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ABSTRACT 

Elucidating the Mechanisms of Rate-Dependent Deformation 
at Ambient Temperatures in a Model Metallic Glass 

 
Matthew Bradley Harris 

Department of Mechanical Engineering, BYU 
Master of Science 

 
In this work, the Shear Transformation Zone (STZ) dynamics model is adapted to capture 

the transitions between different regimes of flow serration in the deformation map of metallic 
glass. This was accomplished by scaling the STZ volume with a log-linear fit to the strain rate, 
and also adjusting the activation energy of an STZ with a log-linear fit to maintain constant yield 
strength at differing strain rates. Twelve simulations are run at each of six different strain rates 
ranging from 10-5 to 100 s-1, and statistics are collected on simulation behavior and shear band 
nucleation and propagation rates. The simulations show shear band nucleation has a positive 
correlation to strain rate, and shear band propagation has a negative correlation to strain rate. 
This shows that in STZ dynamics, the regime of reduced flow serration arises due to competing 
rates of nucleation and propagation, supporting the hypothesis proposed by Schuh.  A positive 
correlation between critical shear band nucleus size and strain rate is proposed as an underlying 
cause of these rate dependencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: shear transformation zone, shear band, mesoscale, deformation, strain rate, metallic 
glass, flow serration  
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1 INTRODUCTION 

Metallic glasses show great promise as lightweight, high strength, flexible materials due to 

their impressive mechanical properties [1-3]. However, metallic glasses suffer from poor 

ductility at room temperature due to their tendency to localize plastic strain into shear bands [2, 

4, 5], which ultimately lead to catastrophic failure. Interestingly, although the yield point of these 

materials is not strain rate dependent, the shear band density and degree of flow serration depend 

highly on strain rate [6, 7]. A thorough understanding of the mechanisms underlying this 

phenomena would enable the development of tougher, more ductile metallic glass composites 

and alloys. 

The different modes of deformation, homogeneous and inhomogeneous, exhibited by 

metallic glasses are well characterized by examination of Schuh’s deformation map, shown in 

Figure 1, adapted from [6]. The homogeneous regime exists at elevated temperatures and lower 

strain rates, where the deformation is characterized by viscous flow. The inhomogeneous regime 

is characterized by localized deformation in shear bands. This regime encompasses temperatures 

below the glass transition temperature (Tg) at lower strain rates to a much larger temperature 

range at higher strain rates. Within the inhomogeneous regime, deformation at low strain rates is 

characterized by strongly serrated flow, meaning that strain accumulates in the material in 

temporal bursts accompanied by relaxation stress drops resulting in a jagged stress-strain curve 

[8, 9]. Higher strain rates are characterized by moderately serrated flow, and very high strain 
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rates have little or no flow serration. In nanoindentation experiments, Schuh and Jiang 

independently observed that this reduced flow serration was accompanied by a reduction in the 

appearance of shear steps in the surface of the material around the indenter [10, 11]. This 

indicates that plasticity in metallic glass is localized into only a few shear bands at lower strain 

rates, but allowed to disperse in to many shear bands at higher strain rates. It has been 

hypothesized that this change from few to many shear bands at increasing strain rate is due to 

competition between shear band nucleation and propagation; when individual shear bands 

nucleate and propagate quickly relative to the strain rate, the stress in the surrounding material is 

reduced, suppressing additional shear band nucleation.  However, when shear bands do not 

accommodate strain quickly enough to relieve stress in the material, multiple shear bands occur 

to reduce the stress [7]. 

Figure 1: General Deformation Map of Metallic Glass 
Deformation map scaled to the glass transition temperature (Tg) for a given glass, adapted 
from [6].  Points investigated in this paper are marked with a ‘+’ on the deformation map.  
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The process by which individual shear bands nucleate, propagate, and arrest has been the 

subject of continued investigation. To understand this process, we begin with the fundamental 

unit of deformation in metallic glasses, which is accepted to conform to the shear transformation 

zone (STZ) theory introduced by Argon [12]. The STZ involves the collective and inelastic 

rearrangement of several dozen atoms in response to an applied shear stress. The action of one 

STZ causes an increase in the local stress field along the direction of shear, creating preferential 

sites for the activation of additional STZs [13, 14]. Models applying Argon’s STZ theory have 

differed on how shear bands form and propagate from an initial group of STZs, with three main 

viewpoints being most prominent. First, some model the shear band as a percolating boundary 

that reaches a critical concentration before initiating simultaneous slip along the plane of highest 

resolved shear stress [15]. Second, shear bands are modeled as a propagating zone of rejuvenated 

glass, followed by a zone of glue-like material, and finally followed by liquid material, as 

adiabatic heating decreases the local strength [16]. Third, others model a two-step process, with a 

shear band nucleating from a small cluster of STZs, and propagating quickly through the sample 

before initiating simultaneous slip [17, 18]. Recent work by Qu, et al. has shown that metallic 

glass samples pulled to very low levels of plastic strain show signs of partially propagated shear 

bands [19], lending further credibility to the second and third theories. The two-step theory, as 

explained by Homer, Schuh, Greer and others [6, 14, 17, 18, 20], can be subdivided into three 

stages for the progression of deformation in metallic glasses: 

