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ABSTRACT
An Automated Method for Hot-to-Cold Geometry Mapping

Brandon Levi Doolin
Department of Mechanical Engineering, BYU
Master of Science

Shape optimization is critical in turbomachinery design for creating the most efficient and
durable designs. Running or un-running (also known as cold-to-hot or hot-to-cold transforma-
tions) is frequently performed on rotor blades when optimizing the shape of these blades as well
as preparing the design for manufacture. Accuracy in these processes is crucial to preserve the
optimum shape and, consequently, its flow properties. The needed accuracy can be achieved and
quantified by an iterative finite element method, but a geometry mapping must occur afterward to
recreate the geometry from the discretized elements. Current methods, however, do not provide a
method of quantifying the error that is introduced in the mapping step.

This research develops a method to perform this geometry mapping while also quantifying
the mapping error. Kriging is implemented as a method to interpolate displacements in blade
running and un-running transformations. Kriging is compared to radial basis function interpolation
as a mapping scheme and Sculptor™’s Arbitrary Shape Deformation. Kriging is found comparable
to these methods in speed, accuracy, and mapping smoothness. The Kriging standard deviation is
investigated as a method to approximate mapping error. The standard deviation is found to be
useful but not conclusive in approximating the mapping error.

Keywords: hot-to-cold, cold-to-hot, running, un-running, rotor blade, geometry mapping, kriging,
radial basis function, Sculptor, arbitrary shape deformation
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Today’s turbomachinery rotor design generally follows one of two design methodologies.
One of these two methods is to create a rotor blade geometry that would represent the as-manufactured
shape. This geometry is referred to as the “cold” shape. Aerodynamic, centripetal, and other forces
are then applied to the cold geometry using engineering analysis to determine the shape of the run-
ning or “hot” blade [1]. This method is commonly referred to as “cold-to-hot”. The downside to
this method is that the blade must be optimized for performance in the hot configuration, otherwise
losses on the order of 3% in important parameters such as thrust, TSFC, etc. can be experienced
due to blade deformation and untwist [2, 3]. Usually this means that for every design iteration, a
structural analysis must be performed before fluid or any other analysis can be performed, though
FEA and CFD coupling can be done to execute both simultaneously. Iteration must be performed
as well to determine the correct aerodynamic loads as seen in Figure 1.1 [4].

The other common methodology is to simply begin with the hot shape and perform the
design optimization. Once the hot shape has been determined, an iterative process is then used to
determine the cold shape. This process is referred to as “un-running” or “hot-to-cold” [1]. The un-
running begins by meshing the geometry with finite element software and applying aerodynamic,
centripetal, and other loads to the hot mesh. The result of this analysis is referred to as the “double
deflected” mesh. From the double deflected mesh, a set of node displacements is calculated and the
negative of these are input along with the original hot mesh into an iteration loop. At the beginning
of the loop the displacements are applied to the hot mesh to create an approximation to the cold
mesh. Next, the aerodynamic and centripetal forces are applied to the cold approximation to create
a hot mesh approximation. If the difference between the hot mesh and the approximate hot mesh is
within tolerance, then the cold mesh approximation is accepted as the actual cold mesh. Otherwise,

the displacements from the cold approximation to the hot approximation are calculated, and the
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Figure 1.1: A flow chart illustrating the iterative loop for the cold-to-hot transformation

negative of these is input to the beginning of the loop. This loop is repeated until the correct cold
mesh is found [5]. A diagram of this process can be seen in Figure 1.2.

Regardless of method choice, the designer will be left with three sets of data. Both methods
will have a hot and cold mesh and one geometry representation—cold geometry in the case of
cold-to-hot or hot geometry in the case of hot-to-cold. The other geometry file is unknown. This
geometry file differs from the mesh file in it’s placement of points or nodes. The mesh files have
nodes placed at locations and in densities chosen by the meshing software. The geometry files
have points chosen in specific locations and densities for use in the CAD system they come from.

Consequently, these files almost always differ from each other. Since a geometry file is needed to
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analyze the hot shape in CAx systems, create manufacturing drawings on the cold shape, or analyze

at off-design conditions [1], engineers must map their existing geometry file from it’s current hot

state to a cold state (or conversely from a cold state to a hot state).

The techniques discussed in this work provide methods for determining what this unknown

geometry file is by mapping the known geometry file. To avoid repetition, this work will only

refer to the hot-to-cold case from here on, but the cold-to-hot case is implied as well whenever the

former is mentioned.

Some software packages have methods to accomplish this internally such as T/BEST and

STAT, but do not publish their exact process. These packages may use information from other



internal subsystems other than the three known data files mentioned [3,4]. These methods, while
useful, are not very portable to future systems and software packages.

Other methods are stand-alone processes that work off of only generic inputs, namely these
mesh and geometry files, and output the necessary mapped file to the user. These methods treat
the process for obtaining the hot and cold mesh as a “black box™ and are only concerned with one
input being a deformed mesh and the other input being undeformed. As this research focuses on
these type of methods, from this point on, the hot mesh will be referred to as the deformed mesh,
while the cold mesh will be referred to as the undeformed mesh.

Few methods of this type exist—only two were found by the author—warranting further
investigation into these types of methods. Also, these two methods lack an estimation of error
when performing the geometry mapping which could lead to undetected errors when performing
the mapping with these methods either in local areas (e.g. areas of high curvature, discontinuities,
etc.) or globally (e.g. the program failed to find a good mapping). Lastly, the methods that
this research has identified have not been rigorously evaluated for criteria of accuracy, speed, and

smoothness.

1.2 Research Objectives and Scope

This research seeks to fill the gaps in existing methods and research by developing a new
stand-alone method for performing hot-to-cold geometry mapping and comparing it to the existing

methods. The methods will be evaluated and compared by determining if they can:

1. Perform the geometry mapping using only generic inputs, that is using the x, y, and z co-
ordinates of the points from the deformed mesh, the undeformed mesh, and the deformed

geometry file.

2. Provide a mapping that is accurate within engineering tolerance (error on the order of 0.001—

0.0001 in. in magnitude).

3. Produce a smooth shape from the mapping, free of wrinkles and divots.



4. Perform the mapping in under 30 minutes using modern computing resources (a quad-core,

2.67 GHz processor will be used for testing).
5. Provide an error estimation for the mapping.

Error magnitude was chosen to evaluate error instead of relative percent error. While rela-
tive percent error helps to normalize the error relative to its displacement, when manufacturing or
analyzing a blade, only the magnitude of the error is important. Also, relative percent error skews
the level of error of mapping near the fixed ends of blades where the displacement is nearly zero
as well as at the free end where the displacement is large.

This research attempts to meet these criteria by implementing Kriging, an n-dimensional
interpolation method, and mapping the displacements of points in each of the euclidean directions.
Centripetal and constant pressure load cases were used. These were applied to a generic rotor
blade and similarly sized cantilever beam using linear analysis in ANSYS 15.0™. The process
was compared to two existing stand-alone methods for hot-to-cold geometry methods, namely
radial basis function interpolation (RBF interpolation for short) as implemented by Persson and
Runsten [6] and Sculptor™’s shape matching technology [7].

This research is limited to only linear analysis. Any non-linear effects from large displace-
ments were not considered. Force cases from point-loads, varying pressures, temperature, and
other sources were not considered to simplify the analysis. This research only uses these load
cases to determine if the mapping methods are dependent on the forces applied, or if the force
cases are unnecessary information to the process (important for portability). Ordinary Kriging was
the only method used. Other Kriging methods such as Universal Kriging and Co-Kriging were not
considered. The variogram was assumed to be isotropic. Implementing an anisotropic variogram is
beyond the scope of this research as will be discussed later in section 3.1.4. Test models were lim-
ited to the two blade shapes mentioned above. Internal channels, such as those in turbine blades,

were not included in the models.

1.3 Thesis Outline

This thesis begins with background information on existing methods in hot-to-cold geom-

etry mapping in Chapter 2. RBF interpolation is found to be a very simple and accurate method.



