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abstract

Periodic Points and Surfaces Given by Trace Maps

Kevin Gregory Johnston
Department of Mathematics, BYU

Master of Science

In this thesis, we consider the properties of diffeomorphisms of R3 called trace maps.
We begin by introducing the definition of the trace map. The group B3 acts by trace
maps on R3. The first two chapters deal with the action of a specific element of B3,
called αn. In particular, we study the fixed points of αn lying on a topological subspace
contained in R3, called T . We investigate the duality of the fixed points of the action of
αn, which will be defined later in the thesis.

Chapter 3 involves the study of the fixed points of an element called γnm, and it
generalizes the results of chapter 2. Chapter 4 involves a study of the period two points
of γnm.

Chapters 5-8 deal with surfaces and curves induced by trace maps, in a manner
described in chapter 5. Trace maps define surfaces, and we study the intersection of
those surfaces. In particular, we classify each such possible intersection.

Keywords: trace maps, diffeomorphism, fixed points, automorphisms
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Chapter 1. Preliminary Results

In chapters 1− 3 of this thesis, we examine curves of fixed points of diffeomorphisms of

R3 induced by automorphisms of a free group.

We start by noting that an element A ∈ SL(2,Z) with |trace(A)|> 2 determines a

hyperbolic automorphism of the torus, T2, which we view as the quotient R2/Z2. Identi-

fying a point (θ1, θ2) ∈ R2/Z2 with (−θ1,−θ2) ∈ R2/Z2, gives a surface

T2/((x, y) ∼ (−x,−y)) which is homeomorphic to a 2-sphere. The matrix A will induce

a map on the quotient space that is a diffeomorphism except at the singular points of the

space.

Define the three strand braid group B3 = 〈τ1, τ2 | τ1τ2τ1 = τ2τ1τ2〉. The group B3 acts

on R3 by diffeomorphisms called trace maps, which will be defined presently.

The Fricke Character is defined to be

E(x, y, z) := x2 + y2 + z2 − 2xyz. (1.1)

(This was introduced in [1]). It determines level surfaces that are smooth except in the

case of E−1(1) (see Proposition 1.3 and [2]).

(a) E−1(1) viewed in the unit cube. (b) expanded view of E−1(1).

Figure 1.1: Views of E−1(1).

The surface E−1(1) ∩ [−1, 1]3, shown in figure 1.1(b), is a "curvilinear tetrahedron"

that we call T , which we will identify with the quotient space T2/ ∼. We will show that
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T is invariant under the action of each element of the braid group B3. Thus the action

of an element α ∈ B3 restricted to T , yields a diffeomorphism of the surface T . We will

show that for each α ∈ B3, there is a corresponding element of SL(2,Z), whose action

on the torus T2 induces the same diffeomorphism of T , as does the action of α restricted

to T . We will analyze the fixed points of the action of the braid group on R3, and in so

doing, we analyze the fixed points of the action of the corresponding toral automorphism

on T . In particular, we study two families of elements αn, γnm ∈ B3, with parameters n

and m in the integers, which correspond respectively to the family of matrices

(
1 n

−n 1− n2

)
,

(
1 n

−m 1−mn

)
∈ SL(2,Z). (1.2)

The diffeomorphisms induced by the actions of αn and γnm are of particular interest

to us. In [2], Humphries studied the fixed points of the action of αn on R3. In chapter 2,

we will do the same, expanding on the results in [2]. The third chapter will focus on the

fixed points of the action of γnm on R3.

For the first family of maps, i.e., the ones corresponding to the action of αn, we will

require that n ∈ 2N. For the second family of maps, we allow m,n ∈ 2Z, so that this case

is a generalization of the first. The reason for doing so, is that restricting the parameters

to these values yields symmetry in the dynamics of the system that is not otherwise

present.

The elements αn and γnm act on R3 by diffeomorphisms, and they will both yield

curves of fixed points that will intersect T . This will follow by the implicit function

theorem, and will be proven later in the chapter (see Section 1.3). In chapters 1, 2, and

3 of this thesis, we will investigate characteristics of the curves of fixed points induced by

the actions of αn and γnm.
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1.1 Automorphisms of the Free Group on 2 generators

Let F2 denote the free group on two generators x1 and x2, and let σi ∈ Aut(F2), i = 1, 2,

be defined by

σ1(x1) = x1x2, σ1(x2) = x2,

σ2(x1) = x1, σ2(x2) = x−1
1 x2.

Proposition 1.1. The elements σ1 and σ2 satisfy the braid relation, σ1σ2σ1 = σ2σ1σ2.

Proof. We show the Proposition holds when we act on x1:

σ1σ2σ1(x1) = σ1σ2(x1x2) = σ1(x2) = x2,

while

σ2σ1σ2(x1) = σ2σ1(x1) = σ2(x1x2) = x2.

The case where we act on x2 is similar.

Now let the xi be represented by elements of SL(2,C). In general, 2 elements of

SL(2,C) will generate a free group of rank 2 [3]. Let

t1=trace(x1), t2=trace(x2), t12=trace(x1x2).

Let x = t1/2, let y = t2/2, and let z = t12/2. We use the standard trace identities for

2× 2 matrices:

tr(A−1) = tr(A), tr(I2) = 2, tr(AB) = tr(A) tr(B)− tr(AB−1),

to determine an action of σ1, σ2 on Z[x, y, z]. For example, σ1(x1) = x1x2 which gives the

action σ1(t1) = (t12) so that σ1(x) = z. Using our identities, we can determine where σ1

maps x, y and z:
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σ1(x) = z, σ1(y) = y, σ1(z) = 2yz − x;

σ2(x) = x, σ2(y) = 2xy − z, σ2(z) = y.

This action extends to an action on the ring Q[x, y, z]3, by acting on each polynomial

in a triple individually. This can be viewed as a map on R3, if we act on the triple

(x, y, z), and view x, y, and z as the usual coordinate functions for R3. Diffeomorphisms

of R3 created in this way are called trace maps. The action of σ1 and σ2 will be discussed

later in more depth, and we will also provide a matrix representation for this action (see

Lemma 2.1). It will follow from Proposition 1.1 that the group 〈σ1, σ2〉 satisfies the braid

relation. Thus there is a surjective homomorphism from B3 to 〈σ1, σ2〉 given by mapping

the generators τ1 and τ2 of B3 to σ1 and σ2 respectively. In fact, this homomorphism is

a representation of B3 in Aut(Q[x, y, z]). We define the action of B3 on R3 by defining

the action of an element α ∈ B3, as the action of its image in 〈σ1, σ2〉. We will later show

that the kernel of the action of B3 is 〈(τ1τ2)3〉. This subgroup is central in B3. We will

also show that the group 〈σ1, σ2〉 is antiisomorphic to PSL(2,Z) (see Theorem 5.2).

From the previous, each element of 〈σ1, σ2〉 acts on the triple (x, y, z), viewed either in

Q[x, y, z]3 or in R3, through diffeomorphisms induced by automorphisms of a free group,

as previously described. Additionally, each element in 〈σ1, σ2〉 acts on a triple (x, y, z)

through Nielsen transformations (see [4]). This will be discussed more fully in Lemma

5.1, where we will show that automorphisms and Nielsen transformations induce the same

action on the triple (x, y, z) ∈ Q[x, y, z]3. For the remainder of the paper, a left action of

α will refer to the action induced by automorphisms, and a right action of α will refer to

an action induced by Nielsen transformations.

Trace maps have been studied by various authors([6],[7],[2]). For example, in [10], the

Fibonnaci trace map (x, y, z) → (y, z, 2yz − x) is studied. While we will not investigate

such applications here, the main purpose for studying trace maps involves applications

to the study of quasicrystals. This is a natural application when one realizes that the
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substitutions involved in Nielsen transformations are closely analogous to the structure

of quasicrystals. Studying trace maps gives information on the quasicrystal analogous to

the Nielsen transformation that induces that trace map (see [10]).

Natural topics to analyze when working with trace maps are fixed points, period two

points([10],[2],[11]). The first four chapters of this thesis focus on fixed points and period

two points of trace maps.

Lemma 1.2. Every element of 〈σ1, σ2〉 fixes T .

Proof. We show that the statement of the lemma holds for σ1. The fact that it holds for

σ2 will follow similarly. We have:

σ1(x2 + y2 + z2 − 2xyz) = σ1(x)2 + σ1(y)2 + σ1(z)2 − 2σ1(x)σ1(y)σ1(z)

= z2 + y2 + (2yz − x)2 − 2(z)(y)(2yz − x)

= z2 + y2 + 4y2z2 − 4xyz + x2 − 4z2y2 + 2xyz

= x2 + y2 + z2 − 2xyz.

The σ2 case follows similarly. As the generators for the group fix the Fricke character, so

will each element of 〈σ1, σ2〉.

One of the characteristics of the surface T , is that any point on the surface can be

written as a triple (cos(2πθ1), cos(2πθ2)), cos(2π(θ1 + θ2))), for real numbers θ1, θ2, with

0 ≤ θ1, θ2 < 1. The action of σ1 on such a triple is as follows:

(cos(2πθ1), cos(2πθ2)), cos(2π(θ1 + θ2)))σ1

= (cos(2π(θ1 + θ2)), cos(2πθ2), 2 cos(2πθ1) cos(2π(θ1 + θ2))− cos(2πθ1)).

The first two components of the resulting triple clearly lie in the interval [−1, 1]. To show

the last component lies in the interval [−1, 1], consider the following:

2 cos(2πθ1) cos(2π(θ1 + θ2))− cos(2πθ1)

= cos(2π(−θ2) + cos(2π(θ1 + 2θ2))− cos(2πθ1) = cos(2π(θ1 + 2θ2)).
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This implies that the image of a point in the unit cube [−1, 1]3 lying on T , remains inside

the unit cube. The result follows similarly for σ2. This implies that T is invariant under

σ1 and σ2.

The previous lemma implies that T is invariant under the action of each element

of B3. We now show that T has singular points only at the corners of the curvilinear

tetrahedron, which are the points of the set

V = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}.

Proposition 1.3. The only singular points of T lie at the points of V .

Proof. Consider the gradient of the Fricke character, (2x− 2yz, 2y− 2xz, 2z− 2xy). The

singular points are the points where the gradient is 0 [5]. Thus finding the singular points

is equivalent to finding simultaneous solutions to the equations

2x− 2yz = 0,

2y − 2xz = 0,

2z − 2yx = 0,

x2 + y2 + z2 − 2xyz = 1.

The points in V are the only such solutions on T .

Let θ = (θ1, θ2)T , with 0 ≤ θ1, θ2 < 1. This defines coordinates on the torus T2 =

R2/Z2.

Define

Π: T2 → T , (θ1, θ2)T → (cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))). (1.3)

To show that the image of the map lies on T , note that for all real numbers θ1, θ2, with

6



0 ≤ θ1, θ2 < 1, we have:

cos(2πθ1)2 + cos(2πθ2)2 + cos(2π(θ1 + θ2)2 − 2 cos(2πθ1) cos(2πθ2) cos(2π(θ1 + θ2))

= cos(2πθ1)2 + cos(2πθ2)2 + (cos(2πθ1) cos(2πθ2)− sin(2πθ1) sin(2πθ2))2

− 2 cos(2πθ1) cos(2πθ2)(cos(2πθ1 cos(2π(θ2)− sin(2πθ1) sin(2πθ2))

= cos(2πθ1)2 + cos(2πθ2)2 − cos2(2πθ1) cos2(2πθ2) + sin2(2πθ1) sin2(2πθ2))

= cos2(2πθ1) sin2(2πθ2) + cos(2πθ2) + sin2(2πθ1) sin2(2πθ2))

= sin2(2πθ2) + cos2(2πθ2)

= 1.

We see that Π(θ1, θ2)T = Π(−(θ1, θ2)T ), and in fact, (θ1, θ2)T and −(θ1, θ2)T are the only

points identified under this map. This identifies T and T2/ ∼. In θ coordinates, the

preimages of the points of V take the form

V ′ = {(0, 0)T , (0, 1/2)T , (1/2, 0)T , (1/2, 1/2)T}.

It is easy to see that for each element p ∈ V ′, p = −p mod Z2. In fact, these are the

only such points on the torus where this relation holds. Taken together, this implies that

the map Π is a branched double cover, with V ′ as its branch set.

We now show the relation between a diffeomorphism on T induced by a hyperbolic

automorphism of the torus, and the restriction to T of the action of an element of B3.

Consider the following antihomomorphism:

Φ: B3 → SL(2,Z), τ1 →

(
1 1

0 1

)
, τ2 →

(
1 0

−1 1

)
. (1.4)

We note that τ1 and τ2 generate B3, while Φ(σ1), and Φ(σ2) generate SL(2,Z). Also,

Φ(σ1), and Φ(σ2) satisfy the braid relation, which implies that Φ does define an antiho-

momorphism. Since Φ is surjective, to every toral automorphism in SL(2,Z), there is
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a corresponding element of B3. We now show how the action of elements of B3 and its

image under Φ are related.

