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ABSTRACT

Fundamental Principles of Tremor Propagation in the Upper Limb

Andrew Doran Davidson
Department of Mechanical Engineering, BYU

Master of Science

Although tremor is the most common movement disorder, there exist few effective tremor-
suppressing devices, in part because the characteristics of tremor throughout the upper limb are
unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin,
propagation, and distribution of tremor throughout the upper limb. Here we present the first sys-
tematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist.
We simulated tremor propagation using a linear, time-invariant, lumped-parameter musculoskeletal
model relating joint torques and the resulting joint displacements. The model focused on the seven
main degrees of freedom (DOF) from the shoulder to the wrist and included coupled joint inertia,
damping, and stiffness. We deliberately implemented a simple model to focus first on the most
basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to
establish fundamental principles describing how input parameters (torque location and frequency)
and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the
methods and principles presented here will serve as the groundwork for future refining studies to
understand the origin, propagation, and distribution of tremor throughout the upper limb in order
to enable the future development of optimal tremor-suppressing devices.

Keywords: Essential Tremor, Parkinsons Disease, musculoskeletal dynamics, tremor suppression
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CHAPTER 1. INTRODUCTION

Tremor is the most common movement disorder [1, 2] and results from an interaction be-

tween pathological neural control and the frequency response of the limb [3–5]. The two leading

conditions that cause tremor in the upper limb are Essential Tremor and Parkinsons disease. Other

conditions that can cause tremor include dystonia, cerebellar ataxia, traumatic brain injury, stroke,

and multiple sclerosis [1]. More than 65% of the population with upper limb tremor present serious

difficulties performing daily living activities such as eating, buttoning a shirt, writing, etc. [6].

Unfortunately, medication and surgical interventions are only partially effective, and pa-

tients have few non-invasive treatment options. For example, the only two medications with un-

equivocal efficacy in treating Essential Tremor, propranolol (a beta-blocker) and primidone (an

anti-convulsant), reduce the tremor by only 50%, and only 50% of patients benefit from one or

both of these medications [7, 8]. Patients who do not respond favorably to medication may be

eligible for deep brain stimulation (DBS), which provides 55-90% tremor reduction [8] and is ef-

fective in 70-90% of patients, though its efficacy is gradually lost in some patients [7]. However,

despite its efficacy, DBS is by no means an optimal solution because of its highly invasive na-

ture. Many patients prefer to suffer the debilitating consequences of tremor rather than undergo

neurosurgery.

A significant obstacle to developing effective tremor-suppressing devices is that the charac-

teristics of tremor are not known throughout the upper limb. Given the challenges associated with

medications and DBS, it is important to give patients non-pharmacological, non-surgical alterna-

tives. Yet there is a surprising lack of effective tremor-suppressing devices. Optimally suppressing

tremor requires a knowledge of tremor throughout the upper limb: where in the upper-limb the

tremor originates (mechanically), how it propagates, and where it manifests most severely. How-

ever, most studies have only investigated tremor in a single degree of freedom (most often either at

the endpoint of outstretched arms or in wrist flexion-extension) [9]. Therefore, the origin, propa-
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gation, and distribution of tremor are currently unknown, greatly limiting our ability to effectively

reduce tremor with tremor-suppressing devices.

The long-term objective of this work is to understand the origin, propagation, and distri-

bution of tremor throughout the upper limb in order to enable the future development of opti-

mal tremor-suppressing devices. Here we present basic principles underlying the propagation of

tremor throughout the upper limb. As this is the first systematic investigation of tremor propaga-

tion of which we are aware, we deliberately chose a simple model to focus first on the most basic

effects. We simulated tremor propagation using a linear time-invariant (LTI), lumped-parameter

model of the relationship between joint torques and the resulting joint displacements. The model

included the seven main degrees of freedom (DOF) from the shoulder to the wrist and included

coupled joint inertia, damping, and stiffness. We used the model to establish the fundamental prin-

ciples that govern how tremor source parameters (input torque location and frequency) and joint

impedance (inertia, damping, stiffness) affect tremor propagation.
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CHAPTER 2. METHODS

2.1 Model of Upper Limb Dynamics

2.1.1 Model Development

To establish the most fundamental principles of tremor propagation, we used the simplest

possible model between input torques and output displacements that can capture the phenomena

of tremor propagation. A linear model was used because previous studies have shown that linear

models can effectively capture the key elements of the dynamics of small upper limb movements

(such as tremor) [10, 11]. Additionally, tremor consists of relatively small displacements around

an equilibrium point and LTI models allow for the use of principles and tools from linear systems

theory, including frequency response (see below).

2.1.2 Model Structure

The musculoskeletal dynamics of the upper limb were modeled as Iq̈+Dq̇+Kq= τττ , where

q = [q1 q2 q3 q4 q5 q6 q7]
T represents angular displacement in each DOF, positive in shoulder

flexion (q1), shoulder adduction (q2), shoulder internal rotation (q3), elbow flexion (q4), forearm

pronation (q5), wrist flexion (q6), and wrist ulnar deviation (q7) (Figure 2.1); I, D, and K are 7-by-7

matrices representing the coupled inertia, damping, and stiffness in these DOF, respectively; and

τττ = [τ1 τ2 τ3 τ4 τ5 τ6 τ7]
T represents the input torque (arising from muscle activity) acting on each

DOF.

