold in

Fig. 2.10(b). For this prototype, the left over flaps on the right hand side were wrapped

clockwise, while the flaps on the left were wrapped counter clockwise. The packing efficiency

was similar to that of the baseline, but is expected to be improved with a well-developed

folding apparatus.
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Figure 2.9: Offset Cross Mechanism and fold sequence, with (a) isometric view of Offset
Cross mechanism. Height H of the packed pattern can be selected by choosing desired offset
between top and bottom panels. Note two sets of cross-shaped mechanisms, each with four
slider mechanisms, with the top cross offset 45 degrees from the bottom, which are alternately
inserted into the panels from the top and bottom and used to pack the inverted-cone fold
pattern. In (b), we see a top view of a sample fold sequence, where the first set of folds
are imposed in one direction and then the second set of folds are offset 45 degrees, thus
increasing the discretisation of the fold and reducing the size of the leftover flaps.

The second new folding method is called the Nested Cylinder Method, and it aims to

eliminate the extra flaps altogether by using continuous folds. The apparatus for the Nested

Cylinder Folding Method consists of multiple cylinders, which are placed alternating from

above and below (see Figure 2.11(a)). A cinching belt (made of a flexible sheet of polymer,

textile, alloy, etc.) is also included. To fold, the material is placed over the first cylinder. A

second cylinder with a larger diameter is brought down around the first cylinder, pushing a

fold into the material. Successive cylinders are introduced in a like manner, from alternating

directions, until the airbag is completely enclosed. The cinching belt is then placed around

the outermost cylinder, and is tightened as each cylinder from large to small is removed.

Figure 2.11(b) further depicts how the folds are created as cylinders are added.

This method is also easily automatable, and has the potential of using mechanisms

with fewer degrees of freedom than the Offset Cross Method. A concern with this method

is the friction between the cylinder edges and the fabric, but this can be mitigated with a

refined surface finish and rollers placed around the edge of the cylinder. An airbag folded

with the inverted-cone fold applied to it is shown in Fig. 2.10(c), alongside a comparison
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(a) (b) (c)

Figure 2.10: Top view of (a) inverted-cone fold imposed on an airbag in a housing, packed
using the described Offset Cross Method for the inverted-cone fold pattern, (b) baseline
fold imposed on an airbag in a housing, folded using a traditional rectangular fold that has
the corners compressed or forced inward in order to fit within the circular perimeter of the
airbag housing, and c) inverted-cone fold imposed on an airbag in a housing, packed using
the described Nested Cylinder Method for the inverted-cone fold pattern. All patterns were
compressed to the same height prior to images being taken. Note the black housing visible
under (a) and (c) but not (b), preliminarily indicating more efficient cylindrical packing for
the inverted-cone fold offset cross and nested cylinder packing methods.

of the baseline fold in Fig. 2.10(b), showing similar improvement to previous patterns at

packing into a cylindrical housing.

2.3.4 Deployment performance for new packing methods

Airbags were deployed at Brigham Young University to test the folding methods

described above, with resulting images shown in Figure 2.12. Three flap treatments were

also tested for the original slider mechanism: increasing from four to eight spokes (resulting

in smaller flaps), clockwise and counter clockwise folded flaps, and map-folded (reversing

pleats rather than being wrapped all in one direction) flaps. The deployments were filmed at

a rate of 60 frames per second, on a test stand that uses compressed air to inflate the airbag

(resulting in a deployment at about one-tenth of the speed of actual airbag inflators). Due

to the difference in deployment method, further live deployment tests using standard test

equipment and deployment speed would be necessary to directly compare these results with

those obtained in collaboration with Autoliv and shown in Fig. 2.8. To determine whether
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(a)

Fabric (cutaway view)

H

(b)

Figure 2.11: Nested Cylinder Mechanism and fold sequence, with (a) isometric view of Nested
Cylinder mechanism. Note multiple nested cylinders, which are inserted from alternate
directions from small to large, imposing one layer of fold at a time. In (b), we see a cutaway
view of the final fold configuration, with height H determined by height of interior cylinder,
with the mountain and valley folds imposed on the airbag. A cinching belt is then placed
about the outer cylinder, and is tightened as each successive cylinder is removed from large
to small. This method evenly distributes all remaining flaps.

the inverted-cone fold performed similarly in both tests (and thus if the tests will likely show

similar performance), an airbag folded using the same method and pattern was deployed

and included in Fig. 2.12, labelled “Slider Mechanism,” and it was seen in both cases that

the angular rotation of the central panel between Time 1 and Time 3 was similar (albeit in

the opposite direction, likely due to us wrapping the leftover flaps in the opposite direction),

leading us to be confident that the compressed-air tests should show similar deployment

characteristics. Each deployment was evaluated for rotational spin, and it was concluded

that all of the different flap folding techniques, as well as the two airbag fold methods

described previously (Offset Cross and Nested Cylinder), decreased deployment spin. To

compare rotation of the airbags, centrelines were added to each photo where the central

panel is visible in order to make rotational comparisons more convenient.

Examining the results presented in Figure 2.12, we see that at Time 1 the Slider

Mechanism (S1) is still opening up and rotating clockwise, while the Folding Cross and
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Nested Cylinder (FC1 and NC1, respectively) are more stable and further along through

deployment. At Time 2, all three are nearly fully deployed radially, and we can see that the

central panel (rectangle) of FC2 and NC2 are still aligned with their previous deployment

photo and are more stable than S2. Finally, at Time 3 we see that all are fully deployed and

stable. Both the Folding Cross Method and Nested Cylinder Method exhibit nearly zero

rotation throughout deployment (as seen by the location of the central panel as well as the

clarity of the photos indicating little movement), while the Slider Mechanism (the fold titled

“inverted-cone fold” previously discussed in Section 2.3) exhibits a significant (greater than

30 degree) rotation.

2.4 Discussion And Conclusion

In this chapter, fold patterns and packing methods have been introduced and evalu-

ated to efficiently pack soft-sheet materials into cylindrical packed shapes with configurable

folded (packed) height and diameter, deployed (unfolded) shape, and deployed size. Deploy-

ment performance and the impact of packing method on deployment was also explored. Two

fold patterns (the flasher and the inverted-cone fold) and a total of two packing methods for

the first pattern and four for the second pattern were presented as viable solutions. Appli-

cation to automotive airbags was explored and results showed promise, although the flasher

was shown to be less-than-ideal for driver’s side airbags and would likely be more valuable

in other Soft Origami applications.

Both fold patterns have adjustable stowed height and diameter, deployed shape, and

deployed size while folding into approximately cylindrical shapes. We were able to influence

the behaviour of the airbag using this approach, and preliminary testing showed that we were

able to specify packed behaviour, unfolding behaviour via pressure difference deployment,

and final deployed shape. Both patterns showed favourable improvements in packing an

airbag into a cylindrical shape with sufficient room underneath the packed material for an

inflator.

Multiple possible methods were created and explored to fold the inverted-cone fold

and flasher fold patterns using a rigid frame that is later removed. After frame removal,

the folds are ready to be deployed by way of a pressure differential. The patterns, shown
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S1 FC1 NC1

NC2FC2S2

S3 FC3 NC3

Slider Mechanism

Time 1

Time 2

Time 3

Folding Cross Nested Cylinder

Figure 2.12: Images of three packing methods for the inverted-cone fold implemented in
airbags in test stand deployment tests. Packing methods include the the slider mechanism
(using 4 sliding mechanisms, the same method and pattern shown previously in Fig. 2.8
under the title “Inverted-Cone”) as a baseline as well as the Folding Cross Method and
Nested Cylinder Method. Centrelines are imposed to show orientation of central panel.
Columns represent different packing methods, as labelled. Rows represent three different
times. Images were taken at times when important deployment characteristics could be
compared. The Folding Cross Method and Nested Cylinder Method appear to show less
rotation upon deployment.

through an application to automotive airbag folding, accomplished the desired goals of the

research. The packing methods demonstrated here have been shown to work when folded by

hand (with a combination of a mechanism and human intervention), but have not yet been

automated, which could be a topic of further work.