1. Nucleation: STZs activate, cluster, and make up the growing nuclei of 
competing shear bands  

2. Propagation: when a shear band nucleus reaches a critical size, it 
begins to rapidly grow, dominating plasticity in the region  

3. Sliding: Stress relaxation occurs as the fully developed shear band 
thickens and accumulates additional plasticity as shear band slip, until 
the applied load decreases enough for slip to arrest 



4 

Once a shear band has arrested, the free volume generated by the action of STZs remains, 

and allows it to be preferentially reactivated [21-23]. Generally, in other works stages 1 and 2 are 

referred to as shear band initiation, while stage 3 is referred to as shear band propagation. In this 

paper, shear bands are analyzed for their progression through these stages.  Stage 1, nucleation, 

ends when a shear band becomes dominant, stage 2, propagation, continues until the shear band 

reaches the full width of the simulation, and stage 3, sliding, encompasses all plasticity that takes 

place on the band after it is fully propagated. 

Investigating the transition between different flow serration regimes requires a collection 

of shear band events to be studied in a statistical manner, so an understanding can be gained of 

how the mechanics of shear band formation influence flow serration. Researchers have used 

several different approaches to resolve shear band events in experimental setups.  For example, 

high speed cameras have been able to capture shear band sliding, and measure shear band 

velocities [24]. They also show that flow serration is often the result of the same shear band 

being activated multiple times, rather than unique shear bands for each event [21]. Analysis of 

pop-in stresses during nanoindentation enabled estimation of STZ volumes and rate effects [25, 

26]. Although this information is very useful, such experimental methods are unable to reveal the 

details of what is happening at the STZ level in shear band nucleation and propagation; the time 

and length scales of individual STZs are too small and fast for current measurement resolutions 

to capture directly, and indirect measurements do not give a complete picture. 

Modeling techniques provide unique insight into the possible processes of shear band 

formation. Atomistic simulations do well at simulating the action of individual STZs, capturing 

the onset of shear localization in metallic glass [27]. They can measure the STZ volume for 

various glass compositions, and have shown that the instability of shear bands arises from 
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structural disordering in an STZ, rather than thermal softening [18, 28]. Constitutive models do 

well at recreating the macroscopic behavior of metallic glass. By treating the glass as a 

continuum material, rather than trying to simulate each individual atom or STZ, they enable 

more complicated structures and loads to be modeled, within the limits of the constitutive 

model’s scope [29, 30]. Mesoscale models are needed to investigate the range of time and length 

scales intermediate to molecular dynamics and constitutive models [27]. One such mesoscale 

model is the STZ dynamics model developed by Homer and Schuh [31]. The STZ dynamics 

model is able to capture a broad range of time scales associated with shear band events in an 

efficient manner by using a kinetic Monte Carlo algorithm [13]. It has been used to simulate both 

2D and 3D metallic glass structures; it predicts a propagating shear band, and captures the 

transition from inhomogeneous to homogeneous flow at the glass transition temperature [20, 32]. 

It has even been adapted by Li to account for free volume generation due to STZ activity [33]. 

Since this model is capable of simulating the nucleation and growth of multiple shear bands, and 

these are the parameters of interest, we use the STZ dynamics model for our investigation of 

flow serration regimes in metallic glasses. 

In this work, the STZ dynamics model is adjusted to maintain a constant yield point at 

varying strain rates, consistent with metallic glass behavior. With the adjusted model parameters, 

we examine flow serration and shear band nucleation and propagation across a range of strain 

rates, with multiple simulations at each strain rate to establish statistical significance. Discussion 

of the results shows support for the hypothesis of competing shear band nucleation and 

propagation rates, and is focused on determining the underlying causes of this interaction.  A 

hypothesis is developed to explain the simulated behaviors, and its implications are explored in 

the conclusion. 
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2 METHODS 

 STZ Dynamics Modeling Framework 

The STZ dynamics model is built around the STZ as the fundamental unit of deformation 

in metallic glass. The STZs are coarse-grained by replacing groups of atoms with the features of 

a finite-element mesh. Each node in the mesh represents the center of a potential STZ, and the 

five to seven elements touching that node represent the atoms which collectively shear if that 

STZ is activated [31]. Each element can participate in different STZs, just as atoms may 

participate in various STZs in a real material. These course-grained STZs are treated 

mathematically as Eshelby inclusions with coherent boundaries, the same approach originally 

used by Argon, where the STZ is allowed to plastically deform as if in a vacuum and then forced 

elastically back into the surrounding matrix [12]. The kinetic Monte Carlo (kMC) algorithm is 

used to control the evolution of the modeling framework. When a given STZ is selected for 

shearing by the kMC algorithm, plastic strains are applied to the elements to simulate the 

simultaneous plastic shearing of atoms in the STZ.  After each kMC step, finite-element analysis 

solves for the resulting stress and strain fields throughout the simulation, which then influence 

the selection of STZs in subsequent kMC steps [31].  

