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ABSTRACT

Extending Time Until Failure During Leaking in Inflatable,
Pneumatically Actuated Soft Robots

Joshua Parker Wilson
Department of Mechanical Engineering, BYU

Master of Science

Soft robots and particularly inflatable robots are of interest because they are lightweight,
compact, robust to impact, and can interact with humans and their environment relatively safely
compared to rigid and heavy traditional robots. Improved safety is due to their low mass that
results in low-energy collisions and their compliant, soft construction. Inflatable robots (which
are a type of soft robot) are also robust to impact and have a high torque to weight ratio. As a
result inflatable robots may be used for many applications such as space exploration, search and
rescue, and human-robot interaction. One of the potential problems with inflatable or pneumatically
actuated robots is air leaking from the structural or actuation chambers.

In this thesis methods are demonstrated to detect leaks in the structural and actuation
chambers of inflatable and pneumatically actuated robots. It is then demonstrated that leaks can be
slowed by lowering a target pressure which affects joint stiffness to prolong the life of the system.
To demonstrate the effects of lowering the target pressure it is first shown that there exists a trade-off
between the commanded target pressures at steady-state and the steady-state error at the robot
end effector under normal operation. It is then shown that lowering the target pressure (which is
related to stiffness) can extend the operational life of the system when compressed air is a limited
resource. For actuator leaks a lower target pressure for the leaking joint is used to demonstrate
the trade-off between slowing the leak rate and system performance. For structural leaks a novel
control algorithm is demonstrated to lower target pressure as much as possible to slow the leak
while maintaining a user specified level of accuracy.

The method developed for structural leaks extends the operational life of the robot. Long-
term error during operation is decreased by as much as 50% of the steady-state error at the end
effector when compared to performance during a leak without the control algorithm. For actuation
leaks in a joint with a high-torque load the possibility of a 30% increase in operation time while only
increasing steady-state error by 2 cm on average is demonstrated. For a joint with a low-torque load
it is shown that up to a 300% increase in operation time with less than 1 cm increased steady-state
error is possible.

The work presented in this thesis demonstrates that varying stiffness may be used to extend
the operational life of a robot when a leak has occurred. The work discussed here could be used to
extend the available operation time of pneumatic robots. The methods and principles presented here
could also be adapted for use on other types of robots to preserve limited system resources (e.g.,
electrical power) and extend their operation time.

Keywords: failure mitigation, leak detection, mpc, soft robotics, inflatable robotics
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CHAPTER 1. INTRODUCTION

Soft and inflatable robotics is a new and emerging area in the field of robotics. Inflatable

robots offer several benefits over traditional robotics including being lightweight, compact (when

deflated), and robust to impact. These benefits make inflatable robots interesting for purposes

such as space exploration where weight and volume come at a high price. Inflatable robots also

typically are made of elastic or fabric based materials which means that the robot structure has a

very high surface and structural compliance which allows for safe interaction with humans and

delicate environments because the risk of high energy impacts is greatly reduced. When an inflatable

robot utilizes pneumatic actuation then the joints are also compliant (due to the inherent compliance

of compressed air) which further increases the level of safety for robot-environment or robot-human

interactions.

In addition to the increased level of safety for the environment around the robot the com-

pliance in the structure and joints of the robot also results in increased safety for the robot itself.

A typical motor joint or rigid link may be damaged during an unplanned collision. Motors can be

stressed unduly by being driven backwards or forced to suddenly stop, gearing can be stripped, and

rigid links can crack or buckle. Compliant mechanisms (like the inflatable links of our robot), in

contrast can absorb impacts and recover with minimal damage. The robustness of inflatable robots

to blunt impacts makes them perfectly suited to environments and tasks that would normally be ill

suited for a more traditional robot. Tasks such as search and rescue, delicate excavation, exploration,

and most tasks in unmodeled environments will certainly benefit from the robustness to impact and

contact that is possible with inflatable robots.

Robots in many applications such as space exploration or search and rescue are resource-

limited. Often, there is a relatively limited opportunity for renewing these finite resources and as

a result resource conservation is important and methods that can improve efficiency and resource

conservation are desirable. For an inflatable soft robot, one key resource is compressed air. An
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Figure 1.1: Image showing our inflatable robots. On the left is a single degree of freedom (DoF)
robot called a ”Grub”. On the right is a humanoid robot with two 5-DoF arms and an additional
joint at the hip. The humanoid robot is named ”King Louie”.

inflatable robot used for space exploration would use a closed pneumatic system to recover spent air

during actuation but a leak would vent air to the environment that would be difficult or impossible

to recover in a thin or no-atmosphere environment. Repair of a leak is time consuming and in many

applications such as space exploration or search and rescue operations, it may be infeasible or at the

very least must be performed at a later time. As a result methods that prolong the utility of the robot

system before physical intervention is necessary to fix the leak are needed.

The robot platform that we use in this work (see Figure 1.1) relies on air pressure both for

actuation and for structure. Each joint in the system has two antagonistic joints with the structural

chamber running the entire length of the robot arm or link. This unique design means that there is a

potential for leaks to occur in both the structural and actuation chambers. The goals of this research

were as follows:

• Develop methods to accurately detect the presence of leaks in both the structural and actuation

chambers of the robots.
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• Develop an algorithm to vary stiffness in order to extend longevity of the robot when a

structural leak has occurred.

• Demonstrate the effect of varying joint stiffness on leak rate in structural and actuation

chambers of the robots.

The inflatable structure of our robots makes them safe for human interaction because impacts

are low-energy due to the low mass of the arm. However, the inflatable structure can leak, which

results in the arm losing rigidity and results in a high link compliance that can prevent the robot

from actuating accurately. Figure 1.2 shows a comparison between a commanded set of joint angles

when the structure is empty and full. The empty arm has a large amount of error and is unable to

actuate correctly due to the low pressure in the structural chamber that has occurred as a result of

the leak. Structural leaks typically result from small punctures in the structural bladder that occur

as a result of pinching and friction between the bladder and the hoses and instrumentation during

actuation.

Because of how the system is designed actuator leaks do not typically affect system per-

formance negatively (like structural leaks do) provided the leak is small and all instrumentation is

still correctly connected (leaks may occur due to pressure sensing hoses disconnecting). However,

actuator leaks can grow over time so detecting even small leaks is valuable. Additionally many

future uses for these robots such as space exploration would rely on a limited air supply that would

be recycled by the actuation system. If air is lost to the environment due to an actuator leak then it

cannot be recycled and the system will eventually lose enough air to severely limit its mobility and

functionality. In our current hardware actuator leaks typically occur as a result of loose or leaky

fittings and are rarely the result of a puncture in the actuation bladder.

Due to the loss of limited system resources and performance degradation that happens as a

result of actuator and structural leaks we have developed methods that detect the presence of a leak

in the actuation or structural chambers of our robots. We then demonstrate an algorithm to slow

the leak rate from a structural leak while maintaining a commanded level of accuracy. Finally we

demonstrate the trade-off for actuator leaks between leak rate and accuracy during actuation. We

show that acceptable performance can be maintained while using a lower joint actuation pressure

(which is correlated with joint stiffness) to slow the mass flow rate through the leak orifice to the

3



Figure 1.2: On the left is a commanded movement while the arm has a normal structural pressure.
On the right is the same motion when the structural chamber has been leaking and is nearly empty.
The arm is sagging significantly. The error at the wrist is caused by the motion capture system
being unable to track the marker set at the end effector because the arm has deformed due to the low
structural pressure.

environment. In this thesis performance and leak data are shown for both the structural chamber and

actuation chambers of an inflatable robot but the algorithm developed was only tested on structural

leaks. The results for actuation leaks are limited to leak detection and identifying the trade-off

between actuation accuracy and average leak rate as joint stiffness is varied.

The following chapters outline the methods we have developed and implemented. First in

Chapter 2 we discuss other relevant work in the field and how the work in this thesis is different and

adds a unique contribution to the field. Then we discuss the robots themselves as well as their design

and control in Chapter 3. Chapter 4 describes the methods we have developed to detect leaks in the

structural chamber and the algorithm we have developed to slow structural leaks. Finally Chapter 5

contains the method we developed to detect leaks in the actuation chambers of our robots as well as

4



an analysis of the trade-off between leak rate from an actuator leak and system performance as the

target pressure is changed.