Free-form deformation is discussed including Sculptor™’s improvements to the method. Sculp-
tor™’s shape matching is found to be a robust and accurate method for hot-to-cold mapping. Chap-
ter 3 includes information on Kriging’s current uses and capabilities. An efficient methodology for
organizing the data files is created. Methodology for preliminary analysis required for Kriging is
covered including a genetic algorithm for variogram fitting. Kriging is implemented. Chapter 4 in-
cludes accuracy, speed, and complexity comparisons for all three methods. Each method’s unique
benefits are quantified. Chapter 5 interprets the results. It also suggests future improvements to the

Kriging method for further research.



CHAPTER 2. BACKGROUND

2.1 Overview

This chapter covers background information on existing, published methods for perform-
ing geometry mapping in the hot-to-cold context. These methods cover the general, stand-alone
case where only coordinates of points from the deformed mesh, undeformed mesh, and deformed

geometry are known.

2.2 Radial Basis Function Mapping

Persson and Runsten [6] created a method for performing a hot-to-cold geometry mapping
(or in their case, cold-to-hot) by reducing the mapping problem into an interpolation problem. For
the hot-to-cold case, each point in the hot mesh is associated with an X, y, and z displacement.
These displacements are the values needed to morph the hot mesh into its corresponding cold

mesh. From this point, they mapped the geometry using radial basis function interpolation.

2.2.1 Radial Basis Functions

Radial basis functions (RBFs) are functions that output a value given a distance from the
function’s origin. This is defined by the relation f(x) = f(||x||). The norm is generally taken to be
the euclidean norm (as it is in this case). These functions are defined for all positive and negative
values of the input variable r, though values of r < O are not generally used. RBFs come in many
varieties, some of them can be seen in table 2.1. The Gaussian RBF is the familiar Gaussian
distribution. The inverse quadratic and inverse multiquadratic have similar shapes to the Gaussian
RBF.

Many RBFs are also positive definite, that is for every x € R, f(x) > 0. Many are also sym-

metric about a center point, usually chosen to be the origin, that is the value r = 0. These properties



Table 2.1: Some examples of common radial basis functions

Type Equation
- 77,2
Gaussian e /b
. 1
Inverse Quadratic P2
. : 1
Inverse Multiquadratic TR

are useful in solving systems of linear equations from RBFs since stable, efficient solutions exist
to symmetric, positive definite matrices. This will be seen later when the interpolation scheme is
defined.

The parameter b in these functions is a shape factor that is used to alter the shape or dis-
tribution of the RBF. Larger values of the shape factor will create a wider shape of the function.
Conversely, smaller values of b produce a thinner function shape. This can be seen in Figure 2.1.
Shape factors are commonly used in improving the condition of matrices formed from RBFs [6],

as will be seen later.

Gaussian Radial Basis Functions

—h =5 =—heol0 - b=20

Figure 2.1: Gaussian RBFs with different shape factors



2.2.2 RBF Interpolation

RBF interpolation is a method of using RBFs to form a surrogate model for an unknown
function that is known on a subset of the function’s range [8]. That is, given an unknown function
f: X — Y, create a function g: X — Y | g(x) =~ f(x). The function g is created using subsets
XY | f(X)=Y".

The function g in this case is given using a RBF, here denoted by ¢. The value of the
RBF is evaluated at the distance between the point of interpolation, p, and known points, p’. These
values are multiplied by a set of weights, w, to come up with an approximated value of the function

to estimate. This can be seen in equation (2.1).

g(p) =Y wio(p—pj) (2.1)
i=1

By enforcing the interpolating condition, namely g(p’) = u where u is the sampled function
value at the known point p’, the weights can be determined by creating a system of equations and

solving. Equation (2.1) is solved for each known p’ and its corresponding u as seen in (2.2).

011 Q12 0 Q| (W1 uj

<P'21 <P'22 <P2n sz _ u.z 2.2)

| Pt P2 o @un| | Wn] | Un |

If the RBF is positive definite, then this system can be shown to be non-singular, that is
there is a single solution for all the weights. However, the system does become ill-conditioned, i.e.
it becomes close to or nearly singular, if the values of @ are too close together. This can be solved
by increasing the value of the shape factor b/ until the system is better conditioned. This increase
in shape factor generally has a corresponding decrease in accuracy since larger weights are given
to known points further from the point of interest [6]. The magnitude of the decrease in accuracy
will vary from problem to problem.

Further trouble arises if the RBF isn’t positive definite. In this case a solution to the the

system in (2.2) is not guaranteed. However, by including a linear polynomial with the approxima-



tion function, the system can once again be guaranteed to have a solution [8]. This new form of

the function g can be seen in (2.3).

n
g(p) =Y wio(p—pi)+co+eix+ery+esz (2.3)
i=1

Where x, y, and z are the coordinates of the point p.
This equation has 4 more unknowns. In order to solve for the weights and the additional
polynomial coefficients, several constraints are added to the weights to generate 4 more functions.

These can be seen in equation (2.4)

n n n n
Zw,- =0, Z wix; =0, Z wiy; =0, Z wizi =0 (2.4)
i i1 i1 i1

This leads to a new system of linear equations as seen in equation (2.5)

Qi Q12 Qi1 P 1oxi oy |w uj
21 P 0 Q1 P 1 X2 y2 22| (W2 up
Pul P2 0 Q-1 Pan 1 Xn Yn Zn| |Wa _ | 25)
1 1 - 1 1 00 0 O co 0
Xy X3 '+ X1 Xx, 0 0 O O c1 0
yio oy = Yu-1 yn 0 0 0 O] | 0
2 2 el 0 0 O O_ | 3 _0_

Once the polynomial coefficients and weights are known, the displacement of the point of
interest, u,, can be solved for using (2.3). The weights and coefficients need not be recalculated
for further interpolations but can be reused for all points of interest in the domain. This means that
while the first interpolation comes at a cost of 0(n3), further interpolations are much cheaper at a

cost of O(n).

2.2.3 RBF Mapping Procedure

To perform a hot-to-cold mapping using RBF interpolation, Persson and Runsten [6] first

associated each point in the mesh with a displacement value in each of the euclidean directions.

10



Then, for each geometry point that they needed to map, a small number of the mesh points, n,
was chosen that surrounded the geometry point. A RBF interpolation was then performed for each
displacement direction. If during the RBF interpolation the RBF matrix in equation (2.5) was
ill-conditioned, either a smaller number of the mesh points was used or the shape parameter was
increased to stabilize the matrix. These parameters, n and b, were altered as little as possible in

order to maintain accuracy. This procedure can be seen in Figure 2.2.

MK
Calculate Displacements from Undeformed AY
deformed mesh to undeformed
mesh Deformed
* °
) ®
Choose a subset of points around ®
the areato interpolate
LN
°
-:FZI a0 P Pie 1o oM -"'-'I -I'rl-
g g - gy P 1ox2 yroIz| w2 ]
Construct the RBF matrix and S SRR |
. i i P e} | . ik x
displacement vector. Solve for the :,I. "1 I' o 1“ l] . f:]
weights/coefficients 0o e w000 olle N
5 T ] Ve | ¥ L 2 0
E w1 o 000 0| | 0
15
1
Interpolate the displacements for £ 05 // \\
each deformed geometry point L g . \C .
'05 :- 1 b’d
-1

Figure 2.2: A flow chart illustrating the procedure for hot-to-cold mapping using radial basis func-
tion interpolation
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2.2.4 RBF Method Results

RBF interpolation as a mapping scheme was found to be very accurate. When performed
on a rotor of the 2™ stage of an axial compressor, all errors were found to be less than 0.7% of the
smallest displacement of the mesh nodes. They also found that if they decreased the shape factor
to yield better accuracy (as opposed to increasing it for better stability) that a loss of smoothness

was observed in the blade geometry.

2.3 Free Form Deformation

Sederberg and Parry [9] created a method for deforming three-dimensional objects in a free-
form manner. This method consists of surrounding the model with a grid of control points. This
control grid is then deformed, deforming the object with it in a smooth and continuous manner.
This method is now used commonly in many engineering methods such as shape optimization in

aerodynamics [10, 11]. Free-form deformation is commonly referred to as FFD.