Proposition 1.4. The functions Π and Φ are related in the following manner. If α ∈ B3,

and θ = (θ1, θ2)T ∈ T2,

(Πθ)α = Π(Φ(α)θ). (1.5)

Proof. Now, Φ is an antihomomorphism, and σ1 and σ2 generate B3. Initially, we show

that the result holds with α = τ±1
1 , and α = τ±1

2 . Consider τ1. Recall that Φ(τ1) =(
1 1

0 1

)
. Thus,

(Π(θ))τ1 = (cos(2π(θ1 + θ2), cos(2π(θ2)), 2 cos(2πθ2) cos(2π(θ1 + θ2))− cos(2πθ1)),

and

Π(Φ(τ1))(θ)) = cos(2π(θ1 + θ2)), cos(2πθ2), cos(2π(θ1 + 2θ2)).

The fact that the two triples are equal follows from a simple application of trigonometric

identities. The rest of the cases follow similarly.

Now, let α ∈ B3. Assume the result holds for α. We now induct on the length of α

as a word in τ±1
i . Let α′ = ατ1. By hypothesis,

(Πθ)α = Π(Φ(α)(θ)).

Next, we have

(Πθ)α′ = Π(Φ(α)(θ))τ1 = Π(Φ(τ1)(Φ(α)θ)) = Π(Φ(α′)θ).

This proves the result when α′ = ασ1. Showing the result is true for the remaining cases,

α′ = ασ±1
i , i = 1, 2, follows similarly. This completes the induction.

8



Now the point of the last result is this: Φ is an antihomomorphism from B3 to

SL(2,Z), so the following holds:

Φ(τn1 τ
n
2 ) =

(
1 0

−1 1

)n(
1 1

0 1

)n

=

(
1 n

−n 1− n2

)
. (1.6)

Similarly,

Φ(τn1 τ
m
2 ) =

(
1 m

−n 1−mn

)
. (1.7)

Thus studying the diffeomorphisms of T induced by the matrices given in equation (1.2),

reduces to understanding the action of an element in B3 that corresponds to them. By the

previous two equations, such elements can be chosen to be τn1 τn2 , and τn1 τm2 respectively.

Thus we will let αn = τn1 τ
n
2 , and γnm = τn1 τ

m
2 . The action of αn on R3 is given by the

diffeomorphism σn1σ
n
2 , and the action of γnm is given by the diffeomorphism σn1σ

m
2 .

In addition to the previous restrictions given on m and n, namely that for the dif-

feomorphisms corresponding to αn, n must be an even integer greater than 0, and for

the second case n,m are even integers, we will add the following: for the first case, let

n > 2, and for the second case, let |m|, |n| > 2. This guarantees that the matrices given

by Φ(αn) and Φ(γnm) are hyperbolic, meaning that the absolute value of their traces is

greater than 2.

We conclude the section with a classification of fixed points. We will prove later, (see

Proposition 1.8) that the action of any α ∈ B3 permutes the elements of V . Thus we will

focus on the fixed points of T \V . If α ∈ B3 acts on T \V , there are two possible types

of fixed points, for if Π(θ) ∈ T \V is fixed by αn, then by (1.5) we have Φ(α)(θ) = ±θ.

We call the fixed point a preserving fixed point if Φ(α)(θ) = θ. Otherwise, we call it a

reversing fixed point. Additionally, we will be interested in a concept called duality. We

will shortly prove that each fixed point of the action of an element α ∈ B3 restricted to

T lies on a curve of points fixed by the action of α on R3. We define two fixed points on

T to be dual, if they are joined by a smooth curve of fixed points.
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1.2 Chebyshev Polynomials

The analysis of the actions of αn and γnm, which are given by the diffeomorphisms σn1σn2 ,

and σn1σm2 , depends heavily on the use of Chebyshev polynomials. We will present their

definition and some of their basic properties.

The following is the recursive definition for the Chebyshev polynomial of the second

kind, which we designate as U-Type polynomials, or as Un(x):

U−1(x) = 0, U0(x) = 1, U1(x) = 2x, Un(x) = 2xUn−1(x)− Un−2(x).

The U-Type Chebyshev polynomials have the following properties:

Un(cos(θ)) =
sin((n+ 1)θ)

sin(θ)
, (1.8)

Um(−x) = (−1)mUm(x), (1.9)

Um(x)2 − 2xUm−1(x)Um(x) + Um−1(x)2 = 1, (1.10)

U2m(x) = Um(x)2 − Um−1(x)2, (1.11)

U2m−1(x) = 2Um(x)Um−1(x)− 2xUm−1(x)2, (1.12)

Um(−1) = (−1)m(m+ 1). (1.13)

We will prove equation (1.9) in this thesis (see Lemma 2.15), the rest of the proofs may

be found in [2].

Additionally, we can extend the U-Type Chebyshev polynomials to the negative inte-

gers by:

U−n(x) = −Un−2(x), (1.14)

see [8].

While we will deal mainly with the polynomials Un, we will also have occasion to use

Chebyshev polynomials of the first kind, designated as T-Type polynomials, or as Tn(x).

These are defined recursively in the following way:
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T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x). (1.15)

The Chebyshev T-Type polynomials have the property that

Tn(cos(x)) = cos(nx). (1.16)

Again, these can be extended to the negative integers by:

T−n(x) = Tn(x). (1.17)

The U-Type Chebyshev polynomials and the T-Type Chebyshev polynomials are related

by the following equation:

Tn(x) =
1

2
(Un(x)− Un−2(x)). (1.18)

1.3 Curves of Fixed Points

Several of the following proofs use ideas from [9].

Lemma 1.5. At any fixed point p ∈ T of the action of some α ∈ B3 restricted to T ,

the eigenvalues of the Jacobian of α at p are {1,±λ,± 1
λ
}, where λ and 1

λ
are the same

eigenvalues as the matrix Φ(α).

Proof. It is easy to note that E ◦ σi(x, y, z) = E(x, y, z), and since this holds for the

generators, it must hold for each element in 〈σ1, σ2〉. This yields the following by the

chain rule.

DE(α(x, y, z))Dα(x, y, z) = DE(x, y, z).

If p is a fixed point of α this reduces to saying

∇E(p)Dα(p) = ∇E(p).
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Thus, 1 is an eigenvalue of Dα(x, y, z)T with eigenvector ∇E(x, y, z). Hence 1 is an eigen-

value of Dα(x, y, z). Now T is invariant under α, so that the corresponding eigenvector

of Dα(p) must point out of the plane tangent to T at (p). The other two eigenvalues

are determined by the action of α restricted to T , because T is invariant under α. But

this action is given by the induced action of the matrix Φ(α). Thus the eigenvalues of

Dα(p) are the eigenvalues of Φ(α) up to sign, as the Jacobian of a linear transformation

is itself. The signs come from noting that if p is a reversing fixed point, the directions of

the eigenvectors are reversed, so the eigenvalues at a reversing fixed point are the negative

eigenvalues of Φ(α).

This leads to the following theorem (see [10]).

Theorem 1.6. Let α ∈ 〈σ1, σ2〉, such that Φ(α) is a hyperbolic matrix. Let p be a fixed

point on T such that p 6∈ V . Then there is a smooth curve of fixed points of the action of

α on R3 such that p is on this curve.

Proof. We will apply the implicit function theorem (see [12]). Let p a fixed point of the

action of α restricted to T , with p not in V . Choose α so that Φ(α) is a hyperbolic

matrix. In this case, we note that the eigenvalues of α at the point p are {1,±λ,± 1
λ
},

where the last two eigenvalues are plus or minus the eigenvalues of Φ(α), and λ does not

lie on the unit circle.

Locally, T is an embedded submanifold in a neighborhood of p. Additionally, the

level sets of the Fricke character, E(x, y, z), locally foliate the space [2]. Thus we can

change the coordinates in a neighborhood of p so that the first coordinate is given by

E(x, y, z), and the last two correspond to a location on a level set of E. Call this

new set of coordinates (E, u1, u2). Now, there is a diffeomorphism corresponding to α

in the new coordinate system, which we will call A : R3 → R3, where A(E, u1, u2) =

(A1(E, u1, u2), A2(E, u1, u2), A3(E, u1, u2)), locally. Now, the eigenvalues of the Jacobian

are invariant under a change of basis, thus A has eigenvalues {1,±λ,± 1
λ
}. Also, note

that the eigenvalue 1 corresponds to an eigenvector that is not in the u1−u2 plane. This

implies that the matrix
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(
∂A2

∂u1

∂A2

∂u2
∂A3

∂u2

∂A3

∂u2

)
− I2,

is invertible at p, because the projection of the action of A onto the u1 − u2 plane

yields a map whose Jacobian has eigenvalues {±λ,± 1
λ
}. Define f : R3 → R2 to be

f = π ◦ (A− Id), where π is projection onto the second and third coordinates. Then, as

p is a fixed point of A, f(p) = 0. In the new set of coordinates, let p = (p1, p2, p3). By

the implicit function theorem, there exists a neighborhood U in R containing p1, and a

neighborhood V in R2, containing (p2, p3), and a smooth function g : U → V , such that

{(x,g(x))|x ∈ U} = {(x,y) ∈ U × V | f(x,y) = 0}. As this is precisely the set of fixed

points in U × V , we see that p lies on a curve of fixed points. The implicit function

theorem implies that this curve is smooth. Finally, as the results of the implicit function

thoerem are not affected by a change of coordinates, we have proven the theorem.

We now show that the diffeomorphisms 〈σ1, σ2〉, are volume preserving.

For α ∈ 〈σ1, σ2〉, denote the Jacobian of α by Jα.

Proposition 1.7. If α ∈ 〈σ1, σ2〉, then α is volume preserving.

Proof. By the chain rule, it suffices to show that det(Jσ1) = det(Jσ2) = 1. Note that

Jσ1 =

 0 0 1

0 1 0

−1 2z 2y

 .

This clearly has determinant 1. Similarly, this holds for σ2.

This implies that B3 acts on R3 through volume preserving diffeomorphisms.

Now, we want to determine the properties of the action of α ∈ 〈σ1, σ2〉 on the elements

of V . This will follow a proof in [9].

Proposition 1.8. Let α ∈ 〈σ1, σ2〉. Then the action of α permutes the elements of V .
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Proof. Previously, we had E ◦ σi(x, y, z) = E(x, y, z), and since this holds for the gen-

erators, it must hold for each element in 〈σ1, σ2〉. Thus by the chain rule, we have the

following:

DE(α(x, y, z))Dα(x, y, z) = DE(x, y, z).

Since E : R3 → R, we have the following:

DαT (x, y, z)∇E(α(x, y, z)) = ∇(x, y, z).

|Dα| = 1, because α is volume preserving. Thus, if (x, y, z) is a critical point of E(x, y, z),

so is it’s image.

14



Chapter 2. The Fixed Points of the action

of αn and their Duality

We begin with the analysis of the diffeomorphisms induced by the element, αn = τn1 τ
n
2 ∈

B3. We give a simple form for the action of αn on R3 using Chebyshev polynomials.

Recall that the action of αn is given by the diffeomorphism σn1σ
n
2 . The following action

will be of primary importance for the remainder of this chapter. Several of the following

theorems come from [2].

Lemma 2.1. If k ∈ Z, then

xy
z

 σk1 =

 0 0 1

0 1 0

−1 0 2y


kxy

z

,

xy
z

 σk2 =

1 0 0

0 2x −1

0 1 0


kxy

z

.

Denote the above 3× 3 matrices by M1 = M1(y) and M2 = M2(x). Then we obtain

Mk
1 =

−Uk−2(y) 0 Uk−1(y)

0 1 0

−Uk−1(y) 0 Uk(y)

 ,

Mk
2 =

1 0 0

0 Uk(x) −Uk−1(x)

0 Uk−1(x) −Uk−2(x)

.

Proof. The first follows from the action of σi. We prove the second using induction. We

begin with M1. For k = 1, we have

M1 =

 0 0 1

0 1 0

−1 0 2y

 =

−U1−2(y) 0 U1−1(y)

0 1 0

−U1−1(y) 0 U1(y)

 .
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Thus the initial case holds. Assume now, that

Mk
1 =

−Uk−2(y) 0 Uk−1(y)

0 1 0

−Uk−1(y) 0 Uk(y)

 .

Then

Mk
1M1 =

−Uk−2(y) 0 Uk−1(y)

0 1 0

−Uk−1(y) 0 Uk(y)


 0 0 1

0 1 0

−1 0 2y


=

−Uk−1(y) 0 −Uk−2(y) + 2yUk−1(y)

0 1 0

−Uk 0 −Uk−1 + 2yUk


=

−Uk−1(y) 0 Uk(y)

0 1 0

−Uk(y) 0 Uk+1(y)

 = Mk+1
1 ,

where the penultimate equality follows from (1.2). This completes the induction.