Another accomplishment of this research was the modification of packing method

based on deployment performance. Although the same pattern (the inverted-cone fold) was
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used, different packing methods were shown to influence deployment performance, which

is likely true of many Soft Origami patterns and applications. That is, unlike traditional

origami, where fold lines constrain behaviour, Soft Origami allows for a more quantitative

approach wherein the same pattern can be packed using many different methods depending

on the application constraints.

In conclusion, multiple patterns and packing methods were presented that are well-

suited for packing a soft-sheet-material into a cylindrical volume prior to deployment via

internal pressure. Another unique development in this work is the use of an origami-pattern-

inspired folding frame to impose the pattern on the soft-sheet materials, and then removing

the folding frame and maintaining the folded shape for use in deployment via pressure differ-

ence (e.g. inflation). This is advantageous for a mechanism or structure that would present

a safety hazard to humans if it had a rigid understructure when deploying. In an application

to automotive airbags, we also demonstrated the principle of modifying the packing method

(within the same origami fold pattern) based on deployment performance and requirements.
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CHAPTER 3. ARBITRARY PRISMATIC SHAPE PACKING

3.1 Introduction

The ability to pack folded materials into densely packed prismatic shapes is of interest

in fields where flat sheet materials must be folded into a particular shape such as automobile

airbags, camping equipment packing, map folding, possible reconfigurable packing material

(to replace support material such as styrofoam in packages) and other soft-sheet applications.

This chapter presents a preliminary study and method for packing sheet materials into

prismatic shapes.

For the purpose of this research, a densely packed prismatic shape is defined as an

arbitrary continuous shape (when looked at from the top or bottom) of constant height that

does not have internal gaps. Classic examples include a rectangular or triangular prism,

but a prismatic shape could be formed from an arbitrary closed curve as well. A polygonal

prismatic shape is shown in Fig. 3.1, and prismatic shapes can also be shaped by continuous

curves instead of polygons.

3.2 Background and Objective

This chapter evaluates the use of a special case of the Miura-ori pattern to pack sheet

materials into prismatic shapes. The Miura-ori pattern is widely adaptable for different

engineering applications. A sample Miura-ori pattern is shown in Fig. 3.3(a). Variations on

the Miura-ori that have been created are the Miura, Tapered Miura, Arc, and Arc-Miura

among others [7, 26, 27], and modifying some or all of the vertex fold angles can result in a

wide range of behaviors. In the past, the Miura-ori has been found to be one ideal pattern

for map folding. Unlike a typical map fold, the Miura-ori can create maps that have a single
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DD

Figure 3.1: Angled view (left) with depth D shown and top view (right) of example Arbitrary
polygon prismatic shape.

(a) (b)

(c) (d)

Figure 3.2: Fully-dense thick Miura map fold with (a) Flat, (b) Vertical mountain and valley
folds partially actuated, (c) Vertical folds fully folded, and (d) fully-dense rectangular prism
shape. Photos and prototype courtesy of Mary Wilson.

degree-of-freedom and are thus easier to open and less likely to rip when folded and unfolded

repeatedly. A sample prototype of a thick-material Miura-ori map fold is shown in Fig. 3.2.

The objective of this preliminary study is to consider a method for folding a continuous

flat sheet shape into a densely packed prismatic shape using a special case of the Miura-ori
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(a) (b)

Figure 3.3: (a) Regular Miura-ori, (b) 90 Degree Miura-ori.

pattern. This special case can be used to design a wide range of densely packed prismatic

shapes. The original sheet material can also be a wide range of continuous flat shapes.

3.3 Ninety-degree Miura-ori

A typical Miura-ori crease pattern is shown in Fig. 3.3(a). Each vertex (point where

fold lines intersect) in this pattern is a degree-four vertex; that is, there are four fold lines

intersecting at each vertex. Vertex angles (angles between adjacent fold lines entering a

common vertex) for the standard Miura-ori are between 0 degrees and 180 degrees, but are

not all equal. For the case of the ninety-degree Miura-ori, all vertex angles are ninety-degrees.

An example pattern of the ninety-degree Miura-ori is shown in Fig. 3.3(b). The ninety-degree

Miura-ori could also be termed a simple grid pattern or be called a “doubly-pleated” fold.

The pattern shown in Fig. 3.3(b) shows equally-spaced horizontal and vertical grid lines, but

these lines do not need to be equally spaced for the pattern to fold. When the fold pattern

with equal spacing is fully folded, it will approximately match a rectangular prism in overall

shape.
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Valley Fold
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n8n7 n9

(a)

t1

(b)

D

H

(c)

Figure 3.4: (a) Alternating vertical mountain and valley folds imposed on an arbitrary-
shaped sheet material (solid line), (b) top view after folds are imposed, along with associated
profile and overall shape thickness, and (c) side view of folded strip.

3.3.1 Application to arbitary-shaped flat sheet material

The ninety-degree Miura-ori can be applied to arbitrary-shaped flat sheets (not rect-

angular) if desired. As shown in Fig. 3.4, to fold an arbitrary-shaped flat sheet of material

of overall maximum height H and width W using the ninety-degree Miura-ori pattern, a

depth dimension D can be selected such that D < W . Alternate mountain and valley folds

distance D apart, separating the sheet into n segments where n = floor(W/d) + 1, can then

be folded. For a sheet of thickness t, when the mountain and valley folds are completed, the

resulting pattern will form a folded strip of width t1, where

t1 = nt (3.1)

Next a set of horizontal fold lines spaced arbitrary xm distances apart can be imposed

on the folded strip as shown in Fig. 3.5(a). For the case shown previously in Fig. 3.3(b), all

xm values are equal and as a result the final folded shape closely matches a rectangular prism.

However, if the horizontal fold lines are spaced at irregular xm distances, the final prismatic
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t2 ≈ m * t 
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Figure 3.5: (a) Arbitrary-spaced horizontal grid imposed on folded strip from Fig. 3.4, (b)
top view of strip folded at set lines with associated prismatic shape and overall width t2,
where m horizontal folds have been imposed, and (c) overall 90 degree Miura-ori fold pattern.

shape can be controlled to match a wide range of shapes in addition to a rectangular prism.

This is shown along with a folded prismatic shape and the resulting overall fold pattern in

Fig. 3.5(b) and Fig. 3.5(c). Note that if m is the number of horizontal folds imposed, the

overall folded largest vertical dimension is

t2 = mt1 (3.2)

These ideas can be applied to achieve a variety of folded prismatic shapes from ar-

bitrary continuous flat sheets. It is also possible for a ninety-degree Miura-ori to double

back on itself if necessary as shown in Fig. 3.7(c). A sample prismatic shape that could be

matched is shown in Fig. 3.6(a). In Fig. 3.6(b) we see a way of representing the discretization

of the shape. If the shape is approximated as a series of rectangles, with the width of each

rectangle equal to t1, the arbitrary shape can be matched by placing one fold inside each

rectangle and alternating back and forth until the entire shape is filled.

As another demonstration of the possibilities of this method, the angle at which

the folds start when matching an arbitrary shape can be varied to improve how well the
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(a) (b)

Figure 3.6: (a) Prismatic shape (top view) formed by arbitrary closed curve outline (b)
prismatic shape discretized with rectangles.

Wasted Space

(a) (b) (c)

Figure 3.7: Examples with different fold configurations and starting angles and the resulting
wasted space from each configuration.

pattern matches the arbitrary prismatic shape. In Fig. 3.7 we see three examples of the

same prismatic shape with a ninety-degree Miura-ori fold filling the shape with material. In

each case, we see a different angle at which the primary folds are placed, and we also see

that some combinations result in less wasted space than others. Future research could study

how to optimally fill such an arbitrary prismatic shape.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: All patterns were made with a rectangular sheet of the same size. On the left of
each pair (part (a), (c), (e), and (g)) we see the folded pattern and on the right (part (b),
(d), (f), and (h) we see the prismatic shape. It should be noted that the prototype folded in
(a) is the tallest (in the dimension coming out of the page), (g) is the second tallest, (c) is
the third tallest, and (e) is the shortest due to starting with the same sized sheet.