The kMC algorithm works by listing all the possible transitions a system can make, 

calculating each transition’s associated rate, and then using a random number to select one of the 

transitions for execution. Time in the simulation is then advanced by 𝛥𝛥𝛥𝛥 based on the residence 
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time in the current configuration, which is also based on the rates of the possible transitions. A 

more complete description of the kMC algorithm is available from Voter [34]. In STZ dynamics, 

a modified kMC algorithm, introduced previously [13], is used to ensure that realistic times and 

transitions are represented. This is accomplished by suppressing any STZ events selected by the 

algorithm which would activate in a 𝛥𝛥𝛥𝛥 greater than a certain maximum allowed time step, 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚. When this happens, the model increments time by 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 without activating any STZ. 

This allows other time-dependent parameters, such as stress and strain, to update on a reasonable 

time scale in a dynamic simulation beginning at very low stresses. After every time increment, 

whether an STZ is activated or not, finite element analysis (FEA) solves for the new stress 

distribution in the mesh, and new activation rates are calculated for use in the kMC algorithm.  

The kMC algorithm requires a rate calculation for each possible event in its catalogue for 

selection.  For the STZ dynamics framework, this is an STZ activation rate that calculates the 

rate at which a given STZ will transition form an unsheared to a sheared state. The activation rate 

ṡ for shearing a particular STZ in one direction is given by: 

�̇�𝑠 = 𝑣𝑣0exp �−
𝛥𝛥𝛥𝛥−12𝜏𝜏𝛾𝛾0𝛺𝛺0

𝑘𝑘𝑘𝑘
�        (1) 

where 𝑣𝑣0 is the attempt frequency (related to the Debye frequency), 𝛥𝛥𝛥𝛥 is the set activation 

energy barrier for shearing an STZ, 𝑇𝑇 is the temperature in Kelvin, 𝑘𝑘 is Boltzmann’s constant, 𝜏𝜏 

is the local shear stress in the direction of shear, 𝛾𝛾0 is the incremental shear strain applied to an 

STZ, and 𝛺𝛺0 is the volume of an STZ. This rate captures the thermally activated nature of the 

shearing process, which can be biased by both its local shear stress, 𝜏𝜏 and the temperature, 𝑇𝑇. A 

more detailed explanation of this equation’s parameters as they relate to the STZ dynamics 

model can be found in previous work [31]. 
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The coarse-graining of the STZs follows previous works where node-centered STZs are 

defined on a uniquely generated, irregular, triangular mesh [31]. The mesh size is defined such 

that the average radius of the potential STZs is equal to the target STZ radius. Each simulation is 

generated with a length of 250 nm along the tensile axis, and a width of 50 nm. The long sides of 

the simulation are unconstrained, and the top and bottom surfaces of the simulation are allowed 

to move laterally relative to each other to enable lateral slip. The simulated tensile test is 

displacement controlled; this is achieved by constraining the bottom nodes, while the top nodes 

are displaced at a fixed velocity corresponding to the desired initial strain rate.  In each step of 

the simulation, the nodes move in varying increments of strain corresponding to the elapsed time 

from the modified kMC algorithm.  

The simulations are run at six different initial strain rates: 10-5, 10-4, 10-3, 10-2, 10-1, and 100 

s-1. With the simulation size of 250 nm, this results in displacement velocities that range from 

0.0025 to 250 nm/s at the lowest and highest strain rates, respectively. Each simulation is run for 

as many kMC steps as necessary for the simulation to reach 1.9% total strain, regardless of strain 

rate. The maximum time step values for the modified KMC algorithm are set at 5, 1, 0.5, 0.05, 

0.005, and 0.0005 seconds, increasing from the longest time at the lowest strain rate to the 

shortest time at the highest strain rate. This variation in 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 from one strain rate to the next is 

necessary to provide the needed time resolution that stabilizes the yield strength in each strain 

rate, balanced against a reasonable number of kMC steps for a given simulation.  As an extreme 

example: at the 100 s-1 strain rate, a large 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 like 1 s would cause 100% strain to be reached 

in the first kMC step, before any STZs are able to activate. On the opposite end,  a small 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 

such as .001 s used on the 10-5 s-1 strain rate, would require 106 simulation steps to reach 1% 

strain, still short of yield. A representative strain rate was tested with several different values for 
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𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 spanning two orders of magnitude, and it is found that this parameter has no noticeable 

effect on yield strength or STZ behavior, other than to overshoot the yield strength when 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 

is too large. Material property values used in the simulation correspond to those of Vitreloy 1, a 

commonly studied metallic glass, listed in Table 1; 𝛥𝛥𝛥𝛥 and 𝛺𝛺0 are defined in the following 

section. The simulation temperature is held constant at 310 K, which is 0.5Tg for Vitreloy 1. 

 

Table 1: Material Properties for Modeling Vitreloy 1  
(Zr41.2 Be22.5 Ti13.8 Cu12.5 Ni10) 

Model Parameter Name Value 
STZ strain 𝛾𝛾0 0.1 
Shear Modulus µ0 35.76 GPa [35] 
Poisson’s Ratio 𝜈𝜈 0.352 [35] 
Debye Temperature 𝜃𝜃𝐷𝐷 327 K [36] 

 

 

 Parameterization of Strain Rate Dependence 

The STZ dynamics model relies on the rate equation of STZ activation (Eq. 1) to control 

the evolution of the simulation and, as a result, it has an inherent strain rate dependence that 

leads to an increase in yield strengths. This is accompanied by increased shear band density at 

higher strain rates, which corresponds with the flow serration being studied. In order to capture 

the strain rate independence of yield strengths in metallic glasses [6] the STZ dynamics model is 

adjusted in this work. To modify the STZ dynamics model, we take inspiration from Dubach et 

al., who developed a constitutive model based on measurements of strain rate sensitivity and 

found that STZ volume has a log-linear relationship to strain rate at low temperatures [29]. 