5



CHAPTER 2. RELATED WORK/LITERATURE REVIEW

Previous work has been done in many areas related to our work. In this chapter we discuss

the work similar or relevant to what we have done. We discuss prior work in soft robotics, pneumatic

actuation, failure detection, MPC, adaptive control, variable-stiffness actuation, and SVM.

Soft/Inflatable robotics and pneumatic actuation work is relevant because that is the area of

robotics to which we are directly contributing and from which we have drawn inspiration. Previous

work in inflatable robotics is particularly relevant because the hardware and system behaviour

in other inflatable robots can be similar to the hardware and behaviour of our systems. Previous

work in adaptive control and failure detection is relevant because adaptive control is used to adapt

systems to changing conditions such as failure. This work produces methods that detect leaking

(a form of system failure) and (in the case of structural leaks) adjust control inputs to mitigate

leaking so naturally other work that is similar is relevant. Prior work in MPC is relevant because

our robots are controlled using MPC and prior work has established the viability and effectiveness

of MPC for controlling robots. Variable-stiffness actuation work is relevant because our robots have

variable-stiffness actuators which are utilized in the work presented here. Prior work in SVM is

relevant because SVM libraries developed by others were used in our work. The most relevant

area to the work presented here is the work in inflatable robotics and adaptation to failure in robots.

Interestingly these are also the areas where we have found the least amount of relevant prior work.

2.1 Soft/Inflatable Robotics

The field of soft robot manipulation and control is a new and emerging area. Work in soft

robotics is typically centered around materials and construction methods such as the work done

by [1], [2], and [3]. Some work on control and modeling is also being done such as the work

by [4], [5], and [6] and recent research in particular has begun to demonstrate the potential benefits

of soft robots [1,7,8]. Benefits of some classes of soft robots include their high compliance and low
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inertia that allow them to operate relatively safely around people [1] or in delicate environments.

These characteristics of low inertia and significant compliance due to the pneumatic actuation

and inflatable structure also make modeling and control of soft robots more difficult than many

traditional robotic systems because of the difficulty in modeling the soft robot dynamics and

controlling robots with significant compliance [9, 10].

An excellent review of the breadth of current work in soft robotics is presented in [8]. Work

at BYU in the RaD Lab has focused primarily on the control and modeling of inflatable, fabric-based

robots which has been demonstrated to be useful in allowing a soft robot to repeatably perform a

specific task such as a pick and place operation [7, 11].

2.2 Pneumatic Actuation

Much of the work done in robotics with pneumatic actuation has been done using Pneumatic

Muscle Actuators (PMAs) which typically seek to imitate human muscles in some way. A commonly

used variety of PMA is the McKibben tendon. McKibben tendons are based on the idea that a

flexible cylinder when filled with pressurized gas will expand radially and contract laterally. The

shortening that occurs in McKibben tendons when they are filled can be used to perform actuation

due to the tensile force created when it contracts laterally. An example of this type of actuation is

shown in Figure 2.1. Examples of work with PMAs can be found in [4, 12, 13]. Drawbacks of many

PMAs, especially McKibben tendons, is that they require high pressures and the range of motion

can be very limited since the maximum decrease in length is limited.

Figure 2.1: Actuation of a McKibben tendon. As the lower bladder is pressurized it expands outward
which results in a decrease in length which in turn exerts a force on the joint resulting in the angle θ .
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Other pneumatic actuators typically use the pressure of the air to expand and use a compres-

sive force for actuation (in contrast to the tensile force from McKibben tendons). Examples of this

include the actuators on our robots (see Figure 3.2) as well as the flexible rotary joints described

in [14] and the rotary elastic chambers described in [15, 16].

Because the actuation system in our robots is very different from common rigid fluidic

systems we have not discussed actuation systems that involve a rigid cylinder. However, rigid

systems can be considered a precursor to more novel pneumatic systems similar to our robot

actuators.

2.3 Failure Detection and Mitigation

Work in inflatable soft robotics is centered around control and modeling; failure has not

been heavily considered. Some research into failure of pneumatic robots has been done by [13]

but their research centered around McKibben artificial muscle actuators failing due to fatigue. In

contrast our actuators are more similar to the rotary elastic chambers described in [15, 16]. The

failure modes we analyze are more likely to occur from a leaky fitting or a pinhole leak which in

our experience are more common for this type of robot than fatigue failure.

Research has been demonstrated by [17] to minimize air consumption in pneumatic actuation

in robots but this work is primarily concerned with valve control systems that prevent excess air

from being lost and does not deal with leakage or with changes in joint stiffness. Some work on

adaptive control of antagonistic pneumatic systems was done by [12] but this work is centered

around position control rather than failure. Research has been done by [18] and [19] into using

stiffness control in adaptive control but this work focused on improving system performance and

stability rather than adjusting system inputs to mitigate system failure. The robot systems used in

other work are also very different from our system. Some work on stiffness control for pneumatic

systems was demonstrated in [20] using a pneumatic system consisting of rigid pneumatic chambers

rather than the soft inflatable systems used in our research.

Additional work has been done related to failure detection and mitigation in robotics or

other fields. Much work in failure detection in robotics centers around software or algorithm failure

as in the work done in [21]. Outside of robotics there is work on identifying hardware failure in

industrial systems such as that shown in [22]. Other failure detection work for industrial systems

8



such as the gearbox failure analysis shown in [23] is relatively common although such research is

often kept internal by the corporation funding the study. Studies such as these are very different

from the work presented here because of the difference in the system. We have been unable to find

any prior failure detection or mitigation work related to pneumatic or inflatable robotic systems

similar to ours and feel confident that this work is both novel and useful.

2.4 Model Predictive Control

k k+1 k+2 k+p...

FUTUREPAST

Prediction Horizon

Desired Output
Predicted Output
Measured Output
Predicted Control Input
Past Control Input

Sample Time

Figure 2.2: A figure showing the basic flow for a Model Predictive Controller. Figure By Martin
Behrendt - Own work, CC BY-SA 3.0, Linked here.

Model Predictive Control (MPC) is a method of control wherein future states are predicted

using a system model and a series of future inputs is determined by optimizing to minimize a cost

function. The first calculated input is then used and the process is repeated. An example of MPC

inputs and outputs can be seen in Figure 2.2. As the figure shows predicted outputs are determined

from the system model and future inputs are optimized to bring the predicted output as close to the

desired output as possible.

The inflatable robots used for this research are controlled using a MPC described in [24].

The MPC cost function has two main cost terms. The first cost is on the accuracy of commanded

joint positions and decreases as the measured joint angles approach the commanded values. The

9
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second cost is incurred when the commanded actuation pressure in both actuation chambers for a

joint are not at the commanded target pressure. The target pressure allows us to control stiffness. A

commanded angle can be reached with a wide range of target pressures with a higher target pressure

resulting in a higher stiffness at the joint. In this thesis we will use the term target pressure (Pnom)

because that is the value we actually control but it is important to understand that the target pressure

we command to our controller is directly correlated with joint stiffness. A more in-depth discussion

of joint stiffness in these robots is presented in [24, 25].

MPC has traditionally been used primarily in the chemical processing industry [26] but with

modern computing speeds and new methods such as those demonstrated in [27,28] a greater body of

research is now using MPC as a high bandwidth real-time control method for robotics [7, 9, 29–31].

