
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-08-01

Comparing Efficacy of Different Dynamic Models
for Control of Underdamped, Antagonistic,
Pneumatically Actuated Soft Robots
Morgan Thomas Gillespie
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Gillespie, Morgan Thomas, "Comparing Efficacy of Different Dynamic Models for Control of Underdamped, Antagonistic,
Pneumatically Actuated Soft Robots" (2016). All Theses and Dissertations. 5996.
https://scholarsarchive.byu.edu/etd/5996

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5996?utm_source=scholarsarchive.byu.edu%2Fetd%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Comparing Efficacy of Different Dynamic Models for Control of Underdamped,

Antagonistic, Pneumatically Actuated Soft Robots

Morgan Thomas Gillespie

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Marc D. Killpack, Chair
Timothy W. McLain
Steven K. Charles

Department of Mechanical Engineering

Brigham Young University

August 2016

Copyright © 2016 Morgan Thomas Gillespie

All Rights Reserved

ABSTRACT

Comparing Efficacy of Different Dynamic Models for Control of Underdamped,
Antagonistic, Pneumatically Actuated Soft Robots

Morgan Thomas Gillespie
Department of Mechanical Engineering, BYU

Master of Science

Research in soft robot hardware has led to the development of platforms that allow for
safer performance when working in uncertain or dynamic environments. The potential of these
platforms is limited by the lack of proper dynamic models to describe or controllers to operate
them. A common difficulty associated with these soft robots is a representation for torque, the
common electromechanical relation seen in motors does not apply. In this thesis, several different
torque models are presented and used to construct linear state-space models.

The control limitations on soft robots are induced by natural compliance inherent to the
hardware. This inherent compliance results in soft robots that are commonly underdamped and
present significant oscillations when accelerated quickly. These oscillations can be mitigated
through model-based controllers which can anticipate these oscillations. In this thesis, multiple
model predictive controllers are implemented with the torque models produced and results are
presented for an inflatable single-DoF pneumatically actuated soft robot.

Larger, multi-DoF, soft robots present additional issues with control, where flexibility in
one joint impacts control in others. In this thesis a preliminary method and results for controlling
multiple joints on an inflatable multi-DoF pneumatically actuated soft robot are presented.

While model predictive controllers are capable, their control commands are defined by
solving an optimization constrained by model dynamics. This optimization relies on minimizing
the cost of a user-defined objective function. This objective function contains a series of weights,
which allow the user to tune the importance of each component in the objective function. As there
are no calculations that can be performed to tune model predictive controllers to achieve superior
control performance, they often need to be tuned tediously by a skilled operator. In this thesis, a
method for automated discrete performance identification and model predictive controller weight
tuning is presented.

This thesis constructs multiple state-space models for single- and multi-DoF underdamped,
antagonistic, pneumatically actuated soft robots and shows that these models can be used with
model predictive control, tuned for performance, to achieve accurate joint position control.

Keywords: inflatable robot, robotics, dynamic model, MPC, model predictive control, thesis

ACKNOWLEDGMENTS

I would like to acknowledge and give thanks for the love and support provided by my family

throughout my time as a student. My wife, Courtney, provided the encouragement and sympathy

needed to get through the long hours and difficult evenings required to complete this work. She

has helped me proofread all of my papers and even served as technical support when problems

inevitably arose outside of my expertise.

I would like to extend a special thanks to Dr. Marc Killpack, my graduate adviser, a fan-

tastically dedicated lab head who took a great risk in bringing me into his lab in 2014 as a student

without any research experience. He has been extremely helpful in all facets of my life as a student

and engineer. His exhaustive work ethic and enjoyable personality make him a delight to work

for and with. He strives very hard to ensure we are never left wanting the proper equipment to

complete our work. Without him and his guidance this area of work would not be anywhere close

to where it is today.

I would also like to thank my lab mates and friends who have helped me throughout the

years. They have made the Robotics and Dynamics Laboratory an enjoyable place to be and

have improved the overall quality of my work. We have worked together on many projects and

publications that were only achievable through close collaboration.

I gratefully acknowledge support from the NASA Early Career Faculty grant NNX14A051G,

which has made this research possible. I also recognize the hard work of Kevin Albert and his team

at Pneubotics in building and supporting the soft robot hardware platform used within this work.

Lastly I would like to thank Dr. David Wingate who provided assistance in understanding

neural network topology as well as how to apply it specifically to our system. He also graciously

provided both software and hardware assistance when it was sorely needed.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1
1.1 Contributions . 1
1.2 Motivation and Related Works . 2

Chapter 2 Background . 4
2.1 Platform Description . 4

2.1.1 Single Degree of Freedom: Grub . 6
2.1.2 Multiple Degrees of Freedom: King Louie 6

2.2 Model Predictive Control . 9
2.3 Deep Neural Networks . 10

Chapter 3 Model Development . 14
3.1 2-State Impedance . 14
3.2 4-State Planar Impedance . 17
3.3 Torque Model . 21
3.4 Deep Neural Network Model . 24
3.5 Performance Comparison . 29

Chapter 4 Single DoF Model Predictive Control . 32
4.1 Controller Description . 32
4.2 Performance . 35

4.2.1 4-State Planar Impedance Model . 35
4.2.2 Torque Model . 37
4.2.3 Gradual Performance Degradation . 39
4.2.4 DNN Model . 40

4.3 Variable Stiffness Tracking . 42
4.4 Conclusions . 45

Chapter 5 Expanding Controllers to Multi-DoF . 47
5.1 Sensing and Control . 47
5.2 Model Specific Considerations . 48

5.2.1 4-State Planar Impedance Model . 48
5.2.2 Torque Model . 49
5.2.3 DNN Model . 49

5.3 Performance . 50
5.4 Conclusions . 52

iv

Chapter 6 Automated MPC Tuning Program . 53
6.1 Automated Performance Metrics . 53
6.2 MPC Tuning . 57
6.3 Tuning Results . 58
6.4 Conclusion . 60

Chapter 7 Conclusion . 62
7.1 Future Work . 62
7.2 Contributions . 63

REFERENCES . 65

v

LIST OF TABLES

2.1 DH parameters for King Louie. 8

4.1 Performance comparison between 2-state and 4-state planar impedance controllers 36
4.2 Performance comparison between 2-state and torque controllers 38
4.3 Performance comparison between the 4-state planar impedance controller initially

tuned and the same controller 4 months later. 39
4.4 Performance comparison between 2 State Impedance and ANN controllers 42

vi

LIST OF FIGURES

2.1 Pneumatic joint construction. 4
2.2 Representative figure of valve and bladder configuration. 5
2.3 Grub single joint robot . 7
2.4 King Louie multi-DoF robot . 8
2.5 Example neural network structure . 11
2.6 Example plot of error demonstrating overfitting. 12

3.1 Plot of steady state mapping used to convert equilibrium angles to chamber pressures. 15
3.2 2D cross section plot of steady state angle to single variable P. 16
3.3 Simulated first-order pressure dynamics . 18
3.4 Tangent plane plotted atop θ surface map. 19
3.5 Testing setup with force sensor mounted at 0◦ . 22
3.6 Actuator force at different pressures and angles 22
3.7 Neural network structure . 25
3.8 Predictive model capabilities - open loop . 30

4.1 MPC control diagram for single-DoF joint and stiffness control 35
4.2 4-State planar impedance model performance versus 2-state model 36
4.3 Torque model performance versus 2-state mode. 38
4.4 Negative performance impact due to plant changes 40
4.5 ANN model performance versus static map . 41
4.6 Results for Grub holding a constant angle with a sinusoidal pressure command

which is related to stiffness . 43
4.7 Results for a series of step commands in joint angle with a commanded sinusoidal

change in pressure . 44
4.8 Same results as Figure 4.7 but with frequencies reversed 45

5.1 King Louie initial pose . 50
5.2 King Louie final pose . 50
5.3 Control performance using MPC on various models 51

6.1 Illustration of rise time calculations . 55
6.2 Illustration of settling time calculations . 56
6.3 Illustration of oscillation identification . 57
6.4 Comparison of untuned controller performance 59
6.5 Parameter set 1 performance improvement and iteration cost 60
6.6 Parameter set 2 performance improvement and iteration cost 61
6.7 Comparison of tuned system performance . 61

vii

CHAPTER 1. INTRODUCTION

Developments in soft pneumatic structures and actuation systems have produced physi-

cally capable soft robots, able to lift a payload comparable to a similarly sized rigid robot, but at

a fraction of the overall system weight. One type of these newer robots utilizes pressurized inter-

nal structural bladders and antagonistic actuation bladders contained within high-strength fabric.

While capable, these pressurized bladders have high inherent compliance through their compress-

ible air structure and actuation. This compliance in links, joints, and structure, as well as the unique

actuation method, requires new dynamic models capable of describing the torque generated at each

joint and also the system flexibility. These light and compliant robots are inherently safer to op-

erate around people but will require significant research to improve their usability to that of more

rigid platforms.

1.1 Contributions

This thesis documents the author’s contributions to this body of research in creating mul-

tiple dynamic models and controllers for soft pneumatic robotic platforms. The following is a list

of major achievements described within this thesis:

• Development of an impedance-based linear state-space dynamic model for an antagonistic

pneumatically actuated robot which considers pressure dynamics.

• Development of a deep neural network capable of predicting future states of a pneumatic

system.

• Utilization of a deep neural network to construct a linear state-space model.

• Development of a model predictive controller capable of commanding both joint position

and target pressures which correlate to stiffness.

1

• Extension of the model predictive controller to use a joint-torque model, impedance model,

and neural network based model.

• Extension of the model predictive controller and models to multiple degrees of freedom

showing improved performance compared to previous work.

• Development of an automated tuning tool for model predictive controllers using standard

performance characteristics.

1.2 Motivation and Related Works

The unique advantages of soft, inflatable robots over rigid robots for specific applications

were what motivated this research. Applications included health care, living assistance, space

exploration, search and rescue, orthotics, and prosthetics. It had already been shown that contact

forces from inflatable links could be controlled in [1] and [2] with cable-driven actuators. In [3]

the Head Injury Criterion (HIC) was identified as a limit for serious head injury upon robot impact,

where inertia of the robot is a major driving contributor. This indicates that with all operating

parameters constant that a reduction in robot inertia directly reduces the HIC rating. This reduction

in inertia was possible with an inflatable fabric-based soft robot joint.

Designs for rotary, fabric-based, pneumatically actuated joints were proposed in [4] and the

actuators used in this work were based on these designs. Work in [5] characterized different models

for traditional rigid servo-pneumatic actuators which made different constant temperature assump-

tions. In [6] these assumptions were used to control force and stiffness for a linear pneumatic

actuator. A different actuation approach utilizing McKibben Artificial Muscles, which emulate

human muscles, was proposed in [7] and [8]. More recently, work has been completed on rotary

elastic chamber actuators such as in [9] and [10], where two antagonistic bellows imparted torque

on an armature rotating about a rigid rotary joint. In all of these cases the safety and robustness

introduced by compliant joints was mitigated by higher-inertia motors or rigid links between the

joints. While these models were both useful and accurate for these rigid systems, they did not carry

over well to systems with significant flexibility or non-rigid structure.