Photographs of several arbitrary folded shapes folded from rectangular sheets of the

same size sheet are shown in Fig. 3.8. Photographs of a circular flat sheet folded into an oval

prismatic shape are shown in Fig. 3.9, and photographs and a flat pattern for an arbitrary

shape with a preliminary offset pattern to account for thickness are shown in Fig. 3.10.

3.4 Discussion and conclusion

Thickness accommodation has not been discussed in this research. Should the number

of vertical n and horizontal m folds be increased too much or the thickness t of the material

be too high, there will be a functional limit on how many m times n folds can be folded back

on themselves. One possible method to account for thickness, if the material is flexible and

can stretch and/or wrinkle, is to offset or taper creases as discussed in prior research [4,28,29].

Further research would need to be done to determine how to account for conflicts at vertices

if such a method is used on a non-flexible material. Further work could also be done to
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(a) (b)

(c) (d)

(e)

Figure 3.9: Progression of circular flat sheet folded into oval prismatic shape, with (a)-(d)
showing fold progression and (e) showing prismatic shape from a top view.

examine the possibility of using reverse folds such as used in the Accordion pattern [30] to

extend the densely packed shape into a 3D volume that is not necessarily prismatic. In

conclusion, the objective of this preliminary study was met. A method was detailed using

the ninety-degree Miura-ori to fold continuous flat sheet of arbitrary continuous shape into

a densely packed prismatic shape. Using evenly spaced vertical fold lines and arbitrarily

spaced horizontal grid lines was shown to be a viable method for designing a wide range

of densely packed prisms. Thickness accommodation was addressed in brief, and further

possible efforts were detailed.
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(a) (b)

(c) (d)

(e)

(f)

Figure 3.10: Progression of rectangular flat sheet folded into arbitrary prism pattern, with
(a)-(c) showing fold progression, (d) showing prismatic shape from a top view, (e) showing
original flat pattern, and (f) showing fold pattern as used in prototype modified to account
for thickness by offsetting each progressive line (moving from n1 to nn) from the previous
line by approximately the material thickness.
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CHAPTER 4. SURFACE AREA EFFICIENCY FOR TRADITIONAL AND
ORIGAMI-BASED CYLINDRICAL PACKING PATTERNS

4.1 Introduction and Background

Origami principles and engineering design have been explored in thick material appli-

cations, space applications, consumer products (such as clothing), and other fields [1, 2, 10].

One field that may benefit by being explored through the lens of origami is paper-based fluid

filters. Filter material is similar to paper and starts as a flat sheet, so applying origami pat-

terns and analysis methods to fluid filter design is a natural approach that allows for useful

comparisons and analysis of the geometric efficiency of fluid filter designs, where geometric

efficiency can be thought of as a measure of pattern surface area inside a given volume.

For the purpose of this research, “efficiency” is defined as the ratio of the surface area

of a pattern compared to the surface area of a Idealized Model when packed into a cylinder

of the same volume. There must be a minimum gap distance between filter elements to

prevent “blinding,” when one panel prevents another panel from being exposed to fluid flow.

In the case of rectangular filters, the current optimal design has converged on using

alternating pleat folds arranged into a rectangular prism. While other patterns could be

considered, the simplicity of an alternating pleat pattern and its ability to pack into a highly

efficient pattern renders rectangular filter efficiency difficult to exceed.

However, cylindrical filter designs present an opportunity to apply new fold patterns

to filters. Most current cylindrical filter patterns currently used have trade-offs in surface

area and available dimensions, and have a large cylindrical hole in the interior [31,32]. This

type of cylinder geometric shape, with a cylindrical hole removed from the interior, will be

referred to as an “annular cylinder” due to it being composed of an extruded annulus. A

typical cylindrical fluid filter is shown in Fig. 4.1. Filters consisting of alternating mountain

and valley folds wrapped around a cylinder like this have a larger hole in the center than
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Figure 4.1: Typical cylindrical air filter with segment cut out to show interior.

would be necessary for the amount of fluid flow but because of a minimal gap distance

requirement the inside diameter is constrained to always be greater than a certain value

(depending on the required gap size). Patterns that do not require such a large central hole

are of interest for optimizing efficiency with less of a trade-off in required dimensions.

Prior Origami and filter research has addressed patterns that fold into an annular

cylinder. Some of these patterns include triangulated cylinders, a pattern titled the Kresling

(which is a special case of a triangulated cylinder), expandable bellows patterns [33], rigid-

foldable bellows patterns [34], cylindrical packing for expansion of solar arrays in space [4],

and cylindrical origami patterns used for soft-flexible sheet materials such as airbags. As

such, many equations and patterns are readily available for comparison to each other and a

Idealized Model.

The objective of this research is to compare multiple patterns that are conducive to

packing a large surface area into an annular cylinder through a structured analysis. Analysis

is conducted from a purely geometric standpoint; that is, all analysis is based on geometric

properties of the base fold patterns and is not combined with functional analysis specific to

industries where these results could be applied. A Idealized Model is presented, and four

patterns are considered: the Basic Pleat, M-pleat, Accordion, and Kresling. Two of the

patterns are modified to provide a more consistent comparison; modifications are detailed

below.

The approach that will be followed to achieve the research objective is to first define

an idealized base model for comparison. Then, for each pattern, design parameters and
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Figure 4.2: (a) Defining variables of annular cylindrical volume and (b) idealized high-
surface-area model, top, side, and angled views.

equations will be presented. Finally, efficiency analysis will be considered for each pattern

before comparing all patterns at the same time. The annular cylindrical volume that each

pattern will be designed to fit within (with defining variables height H, outer diameter D,

inner diameter d), is shown in Fig. 4.2(a). These defining variables will be used throughout

the chapter as each pattern is considered.

4.2 Idealized Model

The idealized high-surface-area model that fits within the outer cylindrical volume

(created as a baseline comparison for all patterns) consists of a series of parallel annuli

transverse to the longitudinal axis of the cylinder, each spaced an equal distance from the

most prior annulus. Annuli are connected by cylindrical surfaces connecting the outside and

inside edges respectively in an alternating fashion. Spacing between annuli ensures that,

for applications such as fluid filters where such patterns could be used, there are spaces for

flow to occur between panels, leading to a required gap size GS. Variables D, d, H, and

new variable GS are detailed in Fig. 4.2(b). Because the origami models used in this study
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assume material with zero thickness, the Idealized Model also assumes the panels have zero

thickness.

The surface area of this model can be calculated by finding the number of annuli n

that fit within a given height, using the floor function to insure an integer value, as

n = floor

(
H

GS

)
+ 1 (4.1)

The number of inner cylinders ninner and the number of outer cylinders nouter are calculated

as

ninner =


n−2
2

if n is even

n−1
2

if n is odd

(4.2)

nouter =


n
2

if n is even

n−1
2

if n is odd

(4.3)

The number of annuli, inner cylinders, and outer cylinders are then multiplied by the re-

spective area of each element. The disk model surface area, SAi, is thus calculated as

SAi =
nπ(D2 − d2)

4
+ nouterπD ·GS + ninnerπd ·GS (4.4)

Depending on the thickness of material t, number of layers, and gap size GS, the

Idealized Model could be modified to account for thickness by substituting GS + t for GS

in the equation for n. The geometry models used for each pattern would then need to be

examined on a case-by-case basis to identify necessary modifications to account for thickness

t.

4.3 Basic Pleat design and comparison to Idealized Model

The Basic Pleat is one of the most common patterns currently used in fluid filters

(commonly used in diesel and gasoline motors both to filter incoming air and circulating

fluids). A physical example with a cut-away to see the interior can be seen in Fig. 4.1.

39



ddDD

HH

Figure 4.3: Top view (left) and angled view (right) of Basic Pleat pattern.

4.3.1 Basic Pleat design parameters

The geometry of the Basic Pleat consists of a set of alternating pleats imposed on a

rectangular strip of material. Often, there are alternating sets of two mountain and then two

valley folds, effectively creating a block “u” shaped pleat rather than a “v” shaped pleat.