The off-diagonal elements of the impedance matrices determine system coupling. Off-

diagonal elements of the 7-by-7 inertia matrix (products of inertia) are not intuitive or easily pre-

dicted. Consequently, the non-zero values of the inertia matrix were determined by the RVC Tool-

box, which leveraged the iterative Newton-Euler method to calculate the posture specific inertia

matrix. Stiffness is due to muscle stretch, at least when motion is not near the extreme ends of the
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Figure 2.1: Degrees of freedom (DOF) and postures included in the study. The model of
the upper limb included seven DOF, designated by their like-colored axes of rotation: Shoul-
der flexion-extension, shoulder abduction-adduction, shoulder internal-external rotation, elbow
flexion-extension, forearm pronation-supination, wrist flexion-extension, and wrist radial-ulnar de-
viation. This order (1-7) and color scheme is used throughout the paper. Posture 1 is the default
posture and is identical to anatomical position except that the elbow is flexed 90 and the forearm
is midway between supination and pronation. Postures 2-4 were used as a sample of postures
from daily life to investigate the sensitivity of tremor propagation to changes in posture. Posture 2
places the hand in front of the mouth and represents feeding and grooming activities. In Posture 3
the hand is in the workspace in front of the abdomen and represents many activities of daily living
requiring fine manipulation, such as opening items or writing. Posture 4 represents reaching tasks.
The joint angles for each posture are given in Table 2.3.
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joint range of motion. Coupling in the 7-by-7 stiffness matrix is due to multi-articular muscles.

Based on our knowledge of muscle origin and insertion points, we can predict which DOF are cou-

pled by multi-articular muscles, and therefore whether the off-diagonal elements of the stiffness

matrix are non-zero (coupled) or zero (uncoupled), as shown in Table 2.1. However, some DOF

share multi-articular muscles but may experience weak or even negligible coupling, for example

because the muscle moment arms are small. In practice the degree of coupling was determined by

prior experiments that measured the values of off-diagonal matrix elements. For elements that have

not been measured, we tested a wide variety of plausible values. Damping is also due to muscle

stretching like stiffness. Therefore, the pattern of zero and non-zero values in the damping matrix

follows that of the stiffness matrix.

Table 2.1: Stiffness matrix values predicted to be non-zero (X), zero
or negligible (0), and those that are not easily predicted (?). The

abbreviations represent shoulder flexion-extension (SFE),
shoulder abduction-adduction (SAA), shoulder internal-

external rotation (SEIR), elbow flexion-extension
(EFE), forearm pronation-supination (FPS), wrist

flexion-extension (WFE), and wrist radial-ulnar
deviation (WRUD).

Stiffness Matrix
SFE SAA SIER EFE FPS WFE WRUD

SFE X X X X ? 0 0
SAA X X X ? ? 0 0

SIER X X X ? ? 0 0
EFE X ? ? X ? ? ?
FPS ? ? ? ? X X X

WFE 0 0 0 ? X X X
WRUD 0 0 0 ? X X X

2.1.3 Model Parameters

The full 7-by-7 inertia, damping, and stiffness matrices are not available in the literature, so

they were assembled from prior studies that measured portions of the matrices (Table 2.2). Please

note that although values were estimated as accurately as possible, the exact values are not critical
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because we also performed a thorough sensitivity analysis to determine the effect of uncertainty in

our matrix values.

Inertia: Prior measurements of inertial values for individual body segments were used in

conjunction with the Robotics Vision and Control (RVC) toolbox to calculate the full inertia matrix,

including coupling between segments. More specifically, the body-segment inertial parameters

were taken from previous studies [12] using values for a 50th percentile male. The coupled inertia

matrix was calculated for different postures (see below) via Denavit-Hartenberg (DH) parameters

using the RVC toolbox (Figure 2.2, Table 2.3) [13, 14].

Stiffness: We started with purely passive stiffness (in the absence of muscle activity) but

later added active stiffness to model co-contraction (see below). The diagonal and off-diagonal

values corresponding to planar shoulder-elbow movements were taken from the torque-dependent

regression by [15], with zero torque for passive stiffness. To estimate the remaining diagonal and

off-diagonal elements of the sub-matrix for the shoulder and elbow, we scaled a recent measure-

ment of passive stiffness in the 3 DOF of the shoulder [16] to match the values from [15]. The

3-by-3 sub-matrix representing wrist and forearm stiffness was taken from [17]. The unknown off-

diagonal stiffness representing coupling between the shoulder-elbow and the forearm-wrist sys-

tems were initially assumed zero but then changed to a variety of non-zero values in the sensitivity

analysis. Many studies have shown joint stiffness to be nearly symmetric [17–20]. To simplify the

analysis, we used in our simulations only the symmetric part of the stiffness matrix, calculated as

the average of the matrix and its transpose.

Damping: Only few elements of the 7-by-7 damping matrix have been measured. However,

several past shoulder-elbow studies have found the shape and orientation of the damping and stiff-

ness ellipses to be similar [21–23], indicating that the matrices are roughly proportional (the shape

and orientation of an ellipse represent the relative magnitudes of the matrix elements). Therefore,

some past studies involving few DOF have approximated the damping matrix to be proportional

to the stiffness matrix, the proportionality constant chosen so the new matrix would match past

measurements of individual matrix elements or damping ratios [24, 25]. However, our 7-by-7 ma-

trix involves different sets of multi-articular muscles, and it became clear that a single constant

of proportionality was unable to match previously measured damping ratios. Therefore, we used

one constant of proportionality (0.07 s) for the 4-by-4 submatrix representing the shoulder-elbow
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system, and a different constant of proportionality (0.028 s) for the 3-by-3 submatrix representing

the forearm-wrist system. The other off-diagonal values are unknown and were initially assumed

zero but later varied through a range of non-zero values in the sensitivity analysis. Using two

different constants of proportionality allowed shoulder-elbow damping and forearm-wrist damp-

ing to be proportional to shoulder-elbow stiffness and forearm-wrist stiffness, respectively, and

for the range of the resulting single-DOF damping ratios (0.18-0.42) to match the range measured

previously (0.14-0.48) [22, 26–28].

Figure 2.2: Kinematic description of the upper limb using the Denavit-Hartenberg (DH) conven-
tion. To calculate the full, coupled inertia matrix, we modeled the seven main degrees of freedom
of the shoulder, elbow, forearm, and wrist as revolute joints (A-B) and converted the model to DH
parameters (Table 2.3) using the intermediate coordinate frames defined in C. Adapted from [29].