2.5 Adaptive Control

Adaptive control as a field has many standard methods, many of which are well documented

in [32]. More recently work has been done to integrate various adaptive control methods with a

model predictive controller [33, 34]. Some work has been done with adaptive control in the field of

pneumatic robotics such as the work done by [12] and the failure analysis work done by [13] but

this has primarily related to Mckibben actuators which, while pneumatic, behave very differently

from the actuation used in our research. Adaptive position control work has also been done by [6]

and while the actuation used is very similar to that in our research they do not use stiffness variation

for adaptation (although they do have that capability in their robot arm). In addition the other

research discussed here does not use robots with an inflatable structure which also differentiates

our research from theirs in terms of decreased overall mass, increased compliance, and possible

degrees of freedom. The work presented in this thesis most closely related to adaptive control is

in Chapter 4 where a control input is adjusted online to mitigate a leak. Since the control is not

directly adjusted the work presented here for structural leak mitigation is not in the strictest sense

adaptive control but is similar to adaptive control methods in the end result.
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2.6 Variable-Stiffness Actuation

Work has also been done to integrate variable-stiffness actuators and adaptive control

techniques. The most closely related work is the research done by [19] on adaptive control of soft

robotic manipulators with variable stiffness. The work done by Tonietti et al. differs from our

research in that they use Mckibben actuators and use adaptive control for position control rather

than adaptation to mitigate failure due to losing limited resources. More recently work has been

done to use stiffness variation for adaptive control such as the work done by [18] but there is little

to no literature on attempting to use variation in joint stiffness to increase time until system failure

or slow the rate of a leak in pneumatic systems.

2.7 Support Vector Machines

Support Vector Machines (SVMs) are used in fields as diverse as computer vision, natural

language processing, and data classification. SVMs are widely accepted and used in classifying

data by determining where data belongs between multiple distinct data sets. In this thesis we use

them for classification of leak detection. More information about SVMs and the library used in this

research (libSVM) can be found in [35]. A discussion of how SVM is used in this thesis is included

in Chapter 5.

2.8 Contribution of This Work

None of the past research described here attempts to address either the problem of increasing

time until complete failure in robots after initial failure has occurred or the question of whether

there exists a trade-off between longevity and performance when initial failure has occurred. It

was necessary to perform this work not only to establish how adjusting Pnom affects leaks and

performance in our particular robots but also to introduce the idea of adapting to failure and trading

performance for longevity of limited resources into the field of robotics. The problem of leak

detection in inflatable robots and pneumatic systems has also not been addressed in the literature.

The work presented in this thesis demonstrates methods for leak detection and an algorithm for

leak mitigation in the structural chamber of an inflatable robot. Additionally, leak detection is

demonstrated for the pneumatic actuators of our robots and a viable trade-off is shown between leak
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rate and accuracy of the system. All of these contributions are new to the field of soft and inflatable

robotics.
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CHAPTER 3. HARDWARE PLATFORM AND BASIC CONTROL

Our robots were designed and manufactured by Pneubotics which is an affiliate of Otherlab.

The robots are fabric based and are designed to be low inertia. Two robots were used in this

research and are pictured in Figure 1.1. A 1-DoF robot called a Grub was used for initial testing

and validation of concepts and a 5-DoF robot called King Louie was the final test and validation

platform for this research.

3.1 Robot Design

The inflatable robots we use consist of an internal structural bladder that runs the length

of the robot arm linkage and two additional opposing pneumatic chambers at each joint which

provide a bellows type actuation for that joint (see Figure 3.1). The actuators are similar to the

fluidic actuators described in [2, 14, 16]. The pressures in the actuation chambers and the structural

chambers are measured using pressure sensors mounted inside the links of the robots. Pressure

readings are communicated to a PID pressure controller using the Robot Operating System (ROS).

Commanded pressures for the actuation chambers are set by a model predictive controller (MPC)

that receives estimated joint angles from either a motion capture system (for King Louie) or an IMU

(for the Grub) and commanded angles from the user. A diagram outlining the control system can be

seen in Figure 3.3. The pressure controller runs at a rate of 1000 Hz while the MPC runs at a rate of

300 Hz. For the methods described in this thesis all data was recorded and commands sent at a rate

of 300 Hz.

Our robots use antagonistic pressure chambers for actuation where the pressure difference

between the two chambers in a joint determines the resultant torque generated in the joint and as a

result the acceleration and position achieved during actuation. The robots are shown in Figure 1.1

and the configuration for actuation of a single joint is shown in Figure 3.2. Since the torque

produced by the joint is determined by the pressure difference between the two chambers, a variety
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Structural Chamber

Actuation Chamber 0

Actuation Chamber 1

IMU

Figure 3.1: Cross sectional view of the Grub showing how the actuator chambers interact with the
structural chambers. The actuator chambers expand into the structural chamber as they are filled
with air which decreases the volume in the structural chamber and increases structural chamber
pressure.

of pressures can result in the same torque since the pressure in both joints may be increased or

decreased simultaneously while maintaining the same torque. In addition to the desired position

the MPC is also given a desired or nominal pressure (Pnom). Lowering Pnom effectively lowers joint

stiffness since lower pressures in the actuation bladders result in a higher compliance at the joint.

Conversely raising Pnom will increase joint stiffness. Work done by Charles Best in [25] shows the

relationship between the actuation pressures and joint stiffness. This method of stiffness control is

similar to the work described in [15] and uses the models and control described in [24].

Each link (separated by at most two actively controlled joints) contains an instrumentation

board with an IMU and pressure sensors. The instrumentation board returns measured pressures for

each actuation chamber as well as accelerometer, gyroscope, and magnetometer data.

3.2 System Models and Control

Models for the inflatable robots have been and continue to be under development. Many of

the members of the RaD Lab have worked on developing models and improving control of these

robots and the work is still in progress. As a result multiple models and control systems were used

during this research. Different models were used to control King Louie and the Grub and we used

newer models in this research as they were developed. When we collected data we used the most

advanced model that the lab had developed and tested up to that point. Since testing was performed

on the Grub before King Louie, a more advanced model had been developed and tested by the time

we took more data and the more advanced model was used for data collection on King Louie. The
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Bladder 1

Bladder 2

Enfield LS-v25s

Patm

Psource

Figure 3.2: Actuation setup for the pneumatic actuation of our robots. The two bladders shown
provide antagonistic force which allows for variable stiffness in addition to actuation. Figure used
with permission from Morgan Gillespie.

two models that were used for control are included below. Both models perform adequately and

since in this thesis we only compare trends between data taken on the Grub and King Louie it does

not affect our results that different models were used for the two different robots. It is also of note

that the methods described in this thesis operate outside the MPC which means that an improved

model can be substituted at any time and it will not affect the results or methods presented in this

thesis. The ability to upgrade the model and controller at any time means this work can easily be

updated and tested further in the future with different robotic platforms or improved models and

control as long as we can still control Pnom in the controller formulation.

3.2.1 4-State Model

The first model we used is a 4-state model (Equation 3.1) based on the commanded pressures

for each joint as well as the angle and angular velocity of the joint. This model was developed by

Morgan Gillespie and Charles Best and is described in detail in [24]. This 4-state model was the

primary model used to control the Grub.


θ̈

θ̇

Ṗ0

Ṗ1
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I 0 −Ksα2
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1 0 0 0
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+
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 (3.1)

15



Iθ̈ +Kd θ̇ +mg
L
2

sin(θ) = Ks(θe−θ) (3.2)

θ = α1 +P0α2 +P1α3 (3.3)

θe = α1 +PD,0α2 +PD,1α3 (3.4)

The 4-state MPC model given in Equation 3.1 is fairly straightforward and is based on

the model given in Equation 3.2 where we neglect the gravity term and θ and θe are replaced by

Equation 3.3 and Equation 3.4 respectively and α1 has been incorporated into the θ terms. I is the

moment of inertia of the link about the joint center, Ks is the stiffness constant of the structure, θ is

the measured joint angle, θe is the equilibrium angle obtained from a mapping between joint angle

and actuation pressures, P is a vector of pressures in the actuation chambers with PD indicating

desired pressure, Kd is a damping constant, m, g, and L are joint mass, gravity, and distance from

joint center to the center of mass. The other parameters a, b, and α are parameters determined using

collected data to fit the model to actual measurements taken on the system. For a more in depth

explanation regarding this model see [24].

3.2.2 Torque Model

The second model we used is also a 4-state model but is based on a model of the torque at

each individual joint (Equations 3.5-3.8). This model was also developed by members of the RaD

Lab and greater detail regarding this model is given in [11]. This was the primary model we used

for controlling King Louie.