This is often done to maintain rigidity and spacing between folds. This Basic Pleat is then

wrapped around a cylinder forming a hollow, annular cylindrical shape [35]. A top view

and angled view of this pattern, with critical pattern dimensions D, d, and H are shown in

Fig. 4.3. The base repeating unit in the fold pattern is composed of alternating long pleats

with short double-line corner pleats between them which compose each of nb pleats (with

subscript b being used to distinguish that this is the number of pleats for the Basic Pleat)

wrapped around the cylinder. A detailed view of several pleats and their associated flat

pattern with dimensioned variables is shown in Fig. 4.4. In this figure as well as in other fold

line diagrams shown in this chapter, mountain folds (coming out of the page like a mountain)

and valley folds (going into the page like a valley) are shown using solid and dashed lines,

respectively, to fully define how each pattern is folded.

Input values of D, d, H, desired minimum gap size IGS, and Tp (thickness of one

pleat, or the width of one of the “u” shapes, assumed to be equal to IGS in this research)

are used to generate the pattern. A constant gap size GS is used in each pattern to allow

for direct comparisons in this analysis. The minimum value of IGS is IGSmin = GS for

this pattern, and for this research Tp = GS. More general equations are presented for cases
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Figure 4.4: Detailed view of a portion of the Basic Pleat with variables used (left) and the
base repeating unit flat pattern with dimensioned variables (right). Note that dashed lines
are valley folds and solid lines are mountain folds on the fold pattern.

where Tp 6= GS. The equations used to fully define the pattern are given as follows: interior

arc length Sp, total number of pleats nb (rounded down using the floor function), and outer

gap size OGS pleat length PL, total pattern length lb, and outer gap size OGS are defined

as

Sp = Tp + IGSmin (4.5)

nb = floor

(
πd

Sp

)
(4.6)

PL =
D − d

2
(4.7)

OGS =
πD

nb

− Tp (4.8)

Because we had to ensure integer values for nb by rounding down, IGS and thus Sp must be

adjusted to account for a resulting gap. This is done by determining the final interior gap

size IGS and Sp as
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IGS =
πd

nb

− Tp (4.9)

Sp = Tp + IGS (4.10)

Finally, the overall length of the pattern lb is

lb = nb(IGS + 2PL + Tp) (4.11)

(4.12)

4.3.2 Basic Pleat efficiency analysis

These equations can be used to generate feasible Basic Pleat patterns. If d is decreased

(so as to use more of the overall available cylinder), there will be a decrease in nb and

an overall decrease in pattern packing efficiency. Depending on the desired outcomes, the

equations can be rearranged to calculate, for example, for a given a gap size and pleat width,

what inner diameter d maximizes surface area for some given outer diameter D. Surface area

SAb of the pattern, to be used when comparing packing efficiencies, can be calculated as

SAb = H · lb (4.13)

These equations have been used to generate a range of patterns to compare to the Idealized

Model. Figure 4.5(a) shows a plot comparing efficiency and D/d ratio for the Basic Pleat and

Idealized Model with Tp = GS and GS/D = 0.015. As expected, efficiency of the Idealized

Model is equal to 1 across the range of D/d values. While peak efficiency is equal to 1 (the

Basic Pleat and Idealized Model have equal surface area at D/d = 1.0), this result is of

little practicality to the designer since at this D/d value both patterns are essentially hollow

cylinders. As such, peak surface area is also of interest, and Fig. 4.5(b) shows the surface

area values normalized by H ·D used to generate the ratio shown in Fig. 4.5(a). The Basic

Pleat achieves its highest normalized surface area value of 27.74 at D/d = 1.9369. Figure
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(a) (b)
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Figure 4.5: (a) Basic Pleat efficiency (SAb/SAi) and Idealized Model efficiency (b) Basic
Pleat normalized surface area, with maximum value 27.74 occurring at D/d = 1.9369 (c)
comparison of pleat length PL/D and number of pleats nb over range of D/d values for
D = 100mm and GS/D = 0.015 to explore sawtooth shape of other plots.

4.5(c) shows a plot comparing nb and PL normalized by D across the range of D/d values.

Analyzing this plot, the discrete nature of the number of pleats, combined with a continual

increase in PL, is the cause of the sawtooth nature of the overall efficiency plot. As D/d

increases and therefore d decreases, nb decreases in a discrete manner, resulting in a sharp

drop in overall efficiency followed by a gradual increase due to PL continuously increasing

before the next pleat is removed. However, if the maximum amount of material possible is

desired and the inner diameter does not need matched exactly (as d decreases over the rest

of the range), the peak values from D/d = 1.9369 could be used over the rest of the range

and be valid.
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Other GS/D values were considered at different D/d values to see if consistent results

were achieved. A table considering peak efficiency values with GS/D ranging from 0.002

(observed in a commercial filter) to 0.03 is shown in Table 4.1. Examining this table, the

value of GS/D at a specific D/d value has an impact in the peak efficiency, albeit small. A

value of GS/D = 0.015 was chosen as a value in the middle of this range and used consistently

for this research, although other values could be used.

Table 4.1: Basic Pleat efficiency values for a range of GS/D and D/d values.

GS/D
D/d

1.5 2 2.5 3 3.5 4

0.002 0.7983 0.6648 0.5706 0.4980 0.4432 0.3989
0.010 0.7911 0.6591 0.5614 0.4943 0.4339 0.3954
0.015 0.7879 0.6592 0.5572 0.4852 0.4292 0.3954
0.020 0.7881 0.6563 0.5591 0.4921 0.4321 0.3841
0.025 0.7768 0.6512 0.5622 0.4735 0.4175 0.3787
0.030 0.7803 0.6603 0.5460 0.4863 0.4165 0.3959

4.4 M-pleat design and comparison to idealized model

The geometry of the M-pleat (also called the “W-pleat”) is similar to the Basic Pleat

in that it is composed of alternating sets of two mountain and two valley folds imposed on a

rectangular sheet of material. However, unlike the Basic Pleat, each successive pleat’s length

is not necessarily equal. Shorter pleats are added between some or all of the long pleats (thus

resulting in an “M” shape when looking down on the folded pattern from above), reducing

the wasted space resulting from the radial spread of each pleat in the Basic Pleat pattern.

It has previously been found that the length of the shorter pleat should be close to half the

length of the longer pleats to provide the best performance and stability [36]. Depending

on the overall dimensions of the cylinder, they could, however, have different lengths and

not be used between every normal pleat. Such irregular pleat length will not be considered

in this work. Similar to the Basic Pleat, the M-pleat is also best executed with “u” shaped

pleats rather than “v” shaped pleats.
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Figure 4.6: Top view (left) and angled view (right) of M-pleat pattern.
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Figure 4.7: Detailed view of a portion of the M-pleat with variables used (left) and the base
repeating unit flat pattern with dimensioned variables (right).

4.4.1 M-pleat design parameters

A top view and an angled view of this pattern, with D, d, and H are shown in Fig.

4.6. The base tesselation unit is composed of alternating long and short pleats, with small

double-line corner pleats between them, with nN normal long pleats and nM modified M-

pleats with an extra short pleat added between long pleats wrapped around the cylinder. A

detailed view of several pleats and their associated flat pattern with dimensioned variables

is shown in Fig. 4.7.

