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ABSTRACT

Conjugate Heat Transfer and Average Versus
Variable Heat Transfer Coefficients

Tyler James Macbeth
Department of Mechanical Engineering, BYU

Master of Science

An average heat transfer coefficient, h̄, is often used to solve heat transfer problems. It
should be understood that this is an approximation and may provide inaccurate results, especially
when the temperature field is of interest. The proper method to solve heat transfer problems is
with a conjugate approach. However, there seems to be a lack of clear explanations of conjugate
heat transfer in literature. The objective of this work is to provide a clear explanation of conjugate
heat transfer and to determine the discrepancy in the temperature field when the interface boundary
condition is approximated using h̄ compared to a local, or variable, heat transfer coefficient, h(x).

Simple one-dimensional problems are presented and solved analytically using both h(x)
and h̄. Due to the one-dimensional assumption, h(x) appears in the governing equation for which
the common methods to solve the differential equations with an average coefficient are no longer
valid. Two methods, the integral equation and generalized Bessel methods are presented to handle
the variable coefficient. The generalized Bessel method has previously only been used with ho-
mogeneous governing equations. This work extends the use of the generalized Bessel method to
non-homogeneous problems by developing a relation for the Wronskian of the general solution to
the generalized Bessel equation.

The solution methods are applied to three problems: an external flow past a flat plate, a
conjugate interface between two solids and a conjugate interface between a fluid and a solid. The
main parameter that is varied is a combination of the Biot number and a geometric aspect ratio,
A2

1 = BiL2

d2
1
. The Biot number is assumed small since the problems are one-dimensional and thus

variation in A2
1 is mostly due to a change in the aspect ratio. A large A2

1 represents a long and thin
solid whereas a small A2

1 represents a short and thick solid. It is found that a larger A2
1 leads to less

problem conjugation. This means that use of h̄ has a lesser effect on the temperature field for a
long and thin solid. Also, use of h̄ over h(x) tends to generally under predict the solid temperature.
In addition is was found that A2

2, the A2 value for the second subdomain, tends to have more effect
on the shape of the temperature profile of solid 1 and A2

1 has a greater effect on the magnitude of
the difference in temperature profiles between the use of h(x) and h̄. In general increasing the A2

values reduced conjugation.

Keywords: conjugate heat transfer, coupled heat transfer, variable heat transfer coefficient, local
heat transfer coefficient, generalized Bessel equation, Wronskian, variable coefficient differential
equations, average heat transfer coefficient
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Radiofrequency cardiac ablation (RFCA) is a medical procedure used to correct certain ar-

rhythmic heart conditions. The procedure involves placing a catheter electrode inside the heart to

locate the site of the origin of the arrhythmia. The electrode then emits an alternating current at ra-

dio frequencies heating and permanently damaging – ablating – a small region of the cardiac tissue.

The lesion formed in this manner has reduced electrical conductivity, which prevents transmission

of aberrant electrical impulses and cures the arrhythmia. Formation of the lesion requires that the

tissue be heated above a critical temperature for a specified amount of time. Therefore, successful

implementation of an RFCA procedure requires an accurate model of the time-dependent temper-

ature field in the tissue in order to ensure that the pathway for the aberrant electrical impulses is

completely blocked while minimizing the amount of cardiac tissue that is damaged. [1]

There are many applications besides RFCA that require accurate modeling of the tempera-

ture field between a fluid and a solid. Due to the rapid and continual increase in performance and

compactness of electronics, designing methods to remove the increased heat from electronic de-

vices has become an area of great interest [2]. In nuclear reactor cooling, highly non-uniform heat

transfer from fuel elements to coolants requires accurate modeling of temperature fields to ensure

sufficient reactor cooling [3]. In fact, accurate modeling of temperature fields can be of bene-

fit to nearly any application that has thermal considerations and especially those where a critical

temperature can result in damage or failure.

1.2 Modeling Temperature Fields

In order to understand how to accurately model temperature fields, some fundamentals of

heat transfer will first be reviewed. Temperature is a relative measure of the amount of thermal
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energy in a system. A higher temperature is equal to a greater amount of energy. The movement

of thermal energy is called heat transfer, or just heat, and occurs due to a temperature difference.

Heat flows from higher to lower temperatures until the entire system has reached equilibrium.

Now consider a typical heat transfer scenario shown in Figure 1.1 where a fluid with uniform

temperature and velocity profiles flows over a solid with a temperature greater than the fluid free-

stream temperature, Ts(x,y)> T∞.

x

u
∞
,T

∞

T
s
(x,y)

y
T

f 
(x,y)

T
∞

δ
t

δ

u
 
(x,y)

u
∞

Figure 1.1: Typical temperature and velocity profiles for flow past a flat plate

The variation of temperature in the solid, Ts(x,y), is due to the non-uniform heat transfer

from the higher temperature solid to the lower temperature fluid. The heat transfer is non-uniform

due to the development of a boundary layer that begins at the leading edge of the solid and grows

with x, as shown by δ in Figure 1.1. The boundary layer is the distance in the y-direction from

the solid surface, y = 0, to where the fluid is no longer affected by the solid. Thus, outside the

boundary layer the fluid effectively cannot ”see” the solid and it continues to flow as if there were

no solid. Solving for the fluid temperature field is essentially solving the boundary layer equations.

There are two types of boundary layers. The hydrodynamic boundary layer, δ , is the area where

the fluid velocity is changing from zero at the solid surface up the the free-stream velocity, u∞.

The thermal boundary layer, δt , is the area in the fluid where the temperature is changing from

matching the solid surface at the interface, Tf (x,0) = Ts(x,0), up to the free-stream temperature of

the fluid, T∞. The thicker the boundary layer, the more resistance there is to heat transfer. Clearly,

the greatest amount of heat transfer occurs at the leading edge of the solid where the boundary

2



layer is thinnest and decreases with x. This often leads to significant temperature variation in the

solid.

Since a temperature difference drives heat transfer, the heat transfer between the solid and

the fluid is determined by the temperature gradient at the solid-fluid interface. The interface gradi-

ent is influenced by both the solid and the fluid temperature fields and thus they are coupled. This

means that the fluid or the solid cannot be solved independently from the other, but they must be

solved simultaneously.

The correct and most accurate approach to solve for the temperature field in a coupled

system is to solve the governing equations in both the fluid and the solid with matching interface

boundary conditions. This is called a conjugate approach or conjugate heat transfer. Techni-

cally, all heat transfer problems are conjugate problems, however, conjugate solutions are difficult

and time-consuming to develop and thus simpler methods are generally used. The most common

method is to use an average convective heat transfer coefficient, h̄, at the interface boundary which

decouples the fluid and the solid. The decoupling occurs since h̄ approximates the boundary layer

and thus all the variation in the fluid as a constant removing the need to solve the fluid governing

equations. Also, textbooks often present classical solutions to heat transfer problems that gener-

ally assume constant temperatures or heat fluxes. The next sections will discuss all these methods

further.

1.2.1 Conjugate Heat Transfer

Conjugate heat transfer (CHT) is frequently described as heat transfer between a fluid, and

a solid in which the interface condition is initially unknown and is found from the heat transfer

solution [4]. Perelman [5], the first to coin the term ”conjugate”, defined a conjugate problem as

the common solution of heat conduction equations for a body and a liquid. Dorfman [6], defines

CHT as problems which contain two or more subdomains with phenomena described by different

differential equations and after solving the problem in each subdomain, these solutions should be

conjugated. Neither of these definitions fully define CHT nor are clear to the common reader.

To formulate a better a definition for CHT, first explore the meaning of the word conju-

gate. Conjugate is defined as ”joined together” or ”coupled” and comes from the Latin conjugātus

3



which means to ”yoke together” [7]. Just as a yoke connects two oxen, CHT involves multiple

subdomains that are yoked together; one cannot move or change without affecting the other.

Most heat transfer problems consider thermal interactions between a fluid and a solid and

because of this many believe and define CHT as heat transfer between a fluid and a solid. However,

Dorfman’s definition makes the point that CHT is not restricted to just between a fluid and a solid.

This will also be demonstrated in Chapter 3. However, since the most important CHT phenomena

are thermal interactions between a fluid and a solid, CHT is widely considered to be modeling

convection without using a convective heat transfer coefficient.

When modeling heat transfer in some domain of interest, the thermal behavior is described

using partial differential equations with specified boundary conditions. Conjugate heat transfer

refers to the modeling of thermal interactions between multiple unique subdomains with varying

and unknown interface boundary conditions. The term unique refers to differences between the

subdomains’ differential equations, material properties or boundary conditions. Each subdomain

cannot be solved independently because its temperature distribution is dependent on the other sub-

domain’s temperature distribution. More specifically, the interface boundary condition is unknown

and the governing equations cannot be solved without fully specified boundary conditions.

The procedure to solve CHT problems, or the conjugation of the subdomains, is to satisfy

the First Law of Thermodynamics by matching the temperature and heat flux at the interface be-

tween the subdomains. This results in two equations for the interface boundary condition which

may also be referred to as a conjugate boundary condition or boundary condition of the fourth kind

Ts(x,0) = Tf (x,0) (1.1)

− ks
dTs

dy

∣∣∣
y=0

=−k f
dTf

dy

∣∣∣
y=0

(1.2)

where k is the thermal conductivity and y = 0 is at the interface. One boundary condition is used

for one subdomain and the other boundary condition is used for the other subdomain to ensure

both are satisfied. Since the interface boundary condition involves the temperature distributions

for both subdomains, the subdomains must be solved simultaneously. It should be noted that the

interface temperature is the key to conjugate problems and once it is known the problem no longer

4



needs to be solved conjugately, but each subdomain can be solved independently since all boundary

conditions are fully specified.

Except for extremely simplified heat transfer problems, developing analytical solutions

cannot generally be done. With the development of computers, it is now practical to solve con-

jugate problems using numerical methods. The most common method for solving CHT problems

is with high-fidelity computational fluid dynamics (CFD) software. Modeling realistic scenarios

often requires many CPUs, large amounts of memory and data storage and can take hours or days

to solve. The time constraint restricts the use of conjugate models for time-sensitive applications,

such as RFCA, with currently available solution methods.

1.2.2 Convective Heat Transfer Coefficient

Conjugate heat transfer, as discussed previously, is the analysis of the fluid boundary layer

and solid by solving the governing equations with specified boundary conditions. The local convec-

tive heat transfer coefficient, h(x), decouples the conjugate problem by approximating the bound-

ary layer as a single node in the y-direction (the direction perpendicular to the surface). A single

node approximation means all the variation of the temperature in the boundary layer is average

in the y-direction. It should be noted that this assumption would be correct if the velocity and

temperature profile in the boundary layer are linear. However, if they are not linear, the use of h

can lead to significant error. [8]

To illustrate, consider a typical CHT problem shown in Figure 1.2. A fluid with uniform

temperature and velocity profiles flows over a thin flat plate with a surface temperature greater than

the free-stream temperature, Ts(x,y)> T∞.

To correctly model and obtain an exact solution, a conjugate approach should be used. The

two-dimensional, steady, laminar, incompressible boundary layer equations with constant fluid

properties and no pressure gradient, Eqns. 1.3-1.5, would need to be solved for Tf (x,y) while

simultaneously solving the energy equation, Eqn. 1.6, for the solid Ts(x,y).
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Figure 1.2: Typical flow past a flat plate where the fluid is represented by the two-dimensional,
steady, laminar, incompressible boundary layer equations with constant fluid properties and no
pressure gradient

Fluid

∂u
∂x

+
∂v
∂y

=0 Mass (1.3)

u
∂u
∂x

+ v
∂u
∂y

=ν
∂ 2u
∂y2 Momentum (1.4)

u
∂Tf

∂x
+ v

∂Tf

∂y
=α

∂ 2Tf

∂y2 Energy (1.5)

Solid
∂ 2Ts

∂x2 +
∂ 2Ts

∂y2 = 0 Energy (1.6)

Once the solid temperature profile, Ts(x,y), has been found the heat flux, q′′s (x), can be

computed using Fourier’s Law

q′′s (x) =−ks
dTs

dy

∣∣∣
y=0

. (1.7)

In general, this is no simple task. The use of h(x) would reduce this conjugate problem to the

following decoupled problem. The solid energy equation is the same as for the conjugate problem

above

∂ 2Ts

∂x2 +
∂ 2Ts

∂y2 = 0.
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All boundary conditions would remain the same except for the interface boundary (y = 0) which

changes from a conjugate to a convective boundary condition, also called boundary condition of

the third kind which is essentially an energy balance at the surface equating the heat rate in the

solid (Fourier’s Law) to the heat rate in the fluid (Newton’s Law of Cooling)

− ks
dTs

dy

∣∣∣
y=0

= h(x)(Ts(x,0)−T∞). (1.8)

Note that use of h removes the need for matching the temperatures at the interface as is done in

the conjugate boundary condition. The convective boundary condition above is very difficult to

solve because h(x), is a function of x. The problems encountered when using h(x) are discussed

further in Chapter 2 and Appendix B. Thus in practice, h(x), is generally not used but is averaged

in the x-direction (along the surface) and called the average, or global, convective heat transfer

coefficient,

h̄ =
1
L

∫ L

0
h(x)dx. (1.9)

Now h̄ is a single node analysis of the boundary layer in both the x and y directions. This means

all the temperature variation in the boundary layer is averaged and distributed evenly across the

interface. The boundary condition using h̄ becomes

− k
dTs

dy

∣∣∣
y=0

= h̄(Ts(x,0)−T∞) (1.10)

which results in a typical problem solved in heat transfer courses.

If only the heat rate from a surface is needed Newton’s Law of Cooling can be used

h(x) =
q′′s (x)

Ts(x)−Tre f (x)
(1.11)

where q′′s (x) is the heat flux from the surface and Tre f (x) is some reference temperature. The heat

transfer from the surface to the fluid is calculated by rearranging Eqn. 1.11 to solve for q′′s (x) and

integrating over the area of the interface. Neglecting variations in the direction normal to the page,

the total heat rate is

qs =
∫

A
q′′s (A)dA (1.12)
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qs =
∫ L

0
h(x)(Ts(x)−Tre f (x))wdx (1.13)

where w is the width of the plate and L is the length of the plate in the direction of the flow. In gen-

eral, Ts(x)−Tre f (x) is unknown and is commonly replaced by the difference between the average

surface temperature and the free stream temperature, Tavg−T∞, for external flow problems or by

the log-mean temperature difference, ∆Tlm, for internal flow problems. With these approximations,

(Tavg−T∞)' ∆Tre f is constant with respect to x, and Eqn. 1.13 is written as

qs = ∆Tre f wL
1
L

∫ L

0
h(x)dx. (1.14)

Letting the surface area, As = wL and substituting in h̄ results in

qs = h̄As∆Tre f . (1.15)

This is the commonly used form of Newton’s Law of Cooling which is a function of only constants.

Note the major assumptions made to develop this commonly used equation for the heat flux are the

averaging of the heat transfer coefficient, surface temperature, and the reference temperature. The

problem now centers on how to find an appropriate value for h̄.

As discussed in introductory heat transfer textbooks [9], the Nusselt number — a non-

dimensional representation of h̄ — may be correlated with the Reynolds number and the Prandtl

number for a particular flow geometry. The Reynolds and Prandtl numbers are dimensionless

parameters that characterize the flow and the fluid. Methods for developing Nusselt number corre-

lations are referred to as the central problem of convective heat transfer [9]. Empirical correlations

may be obtained by measuring the total heat rate convected from the surface of a particularly

shaped object and the average surface temperature under varying flow conditions.

Although this engineering approach is widely used, it is important to note that values of h̄

obtained using this approach represent an approximate total heat rate. The use of h̄ in a convective

boundary condition to solve the decoupled heat diffusion equation for the temperature profile in

the solid will lead to distortions in the time-dependent temperature field. In applications that only

require accurate modeling of the heat rate from the solid, distortions in the temperature field may

be unimportant. However, in applications such as thermal modeling of the temperature field in
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cardiac tissue that is undergoing radiofrequency ablation, an accurate representation of the time-

dependent temperature field is essential, and use of a convective heat transfer coefficient is likely

to lead to significant error. In electronics cooling, the use of h̄ could lead to the under predicting of

peak chip temperatures and lead to damaged components.

To illustrate why h̄ results in distortions in the temperature field, consider the plot of the

local heat transfer coefficient, h(x), in Figure 1.3, which is typical for flow over a flat plate. The

average heat transfer coefficient for these conditions is represented by the horizontal dashed line.

At point xp, h̄ is considerably larger than h(x). If Newton’s Law of Cooling with h̄ is used as the

boundary condition the calculated surface temperature will be less than the actual surface tempera-

ture at this location. These distortions in the calculated surface temperatures propagate throughout

the solid and result in an inaccurate representation of the time-dependent temperature field. The

magnitude of the inaccuracies depend on the flow conditions and properties of the solid and the

fluid for each specific problem. There are some cases when the error is negligible and h̄ may

be confidently used, and there are some cases in which the errors are significant. The problem is

knowing the magnitude of the error when h̄ is used without needing to solve the conjugate problem.

h

x

h
h(x)

x
p

Figure 1.3: Typical plots for h̄ and h(x) for flow over a flat plate

1.2.3 Classical Solutions

Many textbooks provide solutions for typical heat transfer cases, such as external flow past

a plate or internal flow through a pipe. However, it should be noted that these solutions decouple
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the conjugate problem by only being valid for certain assumptions. For example, for external flow

over a plate the Blasius solution for the flow can be used to solve the energy equation for the fluid.

However, to make this problem tractable, the plate must be assumed to be a uniform temperature.

For an internal Poiseuille flow, the walls must be assumed one-dimensional and must either be

a uniform temperature or a uniform heat flux. Although these solutions can be useful in certain

situations, the assumptions used restrict their use for many other necessary problems.

1.3 When is a Conjugate Approach Necessary

A conjugate approach to heat transfer problems is most accurate but can take many re-

sources to solve. The use of the average convective heat transfer coefficient, h̄, decouples the

problem and makes it is easier to solve but leads to less accurate results. It would be beneficial

to have a parameter to help determine when a problem can be solved using h̄ and still provide

adequate results for the given problem. This section will explore prior efforts to define such a

method.