2.1.4 Input-Output Relationships

Our model has seven inputs (a torque in each DOF) and seven outputs (a displacement in

each DOF). In such a multiple-input, multiple-output model, every input has the potential to affect

every output. The relationships between inputs and outputs are given by transfer functions, derived

7



Table 2.2: Joint inertia, damping, and stiffness matrices used for basic sim-
ulations involving posture 1. For each matrix, element i j (row, column)

represents the change in torque in DOF i associated with a change
in acceleration, velocity, or position in DOF j.

Inertia (kg m2)
SFE SAA SIER EFE FPS WFE WRUD

SFE 0.269 0 0 0.076 0 0 -0.014
SAA 0 0.196 0.083 0 -0.002 0.009 0

SIER 0 0.083 0.079 0 0 0.011 0
EFE 0.076 0 0 0.076 0 0 -0.012
FPS 0 -0.002 0 0 0.002 0 0

WFE 0 0.009 0.011 0 0 0.003 0
WRUD -0.014 0 0 -0.012 0 0 0.003

Damping (Nms/rad)
SFE SAA SIER EFE FPS WFE WRUD

SFE 0.756 0.184 0.02 0.187 0 0 0
SAA 0.184 0.383 0.267 0 0 0 0

SIER 0.02 0.267 0.524 0 0 0 0
EFE 0.187 0 0 0.607 0 0 0
FPS 0 0 0 0 0.021 0.001 0.008

WFE 0 0 0 0 0.001 0.028 -0.003
WRUD 0 0 0 0 0.008 -0.003 0.082

Stiffness (Nm/rad)
SFE SAA SIER EFE FPS WFE WRUD

SFE 10.8 2.626 0.279 2.67 0 0 0
SAA 2.626 5.468 3.821 0 0 0 0

SIER 0.279 3.821 7.486 0 0 0 0
EFE 2.67 0 0 8.67 0 0 0
FPS 0 0 0 0 0.756 0.018 0.291

WFE 0 0 0 0 0.018 0.992 -0.099
WRUD 0 0 0 0 0.291 -0.099 2.92
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Table 2.3: DH parameters for each posture. Together with Figure 2.2C, the angle value (θi), link
offset (di), link length (ai), and link twist (αi) fully define each posture. Parameters Lua, L f a,

and Lh refer to the lengths of the upper arm, forearm, and hand, respectively.

DH Parameters
θi di ai αi

Link 1 θ1−π/2 0 0 π/2
Link 2 θ2 +π/2 0 0 π/2
Link 3 θ3 +π/2 −Lua 0 π/2
Link 4 θ4 0 0 −π/2
Link 5 θ5 −L f a 0 π/2
Link 6 θ6−π/2 0 0 −π/2
Link 7 θ7 0 −Lh 0

Posture 1 Posture 2 Posture 3 Posture 4
θθθ 111 0 π/4 π/8 π/8
θθθ 222 0 0 0 0
θθθ 333 0 π/4 π/4 π/4
θθθ 444 π/2 3π/4 π/2 π/4
θθθ 555 π/2 π/4 π/4 π/4
θθθ 666 0 π/4 π/4 π/4
θθθ 777 0 −π/8 −π/8 −π/8

as follows [30]. The model Iq̈+Dq̇+Kq = τττ can be transformed into the Laplace domain as

(Is2+Ds+K)Q(s) =T(s), where Q and T are the Laplace transforms of q and τττ , respectively, and

s is the Laplace variable. Summarizing Is2 +Ds+K as Z(s) and solving for Q yields Q = Z−1T.

Defining the transfer function matrix G(s) as Z−1 yields Q = GT. G is a 7-by-7 matrix with 49

transfer functions, one for each input-output relationship, i.e. Qi/k =GikTk, where Qi/k is the output

in DOF i due to an input in DOF k. Each transfer function has the same 14th order denominator,

but generally different numerators. The total output at each DOF is a linear combination of the

inputs at each DOF, the weights of the linear combination being the transfer functions associated

with that output: ∑
7
k=1 GikTk .

Note that because our impedance matrices are symmetric, the transfer function matrix is

symmetric. Human joint impedance is roughly symmetric; inertia is symmetric by definition [31],

and many studies have shown joint stiffness to be nearly symmetric [17–19]. In our model I, D,

and K are perfectly symmetric, so Z is symmetric, and consequently G as well (the inverse of a

symmetric matrix is symmetric). Therefore, Gik = Gki , or
Qi/k(s)
Tk(s)

=
Qk/i(s)
Ti(s)

. If the inputs are equal,
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qi/k(t) = qk/i(t) . In other words, the response in DOF i to an input in DOF k is the same as the

response in DOF k to an equal input in DOF i . As a corollary, the responses in all DOF due to an

input in DOF i are the same as the individual responses in DOF i due to equal inputs in all DOF.

2.1.5 Frequency Response

If the inputs are sinusoidal, the relationships between inputs and outputs can be specified in

terms of magnitude ratios and phase shifts. If the input in DOF k is τk(t) = Aksin(ωkt +φk), it can

be shown [30] that the steady-state output in DOF i is also sinusoidal: qi/k(t) = MikAksin(ωkt +

φk+φik), with the same frequency (ωk) but amplitude MikAk and phase shift φik relative to the input.

Mik is the ratio of the output magnitude over the input magnitude (called magnitude ratio) and can

be calculated from the transfer function as a function of the input frequency: Mik(ωk) = |Gik( jωk)|,

where j =
√
−1. Likewise, the phase shift φik can be computed from the transfer function as a

function of the input frequency: φik(ωk) = ∠Gik( jωk) [30]. The total output in DOF i is a linear

combination of the individual outputs: qi(t) = ∑
7
k=1 MikAksin(ωkt +φk +φik) [32].