One form of the equations used to generate this pattern assumes input values of D

(outer diameter), d (inner diameter), H (total height of cylinders), Tp (thickness of one
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pleat, or the width of one of the “u” shapes), and a minimum gap size GS. Similar to the

Basic Pleat, Tp = GS, and IGS is the inner gap size, although in the M-pleat this gap has

a minimum value but must be calculated. Long pleat length PL is calculated in the same

manner as for the Basic Pleat as

PL =
D − d

2
(4.14)

While short pleat length PS could be varied, based on findings of prior research [36] it is set

equal to

PS = 0.5PL (4.15)

Similar arcs can be used to find s and external arc length ArcM required per M-pleat as

s =
Tp
(
PL + d

2

)
d
2

+ PL − PS

(4.16)

ArcM = 2TP +GS + s (4.17)

Now, the minimum value for IGS assuming the outside gap GS is maintained is

IGS = IGSmin =
d(2TP +GS + s)

D
− TP where IGSmin ≥ GS (4.18)

Total inside arc length Sp is therefore defined as

Sp = IGS + Tp (4.19)

Total number of pleats nM is, using the floor function to insure integer values,

nM = floor

(
πd

Sp

)
(4.20)

Because we had to ensure integer values for nM by rounding down, there will be a small gap

using the current IGS calculation. The new IGS will be slightly longer than IGSmin, and

is
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IGS =
πd

nM

− Tp (4.21)

Using these values, total pleat length lm is calculated as

lm = nM(IGS + 2PL + 3Tp + 2Ps) (4.22)

4.4.2 M-pleat efficiency analysis

These equations can be used to generate feasible pleat patterns. Depending on the

desired outcomes, these equations can be rearranged to calculate various parameters. Surface

area SAm of the pattern, to be used when comparing packing efficiencies, can be calculated

as

SAm = H · lM (4.23)

Figure 4.8(a) is a plot comparing efficiency for the M-pleat and Idealized Model for a

range of D/d values with Tp = IGS = GS and GS/D = 0.015. As expected, efficiency of the

Idealized Model is equal to 1 across the range of D/d values. While peak efficiency is equal

to 1 (the M-pleat and Idealized Model have equal surface area at D/d = 1), the M-pleat also

essentially forms a hollow cylinder and is of little use to a designer. Surface area normalized

by H · D is shown in Fig. 4.8(b). Examining this plot, we see a peak normalized surface

area of 41.64 at D/d = 2.2252. Like the Basic Pleat, we see sawtooth behavior, and Fig.

4.8(c) compares nm and PL and PS normalized by D across the range of D/d values. Again,

the discrete number of pleats is what leads to the sawtooth nature when combined with the

continual increase of PL and PS. There is a wide range in the beginning where the number

of pleats is decreasing infrequently which leads to the first two steps being much longer than

those after the peak. Again like the Basic Pleat, if the designer is seeking the maximum

amount of material and is not concerned about matching the inner diameter exactly (as d

decreases over the rest of the range), the peak value from D/d = 2.2252 could be used over

the rest of the range and be valid.
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(c)

Figure 4.8: (a) M-pleat efficiency (SAm/SAi) and Idealized Model efficiency (b) M-pleat
normalized surface area, with maximum value 41.64 occurring at D/d = 2.2252 (c) compar-
ison of pleat lengths PL/D, PS/D and number of pleats nM over range of D/d values for
D = 100mm and GS/D = 0.015 to explore sawtooth shape of other plots.

Other GS/D values were considered at different D/d values to see if consistent results

were achieved. A table considering peak efficiency values with GS/D ranging from 0.002

(observed in a commercial filter) to 0.03 is shown in Table 4.2. Examining this table, the

value of GS/D at a specific D/d value has an impact in the peak efficiency, more so than in

the Basic Pleat, which could be due to the longer length per pleat of the M-pleat and the

number of pleats being a discrete value.
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Table 4.2: M-pleat efficiency values for a range of GS/D and D/d values.

GS/D
D/d

1.5 2 2.5 3 3.5 4

0.002 0.8574 0.9233 0.8577 0.7485 0.6661 0.5994
0.010 0.8599 0.9240 0.8508 0.7484 0.6563 0.5981
0.015 0.8615 0.9296 0.8482 0.7374 0.6517 0.6006
0.020 0.8705 0.9307 0.8554 0.7518 0.6589 0.5848
0.025 0.8576 0.9080 0.8645 0.7244 0.6376 0.5781
0.030 0.8647 0.9463 0.8403 0.7478 0.6376 0.6082

4.5 Accordion design and comparison to Idealized Model

The Accordion pattern is the first of two Origami-based cylindrical packing patterns.

The underlying pattern has been studied from an origami perspective as a pattern useful for

expanding and contracting in a longitudinal direction [30]. One essential difference between

this pattern and the traditional patterns discussed prior is the propensity of the Accordion

surfaces to lie in a nearly-horizontal plane if the pattern is placed on its end. The two

traditional patterns discussed previously both have surfaces in the vertical direction. Having

surfaces primarily in the horizontal direction requires a different approach to design because

to add more material the pattern must be made taller and not wider.

4.5.1 Accordion design parameters

The geometry of the Accordion pattern consists of a set of repeated base polygons

arranged in an alternating pattern and stacked in stories. A base tesselation unit polygon

and its required variables a, b, c, and φ is shown in Fig. 4.9(a), with a wireframe view of

a folded unit shown in Fig. 4.9(b) for reference. Inputs for the equations used to define

the base unit include the interior diameter d and exterior diameter D of the annulus the

pattern lies inside as well as n, the number of sides of the polygon forming the bottom of

the folded Accordion. This pattern and others similar to it have been previously applied to

filter design [37–40]. One form of the equations used to define the Accordion base unit is as

follows [30], with the base unit shown in Fig. 4.9(a).
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Figure 4.9: (a) Accordion base tesselation (b) angled view of folded Accordion with four sides
and (c) top view with outer diameter D of circumscribed outer circle and inner diameter d
of inscribed inner diameter shown.

φ =
π

n
(4.24)

a =
√
D2 − d2 (4.25)

b = D sin
(

arcsin
( a
D

)
− φ
)

(4.26)

c = a− 2b cos (φ) (4.27)

The Accordion pattern has na fundamental alternating units on each story. That is,

an Accordion with na = 4 would have four repeating units on each story that wrap around

to form the pattern when folded. For a valid fold pattern na must be an even number and

na ≥ 4. As na is increased, the pattern will more closely match a circular annulus but have

increasing manufacturing complexity, and there are functional limits on the annular shapes

that can be matched depending on the ratio of D/d. The parameter na can be chosen

arbitrarily or allowed to change as part of an optimization routine, depending again on the

ratio of D/d.

The final parameter used to fully define the flat pattern is sa, where sa is the number

of stories. A pattern of base tesselation units with na = 4 and sa = 4 is shown in Fig. 4.17.

Because each story connects with each adjacent story with a sharp, angular crease rather

than a squared-off double pleat (the “u” shape shown in the Basic Pleat and M-pleat),
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Figure 4.10: Accordion flat pattern with sa = 4 and na = 4. Mountain folds are solid lines
and valley folds are dashed lines.

11
22

33
44

22

33

11

44

(a)

0.5GS 0.5GS 

0.5GS 0.5GS 

GSGS

3GS3GS

(b)

Figure 4.11: (a) Layer ordering of two adjacent Accordion vertices and (b) offset line pattern
using offset crease method. This portion of the Accordion pattern is a smaller portion of
the diagram presented in Fig. 4.10 and these offsets are applied to the entire pattern before
folding.

the pattern must be modified to accurately determine sa and provide a more consistent

comparison to the other fold patterns and the Idealized Model.

4.5.2 Accordion pattern modification

The Accordion pattern can be modified using an offset crease method [41]. For this

pattern, layer ordering can be used to determine appropriate offsets for each crease. In prior

applications of the offset crease method with thick materials, material is removed at the

vertices to prevent self-intersections. In this application, the ability of the filter or paper
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material to wrinkle and create “soft-creases” in the vertex areas and along creases eliminates

the need to remove material. For the application of filters, this characteristic is essential for

any pattern used in order to maintain continuous filter material without any perforations or

holes. However, it also introduces uncertainty as the behavior of the material at the vertex

cannot be reliably predicted.

As shown in Fig. 4.11(a), layers can be ordered from 1 to 4 in their sequential stacking

order (when the pattern is fully folded, 4 lies directly on top of 3 which is directly on top of

2 which is directly on top of 1). Offsets for each crease between layers are then determined

by finding the difference in panel number around shared creases and multiplying a unit

desired gap by the resulting number to find the total gap size required about that crease.

Thus, if the desired gap is the Gap Size GS, the total offset between panels 1 and 2 is

GS(2 − 1) = GS. Likewise, the total offset between panels 2 and 3 as well as 3 and 4 is

GS. When comparing panels 4 and 1, however, the offset will be GS(4 − 1) = 3GS. Once

offsets are determined, crease lines can be offset half of the required gap on each side and

trimmed to make continuous polygons. The pattern with calculated gap sizes is shown in

Fig. 4.11(b). It should be noted that as shown in Fig. 4.11, when multiple adjacent vertices

are considered, shared panels have the same calculated offset on both vertices.