Often non-dimensional numbers can indicate when certain assumptions can reasonably be

made for a particular problem. The Biot number, Bi, is a ratio of the resistance to heat transfer

in the solid to the resistance to heat transfer in the fluid boundary layer. If Bi is much less than

1, Bi << 1, the solid can be considered isothermal and the governing equation doesn’t need to be

solved for the solid. If Bi is much greater than 1, Bi >> 1, the solid resistance dominates and a

sufficiently accurate solution can be found without needing to solve the fluid equations.

Development of a parameter that measures the degree of conjugation and thus whether

a problem can accurately be solved using h was first attempted for an external flow fluid-solid

interface by Luikov [10] and named the Brun number, Br. Luikov derived the Brun number from

the matching heat flux conjugate boundary condition,

− ks
dTs

dy

∣∣∣
y=0

=−k f
dTf

dy

∣∣∣
y=0

. (1.16)

Rearranging Eqn. 1.16 results in

dTs

dTf
=

k f

ks

dys

dy f
. (1.17)
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If it is assumed that the temperature profiles in the solid, as well as the fluid boundary layer are

linear, then
∆Ts

∆Tf
=

k f

ks

ds

δt(x)
(1.18)

where ds is the thickness of the solid, δt(x) is the thermal boundary layer thickness in the fluid and

k is the thermal conductivity. From analysis of the fluid x-momentum and energy equations using

the boundary layer approximations,

δt(x) =
x

Nux
(1.19)

where

Nux =CPrmRen
x (1.20)

is a common form of Nu for correlations based on the Prandtl number, Pr, and the Reynolds

number, Re. Substituting these into Eqn. 1.18 results in

∆Ts

∆Tf
=

k f

ks

ds

x
CPrmRen

x . (1.21)

Dropping the constant, C, defines the local Brun number

∆Ts

∆Tf
∼ Brx =

k f

ks

ds

x
PrmRen

x . (1.22)

Luikov found that for a laminar incompressible flow over a flat plate with a constant surface tem-

perature at the base, a Br > .1 leads to an error greater than 5 percent.

Slightly different parameters were developed by Cole [4] and Li [11] and called conjugate

Peclet numbers. Dorfman [12] argues that each of the different parameters are essentially Biot

numbers. Compare the definition of the Brun number with the Biot number, Bi

∆Ts

∆Tf
= Bi =

hLc

ks
(1.23)

where Lc is a characteristic length, often represented by the volume divided by the surface area.

Since ∆Ts
∆Tf
∼ Brx and ∆Ts

∆Tf
= Bi then Brx ∼ Bi. Substituting Eqn. 1.20 into the Brun number, Eqn.
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1.22, results in

Brx =
k f

ks

ds

x
Nux

C
(1.24)

Recall that Nux =
hx
k f

and substituting in

Brx =
k f

ks

ds

x
hx

Ck f
(1.25)

and after canceling terms

Br =
1
C

hds

ks
.

Thus

Br =
Bi
C

where Lc = ds. The Brun number is in fact proportional to the Biot number and Dorfman’s claim

that they are essentially the same is correct. Therefore, the governing parameter to determine

conjugation will vary depending on the specific problem.

Petrikevich [13] showed that the Brun number may not reflect all subtleties of the heat

transfer processes and in some cases can lead to conflicting conclusions. Thus, a universally ap-

plicable conjugation parameter is not available, and criteria need to be developed for geometries

of interest. At the beginning if this research, preliminary simulations using STAR-CCM+ were

performed on internal flow past a flat surface with a cylindrical electrode perpendicular to the sur-

face to simulate the heating in RFCA. These simulations also appeared to show results that did

not agree with the Brun number. Since there was no way to validate the simulations to know if

the results were correct, an attempt was made to develop analytical solutions to simpler conjugate

problems.

The answer to the question of ”when is a conjugate approach necessary?” depends on the

specific problem and how precise of a solution is needed. Dorfman [12] defines two general con-

clusions to answer this question. First, for turbulent problems with high Prandtl numbers, greater

than 100, the traditional approach with a convective boundary condition is sufficient. Second, if

the temperature head, the difference between the surface and free-stream temperature, is decreas-

ing in the flow direction or in time, then conjugation is usually significant. For all other problems,
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conjugation depends on the specific problem but Dorfman has suggested some general guidelines

which have been compiled into Table 1.1.

Table 1.1: Factors that contribute to the degree of conjugation for a given problem. [12]

Greater Conjugation Lesser Conjugation
Decreasing temperature head Increasing temperature head

Comparable resistances, Bi' 1 Bi << 1 or Bi >> 1
Unfavorable pressure gradient Favorable pressure gradient

Fluids in counterflow Fluids in parallel flow
Laminar Turbulent
Unsteady Steady-state

Low Prandlt numbers High Prandlt numbers
Low Reynolds numbers High Reynolds numbers

Non-Newtonian fluid with n > 1 Non-Newtonian fluid with n < 1
Small surface curvature Large surface curvature

1.4 Overview of Thesis

This work attempts to provide a clear, fundamental explanation of conjugate heat transfer,

which seems to be lacking in literature. Insight to the question of when does the use of h̄ provide

an adequate solution for the temperature field in a solid will also be addressed. This will be

done by solving various problems for two cases, using h̄ and h(x), and comparing the resulting

temperature fields. It was anticipated to solve each problem using commercial CFD software and

validating the results with an analytical solution, however, obtaining one-dimensional results was

unsuccessful. Therefore, each problem will be solved using two separate analytical methods to

validate the results. The following chapters will develop several analytical methods and apply

them to 3 different problems: a decoupled flat plate problem in Chapter 2, a solid-solid conjugate

problem in Chapter 3 and a fluid-solid conjugate problem in Chapter 4.
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CHAPTER 2. VARIABLE HEAT TRANSFER COEFFICIENT

2.1 Problem Introduction

Solid 1

Solid/Fluid 2

x

q″
1
(x) q″

1
(x+Δx)

q″
2
(x+Δx)q″

2
(x)

q″
i 
(x)

q(x) 

Figure 2.1: Conjugate heat transfer between an insulated solid 1 and either a solid or fluid on top

The remainder of this work will focus on the scenario shown in Figure 2.1. Solid 1, the

lower subdomain, is unchanged from Chapter 1 and is surrounded on all sides with an adiabatic,

or insulated, boundary condition except for the top interface boundary which is in direct contact

with another subdomain and will have an interface heat flux boundary condition, q′′i . There is also

a volumetric heat generation, q̇ in solid 1. The second subdomain will either be a solid, considered

in Chapter 3, or a fluid, considered in Chapter 4. The top boundary condition is adiabatic and the

remaining boundary conditions will be dependent on the specific case and will be determined later.

The temperature field of solid 1 is of most interest and will be the focus of this work.

The purpose of the problem in Figure 2.1 is to model an internal flow past a solid that has a

sufficient thickness to result in a significant variation in the solid temperature field. This scenario

can be related to physical applications such as radiofrequency cardiac ablation where blood flows
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through the heart and the heart tissue is being heated by an electrode. It can also relate to electronics

cooling where chips are cooled by forced convection inside electronic devices.

Two-dimensional conjugate problems are difficult to solve with analytical methods. One

difficulty that arises is due to having a variable coefficient in the boundary condition which compli-

cates the use of separation of variables to solve partial differential equations. More on this can be

found in Appendix B. The problem shown in Figure 2.1 will be reduced to one-dimension in both

subdomains. This leads to the interface boundary condition not being able to be represented by

the full conjugate condition. The temperature cannot match at the interface otherwise both subdo-

mains would be identical since the temperature is being assumed constant in the vertical direction

and thus there must be a temperature jump at the interface. The interface heat flux will be defined

as

q′′i (x) = h(x)
(
T1(x)−T2(x)

)
. (2.1)

The intent of solving this problem is to gain insight to the error that arises from averaging the

convective heat transfer coefficient. The problem will be solved both using an average heat trans-

fer coefficient, h̄, and a local heat transfer coefficient, h(x). The solutions will be compared to

determine the range in which h̄ can adequately be used.

In the next section an energy balance will be performed on solid 1. Then a simple flat plate

problem will be introduced and analytical solution methods will be demonstrated using a flat plate

example.

2.2 Energy Balance

Performing an energy balance on solid 1 of Figure 2.1 by using the law of conservation of

energy

Ėin− Ėout + Ėgen = Ėst (2.2)

results in

q′′1(x, t)wd1−q′′1(x+∆x, t)wd1−q′′i (x+
∆x
2
, t)w∆x+ q̇(x+

∆x
2
, t)wd1∆x = ρ1cp1wd1∆x

∂T1(x, t)
∂ t

(2.3)
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where d1 and w are the thickness and width respectively. The width cancels on all terms. Taking

the limit as ∆x approaches zero

lim
∆x→0

[
−(q′′1(x+∆x, t)−q′′1(x, t))

∆x
d1−q′′i (x+

∆x
2
, t)−T2(x+

∆x
2
, t))+ q̇(x+

∆x
2
, t)d1

= ρ1cp1d1
∂T1(x, t)

∂ t

]
(2.4)

results in

−
∂q′′1(x, t)

∂x
d1−q′′i (x, t)+ q̇(x, t)d1 = ρ1cp1d1

∂T1(x, t)
∂ t

. (2.5)

Fourier’s Law, q′′1 =−k1
∂T1(x,t)

∂x , can be substituted in for the heat flux, and after rearranging

∂ 2T1(x, t)
∂x2 =

1
α1

∂T1(x, t)
∂ t

+
q′′i (x, t)

k1d1
− q̇(x, t)

k1
. (2.6)

Let q̇(x, t) = q̇0q̃(x, t) where q̇0 is the magnitude of the volumetric generation and q̃(x, t) is the

variation represented by some unitless function of position and time

∂ 2T1(x, t)
∂x2 =

1
α1

∂T1(x, t)
∂ t

+
q′′i (x, t)

k1d1
− q̇0q̃(x, t)

k1
. (2.7)

The boundary conditions are
∂T1

dx

∣∣∣
x=0

= 0 (2.8)

∂T1

dx

∣∣∣
x=L

= 0 (2.9)

T1(x,0) = T0 (2.10)

where T0 is the initial temperature at t = 0 and L is the length of the interface. For utility and ease

of solving, the problem can be non-dimensionalized with the following

ξ =
x
L

(2.11)

θ1 =
k1

q̇0L2 (T1−T∞) (2.12)

τ =
α1t
L2 (2.13)
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which results in

∂ 2θ1(ξ ,τ)

∂ξ 2 =
∂θ1(ξ ,τ)

∂τ
+

q′′i (ξ ,τ)
q̇0d1

− q̃(ξ ,τ) (2.14)

∂θ1

dξ

∣∣∣
ξ=0

= 0 (2.15)

∂θ1

dξ

∣∣∣
ξ=1

= 0 (2.16)

θ1(ξ ,0) = θ0 (2.17)

This work will only consider steady-state problems. The steady-state problem is

d2θ1(ξ )

dξ 2 =
q′′i (ξ )
q̇0d1

− q̃(ξ ) (2.18)

dθ1

dξ

∣∣∣
ξ=0

= 0 (2.19)

dθ1

dξ

∣∣∣
ξ=1

= 0 (2.20)

2.3 Solution Methods

This section will introduce a simple problem for flow past a one-dimensional flat plate that

will be used to demonstrate the analytical methods that will be used in this work. Consider flow

past an insulated flat plate with heat generation as in Figure 2.2. Only the governing equation

for the plate will be solved and the fluid will be approximated using the convective heat transfer

coefficient, h.

The heat flux leaving the surface will be expressed using Newton’s Law of Cooling with a

variable heat transfer coefficient

q′′i (x) = h(x)
(
T1(x)−T∞

)
. (2.21)

Using the results from the energy balance performed previously and assuming steady-state, the

governing equation becomes an ordinary differential equation

d2θ1(ξ )

dξ 2 =
q′′i (ξ )
q̇0d1

− q̃(ξ ). (2.22)
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Figure 2.2: Flow past a flat plate with generation

Substituting the non-dimensionalizatons into Eqn. 2.21 results in

q′′i (ξ ) =
q̇0L2

k1
h(ξ )θ1(ξ ) (2.23)

and substituting in to the governing equation

d2θ1(ξ )

dξ 2 =
h(ξ )L2

k1d1
θ1(ξ )− q̃(ξ ). (2.24)

As was done for the volumetric heat generation, let h(ξ ) = h0h̃(ξ ) where h0 is the magnitude of

h and h̃(ξ ) is the dimensionless variation represented by some unitless function of position. Also,

define a new constant coefficient as

A2
1 =

h0L2

k1d1
(2.25)

and the equation becomes
d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )θ1(ξ ) =−q̃(ξ ) (2.26)

with boundary conditions
dθ1

dξ

∣∣∣
ξ=0

= 0 (2.27)

dθ1

dξ

∣∣∣
ξ=1

= 0. (2.28)
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Note, from Eqn. 2.25 , that when A2
1 is multiplied by d1

d1
the result is the Biot number and a

geometric ratio,

A2
1 =

h0d1

k1

L2

d2
1
= Bi

L2

d2
1
. (2.29)

Since the plate is assumed to be one-dimensional it is required that Bi << 1 for the posed problem

to be valid. For simplicity, the remainder of this work will assume that Bi = 0.1. This effectively

makes A2
1 an aspect ratio and any change will be due to variation in the length to thickness ratio.

Several analytical methods will now be demonstrated by using the flat plate problem just

introduced. Solutions will be developed for both laminar and turbulent flow by using different

h̃(ξ ). Note that h̃(ξ ) is in the governing equation which makes solving the differential equation

much more difficult since since it is a variable coefficient.

First the problem will be solved using an average heat transfer coefficient. Three meth-

ods will be explored to solve the accompanying differential equation with a variable coefficient.

The three methods will be identified as the power series, integral equation and generalized Bessel

methods. The power series method is the most general approach but difficulties are encountered

for the given problem. The last two methods will be fully developed and be used to solve the flat

plate problem with a variable coefficient.

2.3.1 Average Heat Transfer Coefficient

The following is the solution to the flat plate problem formulated above when an average

heat transfer coefficient, h̄, is used. The governing equation as found in Eqn. 2.26 is

d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )θ1(ξ ) =−q̃(ξ ) (2.30)

Recall that the average heat transfer coefficient is found by integrating the local heat transfer coef-

ficient over the length of the boundary

h̄ =
∫ 1

0
h̃(ξ )dξ (2.31)
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where h̃(ξ ) = ξ−
1
2 for laminar and h̃(ξ ) = ξ

− 1
5 for turbulent flow. Integrating, h̄ leads to

h̄ =
∫ 1

0
ξ
− 1

2 dξ = 2 Laminar (2.32)

h̄ =
∫ 1

0
ξ
− 1

5 dξ =
5
4

Turbulent (2.33)

The problem to be solved is

d2θ1(ξ )

dξ 2 −A2
1h̄θ1(ξ ) =−q̃(ξ ) (2.34)

dθ1

dξ

∣∣∣
ξ=0

= 0 (2.35)

dθ1

dξ

∣∣∣
ξ=1

= 0. (2.36)

Since the governing equation contains a heat generation term the problem is non-homogeneous

and the solution is the sum of the homogeneous, θ1h, and particular, θ1p, solutions

θ1(ξ ) = θ1h(ξ )+θ1p(ξ ). (2.37)

The homogeneous solution comes from the general solution commonly used for the given second

order differential equation and can be found in most differential equations textbooks

θ1h(ξ ) = c1 cosh(
√

h̄A1ξ )+ c2 sinh(
√

h̄A1ξ ). (2.38)

The particular solution is found by using variation of parameters

θ1p(ξ ) =−y1(ξ )
∫

ξ

0

y2(ξ
′)g(ξ ′)

W (ξ ′)
dξ
′+ y2(ξ )

∫
ξ

0

y1(ξ
′)g(ξ ′)

W (ξ ′)
dξ
′ (2.39)

where g is the non-homogeneous term, y1 and y2 are linearly independent solutions to the homo-

geneous differential equation, from the homogeneous solution, and W is the Wronskian of y1 and

y2
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W (y1,y2) =

∣∣∣∣∣∣ y1 y2

dy1
dξ

dy2
dξ

∣∣∣∣∣∣= y1
dy2

dξ
− y2

dy1

dξ
(2.40)

W =
√

h̄A1[cosh2(
√

h̄A1ξ )− sinh2(
√

h̄A1ξ )] (2.41)

W =
√

h̄A1. (2.42)

The particular solution is

θ1p(ξ ) =− cosh(
√

h̄A1ξ )
∫

ξ

0

sinh(
√

h̄A1ξ ′)(−q̃(ξ ))√
h̄A1

dξ
′

+ sinh(
√

h̄A1ξ )
∫

ξ

0

cosh(
√

h̄A1ξ ′)(−q̃(ξ ))√
h̄A1

dξ
′ (2.43)

and rearranging

θ1p(ξ ) =
cosh(

√
h̄A1ξ )√

h̄A1

∫
ξ

0
sinh(

√
h̄A1ξ

′)q̃(ξ )dξ
′− sinh(

√
h̄A1ξ )√

h̄A1

∫
ξ

0
cosh(

√
h̄A1ξ

′)q̃(ξ )dξ
′.

(2.44)

Combining the homogeneous and particular solutions results in

θ1(ξ ) =c1 cosh(
√

h̄A1ξ )+ c2 sinh(
√

h̄A1ξ )+
cosh(

√
h̄A1ξ )√

h̄A1

∫
ξ

0
sinh(

√
h̄A1ξ

′)q̃(ξ )dξ
′

− sinh(
√

h̄A1ξ )√
h̄A1

∫
ξ

0
cosh(

√
h̄A1ξ

′)q̃(ξ )dξ
′. (2.45)

Since both boundary conditions contain derivatives, the derivative of the solution must be per-

formed and is

dθ1

dξ
=c1

√
h̄A1 sinh(

√
h̄A1ξ )+ c2

√
h̄A1 cosh(

√
h̄A1ξ )+ sinh(

√
h̄A1ξ )

∫
ξ

0
sinh(

√
h̄A1ξ

′)q̃(ξ )dξ
′

− cosh(
√

h̄A1ξ )
∫

ξ

0
cosh(

√
h̄A1ξ

′)q̃(ξ )dξ
′. (2.46)

Applying the boundary condition at ξ = 0, Eqn. 2.35, results in

c2 = 0 (2.47)
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and the boundary condition at ξ = 1, Eqn. 2.36, results in

c1 =−
1√
h̄A1

∫ 1

0
sinh(

√
h̄A1ξ

′)q̃(ξ )dξ
′+

1√
h̄A1 tanh(

√
h̄A1)

∫ 1

0
cosh(

√
h̄A1ξ

′)q̃(ξ )dξ
′. (2.48)

At first thought, this same method may be attempted for h(ξ ). However, the general so-

lution used above is not a solution if h is not a constant. To see an example of why this method

doesn’t work for a variable coefficient, see Appendix A.1.