Iθ̈ +Kd θ̇ +mg
L
2

sin(θ) = τa (3.5)
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τ0− τ1 = γ0P0− γ1P1 (3.6)

τstiffness = Ksθ (3.7)

τa = τ0− τ1 + τstiffness (3.8)

The torque model has two components. The first component is the resultant torque due

to the pressures in the two antagonistic chambers (see Figure 3.1) of a joint and the equation for

that torque is given in Equation 3.6. The second component (Equation 3.7) is the torque due to

the stiffness of the structural bladder which tends to bring the joint back to equilibrium as it exerts

some torque at the joint. Equation 3.8 combines these two components to give the resultant torque

at the joint as a function of angle and actuation pressures. For a more in depth look at the torque

model see [11]. When put in state space form the resultant torque model used for control looks very

similar to Equation 3.1. For control both of the models described here are discretized.

3.2.3 Advanced Control

The models described above were used in a MPC paradigm to control the movements of

the robots and allowed for accurate angle control and relatively high precision (≈1 cm error on

average) at the end effector for repeated movements. The MPC has a multi-objective cost function

shown in Equation 3.9 where θ and θgoal are the measured and desired joint angle respectively, P0

and P1 are the pressures in the actuation bladders, and the subscripts Q, R, and S are the weightings

on the different terms of the cost function. This cost function has cost associated with error in the

commanded joint angles as well as Pnom. The MPC tries to reach the desired position with actuation

pressures as near to the commanded Pnom as possible. As a result we can vary the stiffness of a

joint by adjusting the nominal pressure (Pnom) commanded to the joints. The cost function given in

Equation 3.9 is also subject to the constraints given in Equation 3.10.

Cost Function:

minimize
T

∑
k=0

(
‖θgoal−θ [k]‖2

Q +‖θ̇ [k]‖2
R +‖P0[k]−Pnom‖2

S +‖P1[k]−Pnom‖2
S
)

(3.9)
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ẋ = Ax+Bu

|θ | ≤ θmax

Pmin ≤ PD ≤ Pmax

|∆PD| ≤ ∆Pmax

(3.10)

The MPC controller is given a goal angle and angular velocity (which currently must be

zero) and returns desired pressures for each chamber of the actuator. Pressure values are sent to a

pressure controller which uses the desired pressures and measured pressures in a PID controller to

send electrical current commands to individual valves connected to each actuation chamber. Angles

are measured using either motion capture (for King Louie) or IMU data (for the Grub). IMU data is

run through a Kalman filter which then returns filtered angle and angular velocity data to the MPC

controller to close the loop. The control diagram is depicted in Figure 3.3.

MPC
Controller

Pressure
Controller Plant

CMD0, CMD1

Y

P0, P1

Kalman
Filter

PD0, PD1

θgoal

θ , θ̇

θ , θ̇

Figure 3.3: Flow chart showing the control flow used to control the inflatable robots.

The information in this chapter has been included to give the reader a greater understanding

of the robots used in our research as well as how they operate. Such an understanding is necessary

to fully appreciate the remainder of this thesis. For example the interaction between the structural

and actuation chambers is used to slow structural leaks and if it is not clear to the reader how the

robots are designed this understanding would be lacking. Because of the unique nature of the

robots and their control systems we are able to utilize Pnom to show how leaks can be slowed in

both the structural and actuation chambers of our robots. An understanding of the control is useful
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particularly because an understanding of the cost function used in the MPC is vital to understanding

how changes in Pnom actually affect the pressures used for actuation.

19



CHAPTER 4. STRUCTURAL LEAKS

The robot platform that we used in this work relies on air pressure, not only for actuation,

but also for structure. Each joint in the system has two antagonistic joints with the structural bladder

running the entire length of the robot arm or link (see Figure 3.1). The lack of a rigid structure

helps with safety because the inertia is very low but it does exacerbate problems caused by low

structural pressures due to a leak. In addition to loss of limited system resources (air in this case) a

leak in the structural component of the robot will typically result in degraded system performance.

When a leak is present in the system, the robot gradually loses stiffness of its limbs and is unable to

perform even the most basic task because the joints cannot accurately actuate links with extremely

high compliance (i.e. floppy links). Figure 4.4 shows a comparison between a commanded set of

joint angles when the structure is full and empty. The empty arm has a large amount of error when

compared with the commanded position. In this chapter we first discuss the method used to detect

leaks in the structural chamber in Section 4.1 and then we discuss the algorithm we have developed

to slow leaks in the structural chamber of our robots in Section 4.2.

4.1 Structural Leak Detection and Estimation

We use two distinct methods to detect when a leak has occurred in the structural chamber

of our robots. The first method is for detection of fast leaks and the second is for the detection of

slow leaks. For detecting fast leaks the algorithm measures the average structural pressure every 0.1

seconds after the measured angle has reached steady state and determines that a leak has occurred if

the structural pressure has decreased for every measurement for 1.6 seconds. The number of data

points was tuned empirically to obtain a threshold of 16 data points (or 1.6 seconds of data) of

decreasing pressure as the point at which a leak is detected because we found that fewer than 16

points was not robust to avoiding false leak detection due to noise in the data. Measurements must
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occur at steady-state because structural pressure fluctuates significantly during actuation due to

bending of the chamber and changing actuation pressures that interact with the structural chamber.

The second method uses an internal (structural) pressure map such as the one shown

in Figure 4.1 which was generated with a known mass of air inside the robot to determine the

relationship between structural pressure, angle, and target pressure (Pnom). The map was obtained

through measurement of structural pressure as angle and target pressure were varied. Using the

internal pressure from Figure 4.1 we can use Equations 4.1 and 4.2 to calculate the volume for a

given target pressure and angle. From the calculated volume and the measured internal pressure

the mass of air inside the structural chamber can be calculated using fundamental gas equations

(included here as Equations 4.1 and 4.2). During initialization of our controller, an average mass is

calculated from the first 30 seconds of data by averaging the estimate of internal mass calculated

from Equation 4.2 at each time step. The average mass is then calculated every 0.1 seconds and a

leak is flagged if the measured mass drops below 90% of the initial value.

Pi = ρiRT (4.1)

mi = ρiV (4.2)

4.1.1 Validation of Mass Estimation in Structural Leak Detection

To validate our model of the leak based on internal pressure, we used the first principles

model given in Equation 4.3. This allowed us to simulate a leak of known size to demonstrate that

the model we use for relating pressure to internal mass was accurate. We then calculated the rate

of mass change as shown in Equation 4.3. By using a leak of known size we know what the leak

rate will be and can show that our simulated model of mass in the structural chamber during a leak

matches what we would expect from the leak we induced. Figure 4.2 shows the results.

ṁ = αρaA
(

2Pig

ρa

)0.5

(4.3)

For the simulation of the leak a starting pressure of 10.34 kPa (1.5 psig) was used and

the starting density (ρi) was calculated using Equation 4.1 where R, T , Pi, and ρi are the specific
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Figure 4.1: This plot shows the relation between internal (structural) pressure, target pressure
(stiffness), and angle for the Grub. The surface is used to determine the internal structure volume of
the Grub for given operating parameters.

gas constant for air, the temperature, the absolute pressure, and the density of air in the structural

chamber respectively. The result from Equation 4.1 was then used in Equation 4.2 to calculate the

starting mass of air (mi) in the structural chamber. Equation 4.3 was then used to calculate dm
dt . At

the next time step the mass lost (∆T · dm
dt ) is subtracted from the previous mass of air and the new

mass is used in Equation 4.1 to calculate a new pressure which in turn is used in Equation 4.3 to

calculate a new mass flow and the process then continues for the next time step. In this way the

pressure in the structural chamber is simulated with a small ∆T .

If our model of internal mass is correct we expect the simulated structural pressure to closely

match the measured pressure during a test on the real system. As can be seen in Figure 4.2 this is

the case and demonstrates the accuracy of our estimate of mass of air in the structural chamber of
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Figure 4.2: Simulated leak for a 1.59 mm ( 1
16 inch) diameter leak compared against actual measured

internal pressure data.

our inflatable robots at steady state. For the purposes of this test the robot was not actuated since

actuation would alter the structural volume (V ). Mass flow was not directly measured for validation

of the model because the mass flow rate for our trials is multiple orders of magnitude smaller than

the range which most mass flow sensors are capable of measuring.