The greatest difficulty with modeling these platforms was attributed to the lack of a rela-

tion between pressure and torque. This thesis describes the torque output of inflatable antagonis-

2

tic joints through multiple methods, including impedance modeling, torque characterization, and

modern advancements and applications of neural networks. Through this modeling of joint torque,

this thesis sought to construct relatively generic dynamic models and optimal control methods that

could be used to control any flexible rotary joint with a non-rigid structure.

There is a lack of literature on the modeling and control of inflatable structures. However,

the wide range of potential applications suggest a viable area for new research.

3

CHAPTER 2. BACKGROUND

This chapter seeks to provide an understanding of the background information required for

comprehension of the content within this thesis. A description of the specific robotic platform used

for this research is provided to better understand why current dynamic models are not very applica-

ble. A description of model predictive control is provided as it is the primary control methodology

used throughout. Lastly a description of deep neural networks is provided as they are one of the

modeling methods utilized within this work.

2.1 Platform Description

While the models derived within this work are intended to be general, platform-specific

considerations were made throughout and a detailed description of the platform provided additional

clarification. The inflatable robot platforms used in this research were designed and constructed

by Pneubotics, an affiliate company of Otherlab.

Figure 2.1: Pneumatic joint construction.

4

Inelastic ballistic nylon fabric was sewn together to form the outer shell of a robot and inter-

nal polyurethane bladders were inflated to press against the skin, giving the robot structure without

any internal skeleton. Joints were designated by two opposing, flexible, inextensible pockets sewn

into the outer shell, seen as grey in Figure 2.1, where the actuation bladders were inserted. Bidi-

rectional bending was achieved by pressurizing the actuation bladders, causing them to expand

and lengthen. The bladder pocket fabric contained this expansion and translated extension into

joint rotation by imparting force on the internal structural bladder. The internal body bladder was

inflated to 1-2 pounds per square inch gauge (psig) pressure whereas the actuation bladders were

filled to 0-20 psig. The source pressure was provided by a 100 psig house compressor fed into a

local 30 gallon air storage tank at 80 psig with a regulated output of 25 psig.

Air flow was controlled from the pressure source and vented to atmosphere through Enfield

LS-v25 5-port spool valves. For the purpose of the work, only one output port of the Enfield valves

was used, which made these valves act as 3-port spool valves. As seen in Figure 2.2, each bladder

had an individual valve for control, while sharing the same pressure source.

Figure 2.2: Representative figure of valve and bladder configuration.

Pressure within the actuation bladders was read by Honeywell HSCDRNN100PGSA3 0-

100 psig pressure transducers. These pressure sensors shared a circuit board with an InvenSense

MPU-9150, a 9-axis Inertial Measurement Unit (IMU) containing a 3-axis accelerometer, gyro,

5

and magnetometer. These sensor boards were secured within protective enclosures and mounted

to the inelastic robot skin through velcro straps.

Communication between the controller and sensors was achieved using the Robot Operat-

ing System (ROS) version Indigo operating in non-real time on an Ubuntu workstation. Sensor

values for the IMU and pressure were read and published at approximately 1 kHz. Pressure for

each bladder was controlled by an underlying proportional-integrator-derivative (PID) controller

operating at approximately 1 kHz directly controlling valve current. Desired pressures were pub-

lished over ROS and the valves were actuated to achieve commanded pressure.

2.1.1 Single Degree of Freedom: Grub

The single Degree of Freedom (DoF) test bed platform, named the Grub as seen in Figure

2.3, was used for the majority of model and controller development. One end of the exterior

structure was secured to a wooden platform along with the valves. A single, unactuated body

bladder extended throughout the entire length, pressing against the non-rigid outer shell to provide

structural strength. The internal body bladder was bent at its midsection during actuation, bisecting

the central bladder into two adjoined links at the same pressure.

Robot pose measurement was achieved through an IMU board affixed to the outside of the

top body link. Joint angle was determined by the IMU orientation relative to the world gravity

vector, which was assumed to be normal to the base platform.

2.1.2 Multiple Degrees of Freedom: King Louie

King Louie, seen in Figure 2.4, had two four-foot-long arms each with five flexible joints,

a torso with two joints that allowed forward-back and side-side movements, and two grippers at

the end of the arms resulting in 14 degrees of freedom. King Louie’s arms utilized the same

actuator design present in the Grub. These joints were sewn together in series, often perpendicular

to the previous joint. This stacking of five inflatable rotary joints resulted in a soft, flexible, and

lightweight robotic platform capable of lifting loads comparable to that of similarly-sized flexible

robots, such as the Baxter platform from Rethink Robotics.

6

Figure 2.3: Grub single joint robot

Due to the nature of the joints, direct joint angle measurement through traditional rotary en-

coders was difficult. As such, joint angles were instead estimated through link pose measurements.

For the purpose of these calculations, the links were assumed to be rigid, as most of the system

compliance was in the joints. With an IMU mounted on each link, it should be possible to estimate

all joint angles through relative orientations. Work within this thesis instead measured link orien-

tation with a motion capture camera system, which calculated relative orientation between links

and estimated joint angles online. The motion capture system used eight Kestrel digital cameras

operating at up to 300 Hz. The motion capture data was processed by MotionAnalysis Cortex

software and published over a local network.

Joint angles were calculated using the kinematic relationship between rigid links, described

with Denavit-Hartenberg (DH) parameters in Table 2.1.

Using these DH parameters, the orientation of a distal link could be calculated by using

kinematic relations between links. The orientation of the distal link is calculated by forward mul-

tiplied rotational transformation matrices describing the kinematic relations by the pose of the

proximal link.

7

Figure 2.4: King Louie multi-DoF robot

Table 2.1: DH parameters for King Louie.

Base-Joint 0 Joint 0-Joint 1 Joint 1- Joint 2 Joint 2-Joint 3 Joint 3- Joint 4 Joint 4-Gripper
DHθ

π

2 θ1 +
π

2 θ2 θ3 θ4 θ5 +π

DHd 0 -0.05 0 0 0 0
DHa 0 0.18 0.32 0.28 0.14 0.28
DHα

π

2 −π

2 0 0 π

2 0

An example calculation is provided below, where two rigid links, denoted by their orienta-

tions P[n] and P[n+1], were connected through two stacked rotary joints: R[n] which laid adjacent

to link n and R[n+1] which laid adjacent to link n+1. Joints R[n] and R[n+1] were connected by

an infinitely short link connected between them that was ignored. Using pose information for link

P[n] and kinematic relations, such as DH parameters, the pose of P[n+1] could then be calculated

with the joint angles describing R[n+1] and R[n] as seen in Equation 2.1.

P[n+1] = R[n+1]R[n]P[n] (2.1)

8

where P[n+1] is the orientation of a distal link n+1 expressed as a 3x3 rotational matrix relative

to ground, R[n+ 1] is the 3x3 rotational matrix describing the rotation of the joint closest to link

n+1, R[n] is the 3x3 rotational matrix describing the rotation of the joint closest to link n, and P[n]

is the orientation of link n expressed as a 3x3 rotational matrix relative to ground.

This process was general and could be used with any two orientations connected by a

known kinematic chain, including orientations measured by two IMUs. The motion capture system

was used to only track links with IMUs mounted within them, this was done so that this process of

joint angle estimation could be expanded to include the IMU pose estimation in future work.

Each arm contained an individual body bladder extending through all five joints. A sep-

arate, much larger, central body bladder served to support the torso and ran between the waist

actuators. For the purpose of this thesis, the waist actuators were unactuated and instead filled to

stabilize the torso.

2.2 Model Predictive Control

Model predictive control (MPC) is a finite horizon optimal control strategy that relies on

mathematical models to predict future states across a finite horizon to calculate an optimal control

trajectory across this horizon.

MPC originated from the process industry in chemical production and oil refinement [11]

and has been used more recently in robotics [12–16] and UAV research [17–19]. Modern advances

in computing power and optimization techniques such as those proposed in [20,21] made high-rate

MPC solving possible and opened its usage up to areas in robotic controls.

MPC allows for the minimization of configurable costs across a discrete finite time horizon

given specific constraints. This minimization is achieved through an optimization solver con-

strained by the system dynamics. MPC not only allows for model-based control but also the

consideration of real-world constraints such as joint limits, pneumatic valve actuator restrictions,

and hardware pressure limits.

At each time step, the MPC optimization solver takes in the current states and solves a

convex cost function subject to the model dynamics and other specified constraints. For the purpose

of this work, discrete linear dynamics were used within the solver to describe the plant. Model

dynamics in this work were considered linear and time-invariant as they were kept constant over

9

the predictive horizon, despite being updated at every time step. Using plant dynamics, MPC

predicts the states over a specific time horizon by varying the inputs, solving for an array of inputs

that minimizes the specified cost function. Once a solution is found, the first time step of the

solution is applied to the system and newly measured states are fed into the solver and the problem

is solved again at the next time step.

An efficient solver for the MPC problem described in this work in Section 4.1 was gen-

erated using CVXGEN [22], a web-based tool for developing convex optimization solvers. The

optimization solver was written in C and Python code was used to called the solver.

2.3 Deep Neural Networks

Deep neural networks (DNN) are a series of mathematical function models inspired by the

human brain to define any arbitrary non-linear function. In the human brain, a seemingly random

network of neurons receives a series of inputs, often sensory information, and activates neurons in

a sequence to produce the desired output, such as muscle activation based on sensed pressure in

the skin.

DNNs can be used to approximate complex functions with unknown dynamics, known as

universal function approximation. These nets are described as a series of interconnected nodes

which exchange information upon activation. These connections are usually numerical values

weights tuned to match the desired system that are summed and fed into transfer functions. Nodes

are traditionally assembled in layers, as seen in Figure 2.5. The number of nodes and layers

required is an open problem and often the size of the net is selected through trial and error to

achieve best results.

Any number of inputs can be fed into a specifically constructed net and run through a series

of internal layers and calculations, resulting in a predetermined number of outputs. Internal nodes

that are neither input nor output nodes are referred to as hidden, seen as nodes 1, 2, and 3 in Figure

2.5.

As a sample calculation, the output of Node 1 in Figure 2.5 would be calculated as:

H1 = Input1 ∗w11+ Input2 ∗w21+Bias∗w01 (2.2)

10

Figure 2.5: Example neural network structure

Output1 =
1

1+ e−H1
(2.3)

where H1 is the internal value of the node, w11 is the weight from input 1 to node 1, w21 is the

weight from input 2 to node 1, w01 is the weight of the bias, and Output1 is the output of the node

H1 and input to node H3. The bias is a constant value, often equaling 1, which serves to give the

network additional flexibility.