2.3.1 FFD Method

FFD works by deforming a model using parametric basis functions. Traditionally, the
basis function of choice is the Bernstein basis. The Bernstein basis is a basis for polynomials
defined parametrically (called Bezier curves) for different polynomial degrees as in equation (2.6).
The Bezier curve is constructed by placing control points, P, in space. If the control points are
constructed in a grid in two dimensions, a parametric surface can be formed. This is then extended

further to three parametric directions creating a trivariate parametric basis that defines a volume

P() = Y BI(O)P 6
i=0

where P; is the coordinates of the control point and B} is the basis function defined by equation

(2.7)

B!(1) = (?)(1 —)" i=1,2,...,n 2.7)
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Bernstein polynomials possess several desirable properties. First, these polynomials are
smooth and infinitely differentiable. Second, the polynomials are coordinate system independent,
meaning that they remain the same no matter the reference origin. Third, the polynomials must re-
main inside the convex hull of the control points. The polynomial also has the variation diminishing
property which means that it can oscillate no more than the set of control points themselves [12].

The FFD method begins by constructing a parallelpiped of control points that encloses the
body to be deformed. The grid of control points is layed out in three parametric directions usually
referred to as the s, 7, and u directions. Conventionally these align with the global x, y, and z
directions. For every point in the body that then needs to be deformed, an s, ¢, and u coordinate
is calculated, usually a number between the maximum and minimum values of s, ¢, and u (usually
between 0 and 1). These values are used later to reposition the body’s points.

The user then moves the control points to wherever is desired to deform the enclosed body.
The s, t, and u coordinates of the model are then input into the trivariate Bernstein basis functions
to calculate the new locations of the points. The points are then moved to their newly calculated
locations. Since the basis functions are smooth, the resulting deformation is likewise smooth as
well as possessing the other properties of the Bernstein basis. This method can be seen in Figure

2.3.

Figure 2.3: The process of free-form deformation. The model is imported, enclosed in a control
grid, then deformed
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2.3.2 Applying FFD to Hot-to-Cold Mapping

The general method for using FFD in hot-to-cold mapping is fairly straightforward. First,
enclose the deformed blade geometry and deformed mesh with control points. Next, move the
control points until the deformed mesh points are displaced as close as possible to their undeformed
mesh counterparts. This process can be done automatically by means of an optimization technique
such as least squares to minimize the distance between the deformed hot mesh points and cold
mesh points. Lastly, calculate all the deformed geometry points’ new locations using the basis
functions.

This method is both simple, fast, and easy to implement. However, using simple FFD has
many drawbacks. In order to increase the accuracy of an FFD mapping (accuracy being defined
as the difference between a point’s mapped location and its actual location), the user is forced
to increase the order of the polynomial bases. This leads to increased computational time and

increased oscillatory behavior (waviness) of the body. Both of these situations are undesirable.

2.3.3 Sculptor™and Arbitrary Shape Deformation

Sculptor™ [13] is a software made by Optimal Solutions that is used in engineering shape
optimization. It has improved upon the free-form deformation technique in several ways. One
improvement is to use a trivariate B-spline basis in place of the simple Bernstein basis.

B-splines are piecewise polynomials that are C,,_; continuous where 7 is the order of the
polynomial used. The curve is a set of smaller Bezier curves that are all as continuous as possible
with their neighbors. In the case of quadratic curves, this means that each curve is tangent to its
neighbors. For cubic curves, this means that each curve is both tangent and curvature continuous
to its neighbors. This pattern continues for all orders of the B-spline [12].

B-splines allow for greater local control of the shape of the curve because individual control
points only effect the underlying Bezier curves in the locality of the point. Those Bezier curves
farther away from the displaced control point are completely unaffected. The added benefit is that
extra control points can be added without increasing the degree of the polynomial basis. Instead,
added control points add extra Bezier curves to the definition of the B-spline.This helps to prevent

high-order oscillations while adding greater local control to the curve.
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The second major improvement is that sculptor allows for arbitrary grids of control points,
not just simple parallelpipeds. Any shape can be done including curves and bends in the grid.
This allows for even greater local control with the same number of control points as in a paral-
lelpiped by defining the grid much closer to the surface of the part. These two features are what
Sculptor™refers to as arbitrary shape deformation, also referred to as ASD.

Sculptor™uses these techniques along with the GRG optimization method (a gradient-
based optimization method) to deform the hot shape into the desired cold shape. The optimizer
moves the control points until the difference between the hot nodes and their corresponding cold
nodes is within a specified tolerance. An arbitrarily accurate mapping can be achieved by refining
the control grid to whatever level of accuracy is needed. This increase in accuracy comes at the
cost of increased computational time, especially considering the expensive gradients that need to
be calculated for the GRG method. Another cost of increased accuracy is an increase in oscillation
of the basis functions. ASD helps to mitigate this effect when compared to FFD, but does not

remove it completely.
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CHAPTER3. METHOD

3.1 Kriging Theory

Kriging is a process used in the field of Geostatistics to estimate spatial data. The method
was developed by Georges Matheron for use in the mining industry where it was and still is com-
monly used to estimate ore distributions from a small set of boreholes. Kriging is now commonly
used in many fields for many different purposes in many different fields such as hydrology, pollu-
tion, soil science, forestry, epidemiology, weather prediction, optimization, etc [14].

As with RBF interpolation, Kriging attempts to estimate a function f: X — Y with a sur-
rogate function g that is as close to f as possible. This requires a two-step process. In the first
step, the autocorrelation of f must be sampled and approximated with a function called the var-
iogram. In the second step, the variogram is used to minimize the variance of the autocorrelated

data providing a set of weights for interpolation in the form of g(x) = Z wi(x)u;.
i=1

3.1.1 Random Functions

Kriging is based off of minimizing the error of what is referred to as a random function.
Random functions are functions of two variables, denoted as Z(x, ®). Each of the sections Z(x,-)
is a random variable (where Z(x,-) indicates that a value of ® is chosen as constant) and each of
the sections Z(-, @) is referred to as a realization of the random function. The realization of the

random function is referred to in the lowercase as z(x) [15].

3.1.2 Autocorrelation and the Variogram

Autocorrelation is defined as the correlation between elements of a series and others from
the same series that are separated by a given interval [16]. When applied to a function f, autocor-

relation means how correlated are f(x) and f(x+ &) where x is the original input to the function
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and 4 is some separation distance. Most functions have some degree of autocorrelation. The higher
the degree of autocorrelation, the less the change in the function in space. The lower the degree of
autocorrelation, the greater the change in the function in space.

Three different but related functions are used to quantify the autocorrelation: the covari-
ance, the correlogram, and the semivariogram. The covariance function is a direct measure of
the autocorrelation. It is defined in equation (3.1). Under conditions of second-order stationarity
(which will be discussed later), this function begins at the origin with the value of the global vari-
ance and monotonically decreases until it reaches a value of zero. The separation distance at this

value is referred to as the range.

S| =

C(h) == ) z(xi) -z(xi+h) —mo-my (3.1

i=1

The correlogram is related to the covariance function. They both have the same general
trends (monotonically decreasing and reaching the value of zero at the range), but the correlogram
has been scaled as seen in equation (3.2).

pln) =) (2
NGIRa
Here, the subscripts 0 and +4 refer to the values at x; and at x; 4 h respectively.

The semivariogram, more commonly called the variogram, is different from the correlo-
gram because it measures dissimilarity instead of similarity. The equation for the variogram can be
seen in (3.3). Under second-order stationarity, this function begins at a value of zero and increases

monotonically until it reaches the global variance at the range. The global variance value for a

variogram is generally referred to as the sill value.