If the sinusoidal inputs are equal, the relationships between inputs and outputs can be spec-

ified in terms of a single magnitude ratio and phase shift. To simplify and place all DOF on

equal footing (see Discussion), we assumed equal input torques in all DOF: τk(t) = Asin(ωt)

for all k. The output then becomes qi(t) = A∑
7
k=1 Miksin(ωt + φik), which is itself a sinusoid:

qi(t) = AMisin(ωtφi). The magnitude ratio Mi and phase shift φi can be calculated as the mag-

nitude and direction of the vector sum of the k individual vectors (phasors) of magnitude Mik

and direction φik. In practice, Mi and φi are more easily calculated from the transfer function

matrix as follows. Since all inputs are equal, the expression for Qi above can be written as

Qi = [∑7
k=1 Gik]T = GiT . The magnitude ratio and phase shift can be calculated from Gi as

Mi(ω) = |Gi( jω)| and φi(ω) = ∠Gi( jω). Thus the output qi due to multiple inputs of equal

frequency, amplitude, and phase is specified by the magnitude ratio and phase shift of the sum of

the transfer functions Gik associated with output i [33].

10



2.2 Simulation Protocol

To investigate how tremor propagates, we injected sinusoidal torque inputs into various

DOF and observed the resulting displacement in each DOF. To simplify and place all DOF on

equal footing, we assumed torque inputs in all DOF had equal amplitude, frequency, and phase (see

Discussion). Simulations were performed systematically in increasing levels of model complexity,

starting with a single input and building up to inputs in all seven DOF. Using this approach, we

investigated the following six questions.

1) Where do tremor frequencies fall on the frequency response of the upper limb? Tremors

occur most frequently at frequencies between 4 and 12 Hz [34], which we called the tremor band.

As an underdamped low-pass filter, the upper limb passes input torques of low frequency, amplifies

torques of intermediate frequency, and reduces torques of high frequency. To understand what it

does to input torques in the tremor band, we investigated the frequency response of the upper limb

in the tremor band, focusing in particular on 4, 8, and 12 Hz.

2) Does tremor propagate mostly because of inertial, damping, or stiffness coupling? Tremor

propagates because the off-diagonal elements of the inertia, damping, and stiffness matrices couple

the DOF. Does one of these matrices cause most of the coupling? To answer this question, we ran

simulations with and without the diagonal elements of these matrices.

3) Does tremor spread to all DOF, or does it focus in certain DOF? The coupling between

DOF spreads the tremor, but the spreading may be narrow or broad (i.e. to few or many DOF,

respectively).

4) Does tremor propagation change from proximal to distal? Prior studies have found

proximal-distal differences in movement characteristics due to differences in impedance [24, 25].

Do these differences in impedance cause differences in tremor propagation as well?

Prior experimental studies have investigated the effect of increasing impedance on tremor

[2, 35–43]. We simulated these effects with the following questions.

5) How does inertial loading affect tremor propagation? We simulated inertial loading by

scaling the entire inertia matrix by a factor ranging from 1.0 to 3.0, in increments of 0.2.

6) How does viscoelastic loading affect tremor propagation? Increasing the viscoelasticity

of the limb can occur through bracing or muscle contraction. Bracing the upper limb may in-

crease stiffness, damping, or both. Common commercially available wrist braces increase wrist
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stiffness by a factor of roughly 1.8 [44], but custom-made braces could be significantly stiffer. To

represent a range of possible braces, we increased only stiffness, only damping, and both stiffness

and damping, all by factors ranging from 1.0 to 10.0, in increments of 0.5. Muscle contraction

increases stiffness in proportion to muscle torque, but it increases damping in proportion to the

square root of muscle torque, leaving the damping ratio approximately constant [15, 22]. We sim-

ulated co-contraction by increasing the stiffness matrix by a factor of 1-10 (in increments of 0.5)

and the damping matrix by the square root of that factor. Prior measurements of stiffness in wrist

flexion-extension during torque production have found that a 1-10 increase in stiffness are associ-

ated with torques from 0 to 2.1 Nm [45–47], which is about 27% of the maximum voluntary torque

in wrist FE [48].

2.3 Data Processing and Analysis

Since the input torques were sinusoidal, the output displacement in each DOF was specified

in terms of magnitude ratio and phase shift (see Frequency Response). More specifically, we trans-

formed our model into state space form, determined the transfer function matrix, and computed

the magnitude ratio and phase shift using Matlabs ss, tf, and bode functions, respectively.

To present the results, we plotted the magnitude ratio and phase shift separately as functions

of input frequency (frequency response plots), the magnitude ratio and phase shift combined at a

specific input frequency (phasor plots), or the magnitude ratio at a specific input frequency as a

function of DOF (to demonstrate the magnitude of coupling between DOF). In phasor plots, the

magnitude and angle of each phasor represent the magnitude ratio and phase shift of a particular

input-output relationship. The total output in a given DOF is the vector sum of the individual

phasors, so phase plots allow one to visualize if the individual outputs in a given DOF (caused by

inputs at different DOF) add constructively or destructively.

2.4 Sensitivity Analysis

To determine the effect of uncertainty in our model parameters and test the robustness of

our results, we repeated the simulations with variations in inertia, damping, and stiffness. First,

we tested inertia, damping, and stiffness matrices at half and twice their original values, scaled
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individually and in combinations. Second, we tested the sensitivity of our results to individual

matrix elements by calculating at 4, 8, and 12 Hz the slope of the magnitude ratio with respect

to each element of each impedance matrix. The slope was computed as the difference derivative

from 0.9 to 1.1 times the original value of the matrix element. We identified the most sensitive

matrix elements as those with a slope magnitude greater than 0.1 (meaning that multiplying or

dividing this matrix element by x increased or decreased the magnitude ratio by 0.1x or more), and

we repeated simulations at half and twice the original value of these individual matrix elements.