When initially constructed, the values of these weights are assigned randomly, producing

vastly incorrect outputs. To adapt the net and produce the desired outputs, a process known as

training, large amounts of data are needed. Usually more data points than total nodes is required

for training, where a singular data point is a known input matched with a known output. For the

purpose of training in this research, a large collection of known inputs to outputs were generated

and randomly divided into two groups: training and validation data, at a ratio of 10 to 1, respec-

tively. The training data inputs were fed into the network and then the results were compared to

the known outputs. Error was calculated as the difference in the resultant output to the correct

output. The error was then used along with a process known as backpropagation, an abbreviation

11

of backwards propagation of errors, to tune the weights. The weights from each node in the hidden

layer connected to the outputs were changed as a function of the error and a set learning rate. The

learning rate determined how rapidly the weights should be changed. This process of changing the

weights to reduce error was continued throughout the entire structure, one layer at a time, until the

input layer was reached.

The errors for each output of the training data set were combined into a single value, often

mean squared error (MSE), and compared against the MSE of the separate validation set. This

validation set was also run through the net and used to check for overfitting. This process of

backpropagation was then repeated until the training and validation MSE diverged significantly,

seen in Figure 2.6 as the red dashed line.

Figure 2.6: Example plot of error demonstrating overfitting.

This point of divergence of validation and training MSE serves as an acceptable stopping

point for the optimization, where any additional matching to the training data would make the

DNN less general.

The machine learning library Google Tensorflow version 0.9.0 was used within this work

for the production of all neural networks. Advancements in computational speed, graphic processor

12

assisted computation, and ease of use opened this software up for more general uses, include high-

rate robotic modeling.

13

CHAPTER 3. MODEL DEVELOPMENT

In this chapter various models describing torque generated in inflatable actuators, such as

those mentioned in Chapter 2, are derived and formulated. These models seek to improve state

prediction for usage within model predictive control (MPC). Since MPC relies heavily on the

model dynamics to predict future states, a more accurate model should provide better predictions

and control performance.

The work in Section 3.1 was completed by Best et al. in [23] but an understanding of the

developed model is required for the context of the other models described. The author of this

thesis was the primary researcher for work in [24] described in section 3.2. The work of Section

3.3 was collaborative and the author of this thesis contributed through model development, control

implementation, and the publication in [25]. The deep neural network (DNN) model described in

Section 3.4 was produced by the author of this thesis with assistance from the Perception, Control,

and Cognition Laboratory at Brigham Young University, led by Dr. David Wingate.

3.1 2-State Impedance

In some of the earliest work on these inflatable systems [26], the links were modeled as an

inverted rigid pendulum with angular velocity, θ̇ , and angle, θ , as states:

Iθ̈ +Kd θ̇ +Ksθ −mg
L
2

sin(θ) = τ (3.1)

where I is the calculated moment of inertia rotating about the approximate joint center, Kd is a

damping constant, m describes the mass of the link, g describes gravity, and L is the approximate

distance from the joint center to the center of mass.

Through dynamic parameter identification, the value for m was found to be near zero and

3 orders of magnitude below similarly optimized values for Kd and Ks. Due to the lightweight in-

14

flatable hardware, the influence of mass on the system performance was identified to be negligible

and was removed from the single-DoF model.

To begin the modeling process, a steady-state joint angle response for a range of different

pressure inputs was produced. A range of inputs were applied to the system and the steady-state

angle was recorded; between each point the system was drained completely. These input-to-state

relations were plotted as a surface plot. This plot, seen in Figure 3.1, produced a general trend to

relate steady-state angle and pressures in both bladders.

Figure 3.1: Plot of steady state mapping used to convert equilibrium angles to chamber pressures.

In an effort to reduce the number of degrees of freedom for control, the 3D map was reduced

to a 2D function by taking an effective cross sectional slice between the minimum and maximum θ

values and projecting the entire surface onto this cross sectional plane. This curve, seen in Figure

3.2, related the angle θ to a single variable P, which runs along the cross sectional plane. The

values below and above the fit sigmoid highlight the severe hysteresis present in this system.

This simplification reduced the multi input - P0 and P1, single output - θ (MISO) system to

a single input - P, single output - θ (SISO), which made the model and controller simpler to derive

and implement. A sigmoid function was fit to the 2D cross section seen in Figure 3.2.

15

Figure 3.2: 2D cross section plot of steady state angle to single variable P.

Since no known torque to pressure relation existed for these platforms and the platform

appeared to match the dynamics of a spring damper system, an impedance model was used to

describe torque, with the sigmoid function fit between θ and P to calculate an equilibrium angle.

This equilibrium angle was the angle the system would settle to based upon given input pressures,

provided the chambers were drained and then filled to the input pressures.

This equilibrium angle was used along with the current angle state, θ , in an impedance

model to describe torque at the joint as a torsional spring:

τ = Ks(θe−θ) (3.2)

where Ks is a fixed stiffness constant, θe, is the equilibrium angle determined by the pressure to

angle map, seen in Figure 3.2.

16

These equations were then be placed in linear state-space form:θ̈

θ̇

=

−Kd
I −Ks

I

0 1

θ̇

θ

+[Ks
I

][
θe

]
(3.3)

3.2 4-State Planar Impedance

While the model described in Section 3.1 was sufficient for angle tracking, the work only

utilized change in angle and angular velocity as states and did not consider the dynamics of the

underlying pressure controller dynamics for each actuation chamber.

The dynamics of the underlying PID pressure controller were captured by a simple first

order model:

Ṗ =−aP+bPD (3.4)

where P is the pressure in a corresponding bladder, PD is the desired pressure, and a and b are

parameters fit to data collected for commanded steps in pressure.

This model was verified by holding one actuator at constant pressure while step inputs

in PD were commanded to the opposing bladder through the underlying pressure PID controller.

The model developed in Equation 3.4 was simulated in open-loop using the measured data and

commanded inputs. The resultant simulation was plotted against measured data in Figure 3.3,

which shows an acceptable match for the PID dynamics. For the purpose of this work, fill and

drain rates were assumed to be equal and higher order dynamics were ignored. Perfectly modeling

the true difference in fill and drain rates would require better gas dynamic models, compensating

for choked flow, and a model of the valve aperture, which is not instrumented.

The link dynamics for the model described next were constructed similarly to the 2-state

model in Section 3.1, starting with the simplified dynamic model of an inverted pendulum de-

scribed again ignoring gravity:

Iθ̈ +Kd θ̇ = τ (3.5)

with an impedance torque representation:

17

Figure 3.3: Simulated first-order pressure dynamics

τ = Ks(θe−θ)+Kd θ̇ (3.6)

This impedance representation assumes that the damping term Kd within the torque repre-

sentation can be combined with the Kd within the system dynamics.

Instead of using the nonlinear experimental equilibrium mapping between P0, P1, and θ

shown in Figure 3.1, a tangent planar estimation taken from a smoothed version of that surface was

used at each time step, seen in Figure 3.4. The original surface was smoothed and refined offline

using the Matlab interp2 function, configured with cubic spline interpolation, which increased grid

density by a factor of four.

This planar equation was constructed as a function of the pressures in the two antagonistic

bladders, P0 and P1:

θ = α1 +P0α2 +P1α3 (3.7)

18

Figure 3.4: Tangent plane plotted atop θ surface map.

where α1, α2, and α3 are three parametric constants needed to describe a 3D plane, P0 is the

pressure for one bladder, and P1 is the pressure for the opposing bladder.

While α1, α2, and α3 are considered functions of P0 and P1, they are notated as constants

in the system dynamics as they are kept constant over the predictive horizon used in control and

updated at every time step.

The variable θe was also approximated using this same planar relation, using the previously

acquired α2 and α3 along with commanded pressures sent to the underlying pressure PID controller

as inputs:

θe = α1 +PD,0α2 +PD,1α3 (3.8)

where PD,0 and PD,1, represent the desired pressures for bladder 0 and 1 respectively.

Commanded pressures were used to describe θe as they are the pressure values that the

system will reach at steady state.

19

By combining Equations 3.6, 3.5, 3.7, and 3.8, a differential equation, which describes the

link dynamics as a function of current and commanded pressures, can be constructed.

Iθ̈ +Kd θ̇ = Ks(α2(PD,0−P0)+α3(PD,1−P1)) (3.9)

In Equation 3.7 α1 serves to describe the vertical offset of the planar surface approximated

by the steady-state angle map. By considering α1 in both θ and θe, this offset is removed from

the system dynamics. The removal of α1 serves to dismiss the influence of measurement error and

hysteresis when comparing the steady-state angle to current system configuration or state.

The rigid-body dynamics in Equation 3.9 along with pressure dynamics in Equation 3.4

can then be placed in linearized state-space form:

θ̈

θ̇

Ṗ0

Ṗ1

= A

θ̇

θ

P0

P1

+B

PD,0

PD,1

 (3.10)

where:

A =

−Kd

I 0 −Ksα2
I

−Ksα3
I

1 0 0 0

0 0 −a 0

0 0 0 −a

 (3.11)

B =

−Ksα2

I
−Ksα3

I

0 0

b 0

0 b

 (3.12)

In this formulation, the matrix A is singular. As such, the matrix exponential method that

was used in [26] could not be used for discretization. However, the controllability matrix formed

from this system was full rank for A and B in the form of Equations 3.11 and 3.12 indicating

20

the system was still controllable. These state-space equations were instead transformed from the

continuous time-domain to discrete state space equations using the bilinear transform method.

This transformation provided the discrete state space equations:

θ̇ [k+1]

θ [k+1]

P0[k+1]

P1[k+1]

= Ad

θ̇ [k]

θ [k]

P0[k]

P1[k]

+Bd

PD,0[k]

PD,1[k]

 (3.13)

These discrete-time state-space equations could then be used for predicting the future states

of the system given pressure inputs. Equation 3.13 served as constraint within the model predictive

controller described in Chapter 4. This discretization method was used for all subsequent models

described in this chapter.

3.3 Torque Model

Further modeling efforts were made in [25] to develop a model utilizing experimental

torque measurements. This model was developed under the idea that each bladder produced an

independent torque on a joint which was a function of the pressure in the bladder and the current

angle of the arm. The resultant difference between these torques and the inherent joint stiffness

produced the total joint torque τa that was seen by the links, causing acceleration.

To experimentally identify these torque contributions, the base link of the grub was fixed

while the actuators were filled to different pressures and a load cell was used to measure the resul-

tant force from the link. The test rig and the force sensor in Figure 3.5 were rigidly mounted to a

table and used to characterize τ .

Using the rig shown in Figure 3.5, a series of pressures were commanded to a singular

bladder and the force on the load cell was recorded. The force measured from a singular actuator

at given pressures and angles was plotted in Figure 3.6. Using the known link length, the torque

contributions of the individual bladders and inherent joint stiffness was calculated as a function of

pressure and angle.

The single bladder torque contribution seen in Figure 3.6 was used to identify a simple

linear relationship between joint torque and pressure. θ was seen to have a linear influence on

21

Figure 3.5: Testing setup with force sensor mounted at 0◦

Figure 3.6: Actuator force at different pressures and angles

22

torque, indicating an inherent joint stiffness due to the fabric construction and pressurized internal

bladders. Given these considerations, joint torque was calculated as:

τ = β0P0−β1P1−Ksθ (3.14)

where β0 and β1 are torque coefficients for actuation bladders 0 and 1 respectively, and Ks joint

stiffness.