Dubach’s log-linear relationship of STZ volume has a positive correlation with strain rate (i.e. 

increased STZ volume at higher strains).  However, when their strain-rate dependent function of 
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STZ volume is implemented in the STZ dynamics model, it intensifies the yield strength 

dependence on strain rate. Instead, we adopt the log-linear dependence of STZ volume with 

strain rate, but utilize a negative correlation (i.e. decreased STZ volume at higher strains). This 

follows the work of Tönnies et al., who measured nanoindentation pop-in stresses and found that 

the initiation of a shear band is increasingly confined to a more local activation volume at 

ambient temperature with increasing stress and loading rate [26]. While this at first appears to 

contradict the findings of Dubach et al., the results of the simulations given hereafter indicate 

agreement with Dubach’s work, in that the critical shear band nucleus size increases with strain 

rate. 

In examining the influence of different model parameters one can show that an STZ 

volume (𝛺𝛺0) and an activation energy (𝛥𝛥𝛥𝛥) that both decrease with increasing strain rate lessen 

the strain rate dependence of the yield strength while maintaining the increased shear band 

density at higher strain rates typical to metallic glasses. These are given by the following log-

linear forms: 

𝛺𝛺0 = −0.03772 log10 𝜖𝜖̇ + 1.6   [𝑛𝑛𝑛𝑛3]
𝛥𝛥𝛥𝛥 = −0.0227405 log10 𝜖𝜖̇ + 1.07945   [𝑒𝑒𝑒𝑒]       (2) 

The STZ volume increases by 0.2 nm3 for each order of magnitude change in strain rate, 

ranging from 2.6 to 1.6 nm3, at the lowest and highest strain rates, respectively. These values are 

consistent with STZ volumes found generally [14, 37][20, 37], and the range of size found by 

Dubach et al. in their low temperature data [29]. The magnitude of 𝛥𝛥𝛥𝛥 across the strain rates 

ranges from 1.08 eV to 1.68 eV, which is also in line with expectations [let’s talk about 

references here]. 
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Figure 2 shows the results of the parameterization of strain rate dependence on the 

observed yield strength. Before fitting, there is a clear log-linear relationship between yield 

strength and strain rate, where a logarithmic fit has an R2 value of 0.9625. After parameterizing 

𝛺𝛺0 and 𝛥𝛥𝛥𝛥 to strain rate, however, the R2 of the logarithmic fit of the yield strengths is reduced 

to 0.0271, meaning that the logarithmic fit of the yield strength no longer describes the 

relationship significantly better than the arithmetic mean; any variation is now ascribed to 

random noise in the data. Thus, the parameterization has been successful in eliminating the 

model’s yield strength dependence on strain rate. 

 

Figure 2: Yield Strength Dependence on Strain Rate 
Yield strength dependence on strain rate before (red triangles) and after (blue diamonds) 
adjusting STZ volume and activation energy. After adjustment, the yield strength 
dependence on strain rate is statistically insignificant. 
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 Statistical Analysis Approach 

The goal of this work is to understand the mechanisms underlying the transitions between 

different regimes of flow serration in the deformation map. Emphasis is placed on measuring 

shear band nucleation and propagation rates since it is believed that different degrees of flow 

serration arise due to competition between these rates. In order to ensure statistical significance, 

twelve simulations are run at each of the six strain rates simulated, for a total of 72 simulations. 

At completion, the shear bands of each simulation are identified, as shown in Figures 3(a) and 

3(b), where Figure 3(b) has each individual band highlighted in a unique color. These 

surrounding lines are placed carefully as they define which STZs contribute to each shear band, 

which is important for subsequent calculations. As a rule, any group of five or more STZs in a 

line is identified. Once the shear bands are identified, statistics are collected for:  

1. The number of shear band nuclei in each simulation,  

2. The dominance of individual shear bands during deformation,  

3. Critical nucleus size of the first shear band when it becomes dominant,  

4. Front propagation rate of each shear band,  

5. Sliding velocity of the most dominant shear band once it has 
propagated across the entire simulation cell, and  

6. The number and magnitude of stress drops in the simulation, which are 
used to measure the degree of flow serration in the simulation.   

The manner in which each of these measurements is obtained is explained below, and 

demonstrated with an example simulation run at 10-4 s-1, shown in Figure 3. 