Third, we replaced the unknown off-diagonal values of the stiffness matrix (initially assumed zero)

with values ranging from small (0.01) to very large (the average of the two corresponding diagonal

values), including both positive and negative versions of these values. Since the off-diagonal values

of the stiffness matrix are usually considerably smaller than the diagonal values, this range in off-

diagonal values is likely larger than the actual range. The damping matrix was calculated by scaling

the stiffness matrix, as described above. To determine the off-diagonal values of the damping

matrix that did not belong to the shoulder-elbow system or the forearm-wrist system, we scaled

using an average of the two constants of proportionality. Fourth, to ensure that any proximal-

distal differences were not caused by calculating the damping matrix using different constants of

proportionality for the shoulder-elbow and forearm-wrist systems, we repeated our simulations

using only one constant (either 0.07 or 0.028) for the whole matrix.

To determine the effect of posture on our results, we also repeated our simulations at a

variety of postures (Figure 2.1). Changes in posture only affected the inertia matrix. Adjustments

to the inertia matrix were calculated by adjusting the DH parameter joint angle values (θ ) of each

DOF for each posture (Table 2.3). The stiffness and damping matrices were modeled as posture-

independent since past measurements of postural stiffness have found short-range stiffness to be

largely independent of joint angle [49, 50]. The postures in Figure 2.1 were chosen as a sample

of the most common postures encountered in activities of daily living. We deliberately avoided

postures near the limit of the range of motion, where stiffness and damping change significantly.

At each posture, we also tested neighboring postures by varying the angle of each DOF through a

range of 15°.
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CHAPTER 3. RESULTS

3.1 Simulations

Findings are presented as answers to the six questions posed above (Simulation Protocol).

Where do tremor frequencies fall on the frequency response of the upper limb? The full,

coupled 7-DOF system can be characterized by its natural frequencies and damping ratios (which

belong to the system and cannot be assigned to individual DOF). The natural frequencies lie below

or in the tremor band (0.67, 1.08, 1.60, 1.88, 3.22, 4.86, and 7.04 Hz), with damping ratios ranging

from 0.15 to 0.68 (the range mentioned in Methods refers to the damping ratios of individual DOF

in isolation, similar to how they were measured). The low damping ratios allow resonance in all

DOF, but the distal DOF feel the effects of resonance in the tremor band much more than the prox-

imal DOF. Note that most of the changes in magnitude ratio between DOF occurred at frequencies

below the tremor band (Figure 3.1A). Although the magnitude ratio continues to change in the

tremor band, lines rarely cross in the tremor band, indicating that the order of output magnitudes

is stable in the tremor band. In other words, statements about which DOF have the greatest mag-

nitude ratios are relatively robust for any tremor band frequency. How the individual responses

combine in a given DOF depends on the phase shift (Figure 3.1B) as well, since responses may

add constructively or destructively (Figure 3.1C).

Does tremor propagate mostly because of inertial, damping, or stiffness coupling? Most of

the coupling is inertial—removing the off-diagonal elements of the stiffness and damping matrices

only had a minor effect (Figure 3.1D). Because the coupling is mostly inertial, it is somewhat

predictable; DOF with parallel axes are coupled (assuming centers of mass are located off-axis).

For example, input in shoulder internal rotation affects wrist flexion-extension because their axes

are parallel. However, DOF do not need to have parallel axes to affect each other; input in shoulder

adduction produces tremor in shoulder internal rotation and wrist flexion, neither of which have

axes parallel to shoulder adduction.
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Figure 3.1: Frequency response of all input-output relationships. Row i presents the frequency
response for an input in DOF i (row label) and output in DOF k (color—see legend). Because the
transfer function matrix is symmetric, row i also presents the frequency response for an input in
DOF k (color—see legend) and output in DOF i (row label).
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Figure 3.1: (Caption continued) A. Magnitude ratio, which is the ratio of magnitude of the output
(tremor) over the magnitude of the input (torque). The tremor band (4-12 Hz) is emphasized in
white. B. Phase shift of the output relative to the input. C. Phasor plots for an input frequency of 8
Hz. The magnitude and phase of each phasor (vector) is the same as the magnitude ratio and phase
shift of the like-colored lines (on the same row), evaluated at 8 Hz. These plots demonstrate how
multiple outputs add constructively or destructively depending on their phase, and that a single
phasor dominates for most DOF. The number at the top of plot is the magnitude ratio at the outer-
most circle. D. Magnitude ratio at 8 Hz vs. DOF. Each plot shows the magnitude ratios for an input
in DOF i (row label) and output in DOF k (x-axis), which is the same as the magnitude ratios for
an input in DOF k (x-axis) and output in DOF i (row label). These plots highlight which DOF are
coupled, and that the magnitude ratios of proximal DOF (1-4) are smaller than those of distal DOF
(5-7). The red circles present the magnitude ratios calculated using the full (coupled) matrices in
Table 2.2, whereas the solid orange circles present the magnitude ratios calculated using only the
diagonal (uncoupled) damping and stiffness matrices. The similarity between the red and orange
circles demonstrates that the coupling is mostly due to inertia, not damping or stiffness.

Does tremor spread to all DOF, or does it focus in certain DOF? Tremor spreads in a

relatively narrow manner: an input torque in a given DOF propagates mostly to a small subset

of DOF (Figure 3.1D). Since the transfer matrix is symmetric (see Methods), the multiple-input

case is easily predicted from the single-input case: the individual responses in a DOF due to

(equal) inputs in all DOF are the same as the responses in all DOF due to an input in one DOF.

For example, the responses in DOF 1-7 due to an input in DOF 1 are the same as the individual

responses in DOF 1 due to inputs in DOF 1-7. Because an input in one DOF propagates mostly to

a small subset of DOF, inputs in only some DOF significantly affect a given DOF. Consequently,

simulations with inputs are not times more complicated than the single-input case. In fact, many

of the responses are dominated by a single input, so for many DOF the response to inputs in all

DOF is almost identical to the response to an input in the dominant DOF.