The data shown in Figure 4.3 show the internal mass estimate of air in the structural chamber

of the Grub for two of the trials we performed where a series of angles were sent as step commands.

The first case (upper line in blue) shows a data set for which there is no leak. This is included to

demonstrate that the mass calculation is consistent over time and for a variety of angles during

actuation. The calculated mass varies by less than 10% during any given actuation cycle. The

second data set shown on this plot shows the calculated internal mass of air for a case in which a

leak is introduced 60 seconds into the actuation cycle.

In the case of the 1-DoF inflatable robot the maximum volume was estimated directly by

measuring the external dimensions since its shape makes volume measurement fairly straightforward.
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Figure 4.3: Calculated internal mass of air in the structural chamber of the Grub. Data is shown for
a case with no leak and another case where a leak was introduced at time = 60 seconds.

In the case of the humanoid inflatable robot the maximum volume of the structural chamber in

the arm cannot be easily measured and instead was calculated from data taken during a leak. The

accuracy of the simulated leak model (based on the results shown in Figure 4.2) for the 1-DoF robot

allows us to infer an accurate volume for the structural chamber of the 5-DoF arm from a leak test

similar to the one shown in Figure 4.2 where an optimization was run to find V in Equation 4.2 such

that the simulated pressure matched the measured pressure during the leak.

To get consistent results for testing different sized holes, we used artificially induced leaks

with two orifice sizes. A one meter long tube was attached to the internal structural chamber of the

robot and holes were drilled in end plugs to control the size of the leak. For what we call “fast leaks”

in this thesis, a 1.59 mm ( 1
16 inch) hole was used and for what we call “slow leaks” a 0.508 mm

( 1
50 inch) hole was used. This method allowed easy control of the size (and thereby the rate) of the
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leak which allowed us to compare leaks from multiple runs consistently. For each run the initial fill

pressure of the structural chamber was 10.34 kPa (1.5 psig) before actuation began (the actuation

chambers were at atmospheric pressure).

Figure 4.4: On the left is a commanded position while the arm has a normal structural pressure. On
the right is the same position when the structural chamber has lost most of its air through a leak.

4.2 Methods for Structural Leak Mitigation

To reduce the rate mass is lost through a leak, the internal pressure in the structure of the

inflatable robot must be reduced. This reduction in mass flow can be seen from first principles
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gas models shown in Equation 4.3 which is the equation for mass flow rate from a high pressure

body (the robot structural bladder) to a low pressure body (the environment) through a hole of

fixed cross-sectional area. The variable ṁ is the mass flow rate, A is the area of the leak, Pig is the

internal gage pressure, ρa is the density of the ambient air, and α is a loss coefficient to account for

frictional and other losses. As can be clearly seen the only factor that can be easily controlled to

affect the mass flow rate out of the leak is the internal gage pressure of the robot structure which

can be lowered by lowering the target pressure for the joints which interact with and compress the

structural chamber as shown by Figures 3.1 and 4.1.

If the structural pressure is lowered too much, as happens when a leak occurs, then the

performance and accuracy of the system decrease due to a very low stiffness in the body as displayed

in Figure 4.4. So the ideal method would be to use the lowest possible stiffness that will still result

in a high enough structural pressure to give acceptable performance during continued actuation.

This would allow the system to operate with acceptable performance for as long as possible before

the leak decreases the internal mass of air in the structure to the point where acceptable performance

is no longer possible.

As discussed previously the required performance of a soft robot system can vary depending

on the task being performed. For example pointing a camera, sweeping dust off solar cells, and

many non-prehensile manipulation tasks do not require high accuracy at the end effector whereas

insertion of a soil sample into analysis instrumentation would require more accurate manipulation.

We implemented an algorithm to monitor system performance based on step response for 1-DoF

systems and steady-state error at the end effector in multi-DoF systems and adjust the nominal

pressure (stiffness) to maintain the end effector position of the robot to be below a user specified

threshold for steady-state error. Steady-state error is defined in this thesis as the sum-squared error

in Cartesian space between the current position of the end effector and the achieved position of the

end effector during normal operating conditions for the same series of commanded angles. End

effector position was measured using a motion capture system.

The result is that for tasks that do not require high precision or for positions that can be

reached with low actuation pressures the stiffness will be lowered to slow the leak and extend

the life of the system. For higher precision tasks the nominal pressure will be raised by a simple

integral controller until the accuracy is within the user specified threshold. In this way the system
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can quickly adjust to the requirements of the task being performed while simultaneously extending

the life of the system as long as possible by slowing the leak. The completed algorithm is shown in

Algorithm 1. For all our tests 4 cm of error was used for the desired level of accuracy. Error of 4

cm was used because it is slightly worse than typical performance under ideal conditions which

generally result in 1-3 cm of error (typical performance is discussed in [11]) but is a small enough

error that many useful tasks could still be performed.

4.2.1 Algorithm Development and Tests on Grub

The basic philosophy behind our algorithm is straightforward. Lower actuation pressures

will result in a lower structural pressure and slow the rate of a leak in the structural chamber. Our

initial trials simply lowered Pnom which would slow the leak initially but did not lead to improved

performance long term because the low stiffness resulted in a poor step response on the Grub. We

decided to develop an algorithm that adjusts Pnom similar to an integral controller for each command

depending on the required performance as specified by the user. The resulting algorithm is shown

here as Algorithm 1.

Algorithm 1 Algorithm To Adjust Pnom

1: procedure ADJUST Pnom(error, threshold)
2: while Running do
3: if error > threshold then
4: Pnom = Pnom+
5: else
6: Pnom = Pnom−
7: if θ 6= θprev then
8: if θ is in dictionary then
9: Pnom = getFromDictionary(θ ,Pnom)

10: if θprev is not in dictionary then
11: appendToDictionary(θprev,Pnom)

12: return Pnom

Algorithm 1 is fairly straightforward. The function is given the steady-state error at the end

effector as well as the desired threshold for how much error is allowable. If the error is less than the

threshold then Pnom (the stiffness) is decreased which will slow a leak. If the error is greater than
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the threshold then Pnom is increased to decrease error at the cost of a faster leak rate as the structural

pressure and leak rate will increase with increasing actuation pressure (Pnom). Pnom is allowed to

change at a rate such that it can change from one extreme to the other in 5 seconds. This rate

was chosen because faster changes resulted in oscillations as Pnom changed faster than the system

responded and Pnom would overshoot the ideal value. Each time a new position is commanded the

algorithm checks if it has been to that position before (if θ is in its dictionary) and starts at the

Pnom previously found for that position. If the previous position is not in the dictionary then it is

added. An example of how Pnom changes over time during a run on King Louie when this algorithm

is used and a structural leak is present is shown in Figure 4.5. In this example two sets of joint

angle commands are used with values of θ = [0,0,0,0,0] degrees and θ = [−30,45,0,−30,0]. The

stiffness varies for each of the two positions and in general is lower early in the run as the arm has

not been leaking for long. As the leak continues and the structural chamber loses air (and becomes

less rigid) the required stiffness trends upward until the maximum stiffness of 58.6 kPa (8.5 psig) is

maintained continuously.

Time (sec)
0 500 1000 1500

P n
om

(k
Pa

)

0

10

20

30

40

50

60

Figure 4.5: This plot shows how Pnom varies over the course of a leak as the robot actuates between
two different positions.
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4.3 Results

Initially tests were run on the Grub but because the Grub is essentially an inverted pendulum

where the actuator is a significant portion of the structure all cases performed similarly and never

reached a point of failure even when the joint was loaded. The desire to test to failure motivated

trials on a multi-DoF system to test the expected benefits of our algorithm.

4.3.1 New Control Flow

The standard control used for controlling our inflatable robots can be seen in Figure 4.6. A

more in depth discussion of the control system used and the MPC can be found in [24] and [11].

The methods described in this thesis modify the basic control structure by adding the top two boxes

(in green) in the control diagram. Output from the pressure controller and the measured state of the

robot are used to detect the presence of a leak in the structure (or actuator as seen in Chapter 5) and

then the algorithm shown as Algorithm 1 is used to adjust the desired stiffness (Pnom) that is sent to

the MPC. Note that the algorithm has only been tested for structural leaks and not actuator leaks.