2.3.2 Power Series Method

The power series method is one of the most general and powerful methods to solve dif-

ferential equations with variable coefficients. In fact, the general solution used from the previous

method was developed using this method for a constant coefficient differential equation. To use

the power series method consider Eqn. 2.26

d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )θ1(ξ ) =−q̃(ξ )

The power series cannot be used with an arbitrary function of ξ so let h̃(ξ ) = ξ−
1
2 since

this is the variation of h(ξ ) for laminar flow past a flat plate. First a solution is assumed to be of

the form

θ1(ξ ) =
∞

∑
n=0

cnξ
n (2.49)

with derivatives
dθ1(ξ )

dξ
=

∞

∑
n=1

ncnξ
n−1 (2.50)

d2θ1(ξ )

dξ 2 =
∞

∑
n=2

n(n−1)cnξ
n−2. (2.51)

The homogeneous case will first need to be solved

d2θ1(ξ )

dξ 2 −A2
1ξ
− 1

2 θ1(ξ ) = 0. (2.52)
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Substituting the assumed form of the solution into the differential equation

∞

∑
n=2

n(n−1)cnξ
n−2−A2

1ξ
− 1

2

∞

∑
n=0

cnξ
n = 0 (2.53)

and combining the ξ terms results in

∞

∑
n=2

n(n−1)cnξ
n−2−A2

1

∞

∑
n=0

cnξ
n− 1

2 = 0. (2.54)

The power of ξ needs to match in both terms so both terms can be combined into a single summa-

tion. It is required for the indices, n, to be an integer, and it appears impossible to match n−2 and

n− 1
2 without creating a fractional index. Thus the power series cannot be used for the given vari-

able coefficient. It could have been noticed that ξ−
1
2 is not analytic at ξ = 0 which also prevents

the power series from being used.

2.3.3 Integral Equation Method

The integral equation (IE) method is an approach to solve a differential equation with vari-

able coefficients by transforming the differential equation to an integral equation. The variable

coefficient term is simply lumped with the source term and the equation is then integrated until the

derivatives are gone and the solution is in terms of integrals. The dependent variable that is being

solved for is also contained inside the integral which requires the iterative method of successive

approximations to be used to find the solution. This method has been used by [14] when deal-

ing with the integro-differential radiative heat transfer equation and [15] when solving nonlinear

differential equations. Consider Eqn. 2.26

d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )θ1(ξ ) =−q̃(ξ )

with boundary conditions
dθ1

dξ

∣∣∣
ξ=0

= 0 (2.55)

dθ1

dξ

∣∣∣
ξ=1

= 0. (2.56)
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To apply the IE method, simply move the term with the variable coefficient to the right

hand side of the equal sign

d2θ1(ξ )

dξ 2 = A2h̃(ξ )θ1(ξ )− q̃(ξ )

then treat everything on the right hand side as some function of x

d2θ1(ξ )

dξ 2 = g(x). (2.57)

The general solution can be found by simply integrating twice

T1(x) = c2 + c1x+
∫ x

0

∫ x′

0
g(x′′)dx′′dx′. (2.58)

Integrate the differential equation once

dθ1(ξ )

dξ
= c1 +

∫
ξ

0
A2

1h̃ξ
′
θ1(ξ

′)− q̃(ξ ′)dξ
′ (2.59)

and integrate again

θ1(ξ ) = c2 + c1ξ +
∫

ξ

0

∫
ξ ′

0
A2

1h̃(ξ ′′)θ1(ξ
′′)− q̃(ξ ′′)dξ

′′dξ
′. (2.60)

Apply the boundary condition at ξ = 0.

c1 = 0 (2.61)

Apply the boundary condition at ξ = 1.

0 =
∫ 1

0
A2

1h̃(ξ ′)θ1(ξ
′)− q̃(ξ ′)dξ

′ (2.62)

At first it may seem that this boundary condition is of no use and c2 cannot be found. However, c2

is buried in the θ1 term and if θ1 is substituted in it is possible to solve for c2

c2 =−
1∫ 1

0 h̃(ξ )
dξ

∫ 1

0
h̃(ξ ′)

∫
ξ ′

0

∫
ξ ′′

0
A2

1h̃(ξ ′′′)θ1(ξ
′′′)− q̃(ξ ′′′)dξ

′′′dξ
′′− q̃(ξ ′)dξ

′. (2.63)
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Normally this approach would not be desirable since it introduces the need to iterate to

obtain a solution. However, since two regions are being coupled, each region depends on the

others’ temperature distribution and the solution already requires an iterative solution.

The IE method often requires implementing a technique used in numerical analysis called

relaxation when evaluating the solution to obtain specific values. Relaxation reduces the amount

the solution changes between each iteration and is implemented by

θnew = (1− γ)θlast iteration + γθcurrent iteration (2.64)

where γ is some value between 0 to 1. When using relaxation, each iteration’s solution is the sum of

the previous iteration’s solution and the current iterations solution. The weight of each iteration’s

solution that contributes to the new solution is determined by γ . If γ = 1 the results is the same as

not using relaxation and the new solution is the same as the current solution. As γ decreases, the

new solution is more heavily influenced by the previous iterations solution. A smaller γ results in

a more stable solution, however, it also slows convergence.

It should be noted that use of relaxation increases the number of terms in the solution every

iteration which slows down the computation. It can be beneficial to curve fit the solution each

iteration to keep the solution to a set number of terms. This increases the number of iterations

required to converge but each iteration takes less time.

2.3.4 Generalized Bessel Method

The generalized Bessel (GB) method is another approach to solve differential equations

with variable coefficients which makes use of the generalized Bessel equation. This method is

not commonly used for this application and the only place in literature that it was similarly used

is in [16] for heat transfer in extended surfaces. However, generation terms were not considered

and the differential equations used were homogeneous. This method will now be extended to

non-homogeneous equations. Reconsider Eqn. 2.26

d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )θ1(ξ ) =−q̃(ξ ) (2.65)
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with boundary conditions
dθ1

dξ

∣∣∣
ξ=0

= 0 (2.66)

dθ1

dξ

∣∣∣
ξ=1

= 0. (2.67)

The solution to a non-homogeneous ordinary differential equation is the sum of the homo-

geneous and the particular solutions

θ1(ξ ) = θ1h(ξ )+θ1p(ξ ). (2.68)

2.3.4.1 Homogeneous Solution

First, consider the homogeneous problem of Eqn. 2.26 which needs to be transformed to

the form of the generalized Bessel equation

d2θ1h(ξ )

dξ 2 −A2
1h̃(ξ )θ1h(ξ ) = 0. (2.69)

The generalized Bessel equation adapted from [17] is

d2R
dξ 2 +

[1−2m
x
−2β

]dR
dξ

+
[

p2b2
ξ

2p−2 +β
2 +

β (2m−1)
ξ

+
m2− p2ν2

ξ 2

]
R = 0 (2.70)

with the general solution

R = ξ
meβξ

[
c1Jν(bξ

p)+ c2Yν(bξ
p)
]

(2.71)

or if ν is not an integer

R = ξ
meβξ

[
c1Jν(bξ

p)+ c2J−ν(bξ
p)
]

(2.72)

where Jν and Yν are the Bessel function of the first kind and second kind respectively, of order ν .

To transform Eqn. 2.69 into the form of Eqn. 2.70, the coefficients for each term are equated. The

second order term coefficient is already the same so no change is needed. There is no first order

term so
1−2m

ξ
−2β = 0 (2.73)

26



is true with the following choice of coefficients

m =
1
2

(2.74)

β = 0.

Looking at the zeroth order term,

p2b2
ξ

2p−2 +
m2− p2ν2

ξ 2 =−A2
1h̃(ξ ) (2.75)

if it is required that m = pν , the last term goes away

p2b2
ξ

2p−2 =−A2
1h̃(ξ ). (2.76)

Solving for b results in

b =
ξ 1−p

p
iA1

√
h̃(ξ ). (2.77)

Note that when b is substituted into the solution form, the result in the Bessel function is

Jν

(
ξ 1−p

p
iA1

√
h̃(ξ )ξ p

)
(2.78)

and canceling ξ p results in

Jν

(1
p

iA1

√
h̃(ξ )ξ

)
. (2.79)

Thus the choice of p has no effect on the power of ξ in the Bessel function and it is dependent

only on the variation of ξ in h̃(ξ ). Therefore, p and ν can be arbitrarily chosen so as long as they

satisfy m = pν . It may appear to be desirable to choose ν = 1 to have Bessel functions of integer

order or ν = 1
2 since Bessel functions of order ν = ±1

2 can be expressed in terms of hyperbolic

sinh and cosh

I1
2

(
A1ξ

p
)
=

√
2

A1πξ p sinh(A1ξ
p) (2.80)

I− 1
2

(
A1ξ

p
)
=

√
2

A1πξ p cosh(A1ξ
p) (2.81)

27



The functions cosh and sinh are generally easier to work with than Bessel functions. However,

when ξ is raised to a non-integer power the derivative and integral of cosh and sinh become quite

complex and are not as simple as might be first expected. The choice of ν = 1 or ν = 1
2 did not

seem to increase ease of obtaining a solution in this work. The best results were obtained when ν

resulted from the choice of p that canceled the power of ξ in the Bessel function. For example, if

h̃(ξ ) = ξ−
1
2 , then

b =
ξ 1−p

p
iA1ξ

− 1
4 (2.82)

and a choice of p = 3
4 will cause ξ to cancel out which will simplify the solution. However more

effort could be beneficial in determining an optimal choice for ν .

Returning to the general solution, Eqn. 2.72, and substituting in the determined coefficients

results in

θ1h = ξ
1
2

[
c1Jν

(1
p

iA1

√
h̃(ξ )ξ

)
+ c2J−ν

(1
p

iA1

√
h̃(ξ )ξ

)]
(2.83)

or since the imaginary number, i, is present, Modified Bessel functions, Iν , can be used and the i

removed

θ1h = ξ
1
2

[
c1Iν

(A1

p

√
h̃(ξ )ξ

)
+ c2I−ν

(A1

p

√
h̃(ξ )ξ

)]
. (2.84)

2.3.4.2 Particular Solution

A common method for determining the particular solution is by variation of parameters

θ1p =−y1(ξ )
∫

ξ

0

y2(ξ
′)g(ξ ′)

W (ξ ′)
dξ
′+ y2(ξ )

∫
ξ

0

y1(ξ
′)g(ξ ′)

W (ξ ′)
dξ
′ (2.85)

where g(ξ ′) is the non-homogeneous term, y1 and y2 are linearly independent solutions to the

homogeneous differential equation and W is the Wronskian of y1 and y2

W (y1,y2) =

∣∣∣∣∣∣ y1 y2

dy1
dξ

dy2
dξ

∣∣∣∣∣∣= y1
dy2

dξ
− y2

dy1

dξ
.
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The Wronskian of Bessel functions can get quite complex. Fortunately, a relation has been

derived for basic Bessel functions [18]

W (Iν

(
ξ

)
, I−ν

(
ξ

)
) =−2sin(νπ)

ξ π
. (2.86)

This relation is valid for both Bessel functions and Modified Bessel functions that are not of integer

order. For Bessel functions of integer order

W (Jν

(
ξ

)
,Yν

(
ξ

)
) =

2
ξ π

(2.87)

W (Iν

(
ξ

)
,Kν

(
ξ

)
) =

1
ξ
. (2.88)

However, for the generalized Bessel equation the Wronskian is more complex due to the extra

terms ξ m and eβξ and the fact that ξ is not raised to the power of one. There does not appear to be

any simplifying relation for the Wronskian for this case in literature.

The previous relations for the Wronskian were developed by using the limiting form of the

Bessel function when ξ → 0, [19]

Iν

(
ξ

)
'
(

ξ

2

)ν 1
Γ(ν +1)

. (2.89)

The same process will now be extended for use with the generalized Bessel equation. First, note

that

Γ(ν +1) = νΓ(ν) (2.90)

and for generality assume b is a function of ξ

Iν

(
b(ξ )ξ p

)
'
(b(ξ )ξ p

2

)ν 1
νΓ(ν)

. (2.91)
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Evaluating the Wronskian

W
(

ξ
meβξ Iν

(
b(ξ )ξ p),ξ meβξ I−ν

(
b(ξ )ξ p))= ξ

meβξ Iν

(
b(ξ )ξ p) d

dξ

[
ξ

meβξ I−ν

(
b(ξ )ξ p)]

−ξ
meβξ I−ν

(
b(ξ )ξ p) d

dξ

[
ξ

meβξ Iν

(
b(ξ )ξ p)]

(2.92)

substituting in Eqn. 2.91

W =
(b(ξ )ξ p

2

)ν ξ meβξ

νΓ(ν)

d
dξ

[(b(ξ )ξ p

2

)−ν ξ meβξ

−νΓ(−ν)

]
−
(b(ξ )ξ p

2

)−ν ξ meβξ

−νΓ(−ν)

d
dξ

[(b(ξ )ξ p

2

)ν ξ meβξ

νΓ(ν)

]
(2.93)

and evaluating the derivatives results in

W =
(b(ξ )ξ p

2

)ν ξ meβξ

νΓ(ν)

[(b(ξ )ξ p

2

)−ν ξ meβξ

−νΓ(−ν)

[m
ξ
+β +

d
(
b(ξ )ξ p)

dξ

−ν

b(ξ )ξ p

]]
−
(b(ξ )ξ p

2

)−ν ξ meβξ

−νΓ(−ν)

[(b(ξ )ξ p

2

)ν ξ meβξ

νΓ(ν)

[m
ξ
+β +

d
(
b(ξ )ξ p)

dξ

ν

b(ξ )ξ p

]]
. (2.94)

Removing canceling terms reduces the Wronskian to

W =
2

b(ξ )ξ p
(ξ meβξ )2

νΓ(ν)Γ(−ν)

d
(
b(ξ )ξ p)

dξ
. (2.95)

Note that

Γ(ν)Γ(−ν) =− π

ν sin(πν)
(2.96)

and when substituted into the Wronskian leads to

W =
2sin(πν)

b(ξ )ξ p
(ξ meβξ )2

π

d
(
b(ξ )ξ p)

dξ
. (2.97)

This relation could not be found in literature and will now formally be stated as

W
(

ξ
meβξ Iν

(
b(ξ )ξ p),ξ meβξ I−ν

(
b(ξ )ξ p))=−(ξ meβξ )2 2sin(πν)

πb(ξ )ξ p
d(b(ξ )ξ p)

dξ
. (2.98)
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The plots in Figure 2.3 were created using the math software MapleTM [20] to compare Eqn.

2.98 with the Wronskian found by using Maple’sTM Wronskian command. These plots show that

both methods to determine the Wronskian are indistinguishable from each other, thus the newly

developed relation is accurate. Plot (a) is a typical Wronskian for a solid and (b) for a fluid. Since

this new relation provides a way to determine the Wronskian for the generalized Bessel equation

solutions, the GB method can be used to solve non-homogeneous, ordinary differential equations

with variable coefficients.

(a) W
(

ξ
1
2 I 2

3

(
bξ

3
4
)
,ξ

1
2 I− 2

3

(
bξ

3
4
))

(b) W
(

ξ
1
2 eβξ I 2

3

(
bξ

3
4
)
,ξ

1
2 eβξ I− 2

3

(
bξ

3
4
))

Eqn. 2.98 MapleTM

Figure 2.3: Verification of the Wronskian relation for the generalized Bessel equation solution for
two cases

The particular solution can now be found by using the newly developed Wronskian relation,

Eqn. 2.98, with the method of variation of parameters, Eqn. 2.85,
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θ1p =−ξ
1
2 Iν

(A1

p

√
h̃(ξ )ξ

)∫ ξ

0

ξ ′
1
2 I−ν

(
A1
p

√
h̃(ξ ′)ξ ′

)
g(ξ ′)

−
d(A1

p

√
h̃(ξ ′)ξ ′)

dξ ′
2sin(πν)

π
A1
p

√
h̃(ξ ′)ξ ′

ξ ′
dξ
′

+ξ
1
2 I−ν

(A1

p

√
h̃(ξ )ξ

)∫ ξ

0

ξ ′
1
2 Iν

(
A1
p

√
h̃(ξ ′)ξ ′

)
g(ξ ′)

−
d(A1

p

√
h̃(ξ ′)ξ ′)

dξ ′
2sin(πν)

π
A1
p

√
h̃(ξ ′)ξ ′

ξ ′
dξ
′ (2.99)

which simplifies to

θ1p =−
π

2sin(πν)
ξ

1
2 Iν

(A1

p

√
h̃(ξ )ξ

)∫ ξ

0

ξ ′
1
2 I−ν

(
A1
p

√
h̃(ξ ′)ξ ′

)
g(ξ ′)

√
h̃(ξ ′)

−d( f (ξ ′)ξ ′)
dξ ′

dξ
′ (2.100)

+
π

2sin(πν)
ξ

1
2 I−ν

(A1

p

√
h̃(ξ )ξ

)∫ ξ

0

ξ ′
1
2 Iν

(
A1
p

√
h̃(ξ ′)ξ ′

)
g(ξ ′)

√
h̃(ξ ′)

−d(
√

h̃(ξ ′)ξ ′)
dξ ′

dξ
′.