From the previous lemma, it is relatively simple to derive the following.

Lemma 2.2. For all n ∈ N and (x, y, z)T ∈ R3 we have

xy
z

αn =

 −xUn−2(y) + zUn−1(y)

Un(x∗)y − Un−1(x∗)[−xUn−1(y) + zUn(y)]

Un−1(x∗)y − Un−2(x∗)[−xUn−1(y) + zUn(y)]

 . (2.1)

Where x∗ = −xUn−2(y) + zUn−1(y).

In particular, if (x, y, z)T ∈ R3 is a fixed point of αm and Un−1(y) 6= 0 then

z =
x(1 + Un−2(y))

Un−1(y)
. (2.2)

Proof. To prove the first, let k = n in Lemma 2.1. Multiplying

xy
z

 by Mn
1 (y) gives the

matrix −xUn−2(y) + zUn−1(y)

y

−xUn−1 + zUk(y)

 .
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Multiplying the previous matrix by Mn
2 (x∗) gives the matrix

 −xUn−2(y) + zUn−1(y)

Un(x∗)y − Un−1(x∗)[−xUn−1(y) + zUn(y)]

Un−1(x∗)y − Un−2(x∗)[−xUn−1(y) + zUn(y)]

 .

The second statement follows by noting that if (x, y, z) is a fixed point, x∗ = x.

Solving x∗ = x for z yields the formula for z.

From this presentation of the diffeomorphism induced by αn, we can derive certain

facts about the fixed points of αn. In [2], the authors determined that there were three

possibilities for the curves of fixed points in R3. These possibilities are that the curves

are either straight lines, the curves lie in the planes x = ±y, or the curves do not intersect

the planes x = ±y. We say a few words about the first two cases, but focus mainly on

the third and most complicated case for the remainder of this chapter.

2.1 The Straight Line Cases.

In this section, we consider curves of fixed points that are vertical lines. The main result

of this section is that there is a vertical line of fixed points running through most fixed

points lying on T whose y coordinate satisfy Un−1(y) = 0.

For anyN ∈ N, letKN ⊂ SL(2,Z) denote the kernel of the homomorphism SL(2,Z)→

SL(2,Z/NZ). Note, this kernel is the set of matrices

(
a b

c d

)
with the property that a

and b are equivalent to 1 mod n, and that b and c are equivalent to 0 mod n. So we

have Φ(αn) =

(
1 n

−n 1− n2

)
∈ Kn.

Proposition 2.3. For any k, m ∈ Z, and any β ∈ B3 such that Φ(β) ∈ Kn, Π(k/n,m/n)T

is a preserving fixed point of β. In Particular, this is the case for αn.

Proof. We use (1.5). Note that Φ(β)(θ) can be written in the form

(
a b

c d

)(
k/n

m/n

)
,
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where a, d ≡ 1 mod (n), and b, c ≡ 0 mod (n). Thus we can write a = a1n+ 1, b = b1n,

etc. Substituting into the previous equation yields

(
(a1n+ 1) k

n
+ b1n

m
n

(c1n) k
n

+ (d1n+ 1)m
n

)
=

(
a1k = k

n
+ b1n

c1k + d1m+ m
n

)
=

(
k
n
m
n

)
mod Z2.

Thus for θ =

(
k/n

m/n

)
, and for β ∈ Kn, we have that (Πθ)β = (Πθ), by equation (1.5).

Also, Φ(β)(θ) = θ, which implies that this θ is a preserving fixed point for any β ∈ Kn,

and thus for αn.

We will now show that for most integer values of k, m, and n, the vertical line

p(z) =

(
cos

(
2πk

n

)
, cos

(
2πm

n

)
, z

)
(2.3)

is a line of fixed points of the action of αn, and is not tangential to T .

Proposition 2.4. Let n, j, and k ∈ N, with j,k 6≡ 0 mod n
2
, and n even. Let a =

cos(2πj
n

).

(i) We have Mn
1 (a) = Mn

2 (a) = I3.

(ii) If α ∈ 〈σn1 , σn2 〉 and v =
(
cos
(

2πj
n

)
, cos

(
2πk
n

)
, z
)T
, then (v)α = v. In

particular, we have (v)αn = v and the vertical line p(z) =
(
cos
(

2πj
n

)
, cos

(
2πk
n

)
, z
)T

is a curve of fixed points of αn.

(iii) If j ≡ 0 mod n
2
or k ≡ 0 mod n

2
, then

(
cos
(

2πj
n

)
, cos

(
2πk
n

)
, z
)T is not a curve of

fixed points of αn.

Proof. (i) From Lemma 2.2, we have

Mn
1 (a) =

−Un−2(a) 0 Un−1(a)

0 1 0

−Un−1(a) 0 Un(a)

 .
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Using (1.8), we have, as j 6≡ 0 mod n
2
implies that sin(2πj

n
) 6= 0, that

Un

(
cos

(
2πj

n

))
= sin

(
(n+ 1)2πj

n

)
/ sin

(
2πj

n

)
= 1,

Un−1

(
cos

(
2πj

n

))
= sin

(
2nπj

n

)
/ sin

(
2πj

n

)
= 0,

Un−2

(
cos

(
2πj

n

))
= sin

(
(n− 1)2πj

n

)
/ sin

(
2πj

n

)
= −1.

This gives Mn
1 (a) = I3. The proof that Mn

2 (a) = I3 is similar.

(ii) From Lemma 2.2 and (i), we have vσn1 = Mn
1

(
cos
(

2πk
n

))
v = I3v = v, and vσn2 =

Mn
2 (a) = I3v = v. This allows us to conclude that

vαn = (vσn1 )σn2 = vσn2 = v.

(iii) First we do the case where k = n
2
. Here we have v =

(
cos
(

2πj
n

)
,−1, z

)T
, which

from Lemma 2.2 implies that the first coordinate of vαn is

− cos

(
2πj

n

)
Un−2(−1) + Un−1(−1)z = −(n− 1) cos

(
2πj

n

)
− nz 6= cos

(
2πj

n

)
.

Note that we used equation (1.9) for the second equality.

If k = 0, then v =
(
cos
(

2πj
n

)
, 1, z

)T , and the first coordinate of vαn is

nz − (n− 1) cos

(
2πj

n

)
6= cos

(
2πj

n

)
.

The cases where j ≡ 0, n
2

mod n are similar.

The line p(z) meets T at another point which must be Π(k/n,−m/n)T . So these two

points are dual. Now, the solutions of Un−1(y) = 0 are cos
(

2πj
2n

)
. However, it is easy to

see that a fixed point (x, y, z) ∈ T with Un−1(y) = 0 can only be fixed by the action of

αn if j is even. Thus, the fixed points with y coordinate given by cos
(

2πj
n

)
, where j 6= 0

mod n
2
are precisely the fixed points where Un−1(y) is 0.
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Lemma 2.5. If (x, y, z) is a fixed point of the action of αn lying on T , and y = cos
(

2πj
n

)
for some integer j, then x = cos

(
2πk
n

)
for some integer k.

Proof. The θ coordinates of such a fixed point are given by (θ1,
j
n
)T . If (x, y, z) is such a

fixed point, then (θ1,
j
n
)T is fixed by Φ(αn). We have

(
1 n

−n 1− n2

)(
θ1
j
n

)
=

(
θ1 + j

−nθ1 + j
n
− nj

)
.

But the only way (θ1 + j,−nθ1 + j
n
− nj)T = ±(θ1,

j
n
)T mod Z2, is if θ1 = k

n
for some

integer k.

This implies that the points discussed in this section are the only fixed points of the

action of αn not covered by Lemma 2.2.

Proposition 2.6. If n is a multiple of 4, then the x, y, and z axes are fixed by αn.

Proof. We note that

(0, 0, z)σε4i = (0, 0, z),

for i = 1, 2 and ε = ±1. This holds for each such triple representing an element of an

axis.

Thus when n is a multiple of 4, the x, y, and z axes are a line of fixed points that run

through the axial points

{{(1, 0, 0), (−1, 0, 0)}, {(0, 1, 0), (0,−1, 0)}, {(0, 0, 1), (0, 0,−1)}},

making these pairs of points dual in this case (see [2], Lemma 2.4).

2.2 The x = ±y case

We will describe situation where the curves of fixed points are in the planes x = y. The

situation where they lie in the x = −y plane follows similarly. We note that some of

the straight line curves lie in the plane x = y, thus some of these curves have already
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been discussed. It can be shown that any curve intersecting the x = y plane is completely

contained in this plane ([2], see Lemma 3.2). We also study the points of V in this section,

as they lie in the planes x = ±y.

Lemma 2.7. Any fixed point not on one of the vertical lines discussed in the previous

section, must lie on a curve with equation

(x, x, x(1 + Un−2(x))/Un−1(x)). (2.4)

Proof. By equation (2.2), such a point must take the form

(x, y, x(1 + Un−2(y))/Un−1(y)),

and since it lies in the plane y = x, it must take the above form.

Theorem 2.8. Let γ+(x) = (x, x, x(1 + Un−2(x))/Un−1(x)), a curve in R3. The curve

γ+(x) is fixed by αn.

Proof. We have the following:

Mn
1

 x

x

x(1 + Un−2(x))/Un−1(x)

 =

 x

x

−xUn−1(x) + xUnx(1 + Un−2(x))/Un−1(x)

 .

Substituting for Un(x) by the definition of the U-Type Chebyshev polynomial yields the

following:

 x

x

2x2 + (−xU2
n−1(x) + 2x2Un−1(x)Un−2(x)− xUn−2(x)− xU2

n−2(x))/Un−1(x)

 .

Note that

2x2 + (−xU2
n−1(x) + 2x2Un−1(x)Un−2(x)− xUn−2(x)− xU2

n−2(x))/Un− 1(x)
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= 2x2 + [x(−U2
n−1(x) + 2xUn−1(x)Un−2(x)− Un−2(x)2)− xUn−2(x)]/Un−1(x)

= 2x2 + (−x− xUn−2(x))/Un−1(x)

= 2x2 − x(1 + Un−2(x))/Un−1(x),

where the last equality follows by equation (1.10). Next,

Mn
2

 x

x

2x2 − x(1 + Un−2(x))/Un−1(x)

 =

 x

x(1 + Un−2(x)− 2xUn−1(x) + Un(x)

xUn−1(x) + [xUn−2(x)(1 + Un−2(x)− 2xUn−1(x)]/Un−1(x)

 .

simplifying the above using equation (1.10) yields γ+(x)T . There is a similar result in the

x = −y plane.

Figure 2.1 shows the fixed curves of α20 in the x = y plane. The blue lines are the

fixed curves, the red curve is the curve z = 2x2−1, and the yellow curve is the line z = 1.

Solving E(x, x, z) = 1 for z yields the solutions 1 and 2x2 − 1.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2.1: In blue: fixed curves of α20 in the x = y plane. In red and yellow: the
intersection of T and the x = y plane.
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We now discuss the points in V . Recall that these were the corners of the tetrahedron

which in Cartesian coordinates take the form

V = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}.

Proposition 2.9. Each element of V is fixed by any α ∈ 〈σ2
1, σ

2
2〉. The fixed curve that

intersects each element of V does not enter the convex hull of T .

Proof. We have that (x, y, z)σ2
1 = (−x+2yz, y,−2xy+(−1+4y2)z). We see by evaluating

at each point of V , that σ2
1 fixes V . The σ2 case follows similarly. The second part of

this proof is given in [2] in Lemma 2.11.

A consequence of the previous proposition is that no point in V is dual to a fixed

point of the action of αn restricted to T .

2.3 Fixed Curves not Intersecting the Planes x = ±y

We now look at the fixed points of the action of αn with Un−1(y) 6= 0. We will give

explicit coordinates for these points dependent only on the parameter n.

In this section, we study the fixed points of the action of αn using equations (2.1) and

(2.2). Let

Y = Un(x∗)y − Un−1(x∗)[−xUn−1y + zUn(y)];

Z = Un−1(x∗)y − Un−2(x∗)[−xUn−1(y) + zUn(y)].

We consider the simultaneous solutions to the two equations

Y − y = 0,

Z − z = 0,

where z = x(1 + Un−2(y))/Un−1(y). These will yield the x and y coordinates of the fixed

points of the action of αn, with Un−1(y) 6= 0. Now, to find the simultaneous solutions to

23



the above equations, it suffices to find the greatest common denominator of Y − y and

Z − z. We will call this Gn(x, y). For the rest of this chapter, n will be a multiple of 2,

and m = n/2. We require this restriction because if n is odd, there will be no symmetry

in the set of fixed curves lying on T . This will be explored further in the next section.