Performing the offset crease method ensures that each panel is parallel and horizontal

in its folded state, and allows for direct comparison with the U shaped folds of the Basic

Pleat and M-pleat. A physical prototype was created, shown in Fig. 4.12 with achieved

offsets between panels. It should be noted that if the value of GS is too large, the overall

diameter D of the actual prototype will be smaller than the desired D value. It is assumed

that applications such as filters that might use this research will have a GS small enough

(GS/D ≤ 0.03) to not present a major problem in this regard.

Because each vertex is an intersection of two stories, and because there will be an

offset and gap of 1
2
GS on either the top or bottom of each story, the total gap size required

for each set of two layers is 4GS. Therefore, the total number of required stories sa for the

overall height H is equal to H divided by one half of the overall 4GS spacing.

sa = floor

(
H

2GS

)
(4.28)
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(a) (b)

Figure 4.12: Accordion prototype with na = 4 (a) uncompressed and (b) compressed.

4.5.3 Accordion efficiency analysis

Using these equations, a wide range of Accordion patterns can be designed. Given

a specified inner diameter d, outer diameter D, number of sides na, overall height H, and

minimum gap size GS, the pattern can be fully generated. Surface area SAa can then be

calculated as the surface area of the flat pattern, and is

SAa = na · sa · b sin(φ)

(
a+ c

2

)
(4.29)

These equations were used to generate patterns to compare to the Idealized Model.

One primary characteristic that is of interest is the effect of na on overall efficiency. A plot

comparing efficiency for a range of na values and across a range of D/d values, as well as

the efficiency of the Idealized Model, is shown in Fig. 4.13(a). As expected, the efficiency of

the Idealized Model is equal to 1 across the range of D/d values. Surface area normalized

by H ·D is shown in Fig. 4.13(b). In order to more closely examine the results, another set

of efficiency and surface area plots are shown in Fig. 4.13(c) and Fig. 4.13(d) respectively,

with D/d ranging from 1.0 to 4.0.

Maximum efficiency values, associated D/d values, and maximum normalized surface

area (which occurs at the same D/d values as maximum efficiency and continues on for the
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Figure 4.13: Efficiency (SAk/SAi) values over a range of D/d values for Accordion patterns
with na = 4, 6, 8, 10, 12, 14.

rest of the range of D/d values) are tabulated in Table 4.3. Examining Fig. 4.13(c), each

value of na has a range of D/d where it has the highest efficiency. Ranges of D/d where

each value of na has the highest efficiency are tabulated in Table 4.3.

All of the patterns shown in Fig. 4.13 except na = 4 have a transition point and

constant surface area and thus decreasing efficiency after some point as D/d is increased.

This is because in each case at some point one of the side lengths could not be decreased

below zero. A graphical method using panel reflection was used to consider one of these

cases, shown in Fig. 4.14. In this plot, top-down transparencies are shown along with their

associated D/d value at three points for an accordion with na = 6. At D/d = 1.5, the

pattern matches the annulus and each side length is a finite, positive number. As D/d is

increased to 2.0, one of the side lengths (c) decreases to zero but the pattern still matches
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Figure 4.14: Top-down transparencies are shown along with their associated D/d value at
three points for an accordion with na = 6. After the transition point at D/d = 2.0, surface
area remains the same and thus efficiency decreases.

the annulus. At every D/d value greater than 2.0, pattern surface area cannot be increased

because the c side length has reached a limit of 0. Thus, as D/d increases past the transition

point, the pattern no longer matches the inner circle but can still be folded and fit within

the annulus, and the efficiency decreases due to the surface area remaining the same. While

each value of na has a different transition point, all but the na = 4 accordion experience this

same phenomenon. The na = 4 accordion does not have a transition point because it can be

formed with a d value of approximately 0.

Theoretical maximum efficiency for the pattern with na = 4 was verified by consid-

ering the case where d = 0 and the accordion pattern turns into a diamond pattern. An

example with D/d = 3 is shown in Fig. 4.15(a). The value of D/d is increased to 20 in Fig.

4.15(b). In this case, the pattern approaches a diamond pattern with two layers stacked on

top of each other. If we overlay two of the disks from the Idealized Model with these two
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Figure 4.15: One layer of Accordion na = 4 flat fold transparency with (a) D/d = 3,
(b) D/d = 20 (approaching theoretical limit of d = 0, note how it is approaching being
two squares overlaid on each other), and (c) one square (one layer of the two squares) of
theoretical limit with D/d = 1000 overlaid on one disk model disk with disk diameter and
diagonal D labeled.

diamonds, we can see that a square is effectively laying on each of the disk model disks,

with corner-to-corner distance of D, shown in Fig. 4.15(b). The surface area of each disk is

SAdisk = πD2/4 and the surface area of each diamond is SAdiamond = D2/2, so the maximum

theoretical amount of overlap should be close to SAdisk/SAdiamond = 2/π = 0.63662. Exam-

ining Fig. 4.13(a), as the ratio of D/d increases the theoretical surface area approaches this

number, thus verifying the theoretical model. A model was created with D/d = 100, 000, and

the maximum value achieved by the Accordion with na = 4 was 0.6081, with the difference

likely being due to the Idealized Model’s cylinders between alternating layers.

Other GS/D values were considered at different D/d values to see if consistent results

were achieved. A table considering peak efficiency values with GS/D ranging from 0.002

(observed in a commercial filter) to 0.03 is shown in Table 4.5. Examining this table, the

value of GS/D at a specific D/d value has almost no impact in efficiency, which is likely due

to how similar the Accordion is to the Idealized Model when its surfaces are horizontal. It

should be noted that due to the discrete nature of the functions involved, sampling as has

been done in this table results in some minor aliasing.
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Table 4.3: Maximum efficiency and normalized surface area compared to D/d for
Accordion patterns with GS/D = 0.015.

na Maximum Efficiency Maximum Normalized Surface Area D/d

4 0.6008 32.3400 10.0000
6 0.5125 21.4341 2.0000
8 0.4708 13.4961 1.4054
10 0.4403 9.2089 1.2342
12 0.4117 6.5782 1.1532
14 0.3838 4.8926 1.1081

Table 4.4: D/d ratios for different values of na with maximum efficiency.
Note that no Accordion can be created at D/d = 1.0, hence

initial starting values are all higher than 1.0.

na D/d Range

4 2.3964 - 10.000
6 1.4595 - 2.3964
8 1.2523 - 1.4595
10 1.1622 - 1.2523
12 1.1171 - 1.1622
14 1.0270 - 1.1171

Table 4.5: Accordion efficiency values for a range of GS/D and D/d values.

GS/D
D/d

1.5 2 2.5 3 3.5 4

0.002 0.0707 0.3183 0.4329 0.4951 0.5327 0.5570
0.010 0.0707 0.3183 0.4329 0.4951 0.5327 0.5570
0.015 0.0702 0.3159 0.4296 0.4914 0.5287 0.5529
0.020 0.0707 0.3183 0.4329 0.4951 0.5327 0.5570
0.025 0.0707 0.3183 0.4329 0.4951 0.5327 0.5570
0.030 0.0707 0.3183 0.4329 0.4951 0.5327 0.5570
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4.6 Kresling design and comparison to Idealized Model

The Kresling pattern, a variation of the Yoshimura pattern [42,43] and also similar to

a pattern previously called the Fujimoto pattern [44], is the final Origami-based cylindrical

packing pattern considered here. Like the Accordion, it has been used previously as a bellows

that can be expanded and contracted in the longitudinal direction [30]; its planes lie nearly

horizontal when it is set on its end and compressed.

4.6.1 Kresling design parameters

The geometry of the Kresling pattern consists of a set of repeated triangles arranged

in stacked parallelograms [45]. This pattern is a subset of the possible patterns created when

triangulating a cylinder [46–48] where the a sides of the base unit are parallel with the ground,

and extensive studies have been performed previously characterizing its properties [19,42,43].