By adjusting Pnom during operation we are able to slow a leak.

MPC
Controller

PID Pressure
Controller Plant

CMD0,CMD1

Y

P0,P1

Kalman
Filter

PD0,PD1
θgoal

θ , θ̇

θ , θ̇

Leak Detection
Pnom

Pnom Control
Algorithm

Eallowable

Pstruct ,θ

Figure 4.6: Control structure for position control and leak mitigation of a single joint of one of
our inflatable robots. P are the measured pressures, PD are the desired pressures, CMD are the
commanded currents sent to the valves, Pnom is the nominal pressure sent to the MPC, θ and θ̇ are
measured angle and angular velocity respectively, θgoal is the desired joint angle, and Eallowable is
the amount of error that is acceptable for the task being performed.
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4.3.2 Tests on Humanoid Robot Arm

For the tests performed on the 5-DoF arm (King Louie, not including his gripper) the arm

was commanded to move between two different sets of joint angles at 20 second intervals. The

arm was commanded to move between [0,0,0,0,0] degrees and [−30,45,0,−30,0] degrees which

correspond to global end effector positions of [0.66,0.15,0.85] meters and [0.29,−0.285,0.36]

meters respectively. The desired end effector position (the ”true” position) was measured by motion

capture and was based on the average of multiple reaches for the non-leaking case when the joints

had reached the commanded angles. Steady-state error at the end effector is taken as the sum-

squared difference between the actual position during actuation and the desired position measured

using motion capture (the values given above). The arm in the commanded positions is shown in

Figure 4.7. Note the difference between Figure 4.7 and Figure 4.4 which demonstrates the error

introduced over time due to the leak.

The resulting data are plotted in Figure 4.8 and shows data for three different types of

stiffness settings. Each data set is the average of five distinct runs and the error bars show one

standard deviation above and below the mean. The first case shows the results when Pnom is

maintained at 58.6 kPa (8.5 psig) during the leak. The second case shows the simplest form of

adaptation we considered which involves simply lowering Pnom (in this case to 13.79 kPa (2.0 psig))

and leaving it low during the leak in an attempt to slow the leak rate. The final case shows the run

while using our algorithm (see Algorithm 1) to adjust Pnom during operation. In the case where our

algorithm was used Pnom was changed as described in Algorithm 1 to attempt to keep error at 0.04

meters for each of the positions resulting from the commanded angles. Steady-state error in meters

at several times during the run is also included in Table 4.1 and shows that the results when using

Algorithm 1 result in improved performance compared to the nominal case for nearly the entire run.

In terms of sum-squared error the results from using the algorithm outperform the nominal case

by over 40% at times and by over 20% for the majority of the run. The results for the algorithm

do show decreased accuracy initially in Table 4.1 because the controller is lowering stiffness to

increase error to 4 cm. By doing this the leak is slowed and some accuracy is traded for longevity.

From Figure 4.8 and Table 4.1 we can see that the method described in Algorithm 1 to

control stiffness is superior to simply lowering Pnom (which results in the worst performance over

the entire time out of all three cases) and also quickly outperforms the base case where Pnom is
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Figure 4.7: Actuation positions for King Louie. The left image shows commanded joint angles
of [0,0,0,0,0] degrees. The right image shows commanded joint angles of [−30,45,0,−30,0]
degrees.

left at 58.6 kPa (8.5 psig). The improvement in the case where our algorithm is used is largely

because for much of the run high accuracy can be obtained at the resting position ([0,0,0,0,0]

degrees) with very low pressures and thus can drastically slow the leak. This shows that the amount

of improvement that that we can achieve with our algorithm is task and configuration dependant.

The trials with our algorithm running have as much as 10 cm less error at times and on average

outperform the regular trials after 440 seconds for this task.

Based on the data we have collected we can conclude that our algorithm is effective at

prolonging the operational life of an inflatable robot. When a leak in the body chamber that gives
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Figure 4.8: Distance from the end effector at steady-state to the actual desired position. Distance is
the square root of the sum of the squares of the x, y, and z error. Each line is the average of five
runs. Error bars show one standard deviation in either direction.

structure to the robot is present our algorithm can decrease long term error by as much as 50%. We

also expect these results to be extensible to other types of leaking in inflatable robots. For example

a lower target pressure will result in a lower average actuation pressure which would slow the rate

of a leak in an actuation chamber as well. This would be particularly important in circumstances

where loss of excess compressed air to the environment would be very undesirable such as space

exploration or other applications using a closed loop system to recover vented gas.

Additionally we expect the idea of trading accuracy for longevity to be applicable to other

types of resource limited systems. Robots running on battery power could decrease performance and

accuracy by actuating less forcefully and accurately to increase battery life. A similar principle is

already in use in cell phone location data. To preserve battery life less accurate location information

from wifi or cellular triangulation can be used instead of operating power hungry GPS chips. In
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Table 4.1: Accuracy data for manipulation of the 5-DoF arm of the inflatable robot during a
structural leak.

Sum-Squared Error (m) at 40 sec. 400 sec. 800 sec. 1200 sec. 1600 sec. 1800 sec.
Low: Pnom= 13.8 kPa 0.0942 0.1217 0.2154 0.2997 0.3041 0.316
Nominal: Pnom= 58.6 kPa 0.0289 0.04245 0.1108 0.1771 0.2708 0.297
Algorithm Controlled Pnom 0.0402 0.04793 0.08703 0.1029 0.1717 0.223
% Improvement -38.75 -12.91 21.45 41.90 36.60 24.92

this way accuracy is sacrificed to preserve battery life. Similar principles will certainly be put into

practice as untethered robots become more prevalent. This work demonstrates the viability of such

methods for extending the operational life of robots operating with limited resources.

33



CHAPTER 5. ACTUATOR LEAKS

One of the problems unique to inflatable and fluid actuated systems such as our pneumatic

actuation system (Figure 3.2) is dealing with leakage in the actuation chambers. One of the use cases

being investigated for this type of robot is space exploration and extra-planetary sample retrieval

in which air would be recycled from actuation to be reused rather than vented to the atmosphere

as is currently done. In this case compressed air would be a limited resource and leakage in the

actuation would result in loss of a limited resource that could not be easily replaced in most space

exploration environments due to a thin or non-existent atmosphere around the robot. In addition to

the current use cases for these robots it is notable that all untethered robots are resource limited and

in general any robot operating in a remote or dangerous environment would likely need to preserve

limited resources such as electrical power or fuel. The results in this chapter demonstrate a method

for detecting actuator leaks and show a viable and useful trade-off between resource use and system

performance that with some modification would be applicable to other robotic platforms to preserve

limited resources other than just compressed air. The methods and results in this chapter are for

leaks in the actuation chambers of our inflatable robots.

5.1 Actuator Leak Detection

Detecting a leak in an actuation chamber is relatively straightforward due to the nature of the

system and our pressure controller. Because the system attempts to maintain a commanded pressure

in each actuation chamber, when that pressure has been reached the electrical current commanded

to the valves (to open or close) is such that their is no airflow in or out of the chamber. When a

leak occurs, however, the valve must remain slightly open to compensate for the air lost through

the leak and maintain the commanded pressure in the chamber. By monitoring the average current

command when the robot has reached steady state (when the joint angles are no longer changing)

we can easily detect when a leak has occurred.
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To have robust leak detection that does not need to be hand-tuned for each chamber we

utilized the SVM classification library libSVM [35]. Leaks were induced shortly down line from

the valve along the air delivery line to obtain leaking data for training the SVM. To be able to detect

a wide variety of leak sizes, leaks were induced ranging from 0.5 mm (0.02 in) to 3.175 mm (0.125

in). Data was then given to the SVM along with the status of that data (leaking or non-leaking) and

the SVM determined the optimal dividing line between the leaking and non-leaking data. Once the

training was finished new data could be given to the SVM for classification and it would return a

value indicating whether or not a leak was present. A sampling of the training data along with the

dividing line found by the SVM is shown in Figure 5.1. Because the current data is inherently noisy

the average of the most recent 300 current commands was used for each data point for testing and

training the SVM. The data was also zeroed so that when no leak is present the average current

command for each joint at steady-state is 0. This was necessary since each actuator valve has

a unique offset and zeroing the data removes the offset. Additionally only data taken while the

system was at steady state (pressures and angles were not changing) was used for training and leak

detection.