Theorem 2.10. Let n a multiple of 2, and let m = n/2, then

Gn(x, y) = Um−2(y)Um−1(x)(1− x2)y + Um−1(x)Um−1(y)(x2 − y2) (2.5)

+ Um−1(y)Um−2(x)(y2 − 1)x.

Proof. See [2] Proposition 4.1. Alternatively, apply the formula for the γnm case, and let

n = m. (see equation (3.2)).

The zeroes of Gn(x, y) give the set of fixed curves of the action of αn, projected to

the x − y plane. We can explicitly find the points of intersection in the x − y plane of

Gn(x, y) and T (where we have substituted z = x(1 +Un−2(y))/Un−1(y))). This is shown

in the following few theorems.

Theorem 2.11. For (x, y, z) ∈ T , with (x, y, z) fixed under the action of αn, write the

element (x, y, z) in terms of θ1 and θ2. That is,

(x, y, z) = (cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))).

Then θ1 and θ2 must satisfy one of the following relations. Given k ∈ Z

θ2 =
k

n
, (2.6)

θ1 = −n
2
θ2 +

k

2
. (2.7)

Proof. If (x, y, z) is a fixed point on T , then we know from Lemma 2.2 that z =

x(1 + Un−2(y))/Un−1(y) and by equation (1.3) we have that z = cos(2π(θ1 + θ2)). We

rewrite the first equation in terms of θ1 and θ2, and then use equation (1.8) to rewrite

the first equation as
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z =
cos(2πθ1)

(
1 + sin(2π(n−1)θ2)

sin(2πθ2)

)
sin(2πnθ2)
sin(2πθ2)

.

This gives us the relation, after simplification,

cos(2πθ1)(sin(2πθ2) + sin(2π(n− 1)θ2))

sin(2πnθ2)
= cos(2π(θ1 + θ2)).

Multiplying by the denominator yields the following:

cos(2πθ1) sin(2πθ2) + (sin(2πnθ2)(cos(2πθ2)− cos(2πnθ2) sin(2πθ2)) cos(2πθ1)

−(cos(2πθ1) cos(2πθ2)− sin(2πθ1) sin(2πθ2)) sin(2πnθ2) = 0.

Simplifying gives

sin(2πθ2)(cos(2πθ1)− cos(2πnθ2) cos(2πθ1) + sin(2πθ1) sin(2πnθ2)) = 0.

A final cancellation yields

sin(2πθ2)(cos(2π(nθ2 + θ1))− cos(2πθ1)) = 0.

This yields the solutions

θ2 =
k

n
,

θ1 = −n
2
θ2 +

k

2
,

for k ∈ Z. Note that, if k = 0 mod n
2
, sin(2πnθ2) is 0, which makes the initial equation

in the previous proof undefined. However, we have previously shown, in Section 2.1, that

such k values yield preserving fixed points, although they do not lie on a straight line of

fixed points. Thus there need be no restriction on the θ2 values.
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We note that letting θ2 = k
n
, yields only the previously shown solutions for the y value

of the fixed point. That is, we obtain only the points previously discussed in Section 2.1.

We will prove later, (see Theorem (3.8)) that in the case where θ1 = −n
2
θ2 + k

2
,

substituting this relation into Gn(x, y) gives the equation

(−1)km−k+1

2
cos2(2πθ2) sin(2πnθ2) sin(2π(m2 − 1)θ2) = 0. (2.8)

It is easy to see the solutions of this equation take one of the forms:

θ2 =
j

2n
,

θ2 =
j

2(m2 − 1)
, j ∈ Z.

These correspond with the y values:

y = cos
(πj
n

)
, (2.9)

y = cos
( πj

m2 − 1

)
, j ∈ Z. (2.10)

This gives a set containing all of the x and y coordinates of solutions of the intersection of

T and the Gn(x, y). There are several of these solutions that are not actually intersection

points. This occurs because several of them lie on lines where the z value diverges. To

determine which of these should be eliminated from our set of solutions, we need the

following.

Theorem 2.12. Let k ∈ Z:

(i) limy→cos( kπ
n

)
x(1+Un−2(y))

Un−1(y)
=∞ for k odd, and x 6= 0.

(ii) limy→cos( kπ
n

)
x(1+Un−2(y))

Un−1(y)
is finite for k even.
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Proof. In the unit square, we can write x(1+Un−2(y))
Un−1(y)

as

x
(

1 + sin(2π(n−1)θ2)
sin(2πθ2)

)
sin(2πnθ2)
sin(2πθ2)

.

This simplifies to the following:

x(sin(2πθ2) + sin(2π(n− 1)θ2))

sin(2πnθ2)
.

We can expand this into the following:

x(sin(2πθ2) + sin(2πnθ2) cos(2πθ2)− sin(2πθ2) cos(2πnθ2))

sin(2πnθ2)
.

So our problem reduces to finding

lim
θ2→ k

2n

x(sin(2πθ2) + sin(2πnθ2) cos(2πθ2)− sin(2πθ2) cos(2πnθ2))

sin(2πnθ2)
.

Now, if k is odd, the top part of the fraction is 2x and the bottom goes to zero, so this

diverges unless x = 0. If k is even, we have a 0/0 limit, and apply l’Hopital’s rule to find

the limit. After taking derivatives, we take the limit of the function

x(cos(2πθ2) + n cos(2πnθ2) cos(2πθ2)− (cos(2πθ2) cos(2πnθ2))

n cos(2πnθ2)

−sin(2πnθ2) sin(2πθ2) + n sin(2πθ2) sin(2πnθ2)

n cos(2πnθ2)
.

Substituting gives

x
(
cos
(
kπ
n

)
+ n cos

(
kπ
n

)
− cos

(
kπ
n

))
n cos(kπ

n
)

=
x
(
n cos

(
kπ
n

))
n

= cos

(
kπ

n

)
,

which is finite.

This implies that the solutions that we obtain from equation (2.8) that have y =

cos(kπ
n

) for k odd are not fixed points of the action of αn restricted to T . If k is even, we
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again obtain the straight line fixed curves discussed in Section 2.1.

We now determine the type (preserving or reversing) of the remaining fixed points.

Lemma 2.13. The points given by

(
cos

(
−2πnj

4(m2 − 1)
− πk

)
, cos

(
2πj

2(m2 − 1)

)
, cos

(
−2πnj

4(m2 − 1)
− πk +

2πj

2(m2 − 1)

))

are reversing fixed points of the action of αn.

Proof. Since the points given by the coordinates above lie on T , we know that (θ1, θ2)T =

±
(

−nj
4(m2−1)

− k
2
, j

2(m2−1)

)T
are the points on the torus that are mapped to the fixed point

(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2)). We now show that the positive choice for (θ1, θ2)T

is a reversing fixed point for any choices of j and k in the integers, the negative choice

follows identically. Therefore, we have that:

(
1 n

−n 1− n2

)(
−nj

4(m2−1)
− k

2
j

2(m2−1)

)
=

(
−nj

4(m2−1)
− k

2
+ nj

2(m2−1)
n2j

4(m2−1)
+ nk

2
+ j−jn2

(2(m2−1)

)
=

(
nj

4(m2−1)
+ k

2
−j

2(m2−1)

)
mod Z2.

We have one more case to consider. On the boundary of the unit square, we have

exceptions to Proposition 2.4. These are precisely the cases where j = 0 mod n
2
. Hence,

they are not dual as straight line curves. We require the following lemma to identify these

points. (see equation 1.9)

Lemma 2.14. For m ∈ N, Um(1) = m+ 1.

Proof. Now, U0(1) = 1 by equation (1.2). Assume the hypothesis holds for the natural

numbers up tom. Thus, Um = m+1, and Um−1(1) = m. Um+1(1) = 2(m+1)−m = m+2.

This completes the proof.

We also require the next lemma.
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Lemma 2.15. For m ∈ N, Um(−x) = (−1)mUm(x).

Proof. This holds for U0 by equation (1.2). Assume it holds for the natural numbers

up to m. Then Um(−x) = (−1)mUm(x), and Um−1(−x) = (−1)m−1Um−1(x).. There-

fore Um+1(x) = −2x(−1)mUm(x)− (−1)m−1Um−1(x) = (−1)m+1(2xUm(x)− Um−1(x)) =

(−1)m+1Um+1(x). This completes the proof.

We note that the cases where j = 0 mod n
2
are precisely the cases when θ2 = 0 or

θ2 = 1/2. We now find the coordinates of the fixed points in this case.

Theorem 2.16. If θ2 = n
2
, and y = cos(2πθ2), then Equation 2.5 reduces to

±(x2 − 1)Um−1(x). The roots of this equation are ±1, and cos(2πθ1), where θ1 = k
n
, for

0 < k < m. If θ2 = 0, then reducing the equation, we again have

±(x2 − 1)Um−1(x).

Proof. This follows immediately from Lemmas 2.14, 2.15, and Equation (1.8).

Theorem 2.16 completes our characterization of the set of intersections of fixed curves

of αn, and T . We summarize the results of the previous section with the following

theorem.

Theorem 2.17. A point (x, y, z) lies at the intersection of a fixed curve of αn and T if

and only if its x and y coordinates take one of the following forms:

x = ±1, y = cos

(
πk

m

)
, 0 ≤ k ≤ m;

x = cos

(
πk

m

)
, y = ±1, 0 ≤ k ≤ m;

x = cos

(
2πj

n

)
, y = cos

(
2πk

n

)
, k, j ∈ N, k, j 6= 0 mod

n

2
;

x = cos

(
πmj

m2 − 1
− πk

)
, y = cos

(
πj

m2 − 1

)
, k, j ∈ Z.

For these fixed points, the first, second, and third set are preserving, and the fourth

set is reversing. The fourth set has the property that the z coordinate is given by z =

x(1 + Un−2(y))/Un−1(y), and the third set lies on a straight line of fixed points.
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When discussing duality, we deal only with the fixed points of the action of αn that

do not lie in V . The points in V are precisely the points with x and y coordinates on the

corners of the unit square, with z coordinate (x(1 + Un−2(y))/Un−1(y). They have been

dealt with previously.

2.4 Dual Points

We are now in a position to determine which fixed points of the action of αn, restricted

to T \V , are dual. We have already given the duality of almost all of the preserving fixed

points. We now determine the duality of the reversing fixed points, and the remaining

preserving fixed points. The following lemma simplifies the process.

Lemma 2.18. If αn = τn1 τ
n
2 , then there is an 8 way symmetry of the resulting fixed

curves. Precisely, they are symmetric across the x and y axes, and across y = ±x. If n

is a multiple of 2, then T , given by the equation E(x, y, z) = x2 + y2 + z2− 2xyz− 1, and

projected to the x− y plane using the substitution z = x(1+Un−2(y))
Un−1(y)

, is symmetric over the

x and y axes.

Proof. From (2.5), we have an equation for the greatest common denominator,

G(x, y) = Um−2(y)Um−1(x)(1− x2)y+Um−1(x)Um−1(y)(x2 − y2)

+ Um−1(y)Um−2(x)(y2 − 1)x.

(a) Substituting −x for x yields the equation

(−1)m−1Um−2(y)Um−1(x)(1− x2)y + (−1)m−1Um−1(x)Um−1(y)(x2 − y2)

(−1)m−1Um−1(y)Um−2(x)(y2 − 1)x.

Setting this equal to 0, we see it has the same solutions as equation (2.5).

(b) Switching x and y gives the following equation:
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Um−2(x)Um−1(y)(1− y2)x+ Um−1(y)Um−1(x)(y2 − x2)

+ Um−1(x)Um−2(y)(x2 − 1)y,

which has the same solutions as (2.5).

The rest of the cases follow easily.

For the Fricke character, substituting −x for x yields

x2 + y2 +

(
−x(1 + Un−2(y))

Un−1(y)

)2

− 2xy

(
x(1 + Un−2(y))

Un−1(y)

)
.

Simplifying this yields the original equation. The other case follows easily, using Lemma

2.15, and the fact that n is even.

We can use this symmetry to simplify our analysis, by analyzing the first quadrant,

and applying this analysis to the rest of the plane using symmetry.

Using Theorem 2.5, we note that a curve of fixed points cannot cross the line y =

cos
(
jπ
n

)
for j an odd integer, except when x is 0. Similarly a curve of fixed points cannot

cross the line x = cos
(
jπ
n

)
, for j an odd integer, except when y is 0. It turns out that

this is sufficient to characterize the duality of these curves.

Lemma 2.19. For k ∈ N, k < 2n, we have dk(m2−1)
2m
e = dkm

2
e.

Proof. We divide the proof into cases.

If m is even, then dkm
2
e = km

2
. But k(m2−1)

2m
< km

2
for all m > 0, because if not we have

the equations

k(m2 − 1)

2m
>
km

2

km2 − k > km2

−k > 0,
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which results in a contradiction.