A base tesselation unit composed of two triangles arranged into a parallelogram and its

required variables a, b, c, and φ, is shown in Fig. 4.16(a). Inputs for the equations used to

define the base unit include the interior diameter d and exterior diameter D of the annulus

the pattern lies inside as well as nk, the number of sides of the polygon forming the bottom

of the folded Kresling. One form of the equations used to fully define the Kresling base

tesselation unit is presented as shown in [30] as

φ =
π

nk

(4.30)

a = D sin (φ) (4.31)

b = D sin

(
arccos

(
d

D

)
− φ
)

(4.32)

c = D sin

(
arcsin

(
b

D

)
+ φ

)
(4.33)

Parameter nk defines how many base tesselation units are necessary to create a fully-

functional cylindrical Kresling pattern, and nk determines the number of sides of the base

polygon on each Kresling layer. When determining nk, an integer value greater than or
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Figure 4.16: (a) Kresling base unit and (b) nk = 6 single layer wireframe.

equal to three must be chosen. As nk is increased, the pattern will more closely approximate

an annular shape, but after drastic improvement in surface area up to nk = 12 there are

diminishing returns in how well the shape matches an annulus and corresponding significant

increases in manufacturing difficulty due to extra distinct folds. This parameter can either be

chosen arbitrarily or allowed to change as part of an optimization routine with an objective

function of maximizing surface area.

The final parameter used to fully define the flat pattern is sk, the number of stories.

The base tesselation units can be arrayed in either alternating directions for each story sk

or in the same direction, as shown in Fig. 4.17. This will affect the rotation of the unit as it

deploys but not the ability of the unit to fold or its characteristics when compressed to some

constant height. Because each story connects with each adjacent story with sharp, angular

creases rather than squared off double pleats, the pattern must be modified to provide a

more consistent comparison to the other fold patterns and theoretical model.

4.6.2 Kresling pattern modification

The Kresling pattern must be modified to have generally “u” shaped folds instead of

“v” shaped folds. However, the method used for the Accordion pattern modification must

be adapted to work for the Kresling pattern modification. When one vertex is considered

independent of all other vertices in the pattern, layer ordering of planes from 1 to 6 in
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sk: 1

sk: 2

Alternating Story Direction

sk: 1

sk: 2

Same Story Direction
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Figure 4.17: Kresling with sk = 2 and nk = 6 composed in alternating story direction and
same story direction. These patterns will show different behavior when compressing and
expanding (rotational behavior) but will be equivalent in surface area and overall dimensions.
Mountain folds are solid lines and valley folds are dashed lines.

sequential stacking order and application of finding difference in panel number results in

offsets of 1GS for each crease except for one where the panel 6 lies on top of the panel 1,

resulting in an offset of 5GS, shown in Fig. 4.18(a). However, as soon as multiple vertices

are considered, conflicts in the offsets arise. Specifically, one vertex analysis specifies a gap

of 5GS while the adjacent vertex analysis specifies a gap of 1GS. To resolve this conflict, it

was found that a tapered line between the two conflicting values resulted in a functional fold

pattern, shown in Fig. 4.18(b). Photos of a prototype folded using this pattern are shown

in Fig. 4.19. As is the case with the Accordion pattern, it should be noted that if the value

of GS is too large, the overall diameter D of the actual prototype will be smaller than the

desired D value. It is assumed that applications such as filters that might use this research

will have a GS small enough to not present a major problem in this regard.

sk = floor

(
H

5GS

)
(4.34)
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Figure 4.18: (a) Layer ordering of two adjacent Kresling vertices and (b) offset crease tech-
nique applied with taper from one vertex to the adjacent vertex. This portion of the Kresling
pattern is a smaller portion of the diagram presented in Fig. 4.17 and these offsets are applied
to the entire pattern before folding.

It must be noted that a traditional offset crease method involves removing material at

the vertices. However, in this case as in the Accordion pattern, the material at the vertices

cannot be removed but must be allowed to wrinkle and create “soft-creases” which behave

unpredictably.

4.6.3 Kresling efficiency analysis

The equations presented can be used to design a wide range of Kresling patterns.

Given a specified inner diameter d, outer diameter D, number of sides nk, overall height H,

and minimum gap size GS, the pattern can be fully generated. Surface area SAk can then
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Figure 4.19: Kresling prototype with nk = 6 (a) uncompressed and (b) compressed.

be calculated as the surface area of the flat pattern, using Heron’s formula for calculating

surface area of a triangle using the three side lengths, multiplied by 2, nk, and sk to account

for all tesselation units. Variable p is the semiperimeter of the base triangle.

p =
1

2
(a+ b+ c) (4.35)

SAk = 2n · sk ·
√
p(p− a)(p− b)(p− c) (4.36)

These equations were used to generate a range of patterns to compare to the Idealized

Model. It should be noted that while nk can be either even or odd as long as it is greater

than 3, even integers were arbitrarily chosen for this analysis. Similar to the Accordion, a

primary point of interest is the effect of nk on overall efficiency. A plot comparing efficiency

for a range of nk values and across a range of D/d values is shown in Fig. 4.20(a), and a plot

considering surface area normalized by H ·D is shown in Fig. 4.20(b). Maximum efficiency

and normalized surface area values and associated D/d values are tabulated in Table 4.6. It

can also be seen from this plot that increasing the value of nk results in improved efficiency

but at a diminishing rate of improvement. To further understand this phenomenon, a plot

comparing efficiency for a pattern with a constant D/d = 3 as nk is increased from 3 to 40 is
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Figure 4.20: (a) Effect of nk on efficiency (SAk/SAi) of Kresling pattern over range of D/d
values for GS/D = 0.015 (b) normalized surface area of Kresling pattern and (b) Effect of
nk on efficiency for Kresling with D/d = 3.

shown in Fig. 4.20(c). After nk passes approximately 10, the rate of improvement drastically

decreases. The overall efficiency approached approximately 0.748 in an asymptotic fashion

as nk increased to 10000. As such, a designer must balance possible improvements with

increased manufacturing complexity when designing Kresling patterns.

Other GS/D values have been considered at different D/d values to see if consistent

results were achieved. A table considering peak efficiency values with GS/D ranging from

0.002 (observed in a commercial filter) to 0.03 for a Kresling with nk = 10 is shown in Table

4.7. Examining this table, the value of GS/D at a specific D/d value has almost no impact

in efficiency, which is, like the Accordion, likely due to how similar the Kresling is to the

Idealized Model when its surfaces are nearly horizontal.
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Table 4.6: Maximum efficiency ratios for Kresling patterns with various nk values.

nk Maximum Kresling Efficiency Maximum Normalized Surface Area D/d

4 0.4301 23.1530 10
6 0.5851 31.4970 10
8 0.6481 34.8864 10
10 0.6797 36.5888 10
14 0.7095 38.1919 10
18 0.7229 38.9141 10
22 0.7302 39.3085 10

Table 4.7: Kresling efficiency values for a range of GS/D and D/d values.

GS/D
D/d

1.5 2 2.5 3 3.5 4

0.002 0.5241 0.6026 0.6374 0.6578 0.6715 0.6813
0.010 0.4985 0.5818 0.6186 0.6400 0.6543 0.6646
0.015 0.4728 0.5566 0.5935 0.6151 0.6294 0.6396
0.020 0.4698 0.5578 0.5965 0.6191 0.6340 0.6448
0.025 0.4567 0.5465 0.5861 0.6091 0.6244 0.6353
0.030 0.4375 0.5275 0.5672 0.5903 0.6056 0.6166
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4.7 Discussion

All patterns have been compared and the results are plotted in Fig. 4.21, using 1000

data points for each pattern, over a range of D/d from 1.0 to 10.0 and with GS/D = 0.015.

Both the Basic and M-pleats have IGS = Tp = GS. The Basic Pleat, M-pleat, and Accordion

composite line are plotted with their maximum possible value at every D/d value. For each

of these patterns the highest overall surface area can be used at ranges of D/d where the

patterns lie within the annulus but do not necessarily match both the inner and outer

circles, similar to the approach taken with the Accordion pattern shown in Fig. 4.14. For

the Accordion pattern, the line plotted is a composite of the best performance from the

various na values used in Fig. 4.13(a). Table 4.4 can be used to determine which na is used

for different portions of the line. The Kresling pattern compared had nk = 10, as this is

a good balance between manufacturability (physically possible to fold) and high efficiency

(from Fig. 4.20(c)), but other values could be chosen which would shift this line up or down

respectively.