Does tremor propagation change from proximal to distal? There is a clear proximal-distal

increase in the magnitude ratio (Figure 3.1D). Inputs in proximal DOF affect distal DOF equally

or more (often much more) than proximal DOF. While the magnitude does not necessarily increase

from DOF 5 to 7, one of these DOF always has the greatest magnitude ratio. In summary, there

is more forward propagation than backward propagation. That said, note two caveats. First, even

though there is more forward propagation than backward propagation, a distal input creates a

bigger distal response than a proximal input of equal magnitude (compare scales in Figure 3.1C).
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For example, an input in DOF 6 creates a bigger response in DOF 6 than an input in DOF 3 of

equal magnitude. Second, a distal input creates a bigger proximal response than a proximal input

of equal magnitude. For example, an input in DOF 6 creates a bigger response in DOF 3 than an

(equal) input in DOF 3.

How does inertial loading affect tremor propagation? Increasing inertia produces compet-

ing trends; it decreases the natural frequency, shifting the magnitude ratio curve to the left, but

it also decreases the damping ratio, raising the resonance peaks (Figure 3.2A). The end effect

depends on frequency, but in the tremor band it usually decreases the magnitude ratio.

Figure 3.2: Effect of inertial and viscoelastic loading on the magnitude ratio, shown here for a
representative input-output relationship (input and output in DOF 6). Although the magnitude ra-
tios differ for different input-output relationships, the effect of inertial and viscoelastic loading is
similar across relationships. In each plot, the default (no loading) is shown in blue. A. Increasing
inertia usually decreases the magnitude ratio in the tremor band, though it can sometimes increase
the magnitude ratio, especially at the lower bound of the tremor band (e.g. multiplying by 1.5 or
2 increases the magnitude ratio at 4 Hz). B. Increasing damping alone always decreases the mag-
nitude ratio. C. Increasing stiffness alone can decrease or increase the magnitude ratio depending
on the increase in stiffness and the input frequency. D. Increasing stiffness and damping by the
same factor (solid lines) or stiffness more than damping (damping by the square root of the factor,
dashed lines) usually decreases the magnitude ratio, but can increase the magnitude ratio for some
factors and input frequencies.
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How does viscoelastic loading affect tremor propagation? Increasing the damping, stiff-

ness, or stiffness and damping together either decreased or increased the magnitude ratio, depend-

ing on the amount of increase and the tremor frequency (Table 3.1). Because increasing damping

alone increased the damping ratio but had no effect on the natural frequency, it always decreased

the magnitude ratio (Figure 3.2B). Increasing stiffness alone increased the natural frequency and

decreased the damping ratio, shifting higher resonance peaks toward or into the tremor band, which

raised the magnitude ratio (Figure 3.2C). However, increasing stiffness also decreased the DC gain,

which lowered the magnitude ratio. The end effect depended on the amount of increase in stiffness

and the tremor frequency. Increasing both damping and stiffness simultaneously by the same factor

almost always decreased the magnitude ratio in the tremor band, especially for factors greater than

2.5 (Figure 3.2D). Likewise, increasing stiffness more than damping (by a factor and the square

root of the factor, respectively, similar to co-contraction) usually decreased the magnitude ratio,

but less robustly than increasing stiffness and damping by the same factor.

Table 3.1: Trends illustrating the effects of inertial and viscoelastic loading on the magnitude ratio.
Increasing inertia (I), damping (D), and stiffness (K) directly affects the damping ratios (ζ ),

natural frequencies (ωn), and DC gains. The combination of these competing effects
dictate whether the magnitude ratio in the tremor band (M4−12Hz) increases (↑),

decreases (↓), or could do either depending on the amount of increase and the
input frequency (↑↓ ). Stiffness and Damping refers to increasing both by

the same factor, whereas Co-contraction refers to increasing stiffness
by a factor and damping by the square root of that factor, similar

to what occurs in co-contraction.

Simulation I D K ζ ωn DCgain M4−12Hz
Inertia ↑ - - ↓ ↓ - ↑↓

Damping - ↑ - ↑ - - ↓
Stiffness - - ↑ ↓ ↑ ↓ ↑↓

Stiffness and Damping - ↑ ↑ ↑ ↑ ↓ ↑↓
Co-contraction - ↑ ↑ - ↑ ↓ ↑↓
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3.2 Sensitivity Analysis

3.2.1 Impedance Parameters

Errors in inertia, damping, and stiffness produce errors in the exact magnitude ratios, but the

pattern of propagation remains relatively unchanged (Figure 3.3A-C). Multiplying inertia, damp-

ing, or stiffness matrices by factors ranging from 0.5 to 2 can have large effects on the magnitude

ratios in individual DOF (as described above). However, for frequencies in the tremor band, the

relative size of the magnitude ratios is quite unaffected. In particular, the statement that the three

distal DOF exhibited the greatest magnitude ratios remained valid. The same is true for errors in the

most sensitive elements of the matrices (I55, D55, K55, D66, K66, I66, K77, D77, all at 4 Hz). Multi-

plying these elements by 0.5 or 2 did not significantly alter the results because they affect the three

distal DOF (5-7), each of which is dominated by a single phasor. Likewise, replacing the unknown

off-diagonal values of the stiffness matrix (initially assumed zero) by non-zero values changed the

magnitude ratios but not the coupling, even when the replacement values were very large (Fig-

ure 3.3D). The unknown off-diagonal elements in question couple the shoulder-elbow system to

the forearm-wrist system. Replacing these elements with values as large as the diagonal elements

creates unrealistically strong coupling. To clarify, coupling in the joint stiffness matrix reflects

muscles that cross multiple DOF. Although coupling likely exists between some of the DOF in the

two systems (such as elbow and forearm), it is unlikely to be as strong as the diagonal elements.

In addition, many of the possible interactions between the shoulder-elbow and forearm-wrist sys-

tems are likely not coupled at all (e.g. shoulder flexion-extension and wrist flexion-extension). In

summary, the propagation pattern was robust even when the unknown off-diagonal stiffness values

were varied through an unrealistically large range. Finally, calculating the entire damping matrix

using a single constant of proportionality did not significantly change the propagation pattern.