S

Y =5 o) () (33)

1

For a function to be second-order stationary, the property mentioned earlier, it must have
a first moment and autocovariance that do not vary. In the context of this paper, it means that the
mean and variance are spatially constant. Under these conditions, the covariance, correlogram, and

variogram are related by equation (3.4). These relations show that the correlogram is simply the

17



covariance normalized by the covariance, and the variogram is just a reflection of the covariance.
This is shown in Figure 3.1. While these conditions are generally violated to a degree, the processes

built upon these assumptions will provide a good estimate so long as the deviation is not too large.

C(0) (3.4)

12

Autocorrelation Functions
Sill= 0.7, Range = 0.6
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Figure 3.1: Examples of autocorrelation functions. The covariance and correlogram show related-
ness whereas the variogram shows un-relatedness.

While any of the three functions can be used to build up an interpolation scheme, the

variogram is generally chosen for several reasons that provide an advantage. First, the variogram
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averages squared differences. This tends to filter out effects from a spatially varying mean (a
condition that normally violates second-order stationarity). Second, the variogram can be used on
a weaker condition called the intrinsic hypothesis where only the values of the first differences,
that is z(x) — z(x+ h), are second-order stationary. In this case, the covariance and correlogram are

undefined (since the variance increases continuously) whereas the variogram is.

3.1.3 Empirical Variograms

While the variogram can very rarely be found analytically, it can be sampled at discrete
locations. For all known points, the entire set of possible pairs is generated. For each pair, the
semivariance is calculated and plotted. This plot is commonly referred to as the variogram cloud
as it contains a large number of data points in a very scattered fashion. This cloud is a rough
estimate of the variogram itself, though it contains a considerable amount of noise [15].

Generally, to reduce the noise in the variogram cloud, the data is binned together and
averaged into ranges of separation distance. Therefore, instead of a cloud of points at each specific
h, the bins would represent all points in a range of 4+ 8h. This tends to smooth out the noise in
the variogram cloud (though noise is still present in this representation). This binned collection is
commonly referred to as the empirical variogram. Figure 3.2 shows the variogram cloud and the
empirical variogram for the function f(x) = e¢*. The overlay in Figure 3.2 shows the scale of the
empirical variogram as well as the magnitude of the noise in the variogram cloud.

The empirical variogram gives a good insight into the shape and behavior of the variogram.
However, the empirical variogram cannot be evaluated at arbitrary locations. This requires a func-

tion to be fitted to it first [17].

3.1.4 Variogram Anisotropy

Variograms are generally considered to be isotropic meaning that the variogram value y(h)
only depends on the magnitude of 4 i.e. the separation distance between points. When the vari-
ogram exhibits anisotropic behavior, y(h) will vary with the direction of 4 as well as its magnitude.

This is usually seen as a change in the sill or the range of the variogram as seen in Figure 3.3.
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Figure 3.2: The process of sampling a variogram. The function in the top left is sampled. The
semivariance is calculated for each possible pair creating the variogram cloud in the top right. The
cloud is averaged into bins forming the empirical variogram in the bottom left. The bottom right
shows an overlay of the two.

Some special cases of anisotropy can be modeled without too much difficulty such as ge-
ometric anisotropy and zonal anisotropy [15]. However, some cases of anisotropy are non-trivial
to model. This problem is compounded when moving from two dimensions to three dimensions
because of the additional directions for anisotropic behavior.

While an isotropic variogram is not always the correct model to use, Kriging generally
yields good results despite having a less than ideal variogram model [15, 18]. Therefore, in order
to simplify analysis, this work will only focus on the isotropic case, though the anisotropic case

may be an area of further research.
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Figure 3.3: A 2-D variogram sampled along different directions. This variogram exhibits
anisotropy where the range and sill vary depending on the sampling direction.

3.1.5 Variogram Fitting

Although a function model need only be non-negative definite to be considered a licit vari-
ogram, some shapes of variograms appear very often. A set of function models that are guaranteed
to be non-negative definite that match these shapes has been developed and are commonly used.
Some of these common functions can be seen in Figure 3.4. The definition for these functions can
be seen in table 3.1. The sill, here is denoted by s and the range by r.

The power model is important for whenever the intrinsic hypothesis is assumed because it
models the continuously increasing variance with increased separation distance. The cardinal sine
model is important for functions that have periodic behavior, whereas the other models with sill

parameters (spherical, exponential, and Gaussian models) are common among many non-periodic
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Figure 3.4: Different variogram models. From top left to bottom right: a) power, b) spherical,
c) exponential, d) cardinal sine, e) Gaussian, f) nugget

Table 3.1: Equations and uses of different variogram models

Type Equation Common Uses
Power y(h) = ah® where0 < b < 2.0 Modeling mild trends
(L5 —05(1)3) ifh<
Spherical y(h) = S [ () (7) } l‘f =7 Sharp, linear behavior near origin
s ifh>r
Exponential y(h)=s-[1- e(_%h)} Sharp, linear behavior near origin
in(h

Cardinal Sine y(h)=s-[1—r- %} Periodic behavior

—3n2
Gaussian y(h)=s- [1 _ el )} Smoothly vary behavior near origin
Nugget y(h) =s Completely random behavior
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functions. Each of these three have different behavior near the origin and at the range. The nugget
model is simply used for functions that have no autocorrelation i.e. complete randomness.

Fitting a variogram has few rules to it; in fact, it is generally thought of as more of an art
than a science. Usually a variogram model is chosen that best resembles the empirical variogram,
then parameter values are manipulated until a “good-looking” fit is achieved. If a single variogram
model does not yield good results, another model can be added to the current one. This is possible
because the sum of any two licit variograms is also a licit variogram [17].

Some have tried to fit variograms using a scientific approach such as least squares es-
timation. These methods often require non-linear solution techniques—such as the Levenberg-
Marquardt algorithm—since many variograms are not linear in their parameters. These methods
have had varying levels of success in fitting variogram models to empirical variograms [15, 19].

This research creates a new method for this that will be outlined later.

3.1.6 Simple Kriging

Derivations for Simple and Ordinary Kriging can be found in many places [20,21]. This
work draws heavily on the derivation done by Chiles and Delfiner [15] for the Simple Kriging
derivation found here and the Ordinary Kriging derivation in the following sections, though some
of the steps have been simplified. The author suggests reading their derivation if greater clarity is
needed.

In Simple Kriging, we assume that the mean of a random function Z(x) is known and
constant (that is constant in @). We seek a function g that approximates the random function Z(x)

of the form:

g(x) =) wiui+wo (3.5)
i=1

where wy is a weight independent of the known points, and w; is a weight corresponding to the "

known point. We seek to minimize the mean square error of this function which can be written as:

E(g(x) = Zo)* = Var(g(x) — Zo) + [E(8(x) — Zo)]? (3.6)
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We begin by seeking the value of wy. The variance of the function does not depend on it’s
location. This means that it does not depend on wg. Therefore, the bias term, [E(g(x) — Zo)]?, is
the only term that is affected by wy. The minimum of the mean square error will then be one where

wo will minimize the bias term, that is:

wo = mgy — Z wim; (3.7)
i=1

This implies that the form of the estimating function is:

g(x) =mo+ Y wi(Zi—m) (3.8)
=1

i=

To simplify, we create a variable b(x) = Z(x) — m(x) to represent the zero-mean. We then
estimate this variable using a linear sum b* = i w;b;. In the end, we add the mean back in. This
means that having a zero-mean and a known IllTelaIl are the same so long as the non-zero mean is
added back in at the end. Now, expanding out the variance term of the mean square error in terms

of the covariance between two points, here denoted by o;;

n n n
E(g(x) —Z())2 = Z Z WiW ;O _2ZWaGaO + 0o (3.9
i=1j=1 i=1

By taking the partial derivatives with respect to w; and solving the root of the system, the

Simple Kriging system of equations is found as in (3.10).

n
ZWjGij:Gio, i:1,2,...,n (310)
j=1

which means the variance is:

n
G0 — Y WiGi (3.11)
i=1

The covariance function is commonly used for this method, but the variogram can be sub-

stituted if necessary by using the relationships shown in (3.4) [15].
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3.1.7 Simple Kriging Example

As an example of Simple Kriging, assume the case of two known points in one dimension,
(2.0, 1.2) and (3.0, -0.6). While a variogram can not be fitted to this data (only one point exists
in the variogram cloud), let’s assume that a Gaussian variogram with range = 1.0 and sill = 0.7
presents a good fit to the data. The covariance function in this case is simply 0.7 — y(k). We begin

by constructing the covariance matrix:

0.7 0.061
(3.12)
0.061 0.7
where the inverse is:
1.432 —0.071
(3.13)
—0.071 1432

This matrix is then used to solve for the weights for each interpolation. To interpolate at

the point x = 2.25, we construct a vector of covariance values:

0.58
0.129

(3.14)

where the first value is the covariance with the first known point and the second value is the co-
variance with the second known point. Notice that the first value is larger than the second value
indicating that the first point is more related to our point of interest (x = 2.25) than the second
point.