Analyzing the results, the Basic Pleat and M-pleat have significantly higher efficiency

at low ranges of D/d. They are within 10% of the same value from D/d = 1.00 to 1.5135,

at which point the M-pleat begins to have significantly better efficiency. Peak normalized

surface area values for each pattern and associated D/d values are shown in Table 4.8. As

the ratio of D/d increases, both the Basic Pleat and M-pleat decrease in efficiency after they

peak. If the only concern is that the pattern fit within the annulus described by D/d, and

not necessarily match the inner diameter, the parameters from the highest efficiency point

could be held constant and used for every D/d after that point, similar to the method used

with the Accordion pattern (and shown in Fig. 4.14). Fig. 4.21(b) shows the normalized

surface area.

The Accordion and Kresling do not ever reach the efficiency of the M-pleat, but they

can be used at very high ratios of D/d and match both the outer and inner diameters with

no decrease in efficiency, while the M-pleat does not match the inner diameter d after its

peak value, and has been found to be difficult to implement in practice [36].
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(a)

(b)

Figure 4.21: (a) Overall efficiency (SA/SAi) comparison with GS/D = 0.015 over range of
D/d values from 1.00 to 10. The Kresling pattern has nk = 10 while the Accordion pattern
is a composite of the best efficiency based on different values of na. (b) Normalized surface
area for each pattern.
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These results can be used to determine which pattern is most desirable over ranges

of D/d, presented in Table 4.9. The Basic Pleat has the highest value for a short range and

the M-pleat then has the highest value over the remaining values of D/d. However, there

are other considerations that must be made when determining which pattern to use.

Although this chapter considers the efficiency of patterns, efficiency is only one of

many considerations to be made when selecting a fold pattern for a filter design. Results

of flow testing would be required to validate mathematical model assumptions and pattern

modifications, thus verifying or adjusting the resulting graphs and tables. Vertical stability

could also be considered. Patterns such as the Basic Pleat and M-pleat have surfaces aligned

with the longitudinal axis of the cylinder and are rigid in that direction, while Origami-based

patterns such as the Accordion and Kresling have surfaces primarily in the horizontal direc-

tion (transverse to the longitudinal axis). This results in potential vertical expansion and

compression, which could have adverse effects due to vibration but could also be utilized to

allow for dynamic filter behavior. In addition, ease of manufacturing could also be consid-

ered when determining which pattern to use. Existing processes work well for pleats such as

the Basic Pleat and M-pleat, but new processes utilizing mechanisms including rollers would

need to be developed to allow for efficient manufacturing of complex origami-based filters.

Table 4.8: Max SA/SAi Ratios, GS/D = 0.015, all patterns.

Pattern Maximum Normalized Surface Area D/d

Basic Pleat 27.7429 ≥ 1.9369
M-Pleat 41.6378 ≥ 2.2236
Accordion 15.4081 10.000
Kresling 22.5336 10.000

Table 4.9: D/d ratios for fold patterns with maximum efficiency.

Pattern D/d Range

Basic Pleat 1.00 - 1.3514
M-pleat 1.3514 - 10.00
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(b)

Figure 4.22: (a) M-pleat with uneven short pleats top and angled views and (b) zoomed
view of M-pleat with uneven short pleats.

Finally, many fold pattern variations exist as possible solutions beyond the four pre-

sented here. For example, a pattern could be generated as a variation of the M-pleat with

unequal pleat lengths. An example where M-pleats have two alternate lengths is shown in

Fig. 4.22(a) and Fig. 4.22(b). Further work could be pursued to analyze such a pattern,

and many other patterns could also be considered by designers in addition to those analyzed

here.

4.8 Conclusion

The objective of analyzing multiple patterns that are conducive to packing a large

amount of area into an annular cylinder was accomplished. Geometric analysis relative to

a Idealized Model was presented and discussed for four patterns including the Basic Pleat,

M-pleat, Accordion, and Kresling. It was found that based purely on geometry the M-

pleat provides the highest overall efficiency for a large range of D/d values while the Basic

Pleat has the highest efficiency over a small range of D/d. Detailed initial analysis of each

pattern showed interesting behavior and a variety of efficiencies based on physical parameters.

Physical prototypes were created for multiple patterns, and the equations presented here can

be used to design a large variety of patterns that fit within cylindrical volumes.
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CHAPTER 5. CONCLUSION

5.1 Conclusion

In conclusion, the objective of this research was met. New methods and metrics

for configuring packed prisms using Origami-based methods including Soft Origami and

traditional Origami were presented, examined, and applied. Conclusions based on each of

the chapters are as follows:

1. Soft Origami provides a viable method for packing soft-sheet materials into fully-dense

cylindrical volumes. Depending on the application requirements (i.e. if the pattern is

to be deployed via internal pressure or some other method; if the resulting deployment

requires spin or not, etc.), an existing Origami pattern can likely be found that results

in a fully-dense cylinder that performs in an acceptable manner. When applying Soft

Origami patterns, unlike in traditional Origami, the method of application (packing

method) has equal importance for deployment performance as does the pattern chosen.

This was shown by the demonstrated application to automotive airbags. A key point

of this approach is that many packing methods may need to be explored to find the

best option.

2. The ninety-degree special case of the Miura-ori can be used to pack continuous arbitrary-

shaped sheet materials into a wide range of fully-dense arbitrary prisms. This method

could be used on soft-sheet materials as well, and provides a highly customizable

method for packing sheet materials into specific shapes. Similar patterns have been

used in the past for map folding and mechanism design. However, this method pro-

vides a new, simple way to configure fully-dense arbitrary prisms, and could have an

impact in fields where a soft-sheet material needs to be packed into a specific prismatic

shape. Because of its potential applicability to soft materials, this method could be
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considered a combination of a traditional Origami method (ninety-degree Miura Ori)

with Soft Origami applications.

3. Comparisons can be made between traditional (industry-accepted) and Origami-based

patterns that pack large amounts of surface area into annular cylinders based on effi-

ciency given specific overall dimensions. Objective comparison is best done by using

an idealized high-surface-area model and by modifying patterns in ways that provide

equal spacing between layers, although other factors must also be considered when

determining which patterns to use. Geometric analysis such as this can be a use-

ful starting point for designing for applications such as fluid filters, and using both

traditional (industry-accepted) and Origami patterns provide a useful comparison of

established patterns and new patterns.

5.2 Future Work

Future work could be done to elaborate and expand the research shown here including

the following:

1. Other applications beside the airbag application shown in Chapter 2 could be consid-

ered where soft-sheet materials need folded into cylinders. In particular, the Flasher

pattern was not well-suited to airbag application, but other applications for this pattern

where rotation is not a concern could be examined.

2. “Origami tooling” could be explored as a means for folding soft-sheet materials and

sheet materials into Origami patterns. Using Origami to make Origami (as was done

when applying the Flasher pattern to airbags using an Origami folding table) would

be valuable for both applications where the origami pattern is permanently imprinted

on the soft-sheet-material and applications where it is temporarily imprinted (i.e. per-

manent creases are not formed, such as in automotive airbags).

3. Fully-dense arbitrary prism packing shown in Chapter 3 with the ninety-degree Miura-

ori could be extended to arbitrary three-dimensional shapes by using reverse folds to

change the orientation of the packed shape, which could have application in industries
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where 3-D shapes are used to support fragile items. A possible application could be

making a support material for shipping that can start as a flat sheet (e.g. cardboard)

and fold into a shape for shipping fragile items, potentially replacing non-eco-friendly

packing materials such as packing peanuts and styrofoam packing materials with pack-

ing materials that can be recycled. Thickness-accomodation methods for when the

material is not a soft-sheet material would also be particularly useful when folding

patterns with high numbers of vertical grid lines.

4. Further testing and refinement in collaboration with a fluid filter company would be

invaluable to determine whether assumptions made about necessary pleat spacing were

valid in Chapter 4 and to further refine comparisons made. Adding experimental data

to the geometric analysis would provide the necessary knowledge to apply the origami

patterns discussed to engineering applications.

Finally, other methods for configuring cylinders and prisms that are either fully-dense

and partially-dense should be explored and applied in practice to allow designers in various

fields the ability to quickly generate patterns and methods for specific applications.
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