The number of shear band nuclei in each simulation is obtained by simply counting the 

number of shear bands identified, since each one must have started through the formation of a 

nucleus.  
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Figure 3: Methods Illustration of Measurements 
(a) Partial raw simulation result. (b) Shear bands identified with surrounding lines of 
unique color. (c) Fraction of all STZ activity occurring in each shear band over time; 
unique colors match those in (b). (d) Propagation velocity of shear band front, 
corresponding to the unique color in (b). (e) Sliding velocity profile of the primary shear 
band, identified in blue in (b), with velocity bursts labeled 1, 2, and 3. (f) Snapshots of the 
simulation at time immediately following the bursts in (e) corresponding to labels 1, 2, and 
3. (g) Stress drops on stress-strain curve corresponding to labels 1, 2, and 3 in (e), showing 
the stress drops resulting from sliding events on the active shear band. 
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The measurement of the critical nucleus size of a shear band requires knowledge of when an 

individual shear band has reached a critical size and accelerates its growth, thereby dominating 

deformation in that moment. As such, we introduce an additional measurement called shear band 

dominance, which is measured by examining a simulation using a moving window of twenty 

kMC steps. In each temporal window, the number of STZs activated in each shear band is 

totaled. Shear band dominance is defined as the fraction of STZs activated in a given shear band 

for that window in time. This window is moved in two kMC step increments to determine shear 

band dominance over the evolution of the whole simulation. This is plotted against time in 

Figure 3(c), with the colors in the plot matching the coloring of the shear band selection lines in 

Figure 3(b). A window can contain fewer than twenty activated STZs if some of the kMC steps 

do not produce STZ activations; this generally happens during the initial loading of the 

simulation, where the model is accumulating elastic strain. To prevent hypersensitivity to 

windows that contain very few STZ activations, no shear band can be dominant if that twenty 

kMC step window does not contain at least ten STZ activations. This has several implications; 

one is that when very few STZs are active, it is possible that the sum of STZ activity in the plot 

will amount to less than 100%. Similarly, some STZs in the simulation fall where two shear 

bands intersect; these STZs will count towards STZ activity in both shear bands and the sum of 

STZ activity can exceed 100%. Finally, even if all of the first twenty STZs in a simulation fall on 

the same shear band, the dominance ramps up to 100% rather than being instantly 100% 

dominant. 

Shear band critical nucleus size is then defined as the total volume of STZs in a shear band 

nucleus at the point in time where it reaches a critical level of shear band dominance. A threshold 

of 60% dominance is chosen as the proportion of STZ activity required for a shear band to be 



15 

considered critical. In combination with the lower bound of ten STZs as the minimum number to 

be considered in calculating dominance, this means that the minimum critical shear band nucleus 

size that can be detected consists of six STZs. In this example simulation, the shear band marked 

with blue becomes dominant first, followed by the teal and magenta shear bands in later stages of 

the simulation. The shear bands marked with red and green never reach the threshold level of 

dominance. The critical nucleus sizes for each of these shear bands can be measured as their size 

when they become dominant, but for the purposes of this work, we examine only the first 

dominant shear band. This enables cleaner comparison in sizes between simulations and less 

variability in measurements due to shear band intersections later in the simulation. 

Shear band propagation rate is measured by carefully finding the change in length of each 

shear band in a moving window of twenty kMC steps, then dividing that by the change in time 

for those twenty steps to give a velocity measurement. The evolution of the propagation speed is 

obtained by moving the window by two steps for each data point.  The results of this 

measurement are plotted in Figure 3(d), with the same coloring scheme as in other parts of the 

figure. 

Shear band sliding rate is defined as the relative velocity between the part of the mesh just 

above and just below the shear band. This is calculated by selecting several points on the shear 

band selection lines above and below a given shear band. The relative velocities of the nodes in 

the sliding direction is calculated using the same moving window used in previous calculations, 

and the results are given in Figure 3(e). Shear band sliding rate is measured only for the thickest, 

most dominant shear band in each simulation.  This is done to reduce the amount of interference 

from shear band intersection and for clearer comparison between different simulations. 
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In order to measure flow serration, stress drops in each simulation are found by measuring 

the slope of the stress strain curve as shown in Figure 3(g). When the slope is large and negative, 

(a drop of at least 5 MPa in less than .000001 strain, for example) a stress drop is identified, with 

the value of the stress before and after the region of steep slope determining the magnitude of the 

drop as in [38]. Slopes are calculated in a moving window of twelve kMC steps, in order to 

prevent very small drops from dragging down average drop sizes. The average magnitude of 

these stress drops is used as a measure of flow serration in the simulation. It is noted that this 

approach differs from those generally used in experimental setups measuring flow serration, 

where flow serration is characterized by strain bursts. Furthermore, these stress drops do not 

have the appearance of serrated flow about a constant flow stress for a sample in compression 

[8]. However, the nanoscale size of the simulations do appear to match the general shape of the 

stress-strain response in experimental nanoscale tensile tests [39]. It is noted that the three stress 

drops in Figure 3(g) correspond to repeated activation of the same shear band, as shown by 

Figure 3(f).
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3 RESULTS 

Figure 4 (a) shows a group of six simulations, one from each strain rate studied, with 

increasing strain rate from left to right. The simulations shown represent typical results, with the 

number of shear bands in each one near the median value for its strain rate. Each simulation is 

shown at the final strain value of 1.9%.  In general, low strain rates result in fewer, more 

dominant shear bands, with very few free STZs scattered outside the bands, while high strain 

rates feature larger numbers of less dominant shear bands, with many free STZs randomly 

scattered outside the bands. The stress strain curves for these six simulations are shown in Figure 

4 (b), showing a tightly grouped yield strength around 1.72 GPa. While the yield strengths are 

similar, low strain rates tend to relax more quickly after yield, and have a lower flow stress than 

high strain rates. 