For leak sizes larger than about 1 mm (0.039 in) leak detection worked well. For the smaller

leaks we tested with a hole size of 0.5 mm (0.02 in) leak detection was not consistent enough to be

reliable. The ability of the SVM to detect a leak is related to the average current command sent to

the valve which is in turn directly related to the rate at which air is lost from the bladder. The 1 mm

hole (0.039 in) drains the 1-DoF Grub bladder at a rate of about 5% of the total mass of air in the

bladder each second. Smaller leaks resulted in a change in valve command that was too small to

reliably detect a leak using the SVM. These results should be generalizable and we expect that for a

bladder of any size that the SVM should successfully detect leaks in any bladder with similar valves

as long as the rate of air loss each second is greater than about 5% of the mass of air in the bladder.

It is also worth noting that the system began to have trouble actuating for hole sizes that would

result in a loss each second of about 50% of the mass of air in the bladder as the system could no

longer fill the bladder in the manner needed for actuation due to the high rate of leakage.

After training the SVM we were able to obtain over 99% percent accuracy at detecting

whether a leak larger than 0.5 mm (0.02 in) was present. In total about 20 minutes of data was

taken with a leak present and 15 minutes without a leak. Half the data was used for training and
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Figure 5.1: A sampling of data used by the SVM to determine the optimal dividing line between
leaking and non-leaking current data in the valves. Data for leaks of three different sizes is shown.

the remaining half was used for cross-validation. The data sets were then switched to verify that

the training and detection are robust to different data sets. The leak detection performed equally

well regardless of which portions of the data were used for training. We also tested the SVM on

chambers not used in the training and were able to achieve over 99% accuracy on three additional

chambers without using any training data from those chambers which shows that the SVM is general

to this type of actuator and not specific to a single chamber. An example of the data given to the

SVM and the output is shown in Figure 5.2. As models of the system improve these methods could

likely be further improved by utilizing dynamic response data for large step inputs to determine

changes in dynamic response that could occur due to a leak which may also enable identification of

smaller leaks.
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Figure 5.2: The plot on the left shows the current commanded to the valve which shows a fairly
obvious jump at 60 seconds when a leak was introduced. The plot at right shows the output of the
SVM given the data on the left as input. The leak is flagged immediately at 60 seconds when it was
introduced.

5.2 Slowing Actuation Leaks

The following results demonstrate that a leak can be slowed by lowering the target pressure

(Pnom) in the joint that is leaking but that lowering Pnom will also have an effect on the performance

and accuracy of the system during actuation. We expect the results here to be generalizable to any

system with pneumatic actuation since the leak rate and force output for any pneumatic actuator are

both directly correlated with the pressure in the actuator. As a result although the efforts shown here

are specific to our platform they are generalizable to any robot using pneumatic actuation as well as

many non-robotic pneumatic actuation systems where leaks may occur and in which it would be

desirable to preserve compressed air. In particular any system with antagonistic actuation could

apply these results.

5.2.1 Grub Performance vs. Leak-Rate Tradeoff

Since we are using stiffness variation to determine how leaks that occur in the actuation

chambers may be slowed we took extensive data to determine how system performance changes

when stiffness (by virtue of Pnom) is adjusted. Figure 5.3 shows how performance changes for the
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1-DoF Grub for the range of stiffnesses we use in this thesis. Performance for the Grub is measured

using a series of step commands and takes into account rise time (Tr), settling time (Ts), overshoot

(PO), steady state error (Ess), and the number of oscillations about the commanded value (OC). The

form of the cost function is given in Equation 5.1 where α is a vector of weighting factors that were

tuned manually to α = [1,5,1,4,1] in order to emphasize settling time and steady-state error since

we were primarily focused on measuring accuracy in this work.

cost = α0Tr +α1Ts +α2PO+α3Ess +α4OC (5.1)
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Figure 5.3: Figure at left shows Grub performance at various nominal pressures. The Figure at the
right shows the average leak rate for each run at various nominal pressures. The equivalent data for
two joints of King Louie is included in Section 4.3 in Figures 5.5 and 5.6.

For all of the trials in this thesis other than for developing the leak detection the leak size

was 1.59 mm (0.0625 in). The same leak size was used for all our trials to provide consistency

throughout the data and make it possible to easily compare leak and performance data from different

joints and trials. For the initial work with the 1-DoF robot a series of step commands were performed

repeatedly until the end of the trial.

Baseline performance data was determined by running trials with no leak. We then took

data while the system ran with a 1.59 mm (0.0625 in) hole in one actuator. Data was taken with

and without a leak for various target pressures (Pnom) up to 10 times for each pressure. The Grub

was actuated with a 37.8 liter (10 gal.) tank as a pressure source while and the time for the pressure
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source to drop from 482.6 - 275.8 kPa (70-40 psi)1 was measured. For applications where loss

of compressed air would be a significant problem (such as space or planetary exploration) an air

recycling system would be used to recover air used for actuation and the only air lost would be

through the leak. Because we are considering actuation air to be recovered it was necessary to isolate

the air lost through the induced leak as this is the only air that would be lost to the environment in

a recycled air system. To determine the leak rate each trial required a run with the leak and a run

without the leak. The average mass flow rate for the leaking and non-leaking case could each be

determined using equation 5.2 which is basically an approximation of the time derivative of the

ideal gas law with a large time step where ∆P is the change in pressure during the time interval

taken, V is the volume of the air reservoir, R is the gas constant for air, T is the temperature of

the air, and ∆Time is the time elapsed to achieve the desired pressure change. For our tests both

volume and temperature were assumed to be constant. The difference between the leaking and

non-leaking mass flow was taken as the average leak rate for that test. Each test as described here

results in a single point plotted in Figure 5.3 which shows performance as well as average leak rate

as a function of Pnom.

ṁ =
∆P ·V

R ·T ·∆Time
(5.2)

The results in Figure 5.3 show a clear relationship between Pnom and average leak rate for

the Grub. In the plot on the right of Figure 5.3 it can be clearly seen that as Pnom decreases so

does the average leak rate. In the lot on the left it can be seen that as Pnom decreases the average

performance cost for the Grub to actuate increases. Figure 5.3 shows the trade-off between average

leak rate and performance for the Grub where by changing Pnom the average leak rate can be slowed

at the cost of worse system performance. In the next section we discuss the trade-off for King Louie.

5.2.2 King Louie Performance vs. Leak-Rate Trade-off

To adequately demonstrate the trade-off between leak rate and accuracy we took performance

and leak rate data from the joint of a 1-DoF system as well as two distinct joints of a 5-DoF system.

1Trials actually ran with the pressure source dropping from 551.6 - 206.8 kPa (80-30 psi) but the beginning and end
of the data were removed so as to avoid variation that can occur due to refilling of the tank (at the beginning of the
data) and variations due to pressure drops during actuation which can cause the trial to end as much as 27.6 kPa (4 psi)
prematurely.
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This data clearly shows the relationship between desired actuation pressure (Pnom), leak rate, and

system performance and accuracy at the end effector. The trends shown and discussed here could

be used with an algorithm such as the one presented in Chapter 4 or other algorithms that could

adjust Pnom to slow the actuator leak rate. The testing of an algorithm that would use the results

presented here is left as future work.

The methods described in section 5.2.1 were applied on our 5-DoF inflatable robot (Fig-

ure 5.4) to determine the affects of stiffness changes on a leak in the actuation bladders. Because

King Louie has five joints we gathered data for a leak in the shoulder and a leak in the wrist (joints

labeled RSPM and RWPA in Figure 5.4). Only the Pnom of the leaking joint was varied while the

Pnom for the rest of the joints was left unchanged. The shoulder generally requires higher pressures

than other joints because it must act on the full weight of the arm and will require higher pressures

to reach commanded angles which in turn results in a faster leak on average. Because of this, a leak

in the actuator for the shoulder joint is the worst possible location for a leak to occur. The wrist

can achieve many desired angles with relatively low pressures (depending on the load) and would

result in a slower leak. The wrist is the least catastrophic leak because it allows for a wide range

of stiffnesses with minimal change in performance. The shoulder joint tested was the proximal

medial joint of the right arm and is designated as RSPM. The wrist joint tested was the proximal

anterior joint of the right arm and is designated RWPA (joints are shown labeled on King Louie in

Figure 5.4).