Now the weights are solved for by multiplying the covariance matrix inverse by the covari-

ance vector yielding:

1.432  —0.071| | 0.58 0.821
= (3.15)
—0.071 1.432 0.129 0.144

Multiplying these weights by the y-values of the known points and adding back in the
known mean (in this case 0.0) yields the Simple Kriging estimate, f(2.25) ~ 0.8998. The complete

Simple Kriging solution for this two-point example can be seen in Figure 3.5.
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Figure 3.5: The Simple Kriging Solution for a two-point example and a Gaussian Variogram (range
= 1.0, sill = 0.7). The estimate is smooth, interpolates at known points, and tends toward the mean
(in this case 0.0) at distances far from known data.

3.1.8 Ordinary Kriging

This derivation, once again, draws heavily from the derivation by Chiles and Delfiner [15]

with simplifications and notational differences that the author found appropriate.
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In Ordinary Kriging, the same general process for deriving the weights is used, but this

time the mean is not assumed to be known (though is still constant in ). Instead, the weights are
n

assumed to sum to 1, that is Z w; = 1 and wy is assumed to be zero. This minimizes the bias term
i=1
and we are left to minimize the variance as in (3.9). To solve this equation with the constraint on

the weights mentioned, Lagrange multipliers are generally used (3.16).

n

0 = Var(g(x) —Zo) +2A (Y wi—1) (3.16)
i=1

By taking the partial derivative of this system with respect to the weights and the Lagrange

multiplier and solving for the roots results in the linear system shown in equation (3.17).

n

ZW]'O','J'-I-A =0y, i=1,2,...,n

j=1
, (3.17)
Z w; = 1
i=1
Which when put in terms of the variogram 7 is:
n
Wj’}’,'j—)y = %o, = 1,2,...,n
j=1
; (3.18)
Z w; = 1
i=1
This means the variance can be estimated by:
n
wi%o0 + A (3.19)

i=1

3.1.9 Ordinary Kriging Example

Once again we will cover a simple, two-point example. Our known data is (2.0, 1.2) and
(3.0, -0.6). A Gaussian variogram with range = 1.0 and sill = 0.7 is also assumed as before. We

begin by constructing the variogram matrix:
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0.0 0.665 —1.0
0.665 00 -1.0 (3.20)
1.0 1.0 0.0

where the inverse is:

-0.752 0.752 0.5
0.752 —-0.752 0.5 (3.21)
—0.5 —-0.5 0.333

This matrix is then used to solve for the weights for each interpolation. To interpolate at

the point x = 2.25, we construct a vector of variogram values:

0.1197
0.5705 (3.22)
1.0

where the first value is the variogram with the first known point and the second value is the var-
iogram with the second known point. The third value is simply 1.0 to account for the weights
summing to 1.0. Notice that the second value is larger than the first value indicating that the
second point is less related to our point of interest (x = 2.25) than the first point.

Now the weights are solved for by multiplying the variogram matrix inverse by the vari-

ogram vector yielding:

—-0.752 0.752 0.5 0.1197 0.8389
0.752 —-0.752 0.5 0.5705| = | 0.1611 (3.23)
-0.5 -0.5 0.333 1.0 —0.0125

Multiplying these weights by the y-values of the known points (and ignoring the Lagrange
multiplier—the last value) yields the Ordinary Kriging estimate, f(2.25) ~ 0.91. The complete
Ordinary Kriging solution for this two-point example can be seen in Figure 3.6. Notice that the

behavior between the two known points is essentially the same as with Simple Kriging, but outside
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these points the solution tends toward the average of the known data (0.3) instead of the known

mean in Simple Kriging (0.0).

2-Point Ordinary Kriging
Sill= 0.7, Range = 1.0
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F(x)
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X

——Simple Kriging Estimate + Sampled Data

Figure 3.6: The Ordinary Kriging Solution for a two-point example and a Gaussian Variogram
(range = 1.0, sill = 0.7). The estimate is smooth, interpolates at known points, and tends toward
the mean of the known data (in this case 0.3) at distances far from known data.

3.1.10 Other Kriging Methods

Other methods for Kriging exist that work off of other assumptions. Universal Kriging,
like Ordinary Kriging, assumes the mean is unknown, but that there is a strong presence of a drift
meaning the mean varies strongly in space. The mean is calculated as a function of the points

coordinates. Kriging with an external drift is another method that makes the same assumptions,
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however the mean is calculated with external parameters, not its coordinates. Further forms such

as Log-normal Kriging and Co-Kriging also exist [15].

3.2 Hot-to-Cold with Kriging

Performing hot-to-cold mapping using Kriging is very similar in the technique for hot-to-
cold with radial basis functions. The method, however, is more complex because the variogram
must be analyzed before Kriging can be performed. The following sections lay out how it has been

accomplished in this research.

3.2.1 Data Organization

Because Kriging requires frequent look-up of mesh points in a close vicinity to the geome-
try point that is being mapped, a fast and efficient structure is required to store both sets of points.
This is accomplished by implementing an octree. An octree stores points in a set of nested “boxes”
represented by branch nodes and leaf nodes.

A branch node in an octree is represented as a box in three-space. This box further sub-
divides itself into eight new child nodes, each with an equal portion of the volume of the parent
branch node. Each of these eight new nodes may also be a branch node, or they may be leaf nodes.
The branch nodes are then used as an organizational system for all the nodes. For each query given
to the octree, the query will then be redistributed to the corresponding nodes lower in the structure.

Leaf nodes are the bottom level of the structure. These also are represented as a box in
three-space. However, leaf nodes, unlike branch nodes, do not have child nodes. Instead, they
contain the points that need to be stored in list structures with a pre-set maximum capacity. Once
the leaf nodes reach their maximum capacity, a split occurs where the leaf node turns itself into a
branch node and redistributes its points into its newly created child nodes.

This nested method of storing points allows point look-up in O(n + logg(m)) time, where
n is the capacity of the leaf node and m is the total number of nodes, both branch and leaf, in the
structure. A diagram of a quadtree, the two dimensional analog of an octree, can be seen in Figure

3.7.
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Figure 3.7: A visualization of a quadtree. Points are sorted into octants in an octree just as they are
sorted into quadrants in a quadtree

For this research, the leaf nodes were given no limits on the number of geometry points
that could held in their lists. The mesh point list, however, was constrained to only hold 10% of
the number of points that would be used for the interpolation. This means that when Kriging was
performed, mesh points from the leaf node itself as well as surrounding leaf nodes would be used.
This gives a rough guarantee that the geometry points are within 10% of the center of the mesh

point cluster used for Kriging.

3.2.2 Variogram Analysis and Fitting

In order to create an accurate and automated fit to the empirical variogram, a new method

for variogram fitting was formulated. Instead of choosing a select variogram model from user input
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and fitting the model using a least squares technique, this research created an optimization-based
fit using a wide palette of different models.

The method works by creating a nested model variogram. Since the sum of any two licit
variograms is also a licit variogram, many different models were simply summed together. This
allowed for the computer to fit the variogram with little knowledge of the variogram’s actual shape.
The optimizer was then used to determine the coefficients for this nested model that would mini-
mize the sum of the squared differences—essentially solving the least squares criterion numerically
instead of analytically. Should the optimizer deem that one of the many individual models in the
nested model was unnecessary, it would simply select the sill parameter for that model to be zero.
The optimizer chosen for this research was a genetic algorithm because of it’s robustness and ease
of implementation.