3.2.2 Posture Variation

Changing postures affected the coupling between DOF but not the proximal-distal increase

in magnitude ratio (Figure 3.3E). Because coupling is mostly inertial, and because the inertia

matrix is a function of posture, the coupling pattern greatly depends on posture. For example, in

posture 1, DOF 4 and 7 have parallel axes and are therefore coupled, but pronating the forearm
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by 90° rotates the axes of DOF 6 and 7 in a way that couples DOF 4 and 6 (instead of 4 and 7).

The changes between postures 1-4 did not involve rotations of exactly 90° so coupling did not

generally shift completely from one DOF to another. Nevertheless, the changes were large enough

to significantly change the coupling pattern. That said, changes in posture that uncoupled some

DOF usually coupled others, resulting in relatively little change in the total response in each DOF

due to inputs in all DOF. In particular, the proximal-distal increase in magnitude ratio held true for

all four postures.
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Figure 3.3: Sensitivity analysis results shown for the full multi-input multi-output case (magnitude
ratio of the total output in each DOF for equal inputs in all DOF). Magnitude ratios were evaluated
at 8 Hz. The blue magnitude ratios in each plot were calculated using the default inertia, damping,
and stiffness matrices. A-C. Effect of multiplying inertia, damping, or stiffness by factors of
0.5 and 2 on the magnitude ratio. D. Effect of replacing the unknown off-diagonal values in
the stiffness matrix (initially assumed zero) by half or the full average of the two corresponding
diagonal values. E. Effect of posture. Changing posture tends to switch which DOF are coupled to
each other (not shown), but the total amount of coupling in each DOF remains relatively unaffected.
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CHAPTER 4. DISCUSSION

Here we present a basic analysis of tremor propagation to inform the future development

of tremor suppressing devices. Optimally suppressing tremor requires a knowledge of the ori-

gin, propagation, and distribution of tremor throughout the upper limb. Here we present the first

systematic investigation of how tremor propagates between the shoulder and the wrist. We deliber-

ately implemented a simple model to focus first on the most basic (first-order) effects. From these

first-order effects we have identified the following basic principles underlying the propagation of

tremor in the upper limb. Note that these principles were observed under specific conditions (see

Limitations below), and more research would be required to generalize outside of these conditions.

4.1 Principles of Simulated Tremor Propagation

Principle 1: Tremor is due in part to favorable limb dynamics. The magnitude of tremor

depends on both the magnitude of the input torque and the magnitude ratio of the system at input

frequency. More specifically, the magnitude of the tremor output is the product of the magnitude

of the input torque and the magnitude ratio. Therefore, we conclude that tremor occurs most

commonly over the 4-12 Hz band because this is the frequency band where the product of these two

factors is greatest. This statement is obvious from the preceding sentence, but it demonstrates that

the dynamics of the upper limb play a critical role in the magnitude of the tremor output. In other

words, tremor is caused not only by a pathological input torque, but also by limb dynamics that

favor the expression and propagation of tremor. In particular, the damping ratios of the upper limb

are generally less than 0.707 [22, 28], resulting in resonance [30] in or near the tremor band. This

in turn amplifies the effect of the input torque, creating larger tremor than there would be without

resonance [4, 5]. As a corollary, there may be significant amounts of pathologically periodic input

torque above the tremor band, but these input torques do not produce pathological tremor because

the magnitude ratios at these frequencies are too small.
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Principle 2: Tremor propagates mostly because of inertial coupling. Tremor propagates

because the off-diagonal elements of the inertia, damping, and stiffness matrices couple the DOF.

Most of this coupling is inertial, not viscoelastic; ignoring the off-diagonal elements of the stiffness

and damping matrices has a minimal effect on the propagation pattern (Figure 3.1D). Note that

this statement refers specifically to coupling, not whether inertial effects dominate the dynamics

in general. To clarify, prior research showed a proximal-distal shift in the dominating impedance:

whereas the dynamics of proximal joints (shoulder and elbow) are thought to be dominated by

inertial effects, the dynamics of distal joints (wrist and forearm) are dominated by stiffness effects

[10, 11]. However, this prior finding referred to the torques required to overcome the inertia,

damping, and stiffness in a given DOF, not coupling between DOF. In addition, it referred to

voluntary movements, which occupy a lower frequency band (mostly < 5 Hz [51]) than tremor

(4-12 Hz), where inertial effects play a smaller role than at higher frequencies.

Principle 3: Tremor spreads narrowly. Although the inertia, damping, and stiffness ma-

trices couple DOF to each other, some DOF are coupled only weakly or not at all. Consequently,

input torque in a DOF significantly affects only a relatively small number of DOF. Because the

transfer function matrix is symmetric, this also means that the vast majority of the tremor in a

given DOF is due to inputs in a relatively small number of DOF (assuming equal input torques in

all DOF). For example, although tremor in DOF 1 could be caused by a very large input torque in

DOF 5, it is more easily caused by a smaller input torque in DOF 4 and/or 7. As stated in Principle

2, most of this coupling is inertial, which depends on posturetherefore, the pattern of coupling

changes with posture (see Sensitivity Analysis).

Principle 4: Given equal amounts of input torque, the distal DOF have the greatest tremor

magnitude. There is a clear increase in tremor magnitude from proximal to distal DOF of the

upper limb; one of the three distal joints always has the largest magnitude ratio (Figure 3.1C and

3.1D). It appears this whip effect is caused by proximal-distal differences in impedance. Going

from proximal to distal, inertia decreases more rapidly than stiffness (Figure 4.1). This creates

a proximal-distal increase in the natural frequency, which pushes the resonance band to higher

frequencies, elevating the magnitude ratios in the tremor band. While the shoulder and elbow can

have higher magnitude ratios than the forearm and wrist DOF (Figure 3.1), their peaks are below

the tremor band.
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Figure 4.1: Uncoupled natural frequency at each DOF. These natural frequencies are proportional
to the square root of stiffness over inertia. The proximal-distal increase in natural frequency
demonstrates that the proximal-distal decrease in inertia is greater than the decrease in stiffness.