The resulting average leak rate (calculated as described in Section 5.2.1) for various com-

manded nominal pressures is shown in Figure 5.5 and the performance for each run is shown in

Figure 5.6. Performance is shown as sum-squared error at the end effector for the commanded joint

angles where the desired position is taken from the baseline case where Pnom = 58.6 kPa (8.5 psi)

when the angles have reached their commanded values and there is no leak present. Joint angles

and end effector position were measured using a motion capture system where link orientations

were obtained from motion capture used to calculate the joint angles2 and end effector position is

measured in the global coordinate system of the motion capture area. For the trials with the 5-DoF

robot the pressure reservoir was a 113.6 liter (30 gallon) tank which was necessary because the

2Calculating joint angles from joint orientation is necessary because our robots do not have a means of directly
measuring joint angle.
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Figure 5.4: Joints of King Louie used for actuation leak testing. Both a shoulder and a wrist were
used because the shoulder and wrist behave differently.

5-DoF robot uses significantly more air to actuate than the 1-DoF and the larger tank allows the

effects from the leak to be better seen because the trials are longer.

For both joints the data in Figure 5.5 clearly shows that by lowering the commanded nominal

pressure (and thereby decreasing stiffness) we can effectively slow the rate at which air is lost to the

environment. The spread in the data for each pressure in Figures 5.5 and 5.6 is due to hysteresis in

the system as the system uses slightly different pressures and has a somewhat different response for

every movement due to the compliance of the system. Table 5.1 lists the times for a 37.8 liter (10

gal.) tank with an initial pressure of 689.48 kPa (100 psi) to lose enough air due to an actuator leak

to drop to a pressure of 206.84 kPa (30 psi) which is the typical source pressure for actuation of

the inflatable robots. Below 207 kPa actuation would be severely impeded because the robot could

not use pressures high enough to actuate properly. The purpose of this work was to develop and

implement a method for finding the trade-off between accuracy and run time (due to leak rate) for

our robots. Now that this trade-off is known future work could implement an algorithm similar to

Algorithm 1 and adjust Eacceptable (see Figure 4.6) to operate at the lowest acceptable accuracy to

extend life as much as possible.
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Figure 5.5: Leak rates from induced actuator leak in kg
sec for two joints of King Louie at various

commanded nominal pressures. Only the nominal pressure for the leaking joint is varied while the
rest remain at Pnom = 58.6 kPa.

Table 5.1: Accuracy and run data for leaks in two actuators of the 5-DoF arm and the Grub. The
times shown are the times for a 37.8 liter (10 gal.) tank to drop in pressure from 689.48 kPa
(100 psi) to 206.8 kPa (30 psi) for the average leak rate measured at the commanded Pnom.

Pnom (kPa) 0.0 13.8 27.6 41.4 58.6
Grub Time (sec) 2887.6 1577.8 1124.3 946.2 768.4
RSPM Time (sec) 1145.6 998.8 827.1 765.1 630.9
RSPM ESS (m) 0.1009 0.0711 0.0272 0.0073 0.0082
RWPA Time (sec) 1800.2 1229.9 915.9 757.7 612.1
RWPA ESS (m) 0.0214 0.0192 0.0218 0.0229 0.0137

As can be seen in Figure 5.6, depending on which joint is leaking and how the nominal

pressure is adjusted, performance will be affected. In the case of the wrist joint (RWPA) performance

is affected very little and is reasonably consistent throughout the entire regime of pressures shown

due to the fact that the wrist is able to achieve its commanded location with a wide range of pressures.

The shoulder joint (RSPM) in contrast to the wrist, is unable to fully reach the commanded angle at

the lower nominal pressures and the end effector thus has a greater amount of error. A trade-off
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must be considered between longevity of the system (as given in Table 5.1) and system performance

(which can vary depending on the assigned task). For many non-prehensile tasks, a higher error in

robot movements may be acceptable while for a precise manipulation task accuracy may be more

important than longevity.
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Figure 5.6: Steady state error at the end effector in meters for two joints of King Louie at various
commanded nominal pressures. Only the nominal pressure for the leaking joint is varied while the
rest remain at Pnom = 58.6 kPa.

The results shown here for actuation leaks demonstrate that a viable trade-off exists between

performance and longevity in our robots. As an example we may imagine the task of sweeping

dust off solar cells on Mars. Such a task would require maneuverability but not high accuracy

since a simple brushing motion is all that is required. If a leak were present in a shoulder joint the

task could likely be performed with a commanded Pnom of 0.0 kPa which would result in very low

actuation pressures being used (note that 0.0 kPa is the goal but higher pressures would be necessary

to lower error). The joint would still actuate and use pressure (and leak) but would attempt to

minimize pressure as much as possible. This would result in sum-squared error of 10 cm on average

which is likely acceptable for a brushing motion and would result in 80% longer operating time.
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Alternatively delivery of a soil sample to a receptacle with a 4.0 cm radius circular opening could

be achieved with a Pnom of 27.6 kPa which would result in less than 3.0 cm on average which would

allow successful delivery of a soil sample while allowing the robot to operate for 30% longer while

performing this task. If the leak were in the wrist instead of the shoulder then a commanded Pnom of

0.0 kPa could be used in the wrist and both tasks described previously could be performed with

less than 2.2 cm of sum-squared error on average and the robot would be able to operate for 194%

longer while performing either the solar cell cleaning task or the soil delivery task described.
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CHAPTER 6. CONCLUSION

In conclusion we have demonstrated the usefulness and viability of a method and algorithm

to adjust control inputs to slow leaks in the structural chamber of an inflatable robot. We have

demonstrated that we can effectively detect leaks and have shown that by controlling the stiffness

of the joints in an inflatable robot we can slow the rate at which a structural chamber leaks while

maintaining an acceptable level of usefulness. We have shown that the operational life of an

inflatable robot can be extended and long term error decreased by using our algorithm to adjust

target pressures once a leak has occurred. We expect that with work currently under way to improve

models and control the algorithm we have developed will perform even better in future iterations.

One of the main limitations to the work presented here is that both leak detection (for

structural and actuator leaks) and the algorithm shown in Chapter 4 to slow structural leaks depend

on steady-state data from the robot. If the robot is always moving and does not reach a steady-state

value for any appreciable amount of time then the methods outlined in this thesis cannot be used.

Future work could improve these methods so that leak detection and mitigation can be performed

during dynamic motion as well as at steady-state. We also expect that by collecting more data with

these kinds of platforms, future work can be done to develop a better estimator for when our system

is leaking air to improve detection time and reliability. For inflatable robots to be a viable option in

many real world applications such as space exploration and search and rescue, this kind of work

will be necessary to prolong operation and avoid mission failure.

We have also demonstrated the usefulness of varying the target pressure to slow the leak rate

from a leak in the actuation chamber of a pneumatically actuated robot. We have demonstrated the

ability to accurately detect leaks in pneumatic actuators. We have shown that there exists a trade-off

between the target pressure (or stiffness) of a joint and the steady-state error at the end effector

for a commanded angle. The trade-off varies for each individual joint depending on loading and

location along the arm but the trends are the same for all joints. Using this data robot operators could
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effectively determine how to set the target pressure during operation of a pneumatic robot depending

on the accuracy and longevity requirements of the mission. These trends and this work may be

applied to other robotic systems with pneumatic actuation with minimal adjustment. Additionally

the core idea of utilizing a trade-off between resource consumption and system performance is

an idea that could be applied to more traditional robots with electric motor actuation in resource

limited environments. The work done here has relied on experimental data to determine the trade-off

between performance and leak rate. Future work will hopefully allow a closed form equation for

the trade-off as we continue to develop better models of these robots and how they operate. Future

work can also include implementing the algorithm shown in this thesis for structural leaks to adjust

Pnom during operation to slow an actuator leak while maintaining an error threshold.
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