The genetic algorithm was modeled after the implementation by Balling [22].The genetic
algorithm works by creating chromosomes that are combinations of different parameters called
genes. The genes in this case are floating point numbers that represent the coefficients of the nested
variogram model. The genes are allowed to vary between an upper and lower bound specified.

A starting generation of chromosomes is generated by assembling the boundary values into
as many combinations as possible and then scattering several randomly generated chromosomes
into the population. At this point a fitness value is determined by calculating the sum of the squared
differences between the empirical variogram values and those predicted by the chromosome’s co-
efficients. The lower the sum of squares, the fitter the chromosome is considered.

A new generation of chromosomes is then created by selecting a father and mother chro-
mosome and switching their genes into two new chromosomes. The father and mother are chosen
by selecting a random group of chromosomes and selecting the fittest from this small group. Child
chromosomes then will mutate some genes into a new value at random. Once mutated, the child
chromosome’s fitness is calculated as it was for its parents.

This process is repeated until a new generation the size of the old generation is created. The
last step is for all the chromosomes, both old and new, to be sorted by their fitness value. The fittest
chromosomes will then survive until the next iteration. This process of reproducing, mutating, and
selecting is repeated until a sufficiently fit chromosome is found i.e. a good variogram model has

been fitted. This process can be seen in Figure 3.8.
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Figure 3.8: A flow chart illustrating the process of a genetic algorithm

With this fitting procedure, the program only needs to obtain a cloud of mesh points sur-
rounding the area to be interpolated in. Pairs are then made and binned to create the empirical
variogram. Once the empirical variogram is sampled, general bounds are placed on the coeffi-
cients of the nested model. The genetic algorithm is then run on the empirical variogram using
these bounds. This returns the coefficients (the parameters of the chromosome) to use in the fitted

variogram model.

3.2.3 Interpolating Displacements

Once the variogram was calculated for a given direction, estimating the displacement was a
simple application of the Ordinary Kriging equations in (3.18). These equations were decomposed

into their matrix form as seen in equation (3.24).
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For each leaf node in the octree and for each direction, the matrix of variogram values was
assembled. If the matrix was ill-conditioned then singular value decomposition was calculated for
the matrix, otherwise the LU decomposition was used as the default method. Then, for each point,
the variogram vector was constructed and the system was solved for the weights. Next, the weights
were used to calculate both the displacement as well as the variance associated with it (as a local
measure of accuracy/confidence). While the decomposition is O(n?), solving the linear system is
only O(n?). Therefore, the decomposition of the variogram matrix is reused for interpolating each

geometry point to save computational time.

3.2.4 Method Summary

The many parts of the process of geometry mapping with Kriging can now be summarized
into a simple system that can be implemented on a computer. This work implemented the system
using Java™, though any coding language should be just as effective. This process, as explained
in the following paragraphs, can be seen in Figure 3.9.

First, mesh data is read into the computer. Deformed mesh points are associated with
their displacements (that is, the distance between the deformed mesh point and its corresponding
undeformed mesh point). These deformed mesh points are loaded and organized in an octree for
fast and efficient look-up.

Next, geometry data is read into the computer. These points are also loaded into the octree
for convenient and efficient access during the mapping.

At this point, an empirical variogram is sampled around each leaf node of the octree using
a point cloud with ten times as many deformed mesh points than are in the leaf node itself. An
empirical variogram is created for each displacement direction making a total of three empirical

variograms.
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Figure 3.9: A flow chart illustrating the procedure for hot-to-cold mapping using Kriging



Each empirical variogram is then fed into a genetic algorithm to fit the nested variogram
model to the empirical variogram. This nested model consists of a nugget model, a linear model,
a near-quadratic power model (ah1‘99), a Gaussian model, and a cardinal sine model summed
together.

Once a fitted function has been determined, the Ordinary Kriging system of equations is
solved to determine the weights for each geometry point. The weights are then used to interpolate
the displacement in each direction and to calculate a standard deviation for the interpolation.

Lastly, the interpolated displacements are added to the original coordinates of the deformed
geometry to create the undeformed geometry. These are then written to a file for use by other

systems.
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CHAPTER 4. RESULTS

4.1 Testing Methodology

The three methods posed were all evaluated and compared by three different metrics: ac-
curacy, speed, and smoothness. Although error estimation is a feature of Kriging (in the form of
a standard deviation), this was not comparable to the other methods since they did not posses any
similar feature. It is, however, investigated and discussed as a means of estimating error. Also,
code complexity was not compared since the implementation of Sculptor™’s ASD is proprietary.

Two models were generated for formulating results. For tuning the Kriging process and
quantifying the variogram fitting procedure, a 2 in. long cantilever beam with a 1/4 in. by 1 in.
rectangular cross section was created. Another model, this one a generic rotor blade, was generated
for testing the method itself and comparing it with the other 2 methods. The rotor blade was
modeled after the GOES531 airfoil [23] using 25 different section curves. The curves were scaled
to give the blade a taper using the formula ¢ = 1.2 — 0.1z, where ¢ represents the chord length of
the section. The curves were also rotated to give the blade a slight twist using the formula 6 = ’E—Zg
where 0 represents the rotation angle about the centroid of the section. Both models were fixed to
the origin i.e. the base section was at z = 0.0 and the tip section at z = 2.0. The blade was created
in Siemens NX using a through curve operation. A 0.0125” fillet was applied along the trailing
edge of the model. The models can be seen in Figure 4.1.

Both of these models were solved using ANSYS™ with a linear static model. The models
were meshed using 20-node brick elements. The meshes were refined until the total displacement
converged. For the cantilever beam model, the converged solution had approximately 5k nodes.
For the blade model, 41k nodes were needed. These were each solved for three different load
cases: an 80,000 rpm centripetal load, a 10 psi pressure load applied on the suction surface, and
the combination of these two. These loads, while arbitrary, may be comparable to a blade in a

turbocharger. Meshes and solutions for these models can be seen in appendix A.
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Figure 4.1: Trimetric views of the models used for testing. From left to right: a) the cantilever
beam, b) section curves defining the rotor blade, and c) the rotor blade

By nature, accuracy is difficult to quantify in hot-to-cold mapping problems because no
solution is known beyond the actual finite element solution contained in the mesh. The actual
solution is only known at these discrete locations—knowledge of the actual solution at all locations
along the surface, which is what is needed, is not. Therefore, to provide a solution to compare to,
a second finite element solution was formulated using a much denser mesh (39k nodes for the
cantilever beam and 303k nodes for the blade). Since the FEA solution of the dense mesh was
essentially the same as the solution for the original mesh, it can be used as an actual solution for
the mapping at this increased number of discrete locations. Therefore, this new dense mesh was
used as a pseudo-geometry file. Once the pseudo-geometry had been mapped using Kriging, RBF
mapping, or ASD, the result could then be compared to the actual finite element solution, and the

error could be calculated as Error = abs(F EADisplacement — EstimatedDisplacement ).
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The speed of the methods was computed as the actual run-time of the program. For the RBF
mapping and Kriging programs, multi-threaded operation was employed for the major features of
the operation, namely the solution to the linear systems for weight calculation and vector operations
involved in the interpolation. While Sculptor™’s implementation of ASD is proprietary, it is a
reasonable guess that it is only single-threaded judging by the computers processor usage while
running the program. This research, however, is not aimed at optimizing other methods of hot-to-
cold mapping. Therefore, ASD will be compared to the other methods regardless of the number of
processor cores that Sculptor™uses in its implementation.

The smoothness of the mappings will be more of a qualitative comparison. To compare,
the actual geometry file (not to be confused with the pseudo-geometry file) will be mapped. Next,
the mapped blade geometry will be reconstructed in Siemens NX using a through curve operation
on all the section curves with the 0.0125 in. trailing edge fillet applied afterward. Smoothness will

then be evaluated by inspection of the model, checking for any wrinkles or divots in the surface.