The math software MapleTM was also used for mathematical evaluation and plotting. The

built in Modified Bessel functions in MapleTM were found to sometimes be insufficient when

solving these problems and the summation form of the Modified Bessel equation needed to be

used

Iν

(A1

p
ξ

)
=
(1

2
A1

p
ξ
)ν

∞

∑
n=0

(1
2

A1
p ξ )2n

n!Γ(ν +n+1)
. (2.101)

A difficulty that was encountered when evaluating these solutions was as A1
p gets larger, more

summation terms are required for the Bessel summation. Also, as the number of summation terms

increased, the numerical precision needs to be increased. As a result, larger values of A1
p require

more time to evaluate the solutions and at a sufficiently large A1
p , MapleTM is unable to evaluate

the solutions due to hardware limitations.

Applying this developed solution for laminar flow where the heat transfer coefficient varies

according to

h̃(ξ ) = ξ
− 1

2 (2.102)
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and choosing

ν =
2
3

(2.103)

p =
3
4

(2.104)

g = q̃(ξ ′) (2.105)

and from Eqn. 2.100 the particular solution is

θ1p =−
4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I− 2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′ (2.106)

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′.

Thus the general solution is

θ1 =ξ
1
2

[
c1I2

3

(4
3

A1ξ
3
4

)
+ c2I− 2

3

(4
3

A1ξ
3
4

)]
− 4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I− 2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′ (2.107)

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′

In order to apply the boundary conditions and determine the constants the derivative will need to

be found which is

dθ1

dξ
=A1ξ

1
4

[
c1I− 1

3

(4
3

A1ξ
3
4

)
+ c2I1

3

(4
3

A1ξ
3
4

)]
(2.108)

− 4A1π

3
√

3
ξ

1
4 I− 1

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I− 2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′

+
4A1π

3
√

3
ξ

1
4 I1

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′.

Apply the boundary condition at ξ = 0

0 =
[
c1ξ

1
4 I− 1

3

(4
3

A1ξ
3
4

)
+ c2ξ

1
4 I1

3

(4
3

A1ξ
3
4

)]∣∣∣
ξ=0

. (2.109)
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Note that

lim
ξ→0

ξ
1
4 I− 1

3

(4
3

A1ξ
3
4

)
−→ 2

1
3

(4
3A1)

1
3 Γ(2

3)
(2.110)

ξ
1
4 I1

3

(4
3

A1ξ
3
4

)∣∣∣
ξ=0

= 0 (2.111)

which results in

c1 = 0. (2.112)

Applying the boundary condition at ξ = 1, the constant is

c2 =
4π

3
√

3

I− 1
3

(4
3A1
)

I1
3

(
4
3A1

) ∫ 1

0
ξ
′

1
2 I− 2

3
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A1ξ
′

3
4
)

q̃(ξ ′)dξ
′− 4π
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√
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∫ 1

0
ξ
′

1
2 I2

3

(4
3

A1ξ
′

3
4
)

q̃(ξ ′)dξ
′ (2.113)

For turbulent flow past a flat plate

h̃(ξ ) = ξ
− 1

5 (2.114)

and choosing

ν =
5
9

(2.115)

p =
9
10

(2.116)

g = q̃(ξ ′). (2.117)

The solution is found by the same process as previously demonstrated. The non-dimensional

temperature is

θ1 =c2ξ
1
2 I− 5

9

(10
9

A1ξ
9
10

)
− 5π

9sin(5
9π)

ξ
1
2 I5

9

(
Bξ

9
10

)∫ ξ

0
I− 5

9

(10
9

A1ξ
′

9
10
)

ξ
′

1
2 q̃(ξ ′)dξ

′ (2.118)

+
5π

9sin(5
9π)

ξ
1
2 I− 5

9

(10
9

A1ξ
9
10

)∫ ξ

0
I5

9

(10
9

A1ξ
′

9
10
)

ξ
′

1
2 q̃(ξ ′)dξ

′
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and the constant is

c2 =
5π

9sin(5
9π)

I− 4
9

(
10
9 A1

)
I4

9

(
10
9 A1

) ∫ 1

0
I− 5

9

(10
9

A1ξ
′

9
10
)

ξ
′

1
2 q̃(ξ ′)dξ

′

− 5π

9sin(5
9π)

∫ 1

0
I5

9

(10
9

A1ξ
′

9
10
)

ξ
′

1
2 q̃(ξ ′)dξ

′. (2.119)

2.4 Analysis

Using the integral equation, IE, and generalized Bessel, GB, solutions developed previ-

ously, the temperature profile of the flat plate will be compared when using h̄ to h(ξ ). The problem

will be considered with both a uniform heat generation, q̃ = 1, and a center focused heat source

represented by q̃ = −ξ 2 +ξ . For the IE method an iterative solution is required and convergence

was monitored by how closely the surface heat rate matches the heat generation rate in the plate

A2
1

∫ 1

0
h̃(ξ )θ1(ξ )dξ =

∫ 1

0
q̃(ξ )dξ . (2.120)

In order to gain confidence in the developed solutions, they were first verified with each

other. The IE method using h(ξ ) was compared with the GB method and the IE method using h̄

was compared to the common method used for h̄. The results in Figures 2.4 and 2.5 show that

the solutions match well. The only discrepancy is when A2
1 is large the IE method has trouble

matching at the end of the plate. This is likely due to the fact that as A2
1 gets larger, greater

relaxation is necessary for stability of the solution. The end of the plate at ξ = 1 is the last location

that convergence is achieved and the rate of convergence slows as full convergence is approached.

In order to reach full convergence for large A2
1 an impractical amount of time is required. Increasing

relaxation near convergence can often increase convergence rate, however, in this case it was only

found to lead to instability, even when only increased slightly.

Figures 2.4 and 2.5 also show that for turbulent flow, the difference between the maximum

and minimum temperatures in the plate is smaller than for laminar flow. This means that there is

less temperature variation in the plate which leads to a lower degree of conjugation. This conclu-

sion can also be made from looking at the difference in θ values between the h(ξ ) and h̄ cases

for laminar and turbulent flows. For example, at ξ = 1, the temperature for h(ξ ) minus the tem-
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(a) Laminar, A2
1 = 1 (b) Laminar, A2

1 = 1000

(c) Turbulent, A2
1 = 1 (d) Turbulent, A2

1 = 1000

GB h(ξ) IE h(ξ) IE h h

Figure 2.4: Non-dimensional temperature profiles, θ , with a uniform heat generation, q̃ = 1, for
the generalized Bessel method (GB) and the integral equation method (IE) for h(x) and IE and the
common method for h̄

perature for h̄ is less for turbulent flow than laminar. Thus, conjugate effects seem to be less for

turbulent flow. This agrees with Dorfman’s [12] conjugation guidelines. These same trends would

be seen in the remainder of the plots in this chapter and thus plots for turbulent flow will not be

shown further. Just note that heat transfer is greater for turbulent flow and thus conjugation is less.

For a uniform heat generation, q̃ = 1, and h̄, θ is constant across the plate. This is expected

since everything that influences θ is constant. For the h(ξ ) case, θ is lowest at the front end of the

plate, ξ = 0, and highest at the back end, ξ = 1. This is expected since h(ξ ) is highest at the front

end which leads to a higher heat rate and thus a lower temperature. The use of h̄ over predicts the
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(a) Laminar, A2
1 = 1 (b) Laminar, A2

1 = 1000

(c) Turbulent, A2
1 = 1 (d) Turbulent, A2

1 = 1000

GB h(ξ) IE h(ξ) IE h h

Figure 2.5: Non-dimensional temperature profiles, θ , with a heat generation of the shape, q̃ =
−ξ 2 + ξ , for the generalized Bessel method (GB) and the integral equation method (IE) for h(x)
and IE and the common method for h̄

temperature at the front end and under predicts the temperature at the back end. Since the back end

has the highest temperature, h̄ under predicts the maximum temperature of the plate. This could

be disastrous if used for calculating peak chip temperatures in electronics cooling.

For heat generation with a peak at the center of the plate, q̃ =−ξ 2+ξ and h̄, the maximum

temperature is at the center of the plate. For the h(ξ ) case, θmax is further along the plate but seems

to approach the center as A2
1 gets larger. The shape of θ also approaches that of h̄ for large A2

1.
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Recall that

A2
1 =

h0d1

k1

L2

d2
1
= Bi

L2

d2
1
. (2.121)

Since it was assumed that Bi = 0.1, L2

d2
1

will be the main contributer to a large A2
1. As the length

becomes much larger than the plate thickness, A2
1 becomes large. At first it might seem like a

longer plate should give a greater length for a temperature difference, however the effect of h(ξ )

dies out as ξ increases. A short plate will have a highly variable h(ξ ), but for a long plate h(ξ )

will approach h̄. For a long plate, the highly variable region at the leading edge becomes a very

small part of plate and becomes insignificant.

In Figure 2.6, θ is plotted for various A2
1 for both h(ξ ) and h̄. It can be seen that θ decreases

with increasing A2
1. Figure 2.7 is the plot of the non-dimensional temperature difference between

(a) Laminar, q̃ = 1 (b) Laminar, q̃ =−ξ 2 +ξ

A
2
 =  1 for h(ξ)

A
2
 =  1 for h

A
2
 =  10 for h(ξ)

A
2
 =  10 for h

A
2
 =  100 for h(ξ)

A
2
 =  100 for h

1

1 1

1 1

1

Figure 2.6: Non-dimensional temperature profiles, θ , comparing use of h(ξ ) and h̄ for differing A2

the h(ξ ) and h̄ profiles, ∆θ = θ(h(ξ ))− θ(h̄). As A2
1 increases, ∆θ decreases. Thus, for larger

A2
1, the lower the discrepancy between the use of h̄ and h(ξ ). Note that in Figure 2.7 there is very
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little difference between ∆θ for A2
1 = 0.1 and A2

1 = 0.01. Thus as A2
1 gets sufficiently small, the

discrepancy does not increase.

(a) Laminar, q̃ = 1 (b) Laminar, q̃ =−ξ 2 +ξ

1 1 1 1 1 1

Figure 2.7: Non-dimensional temperature difference, ∆θ = θ(h(ξ ))−θ(h̄) for the flat plate with
differing A2

1

Physically, a small A2
1 would be a short and thick plate. Whereas a large A2

1 would be a long

and thin plate. For reference, note that

L
d1

=
√

10A2
1. (2.122)

Thus A2
1 = 0.1 leads to L

d1
= 1 and A2

1 = 1000 to L
d1

= 100.

Tables 2.1-2.4 are intended to be used to obtain a quick solution for any A2
1 values in the

given range for this problem without needing to resolve. The tables can also be used to obtain

a quick perspective on the discrepancy the temperature profile would have if h̄ is used instead of

h(ξ ). To use the tables, first calculate the A2
1 value for the specific problem. Then, for q̃ = 1, the

maximum and minimum θ can be found from the tables for both h(ξ ) and h̄. For q̃ = ξ 2 + ξ ,
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the maximum θ , θmax, and its location can be found. Then the non-dimensionalizations can be

reversed and the actual temperature profile can be found.

Table 2.1: Laminar flow past a flat plate for a uniform heat generation, q̃ = 1

h(ξ ) h̄ ∆θ = θ(h(ξ ))−θ(h̄)
A2

1 θ(ξ = 0) θ(ξ = 1) θ(ξ = 0) θ(ξ = 1) ∆θ(ξ = 0) ∆θ(ξ = 1)
.01 49.93 50.104 50 50 -0.0666 0.109
.1 4.935 5.098 5 5 -0.0653 0.0984
1 0.444 .582 0.5 0.5 -0.0555 0.0824

10 0.0271 0.0816 0.05 0.05 -0.0229 0.0316
100 0.00124 .00950 0.005 0.005 -0.00376 0.00448
1000 0.0000574 0.000984 0.0005 0.0005 -0.000443 0.000484

Table 2.2: Turbulent flow past a flat plate for a uniform heat generation, q̃ = 1

h(ξ ) h̄ ∆θ = θ(h(ξ ))−θ(h̄)
A2

1 θ(ξ = 0) θ(ξ = 1) θ(ξ = 0) θ(ξ = 1) ∆θ(ξ = 0) ∆θ(ξ = 1)
.01 79.972 80.0274 80 80 -0.028 0.0274
.1 7.972 8.027 8 8 -0.028 0.027
1 0.775 0.824 0.8 0.8 -0.025 0.024
10 0.0667 0.0914 0.08 0.08 -0.0133 0.0114
100 0.00518 0.0098 0.008 0.008 -0.00282 0.0018
1000 0.000392 0.000994 0.0008 0.0008 -0.000408 0.000194

Table 2.3: Laminar flow past a flat plate for a varying heat generation, q̃ =−ξ 2 +ξ

h(ξ ) h̄ ∆θmax = θmax(h(ξ ))−θmax(h̄)
A2

1 θmax ξ θmax ξ ∆θmax ξ

.01 8.348 0.796 8.336 0.5 0.0172 1
.1 0.848 0.792 0.836 0.5 0.0169 1
1 0.0956 0.757 0.0856 0.5 0.0141 1
10 0.0133 0.636 0.00992 0.5 0.00492 1
100 0.00172 0.588 0.00120 0.5 0.000606 0.692
1000 0.000184 0.598 0.000125 0.5 0.0000692 0.688
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Table 2.4: Turbulent flow past a flat plate for a varying heat generation, q̃ =−ξ 2 +ξ

h(ξ ) h̄ ∆θmax = θmax(h(ξ ))−θmax(h̄)
A2

1 θmax ξ θmax ξ ∆θmax ξ

0.01 13.338 0.624 13.336 0.5 0.00474 1
0.1 1.338 0.629 1.336 0.5 0.00467 1
1 0.137 0.617 0.136 0.5 0.00412 1
10 0.0160 0.567 0.0152 0.5 0.00180 1
100 0.00204 0.538 0.00188 0.5 0.000229 0.725
1000 0.000218 0.543 0.000199 0.5 0.0000268 0.703
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CHAPTER 3. CONJUGATE HEAT TRANSFER BETWEEN TWO SOLIDS

3.1 Problem Introduction

Solid 1

Solid 2

x

q″
1
(x) q″

1
(x+Δx)

q″
2
(x+Δx)q″

2
(x) T

L

q″
i 
(x)

q(x)�

Figure 3.1: Conjugate heat transfer between two solids

This chapter considers the general problem presented in Figure 2.1, with the top subdomain

as a solid, solid 2, as shown in Figure 3.1. The left boundary condition in solid 2 is adiabatic and

the right boundary is a specified temperature, TL. Essentially, heat is generated in solid 1, transfered

across the interface to solid 2 and leaves the system through the right boundary. The interface heat

flux will be approximated by

q′′i (x) =U(x)(T1(x)−T2(x)) (3.1)

where U(x) is the conductance heat transfer coefficient that will perform identically to the convec-

tive heat transfer coefficient, h(x), but will be used for the solid-solid problem to avoid confusion

since h(x) is generally understood to be used between a fluid and a solid. The interface heat flux

contains the temperatures from both subdomains which causes this problem to be coupled. As
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done in Chapter 2 with h and q̇, let U(x) = U0Ũ(x) where U0 is the magnitude and Ũ(x) is a

dimensionless variation of U .

The interface heat flux will vary as a surface exposed to a laminar external fluid flow,

Ũ(x) = x−
1
2

L−
1
2

, where the heat transfer is greatest at x = 0 and decreases with increasing x. Thus the

heat will generally flow in a clockwise direction which is the same pattern that is observed for a

similar fluid-solid problem.

The boundary conditions for solid 2 were chosen with the intent to simulate a fluid-solid

problem but simplified by removing the advection terms from the fluid. The heat will flow in gen-

erally the same direction as for the fluid problem, clockwise. The temperature boundary condition

was chosen because it allows the heat to flow in this same pattern. Since this approach does not

appear to have been performed before in literature, it was hoped that insight may be revealed into

the fundamental phenomena of the coupling effects of conjugate heat transfer that may be masked

by the typically dominating effects of fluid advection.

The formulation of this problem may be causing some confusion with respect to the conju-

gate definitions given in Chapter 2. The conjugate boundary condition defined previously required

both the heat flux and the temperature to match at the interface. However this problem only has

a single heat flux boundary condition at the interface similar to a convective boundary condition.

Due to the assumption of one-dimension, the interface condition cannot match for both subdo-

mains, otherwise both would have identical temperature profiles. Also, since there is no variation

in the y-direction, the conjugate boundary condition equating the heat fluxes using Fourier’s Law

would not work since dT
dy = 0. Some may not consider this a conjugate problem due to the one-

dimensional approximation. However, the subdomains are still coupled and it is hoped to find

some insight into the coupling effects of conjugate heat transfer.

3.2 Analytical Solutions

The solution methods developed in Section 2.3, the integral equation, IE, and generalized

Bessel, GB, methods, are used to obtain solutions to this solid-solid problem for U(x). Two sepa-

rate solutions are used in order to verify that the solutions are correct. The integral equation method

as well as a transient solution will also be used for the Ū solution. The transient solution is being

used because the common solution method for h̄ developed in Section 2.3.1 was not evaluating
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well for this problem. Therefore a solution was found to the transient problem which will be used

with a large time, t, to obtain a steady-state solution. The final transient solution will be presented

below but the full worked out solution can be found in Appendix A.2.3.