We now show that k(m2−1)
2m

> km
2
. If not, then we have the equations

k(m2 − 1)

2m
<
km

2
− 1,

km2 − k < km2 − 2m,

2m− k < 0,

which is again a contradiction. The case where m is odd follows similarly. Additionally,

if m is odd, dkm
2
e = km+1

2
.

Let n be even. The analysis of the duality of the fixed points of the action of αn,

restricted to T separates into two cases. The case where m is odd, and the case where

m = n/2 is even. The case where m is even is dealt with in [2], and we will not repeat

the analysis here. For the rest of this section, assume that m is odd. We know that the

y coordinate of the reversing fixed points is given by y = cos( πj
m2−1

). By Lemma 2.19, we

know that given an integer 0 < k < 2m− 2, if an integer j ∈
(
k(m2−1)

2m
, (k+2)(m2−1)

2m

)
, then

it lies in the interval [km+1
2
, (k+2)m−1

2
]. We first note that there are always m integers in

the interval. This follows as there are (k+2)m−1
2

− km+1
2

= m− 1 + 1 = m integers in the

interval.

We have the following:

Lemma 2.20. If j ∈ [km+1
2
, (k+2)m−1

2
] with 0 < k ≤ m− 2, with k odd, then

cos

(
(k + 2)π

2m

)
< cos

(
jπ

m2 − 1

)
< cos

(
kπ

2m

)
.

Proof. This follows as if j ∈ [km+1
2
, (k+2)m−1

2
], then j ∈

(
k(m2−1)

2m
, (k+2)(m2−1)

2m

)
. Dividing

by m2 − 1 preserves the direction of the inequalities. For 0 < k < m − 2, cosine is a

monotonically decreasing function. Thus applying cosine simply switches the direction

of the inequality.
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This essentially allows us to determine precisely which j values give us y values

between two given planes y = cos
(
kπ
n

)
, y = cos

(
(k+2)π
n

)
. We now determine which of

these are dual.

Lemma 2.21. For a reversing fixed point (x, y, z), let y = cos
(
m(k+1)π
2(m2−1)

)
. Then the

corresponding x value is larger than cos
(
π

2m

)
.

Proof. The x coordinate is given by x = cos
(
−πm2(k+1)

2(m2−1)
+ πl

)
, for some integer l. We

have

cos

(
−πm2(k + 1)

m2 − 1
+ πl

)
= cos

(
−π(m2 − 1)(k + 1)

2(m2 − 1)
− π(k + 1)

2(m2 − 1)
+ πl

)
= cos

(
−π(k + 1)

2
− π(k + 1)

2(m2 − 1)
+ πl

)
.

Since k+1 is even, we can choose l so that the equation simplifies to cos
(

π(k+1)
2(m2−1)

)
. Now,

from here, it is sufficient to show that (k+1)
2(m2−1)

< 1
2m

, because applying cosine reverses the

sign, and we will have cos
(

π(k+1)
2(m2−1)

)
> cos

(
π

2m

)
, which is what we want to show. We

have

(k + 1)

2(m2 − 1)
<

m− 1

2(m2 − 1)
<

1

2(m+ 1)
<

1

2m
,

which completes the result.

Our next step is to examine the duality of the rest of the points with j ∈ [km+1
2
, (k+2)m−1

2
].

We prove the following.

Theorem 2.22. Let i an integer such that 0 ≤ i < bm
2
c. Then in the first quad-

rant, a point with y coordinate cos
(
π(km+1+2i)

2(m2−1)

)
is dual to a point with y coordinate

cos
(
π((k+2)m−1−2i)

2(m2−1)

)
. Each y value corresponds to a unique point in the first quadrant,

and thus these two points must be dual.

Proof. The fact that there is one specific x coordinate corresponding to each y coordinate

follows from Theorem 2.17, as this shows there is a unique x coordinate up to an integer

multiple of π. This implies that there is a unique x coordinate in the first quadrant.
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Consider first the coordinate y = cos
(
π(km+1+2i)

2(m2−1)

)
. This has corresponding x coordi-

nate cos
(
π((km+1+2i)m)

2(m2−1)

)
. We start by simplifying the term (km+1+2i)m

2(m2−1)
.

(km+ 1 + 2i)m

2(m2 − 1)
=
km2 − k + k +m+ 2im

2(m2 − 1)
,

=
k

2
+
k +m(2i+ 1)

2(m2 − 1)
.

We consider the number k+(1+2i)m
2(m2−1)

+ k
2
. In particular, assume that

j

2m
<

((km+ 1 + 2i)m)

2(m2 − 1)
+
k

2
<
j + 2

2m
,

for j an odd integer less than m− 2. Solving for i, we get the equation

(j − km)(m2 − 1)− km−m2

2m2
< i <

(j + 2− km)(m2 − 1)− km−m2

2m2
.

Simplifying yields

j − 1− km
2

− j

2m2
< i <

j + 1− km
2

− j + 2

2m2
.

Since j
2m2 <

1
2
, and since j+2

2m2 <
1
2
, we have that, since i is an integer,

dj − 1− km
2

e ≤ i ≤ bj + 1− km
2

c.

Thus i = j−mk
2

, (recall that j, k and m are odd), so that j = 2i+ km. This j value may

correspond to a line in the left half of the plane. To produce one in the correct half of

the plane, adjust the value of l in (2.17) by 1.

We next prove that the fixed point with y coordinate cos
(
π((k+2)m−1−2i)

2(m2−1)

)
has x coor-

dinate lying within the same range. We examine the term (k+2)m−1−2i)
2(m2−1)

. Assume that

j

2m
<

(k + 2)m− 1− 2i)

2(m2 − 1)
<
j + 2

2m
.
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Then
−j + km+ 2m− 1

2
+

j

2m2
> i >

−j − 3 + km+ 2m

2
+
j + 2

2m2
.

Similarly to the first case, this gives j = km + 2m − 2i − 2. It remains to show that

this j value gives the partition as the j value for the fixed point with y coordinate

cos
(
π(km+1+2i)

2(m2−1)

)
, which had corresponding j value (2i + mk). let j = (2i + mk) and

j′ = km + 2m − 2i − 2. It is trivial to note that cos
(
πj
2m

)
= cos

(
π(j′+2)

2m

)
and that

cos
(
π(j+2)

2m

)
= cos

(
πj′

2m

)
. Since the specified j value is unique for each of the pairs of

fixed points indicated in the statement of the theorem, this concludes the theorem.

We now examine the fixed points with y coordinate cos
(

πi
m2−1

)
, with i ≤ m−1

2
.

Theorem 2.23. Assume that i ≤ m−1
2

. Then the reversing fixed point with x and y

coordinates
(
cos
(
πmi
m2−1

)
, cos

(
πi

m2−1

))
is dual to the preserving fixed point with x and y

coordinates
(
cos
(
πi
m

)
, 1
)
.

Proof. First, we note that if

j

2m
<

im

m2 − 1
<
j + 2

2m
,

where j is an odd integer, then j = 2i − 1, using the same method as in the previous

proof. Since i < m−1
2

, this implies that no two fixed points with y coordinates cos
(

πi
m2−1

)
,

for different i values, are dual. By necessity, they are each dual to a fixed point with

y coordinate 1, and x coordinate cos
(
πk
m

)
for some k. Choosing k = i yields the only

possible such value that will lie between cos
(
π(2i−1)

2m

)
and cos

(
π(2i+1)

2m

)
. Thus these two

points must be dual.

The last thing we have to deal with are the points given in Lemma 2.21.

Lemma 2.24. Fix k an odd integer less than m − 2. The reversing fixed point with x

and y coordinates
(

cos
(
m2(k+1)π
2(m2−1)

− πl
)
, cos

(
m(k+1)π
2(m2−1)

))
, where l is chosen so that the x

coordinate lies in the first quadrant, is dual to the preserving fixed point with x and y

coordinates
(

1, cos
(
π(k+1)

2m

))
.
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Proof. Again, let k an odd integer less than m − 2. Consider the fixed point with x

and y coordinates
(

cos
(
m2(k+1)π
2(m2−1)

− πl
)
, cos

(
m(k+1)π
2(m2−1)

))
, where l is chosen so that the x

coordinate lies in the first quadrant. By Lemma 2.21, this must be dual to a point with

x and y coordinates given by
(
1, cos

(
2πi
2m

))
, with i an even integer less than n. Assume

that
j

2m
<

m(k + 1)

2(m2 − 1)
<
j + 2

2m
,

for j an odd integer. Then

j − 1− j

m2
< k < j + 1− j + 2

m2
.

From this we deduce that j = k, or j = k − 1. Since k is odd, j = k. Now, we require

j

2m
<

i

2m
<
j + 2

2m
,

by Lemma 2.12. Since j = k and i is even we deduce that the reversing fixed point with

x and y coordinates
(

cos
(
m(k+1)π
2(m2−1)

)
, cos

(
m2(k+1)π
2(m2−1)

− πl
))

is dual to the preserving fixed

point with x and y coordinates
(

1, cos
(
π(k+1)

2m

))
.

By Lemma 2.18, we have completely determined the duality of this family of diffeo-

morphisms, as we have done so for the first quadrant. The analysis for the case where m

is even can be found in [2], which uses a similar methodology for the proof.

We end this section by recapitulating the results in a more convenient format.

Theorem 2.25. Let n an even integer, and let n = 2m. Further assume that m is an

odd integer. The fixed points of the action σn1σn2 on R3 lying on the surface T , were given

in Theorem 2.17. For those fixed points not lying on a straight line of fixed points, their

z coordinates are determined by their x and y coordinates, and their duality is given as

follows

(1) The reversing fixed point with x and y coordinates

(cos(πm(km+1+2i)
2(m2−1)

−πr), cos(π(km+1+2i)
2(m2−1)

)) is dual to the reversing fixed point with x and

y coordinates (cos(πm(km+1+2i)
2(m2−1)

− πr′), cos(π(km+1+2i)
2(m2−1)

)), where i, k, r, r′ are integers,
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0 ≤ i < bm
2
c, k is an odd integer such that 0 < k < m− 2, and r and r′ are chosen

so that the x coordinates are positive, so that each point lies in the 1st quadrant.

(2) The reversing fixed point with x and y coordinates

(cos(m
2(k+1)π

2(m2−1)
− πr), cos(m(k+1)π

2(m2−1)
)), is dual to the preserving fixed point with x and y

coordinates (1, cos(π(k+1)
2m

)), where k is an odd integer greater than 0 and less than

m− 2, and r is an integer chosen so that the x coordinate is positive.

(3) The reversing fixed point with x and y coordinates (cos( πmi
m2−1

− rπ), cos( πi
m2−1

)) is

dual to the preserving fixed point with x and y coordinates (cos(πi
m

), 1), where i is an

integer such that 0 ≤ i ≤ bm
2
c, and r is an integer chosen so that the x coordinate

is positive.

By Lemma 2.18, this is sufficient to completely determine the duality of every fixed

point of the action of αn on T .

2.5 Example

We now demonstrate results of the previous two sections using an example. For this

section let n = 22, so that m = 11. We now plot the zeroes of equation (2.5), for m = 11.
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1.0

Figure 2.2: Contour Plot of the curves given G22(x, y) = 0.
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We now focus on the first quadrant, as we did in the last section. The following picture

contains the solutions of equation (2.5), and the projection of T , which we obtained by

substituting equation (2.2) for z in the equation x2 +y2 +z2−2xyz = 1. The intersections

of these two sets of curves will show the fixed points discussed in the previous section,

excluding the straight line curves.
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Figure 2.3: Projection of T and curves given by G22.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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0.8

1.0

Figure 2.4: Projection of T and curves given by G22 in the first quadrant.

We now show a figure that contains one of each type of dual points as demonstrated in

the previous section.
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Figure 2.5: Examples of dual points on G22 = 0.

In the above, the points of the same color, except for the red points, are dual. The

red points are examples of those discussed in Section 2.1. There are two green points,

although they are close enough that it is hard to differentiate between them. These are

given by the equation in Lemma 2.24, with k = 3. The purple points came from Theorem

2.22, with k = 1, and i = 2. The black points came from Theorem 2.23, with i = 4. This

figure shows the curves of fixed points projected to the x− y plane, the dual points, and

the projection of T .
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Figure 2.6: Projection of T , curves given by G22 and dual points.

The next figure shows the curves of fixed points projected to the x − y plane, the

projection of T , and every reversing fixed point, as well as preserving fixed points lying

on the edge of the unit square.
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Figure 2.7: Projection of T , curves given by G22, and fixed points.

Finally, we have a copy of the previous image, with the lines y = cos(πj
22

) and x =

cos(πk
22

), for j and k odd integers shown. These are the lines that determine the duality

of the fixed points.