While β0 and β1 were constant throughout the entire operational regime, through more

experimentation Ks was found to be constant between ±15 degrees of 0 and increased linearly

with theta for angles greater than 15 degrees.

Ks = max(Ksm,Ksm +m(|θ |−15)) (3.15)

where Ks is joint stiffness, Ksm is a base stiffness value for the ±15 degree regime, and m is a

constant scaling factor.

With this representation for torque, combined with the simplified link dynamics in Equation

3.5 and first-order pressure dynamics described in Equation 3.4, the dynamics were described in

linear state-space form as:

θ̈

θ̇

Ṗ0

Ṗ1

= A

θ̇

θ

P0

P1

+B

PD,0

PD,1

 (3.16)

where:

A =

−Kd

I
−Ks

I
α0
I

−α1
I

1 0 0 0

0 0 −a 0

0 0 0 −a

 (3.17)

23

B =

0 0

0 0

b 0

0 b

 (3.18)

Ks is expressed as a constant coefficient rather than as a function of θ , as it is kept constant over

the entire control horizon to conserve linearity, thus seen as constant in the state-space form.

3.4 Deep Neural Network Model

As described in Section 2.3, Deep Neural Networks (DNNs) can be used to approximate

any non-linear function. A system with severe hysteresis and unknown state interaction, like those

described in this work, is difficult to model even with non-linear dynamics. These difficult to model

dynamics are a perfect candidate for universal function approximation with DNNs. A problem

commonly associated with modeling dynamic systems entirely with neural networks, however,

is stability, as discussed in [27, 28]. Any region outside the given set of training data carries

no guarantees on performance or stability. In an attempt to assuage these concerns, the neural

network in this work was instead used to estimate the pressure to theta map shown in Figure 3.1, to

better describe actuator hysteresis and unmodeled dynamics. Instead of using the neural network

to estimate an entire static map of θ , the network was used online to identify the coefficients

describing the tangent planar surface derived in Equation 3.7 directly. These coefficients were

calculated as δθ

δP0
and δθ

δP1
through finite differencing.

The following series of simplified equations were used to describe the calculations used

with the constructed neural net;, for a more detailed description of the calculations including an

example see Section 2.3.

A net with six inputs: θ̇ [k], θ [k], P0[k], P1[k], PD,0[k], and PD,1[k], and one output: θ [k+1],

consisting of 4 layers with 200 nodes each, shown in Figure 3.7, was constructed using Google

TensorFlow [29]. Google TensorFlow was selected over similar architectures for its simplified net

construction process, which allowed for iterative design, high-speed graphics processor accelerated

calculations, open source license, and quality documentation.

24

Figure 3.7: Neural network structure

The nodes in each layer were initialized using Xavier initialization for weights, a method

developed by Xavier Glorot et al. in [30] for constructing large ANN matrices with roughly equal

randomized gradients in all layers.

Between each layer, the inputs from the previous layer were multiplied by the matrix of

node weights, WH , and added to a vector of bias weights BH . This node calculation was then run

through a sigmoid function, serving as an activation threshold function to determine if the output

of the node is on: output = 1 or off: output = 0:

output =
1

1+ e−WH∗input+BH
(3.19)

25

where input is either the initial system inputs or the output vector from the previous layer and

out put the output of the current layer.

This calculation was repeated three times, until reaching the final layer, where the activation

function was removed:

out =−WH ∗ in+BH (3.20)

The net described in Figure 3.7 takes in each state and inputs at the current timestep k and

uses it to predict the value of θ at the next time step k+ 1. Full estimation of all states was not

required for the desired structure of this model. Estimating full states or a state for multiple future

timesteps would require a larger network with more inputs.

DNN Model: Training

Two sequences of step inputs were generated with randomized frequency and step ampli-

tude for each actuator. Frequency for the steps was allowed to change with time independently

between the inputs. This generated sequence of inputs was initially simulated using the torque

model, described in Section 3.3, using the Matlab 2015b Lsim function. This step was used to

verify the predictive capabilities of the constructed neural network.

Once satisfied with the DNN’s predictive capabilities, the randomized trajectory of inputs

were executed on the Grub platform and all states recorded. This data was then arranged into large

arrays for feeding into the neural network, where the ANN inputs at k were organized as a vector:

ANNin[k] =

θ̇ [k]

θ [k]

P0[k]

P1[k]

PD,0[k]

PD,1[k]

(3.21)

matched with a corresponding output:

26

ANNout [k] = θ [k+1] (3.22)

This data set was randomly split into two separate groups, training data and validation data,

at a ratio of 10-to-1 respectively. The training data was run through the neural network, resulting in

a large vector of estimated θ [k+1]. This estimated vector of θ [k+1] values was evaluated against

the measured vector of θ [k+1] values. An error was calculated by subtracting the estimated vector

from the measured vector and the resultant difference squared. This squared difference was then

averaged across the entire data set. This final value was known as the Mean Squared Error (MSE).

The Adam Optimizer, developed by Kingma et al. [31] and integrated into TensorFlow, was used

to train the neural network, identifying the collection of node and bias weights that minimized the

MSE.

At each iteration from the Adam Optimizer, the neural network was also evaluated with

the validation data set and the validation MSE was compared to the training MSE. Throughout

the optimization the MSE seen from both sets of data decreased together, but when the errors

diverged significantly, the optimization procedure was stopped. This process was done to prevent

overfitting of the training data to the DNN based on the methods described in [32], where if the

optimizer continues to reduce MSE in the training data set the network will become less general.

Training was performing on an Ubuntu 14.04 workstation using the NVIDIA CUDA par-

allel computing platform and the CUDNN API on NVIDIA GTX 750 Ti and TitanX graphics

processors.

DNN Model: Gradients

To calculate the desired δθ

δP values from the DNN, a function which only provided values

for θ [k + 1] given the current states and inputs, simple central finite differencing was used by

adjusting the pressure states.

Google TensorFlow was designed to allow for offloading of computations to a graphics

processor, which facilitates high-speed matrix calculations due to the architecture used in graphical

processors. This resulted in no discernible loss in performance when calculating the output of

the net for one vector of inputs, versus several vectors concatenated into an array. As a result,

27

central differencing was seen to be reasonably efficient compared to both forward and backward

differencing. The following delta vectors were used for central differencing:

D1 =

0

0

δ

0

0

0

(3.23)

D2 =

0

0

0

δ

0

0

(3.24)

These delta vectors were combined with the input to the neural network at the current time

step k and concatenated into a singular array:

ANNin[k]+D1

ANNin[k]−D1

ANNin[k]+D2

ANNin[k]−D2

 (3.25)

This array of inputs was fed into the neural network and a vector of outputs calculated:

ANNout+D1[k]

ANNout−D1[k]

ANNout+D2[k]

ANNout−D2[k]

 (3.26)

This array of outputs, each describing a θ [k+1] estimated with different inputs, was then

used to calculate the partial derivative of θ :

28

δθ

δP
[k]≈ (ANNout+D[k]−ANNout−D[k])

2δ
(3.27)

These partials were then fed into the state-space form described in Section 3.2:

θ̈

θ̇

Ṗ0

Ṗ1

= A

θ̇

θ

P0

P1

+B

PD,0

PD,1

 (3.28)

where:

A =

−Kd

I 0
−Ks

δθ

δP0
I

−Ks
δθ

δP1
I

1 0 0 0

0 0 −a 0

0 0 0 −a

 (3.29)

B =

−Ks
δθ

δP0
I

−Ks
δθ

δP1
I

0 0

b 0

0 b

 (3.30)

While δθ

δP0
and δθ

δP1
are considered functions of the current states X [k] and inputs U [k], they

are expressed as constants in state-space form since they are kept constant over the entire control

horizon to conserve linearity.

3.5 Performance Comparison

Performance of each of the models was directly compared by simulating the models dis-

cretely over a fixed time horizon and comparing these open-loop simulations to known system

measurements, seen in Figure 3.8. The models were tuned for performance over the entire oper-

ational range of the robot and Figure 3.8 only describes one such trajectory. As all models used

identical pressure dynamics, pressure state estimation was not compared.

29

Figure 3.8: Predictive model capabilities - open loop

The planar impedance model estimated θ particularly well, as seen in Figure 3.8. While

the model overshot the measured values slightly, prediction performance was particularly good.

The model itself was set up to allow quick scaling of the θ to pressure mapping to any similar

pneumatic joint. The map, seen in Figure 3.1, could be scaled to any range of pressures and joint

limits. This model also allowed for a complete replacement of the θ map for any state relation

surface.

The torque model was the simplest model created, as it used static values for nearly every

dynamic parameter. This model was also very easy to simulate, as the dynamic parameters did

not require any external calculations, but simulation often showed error at steady state, as seen in

Figure 3.8.

The deep neural network model was the most accurate but it was also the most complex

model, requiring significant hardware and external application programming interfaces (API). This

model, however, was a complete black box, meaning true internal structure and workings were

obscured, and required repeating the entire training procedure for any new platform.

30

While similar, each model represented significant research and changes to the dynamics.

Their similarities allowed the same model-based controller, described in Chapter 4, to be used

without significant alterations.

31

CHAPTER 4. SINGLE DOF MODEL PREDICTIVE CONTROL

In this chapter, a description of the controller used is first provided, followed by an analysis

of control performance using each of the models described in Chapter 3 is compared to prior art

described in [23].

4.1 Controller Description

Model predictive control (MPC) was applied using all models described in Chapter 3. MPC

was used for its ability to handle model-based control, system constraints, and ease of iterative

design. For a more detailed description of MPC, see Section 2.2.

A model predictive controller solves an optimization at every time step, simulating the

predicted states over the horizon T by varying the inputs to produce the trajectory incurring the

least cost subject to defined constraints. Throughout this work, the model predictive controllers

were operated with a time horizon of T = 20 time steps at a rate of 300 Hz, effectively predicting

0.07 seconds into the future. With all models the discretized state-space matrices Ad and Bd ,

current states θ̇ [k], θ [k], P0[k], and, P1[k], previous inputs PD,0[k− 1] and PD,1[k− 1], goal angle

θgoal , target pressures PT,0 and PT,1, model constraints, and controller weights were fed into the

MPC solver at every time step.

Pressure target values, PT,0 and PT,1, were low-weight cost value parameters that allow

the setting of desired pressure operating point, which correlated to stiffness. The cost function

minimized across the horizon T was:

(4.1)minimize
T

∑
k =0

(
‖θgoal − θ [k] + θint‖2

Q + ‖θ̇ [k]‖2
R + ‖P0[k]− PT,0‖2

S + ‖P1[k]− PT,1‖2
S
)

subject to the system model as constraints and the following additional constraints:

32

X [k+1] = AdX [k]+BdU [k]

|θ | ≤ θmax

Pmin,i ≤ PD,i ≤ Pmax,i

|∆PD,i| ≤ ∆Pmax,i

i = 0,1

(4.2)

where Q, R, S are scalar weights manually tuned for empirical performance, the same value of S

is used for both pressure target costs, θint is an integrator term used to eliminate steady state error

when needed, X [k] is a vector of the system states at time step k, U [k] is a vector of the system

inputs at time step k, θmin and θmax are joint limits, Pmin and Pmax are pressure bladder limits, ∆PD

is the change in desired pressure from the previous time step and ∆Pmax is the maximum change

in desired pressure per time step permitted. Because simplified pressure dynamics were used, the

slew rate restrictions serve to prevent valve chattering.