The governing equation to be solved for solid 1 will be the same as found from the energy

balance in Chapter 2, Eqn. 2.18, with the same boundary conditions

d2θ1(ξ )

dξ 2 =
q′′i (ξ )
q̇0d1

− q̃(ξ ) (3.2)

dθ1

dξ

∣∣∣
ξ=0

= 0 (3.3)

dθ1

dξ

∣∣∣
ξ=1

= 0. (3.4)

Substituting in the interface heat flux, Eqn. 3.1, non-dimensionalized with the following

ξ =
x
L

(3.5)

θ1 =
k1

q̇0L2 (T1−TL) (3.6)

θ2 =
k1

q̇0L2 (T2−TL) (3.7)

A2
1 =

U0L2

k1d1
(3.8)

results in
d2θ1(ξ )

dξ 2 = A2
1ξ
− 1

2
(
θ1(ξ )−θ2(ξ )

)
− q̃(ξ ). (3.9)

Solid 2 will have the same governing equation as solid 1 except all subscripts will change

from 1 to 2, there is no volumetric heat generation and there is a sign change on the interface heat

flux since the energy is entering rather than leaving the subdomain. Defining

A2
2 =

U0L2

k2d2
(3.10)

the governing equation is
d2θ2(ξ )

dξ 2 =−A2
2ξ
− 1

2
(
θ1(ξ )−θ2(ξ )

)
(3.11)
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with boundary conditions
dT2

dx

∣∣∣
x=0

= 0 (3.12)

T2(L) = TL (3.13)

which non-dimensionalized are

dθ2

dξ

∣∣∣
ξ=0

= 0 (3.14)

θ2(1) = 0. (3.15)

The IE method can be solved with arbitrary functions so Ũ(ξ ) will be used rather than

specifying the function. The solution to Eqn. 3.9 using the IE method is

θ1 = c2 +
∫

ξ

0

∫
ξ ′

0

[
A2

1Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)
− q̃(ξ ′′)

]
dξ
′′dξ

′ (3.16)

where the constant is

c2 =−
1

A2
1
∫ 1

0 Ũ(ξ ′)dξ ′

∫ 1

0

[
A2

1Ũ(ξ ′)
(∫ ξ ′

0

∫
ξ ′′

0

[
A2

1Ũ(ξ ′′′)
(
θ1(ξ

′′′)−θ2(ξ
′′′)
)
− q̃(ξ ′′′)

]
dξ
′′′dξ

′′

−θ2(ξ
′)
)
− q̃(ξ ′)

]
dξ
′. (3.17)

The solution to Eqn. 3.11 for solid 2 is

θ2 =
∫ 1

0

∫
ξ ′

0

[
A2

2Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)]

dξ
′′dξ

′−
∫

ξ

0

∫
ξ ′

0

[
A2

2Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)]

dξ
′′dξ

′.

(3.18)

The full solutions can be found in Appendix A.2.1. This solution will be solved for both a variable

and an average heat transfer coefficient.
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The solution for the temperature field for solid 1 using the GB method for a variable heat

transfer coefficient, Ũ(ξ ) = ξ−
1
2 , is

θ1 = c2ξ
1
2 I− 2

3

(4
3

A1ξ
3
4

)
− 4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′ (3.19)

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

where the constant is

c2 =
4π

3
√

3

I− 1
3

(4
3A1
)

I1
3

(
4
3A1

) ∫ 1

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′ (3.20)

− 4π

3
√

3

∫ 1

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′.

The solution for the temperature field for solid 2 is

θ2 = c4ξ
1
2 I− 2

3

(4
3

A2ξ
3
4

)
−

4πA2
2

3
√

3
ξ

1
2 I2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′ (3.21)

+
4πA2

2

3
√

3
ξ

1
2 I− 2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′

where the constant is

c4 =
4πA2

2

3
√

3

I2
3

(4
3A2
)

I− 2
3

(
4
3A2

) ∫ 1

0
I− 2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′−
4πA2

2

3
√

3

∫ 1

0
I2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′. (3.22)

The full solutions can be found in Appendix A.2.2.

The transient solution for solid 1 is

θ1 = e−A2
1τ

[
θ0 +

∫
τ

0

∫ 1

0
(A2

1θ2(ξ ,τ)+ q̃(ξ ,τ))dξ eA2
1τ ′dτ

′
]

+2
∞

∑
n=1

cos(nπξ )e−((nπ)2+A2
1)τ
[∫ τ

0

∫ 1

0
(A2

1θ2(ξ ,τ)

+ q̃(ξ ,τ))cos(nπξ )dξ e((nπ)2+A2
1)τ
′
dτ
′
]

(3.23)
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where τ is the non-dimensional time, which is assumed large, τ→∞, for the steady-state solution.

The solution for solid 2 is

θ2 =
∞

∑
n=0

cos(
(2n+1)π

2
ξ )e−((

(2n+1)π
2 )2+A2

2)κτ

[ 4(−1)n

(2n+1)π
θ0

+2κA2
2

∫
τ

0

∫ 1

0
θ1(ξ ,τ)cos(

(2n+1)π
2

ξ )dξ e((
(2n+1)π

2 )2+A2
2)κτ ′dτ

′
]
. (3.24)

3.3 Analysis

The solutions presented above will now be analyzed. Only the temperature profile for solid

1, θ1, will be plotted for simplicity and since it is the temperature field of most interest. Since

the problem is coupled, an iterative solution is required for all cases. During solution evaluation,

convergence was monitored by how closely the interface heat rate matches the heat generation rate

in solid 1

A2
1

∫ 1

0
h̃(ξ )θ1(ξ )dξ =

∫ 1

0
q̃(ξ )dξ . (3.25)

The only parameters that can vary for the solutions are A2
1, A2

2, and q̃. It was anticipated

that the ratio A2
1

A2
2

would be consistent throughout solutions and the number of parameters could be

reduced even further. However, when looking at Figure 3.2a and 3.2d it can be clearly seen that

even though the ratio A2
1

A2
2
= 1 in both cases, the results are distinctly different. When looked at more

closely, the ratio is equal to k2d2
k1d1

, which can explain the fact that A2
1 and A2

2 cannot be combined.

The thermal conductivity, k, and the thickness, d, have competing conjugation effects. Increasing

k will essentially speed the flow of energy and increase the temperature uniformity in the solid and

decrease conjugation. However, increasing d will effectively slow the flow of energy by having

more volume to absorb the energy, thus increasing conjugation.

Figure 3.2 shows that the IE and GB solutions match well for the U(ξ ) case and the IE and

transient solutions match well for the Ū case. This gives confidence that the governing equations

were solved correctly. It can also be seen from the plots, that in general the U(ξ ) case has a higher

temperature than Ū , thus Ū tends to under predict the temperature. However, for small A2
2, it can

over predict the temperature at small ξ . It can also be noted that Ū is always highest at ξ = 0 and

lowest at ξ = 1 and generally has the same shape. Shape refers to the general slope of the profile,

47



(a) A2
1 = 0.1, A2

2 = 0.1 (b) A2
1 = 0.1, A2

2 = 10

(c) A2
1 = 10, A2

2 = 0.1 (d) A2
1 = 10, A2

2 = 10

GB U(ξ) IE U(ξ) IE U Transient U

Figure 3.2: Verification of solutions for θ1 for U(ξ ) and Ū for various A2
1 and A2

2

either being positive or negative. For the U(ξ ) case when A2
2 is high, the shape of the temperature

profile generally follows the shape for Ū . When A2
2 is low, the temperature profile flips and the

lowest temperature is at ξ = 0, as can be seen in Figures 3.2a and 3.2c. When A2
1 is high, the

difference between the U(ξ ) and the Ū solutions, ∆θ = θ1(U(ξ ))−θ1(Ū) is smaller and when A2
1

is low, ∆θ is greater. In other words, it seems that A2
2 tends to have more effect on the shape of θ1

and A2
1 has a greater effect on the magnitude of ∆θ . As A2

2 gets large the shape and magnitude of

θ1 approach that for Ū .
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Figure 3.3 is a plot of the temperature profile in solid 1 for varying A2
2 around the shape

transition value for A2
2. The transition from being the minimum temperature at ξ = 0 to the max-

imum temperature occurs around A2
2 = 2.25. The profiles have been brought together on the plot

by offsetting each profile by some various value in order to compare the profiles.

Figure 3.3: Plot of solid 1 temperature profiles that have been offset to show how the shape transi-
tions from a positive to negative slope with increasing A2

2

Figure 3.4 is a plot of ∆θ for varying A2 where A2
1 = A2

2 is true for all cases. The plot shows

that even though the shape of θ1 can be very different for different values of A2
1 = A2

2, as can be

seen in Figure 3.2, ∆θ still decreases for increasing A2. Thus for larger A2 values, the difference

between U(ξ ) and Ū solutions becomes smaller. This implies that there is less conjugation in

problems with larger A2 values.

Looking back at Figure 3.2, increasing A2
1 while holding A2

2 constant, comparing the top

plots to the bottom plots, decreases the temperature magnitude. On the other hand, increasing

A2
2 while holding A2

1 constant, comparing the left plots to the right plots, increases temperature

magnitude. This is because increasing A2
2 is essentially reducing the conductivity, or slowing the

flow of energy, and reducing the thickness, which decreases the amount of energy it can hold, of

solid 2. This is essentially reducing the amount of energy that can leave solid 1 thus increasing the

temperature of solid 1.
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Figure 3.4: The difference in temperature profiles between use of a variable and an average heat
transfer coefficient, ∆θ1 = θ1(h(ξ ))−θ1(h̄), for various A2

1 = A2
2 = A2

Figure 3.5 shows plots for various A2
1 for a low and a high value of A2

2 and Figure 3.6 shows

plots for various A2
2 for a low and a high value of A2

1. Increasing A2
1 while holding A2

2 constant

decreases ∆θ . On the other hand, increasing A2
2 while holding A2

1 constant increases ∆θ .

(a) A2
2 = 0.1 (b) A2

2 = 10

1 1 1 1

Figure 3.5: Plots of the temperature difference, ∆θ1 = θ1(h(ξ ))−θ1(h̄), in solid 1 for various A2
1

for a small and large A2
2
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(a) A2
1 = 0.1 (b) A2

1 = 10

Figure 3.6: Plots of the temperature difference, ∆θ1 = θ1(h(ξ ))−θ1(h̄), in solid 1 for various A2
2

for a small and large A2
1

Figure 3.7 is the same plot as Figure 3.2 except for a variable heat generation, q̃ =−ξ 2+ξ .

As before, the solutions match well and confidence can be had the equations were solved correctly.

The same trends as seen in Figure 3.2 appear to be present.
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(a) A2
1 = 0.1, A2

2 = 0.1 (b) A2
1 = 0.1, A2

2 = 10

(c) A2
1 = 10, A2

2 = 0.1 (d) A2
1 = 10, A2

2 = 10
GB U(ξ) IE U(ξ) IE U Transient U

Figure 3.7: Verification of solutions for θ1 for h(ξ ) and h̄ for differing A2
1 and A2

2 for q̃ =−ξ 2 +ξ
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CHAPTER 4. CONJUGATE HEAT TRANSFER BETWEEN A FLUID AND A SOLID

Solid

Fluid

x

q″
1
(x) q″

1
(x+Δx)

q″
adv
(x+Δx)q″

adv
(x)

T
L

q″
i 
(x)

q(x)�

q″
dif
(x) q″

dif
(x+Δx)

u T
0

Figure 4.1: Conjugate heat transfer between a fluid and a solid for an internal flow

4.1 Problem Introduction

This chapter considers the general problem presented in Chapter 2, Figure 2.1, with the top

subdomain as a fluid as shown in Figure 4.1. The left boundary condition in the fluid is an inlet

with a constant temperature, T0, and the right boundary is an outlet with a constant temperature,

TL. Essentially, heat is generated in the solid, transfered across the interface to the fluid and leaves

the system through the outlet boundary. The interface heat flux will be approximated by

q′′i = h(x)(T1(x)−T2(x)) (4.1)

where h(x) = h0h̃(x). As before, h0 is the magnitude and h̃(x) is the dimensionless variation of h.

As stated in Chapter 2 the purpose of this problem is to model an internal flow past a solid

that has a sufficient thickness to result in a significant variation in the solid temperature field. This
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scenario can be related to physical applications such as radiofrequency cardiac ablation where

blood flows through the heart and the heart tissue is being heated by an electrode. It can also relate

to electronics cooling where chips are cooled by forced convection inside electronic devices.

It was desired to solve this problem including both the diffusion and advection terms in

order to see how the solution changes as the fluid velocity becomes small, u→ 0, and diffusion

begins to be the dominate mode of heat transfer. However, appropriate boundary conditions could

not be found that accurately modeled the amount of energy leaving each boundary due to diffusion.

If the constant temperature boundary conditions are used when diffusion is considered, the results

can be as in Figure 4.2 where the fluid temperature, T2, becomes higher than the solid temperature,

T1. This unrealistic result comes from that fact that TL is calculated assuming all the generated

energy is leaving through the exit boundary. In reality, there may be some energy leaving through

the inlet boundary. Thus, the solution is only valid when advection dominates diffusion such that

diffusion has no effect on the inlet temperature. Kays suggests that the effect of axial diffusion is

small for Pe = 10 and completely negligible for Pe = 100. Also, axial diffusion can be important

in short heated sections [21]. This suggests that solutions for small Pe and A2 values could be

inaccurate.

Figure 4.2: Fluid and solid temperature profiles for a case when diffusion is considered in the fluid
with constant temperature boundary conditions

54



4.2 Energy Balance

Performing an energy balance on the fluid using the Law of Conservation of Energy

Ėin− Ėout + Ėgen = Ėst (4.2)

results in

q′′adv(x, t)wd2 +q′′di f (x, t)wd2−q′′adv(x+∆x, t)wd2−q′′di f (x+∆x, t)wd2

+h(x+
∆x
2
)
(

T1(x+
∆x
2
, t)−T2(x+

∆x
2
, t)
)

w∆x = ρ2cp2wd2∆x
∂T2(x, t)

∂ t
(4.3)

where q′′di f is the heat flux due to diffusion and q′′adv is the heat flux due to advection. Canceling w

and taking the limit as ∆x approaches zero

lim
∆x→0

−(q′′adv(x+∆x, t)−q′′adv(x, t)
∆x

d2 +
−(q′′di f (x+∆x, t)−q′′di f (x, t)

∆x
d2

+h(x+
∆x
2
)
(

T1(x+
∆x
2
, t)−T2(x+

∆x
2
, t)
)
= ρ2cp2d2∆x

∂T2(x, t)
∂ t

(4.4)

results in

−d2
∂q′′adv(x, t)

∂x
−d2

∂q′′di f (x, t)

∂x
+h(x)

(
T1(x, t)−T2(x, t)

)
= ρ2cp2d2

∂T2(x, t)
∂ t

. (4.5)

The heat fluxes will be represented as

q′′di f =−k2
dT2(x, t)

dx
(4.6)

q′′adv =
ṁcp2T2(x, t)

Ac
(4.7)

where Ac is the fluid cross-sectional area

−
d2ṁcp2

Ac

∂T2(x, t)
∂x

+d2k2
∂ 2T2(x, t)

∂x2 +h(x)
(

T1(x, t)−T2(x, t)
)
= ρ2cp2d2

∂T2(x, t)
∂ t

. (4.8)
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Rearranging and recalling that ṁ = ρ2uAc and α2 =
k2

ρ2cp2
results in

∂ 2T2(x, t)
∂x2 − u

α2

∂T2(x, t)
∂x

=
1

α2

∂T2(x, t)
∂ t

− h(x)
k2d2

(
T1(x, t)−T2(x, t)

)
(4.9)

T2(0, t) = T0 (4.10)

T2(L, t) = TL (4.11)

T2(x,0) = T0. (4.12)

Non-dimensionalize with the following

ξ =
x
L

(4.13)

θ1 =
k1

q̇0L2 (T2) (4.14)

θ2 =
k1

q̇0L2 (T2) (4.15)

τ =
α1t
L2 (4.16)

A2
2 =

h0L2

k2d2
(4.17)

Pe =
uL
α2

(4.18)

κ =
α2

α1
(4.19)

where Pe is the Pectlet number. The governing equation and boundary conditions become

∂ 2θ2(ξ )

∂ξ 2 −Pe
∂θ2(ξ )

∂ξ
=

1
κ

∂θ2(ξ ,τ)

∂τ
−A2

2h̃(ξ )(θ1(ξ )−θ2(ξ )) (4.20)

θ2(0,τ) = θ0 (4.21)

θ2(1,τ) = θL (4.22)

θ2(ξ ,0) = θ0. (4.23)
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Note that for small A2
2

A2
1Pe

, the second term becomes negligible and θL = θ0 which means θ2 is

essentially a constant. Removing the transient term results in

∂ 2θ2(ξ )

∂ξ 2 −Pe
∂θ2(ξ )

∂ξ
=

1
κ

∂θ2(ξ ,τ)

∂τ
−A2

2h̃(ξ )(θ1(ξ )−θ2(ξ )). (4.24)

Assuming all the energy in the system leaves through the outlet boundary, the outlet temperature

can be determined by equating the heat generation in the solid to the heat flux leaving the outlet

θL = θ0 +
A2

2
A2

1Pe

∫ 1

0
q̃(ξ )dξ . (4.25)

4.3 Analytical Solutions

The solutions for the solid will be the same as those found for solid 1 in the solid-solid prob-

lem in Chapter 3. The generalized Bessel method can be used to find a solution for the fluid gov-

erning equation. However, evaluating the resulting solution can be difficult. The non-dimensional

temperature for the fluid is

θ2 = ξ
1
2 e

Pe
2 ξ

[
c1I2

3

(
B2(ξ )ξ

3
4

)
+ c2I− 2

3

(
B2(ξ )ξ

3
4

)]
(4.26)

−
A2

2π√
3

ξ
1
2 e

Pe
2 ξ I2

3

(
B2(ξ )ξ

3
4

)∫ ξ

0
e−

Pe
2 ξ ′I− 2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

+
A2

2π√
3

ξ
1
2 e

Pe
2 ξ I− 2

3

(
B2(ξ )ξ

3
4

)∫ ξ

0
e−

Pe
2 ξ ′I2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

with constants

c1 =
θL

e
Pe
2 I2

3

(
B2(ξ )

) − c2

I− 2
3

(
B2(ξ )

)
I2

3

(
B2(ξ )

) +
A2

2π√
3

∫ 1

0
e−

Pe
2 ξ ′I− 2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

(4.27)

−
A2

2π√
3

I− 2
3

(
B2(ξ )

)
I2

3

(
B2(ξ )

) ∫ 1

0
e−

Pe
2 ξ ′I2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

57



and

c2 =
2

5
3 A

2
3
2 π

3
7
6 Γ(2

3)
θ0 (4.28)

where

B2(ξ ) =
4
3

√
(
Pe

2
)2ξ

1
2 +A2

2. (4.29)

All terms are now multiplied by an additional function of ξ , e
Pe
2 ξ . Also, inside the Bessel function,

4
3

√
(Pe

2 )
2ξ

1
2 +A2

2, does not simply as did for the solid and thus there are multiple terms that contain

ξ . These make the integrals more difficult to evaluate and temperature profiles could not be found.