4.2 Kriging Results

For the Kriging process, this research first tested the methodology on the cantilever beam
model whereas the other methods were only run on the rotor blade model. This extra comparison
was done because 1) well-known solutions exist for cantilever beams, 2) calculations and tests
could be done much quicker on the lower node count model, and 3) variogram models were likely
to be similar for the cantilever beam and rotor blade, making fine-tuning the fitting process ideal

with the beam model.

4.2.1 Cantilever Beam

The empirical variogram was first sampled at several locations along the beam for all three
load cases and for all three displacement directions. Several variogram models were common at all
locations. In the directions of large displacements, e.g. the direction of the pressure load, a power
model shape would generally be present. While at times a single power variogram model with
varying coefficient and exponent was able to produce a good fit, a nested model with two separate

power variograms, each with pre-determined exponents (1.0 and 1.99), tended to obtain a better
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fit as seen in 4.2. While the fit shown is not perfect, it is sufficient for the purposes of Kriging,
considering that the process has been found to work well despite sub-optimal variograms as was

discussed in section 3.1.4.
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Figure 4.2: An example of an empirical variogram with two attempted fits: a single power law
model and a nested power law model

In the direction of small displacements, a Gaussian shape was the most prevalent and pro-
vided good fits as in Figure 4.3 It could be argued that a spherical or exponential model might
provide a better fit in some cases. However, in order to keep the dimensionality of the fitting op-
timization small, only the Gaussian model was chosen. This could be a point of future research,
especially considering the near-origin behavior of the variogram is the most important [15].

A nested variogram model was created using the three models discussed. The genetic
algorithm would then alter the coefficients and the range parameters to find the best fit to the
empirical variograms. If only a Gaussian model was necessary then the algorithm would simply
optimize to the nested model with zeros as the coefficients for the power models. Similarly, if only
a power model was necessary then the Gaussian model’s coefficient would be optimized to zero.

This proved to be a robust method for determining an ideal variogram model for use in Kriging.
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Figure 4.3: An example of an empirical variogram with a Gaussian model fitted to it

Kriging with this model and variogram fitting procedure produced very good results. The
mapping results for all three load cases were similar, which would indicate that the process is
indeed independent of the load case. Because all results were similar only the combined pressure
and centripetal load will be discussed in terms of the evaluation criteria.

For the combined load case, the maximum displacement was 0.0224 in. The mapping for
this case was performed in under a minute while using 500 mesh points for each interpolation.
Smoothness for this model was not considered since the model itself is not smooth. The maximum
error, which occurred just beyond the fixed end, was 2.2x10™* in.. Once beyond the fixed end
of the beam, the error dropped even further to an average value of 1.2x 107 in.. Both of these
numbers were well within the defined tolerance for this method. A chart of these errors can be
seen in Figure 4.4.

A result of interest was observed concerning the Kriging standard deviation. While roughly
95.3% of the the mapped points had errors below three standard deviations (slightly lower than
the expected 99.5%), almost all of the 4.7% that had larger errors also had very small standard
deviation estimates. In fact, for the most part the error was between 0.0 in. and 3.5 1079 in.

regardless of standard deviation. This seems to suggest that while useful information, the standard
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Figure 4.4: A plot of the z-position vs mapping error for the cantilever beam model

deviation may be no more than an order of magnitude predictor of error. This can be seen in Figure

4.5

4.2.2 Rotor Blade

The empirical variogram was sampled again on the rotor blade model at several locations
for each load case. The variograms, for the most part, appeared similar to the variograms observed
with the cantilever beam, as expected. However, two key deviations were seen in several empirical
variograms. One difference was noted that some models reached a sill level, as in the Gaussian
model, then continued to rise afterward like the power model. This type of empirical variogram
could still be fitted from the nested model used on the cantilever beam. An example can be seen in
Figure 4.6

However, on some models, a bit of cyclic behavior was observed. This is seen where the
variance normally is monotonically increasing with separation distance, instead begins to decrease
slightly before increasing again in an periodic manner. This type of variogram was best fitted using
a cardinal sine model as seen in Figure 4.7. This model was simply added to the previous nested

model and fit as before with good results.
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Figure 4.5: A plot of the Kriging standard deviation vs mapping error for the cantilever beam
model
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Figure 4.6: An example of an empirical variogram with a combined gaussian and power model
fitted to it
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Figure 4.7: An example of an empirical variogram with a cardinal sine model fitted to it

As before, results were similar for all load cases reaffirming that the process was indepen-
dent of load case. Only the combined load case is discussed here because of the results similarity.
For this model and load case, the maximum displacement was 0.162 in..

The mapping speed was once again good for even this larger model, taking only 14 minutes
when using 500 mesh points with each interpolation. When using only 250 mesh points, the time
was almost cut in half at 8 minutes. Further reduction in points used for each interpolation to
150 and 75 took only 4 minutes. This suggests that while the matrix decomposition in Kriging
dominates for large numbers of mesh points used (an O(n’) process), for smaller values other
operations dominate the execution speed. The most likely part to dominate at these levels is the
genetic algorithm because its computational cost does not vary with the number of mesh points
used.

The displaced model exhibited an excellent level of smoothness as seen in Figure 4.8. This
figure shows the blade from only one angle and zoom level, though inspection at all angles was
performed on the blade. As the number of mesh points used in interpolating was reduced, the

smoothness of the model suffered. At 250 mesh points, the model began to develop a wrinkle
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along the trailing edge near the free end. At 75 mesh points, this wrinkle was more pronounced as
can be seen in Figure 4.9. The area that the wrinkle appeared is of interest. This location is likely
the most difficult to map. Not only does it have a high level of curvature, low mesh density, and
thin features, but it also is a point of extrapolation instead of interpolation. Because the trailing
edge of the geometry has a small fillet placed on it, the tip point of each section curve lies outside

of the mesh.

Figure 4.8: Rotor blade geometry mapped using a) Kriging, ) RBF mapping, and c) ASD

The blade’s error differed greatly from that of the beam model. Instead of the largest errors
being observed at the base, on this model the largest errors were observed from the midpoint of
the beam until the tip. The maximum error was at a value of 9.84x10~% in. at approximately

7/8 of the length of the blade as seen in Figure 4.10. The larger error may possibly be attributed
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Figure 4.9: Wrinkles along the trailing edge of the mapped rotor blade with 250 and 75 mesh
points used in each interpolation. The wrinkles grow more pronounced as the number of mesh
points is reduced

to anisotropic effects arising from the increasing rotation angle though this was not investigated
as it is beyond the scope of this research. Even though a larger maximum error was observed,
the average error was still very small at 1.2x 107> in.. Both of these values were still within the
tolerance specified, though the maximum observed error was close to violating this constraint.
The standard deviation estimate with the blade model behaved just as it had with the can-
tilever beam. The only notable deviation was that 99.5% of all points had errors below three
standard deviations. This lines up exactly with the value that would be expected from an actual

standard deviation from observed data. This can be seen in Figure 4.11.