Principle 5: Increasing inertia can decrease or increase tremor. While increasing the

inertia lowers the damping ratio, which raises resonant peaks, it also decreases the natural frequen-

cies, which shifts the resonance peaks to lower frequencies and out of the tremor band. The most

common end result in the tremor band is a decrease in magnitude ratio (Figure 3.2A). Most past

experiments investigating inertial loading have measured a decrease in tremor [37, 39], and there

exist a number of commercially available products (e.g. weighted utensils) that claim to mitigate

tremor through weighting. However, recent studies have found that inertial loading does not al-

ways decrease tremor [40, 42], similar to our simulations. Note that these changes in magnitude

ratio with inertial loading do not refer to the decrease in tremor frequency that can occur with in-

ertial loading [37]–that phenomenon cannot be replicated by an LTI model with sinusoidal inputs,

because in such a model the output frequency is always equal to the input frequency.

Principle 6: Increasing viscoelasticity can decrease or increase tremor. Increasing damp-

ing alone always decreased the magnitude ratio (Figure 3.2B), but increasing stiffness alone de-

creased or increased the magnitude ratio depending on the increase in stiffness and the frequency

of the input (Figure 3.2C). Increasing stiffness and damping by the same factor almost always de-

creased tremor (Figure 3.2D). Therefore, efforts to develop braces (orthoses) that suppress tremor

24



must discern between stiffening schemes that do and those that do not decrease tremor. That

said, effective braces could include properly designed increases in stiffness and/or inertia and do

not need to rely solely on damping [52]. Increasing stiffness and damping with no change in

the damping ratio (similar to co-contraction) also usually decreased tremor. Prior experiments

similarly found that voluntary or artificially elicited muscle contractions attenuate the severity of

tremor [2, 38].

4.2 Robustness of Principles

The principles presented are stable over the entire tremor band. Although the magnitude

ratios often decrease significantly within the tremor band, the relative sizes of the magnitude ratios

(comparing between DOF) remains relatively unaffected (Figure 3.1). Consequently, the principles

are reasonably independent of tremor frequency.

The principles are also robust against physiologically plausible changes in impedance pa-

rameters. Although the tremor magnitudes depend on impedance parameters (Principles 5-6), the

sensitivity analysis revealed that the principles were quite insensitive to relatively large changes

in inertia, damping, or stiffness (Figure 3.3A-C), including changes in the unknown off-diagonal

elements of the stiffness and damping matrices (Figure 3.3D) and changes in the constant of pro-

portionality used to calculate the damping matrix. While variations in posture can change which

DOF are coupled to each other, the principles are robust against the relatively large changes in

postures tested here (Figure 3.3E).

In addition, transmission delay does not appear to have a significant effect on the propaga-

tion pattern. Our model assumed the torques in all DOF had the same phase despite differences in

transmission delays which could affect the phase shifts between DOF and therefore the addition

of individual outputs. We performed a rough estimate of the effect of including transmission delay

on phase. Assuming that descending signals to wrist muscles travel 30 cm farther than signals to

shoulder muscles, and that signals travel at an average speed of 30-50 m/s (which corresponds to

short-latency finger reflex times of 30-50 ms round trip), the maximum phase shift is on the order

of 10-25°, depending on travel speed and the frequency of the tremor (4-12 Hz). In other words,

when adding phasors (Figure 3.1C), including transmission delays would rotate distal phasors by

only about 10-25° relative to proximal phasors. This shift is too small to dramatically change

25



the vector sum (and therefore the total magnitude ratio), especially since almost all DOF have a

dominant phasor that is much larger than the others, so rotating that phasor would not significantly

change the magnitude of the vector sum, no matter how large the phase shift is.

4.3 Limitations

As mentioned above, we deliberately chose a simple model to establish the most basic,

first-order effects. Our model is an LTI model of joint dynamics with realistic values of coupled

inertia, damping, and stiffness. To analyze tremor propagation, we used the tools of frequency

response, which focus on the steady-state response to sinusoidal inputs. We simulated tremor in a

variety of postures away from the limits of the limbs range of motion. Therefore, our model ignores

the following factors: non-sinusoidal torque inputs, non-linear dynamics, time-varying impedance

parameters, reflexes, gravity, kinetic tremor (tremor during movement), transient responses, and

effects that occur close to the end of the range of motion (e.g. when the arm is fully extended).

Future studies should characterize how these factors affect tremor propagation, especially the basic

principles established here.

Our simulations assumed equal input torques. For the multiple-input case, we assumed

the torque inputs in different DOF had equal amplitude, frequency, and phase. The amplitudes

are most likely not equal, but assuming equal amplitudes allows comparison on an equal footing.

The assumption of equal frequency is reasonable—there is no evidence of different frequencies

in different DOF. Likewise, the assumption of equal phase is reasonable since the effect of phase

delay between DOF is small because most DOF have a dominant phasor.

Finally, our principles are based on simulations and were not validated by comparison to

experimentally observed tremor propagation patterns. To the best of our knowledge, there do not

exist prior measurements of how tremor propagates throughout the upper limb. The availability

of in vivo measurements of tremor propagation patterns would allow one to identify elements of

actual tremor reproduced by our simple model (and therefore likely caused by one of the first-

order effects included in our model), and those that were not reproduced by our simple model (and

therefore likely caused by higher-order effects).
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4.4 Conclusion

Using a simple model of musculoskeletal dynamics, we have established six basic princi-

ples underlying the propagation of tremor in the upper limb. Our principles agree with prior experi-

mental studies investigating the effects of inertial loading and co-contraction on tremor magnitude.

The principles were shown to be stable over the frequency band of most tremors and quite robust

against many physiologically plausible variations in joint impedance. This work has been submit-

ted to a journal for publication and we expect that these principles will serve as a foundation for

more sophisticated models of tremor propagation and for the development of tremor-suppressing

devices.

27



REFERENCES

[1] Anouti, A., and Koller, W. C., 1995. “Tremor disorders. Diagnosis and management.” West-
ern journal of medicine, 162(6), p. 510. 1
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