 Flow Serration 

The average magnitude of stress drops in each simulation is measured as discussed in 

section 2.3. These average stress drops are then categorized and summarized by strain rate using 

box plots in Figure 5. These box plots mark the median value with the horizontal (red) line inside 

the box, the 1st and 3rd quartiles of the distribution bound the box, the extreme high and low 

values with whiskers that extend from the top and bottom of the box, and statistical outliers are 

marked as separate points. It can be seen that the average stress drop statistics have a negative 
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correlation with strain rate. Strain rates in the Schuh’s strong flow serration regime (lower strain 

rate to upper strain rate) have median values of 20-30 MPa, while those in the Schuh’s moderate 

serration regime (upper and lower strain rate) have values of 7-15 MPa. There is a marked 

decrease at a strain rate of 10-2 strain/s, which is near the border of the transition from strong 

serration to light serration in Schuh’s deformation map. The 10-2 strain rate also shows mixed 

behavior, with a few outlying simulations above the 20 MPa range. To understand how this 

change in flow serration is influenced by the mechanics of STZ activation, we now examine the 

statistics of shear band nucleation and propagation rates. 

 Shear Band Nucleation Statistics 

Figure 6 provides statistics on the number of shear band nuclei, and the critical shear band 

nucleus size.  Simulations at high strain rates show an increase in the number of shear band 

Figure 4: Results Overview 
(a) Example simulation at each strain rate, where the number of shear bands in each 
simulation is near the median for that strain rate. Note the clear trend of increased shear 
band density with strain rate, and the increased appearance of free STZs in higher strain 
rates. (b) Stress-strain curves for the six simulations shown in (a). 
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nuclei generated, as indicated by Figure 6(a). One can calculate the rate of shear band nucleation, 

in units of shear band nuclei generated per second, which is provided in the inset to Figure 6(a). 

However, the nucleation rate isn’t necessarily the best comparison between different strain rates 

since the tests last different time periods. As such, the total number of nuclei (which is equivalent 

to nuclei per 1.9% strain), is the better comparison between strain rates. It is noted that the shear 

band nucleation rate has a positive correlation with strain rate.  At low strain rates in the strong 

serration regime, a median of 4.5 to 6.5 shear band nuclei appeared throughout the entire 

simulation. At 10-2 s-1 and above this increases steadily, up to a median of 15.5 nuclei for the 

highest strain rate. 

Figure 5: Average Stress Drop in Each Simulation by Strain Rate 
A box plot of the average stress drop magnitude in each simulation, arranged by strain 
rate. This indicates decreased flow serration with increasing strain rate, matching the 
deformation map in Figure 1. 
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The statistics of the critical nucleus volume, or volume of the first shear band when it 

became dominant, is plotted in Figure 6(b). This critical volume has a positive correlation with 

strain rate. Something not captured in the plot is the fact that at the highest strain rate some of the 

simulations never have a shear band become dominant at all, resulting in fewer data points and 

an underestimation of the critical nucleus volume at that strain rate. Also, due to the fact that a 

lower bound is enforced on the measurement of critical shear band size, shear bands can never be 

considered dominant with fewer than six STZs. In Figure 6(b), we see that all strain rates from 

10-5 to 10-2 s-1 have at least one simulation where the first shear band became dominant at exactly 

this lower bound. Thus, the lower bound may be overestimating the critical nucleus size for these 

slower strain rates. At the lowest strain rate, two or three STZs may be enough to reach a critical 

volume for the shear band to nucleate and propagate unconstrained. 

Figure 6: Nucleation Statistics 
(a) Shows the nucleation rate after being normalized to strain rate. Inset shows the 
nucleation rate measured in shear band nuclei generated per second. The normalized rate 
shows a positive correlation between nucleation rate and strain rate. (b) Shear band critical 
nucleus size plotted against strain rate.  The skew in lower strain rates is due to the cutoff 
size of detectable critical shear band nucleus size being reached. 
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 Shear Band Propagation and Sliding Statistics 

The statistics of the maximum propagation rate, or maximum speed of the shear band’s 

propagating front, are presented as a rate, normalized by the strain rate in Figure 7(a). The 

unnormalized maximum propagating speed provided in the inset to Figure 7(a). Here it can be 

seen that before normalization, the maximum propagation speed of a growing shear band in a 

simulation at first seems to increase proportionally with the strain rate. However, the 

normalization indicates that at higher strain rates, the relative maximum propagation rate actually 

decreases with increasing strain rate. This means that while a single shear band grows faster at 

increasing strain rates, it is moving slower relative to the applied strain rate as that strain rate 

increases. 