Target pressure, the PT term in Equation 4.1, was introduced to the MPC cost function in

an effort to improve controller performance. Initially the solutions produced by the MPC solver

were often just above atmospheric pressure, as this solution allowed for the greatest perceived

performance and lowest cost - low pressures allowed for high-ratio pressure differentials in a short

period of time. While this solution agreed with the model, it was simply not physically true.

System dynamics at extremely low pressures, 0-0.3 PSIg or less than 15 PSIa, were generally

unknown and not tractable as the actuation bladders had not fully inflated. In an effort to combat

this, a pressure target term was introduced to add a small cost for solutions close to atmospheric.

In order to effectively achieve angles away from the center position, different values of

the pressure target, PT , were sent to individual bladders. When bent to one side, the bladder on

the inside of the bend must be at a lower pressure than the bladder on the outside of the bend.

Individual pressure target values, PT , are calculated based on the user set base stiffness pressure,

PS, according to the following equations:

33

PT = M
∣∣θgoal

∣∣+PS

if (θgoal ≥ 0) :

PT,0 = PS

PT,1 = PT

else :

PT,0 = PT

PT,1 = PS

(4.3)

where M is a constant which changes target pressure as a function of θgoal , PT is a calculated target

pressure for the bladder on the inside edge of a bend and PS is a target pressure applied to the

bladder on the outside edge of the bend as well as the operating point for PT function. PS can be

varied during operation from one actual time step to the next, but is constant over an entire MPC

horizon.

An efficient solver was generated for the MPC problem using CVXGEN (see [22]), a web-

based tool for developing convex optimization solvers. The optimization solver, written in C and

subsequent Python code that called the solver, was run at 300 Hz. A predicted trajectory horizon

of T = 20 time steps was used, a prediction of 0.067 seconds into the future.

Once solved, the first time step from the optimized trajectory of desired pressures was

applied to the system and published over ROS. These desired pressures were received by the un-

derlying pressure proportional-integral-derivative (PID) controller and valve position commands

were then sent to the individual valves.

As described in Figure 4.1, the current pressure states were read and fed back into the

pressure controller, while the angle states were fed into a Kalman filter. The Kalman filter was

used to smooth out the angle estimation from the IMU, as described in Section 2.1.1. Both the

current filtered angle states and measured pressure states were fed into the MPC controller along

with user-specified θgoal and PS values.

34

Figure 4.1: MPC control diagram for single-DoF joint and stiffness control

4.2 Performance

In this section the same controller described above was applied to each of the models de-

tailed in Chapter 3. Each model was commanded to a series of step angle positions.

A series of 30-degree step angle commands ranging from -60 to 60, changing in increments

of 10 seconds were commanded to each controller using a different model. The resultant angle θ

over time was compared against the 2-state impedance model described in Section 3.1 using the

model predictive controller developed in [26] commanded to the same angles. The resultant θ of

both controllers and commanded θgoal were plotted over time for comparison. The performance

characteristics of each trajectory were also measured using an automated tool described in Chapter

6, where rise time, settling time, and percent overshoot were calculated for each step, averaged

across the entire trajectory, and their results placed in a table.

4.2.1 4-State Planar Impedance Model

The controller within this section used the model described in Section 3.2, where tangent

surfaces from Figure 3.4 are used to describe joint torque through an impedance model. This

controller did not require usage of the integrator term θint in Equation 4.1.

Compared to the previous 2-state controller with only θ and θ̇ , adding pressure states in

the 4-state planar impedance controller significantly improved overall performance seen in Figure

4.2. As described in Table 4.1, the planar impedance model produced remarkably faster 90% rise

time and 5% settling time while vastly decreasing percent overshoot. With angular step commands

35

Figure 4.2: 4-State planar impedance model performance versus 2-state model

of only 30 degrees, the 2-state controller saw an average % overshoot of 24.408% or 7.3 degrees.

The introduction of pressure dynamics reduced average % overshoot to just 3.711%, less than 1.12

degrees.

Table 4.1: Performance comparison between 2-state and 4-state planar impedance controllers

Avg. Rise Avg. Settling Avg. %
Time Time Overshoot

2-State MPC 1.191 sec 3.3156 sec 24.106%
4-State Planar Impedance 0.4552 sec 1.7785 sec 3.711%
Improvement 161.529% 86.428% 549.639%

36

4.2.2 Torque Model

The controller within this section used the model described in Section 3.3, where the indi-

vidual contributions of actuator torque along with inherent joint stiffness are summed to describe

joint torque.

Due to the differences in model structure, system performance with the torque model re-

quired usage of the θint integrator in the MPC cost function in Equation 4.1 to eliminate signif-

icant steady-state error. This difference was understood to be a result of the deviation from the

impedance representation of torque towards a direct representation estimated from empirical data.

The open-loop simulation, seen in Figure 3.8 showed significant steady-state error for θ using the

direct torque representation.

In an effort to improve performance and mitigate integrator windup, a customizable inte-

grator was created:

E[k] = θgoal[k]−θ [k] (4.4)

where E is angle tracking error at the current timestep k,

Ė[k] =
E[k]

t[k]− t[k−1]
(4.5)

where Ė is the time derivative of error and t[k] is time at the current time step k.

θint [k+1] = KiEe−Kes|Ė[k]|+θint [k] (4.6)

where Ki is the integrator scale factor and Kes is the exponential scale factor.

This integrator was created under the idea that if Ė, the time derivative of angle track-

ing error E, was high, indicating the arm was moving, the exponential function would prevent

any buildup of the θint term. Ė was used instead of θ̇ to allow for integrator build up as the

θ approached θgoal . This custom integrator also provided two variables for tweaking integrator

performance: Ki which controlled how quickly the integrator built up, and Kes which scaled the

exponential function curve and determined how Ė the integrator built up whilst moving.

37

Figure 4.3: Torque model performance versus 2-state mode.

With the direct representation for torque, the controller performed significantly better than

the 2-state MPC seen in Figure 4.3 and Table 4.2. The integrator was tuned to minimize percent

overshoot which hurt 90% rise time compared to the planar impedance model.

Table 4.2: Performance comparison between 2-state and torque controllers

Avg. Rise Avg. Settling Avg. %

Time Time Overshoot

2-State MPC 1.191 sec 3.3156 sec 24.106%

4-State Torque-based MPC 1.320 sec 2.284 sec 2.610%

Improvement -9.799% 45.192% 823.665%

38

4.2.3 Gradual Performance Degradation

The inflatable systems described in this thesis were notably difficult to model due to their

inherent compliance, non-rigid structure, and hysteresis. These effects were mostly attributed

to the general construction and assembly of the robotic platforms as they were all handmade.

Over time the internal structure and actuation bladders would shift slightly, either due to usage

or the process of reseating - deflation, removal, and reinsertion of internal inflatable bladders.

This slight shift of the platform structure significantly altered unmodeled properties and dynamic

performance.

The performance demonstrated in Sections 4.2.1 and 4.2.2 were, in great part, the result of

significant hand tuning of the MPC cost function weights described in Equation 4.1 by the author

of this thesis. This lengthy process of hand tuning required significant trial and error to identify

weights which maximized desirable performance. Unfortunately there was no known formulaic

process of calculating the proper control parameters like exists for traditional control methods.

The impact effect on performance caused over time was evident from significant degrada-

tion of previous controller performance on the same hardware that has been used regularly over a

period of time. Running the controller described in Section 4.2.1 on the same Grub platform, de-

scribed in Section 2.1.1, with identical source pressure and controller weights, after four months of

regular usage demonstrated the significant performance degradation seen in Figure 4.4 and Table

4.3.

Table 4.3: Performance comparison between the 4-state planar impedance controller initially

tuned and the same controller 4 months later.

Avg. Rise Avg. Settling Avg. %

Time Time Overshoot

4-State Planar Impedance 0.4552 sec 1.7785 sec 3.711%

4 Month Degradation 0.3642 sec 1.0288 sec 17.638%

Change 24.979% 72.866% -78.963%

39

Figure 4.4: Negative performance impact due to plant changes

Significantly faster rise time, but also higher percent overshoot were seen in both Figure

4.4 and Table 4.3. It was likely that these significant changes in controller performance could be

negated by significant retuning of the MPC weights or dynamic system parameters. This demon-

strated a need for an automated procedure for the particularly lengthly process of tuning model

predictive controllers. Preliminary work for an automated procedure was completed and is de-

scribed later in this thesis in Chapter 6. The identification of performance changes were important

to notate, as the controllers described in Sections 4.2 and 4.2.2 were tuned and benchmarked around

the same time, whereas the controller described in 4.2.4 was tuned and benchmarked more than

four months later.

4.2.4 DNN Model

The controller within this section used the model described in Section 3.4, where a deep

neural network was used to estimate δθ

δP0
and δθ

δP1
for usage in an impedance model. This controller

did not require usage of the integrator term θint in Equation 4.1.

40

While the neural network required running additional extra external processes, as described

in Section 3.4, as it calculated δθ

δP using a separate graphics processor there was no impact upon

MPC solve rate.

Figure 4.5: ANN model performance versus static map

While the DNN-based controller demonstrated improved rise time, as seen in Figure 4.5

and Table 4.4, percent overshoot was still a notable problem. The intent of this model was to po-

tentially learn these significant unmodeled system parameters; however, performance was similar

to that of the degraded planar impedance controller described in described in Section 4.2.3. The

lengthy training process and black box nature of the DNN-based model made adjusting of dynamic

parameters difficult and limited controller tuning abilities. Finite time resources resulted in a focus

on simulated model accuracy over MPC performance, as the performance described in Section

4.2.1 required over 30 hours of hand tuning to achieve.

41

Table 4.4: Performance comparison between 2 State Impedance and ANN controllers

Avg. Rise Avg. Settling Avg. %

Time Time Overshoot

2-State MPC 1.191 sec 3.3156 sec 24.106%

4-State DNN MPC 0.376 sec 1.188 sec 18.174%

Improvement 216.588% 179.197% 32.636%

4.3 Variable Stiffness Tracking

In addition to improving controller performance, it was discovered that by varying the PT

values, one would effectively alter the joint stiffness during operation. The ability to adjust joint

stiffness and joint angle simultaneously would allow these actuators to store energy, dampen un-

wanted oscillations, or adjust contact forces while still controlling position. While the exact rela-

tionship between pressure and stiffness was unknown for this platform, pneumatic spring stiffness

equations were found in standard literature [33]:

K =
nPA2

V
(4.7)

where K is the pneumatic spring stiffness, n is the polytropic exponent, P is pressure behind the

diaphragm or piston, A is the cross sectional area, and V is the volume of the fluid.