4.3 RBF Mapping Results

Like with Kriging, 500 mesh points were used for each interpolation with the RBF method.
This process gave excellent speed results, finishing in only 7 minutes. A good, smooth shape was
once again achieved with this method. The mapped blade can be seen in Figure 4.8. As with
Kriging (see Figure 4.9), the shape began to develop wrinkles when low numbers of mesh points

were used in each interpolation.
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RBF mapping had excellent accuracy in performing the mapping. The maximum error in
this case was only 1.2x10~* in., almost a full order of magnitude better than the Kriging result.
The average error, however, was similar to the Kriging result at 1.1x 107> in.. This can be seen in
Figure 4.12. The largest pocket of error is seen near the fixed end of the blade as well as another,
smaller pocket near the tip. This makes intuitive sense because less information is known for the

interpolation at the fixed and free ends (the sphere of mesh points for interpolating is truncated at

these areas).
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Figure 4.12: A plot of the z-position vs mapping error for the rotor blade model when mapped
using RBF mapping

4.4 Sculptor™Shape Matching Results

Shape matching was performed using Sculptor™’s ASD method. Using a 4x4x7 control
grid (with 7 being along the z-axis), Sculptor™was able to converge to a solution in 30 minutes,
by far the slowest of the methods. This can likely be attributed to the cost of computing gradients

of the objective function, in this case the sum of the differences between hot and cold nodes,
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using the forward difference method. Each node in the control grid introduces three new variables
thus adding three new derivatives to calculate. With 288 derivatives to calculate by evaluating the
difference at 41k nodes at each iteration, it is easy to see why this process is much slower.
Smoothness, as with the other methods, was very good as seen in Figure 4.8. This logically
follows since the basis functions for the mapping are inherently smooth. The error, however, was
not as good as the other methods shown here in Figure 4.13. The maximum error was a little better
than with Kriging at 7.6x10~* in., though the average error was almost 4 times worse than the
other methods at 4.7x107> in.. Figure 4.13 helps to explain why the error was larger in many
places. Bumps can be seen in the chart which lie in-between planes of control points. Spikes are
also seen at the edges where fewer control points have influence on the geometry points to map
in those regions. Local refinement of the control grid could be done to remove these spikes. The
average error could also be reduced by refining the entire grid and theoretically drive the error
to almost zero. This, however, would require more time for each iteration, going beyond the 30

minute constraint for this research.
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Figure 4.13: A plot of the z-position vs mapping error for the rotor blade model when mapped
using ASD
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4.5 Comparisons

As discussed above, each method fulfilled the constraints of the research for accuracy,
smoothness, and time. Kriging was the only one to provide an error estimation, however, as dis-
cussed, this was only useful as an order of magnitude approximation to the error. Though Kriging
was similar in construction to RBF mapping, it required more time to execute because of it could
not reuse the decomposition of the variogram matrices for each displacement direction (O(n?) for
each matrix decomposition), nor could it reuse the weights for each point (O(n?) for each linear
solve).

RBF mapping performed the best in all the categories. Its ability to reuse matrix decom-
positions for each direction as well as reusing weights for each point gave it superior execution
speed.

ASD performed well though was very time consuming. It did have one advantage over all
the other methods in that it could guarantee arbitrary levels of accuracy if given enough time to

solve.
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CHAPTERS. CONCLUSION

5.1 Summary

The purpose of this research was to develop a hot-to-cold mapping process that could
1) map the geometry using only generic inputs, 2) map points within tolerance, 3) map the points
in a smooth manner, 4) perform the mapping in under 30 minutes, and 5) provide an estimation of
the error of the mapping.

Kriging was implemented as a method to accomplish these goals. A genetic algorithm was
implemented to fit the variogram for use in Kriging. An octree data structure was also implemented
to allow for fast look-up of spatial data. Kriging was used to interpolate the displacements of points
for a hot-to-cold mapping on both a cantilever beam and a generic rotor blade model. RBF mapping
was implemented from existing research. RBF mapping and Arbitrary Shape Deformation (ASD)

were used on the same generic rotor blade model and compared to the Kriging method.

5.2 Findings

Kriging was found to be a viable method for hot-to-cold geometry mapping as defined by
this research’s criteria. The method used only the generic inputs of a hot (deformed) mesh, cold
(undeformed) mesh, and hot (deformed) geometry file. The other two methods examined, RBF
mapping and ASD, also required only these inputs. The other criteria were also met as described

in the following sections.

5.2.1 Mapping Within Tolerance

Kriging was able to map all the points within the specified tolerance (on the order of 0.001—
0.0001 in.). It’s maximum error was far from ideal, coming just within tolerance and at the worst

level of all three processes. However, it’s average error was excellent and comparable to the best
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method of the three (RBF mapping). Error was also found to increase with a decrease in the
number of mesh nodes used in each interpolation. While ASD had a slightly lower maximum
error, its error on average was much larger than that of Kriging. RBF mapping far outperformed

either method in regards to accuracy.

5.2.2 Mapping Smoothness

Kriging was capable of creating a smooth geometry output. It was found that large numbers
of mesh nodes used with each interpolation helped to smooth out the shape. As smaller numbers
of mesh nodes were used, wrinkles began to develop along the trailing edge. Further reduction
resulted in more pronounced wrinkles at this location. RBF mapping also exhibited this same
behavior with small numbers of mesh nodes used. ASD was inherently smooth due to the basis

functions used for its mapping.

5.2.3 Mapping Time

Kriging performed the mapping within the allotted 30 minutes, actually finishing in only
14 minutes. Examination of the process showed that its execution time was dominated by three
matrix decompositions, leading to cubic growth of the execution time with an increasing amount
of mesh nodes used in each interpolation. Therefore, a fine balance needs to be reached between
smoothness, accuracy, and execution time when determining the number of mesh nodes to use in
each interpolation. RBF mapping was twice as fast and dominated by only one matrix decompo-
sition. ASD took the full 30 minutes to perform the mapping. This process was dominated by the
gradient calculations used for the optimization. These gradient calculations grow with the size of

the mesh as well as the size of the control grid.

5.2.4 Mapping Error Estimation

While Kriging provided a standard deviation as an estimate of error, this feature proved to
be less useful than hoped. The standard deviation estimate behaved globally as would be expected
with 99.5% of error values below 3 standard deviations. However, locally (on a point-by-point

basis) the standard deviation behaved opposite of what was expected. Large values of the standard
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deviation corresponded with small errors, and small standard deviations corresponded with large
errors. It was concluded that, in its current form, the standard deviation was only useful as an order

of magnitude estimate of error. The other methods did not provide any estimation of the error.

5.3 Recommendations for Future Research

While Kriging was found to be a viable option for hot-to-cold geometry mapping, it was
matched or outperformed by RBF mapping in every category of comparison. It also failed to
improve on ASD in many categories. This process, however, has many areas that it can be improved
upon.

This research found that an isotropic approximation to the variogram gave sufficient results
for performing the mapping. However, the research also found that the variogram, in reality, had
a large degree of anisotropy. This research also found that the anisotropy for the given problem
required a non-trivial solution. By researching into methods for approximating these anisotropies,
the accuracy of the Kriging process could be increased dramatically. This would not only give a
more accurate solution, but would also allow for few mesh points to be used with each interpola-
tion, thus improving execution speed.

A genetic algorithm was used for the fitting of variogram functions to the empirical var-
iogram. This method was found to be very robust and simple to implement, however it requires
much more computation time than more traditional methods of fitting. While not the dominate
factor in execution speed, it was a large contributor to the overall execution time. Research into
different methods for automatically fitting functions to the empirical variogram at a lower cost
while maintaining robustness would improve this methods execution time.

Lastly, this research implemented Ordinary Kriging which assumes that while the mean is
not known, no trend or drift is associated with it. This assumption was almost certainly violated, but
power variogram elements were used to approximate this with good results. More complex models
of Kriging, such as Universal Kriging, would be better able to model this behavior. Universal
kriging includes a trend model into the interpolation, much like the linear polynomial that was used
in RBF mapping which may account for the better results found with RBF mapping. Research into
the best implementation of Kriging for hot-to-cold geometry mapping would be able to determine

a more accurate model for use.
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APPENDIX A. ANSYS SOLUTIONS FOR TEST MODELS

Figure A.1: Mesh used for solutions with the cantilever beam model. Elements are 20-node bricks
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Figure A.2: Fine mesh used as psuedo-geometry for the cantilever beam model. Elements are
20-node bricks
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Figure A.3: Total displacement solution for the centripetal load case
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Figure A.4: Total displacement solution for the uniform pressure load case
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Figure A.5: Total displacement solution for the combined load case
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Figure A.6: Mesh used for solutions with the rotor blade model. Elements are 20-node bricks
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Figure A.7: Fine mesh used as psuedo-geometry for the rotor blade model. Elements are 20-node
bricks
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Figure A.8: Total displacement solution for the centripetal load case
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Figure A.9: Total displacement solution for the uniform pressure load case
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Figure A.10: Total displacement solution for the combined load case
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