 

A similar relationship is found when looking at the maximum shear band sliding speed, 

which is shown in its strain rate normalized form in Figure 7(b). The unnormalized sliding speed 

Figure 7: Propagation and Sliding Rate Statistics 
(a) Maximum shear band propagation speed for each simulation. Inset is before 
normalizing to strain rate, main body shows after. (b) Maximum shear band sliding speed 
for each simulation. Inset is before normalizing to strain rate, main body shows after. 
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is provided as an inset to Figure 7(b). Once again, the unnormalized form goes from a positive 

correlation with strain rate to a negative correlation when it is normalized by the strain rate. This 

means that continued sliding of the largest shear band accounts for less and less of the total 

plasticity as the strain rate increases. By comparing Figure 7(a) to Figure 7(b), we also see that 

the normalized shear band propagation speed is about three orders of magnitude faster than the 

normalized shear band sliding speed, which is consistent with measurements related to the two-

step shear band formation model, which place shear band propagation on the microsecond time 

scale and shear band sliding on the millisecond time scale [9]. 

In order to see how strain accumulates on the largest shear band over time, the shear band 

sliding speed is plotted against time for each simulation. Representatives of the highest and 

lowest strain rates are shown in Figure 8, with each plot appearing next to its respective 

simulation result. These simulations are chosen because each has a thick, dominant shear band, 

though these were rare at the highest strain rate. The graphs show that at the lowest strain rate, 

the dominant shear band accumulates plasticity in very sharp temporal bursts, with very little 

activity on the band in between these strain bursts.  At the highest strain rate, even when the 

plasticity is concentrated mostly into a single band, the band accumulates plasticity in a more 

continuous manner, with less pronounced temporal bursts. This is illustrative of the flow 

serrations expected for the two strain rates, indicating that the model is producing the expected 

behaviors.  
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Figure 8: Comparison of Shear Band Sliding at High and Low Strain Rates 
An example simulation from the fastest strain rate (left) and the slowest strain rate (right) 
demonstrating that strain accumulated on the most dominant band in the simulation 
continuously in the high strain rate, and in bursts at the low strain rate. Most simulations 
at the highest strain rate did not have a dominant band this pronounced. 
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4 DISCUSSION 

One important attribute of the STZ dynamics model is that the stochastic approach enables 

variation in a given process to be studied from identical starting simulation parameters. This 

variability partially fulfills Greer’s suggestions for treating STZ behavior by statistical means, 

which he suggests due to the variance in STZ volumes and activation energy barriers measured 

in various atomistic models and experimental methods [14]. In Figure 5, for example, at 10-2 

strain/s most simulations belong in the regime of moderate flow serration, while a few outliers 

seem to belong in the strong flow serration regime [7]. Similarly, in Figure 6(b), some of the 

simulations at 100 strain/s never ended up nucleating a dominant shear band, which can mean 

that they match Schuh’s transition from light, to little or no flow serration in the deformation 

map [7]. Such variability near regime changes in the deformation map, where a given sample 

could exhibit behavior from either regime, could be expected in experimental results. This 

creates additional confidence that the model is capturing transitions between distinct regimes, 

rather than simply modeling a general trend of decreasing flow serration with increasing strain 

rate.  

A summary of the different statistics and their strain rate dependence is shown in Figure 9, 

where each rate has been scaled so they can be compared side by side. This shows a transition 

from shear band propagation-driven plasticity that dominates at low strain rates, to shear band 

nucleation-driven plasticity that dominates at high strain rates. This shows strong support for the 
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hypothesis Schuh proposed, that the decreased flow serration seen at higher strain rates is due to 

the nucleation of many small shear bands in direct competition to the propagation of individual 

bands [10]. However, the underlying cause for this transition is not clear. One could question 

whether propagation is limiting nucleation, or vice versa. We hypothesize that the critical shear 

band nucleus size is an underlying cause of these rate dependencies. A shear band cannot begin 

to dominate the simulation until the critical shear band nucleus size is reached; if the critical 

shear band nucleus size increases, it will be harder for that size to be reached, which will 

encourage the growth of additional shear band nuclei.  Similarly, if the critical shear band 

nucleus size is small, then shear bands become dominant very quickly, relaxing the stress, and 

preventing new shear band nuclei from forming. At the highest strain rate, the critical nucleus 

size is so large that some simulations fail to generate a dominant band at all, indicating that the 

critical nucleus size is larger than the simulated sample size. 

The hypothesis of critical shear band nucleus size dependence on strain rate helps to 

reconcile our results with Dubach’s constitutive model for the STZ volume. In section 2.3, 

Dubach’s constitutive model is used to justify STZ volume having a log-linear dependence on 

strain rate, but it is noted that their log-linear dependence was positive, while ours is negative. 

Also, their linear dependence was at 77 K, while our simulations are running at 310 K. Dubach 

did not show a log-linear relationship between STZ volume and strain rate at ambient 

temperatures, but did show that much larger STZ volume were predicted, up to two orders of 

magnitude, and with a great deal more variability.  Our critical shear band nucleus sizes more 

closely match the values Dubach found for that temperature than do our chosen STZ volumes, 

and the critical shear band nucleus size has a positive relationship with strain rate, matching 

Dubach’s constitutive law. It could be that the acoustic emission data from which they calculated 
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STZ volumes actually correspond to a critical nucleus size of the shear band, in which case the 

results of this work are reconciled with Dubach’s at the simulated temperatures.  