Only one solution was able to be evaluated consistently enough to plot any results. This

solution used the technique from the integral equation method to lump the term with h into the

source term. This allows an integral transformation, ψ(ξ ) = dθ2(ξ )
dξ

, to be used to convert the

second order governing equation to first order

dψ(ξ )

dξ
−Peψ(ξ ) =−A2

2h̃(ξ )
(
θ1(ξ )−θ2(ξ )

)
. (4.30)

An integrating factor was used to solve, resulting in

θ2(ξ ) = θ0 +
(ePeξ −1)
(ePe−1)

[
A2

2
∫ 1

0 q̃(ξ )dξ

A2
1Pe

+
∫ 1

0
ePeξ

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′dξ

]
(4.31)

−
∫

ξ

0
ePeξ

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′dξ .

The full solution can be found in Appendix A.3.1

It will be required that Pe > 50 to make sure that diffusion does not affect the inlet tem-

perature and lead to misleading results. Even though solutions to the problem were obtained, they

could only be evaluated for a very limited range of parameter values. Due to the difficulty in ob-

taining evaluable solutions, the results were not verified with other solution methods as has been

done in the other chapters.
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4.4 Analysis

Only a few temperature profiles for the fluid-solid problem were able to be obtained. The

plots in Figure 4.3 are for the non-dimensional temperature profile for the solid, θ1, for various

values of A2
1, A2

2 and Pe for h(ξ ) and h̄. It can be seen that for small A2
2, changing Pe seems to have

little effect on the temperature profile. For large A2
2, increasing Pe reduces the temperature with

the greatest effect at ξ = 1. The only case where the average heat transfer coefficient over predicts

the temperature is for a small A2
1 and a large A2

2. As observed with the other problems in this work,

increasing A2
1 decreases the temperature magnitude. In general, larger A2 values and smaller Pe,

increase the variation in the temperature profile in the average heat transfer coefficient case.

(a) A2
1 = 0.1, A2

2 = 0.1 (b) A2
1 = 0.1, A2

2 = 10

(c) A2
1 = 10, A2

2 = 0.1 (d) A2
1 = 10, A2

2 = 10

Figure 4.3: Plots for the non-dimensional temperature profile for the solid, θ1, with various A2
1, A2

2
and Pe for h(ξ ) and h̄
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CHAPTER 5. CONCLUSION

5.1 Summary

The purpose of this work was to attempted to provide a more clear explanation of conjugate

heat transfer than is currently in literature. Conjugate heat transfer was defined as the modeling

of thermal interactions between coupled unique subdomains with varying and unknown interface

boundary conditions. The term unique refers to differences between the subdomains’ differential

equations, material properties or boundary conditions. A conjugate approach is the proper way

to solve heat transfer problems. Approximations such as using a heat transfer coefficient make

solving heat transfer problems easier but results in a less accurate solution of the temperature field.

A common misconception about conjugate heat transfer is that it only considers heat trans-

fer between a fluid and a solid. As shown in Chapter 3, any coupled problem can be considered

conjugate even if it is between two solids.

The Brun number, a non-dimensional number previously developed in literature to judge

the conjugation of a specific problem, was discussed and shown that it is essentially a Biot number

as suggested by Dorfman [12]. The Brun number does not work in all situations and thus there

is no universal parameter for all cases to predict whether a problem needs to be solved with a

conjugate approach.

This work attempted to determine the discrepancy in the temperature field that arises be-

tween using a local, or variable, heat transfer coefficient and an average heat transfer coefficient.

Simple one-dimensional conjugate problems were presented and solved analytically. The problems

contained a variable coefficient in the governing equation for which the common methods to solve

the differential equation are no longer valid. Two methods, the integral equation and generalized

Bessel methods were developed and presented to handle the variable coefficient. The generalized

Bessel method had previously only been used with homogeneous governing equations [16]. This

work extended the use of the generalized Bessel method to non-homogeneous problems by de-
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veloping a general relation for the Wronskian of the general solution to the generalized Bessel

equation. The relation is

W
(

xmeβxIν

(
b(x)xp),xmeβxI−ν

(
b(x)xp))=−(xmeβx)2 2sin(πν)

πb(x)xp
d(b(x)xp)

dx
. (5.1)

This relation allows the generalized Bessel equation to be used for non-homogeneous problems

which enables variable heat transfer coefficients to be used in analysis of differential equations.

The solution methods developed may not be useful for conjugate problems due to the dif-

ficulty evaluating the resulting solutions. However, they can be beneficial to solve decoupled

problems by increasing solution accuracy by allowing to use variable convective heat transfer

coefficient instead of needing to use an average convective heat transfer coefficient. Although,

improved and more robust solution evaluation techniques could allow these solutions to be used

more widely.

A flat plate problem was solved in Chapter 2 using the developed solution methods. The

results agree with Dorfman [12] that there is less conjugation for turbulent flow. The parameter of

interest that was varied throughout the solutions is

A2
1 =

h0d1

k1

L2

d2
1
= Bi

L2

d2
1
. (5.2)

Thus, for these one-dimensional problems, the value for A2
1 is dominated by the aspect ratio L2

d2
1
. A

large A2
1 represents a long and thin plate whereas a small A2

1 results from a short and thick plate. It

was found that larger A2
1 leads to less problem conjugation. Therefore, conjugation is less in a long,

thin plate. Also, use of an average heat transfer coefficient over a variable heat transfer coefficient

tends to generally under predict the plate temperature.

Tables were developed that allow the temperature profile for the flat plate problem to be

quickly found for various A2
1 by simply calculating A2

1 for the specific problem. The discrepancy

between the average and variable heat transfer coefficient solution can also be found.

Chapter 3 analyzed a conjugate problem between two one-dimensional solids. The same

trends found from the flat plate problem were observed. In addition is was found that A2
2 tends to
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have more effect on the shape of the temperature profile of solid 1 and A2
1 has a greater effect on the

magnitude of the difference in temperature profiles between the use of an average and variable heat

transfer coefficient. The slope of the temperature profile for the average heat transfer coefficient

case is always negative. However, the variable heat transfer coefficient case has a positive slope for

small A2
2 and transitions to a negative slope for larger A2

2. Thus, using an average heat transfer co-

efficient can give opposite conclusions in some cases. In general increasing the A2 values reduced

conjugation. However, increasing A2
2 while holding A2

1 constant increases conjugation.

5.2 Future Work

This work compared the temperature fields obtained when using a variable heat transfer

coefficient and an average heat transfer coefficient to see the affect averaging the heat transfer

coefficient has on the temperature field. It would be useful to compare a variable heat transfer

coefficient to a fully conjugate solution. This would required two-dimensional analysis and would

give improved understanding of the error that arises from using and average heat transfer coeffi-

cient.

Dorfman [12] suggests that conjugate effects can be more significant for transient problems.

It would be useful to analyze transient problems and see how the error of using h̄ changes with time.

This would be especially useful for radiofrequency cardiac ablation where the heating time could

be reduced if the time-dependent temperature field were better understood.
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APPENDIX A. ANALYTICAL SOLUTIONS

This appendix contains development of solutions used throughout each chapter.

A.1 The Common Solution Method for a Constant Coefficient is Not Valid for a Variable
Coefficient

Return to the governing equation, Eqn. 2.26, but for mathematical simplicity let h̃(ξ ) be

squared,
d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )2

θ1(ξ ) =−q̃(ξ ) (A.1)

and try to solve using the commonly used general solution for an average heat transfer coefficient,

h̄, but with a variable coefficient, h(ξ ). The homogeneous equation would first be solved

d2θ1(ξ )

dξ 2 −A2
1h̃(ξ )θ1(ξ ) = 0. (A.2)

At first glance this differential equation looks familiar and the general solution from any introduc-

tory differential equation textbook would be used

θ1(x) = c1 cosh(A1h̃(ξ )ξ )+ c2 sinh(A1h̃(ξ )ξ ). (A.3)

This solution to the differential equation can be checked by substituting it back into the differential

equation, Eqn. A.2,

0 = c1
d2 cosh(A1h̃(ξ )ξ )

dξ 2 + c2
d2 sinh(A1h̃(ξ )ξ )

dξ 2

− c1A2
1h̃(ξ )cosh(A1h̃(ξ )ξ )− c2A2

1h̃(ξ )sinh(A1h̃(ξ )ξ ). (A.4)
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Evaluating the derivatives once gives

0 = c1
d

dξ
[
d(A1h̃(ξ )ξ )

dξ
sinh(A1h̃(ξ )ξ )]+ c2

d
dξ

[
d(A1h̃(ξ )ξ )

dξ
cosh(A1h̃(ξ )ξ )]

− c1A2
1h̃(ξ )cosh(A1h̃(ξ )ξ )− c2A2

1h̃(ξ )sinh(A1h̃(ξ )ξ ) (A.5)

and evaluating the derivatives again

0 = c1
d2(A1h̃(ξ )ξ )

dξ 2 sinh(A1h̃(ξ )ξ )+ c1

(d(A1h̃(ξ )ξ )
dξ

)2
cosh(A1h̃(ξ )ξ )

+ c2
d2(A1h̃(ξ )ξ )

dξ 2 cosh(A1h̃(ξ )ξ )+ c2

(d(A1h̃(ξ )ξ )
dξ

)2
sinh(A1h̃(ξ )ξ )

− c1A2
1h̃(ξ )cosh(A1h̃(ξ )ξ )− c2A2

1h̃(ξ )sinh(A1h̃(ξ )ξ ). (A.6)

Performing the product rule on the derivatives

0 = c1[
d2(h̃(ξ ))

dξ 2 ξ +2
d(h̃(ξ ))

dξ
]A1 sinh(A1h̃(ξ )ξ )

+ c1[
(d(h̃(ξ ))

dξ
ξ

)2
+2

d(h̃(ξ ))
dξ

h̃(ξ )ξ + h̃(ξ )2]A2
1 cosh(A1h̃(ξ )ξ )

+ c2[
d2(h̃(ξ ))

dξ 2 ξ +2
d(h̃(ξ ))

dξ
]A1 cosh(A1h̃(ξ )ξ )

+ c2[
(d(h̃(ξ ))

dξ
ξ

)2
+2

d(h̃(ξ ))
dξ

h̃(ξ )ξ + h̃(ξ )2]A2
1 sinh(A1h̃(ξ )ξ )

− c1A2
1h̃(ξ )2 cosh(A1h̃(ξ )ξ )− c2A2

1h̃(ξ )2 sinh(A1h̃(ξ )ξ ) (A.7)

and removing canceling terms and rearranging results in

0 = [
d2(h̃(ξ ))

dξ 2 ξ +2
d(h̃(ξ ))

dξ
][c2 cosh(A1h̃(ξ )ξ )+ c1 sinh(A1h̃(ξ )ξ )]

+ [
(d(h̃(ξ ))

dξ
ξ

)2
+2

d(h̃(ξ ))
dξ

h̃(ξ )ξ ][c2A1 sinh(A1h̃(ξ )ξ )+ c1A1 cosh(A1h̃(ξ )ξ )] (A.8)

The above equation is not true for an arbitrary h̃(ξ ) and it is unclear if there is any h̃(ξ )

that could satisfy the equation. If h̃ is constant all the derivatives are equal to zero and Eqn A.8 is

a true statement.
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The general solutions that are commonly used for differential equations with constant co-

efficients no longer apply when the coefficients are variable.

A.2 One-Dimensional Conjugate Heat Transfer Between Two Solids

A.2.1 Integral Equation Method Solution

A.2.1.1 Solution for Solid 1

The governing equation to be solved is

d2θ1(ξ )

dξ 2 = A2
1Ũ(ξ )

(
θ1(ξ )−θ2(ξ )

)
− q̃(ξ ) (A.9)

with boundary conditions
dθ1

dξ

∣∣∣
ξ=0

= 0 (A.10)

dθ1

dξ

∣∣∣
ξ=1

= 0. (A.11)

Integrate once
dθ1

dξ
= c1 +

∫
ξ

0

[
A2

1Ũ(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)
− q̃(ξ ′)

]
dξ
′ (A.12)

and again

θ1 = c2 + c1ξ +
∫

ξ

0

∫
ξ ′

0

[
A2

1Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)
− q̃(ξ ′′)

]
dξ
′′dξ

′. (A.13)

Apply the first boundary condition, Eqn. A.10

c1 = 0. (A.14)

Apply the second boundary condition, Eqn. A.11

0 =
∫ 1

0

[
A2

1Ũ(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)
− q̃(ξ ′)

]
dξ
′. (A.15)
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Substituting in θ1

0=
∫ 1

0

[
A2

1Ũ(ξ ′)
(

c2+
∫

ξ ′

0

∫
ξ ′′

0

[
A2

1Ũ(ξ ′′′)
(
θ1(ξ

′′′)−θ2(ξ
′′′)
)
− q̃(ξ ′′′)

]
dξ
′′′dξ

′′−θ2(ξ
′)
)
− q̃(ξ ′)

]
dξ
′

(A.16)

and solving for c2 results in

c2 =−
1

A2
1
∫ 1

0 Ũ(ξ ′)dξ ′

∫ 1

0

[
A2

1Ũ(ξ ′)
(∫ ξ ′

0

∫
ξ ′′

0

[
A2

1Ũ(ξ ′′′)
(
θ1(ξ

′′′)−θ2(ξ
′′′)
)
− q̃(ξ ′′′)

]
dξ
′′′dξ

′′

−θ2(ξ
′)
)
− q̃(ξ ′)

]
dξ
′. (A.17)

The temperature profile is

θ1 = c2 +
∫

ξ

0

∫
ξ ′

0

[
A2

1Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)
− q̃(ξ ′′)

]
dξ
′′dξ

′ (A.18)

A.2.1.2 Solution for Solid 2

The governing equation to be solved is

d2θ2(ξ )

dξ 2 =−A2
2Ũ(ξ )

(
θ1(ξ )−θ2(ξ )

)
(A.19)

with boundary conditions
dθ2

dξ

∣∣∣
ξ=0

= 0 (A.20)

θ2(1) = 0. (A.21)

Integrating once
dθ2

dξ
= c3−

∫
ξ

0

[
A2

2Ũ(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′ (A.22)

and again results in

θ2 = c4 + c3ξ −
∫

ξ

0

∫
ξ ′

0

[
A2

2Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)]

dξ
′′dξ

′ (A.23)
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Apply the first boundary condition at ξ = 0

c3 = 0 (A.24)

Apply the second boundary condition at ξ = 1

c4 =
∫ 1

0

∫
ξ ′

0

[
A2

2Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)]

dξ
′′dξ

′ (A.25)

and the temperature profile becomes

θ2 =
∫ 1

0

∫
ξ ′

0

[
A2

2Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)]

dξ
′′dξ

′

−
∫

ξ

0

∫
ξ ′

0

[
A2

2Ũ(ξ ′′)
(
θ1(ξ

′′)−θ2(ξ
′′)
)]

dξ
′′dξ

′. (A.26)

A.2.2 Generalized Bessel Method Solution

A.2.2.1 Solution for Solid 1

The governing equation to be solved is

d2θ1(ξ )

dξ 2 −A2
1Ũ(ξ )θ1(ξ ) =−A2

1Ũ(ξ )θ2(ξ )− q̃(ξ ) (A.27)

Let

Ũ(ξ ) = ξ
− 1

2 (A.28)

d2θ1(ξ )

dξ 2 −A2
1ξ
− 1

2 θ1(ξ ) =−A2
1ξ
− 1

2 θ2(ξ )− q̃(ξ ) (A.29)

with boundary conditions
dθ1

dξ

∣∣∣
ξ=0

= 0 (A.30)

dθ1

dξ

∣∣∣
ξ=1

= 0. (A.31)
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The solution to the differential equation is the sum of the homogeneous and particular solutions

θ1 = θ1h +θ1p. (A.32)

The homogeneous equation is

d2θ1h(ξ )

dξ 2 −A2
1ξ
− 1

2 θ1h(ξ ) = 0. (A.33)

Using the generalized Bessel equation

d2R
dξ 2 +

[1−2m
ξ
−2α

]dR
dξ

+
[

p2a2
ξ

2p−2 +α
2 +

α(2m−1)
ξ

+
m2− p2ν2

ξ 2

]
R = 0 (A.34)

with solution

R = ξ
meαξ

[
c1Jν(aξ

p)+ c2Yν(aξ
p)
]

(A.35)

or if ν is not an integer

R = ξ
meαξ

[
c1Jν(aξ

p)+ c2J−ν(aξ
p)
]
. (A.36)

The coefficients for the given differential equation are

m =
1
2

(A.37)

α = 0 (A.38)

p =
3
4

(A.39)

ν =
2
3

(A.40)

a =
4
3

iA1 (A.41)

thus the general solution is

θ1h = ξ
1
2

[
c1J2

3

(4
3

iA1ξ
3
4

)
+ c2J− 2

3

(4
3

iA1ξ
3
4

)]
(A.42)
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or

θ1h = ξ
1
2

[
c1I2

3

(4
3

A1ξ
3
4

)
+ c2I− 2

3

(4
3

A1ξ
3
4

)]
. (A.43)

The Wronskian is

W (ξ
1
2 I2

3
(
4
3

A1ξ
3
4 ),ξ

1
2 I− 2

3
(
4
3

A1ξ
3
4 )) =

∣∣∣∣∣∣ ξ
1
2 I2

3

(
4
3A1ξ

3
4

)
ξ

1
2 I− 2

3

(
4
3A1ξ

3
4

)
3
4

4
3A1ξ

1
4 I− 1

3

(
4
3A1ξ

3
4

)
3
4

4
3A1ξ

1
4 I1

3

(
4
3A1ξ

3
4

)
∣∣∣∣∣∣

=−3
√

3
4π

(A.44)

Use the method of variation of parameters to obtain the particular solution

θ1p =−ξ
1
2 I2

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I− 2

3

(4
3

A1ξ
′

3
4
)(−A2

1ξ ′
− 1

2
θ2(ξ

′)− q̃(ξ ′)
)

−3
√

3
4π

dξ
′ (A.45)

+ξ
1
2 I− 2

3

(4
3

A1ξ
3
4

)∫ ξ

0
ξ
′

1
2 I2

3

(4
3

A1ξ
′

3
4
)(−A2

1ξ ′
− 1

2
θ2(ξ

′)− q̃(ξ ′)
)

−3
√

3
4π

dξ
′.