With the Grub platform seen in Figure 2.3, once bladders had filled the non-expanding

envelope prevented additional changes in volumes when joint angle remained constant. During

operation, n and A were also assumed to be constant. Through these assumptions, an increase in P

should result in a direct linear increase in joint stiffness. Concurrent work was completed within

the Robotics and Dynamics Laboratory at Brigham Young University to more accurately describe

the joint stiffness of the robot platforms described in Section 2.1, however the focus of this thesis

was the development of torque models and controllers.

In an effort to demonstrate this effect, the 4-state linear impedance model described in

Section 3.2 along with the controller described in Section 4.1 was used to track θgoal as well as

various changes in PS.

42

Figure 4.6: Results for Grub holding a constant angle with a sinusoidal pressure command which
is related to stiffness

Given a constant θgoal and a sinusoidal value for PS, Figure 4.6 showed that the joint angle

θ was maintained while changing effective joint stiffness. PS was commanded as a sinusoid with a

frequency of 0.2 Hz and an amplitude of 5 psig operating around 10 psig. Figure 4.6 demonstrates

angle tracking error remained within 1 degree during changes of up to 200% in pressure in both

bladders. As described in Equation 4.7, changes in pressure while maintaining a constant angle

indicates a direct change in stiffness. This test demonstrated the controller’s ability to alter PS by

as much 200% at a rate of 0.2 Hz while holding the joint angle relatively constant.

While the PS value was varied sinusoidally, θgoal step commands were also sent and fol-

lowed. Figure 4.7 shows the resultant pressures and angle as θgoal was stepped between 30 and -30

43

Figure 4.7: Results for a series of step commands in joint angle with a commanded sinusoidal
change in pressure

deg at a rate of 0.2 Hz and the PS as a sinusoid at 0.13 Hz with an amplitude of 2.5 psig operating

around 10 psig. Once the commanded angle had been reached, tracking error remained less than 2

degrees while adjusting PS. The large step swing in PT values are a function of changes in θgoal as

described in Equation 4.3.

Figure 4.8 describes the same configuration as Figure 4.7 with the commanded frequencies

reversed, where θgoal was stepped between 30 and -30 deg at 0.13 Hz and the PS a sinusoid at 0.2

Hz with an amplitude of 2.5 psig operating around 10 psig. As in the previous case, non-transient

tracking error remained less than 2 degrees despite large changes in pressures.

44

Figure 4.8: Same results as Figure 4.7 but with frequencies reversed

The tests shown in Figures 4.7 and 4.8 demonstrate the controller’s ability to alter joint

stiffness at variable rates while still achieving large changes in commanded angle.

4.4 Conclusions

While the DNN-based model was capable of learning many of the non-linear effects present

in the system and showed very accurate open-loop state predictions in Figure 3.8, control perfor-

mance in Section 4.2.4 was less than that of the well tuned 4-state planar impedance controller

in Section 4.2.1 which performed best out of the three. The integrator used in the torque model

45

controller, described in Section 4.2.2, performed very well. Mitigating steady-state error entirely,

while avoiding significant overshoot or integrator windup.

When considering how applicable these controllers were to alternate systems, the 4-state

planar impedance model controller appeared to be the easiest to apply as it would only require

a straight forward relation surface from inputs to outputs and system specific adjustments to the

dynamic model. Both the torque and DNN models would require extensive testing or training to

achieve similar performance.

The addition of the ability to adjust joint stiffness to all model predictive controllers within

this work, detailed within Section 4.3, added significant utility to this control methodology. While

applications were not explored within this thesis, the simple implementation sets the stage for use

in future research.

46

CHAPTER 5. EXPANDING CONTROLLERS TO MULTI-DOF

This chapter describes the implementation of a model predictive controller, described in

chapter 4, on the multi-DoF King Louie platform described in section 2.1.2. This chapter is specif-

ically focused on control of the first two joints of the right arm seen in Figure 2.4 as Joint 0 and

Joint 1. These joints were selected as they differed significantly from the Grub joint in actuator

size and joint orientation.

5.1 Sensing and Control

Each of the joints on the right arm of the King Louie platform were treated as uncoupled

and followed the same dynamics as the single-DoF Grub platform described in Section 2.1.1. Each

joint was considered independent of the rest. Although both gravitational and inertial effects were

more prominent on the King Louie platform compared to the Grub, the model predictive controller

used was robust against disturbances and modeling errors. This minimal impact on performance

was believed to be a combination of several platform specific factors. The lightweight design of

the platform resulted in the entire left arm, structure, sensors, and actuation, weighing less than

10 pounds total. The lightweight structure of this arm was actuated by high-pressure bladders,

operating as high as 20 PSIg, resulting in high forces on the internal structure. These forces were

expected to be significantly higher than any inertial or gravitational effects, resulting in pressure

control having the greatest influence upon system dynamics. The influence of these effects on

inflatable systems was an open area of research, but control performance expressed in this work

was more than acceptable as an initial exploration into the feasibility of controlling multi-DoF soft,

pneumatically actuated platforms.

The angle controller used on King Louie was the exact same model predictive controller

described in Section 4.1. One controller was started for each joint, which operated independently

47

of all other joints. A few special considerations were made for each model beyond significant

tuning of the MPC weight values Q, R, S from Equation 4.1 for each controller.

As described in Section 2.1.2, the joint angles on the King Louie platform were not mea-

sured with traditional rotary positional sensors such as encoders or potentiometers. These joint

angles were instead estimated based on measured link orientation and known joint kinematic rela-

tions. Additional details regarding this process can be found in Section 2.1.2.

5.2 Model Specific Considerations

As discussed previously in Section 4.4, certain models required additional consideration

when adapting to a different platform and expanding the controller to multiple degrees of freedom.

This section serves to describe any changes that were required for the model or controller.

5.2.1 4-State Planar Impedance Model

For the model described in section 3.2, controllable joint limits were measured as the max-

imum angle θ the joint could possibly achieve at maximum pressure in one actuation bladder, 20

psig, with atmospheric pressure in the antagonistic bladder, 0 psig. The values, θmin and θmax,

were fed into the MPC controller as constraints. These values were also used to scale the θ to

pressure map from figure 3.1. The minimum and maximum angles from the pre-existing map were

extracted as θmapmin and θmapmax and were used to calculate a scaling factor:

Scl =
θmax−θmin

θmapmax−θmapmin
(5.1)

Using this scaling factor, the 2D array describing the θ map was scaled all at once during

controller initialization:

scaledθmap = Scl ∗θmap +θmin−Scl ∗θmapmin (5.2)

This scaling factor allowed the map of θ to pressure to be scaled for each joint, which

varied in both size and joint limits.

48

5.2.2 Torque Model

The model described in Section 3.3 only required fitting the β torque coefficients in Equa-

tion 3.14 to collected data. State information was collected for a series of steps in desired pressures.

Torque was then simulated using this data, and the β values were tuned by hand to best fit the sim-

ulated data to the measured data. This process was completed for both shoulder joints.

5.2.3 DNN Model

For the model described in Section 3.4 an entirely new network needed to be constructed.

Rather than operating two separate neural networks, it was decided that the states between the

joints were sufficiently coupled to instead operate one neural network with more inputs compared

to what was produced in Section 3.4. While gravitational and inertial effects were ignored in the

model dynamics, it was believed that the DNN could potentially learn and express these effects

through δθ

δP0
and δθ

δP1
.

The internal neural network structure remained the same as in Section 3.4 with 4 layers and

200 nodes per layer; however, the number of inputs was increased to 12 and outputs to 2 where:

ANNin[k] =

X0[k]

U0[k]

X1[k]

U1[k]

 (5.3)

matched with a corresponding output:

ANNout [k] =

θ0[k+1]

θ1[k+1]

 (5.4)

where Xn[k] represents the states: θ̇ , θ , P0, and P1, of joint n at time step k, Un[k] represents the

inputs: PD,0 and PD,1 of joint n at time step k, and θ [n] represents the joint angle of the joint n.

The training process used was identical to that which was described in Section 3.4, but

instead four randomized pressure input step trajectories were generated and applied to both joints

simultaneously.

49

5.3 Performance

In order to compare controller performance directly to the 2-state impedance model derived

in Section 3.1, the test case described in [25] was used. This test case involved moving the arm

between two static poses seen in Figure 5.3 through a step input, where Joint 0 was actuated

between -5 and -25 degrees, while Joint 1 was actuated between 0 and 60 degrees. The distal joints

were ignored for these trials due to hardware limitations from leaks and computational limitations

in model scaling - where the Neural Network model could only solve on immediately available

graphics processors at the needed rates when configured to the described size in Section 3.4.

Figure 5.1: King Louie initial pose Figure 5.2: King Louie final pose

Desired angles for testing were commanded to controllers for all four models described in

Chapter 3, where at the start the arm was completely drained, with all actuators at 0 PSIg. Joint 0

and Joint 1 were commanded to -5 and 0 degrees, respectively upon starting the controller. After

50

15 seconds, Joint 0 and Joint 1 were commanded to -25 and 60 degrees, respectively. All states

were recorded from 0 to 30 seconds. The resultant joint angles were plotted together in one graph,

seen in Figure 5.3, rather than separately.

Figure 5.3: Control performance using MPC on various models

As seen in Figure 5.3, the controller using the 4-state planar impedance model outper-

formed the others once again, as it achieved fast rise time with limited oscillations, and minimal

overshoot in both joints. While the torque based model controller still performed better than the

2-state controller, it exhibited a number of oscillations which negatively impacted settling time in

both joints. The DNN model controller performed quite well in Joint 1, arguably as good as the

planar impedance model. However, oscillations in control of Joint 0 were common with the DNN

based model controller, this was believed to be due to the neural network training process. This

51

objective function may have have prioritized the proportionally larger error seen from the wider

operational range in Joint 1. Future work could potentially mitigate this by constructing sepa-

rate networks for each joint or normalizing the relative angle prediction error to the joint specific

operational range.

5.4 Conclusions

The control performance seen in Figure 5.3 demonstrated the great difficulty in achieving

desired joint angles with fully inflatable, multi-DoF soft robots. While the 4-state planar impedance

model performed best, it was believed that control performance could still be improved with the

DNN-based controller. For improved system performance and expansion to even more joints,

the elimination of gravitational and inertial effects should be reconsidered and better suited DNN

models should be used.

52

CHAPTER 6. AUTOMATED MPC TUNING PROGRAM

As described in Chapter 4, the model predictive controller used has multiple weights in

the optimized cost function that can be adjusted which significantly impact system performance.

While various methods have been explored to guide the tuning process of these types of controllers

in [34, 35], no standard automated procedure existed. Even with these guides, the actual process

of tuning was still done predominately by hand, which is quite difficult with multiple control

parameters. This chapter details the process of developing an automated model predictive control

tuning tool and demonstrates its function through control improvements in two test cases.

6.1 Automated Performance Metrics

Determining the quality of control performance from a plot can be completed with relative

ease visually by a skilled operator. Having a computer quantify this performance automatically

with discrete data sets was not as straight forward, but many tools and standards already existed to

do this. Several commonly used performance metrics as defined in [36] were selected for this work:

rise time, percent overshoot, settling time, steady-state error, and oscillatory behavior. In order to

use these metrics in an autonomous optimization process, these metrics needed to be measured

automatically.