The results of this study can be summarized in terms of the stages of shear band 

development. At all strain rates, the sample deforms elastically before STZ activity begins. In 

stage 1, STZs appear, and begin to cluster into shear band nuclei, which grow and proliferate in 

the absence of a dominant shear band. If the strain rate is low, then a small critical nucleus size 

means that stage 2 is reached quickly, and one shear band rapidly propagates across the sample, 

and begins to dominate all plasticity in the sample. Then, in stage 3, additional plasticity is 

concentrated in bursts on that dominant band. If instead the strain rate is high, then a large 

critical nucleus size means that stage 2 is delayed, or skipped entirely, and plasticity continues to 

be accommodated by nucleation of additional shear band nuclei in stage 1. Then sliding in stage 

Figure 9: Comparison of Rates Measured 
STZ dynamics confirms that competition between shear band nucleation rate, (yellow) and 
shear band propagation and growth rate (blue and green, respectively) is the likely cause of 
the transition of flow serration in the deformation map.  Changes in the critical nucleus size 
(red) is a likely underlying cause.  Recall that critical nucleus sizes for the lowest strain 
rates are slightly exaggerated due to the cutoff value in measuring them. 
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3 occurs more gradually as shear band nuclei begin to intersect each other, and plasticity remains 

relatively diffuse.  

Speculating that critical shear band nucleus size is indeed the controlling factor indicates 

that the parameterization of STZ volume and STZ energy barrier as a function of strain rate may 

capture physical mechanisms of STZs. Experiments do indicate a STZ size dependence on strain 

rate [26, 29], but STZ volume and energy barrier dependence in this model could also be 

surrogates for some other behavior. For example, an effective change in volume or a change in 

energy barrier could actually be the result of free volume redistribution. For example, the STZ 

may have an effectively larger size or larger energy barrier at lower strain rates because it has 

more time for free volume redistribution to extract the low energy events so only the larger 

transition barriers remain [40, 41]. Alternatively, one could ascribe the change to some other 

phenomena like local elastic properties [42] or local bonding such as icosahedral or non-

icosahedral effects [43]. In any case, it is noted that the variation of the energy barrier (1.08-1.68 

eV) and the STZ volume (1.6-2.6 nm3) is small and has log-linear dependence. These variations 

are likely within the resolution of techniques used to measure them. This functional dependence 

of these values may also explain the variation in reported measurements since different rates will 

result in different values. In the end, the experiments and the present simulations both indicate a 

rate dependence to the STZ behavior, which changes the critical nucleus size for shear banding. 

These minor changes lead to substantially different shear banding behaviors over the range of 

strain rates studied. 

Finally, the critical nucleus size also has implications for improving ductility in metallic 

glasses. It is known that annealing/quenching and mechanical deformation can influence the 

ductility [44], perhaps these can be used to influence the glass and increase the number of 
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nucleation sites to the point that the glass is forced to deform in a more homogeneous manner. In 

addition, critical shear band nucleus size may also help explain why metallic glasses exhibit size-

dependence for small samples. Metallic glass samples which are less than one mm in width are 

able to deform plastically more readily than larger samples; this is true for tension, compression, 

and bending [45-48]. Just as in the highest strain rate, where some shear bands traversed the 

shear band before achieving the critical nucleus size, perhaps the smaller experimental samples 

nucleate lots of shear bands because not enough dominant shear bands are nucleated.
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5 CONCLUSION 

This study shows that the changes in the degree of flow serration with strain rate on the 

general deformation map of metallic glass can be modeled accurately using STZ dynamics.  

Running twelve replicate simulations at each of six strain rates ranging from 10-5 to 100 s-1, 

allows statistical data to be gathered about the simulations: measuring shear band nucleation rate 

and flow serration. It also allows statistical data to be gathered about the behavior of individual 

shear bands: measuring critical shear band nucleus size, propagation rates, and sliding rates. This 

results in identifying clear correlations between nucleation or propagation statistics and strain 

rate, which also correspond to the changes in flow serration regimes. The nucleation rate, 

measured in nuclei generated for a given strain, shows a positive correlation to strain rate, with 

the highest rate generating a median number of shear band nuclei more than three times that of 

the lowest strain rate. Shear band propagation and sliding rates, measured in nm/strain, show a 

negative correlation to strain rate. These measurements combined show support for Schuh’s 

hypothesis that the flow serration regimes arise from competing nucleation and propagation 

rates. A new hypothesis is proposed that these rate dependencies arise from an underlying 

positive rate dependence on critical shear band nucleus size, which is controlled in STZ 

dynamics by modifying the STZ volume and STZ energy barrier. Free volume generated by 

STZs may also affect the critical shear band nucleus size at different strain rates, but is not 

included in this study. If the critical shear band nucleus size is the underlying cause of rate 
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dependent deformation, this could be exploited to allow room temperature ductility in bulk 

metallic glasses. This could happen by adjusting metallic glass composition, heat treating by 

annealing or quenching, or by fine-tuning the spacing between dendrites in metallic glass matrix 

composites. In order to test this new hypothesis, more accurate experimental and modeled 

measurements of STZ volume, STZ energy barrier, and critical shear band nucleus size are 

needed. 
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