Rearranging

θ1p =−
4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′ (A.46)

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

and substituting back into the solution results in

θ1 = ξ
1
2

[
c1I2

3

(4
3

A1ξ
3
4

)
+ c2I− 2

3

(4
3

A1ξ
3
4

)]
(A.47)

− 4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′.
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Differentiate

dθ1

dξ
= A1ξ

1
4

[
c1I− 1

3

(4
3

A1ξ
3
4

)
+ c2I1

3

(4
3

A1ξ
3
4

)]
(A.48)

− 4π

3
√

3
A1ξ

1
4 I− 1

3

(4
3

A1ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

− 4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4
)
I− 2

3

(4
3

A1ξ
3
4
)(

A2
1θ2(ξ )+ξ

1
2 q̃(ξ ′)

)
+

4π

3
√

3
A1ξ

1
4 I1

3

(4
3

A1ξ
3
4
)∫ ξ

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4
)
I2

3

(4
3

A1ξ
3
4
)(

A2
1θ2(ξ )+ξ

1
2 q̃(ξ ′)

)
The 3rd and last term cancel

dθ1

dξ
= A1ξ

1
4

[
c1I− 1

3

(4
3

A1ξ
3
4

)
+ c2I1

3

(4
3

A1ξ
3
4

)]
(A.49)

− 4π

3
√

3
A1ξ

1
4 I− 1

3

(4
3

A1ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

+
4π

3
√

3
A1ξ

1
4 I1

3

(4
3

A1ξ
3
4
)∫ ξ

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

Apply first boundary condition at ξ = 0

0 =
[
c1ξ

1
4 I− 1

3

(
ξ

3
4

)
+ c2ξ

1
4 I1

3

(
ξ

3
4

)]∣∣∣
ξ=0

(A.50)

lim
ξ→0

ξ
1
4 I− 1

3

(
ξ

3
4

)
−→ 2

1
3

(4
3A1)

1
3 Γ(2

3)
(A.51)

ξ
1
4 I1

3

(
ξ

3
4

)∣∣∣
ξ=0

= 0 (A.52)

c1 = 0 (A.53)
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Apply second boundary condition at ξ = 1

0 = c2A1I1
3

(4
3

A1

)
(A.54)

− 4π

3
√

3
A1I− 1

3

(4
3

A1
)∫ 1

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

+
4π

3
√

3
A1I1

3

(4
3

A1
)∫ 1

0
I2

3

(4
3

A1ξ
′

3
4 )((A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

c2 =
4π

3
√

3

I− 1
3

(4
3A1
)

I1
3

(
4
3A1

) ∫ 1

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′ (A.55)

− 4π

3
√

3

∫ 1

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′

The temperature profile is

θ1 = c2ξ
1
2 I− 2

3

(4
3

A1ξ
3
4

)
− 4π

3
√

3
ξ

1
2 I2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′ (A.56)

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A1ξ
3
4
)∫ ξ

0
I2

3

(4
3

A1ξ
′

3
4 )(A2

1θ2(ξ
′)+ξ

′
1
2 q̃(ξ ′)

)
dξ
′.

A.2.2.2 Solution for Solid 2

The governing equation to be solved is

d2θ2(ξ )

dξ 2 −A2
2ξ
− 1

2 θ2(ξ ) =−A2
2ξ
− 1

2 θ1(ξ ) (A.57)

with boundary conditions
∂θ2

∂ξ

∣∣
ξ=0 = 0 (A.58)

θ2(1) = 0 (A.59)
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The solution to the differential equation is the sum of the homogeneous and particular solutions

θ2 = θ2h +θ2p. (A.60)

The homogeneous solution and Wronskian are the same as for solid 1

θ2h = ξ
1
2

[
c3I2

3

(4
3

A2ξ
3
4

)
+ c4I− 2

3

(4
3

A2ξ
3
4

)]
(A.61)

W =−3
√

3
4π

. (A.62)

The particular solution will also be the same as solid 1 except q̃(ξ ) = 0

θ2p =−
4π

3
√

3
ξ

1
2 I2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A2ξ
′

3
4 )(A2

2θ1(ξ
′)
)

dξ
′ (A.63)

+
4π

3
√

3
ξ

1
2 I− 2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I2

3

(4
3

A2ξ
′

3
4 )(A2

2θ1(ξ
′)
)

dξ
′.

θ2 = ξ
1
2

[
c3I2

3

(4
3

A2ξ
3
4

)
+ c4I− 2

3

(4
3

A2ξ
3
4

)]
− 4π

3
√

3
A2

2ξ
1
2 I2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′

(A.64)

+
4π

3
√

3
A2

2ξ
1
2 I− 2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′

Apply the first boundary condition at ξ = 0

0 = A2ξ
1
4

[
c3I− 1

3

(4
3

A2ξ
3
4

)
+ c4I1

3

(4
3

A2ξ
3
4

)]
ξ=0

(A.65)

noting that

lim
ξ→0

A2ξ
1
4 c4I1

3

(4
3

A2ξ
3
4

)
−→ 0 (A.66)

and

lim
ξ→0

A2ξ
1
4 c3I− 1

3

(4
3

A2ξ
3
4

)
−→ 3

4
2

1
3 (4

3A2)
2
3

Γ(2
3)

(A.67)
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which results in

c3 = 0. (A.68)

Apply the second boundary condition at ξ = 1

0 = c4I− 2
3

(4
3

A2

)
− 4π

3
√

3
A2

2I2
3

(4
3

A2
)∫ 1

0
I− 2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′ (A.69)

+
4π

3
√

3
A2

2I− 2
3

(4
3

A2
)∫ 1

0
I2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′.

Solving for the constant

c4 =
4πA2

2

3
√

3

I2
3

(4
3A2
)

I− 2
3

(
4
3A2

) ∫ 1

0
I− 2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′−
4πA2

2

3
√

3

∫ 1

0
I2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′ (A.70)

the temperature profile is

θ2 = c4ξ
1
2 I− 2

3

(4
3

A2ξ
3
4

)
−

4πA2
2

3
√

3
ξ

1
2 I2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I− 2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′ (A.71)

+
4πA2

2

3
√

3
ξ

1
2 I− 2

3

(4
3

A2ξ
3
4
)∫ ξ

0
I2

3

(4
3

A2ξ
′

3
4 )

θ1(ξ
′)dξ

′.

A.2.3 Transient Solution for an Average Heat Transfer Coefficient

A.2.3.1 Solution for Solid 1

The governing equation to be solved is

∂ 2θ1(ξ ,τ)

∂ξ 2 −A2
1θ1(ξ ,τ) =

∂θ1(ξ ,τ)

∂τ
−A2

1θ2(ξ ,τ)− q̃(ξ ,τ). (A.72)

Let g(ξ ,τ) =−A2
1θ2(ξ ,τ)− q̃(ξ ,τ) and the equation becomes

∂ 2θ1(ξ ,τ)

∂ξ 2 −A2
1θ1(ξ ,τ) =

∂θ1(ξ ,τ)

∂τ
+g(ξ ,τ) (A.73)

with boundary conditions
dθ1

dξ

∣∣∣
ξ=0

= 0 (A.74)
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dθ1

dξ

∣∣∣
ξ=1

= 0 (A.75)

θ1(ξ ,0) = θ0. (A.76)

First, look at the homogeneous case

∂ 2θ1h(ξ ,τ)

∂ξ 2 −A2
1θ1h(ξ ,τ) =

∂θ1h(ξ ,τ)

∂τ
(A.77)

Using separation of variables and assuming a solution of the form θ1h(ξ ,τ) = φ(ξ )a(τ)

∂ 2φ(ξ )

∂ξ 2 a(τ)−A2
1φ(ξ )a(τ) =

∂a(τ)
∂τ

φ(ξ ) (A.78)

and defining a separation constant, −λ 2

1
φ(ξ )

∂ 2φ(ξ )

∂ξ 2 −A2
1 =

1
a(τ)

∂a(τ)
∂τ

=−λ
2 (A.79)

results in
d2φ(ξ )

dξ 2 +(λ 2−A2
1)φ(ξ ) = 0. (A.80)

The general solution is

φ(ξ ) = c2 cos(
√

λ 2−A2
1ξ )+ c3 sin(

√
λ 2−A2

1ξ ). (A.81)

Differentiate

dφ(ξ )

dξ
=−c2

√
λ 2−A2

1 sin(
√

λ 2−A2
1ξ )+ c3

√
λ 2−A2

1 cos(
√

λ 2−A2
1ξ ) (A.82)

Apply the boundary condition at ξ = 0

c3 = 0. (A.83)

Apply the boundary condition at ξ = 1,

0 =−c2

√
λ 2−A2

1 sin(
√

λ 2−A2
1) (A.84)
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c2 = 0 gives the trivial solution and thus sin(
√

λ 2−A2
1) = 0 must be true, which means

√
λ 2−A2

1 = nπ (A.85)

and the separation constant is

λ =
√

(nπ)2 +A2
1. (A.86)

The spatial eigenfunction is

φn(ξ ) = cos(nπξ ) (A.87)

and the transient temperature profile is

θ1 =
∞

∑
n=0

φn(ξ )an(τ) (A.88)

Eigenfunction expansion of g(ξ ,τ)

g(ξ ,τ) =
∞

∑
n=0

Gn(τ)φn(ξ ) (A.89)

Integrate both side of the equation

∫ 1

0
g(ξ ,τ)cos(mπξ )dξ =

∞

∑
n=0

Gn(τ)
∫ 1

0
cos(nπξ )cos(mπξ )dξ . (A.90)

Note that

∫ 1

0
cos(nπξ )cos(mπξ )dξ =


1
2 if n = m

1 if n = m = 0

0 if n 6= m

(A.91)

and solve for the expansion coefficient

Gn(τ) = 2
∫ 1

0
g(ξ ,τ)cos(nπξ )dξ . (A.92)

Note that for n = 0

G0(τ) =
∫ 1

0
g(ξ ,τ)dξ . (A.93)
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Substitute into governing equation

∞

∑
n=0

d2φn(ξ )

dξ 2 an(τ)−A2
1

∞

∑
n=0

φn(ξ )an(τ) =
∞

∑
n=0

φn(ξ )
dan(τ)

dτ
+

∞

∑
n=0

Gn(τ)φn(ξ ) (A.94)

and note that d2φn(ξ )
dξ 2 =−(λ 2−A2

1)φ(ξ ),

−
∞

∑
n=0

(λ 2−A2
1)φn(ξ )an(τ)−A2

1

∞

∑
n=0

φn(ξ )an(τ) =
∞

∑
n=0

φn(ξ )
dan(τ)

dτ
+

∞

∑
n=0

Gn(τ)φn(ξ ) (A.95)

∞

∑
n=0

[dan(τ)

dτ
+λ

2an(τ)
]
φn(ξ ) =−

∞

∑
n=0

Gn(τ)φn(ξ ) (A.96)

dan(τ)

dτ
+λ

2an(τ) =−Gn(τ) (A.97)

Solve using the integrating factor eλ 2τ

eλ 2τ
[dan(τ)

dτ
+λ

2an(τ)
]
=−Gn(τ)eλ 2τ (A.98)

d
dτ

[
eλ 2τan(τ)

]
=−Gn(τ)eλ 2τ (A.99)

Integrate both sides

eλ 2τan(τ)+Cn =−
∫

τ

0
Gn(τ

′)eλ 2τ ′dτ
′ (A.100)

an(τ) = e−λ 2τ [−Cn−
∫

τ

0
Gn(τ

′)eλ 2τ ′dτ
′] (A.101)

Sub into Eqn. A.88 and apply the initial condition

θ0 =
∞

∑
n=0

[
−Cn

]
cos(nπξ ) (A.102)

Integrate both side of the equation

∫ 1

0
θ0 cos(mπξ )dξ =−

∞

∑
n=0

Cn

∫ 1

0
cos(nπξ )cos(mπξ )dξ (A.103)
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and again note that

∫ 1

0
cos(nπξ )cos(mπξ )dξ =


1
2 if n = m

1 if n = m = 0

0 if n 6= m

. (A.104)

Cn =−2θ0

∫ 1

0
cos(nπξ )dξ (A.105)

Cn = 0 (A.106)

Except for C0 =−θ0. The temperature profile is now

θ1 =
∞

∑
n=0

cos(nπξ )e−((nπ)2+A2
1)τ
[
−Cn−

∫
τ

0
Gn(τ

′)e((nπ)2+A2
1)τ
′
dτ
′
]

(A.107)

pulling out the summation at n = 0

θ1 = e−A2
1τ

[
−C0−

∫
τ

0
G0(τ

′)eA2
1τ ′dτ

′
]
−

∞

∑
n=1

cos(nπξ )e−((nπ)2+A2
1)τ
[∫ τ

0
Gn(τ

′)e((nπ)2+A2
1)τ
′
dτ
′
]

(A.108)

and substitute in all coefficients

θ1 = e−A2
1τ

[
θ0 +

∫
τ

0

∫ 1

0
(A2

1θ2(ξ ,τ)+ q̃(ξ ,τ))dξ eA2
1τ ′dτ

′
]

+2
∞

∑
n=1

cos(nπξ )e−((nπ)2+A2
1)τ
[∫ τ

0

∫ 1

0
(A2

1θ2(ξ ,τ)

+ q̃(ξ ,τ))cos(nπξ )dξ e((nπ)2+A2
1)τ
′
dτ
′
]

(A.109)

A.2.3.2 Solution for Solid 2

The governing equation to be solved is

∂ 2θ2(ξ ,τ)

∂ξ 2 −A2
2θ2(ξ ,τ) =

1
κ

∂θ2(ξ ,τ)

∂τ
−A2

2θ1(ξ ,τ) (A.110)
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Let g(ξ ,τ) =−A2
2θ1(ξ ,τ)

∂ 2θ2A(ξ ,τ)

∂ξ 2 −A2
2θ2A(ξ ,τ) =

1
κ

∂θ2A(ξ ,τ)

∂τ
+g(ξ ,τ) (A.111)

The boundary conditions are
∂θ2

∂ξ

∣∣∣
ξ=0

= 0 (A.112)

θ2(1,τ) = 0 (A.113)

θ2(ξ ,0) = θ0 (A.114)

First, look at the homogeneous case to find the eigenfunctions that satisfy the homogeneous

boundary conditions.

∂ 2θ2h(ξ ,τ)

∂ξ 2 −A2
2θ2h(ξ ,τ) =

1
κ

∂θ2h(ξ ,τ)

∂τ
(A.115)

with boundary conditions
∂θ2Ah

∂ξ

∣∣∣
ξ=0

= 0 (A.116)

θ2Ah(1,τ) = 0 (A.117)

θ2Ah(ξ ,0) = θ0−θ2B(ξ ) (A.118)

Using separation of variables

∂ 2φ(ξ )

∂ξ 2 a(τ)−A2
2φ(ξ )a(τ) =

∂a(τ)
∂τ

φ(ξ ) (A.119)

1
φ(ξ )

∂ 2φ(ξ )

∂ξ 2 −A2
2 =

1
a(τ)

∂a(τ)
∂τ

=−λ
2 (A.120)

d2φ(ξ )

dξ 2 +(λ 2−A2
2)φ(ξ ) = 0 (A.121)

φ(ξ ) = c2 cos(
√

λ 2−A2
2ξ )+ c3 sin(

√
λ 2−A2

2ξ ) (A.122)

dφ(ξ )

dξ
=−c2

√
λ 2−A2

2 sin(
√

λ 2−A2
2ξ )+ c3

√
λ 2−A2

2 cos(
√

λ 2−A2
2ξ ) (A.123)
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Apply the boundary condition at ξ = 0

c3 = 0 (A.124)

Apply the boundary condition at ξ = 1

0 = c2 cos(
√

λ 2−A2
2) (A.125)

c2 = 0 gives the trivial solution and thus cos(
√

λ 2−A2
2) = 0.