The model predictive controllers within this work sought to control θ to θgoal and as such

all metrics were calculated using these values over time as well as the time vector T .

In order to perform these calculations automatically, it was necessary to first know when

the step was initiated Tstep and second, the exact data index match where the step input was com-

manded. This process helped identify the exact data point in the discrete vector of time T closest

53

to the step through the following equation:

[val, idstart] =min(|Tstep−T [k]|)

k
(6.1)

where min is a minimization function which accepts vectors and returns both the value and index,

val is the value of the minimization idstart is the index k which is closest to the commanded time.

This idstart value is used to identify all measured states the start of the commanded step.

The value of θ [idstart] was recorded as the angle at start of the step, the 0% value. The step

size, θstep, was calculated as the difference between the θ [idstart] and θgoal[idstart], as idstart was

the index when the step was initiated.

Percent overshoot was defined as a signal exceeding its intended target. Utilizing the index

of the commanded step idstart as a starting point, the maximum absolute value of θ before the next

commanded step was identified as the largest overshoot. If the largest value of θ was greater than

the θgoal percent overshoot was calculated as:

Povr =
|max(θ)−θgoal|

θstep
∗100 (6.2)

If no value in θ was greater than θgoal within the selected region, percent overshoot was claimed

as 0.

Rise time was defined as the time required for the control response to rise from x% to y%

of its final value in [36]. For the purpose of this work, 90% rise time was considered, which was

defined as the time required to move between 5% and 95% of the desired value.

The time indexes corresponding to 5% and 95% of the step were calculated as:

[value, idn%] =min(|θ [idstart]+n%θstep−θ [k]|)

k
(6.3)

where idn% is the index which described where θ was closest to n% of the step. This equation

was used to calculate the indices corresponding to both 5% and 95% of the step.

54

Figure 6.1: Illustration of rise time calculations

With these indexes, the rise time was calculated in seconds as:

Trise = T [id95%]−T [id5%] (6.4)

The illustration in Figure 6.1 was used to describe this identification of indices visually. The

minimum function in Equation 6.3 was bounded by the index of the initial peak found for percent

overshoot. This was done to avoid capturing oscillations which traveled through the 95% region.

Settling time was defined as the time between the initial commanded step and when the

commanded state remained within a defined error band around the final value; this is illustrated in

Figure 6.2.

The final value could be either identified as the value of θ at steady-state value or θgoal .

For the purpose of this work, the steady-state value θ represented as θss was chosen, as not all

controller solutions were able to approach θgoal within the defined band. A 5% band was selected

for this work, indicating the controller must keep θ between ±2.5% of θstep around θss. The

steady-state value was calculated as the average θ over the last 50 time steps before a new θgoal

was commanded. The ±2.5% values were calculated and used as an errorband. Starting at the last

index before a change in θgoal , values of θ[k] were decremented and compared against the error

band. If a value of θ was found to be outside the error band, the index of the previous θ value

55

Figure 6.2: Illustration of settling time calculations

was recorded as idss. The time vector T was then used to define settling time using the following

formula:

Tset = T[idss]−T[idstart] (6.5)

Error steady-state was defined simply as :

Ess = |θss−θgoal[idstart]| (6.6)

Oscillatory behavior was difficult to quantify, as minor oscillations were acceptable if they

were slow and small, but not if they were large and fast. A straightforward way to identify these

peaks for discrete data was identified as finding zeros of θ̇ that exceed a certain slope threshold

across the X-axis. This empirically selected threshold ignored slow waffling close to the axis or

minor jitters in data; only large oscillations were recorded and marked with an asterisk, as seen in

Figure 6.3.

The formula below was used to identify oscillations in θ :

where idstart is the index of the initial θgoal command, idxend is the last index before a change in

θgoal , idxlist is a list of indices where oscillation peaks occur, and T hreshold is a set limit for a

56

Figure 6.3: Illustration of oscillation identification

for k = idstart to idend−1 do
if θ̇[k] < 0 & θ̇[k+1] > 0 or θ̇[k] > 0 & θ̇[k+1] < 0 then

if | θ̇[k]−θ̇[k+1]
Ts

|> T hreshold then idxlist = [idxlist,k]
end if

end if
end for

minimum derivative that should produce an oscillation index. The number of oscillations OSC#

was determined by the length of the idxlist.

6.2 MPC Tuning

Using modified versions of the methods seen in [35], these optimization techniques were

applied to the 4-state planar impedance controller on the Grub described in Section 3.2. An objec-

tive function was constructed using the derived numerical approximations of performance metrics:

min∑|Trise|D+|Povr|E+|Tset |F+|Ess|G+|Osc#|H (6.7)

where D,E,F,G,H are weights for each individual metric based on what is most important to the

user.

The MPC cost function weights were combined into a single single vector W :

57

W =

Q

R

S

 (6.8)

where Q, R, and S are the MPC cost function weights described in Equation 4.1.

The Matlab gradient-free optimization function Fminsearch was used to calculate a W to

enter into the objective function. This objective function would write these weights to a file and

then waited until the physical Grub platform completed the predetermined trial. The model predic-

tive controller waited until the file containing weights was written by the objective function, loaded

these weights, and the weights were sent to the controller along with a defined angle trajectory to

track. After completing the defined trajectory, the controller was restarted and all logged states

were saved to a .mat file. This .mat file was then imported into Matlab by the objective function

and the automated metric identification was performed. Equation 6.7 was used to calculate the

controller performance and a singular objective value was returned to Fminsearch. This process

continued until convergence criteria were met or the optimization was manually ended.

6.3 Tuning Results

As shown in section 4.2.3 small changes to a dynamic model resulted in significantly differ-

ent MPC performance. To observe these effects empirically, two additional sets of dynamic model

parameters were generated for the 4-state planar impedance model described in Section 3.2 by

adding significant disturbances to specific system dynamic parameters and using these disturbed

models within the same model predictive controller. The first set of parameters increased both

system inertia I and Kd by 50%. The second set of parameters increased Ks by 50% and reduced

Kd by 50%.

As seen in Figure 6.4 both parameter sets with disturbances demonstrated relatively poor

control performance when using the controller tuned for the original model. By using the au-

tomated tuning procedure described in section 6.2, performance was significantly improved and

brought closer to the hand tuned set described in [24].

The controller weights used for initial parameter set were the same as those used in [24],

W = 6.5, R = 0.01, S = 0.0005. These weights were used as the initial values provided to

58

Figure 6.4: Comparison of untuned controller performance

f minsearch for both dynamic parameter sets. The system was allowed to optimize until desir-

able results were found.

On the first set of altered dynamic parameters, significant performance increases were

found relatively quickly as seen in Figure 6.5. After only 10 iterations, the output of the objective

function was decreased by over 60% of the original value.

The solver was stopped after 97 iterations as desired performance was achieved. Steady-

state error was largely unaffected, as the initial parameters provided adequate performance. Percent

overshoot, however, was reduced from 59.55% to 2.38%, without any impact upon rise or settling

time. The number of oscillations was reduced from an average of 4 per step to 0.125. This was

a significant improvement in performance all around, which brought control performance with a

notably different set of dynamic parameters on par with the original model.

On the second set of dynamic parameters, the most significant improvement was on steady-

state error. Steady-state error was reduced from an average of 13.5 degrees per step to just 1.03

degrees, as seen in Figure 6.6. The optimization attempted multiple times to set the weight on

pressure target S to a negative value, causing instabilities. These instabilities can be seen as spikes

on the iteration cost plot.

While the tuned performance was improved dramatically, the tuning introduced a large

number of oscillations, averaging five per step. This can be expected, as both system I and Kd

were increased.

59

Figure 6.5: Parameter set 1 performance improvement and iteration cost

Tuned controller performance of both sets of parameters were overlayed with the original

hand tuned controller in Figure 6.7. When compared to Figure 6.4, a dramatic overall improvement

in angle control performance was seen.

6.4 Conclusion

Despite the underlying dynamic models used by MPC containing dynamic parameters with

significant disturbances, when comparing angle control in Figure 6.4 to 6.7 a dramatic performance

increase can be seen with both parameter sets after automated tuning. This improvement in per-

formance demonstrated not only the significant effect of MPC weights on control performance,

but also the robustness of MPC as a control scheme in the presence of model disturbances. The

automated tuning process described in Section 6.2 was intended to be general and could potentially

be used with any dynamic system utilizing MPC. The results of the trial within this chapter also

suggest that automated tuning process could potentially be used to mitigate the gradual control

60

Figure 6.6: Parameter set 2 performance improvement and iteration cost

Figure 6.7: Comparison of tuned system performance

performance degradation present in the inflatable platforms used within this work, seen in Section

4.2.3 where unknown changes in system dynamics resulted in poor control performance.

61

CHAPTER 7. CONCLUSION

This thesis derived and compared multiple dynamic models for describing torque in soft

antagonistic actuators. These actuators have most recently been seen in lightweight inflatable

robotic platforms, where natural compliance was a primary consideration in model development.

This inherent compliance and unknown relation from actuator fluid pressure to torque made dy-

namic descriptions and control of these platforms very limited. Using the descriptions for torque

described within this thesis, several dynamic models were created, a model predictive controller

was developed, and the controller performance tested on two fully inflatable, underdamped, and

antagonistic, soft robotic platforms. An automated tool for tuning of model predictive controllers

based on common performance measures was also developed and tested on one of these inflatable

platforms. This thesis shows that the models and controller developed within have improved upon

prior control methodologies used on these platforms in the past.

7.1 Future Work

Throughout this thesis, multiple single-DoF models were developed using the derived

torque relations. These models did scale adequately well to multi-DoF, it is believed performance

could be significantly improved if both gravitational and joint interference effects were consid-

ered. While the multi-DoF DNN model did consider the states of both joints when predicting

future joint angle states, it was believed that one joint may have received unequal weight in the

objective function and considered it more important to correctly track one angle over the other.

Future work could weight this objective function differently or derive an individual net for each

joint to improve model predictive capabilities. This could potentially be achieved by a differently

designed network or weighted optimization objective function. Performance of the neural network

model prediction could also be improved by extracting the output gradients directly, instead of

using central finite differencing.

62

Control performance could potentially be improved by more accurate dynamic models,

longer predictive horizons, or improved tuning. Computational limitations prevented the model

predictive control solver from solving faster than 300 Hz while predicting a 20 time step horizon.

Improved solvers or computational capabilities would allow for higher solving rate for further

predictions. Higher rate control would allow for consideration of higher frequency dynamics,

whereas a further predictive horizon would allow for better consideration of slower dynamics.

The tuning process of these controllers could also be improved through usage of a more apt

optimization method or true multi-objective optimization. Using a method such as surrogate model

optimization could result in fewer required iterations to achieve a reasonable minimum. Whereas

developing a multi-objective Pareto front describing a few select performance characteristics would

allow the end user to choose between a variety of optimal controller weights. This would allow the

user to make trade off decisions; for example, choose between a controller that had lower rise time

but low percent overshoot.