42



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2.8: This image demonstrates the duality of each of the points in the previous
image. the plotted lines are the lines y = cos(πj

22
) and x = cos(πk

22
), for j and k odd

integers.
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Chapter 3. The Fixed Points of the action

of γnm

We now move to the more general case of investigating fixed points and duality for the

maps γnm = τn1 τ
m
2 . The action of γnm on R3 is given by the diffeomorphism σn1σ

m
2 .

In this section, we will apply a very similar methodology as we did in the αn case. The

convenient thing about this is that many of the previous theorems hold true. For example,

our solution for z in terms of Chebyshev polynomials will remain the same. Recall the

following.

Theorem 3.1. In the case where n and m are two positive integers, we obtain the fol-

lowing:

Mn
1 =

−Un−2(y) 0 Un−1(y)

0 1 0

−Un−1(y) 0 Un(y)

 ;

Mm
2 =

1 0 0

0 Um(x) −Um−1(x)

0 Um−1(x) −Um−2(x)

 .

Proof. This follows exactly as in the αn case.

Lemma 3.2. The action of σ−n1 on the triple (x, y, z), is equivalent to the action of M−n
1

on (x, y, z), that is, (x, y, z)σ−n1 = M−n
1 (x, y, z)T . Similarly, (x, y, z)σ−n2 = M−n

2 (x, y, z)T .

Proof. First, note that (x, y, z)σ−1
1 = (2xy − z, y, x) = M−1

1 (x, y, z)T . From this, the

result follows by induction, using the same method as in the proof of Lemma 2.1.

It is easy to show that M−n
1 is given by substituting −n in for n inMn

1 , with a similar

result forM2, so that we can proceed as we did in chapter 2. The following is an analogue

of Lemma 2.2

Lemma 3.3. For all n,m ∈ Z and (x, y, z)T ∈ R3 we have

xy
z

σn1σ
m
2 =

 −xUn−2(y) + zUn−1(y)

Um(x∗)y − Um−1(x∗)[−xUn−1(y) + zUn(y)]

Um−1(x∗)y − Um−2(x∗)[−xUn−1(y) + zUn(y)]

 . (3.1)
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Where x∗ = −xUn−2(y) + zUn−1(y).

In particular, if (x, y, z)T ∈ R3 is a fixed point of the action of γnm and Un−1(y) 6= 0

then

z = x(1 + Un−2(y))/Un−1(y).

Proof. This follows as with the αn case.

3.1 The Straight Line Case for γnm

The solutions to the equation Un−1(y) = 0 are given by y = cos(πj
n

). Assume (x, y, z) is

a fixed point on T with y = cos(πj
n

) and x = cos(2πθ1). Then the preimage of this point

in θ coordinates is ±(θ1,
j

2n
). Consider the following:

(
1 n

−m 1− nm

)(
θ1

k
2n

)
=

(
θ1 + k

2

−mθ1 + k
2n
−mk

2

)
.

From this, we can see that Φ(γnm)(θ1,
k

2n
)T = ±(θ1,

k
2n

)T mod Z2 if and only if k is an

even integer, and θ1 = j
m
, for some integer j. This yields a set of preserving fixed points

of the action of γnm restricted to T . That is, the set
{

Π

(
j
m
k
n

)}
, for j, k ∈ Z, is a set of

preserving fixed points of the action of γnm restricted to T . This set includes the only

fixed points of γnm on T where Un−1(y) = 0.

Proposition 3.4. Let n, j, k, and m ∈ N, with j 6≡ 0 mod m
2
, k 6≡ 0 mod n

2
and n,m

even. Let a = cos
(

2πj
m

)
, and let b = cos

(
2πk
n

)
.

(i) We have Mn
1 (b) = Mm

2 (a) = I3.

(ii) If v =
(
cos
(

2πj
m

)
, cos

(
2πk
n

)
, z
)T , then vγnm = v. Thus the vertical line p(z) =(

cos
(

2πj
m

)
, cos

(
2πk
n

)
, z
)T is a curve of fixed points of γnm.

(iii) If j ≡ 0 mod m
2
or if k ≡ 0 mod n

2
, then

(
cos
(

2πj
m

)
, cos

(
2πk
n

)
, z
)T is not a curve

of fixed points of γnm.
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Proof. The proof is almost identical to the proof of Proposition 2.4.

Thus, again we have that under the conditions assumed at the beginning of Proposi-

tion 3.4, p(z) =
(
cos
(

2πj
m

)
, cos

(
2πk
n

)
, z
)T is a vertical straight line of fixed points, linking

the preserving fixed points Π
(
j
m
, k
m

)T and Π
(
j
m
,− k

m

)T , making these two points dual in

this case.

3.2 Fixed Points with Un−1(y) 6= 0.

We begin our analysis of the fixed points (x, y, z) ∈ T with Un−1(y) 6= 0. By Lemma 3.3,

we end up with the following equations for these fixed points:

x = −xUn−2(y) + zUn−1(y);

y = Um(x∗)y − Um−1(x∗)[−xUn−1y + zUn(y)];

z = Um−1(x∗)y − Um−2(x∗)[−xUn−1(y) + zUn(y)].

For the rest of this section, let n,m be even integers, and let k = n/2, and let l = m/2.

Theorem 3.5. A fixed point (x, y, z) of the action of γnm on R3, with Un−1(y) 6= 0, is

determined by the location of the x and y coordinates. The x and y coordinates satisfy

the following equation:

G(x, y) = Uk−1(y)Ul−2(x)(y2 − 1)x+ Uk−1(y)Ul−1(x)(x2 − y2) (3.2)

+ Ul−1(x)Uk−2(y)(1− x2)y = 0,

where 2k = n, and 2l = m. The z coordinate satisfies z = x(1 + Un−2(y))/Un−1(y).

Proof. We shall go through this derivation in detail. We start with Lemma 3.3. This

gives us two equations in (x, y, z). Subtract y from the second equation, and z from the

third. This will allow us to find the fixed points of these curves simply by finding the

greatest common denominator of the two new equations, after substituting for z and
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taking the numerators. We start by substituting in for z as a function of x and y, and

then factor the resulting equations. For the first equation, we obtain the following:

Y (x, y)− y =
1

Un−1(y)
(yUm(x)Un−1(y) + xUm− 1(x)Un−1(y)2

− xUm−1(x)Un(y)− xUm−1(x)Un(y)Un−2(y)− yUn−1(y).

The second equation becomes:

Z(x, y)− z(x, y) =
1

Un−1(y)
(yUm−1(x)Un−1(y) + xUm−2(x)Un−1(y)2

− xUm−2(x)Un(y)− xUm−2(x)Un(y)Un−2(y)− x− xUn−2(y).

We then focus on the numerator of the equations. We proceed by substituting for each

Un−2(y) and Um−2(x) term, terms of the form Um−1, Um, Un−1, and Un, using the definition

of the Chebyshev polynomial, (1.2). This gives the following:

nY = yUm(x)Un−1(y)+xUm− 1(x)Un−1(y)2 − xUm−1(x)Un(y)

− xUm−1(x)Un(y)(2yUn−1(y)− Un(y))− yUn−1(y),

nZ = yUm−1(x)Un−1(y) + 2x2Um−1(x)Un−1(y)2 − xUn−1(y)2Um(x)− 2x2Um−1(x)

Un(y) + xUn(y)Um(x)− 4x2yUn(y)Um−1(x)Un−1(y)

+ 2x2Un(y)2Um−1(x) + 2xyUn(y)Um(x)Un−1(y)

− xUn(y)2Um(x)− x− 2xyUm−1(y) + xUn(y).

Recall that m and n are multiples of 2, where n = 2k and m = 2l. We then use the

Chebyshev identity formulas in Section 2 (see equations (1.11),(1.12)). This gives the

following two formulas:

47



nY =y(Ul(x)2 − Ul−1(x)2)(2Uk(y)Uk−1(y)− 2yUk−1(y)2) + (2Ul(x)Ul − 1(x)

− 2xUl−1(x)2)x(2Uk(y)Uk−1(y)− 2yUk−1(y)2)2 − (2Ul(x)Ul−1(x)− 2xUl−1(x)2)

x(Uk(y)2 − Uk−1(y)2)− (2(2Ul(x)Ul−1(x)− 2xUl−1(x)2))x(Uk(y)2 − Uk−1(y)2)y

(2Uk(y)Uk−1(y)− 2yUk−1(y)2) + (2Ul(x)Ul−1(x)− 2xUl−1(x)2)x(Uk(y)2

− Uk − 1(y)2)2 − y(2Uk(y)Uk−1(y)− 2yUk−1(y)2),

nZ =y(2Ul(x)Ul−1(x)− 2xUl−1(x)2)(2Uk(y)Uk−1(y)− 2yUk−1(y)2)

+ 2x2(2Uk(y)Uk−1(y)− 2yUk − 1(y)2)2(2Ul(x)Ul−1(x)− 2xUl−1(x)2)

− x(2Uk(y)Uk−1(y)− 2yUk−1(y)2)2(Ul(x)2 − Ul−1(x)2)− 2x2(Uk(y)2

− Uk−1(y)2)(2Ul(x)Ul−1(x)− 2xUl−1(x)2) + x(Uk(y)2 − Uk−1(y)2)(Ul(x)2

− Ul−1(x)2)− 4x2(Uk(y)2 − Uk−1(y)2)(2Ul(x)Ul−1(x)− 2xUl−1(x)2)y

(2Uk(y)Uk−1(y)− 2yUk−1(y)2) + 2x2(Uk(y)2 − Uk−1(y)2)2(2Ul(x)Ul−1(x)

− 2xUl−1(x)2) + 2x(Uk(y)2 − Uk−1(y)2)y(Ul(x)2 − Ul−1(x)2)(2Uk(y)Uk−1(y)

− 2yUk−1(y)2)− x(Uk(y)2 − Uk−1(y)2)2(Ul(x)2 − Ul−1(x)2)− x

− 2xy(2Uk(y)Uk−1(y)− 2yUk−1(y)2) + x(Uk(y)2 − Uk−1(y)2).

We now use equation (1.10) to simplify the previous equations. This yields the following

two formulas:

nY =− Ul−1(x)(−Uk−1(y)y2Ul−1(x) + Uk−1(y)Ul−1(x)x2 − Uk−1(y)Ul(x)x

+ Uk−1(y)xy2Ul(x) + Ul−1(x)yUk(y)− Ul−1(x)yUk(y)x2),

nZ =− Uk−1(y)Ul(x)Ul−1(x)y2 + Uk−1(y)xUl−1(x)2y2 + Uk−1(y)x2Ul(x)Ul−1(x)

+ Uk−1(y)xy2 − Uk−1(y)x+ Uk−1(y)xUl−1(x)2 − 2Uk−1(y)x3Ul−1(x)2

+ yUl(x)Ul−1(x)Uk(y)− 2xyUl−1(x)2Uk(y) + 2x3Ul−1(x)2yUk(y)

− x2Ul(x)Ul−1(x)yUk(y).
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We now claim that the greatest common denominator of the two functions is the following:

G(x, y) = Uk−1(y)Ul−2(x)(y2 − 1)x+ Uk−1(y)Ul−1(x)(x2 − y2)

+ Ul−1(x)Uk−2(y)(1− x2)y.

If this is true, then there is some f1(x, y) and f2(x, y) such that f1(x, y)G(x, y)−nY = 0,

and f2(x, y)G(x, y)−nZ = 0. From examples we have calculated, we claim that f1(x, y) =

Ul−1(x) and f2(x, y) = Ul−2(x).

We now show this is the case. Now Ul−1(x)G(x, y)−nY = 0 and Ul−2(x)G(x, y)−nZ =

0 if and only if,

Ul−1(x)Ul−2G(x, y)− Ul−2nY = 0 and Ul−2(x)Ul−1(x)G(x, y)− Ul−1(x)nZ = 0.

But the last statement holds if and only if Ul−2(x)nY − Ul−1(x)nZ = 0. We now prove

this is the case. In this part, we will skip one step, where we rewrite Ul−2(x) using the

definition of the U-Type Chebyshev polynomials. We begin with the following.

Ul−2(x)nY − Ul−1(x)nZ = Ul−1(x)Uk−1(y)x(y − 1)(y + 1)(Ul−1(x)2 + Ul(x)2

− 1− 2xUl(x)Ul−1(x)).

We now examine the last part of the equation Ul−1(x)2 + Ul(x)2 − 1 − 2xUl(x)Ul−1(x).

By one of the Chebyshev identities (see (1.10)), we have

Ul−1(x)2 − 1− 2xUl(x)Ul−1(x) = −Ul(x)2.

This allows us to conclude that Ul−2(x)nY − Ul−1(x)nZ = 0.

Thus we find that

G(x, y) = Uk−1(y)Ul−2(x)(y2 − 1)x+Uk−1(y)Ul−1(x)(x2 − y2)

+ Ul−1(x)Uk−2(y)(1− x2)y,

is the greatest common denominator of nY and nZ .
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Figure 3.1: The curves given by G(x, y) = 0 for n = 14 and m = 28.
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Figure 3.2: The curves given by G(x, y) = 0 for n=44 and m=-44.