√
λ 2−A2

2 =
(2n+1)π

2
(A.126)

λ =

√
(
(2n+1)π

2
)2 +A2

2 (A.127)

φn(ξ ) = cos(
(2n+1)π

2
ξ ) (A.128)

θ2A =
∞

∑
n=0

φn(ξ )an(τ) (A.129)

Eigenfunction expansion of g(ξ ,τ)

g(ξ ,τ) =
∞

∑
n=0

Gn(τ)φn(ξ ) (A.130)

Integrate both side

∫ 1

0
g(ξ ,τ)cos(

(2m+1)π
2

ξ )dξ =
∞

∑
n=0

Gn(τ)
∫ 1

0
cos(

(2n+1)π
2

ξ )cos(
(2m+1)π

2
ξ )dξ (A.131)

noting that ∫ 1

0
cos(

(2n+1)π
2

ξ )cos(
(2m+1)π

2
ξ )dξ =


1
2 if n = m

0 if n 6= m
(A.132)

∫ 1

0
g(ξ ,τ)cos(

(2n+1)π
2

ξ )dξ = Gn(τ)
1
2

(A.133)
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Gn(τ) = 2
∫ 1

0
g(ξ ,τ)cos(

(2n+1)π
2

ξ )dξ (A.134)

substitute into the governing equation

∞

∑
n=0

d2φn(ξ )

dξ 2 an(τ)−A2
1

∞

∑
n=0

φn(ξ )an(τ) =
1
κ

∞

∑
n=0

φn(ξ )
dan(τ)

dτ
+

∞

∑
n=0

Gn(τ)φn(ξ ) (A.135)

Note d2φn(ξ )
dξ 2 =−(λ 2−A2

1)φ(ξ )

−
∞

∑
n=0

(λ 2−A2
1)φn(ξ )an(τ)−A2

1

∞

∑
n=0

φn(ξ )an(τ) =
1
κ

∞

∑
n=0

φn(ξ )
dan(τ)

dτ
+

∞

∑
n=0

Gn(τ)φn(ξ ) (A.136)

∞

∑
n=0

[ 1
κ

dan(τ)

dτ
+λ

2an(τ)
]
φn(ξ ) =−

∞

∑
n=0

Gn(τ)φn(ξ ) (A.137)

1
κ

dan(τ)

dτ
+λ

2an(τ) =−Gn(τ) (A.138)

dan(τ)

dτ
+κλ

2an(τ) =−κGn(τ) (A.139)

Solve using the integrating factor eκλ 2τ

eκλ 2τ
[dan(τ)

dτ
+κλ

2an(τ)
]
=−κGn(τ)eκλ 2τ (A.140)

d
dτ

[
eκλ 2τan(τ)

]
=−κGn(τ)eκλ 2τ (A.141)

Integrate both sides

eκλ 2τan(τ)+Cn =−κ

∫
τ

0
Gn(τ

′)eκλ 2τ ′dτ
′ (A.142)

an(τ) = e−κλ 2τ [−Cn−κ

∫
τ

0
Gn(τ

′)eκλ 2τ ′dτ
′] (A.143)

Substitute into Eqn. A.129 and apply initial condition

θ0−θ2B(ξ ) =
∞

∑
n=0

[
−Cn

]
cos(

(2n+1)π
2

ξ ) (A.144)
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∫ 1

0

[
θ0−θ2B(ξ )

]
cos(

(2m+1)π
2

ξ )dξ =−
∞

∑
n=0

Cn

∫ 1

0
cos(

(2n+1)π
2

ξ )cos(
(2m+1)π

2
ξ )dξ

(A.145)∫ 1

0
cos(

(2n+1)π
2

ξ )cos(
(2m+1)π

2
ξ )dξ =


1
2 if n = m

0 if n 6= m
(A.146)

Cn =−2
∫ 1

0
[θ0−θ2B(ξ )]cos(

(2n+1)π
2

ξ )dξ (A.147)

Integrating and some arranging results in

Cn =−
4(−1)n

(2n+1)π
[θ0−θL

(2n+1)2π2

4A2
2 +(2n+1)2π2 ] (A.148)

θ2A =
∞

∑
n=1

cos(
(2n+1)π

2
ξ )e−((

(2n+1)π
2 )2+A2

2)κτ

[
−Cn−κ

∫
τ

0
Gn(τ

′)e((
(2n+1)π

2 )2+A2
2)κτ ′dτ

′
]

(A.149)

Substitute in the coefficients

θ2A =
∞

∑
n=0

cos(
(2n+1)π

2
ξ )e−((

(2n+1)π
2 )2+A2

2)κτ

[ 4(−1)n

(2n+1)π
[θ0−θL

(2n+1)2π2

4A2
2 +(2n+1)2π2 ]

−2κ

∫
τ

0

∫ 1

0
g(ξ ,τ)cos(

(2n+1)π
2

ξ )dξ e((
(2n+1)π

2 )2+A2
2)κτ ′dτ

′
]

(A.150)

The temperature profile is

θ2 =
∞

∑
n=0

cos(
(2n+1)π

2
ξ )e−((

(2n+1)π
2 )2+A2

2)κτ

[ 4(−1)n

(2n+1)π
θ0

+2κA2
2

∫
τ

0

∫ 1

0
θ1(ξ ,τ)cos(

(2n+1)π
2

ξ )dξ e((
(2n+1)π

2 )2+A2
2)κτ ′dτ

′
]
. (A.151)

A.3 One-Dimensional Conjugate Heat Transfer Between a Fluid and a Solid

A.3.1 Integral Equation Method Solution

The governing equation to be solved is

∂ 2θ2(ξ )

∂ξ 2 −Pe
∂θ2(ξ )

∂ξ
=−A2

2h̃(ξ )(θ1(ξ )−θ2(ξ )) (A.152)
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with boundary conditions

θ2(0) = θ0 (A.153)

θ2(1) = θL (A.154)

where

θL = θ0 +
A2

2
A2

1Pe

∫ 1

0
q̃(ξ )dξ . (A.155)

Substituting in ψ(ξ ) = dθ2(ξ )
dξ

, the equation becomes

dψ(ξ )

dξ
−Peψ(ξ ) =−A2

2h̃(ξ )
(
θ1(ξ )−θ2(ξ )

)
. (A.156)

The differential equation can be solved using an integrating factor e
∫ ξ

0 −Pedξ = e−Peξ . Multiply both

side of the equation by e−Peξ

e−Peξ dψ(ξ )

dξ
− e−Peξ Peψ(ξ ) =−e−Peξ A2

2h̃(ξ )
(
θ1(ξ )−θ2(ξ )

)
. (A.157)

Note the left side of the equation can be rewritten

d
dξ

(e−Peξ
ψ(ξ )) =−e−Peξ A2

2h̃(ξ )
(
θ1(ξ )−θ2(ξ )

)
. (A.158)

Integrating both side of the equation,

∫
ξ

0

d
dξ ′

(e−Peξ ′
ψ(ξ ′))dξ

′ =−
∫

ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′ (A.159)

evaluating the left side

e−Peξ
ψ(ξ )− c1 =−

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′ (A.160)

and solving for ψ(ξ ) results in

ψ(ξ ) = ePeξ

[
c1−

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′
]
. (A.161)
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Reverse substitute ψ(ξ ) = dθ2(ξ )
dξ

into the equation

dθ2(ξ )

dξ
= ePeξ

[
c1−

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′
]

(A.162)

and integrate

θ2(ξ ) = c2 + c1
1
Pe
[ePeξ −1]−

∫
ξ

0

[
ePeξ

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′
]

dξ (A.163)

Let F(ξ ) = ePeξ
∫ ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ ′

θ2(ξ ) = c2 + c1
1
Pe
[ePeξ −1]−

∫
ξ

0
F(ξ )dξ (A.164)

Apply the boundary condition at ξ = 0,

c2 = θ0 (A.165)

and the boundary condition at ξ = 1,

c1 =
1

1
Pe
[ePe−1]

[
θL−θ0 +

∫ 1

0
F(ξ )dξ

]
. (A.166)

The temperature profile becomes

θ2(ξ ) = θ0 +
[ePeξ −1]
[ePe−1]

[
θL−θ0 +

∫ 1

0
F(ξ )dξ

]
−
∫

ξ

0
F(ξ )dξ (A.167)

and substituting in θL and F(ξ ) results in

θ2(ξ ) = θ0 +
(ePeξ −1)
(ePeL−1)

[
A2

2
∫ 1

0 q̃(ξ )dξ

A2
1Pe

+
∫ 1

0
ePeξ

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′dξ

]
(A.168)

−
∫

ξ

0
ePeξ

∫
ξ

0

[
e−Peξ ′A2

2h̃(ξ ′)
(
θ1(ξ

′)−θ2(ξ
′)
)]

dξ
′dξ
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A.3.2 Generalized Bessel Method Solution

The governing equation to be solved is

d2θ2(ξ )

dξ 2 −Pe
∂θ2(ξ )

∂ξ
−A2

2ξ
− 1

2 θ2(ξ ) =−A2
2ξ
− 1

2 θ1(ξ ) (A.169)

with boundary conditions

θ2(0) = θ0 (A.170)

θ2(1) = θL (A.171)

where

θL = θ0 +
A2

2
∫ 1

0 q̃(ξ )dξ

A2
1Pe

. (A.172)

The solution to the differential equation is the sum of the homogeneous and particular

solutions

θ2 = θ2h +θ2p. (A.173)

The homogeneous equation is

d2θ2(ξ )

dξ 2 −Pe
∂θ2(ξ )

∂ξ
−A2

2ξ
− 1

2 θ2(ξ ) = 0 (A.174)

Using the generalized Bessel equation

d2R
dξ 2 +

[1−2m
ξ
−2α

]dR
dξ

+
[

p2a2
ξ

2p−2 +α
2 +

α(2m−1)
ξ

+
m2− p2ν2

ξ 2

]
R = 0 (A.175)

with solution

R = ξ
meαξ

[
c1Jν(aξ

p)+ c2Yν(aξ
p)
]

(A.176)

or if ν is not an integer

R = ξ
meαξ

[
c1Jν(aξ

p)+ c2J−ν(aξ
p)
]

(A.177)
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where the coefficients are

m =
1
2

(A.178)

α =
Pe

2
(A.179)

p =
3
4

(A.180)

ν =
2
3

(A.181)

a =
4
3

i

√
(
Pe

2
)2ξ

1
2 +A2

2. (A.182)

The general solution is

θ1h = ξ
1
2 e

Pe
2 ξ

[
c1J2

3

(4
3

i

√
(
Pe

2
)2ξ

1
2 +A2

2ξ
3
4

)
+ c2J− 2

3

(4
3

i

√
(
Pe

2
)2ξ

1
2 +A2

2ξ
3
4

)]
(A.183)

or

θ1h = ξ
1
2 e

Pe
2 ξ

[
c1I2

3

(4
3

√
(
Pe

2
)2ξ

1
2 +A2

2ξ
3
4

)
+ c2I− 2

3

(4
3

√
(
Pe

2
)2ξ

1
2 +A2

2ξ
3
4

)]
. (A.184)

Let

B2(ξ ) =
4
3

√
(
Pe

2
)2ξ

1
2 +A2

2 (A.185)

θ1h = ξ
1
2 e

Pe
2 ξ

[
c1I2

3

(
B2(ξ )ξ

3
4

)
+ c2I− 2

3

(
B2(ξ )ξ

3
4

)]
(A.186)

The Wronskian is

W =−
√

3ePeξ

π

(P2
e ξ

1
2 +3A2

2)

(P2
e ξ

1
2 +4A2

2)
. (A.187)

Using the method of variation of parameters, the particular solution is

θ2p =−
A2

2π√
3

ξ
1
2 e

Pe
2 ξ I2

3

(
B2(ξ )ξ

3
4

)∫ ξ

0
e−

Pe
2 ξ ′I− 2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′ (A.188)

+
A2

2π√
3

ξ
1
2 e

Pe
2 ξ I− 2

3

(
B2(ξ )ξ

3
4

)∫ ξ

0
e−

Pe
2 ξ ′I2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′
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and thus the temperature profile is

θ2 = ξ
1
2 e

Pe
2 ξ

[
c1I2

3

(
B2(ξ )ξ

3
4

)
+ c2I− 2

3

(
B2(ξ )ξ

3
4

)]
(A.189)

−
A2

2π√
3

ξ
1
2 e

Pe
2 ξ I2

3

(
B2(ξ )ξ

3
4

)∫ ξ

0
e−

Pe
2 ξ ′I− 2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

+
A2

2π√
3

ξ
1
2 e

Pe
2 ξ I− 2

3

(
B2(ξ )ξ

3
4

)∫ ξ

0
e−

Pe
2 ξ ′I2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

Apply the boundary condition at ξ = 0

θ0 = ξ
1
2 e

Pe
2 ξ c2I− 2

3

(
B2(ξ )ξ

3
4

)
(A.190)

noting that

lim
ξ→0

ξ
1
2 e

Pe
2 ξ I2

3

(
B2(ξ )ξ

3
4

)
−→ 0 (A.191)

lim
ξ→0

ξ
1
2 e

Pe
2 ξ I− 2

3

(
B2(ξ )ξ

3
4

)
−→

3
7
6 Γ(2

3)

2
5
3 A

2
3
2 π

(A.192)

and thus

c2 =
2

5
3 A

2
3
2 π

3
7
6 Γ(2

3)
θ0. (A.193)

Apply the boundary condition at ξ = 1

θL = e
Pe
2

[
c1I2

3

(
B2(ξ )

)
+ c2I− 2

3

(
B2(ξ )

)]
(A.194)

−
A2

2π√
3

e
Pe
2 I2

3

(
B2(ξ )

)∫ 1

0
e−

Pe
2 ξ ′I− 2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

+
A2

2π√
3

e
Pe
2 I− 2

3

(
B2(ξ )

)∫ 1

0
e−

Pe
2 ξ ′I2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′
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and solve for c1

c1 =
θL

e
Pe
2 I2

3

(
B2(ξ )

) − c2

I− 2
3

(
B2(ξ )

)
I2

3

(
B2(ξ )

) +
A2

2π√
3

∫ 1

0
e−

Pe
2 ξ ′I− 2

3

(
B2(ξ )ξ

′
3
4
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θ1(ξ )
(P2

e ξ ′
1
2 +4A2

2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

(A.195)

−
A2

2π√
3
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3

(
B2(ξ )

)
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(
B2(ξ )
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0
e−

Pe
2 ξ ′I2

3

(
B2(ξ )ξ

′
3
4
)

θ1(ξ )
(P2

e ξ ′
1
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2)

(P2
e ξ ′

1
2 +3A2

2)
dξ
′

the temperature profile is
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1
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3

(
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4
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4
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(A.196)
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2π√
3
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2 e

Pe
2 ξ I2

3
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Pe
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B2(ξ )ξ

′
3
4
)
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(P2
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APPENDIX B. 2-D PROBLEMS

B.1 Variable Coefficients in the Convective Boundary Condition

In two-dimensional problems the variable heat transfer coefficient appears in the bound-

ary conditions rather than the governing equation as has been considered previously in the one-

dimensional problems. The trouble encountered when solving these problems is when making use

of the orthogonality of the eigenfunctions to find the Fourier coefficients when using separation of

variables. For example, consider the solution of some partial differential equation to be of the form

T1(x,y) =
∞

∑
n=1

Bnφn(x)an(y) (B.1)

with the eigenfunction

φn(x) = cos(nπx). (B.2)

Assume the interface between two regions is represented by the convective boundary condition

dT1(x,y)
dy

∣∣∣
y=0

+
h(x)

k
T1(x,0) =

h(x)
k

T2(x,0). (B.3)

When applying the convective boundary condition, after all the other boundary conditions have

been applied, the result is

h(x)
k

T2(x,0)) =
∞

∑
n=1

Bn

(dan(y)
dy

)
y=0

φn +
h(x)

k

∞

∑
n=1

Bnan(0)φn (B.4)

h(x)
k

T2(x,0)) =
∞

∑
n=1

Bn

[(dan(y)
dy

)
y=0

+
h(x)

k
an(0)

]
cos(nπx) (B.5)

Multiply all terms by cos(mπx) and integrate both side of the equation
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∫ 1

0

h(x)
k

T2(x,0)cos(mπx)dx =
∫ 1

0

∞

∑
n=1

Bn[
(dan(y)

dy

)
y=0

+
h(x)

k
an(0)]cos(nπx)cos(mπx)dx.

(B.6)

Moving the integral inside the summation and distributing to both terms

∫ 1

0

h(x)
k

T2(x,0)cos(mπx)dx =
∞

∑
n=1

Bn[
(dan(y)

dy

)
y=0

∫ 1

0
cos(nπx)cos(mπx)dx (B.7)

+an(0)
∫ 1

0

h(x)
k

cos(nπx)cos(mπx)dx].

Since cos is an orthogonal function the following is true

∫ 1

0
cos(λnx)cos(λmx)dx =


1
2 if n = m

0 if n 6= m
(B.8)

and the equation becomes

∫ 1

0

h(x)
k

T2(x,0)cos(mπx)dx =
Bn

2
dYn(y)

dy

∣∣∣
y=0

+
∞

∑
n=1

Bnan(0)
∫ 1

0

h(x)
k

cos(nπx)cos(mπx)dx.

(B.9)

The h(x) in the last term destroys the orthogonality of cos and Bn cannot be solved. The

boundary condition bisection method used by [3] could possibly be a solution. The method takes

advantage of the fact that a convective boundary condition can be dissected as a linear combination

of a heat flux and temperature. In other words, the convective boundary condition can be replaced

with either a flux or a temperature boundary condition that is equal to some arbitrary function that

will be solved by substituting the solution into the original convective boundary condition. This

method was not attempted during this work.
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B.2 Orthogonality of the Generalized Bessel Solution

The Bessel function is orthogonal with the weight function w(x) = x. This results in the

following relation being true

∫ 1

0
xJν

(
λnx
)

Jν

(
λmx
)

dx =


∫ 1

0 Jν

(
λnx
)2

dx if n = m

0 if n 6= m
(B.10)

When separation of variables is used to solve the partial differential equation of a fully de-

veloped, two-dimensional fluid with neglected axial conduction, it is common to obtain an equation

of the form

dφ

dy
+λ

2 f (y)φ = 0 (B.11)

where f (y) is the fluid velocity profile. The generalized Bessel equation can be used to solve for

the eigenfunctions, φn. For the case of a Couette flow bounded by a conjugate boundary on the

bottom and an insulated boundary on top, more detail on the solution and process can be found in

Appendix A, the eigenvalues, λn, are found from an equation of the form

0 = J− 2
3

(
λn

)
(B.12)

The resulting eigenvalues are listed in Table B.1.

Table B.1: Eigenvalues for 0 = J− 2
3

(
λn

)
λ0 λ1 λ2 λ3 λ4

1.243046 4.429121 7.579458 10.724747 13.868375

If the same weight function that is used for the regular Bessel functions orthogonality, w(y) = y, is

used for the generalized Bessel solution, y1/2J− 2
3

(
λny

3
2

)
, then

∫ 1

0
y2J− 2

3

(
λny

3
2

)
J− 2

3

(
λmy

3
2

)
dy =


∫ 1

0 J− 2
3

(
λny
)2

dy if n = m

0 if n 6= m
(B.13)
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Table B.2 shows the results if the eigenvalues in Table B.1 are used in Eqn. B.13. The

results behave as expected for orthogonal functions since λn is effectively zero everywhere except

on the diagonal where m = n.

Table B.2: Values for
∫ 1

0 y2J− 2
3

(
λny

3
2

)
J− 2

3

(
λmy

3
2

)
dy using eigenvalues from Table B.1

λ 2
0 λ 2

1 λ 2
2 λ 2

3 λ 2
4

λ 2
0 0.1637 −1.5162×10−8 3.4191×10−9 −2.8862×10−9 2.1604×10−9

λ 2
1 −1.5162×10−8 0.0477 8.5324×10−9 −2.0097×10−9 8.2067×10−10

λ 2
2 3.4191×10−9 8.5324×10−9 0.02795 −4.3781×10−9 2.8667×10−9

λ 2
3 −2.8862×10−9 −2.0097×10−9 −4.3781×10−9 0.0198 −1.5391×10−9

λ 2
4 2.1604×10−9 8.2067×10−10 2.8667×10−9 0−1.5391×10−9 0.0153

It is unclear whether the weight function of w(y) = y is applicable to all generalized Bessel

solutions or just works for the above case by chance. Further analysis is needed to investigate.
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