The DNN model could also potentially be fully expanded into a suboptimal model predic-

tive controller itself. If the DNN model were instead used to predict multiple time steps into the

future, the outputs of a series of predetermined input trajectories could all be calculated simulta-

neously. The input trajectory which predicted an output trajectory with the lowest calculated cost

would be selected. This setup, while computationally expensive, has already been shown to work

on a variety of systems.

Within this work, mutli-DoF inflatable joint angles were estimated through motion capture

camera system determining link pose and known kinematic relationships. Future work could utilize

these same formulations, but with joint poses acquired through integrated IMUs instead. This

change would allow these platforms to operate outside the laboratory and in the environments

described within the initial motivations: human environments.

7.2 Contributions

This thesis first describes the derivation of three new models for describing torque in an

antagonistic soft fluidic actuator in Chapter 3. These torque descriptions were formed into sepa-

rate state space models and their predictive capabilities compared in section 3.5. For one of the

models described in section 3.4, a predictive deep neural network was constructed and adapted to

63

produce usable dynamic parameters for a linear state space model. This chapter demonstrated that

state prediction of inflatable robotic platforms with soft fluidic actuators was both reasonable and

accurate.

In Chapter 4 a single-DoF model predictive controller was derived in section 4.1 which

utilized the three models developed in Chapter 3. This controller was adapted to each of the dif-

ferent models and a tunable anti-windup integrator was developed in Section 4.2.2. Angle position

trajectory tracking, as described in both [23] and [24], was used to compare controller tracking

performance to prior state-of-the-art on the single-DoF Grub platform. General controller angle

tracking performance was significantly improved over prior research with all controllers. The ef-

fects of controller performance change due to slight changes in hardware over time were described

and quantified in section 4.2.3. The developed controller utilized a weighted value PT within the

cost function in equation 4.1 to raise pressure values above 0. The effects of changing this value

on joint stiffness were described in 4.3. This chapter concluded that the developed model predic-

tive controller could be used to track angular position accurately while also varying effective joint

stiffness using the models developed in Chapter 3.

In chapter 5 the model predictive controller was expanded to control the multi-DoF King

Louie platform. This expansion was accomplished by treating each joint as a separate, uncoupled

1-DoF joint. A larger DNN was developed in 5.2.3 to predict angle states of two joints simultane-

ously. The angle tracking performance of each controller was compared in section 5.3. This chapter

highlighted the difficulties of moving these controllers to multiple degrees-of-freedom while also

demonstrating that they were able to track an angle trajectory.

Finally in Chapter 6 an automated process for tuning of model predictive controller weights

using common closed-loop controls performance criteria was developed and demonstrated. Two

sets of dynamic parameters with significant disturbances were generated for the model described

in section 3.1 and untuned controller performance was captured and compared. The automated

tuner was applied to controllers using models with disturbances and their final tuned performance

was compared to the hand tuned model in section 6.3. This chapter demonstrated that the weights

used by the model predictive controller cost function could be tuned automatically using automated

discrete performance measurements optimization. This chapter also highlighted the robustness of

model predictive control in the presence of model inaccuracies.

64

REFERENCES

[1] Sanan, S., Moidel, J., and Atkeson, C., 2009. “Robots with inflatable links.” In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 4331–
4336. 2

[2] Sanan, S., Ornstein, M. H., and Atkeson, C. G., 2011. “Physical human interaction for
an inflatable manipulator.” In Engineering in Medicine and Biology Society, EMBC, 2011
Annual International Conference of the IEEE, IEEE, pp. 7401–7404. 2

[3] Bicchi, A., and Tonietti, G., 2004. “Fast and ”soft-arm” tactics [robot arm design].” Robotics
Automation Magazine, IEEE, 11(2), June, pp. 22–33. 2

[4] Sanan, S., Lynn, P. S., and Griffith, S. T., 2014. “Pneumatic torsional actuators for inflatable
robots.” Journal of Mechanisms and Robotics, 6(3), p. 031003. 2

[5] Carneiro, J. F., and de Almeida, F. G., 2006. “Reduced-order thermodynamic models for
servo-pneumatic actuator chambers.” Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering, 220(4), pp. 301–314. 2

[6] Shen, X., and Goldfarb, M., 2007. “Simultaneous force and stiffness control of a pneumatic
actuator.” Journal of Dynamic Systems, Measurement, and Control, 129(4), pp. 425–434. 2

[7] Bicchi, A., Rizzini, S. L., and Tonietti, G., 2001. “Compliant design for intrinsic safety: Gen-
eral issues and preliminary design.” In Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, Vol. 4, IEEE, pp. 1864–1869. 2

[8] Tonietti, G., and Bicchi, A., 2002. “Adaptive simultaneous position and stiffness control for a
soft robot arm.” In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference
on, Vol. 2, IEEE, pp. 1992–1997. 2

[9] Ivlev, O., 2009. “Soft fluidic actuators of rotary type for safe physical human-machine in-
teraction.” 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009,
28359, pp. 1–5. 2

[10] Gaiser, I., Wiegand, R., Ivlev, O., Andres, a., Breitwieser, H., Schulz, S., and Bretthauer, G.,
2014. “Compliant Robotics and Automation with Flexible Fluidic Actuators and Inflatable
Structures.” Smart Actuation and Sensing SystemsRecent Advances and Future Challenges,
pp. 567–608. 2

[11] Qin, S. J., and Badgwell, T. A., 2003. “A survey of industrial model predictive control
technology.” Control Engineering Practice, 11(7), July, pp. 733–764. 9

[12] Jain, A., Killpack, M. D., Edsinger, A., and Kemp, C. C., 2013. “Reaching in clutter with
whole-arm tactile sensing.” The International Journal of Robotics Research. 9

65

[13] Killpack, M. D., and Kemp, C. C., 2013. “Fast reaching in clutter while regulating forces
using model predictive control.” In Humanoid Robots (Humanoids), 2013 13th IEEE-RAS
International Conference on, IEEE. 9

[14] Killpack, M. D., Kapusta, A., and Kemp, C. C., 2015. “Model predictive control for fast
reaching in clutter.” Autonomous Robots, pp. 1–24. 9

[15] Erez, T., Tassa, Y., and Todorov, E., 2012. “Infinite-horizon model predictive control for
periodic tasks with contacts.” Robotics: Science and Systems VII, p. 73. 9

[16] Rupert, L., Hyatt, P., and Killpack, M. D., 2015. “Comparing model predictive control and
input shaping for improved response of low-impedance robots.” In Humanoid Robots (Hu-
manoids), 2015 IEEE-RAS 15th International Conference on, IEEE, pp. 256–263. 9

[17] Shim, D. H., Kim, H. J., and Sastry, S., 2003. “Decentralized nonlinear model predictive
control of multiple flying robots.” In Proceedings. 42nd IEEE Conference on Decision and
Control, Vol. 4, IEEE, pp. 3621–3626. 9

[18] Leung, C., Huang, S., Kwok, N., and Dissanayake, G., 2006. “Planning under uncertainty us-
ing model predictive control for information gathering.” Robotics and Autonomous Systems,
54(11), July, pp. 898–910. 9

[19] Annamalai, A. S. K., Sutton, R., Yang, C., Culverhouse, P., and Sharma, S., 2014. “Robust
adaptive control of an uninhabited surface vehicle.” Journal of Intelligent & Robotic Systems,
pp. 1–20. 9

[20] Wang, Y., and Boyd, S., 2010. “Fast model predictive control using online optimization.”
IEEE Transactions on Control Systems Technology, 18(2), March, pp. 267–278. 9

[21] Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., and Jones, C. N., 2012. “Ef-
ficient interior point methods for multistage problems arising in receding horizon control.”
In Proceedings of the 51st IEEE Conference on Decision and Control, no. EPFL-CONF-
181938. 9

[22] Mattingley, J., and Boyd, S., 2012. “Cvxgen: a code generator for embedded convex opti-
mization.” Optimization and Engineering, 13(1), pp. 1–27. 10, 34

[23] Best, C. M., Wilson, J. P., and Killpack, M. D., 2015. “Control of a pneumatically actuated,
fully inflatable, fabric-based humanoid robot.” In Humanoids, 2015 IEEE-RAS International
Conference on, IEEE. 14, 32, 64

[24] Gillespie, M. T., Best, C. M., and Killpack, M. D., 2016. “Simultaneous position and stiff-
ness control for an inflatable soft robot.” In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, IEEE. 14, 58, 64

[25] Best, C., Gillespie, M., Hyatt, P., Rupert, L., Sherrod, V., and Killpack, M., 2016. “Model
predictive control for pneumatically actuated soft robots.” IEEE Robotics & Automation
Magazine. 14, 21, 50

66

[26] Best, C. M., Wilson, J. P., and Killpack, M. D., 2015 (accepted). “Control of a pneumatically
actuated, fully inflatable, fabric-based humanoid robot.” In Humanoids, 2015 IEEE-RAS
International Conference on, IEEE. 14, 20, 35

[27] Fabri, S., and Kadirkamanathan, V., 1996. “Dynamic structure neural networks for sta-
ble adaptive control of nonlinear systems.” IEEE Transactions on Neural Networks, 7(5),
pp. 1151 –1167. 24

[28] Meng, M., 1999. “A neural network approach to real-time motion planning and control
of robot manipulators.” IEEE SMC’99 Conference Proceedings. 1999 IEEE International
Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), 4, pp. 674–679. 24

[29] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X., 2015. “TensorFlow: Large-scale machine learning on
heterogeneous systems.” Software available from tensorflow.org. 24

[30] Glorot, X., and Bengio, Y., 2010. “Understanding the difficulty of training deep feedforward
neural networks.” Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics (AISTATS), 9, pp. 249–256. 25

[31] Kingma, D., and Ba, J., 2014. “Adam: A Method for Stochastic Optimization.” International
Conference on Learning Representations, pp. 1–13. 27

[32] Tetko, I. V., Livingstone, D. J., and Luik, A. I., 1995. “Neural-Network Studies .1. Com-
parison of Overfitting and Overtraining.” Journal of Chemical Information and Computer
Sciences, 35(5), pp. 826–833. 27

[33] Anderson, B. W., 2001. The Analysis and Design of Pneumatic Systems. Krieger Publishing
Company, 3. 42

[34] Olesen, D. H., 2012. “Tuning methods for model predictive controllers.” Master’s thesis,
Technical University of Denmark, DTU Informatics, E-mail: reception@imm.dtu.dk, As-
mussens Alle, Building 305, DK-2800 Kgs. Lyngby, Denmark Supervised by Associate
Professor John B. Jørgensen, jbj@imm.dtu.dk, DTU Informatics. 53

[35] Garriga, J. L., and Soroush, M., 2010. “Model predictive control tuning methods: A review.”
Industrial & Engineering Chemistry Research, 49(8), pp. 3505–3515. 53, 57

[36] Levine, W., 2010. The Control Handbook, Second Edition: Control System Applications,
Second Edition. Electrical Engineering Handbook. CRC Press. 53, 54

67