The fixed points of γnm on T , with x and y coordinates given by the intersection

of the curves G(x, y) = 0 and the curves E(x, y, z) = 1 with the substitution z =

x(1 + Un−2(y))/Un−1(y), which are the fixed points that were not discussed in Section

3.1, are precisely the reversing fixed points of the action of γnm. This follows by a proof

similar to that of Lemma 2.13.
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3.3 Analysis of the curves given by G(x, y).

Now that we have G(x, y), we can perform some of the same analyses that we performed

in the αn case. In particular, we will investigate geometric properties of the x and y

coordinates of the fixed points of γnm. We begin by discussing the symmetry of the

system.

Theorem 3.6. The curves given by the zeroes of G(x, y) are symmetric about the x-axis

and the y-axis. They are symmetric about the lines y = ±x, if k = ±l.

Proof. We note that

G(−x, y) = Uk−1(y)Ul−2(−x)(y2 − 1)(−x) + Uk−1(y)Ul−1(−x)(x2 − y2)

+ Ul−1(−x)Uk−2(y)(1− x2)y.

By Lemma 2.15, we have

G(−x, y) = (−1)l−1Uk−1(y)Ul−2(x)(y2 − 1)(x) + (−1)l−1Uk−1(y)Ul−1(x)(x2 − y2)

+ (−1)l−1Ul−1(x)Uk−2(y)(1− x2)y.

This clearly gives the same set of curves as G(x, y). The symmetry about the y-axis

follows similarly.

Now, the case k = l has already been done (see Lemma 2.18). Now let k = −l.

Substituting into G(x, y), gives

G(y, x) = U−l−1(x)Ul−2(y)(x2 − 1)y + U−l−1(x)Ul−1(y)(y2 − x2)

+ Ul−1(y)U−l−2(x)(1− y2)x

= −Ul−1(x)Ul−2(y)(x2 − 1)y − Ul−1(x)Ul−1(y)(y2 − x2)

− Ul−1(y)Ul(x)(1− y2)x

= Ul−1(x)Ul−2(y)(1− x2)y + Ul−1(x)Ul−1(y)(x2 − y2)

+ Ul−1(y)Ul(x)(y2 − 1)x
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= −G(x, y),

which concludes the proof.

In the following, we use the notation G(x, y, k, l), to refer to G(x, y) with parameters

k and l.

Theorem 3.7. We have the following:

G(x, y, k, l) = −G(x, y,−k,−l),

for any integers k and l.

Proof. We have that

G(x, y,−k,−l) = U−(k+1)(y)U−l(x)(y2 − 1)x+ U−(k+1)(y)U−(l+1)(x)(x2 − y2)

+ U−(l+1)(x)U−k(y)(1− x2)y,

which simplifies to

x(y2 − 1)Uk−1(y)Ul(x) + (1− x2)yUk(y)Ul−1(X) + (x2 − y2)Uk−1(y)Ul−1(x),

by equation (1.14), after canceling the negatives. Substituting for Uk(y) and Ul(x) using

equation (1.2), and simplifying yields the following equation:

−x(y2 − 1)Uk−1(y)Ul−2(x)− y(1− x2)Uk−2(y)Ul−1(x)

+ Uk−1(y)Ul−1(x)(x(y2 − 1)2 + y(1− x2)2y + (x2 − y2),

which clearly simplifies to −G(x, y, k, l).

We can explicitly solve for the points of intersection of T , under the substituting

z = x(1 + Un−2(y))/Un−1(y), and the roots of G(x, y). We note that when we write
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(x, y, z) in terms of θ1 and θ2, we will have the same relations between θ1 and θ2 we had

in the previous two examples. That is, one of the following holds.

θ2 =
r

2
,

θ2 =
r

n
,

θ1 = −n
2
θ2 +

r

2
,

where r ∈ Z. Note that we use the integer r instead of k as in the previous formulation

of the theorem, because we reserve k as the integer equal to n
2
.

Theorem 3.8. In the case where the relation between θ1 and θ2 takes the form

θ1 = −n
2
θ2 + r

2
,

the intersection points of T substituting z = x(1 +Un−2(y))/Un−1(y), and the roots of the

function G(x, y), are the solutions of the equation:

(−1)lr−r+1

2
cos2(2πθ2) sin(4πkθ2) sin(2π(lk − 1)θ2) = 0. (3.3)

Proof. We start by noting the following:

Uk−1(y) =
sin(2πkθ2)

sin(2πθ2)
;

Ul−1(x) =
(−1)rl−r sin(2πlkθ2)

sin(2πkθ2)
;

Uk−2(y) =
sin(2π(k − 1)θ2)

sin(2πθ2)
;

Ul−2(x) =
(−1)r(l−1)−r sin(2π(l − 1)kθ2))

sin(2πkθ2)
.
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Substituting into G(x, y) yields

(−1)rl−r

sin(2πθ2)
((sin(2πkθ2) cos(2πlkθ2)− sin(2πlkθ2) cos(2πkθ2)) sin2(2πθ2)

cos(2πkθ2) + sin(2πlkθ2) cos2(2πkθ2)− sin(2πlkθ2) cos2(2πθ2)

+ sin(2πlkθ2)(sin(2πkθ2) cos(2πθ2)− sin(2πθ2) cos(2πkθ2))

sin(2πkθ2) cos(2πθ2))

=
(−1)rl−r

sin(2πθ2)
(sin(2πkθ2) cos(2πlkθ2) sin2(2πθ2) cos(2πkθ2)− sin(2πlkθ2)

cos2(2πkθ2) sin2(2πθ2) + sin(2πlkθ2) cos2(2πkθ2)− sin(2πlkθ2)

cos2(2πθ2) + sin(2πlkθ2) sin2(2πkθ2) cos2(2πθ2)

− sin(2πlkθ2) sin(2πθ2) cos(2πkθ2)) sin(2πkθ2) cos(2πθ2))

=
(−1)rl−r

sin(2πθ2)
(cos2(2πθ2) sin(2πlkθ2)(sin2(2πkθ2)− 1) + sin(2πkθ2) sin(2πθ2)

cos(2πkθ2)(cos(2πlkθ2) sin(2πθ2)− sin(2πlkθ2) cos(2πθ2))

+ sin(2πlkθ2) cos2(2πθ2)(1− sin2(2πθ2)))

=
(−1)rl−r

sin(2πθ2)
(− cos2(2πθ2) sin(2πlkθ2) cos2(2πkθ2) + sin(2πlkθ2) cos2(2πkθ2)

cos2(2πθ2) + sin(2πkθ2) sin(2πθ2) cos(2πkθ2) sin(2π(lk − 1)θ2)

=
(−1)rl−r

sin(2πθ2)
(− cos2(2πθ2) sin(2πkθ2) sin(2πθ2) cos(2πkθ2) sin(2π(lk − 1)θ2)

=
(−1)rl−r+1

2
cos2(2πθ2) sin(4πkθ2) sin(2π(lk − 1)θ2).

This gives G(x, y) in terms of θ2, based on a relation between θ1 and θ2 given by the

Fricke character. Hence, solving the

(−1)rl−r+1

2
sin(4πkθ2) sin(2π(lk − 1)θ2) = 0,

and using the relations between θ1 and θ2 will give us the x and y coordinates of the

intersection points of T and curves given by the zeroes of G(x, y).

The solutions to the previous equation come from letting θ2 = j
2(lk−1)

, and letting

θ2 = j
4k

= j
2n
, for any j ∈ Z. From this, we can easily determine θ1 using the fact

that θ1 = −n
2
θ2 + r

2
, for some r ∈ Z. We now seek to find a simpler expression for
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G(x, y), inside of the unit square. Since we are inside the unit square, we can again write

x = cos(2πθ1) and y = cos(2πθ2).

Theorem 3.9. Inside of the unit square, we can rewrite G(x, y) as

tan(2πθ2) tan(2πkθ2)− tan(2πθ1) tan(2πlθ1). (3.4)

Proof. Substituting for x = cos(2πθ1) and y = cos(2πθ2) into G(x, y), and using standard

trigonometric identities, we obtain the following.

−1

sin(2πθ2) sin(2πθ1)
(sin(2πkθ2) cos(2πθ1) cos(2πlθ1) cos2(2πθ2) sin(2πθ1)

− sin(2πkθ2) cos(2πθ1) cos(2πlθ1) sin(2πθ1) + sin(2πlθ1)

cos(2πθ2) cos(2πkθ2) sin(2πθ2)− sin(2πlθ1) cos(2πθ2) cos(2πkθ2)

cos2(2πθ1) sin(2πθ2).

But we can combine the first two terms inside the parentheses to reduce to the following:

sin(2πkθ2) cos(2πθ1) cos(2πlθ1) sin(2πθ1)(cos2(2πθ2)− 1)

= sin(2πkθ2) cos(2πθ1) cos(2πlθ1) sin(2πθ1)(− sin2(2πθ2)).

and the second two similarly combine:

sin(2πlθ1) cos(2πθ2) cos(2πkθ2) sin(2πθ2)(1− cos2(2πθ1))

= sin(2πlθ1) cos(2πθ2) cos(2πkθ2) sin(2πθ2)(− sin2(2πθ1)).

Canceling then gives the following equation for our curves.

cos(2πθ1) cos(2πlθ1) sin(2πθ2) sin(2πkθ2)− cos(2πθ2 cos(2πkθ2)

sin(2πθ1) sin(2πlθ1) = 0.
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This simplifies easily by dividing both sides by

cos(2πθ1) cos(2πθ2) cos(2πkθ2) cos(2πlθ1),

yields the following

tan(2πθ2) tan(2πkθ2)− tan(2πθ1) tan(2πlθ1),

which concludes the theorem.

While this is a much simpler equation, one must be careful as it is not defined where

the roots of the sine portions don’t exist, i.e., multiples of π/k and π/l.

Our goal now is to characterize what happens to the set of curves given by G(x, y) = 0,

outside of the unit square. We will show that if k and l are positive even integers, there

are k + 1 points of intersection of the curves given by G(x, y) and the line x = 1 with

−1 ≤ y ≤ 1, and l + 1 points of intersection of these curves with the line y = 1 with

−1 ≤ x ≤ 1. Then we will show that the curves do not intersect outside of the unit

square. There is an analogous result for different signs for k and l.

Applying Lemma 2.14, we see that on the line x = 1,

G(1, y) = Uk−1(y)(l + 1)(y2 − 1) + Uk−1(y)l(1− y2) + lUk−2(y)(1− 12)y.

The last term is 0, and we can easily combine the first two terms into the equation

(y2 − 1)Uk−1(y).

Using our regular trigonometric substitution, which is equation (1.8), we obtain the equa-

tion

G(1, cos(2πθ2)) = − sin(2πθ2) sin(2πkθ2). (3.5)

Letting y = cos(2πθ2), we see that equation (3.5) yields k + 1 distinct points where

the level curves intersect the line x = 1.
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Figure 3.3: Solutions to G(x, y) = 0, where n = 28 and m = 52.

The preceding picture shows the curves given by G(x, y) = 0, where n = 28 and

m = 52. One can easily count the curves exiting the top and right edges of the unit

square, and see that there are 15 curves exiting the right side, and 27 exiting the top.

We now must show that the curves given by G(x, y) = 0 do not intersect outside of the

unit square. Again we will consider the k + 1 curves entering from the right. The result

for the l + 1 curves follow identically.

Consider the solutions for the y values we obtained at x = 1. They all took the form

y = cos(πj/k), j ∈ {0, 1, ..., k}. We now show that the only times that a curve intersects

these lines is when that curve lies in the unit square. This will imply that outside of the

unit square, our curves cannot intersect the lines y = cos(πj
k

), and hence cannot intersect

each other.

Substituting y = cos(πj
k

) in for y, and letting x = cos(2πθ1), we obtain the following:

G

(
cos
(πj
k

)
, cos(2πθ1)

)
=

sin(2πlθ1) sin
(

(k−1)πj
k

)
(1− cos2(2πθ1)) cos

(
πj
k

)
sin(2πθ1) sin

(
πj
k

) .
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This simplifies to

± sin(2πlθ1) sin(2πθ1) cos(πj/k).

This has roots θ1 = i
2l
, i ∈ (0, 1, ...l). This yields gives us l + 1 distinct solutions. As

these all lie in the unit square, and because G(x, y) has degree l + 1 in the x variable,

we conclude that no curve intersects the lines y = cos
(
πj
k

)
outside of the unit square. So

that the curves outside of the unit square cannot intersect.

We now note that the proof of the curves entering from the top follows identically to

this one, and that the proof that the curves coming from the bottom and the left then

follow by the symmetry of our curves. Thus, we have characterized the behavior of our

curves outside of the unit square.

Conjecture 3.10. Inside the unit square, the curves given by the solutions of the equation

G(x, y) = 0 are nonintersecting for any choice of n and m.

As yet, we have been unable to prove the preceding conjecture.

We would like to study the duality of the general case at this point, however, in general,

the curves given by G(x, y) are not symmetric about the lines y = ±x. Therefore, while

the curves cannot pass the lines y = cos
(
πq
2l

)
, for q odd, unless x = 0, we do not have the

symmetry that says they cannot pass the lines x = cos
(
πq′

2k

)
. However, plugging in the

element cos
(
πq′

2k

)
, with q′ odd, into G(x, y), requires y = cos

(
πq
2l

)
for q some odd integer,

in order for G(x, y) to be 0. Therefore, we know that the fixed curves of the action of

γnm cannot cross the lines x = cos
(
πq′

2k

)
, where q′ is some odd integer, unless y = 0. This

gives sufficient restrictions to study duality, however, due to time and space constraints,

the duality of the general case will not be discussed here. An analysis of the duality of

the general case would follow the method of Section 2.4, although there may need to be

multiple cases depending on the parities and signs of k and l.
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Chapter 4. Points of Period Two

We now begin a discussion of period two points of the maps induced by γnm. We will not

classify all of the period two points of these maps, as the equations become too unwieldy.

We shall identify period two points having one of the following properties.

(x, y, z)α→ (−x, y,−z)α→ (x, y, z), (4.1)

or

(x, y, z)α→ (x,−y,−z)α→ (x, y, z), (4.2)

for α ∈ 〈σ1, σ2〉.

We begin with a couple of theorems from [2].

Lemma 4.1. The automorphism S : Q[x, y, z]3 → Q[x, y, z]3 given by (x, y, z)S = (−x, y,−z)

centralizes any α ∈ 〈σ1, σ
2
2〉, so that αS = Sα. Particularly, let m and n be even integers.

We note that S centralizes both the diffeomorphism representing αn and the diffeomor-

phisms representing γnm.

Proof. We have

(x, y, z)σ1S = (z, y, 2yz − x)S = (−z, y,−2yz + x),

(x, y, z)Sσ1 = (−x, y,−z)σ1 = (−z, y,−2yz + x).

Showing this holds for σ2
2 follows a similar pattern.

Theorem 4.2. Let α ∈ 〈σ1, σ
2
2〉. suppose that (x0, y0, z0)α = (−x0, y0,−z0). Then

(x0, y0, z0) is a period two point for α.

Proof. Let S : (x, y, z)S = (−x, y,−z). Then by the previous result we know that S

centralizes α. Thus, we have that

(x0, y0, z0)α = (−x0, y0,−z0) = (x0, y0, z0)S.
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So

(−x0, y0,−z0)α = (x0, y0, z0)Sα

= (x0, y0, z0)αS

= (−x0, y0,−z0)S

= (x0, y0, z0).

The (x,−y,−z) case follows similarly.

4.1 Period Two Points of the Action of γnm

We analyze the period two points of γnm which acts by the diffeomorphisms σn1σm2 . We

assume that n andm are integer multiples of 2, and thus Theorem 4.2 applies. Let n = 2k

and m = 2l. We find the period two points under the map induced by σn1σm2 , that have

the property that

(x, y, z)σn1σ
m
2 = (x,−y,−z) (4.3)

or

(x, y, z)σn1σ
m
2 = (−x, y,−z). (4.4)

We will start with the (x,−y,−z) case. We have the following from Lemma 3.3

xy
z

σn1σ
m
2 =

 −xUn−2(y) + zUn−1(y)

Um(x∗)y − Um−1(x∗)[−xUn−1(y) + zUn(y)]

Um−1(x∗)y − Um−2(x∗)[−xUn−1(y) + zUn(y)]

 , (4.5)

where x∗ = xUn−2(y) + zUn−1(y).

We note that again, we obtain the solution z = x(1+Un−2(y))/Un−1(y), for Un−1(y) 6=

0, after solving the first equation for z. We then substitute z into the other two equa-

tions, and since we want (x, y, z)σn1σ
m
2 = (x,−y,−z), we have the following two equations.

60



nY = y + Um(x)y − Um−1(x)[−xUn−1(y) + zUn(y)] = 0;

nZ = z + Um−1(x)y − Um−2(x)[−xUn−1(y) + zUn(y)] = 0,

where we have noted that x = x∗, and z was left in the equation for simplicity.

Theorem 4.3. Consider the equation:

H(x, y) = −yTl(x)Uk(y) + Uk−1(y)(−xUl−1(x) + y2Ul(x)) = 0. (4.6)

If (x, y) is a solution to the previous equation, and Un−1(y) 6= 0, there is a corresponding

point (x, y, z) ∈ R3, which is a period two point of the action of γnm. The point (x, y, z)

has the property that z = x(−1 + Un−2(y))/Un−1(y) and (x, y, z)σn1σ
m
2 = (x,−y,−z).

Proof. We proceed as usual by finding the greatest common denominators of the previous

two equations. We label this common denominator H(x, y). We start by looking at the

numerators of nY and nZ . We start by substituting for Ul−2(x) and Uk−2(y) according

to the definition of the Chebyshev polynomial, and then we use the fact that m and n

are multiples of two, and use equations (1.11) and (1.12) to write our equations in the

following forms.

nY =2(−(Uk−1(y)2(Ul−1(x)2(2x2(2y2 + 1)Uk(y)2 + x2 − y2)− x((4y2 + 2)Uk(y)2

+ 1)Ul−1(x)Ul(x) + y2(Ul(x)2 + 1))) + yUk(y)Uk−1(y)(Ul−1(x)2(4x2Uk(y)2 − 1)

− 4xUk(y)2Ul−1(x)Ul(x) + Ul(x)2 + 1) + xUk−1(y)4Ul−1(x)(Ul(x)− xUl−1(x))

+ 4xyUk(y)Uk−1(y)3Ul−1(x)(xUl−1(x)− Ul(x))− xUk(y)2(Uk(y)2 − 1)Ul−1(x)

(xUl−1(x)− Ul(x)));
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nZ =Uk−1(y)2(xUl−1(x)2(−2(4x2 − 1)(2y2 + 1)Uk(y)2 − 4x2 + 4y2 + 1) + 4Ul(x)

Ul−1(x)(2x2(2y2 + 1)Uk(y)2 + x2 − y2)− x(((4y2 + 2)Uk(y)2 + 1)Ul(x)2

+ 4y2 − 1)) + xUk−1(y)4((1− 4x2)Ul−1(x)2 + 4xUl(x)Ul−1(x)− Ul(x)2)

+ 4xyUk(y)Uk−1(y)3((4x2 − 1)Ul−1(x)2 − 4xUl(x)Ul−1(x) + Ul(x)2) + 4yUk(y)

Uk−1(y)(xUl−1(x)2((4x2 − 1)Uk(y)2 − 1) + Ul(x)Ul−1(x)(1− 4x2Uk(y)2)

+ xUk(y)2Ul(x)2 + x)− x(Uk(y)4((4x2 − 1)Ul−1(x)2 − 4xUl(x)Ul−1(x)

+ Ul(x)2) + Uk(y)2((1− 4x2)Ul−1(x)2 + 4xUl(x)Ul−1(x)− Ul(x)2 + 1)− 1).

We then simplify using equation (1.10). We note that when we factor nY over H(x, y)

in examples, that nY /H(x, y) = Tl(x), and nZ/H(x, y) = Tl−1(x). we now show that in

general,

nY /Tl(x) = nZ/Tl−1(x),

which follows if

nY Tl−1(x)− nZTl(x) = 0.

We substitute for the T-Type Chebyshev polynomials in terms of U-Type Chebyshev

polynomials, and reducing the powers of U-Type Chebyshev polynomials using equation

1.10, gives us the fact that nY Tl−1(x)− nZTl(x) = 0.

It remains to show that

nY /Tl(x)− (−yTl(x)Uk(y) + Uk−1(y)(−xUl−1(x) + y2Ul(x))) = 0,

but this follows by the exact same method. We show that

nY − Tl(x)(−yTl(x)Uk(y) + Uk−1(y)(−xUl−1(x) + y2Ul(x))) = 0.

This follows by substituting in U-Type Chebyshev polynomials for the T-Type Chebyshev

polynomials, after which reducing the powers of the U-Type Chebyshev polynomials yields

the results.

62



We conclude that the greatest common denominator of nY and nZ is

(−yTl(x)Uk(y) + Uk−1(y)(−xUl−1(x) + y2Ul(x))),

and that all points satisfying

(−yTl(x)Uk(y) + Uk−1(y)(−xUl−1(x) + y2Ul(x))) = 0,

are period two points, and satisfy the condition that (x, y, z)σn1σ
m
2 = (x,−y,−z).
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Figure 4.1: The x and y coordinates for period two points of the action of γnm obtained
from Theorem 4.3, with n = 28,m = 24.
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Figure 4.2: In blue, the points from the previous image. In red, the x and y coordinates
of the fixed points of γnm given by equation (3.2) with n = 28 and m = 24.

We now assume that (x, y, z)γnm = (−x, y,−z). This yields another set of period two

points given by the following equations. The proof is omitted.

Theorem 4.4. Consider the equation:

H ′(x, y) = −xTk(y)Ul(x) + x2Uk(y)Ul−1(x)− yUk−1(y)Ul−1(x) = 0. (4.7)

If (x, y) is a solution to the previous equation, and Un−1(y) 6= 0, there is a corresponding

point (x, y, z) ∈ R3, which is a period two point of the action of γnm, with the property

that z = x(1 + Un−2(y))/Un−1(y) and (x, y, z)σn1σ
m
2 = (−x, y,−z).
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Figure 4.3: The x and y coordinates of period 2 points given by Theorem 4.4, with n = 28,
and m = 26.
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Figure 4.4: Here n = 28 and m = 26. The yellow curves are given by Theorem 4.3, the
blue curves are given by Theorem 4.4, and the red curves are given by equation (3.2).

There are several geometric features to be noted in the above figures. Primarily, note

that the x and y coordinate of the period 2 points, given by Theorems 4.3 and 4.4 lie

between the curves given by equation (3.2). This happens for every example we have

checked, although we have not proven this in general as of yet. Also note that there are

points of intersection in the above figure, between the curves given by Theorems 4.3 and

4.4. Given the conditions on such points, this can only happen if Un−1(y) = 0. In fact, if

we plot those solutions as lines on the previous figure, we can verify that each intersection

point does have y coordinate satisfying Un−1(y) = 0.
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Figure 4.5: This shows the previous image plotted with the lines y = cos
(
πj
28

)
, with j = 8,

10, and 12.

4.2 Period Two Points of the Element wn

It is of some interest to consider the element wn = σn−1
1 σ−1

2 σ−1
1 ∈ 〈σ1, σ2〉, because of its

relation to the element σn1σn2 discussed in chapter 2.

Theorem 4.5. xy
z

w2
n =

xy
z

αn. (4.8)

Proof. The actions of σ1 and σ2 are given by the matricesM1 andM2 given in Lemma 2.1.

We note that the inverse of these matrices give the actions of σ−1
1 and σ−1

2 respectively,

as per Lemma 3.2.
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Applying the action of wn twice gives the following:

xy
z

w2
n =

 x∗

−yUn−2(x∗) + Un−1(x∗)(−xUn−3(y) + zUn−2(y)

−yUn−3(x∗) + Un−2(x∗)(−xUn−3(y) + zUn−2(y))

 , (4.9)

where x∗ = −xUn−2(y) + zUn−1(y).

We now show that the second two terms reduce to the terms in equation (2.1). For

the first equation, we note that using the definition of the Chebyshev polynomials, it can

be rewritten in the form

yUn(x∗)− (Un−1(x∗)(−xUk−1(y) + zUk(y)) + (2x∗y + 2xyUn−2(y)− 2yzUn−1(y))).

Thus, it remains to show that 2x∗y+ 2xyUn−2(y)− 2yzUn−1(y) = 0 Substituting back in

for x∗, and expanding, we find that (2x∗y + 2xyUn−2(y) − 2yzUn−1(y) = 0. The second

equation follows almost identically.

This shows that the dual points of wn are the fixed points of αn, which we have already

discussed.

In general, finding the period two points of the action of an element of B3 is a difficult

problem, which we have not been able to solve completely, except in the various special

cases previously discussed. In particular, we can find all of the period two points of wn,

and a subset of the period two points of the action of γnm.
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Chapter 5. Polynomials and Surfaces

Induced by Trace Maps

We continue by expanding upon our knowledge of the group 〈σ1, σ2〉. A significant por-

tion of the following chapter, as well as the first theorem in chapter 2, which forms the

supporting framework for the rest of the thesis, comes from [13].

We know that α ∈ 〈σ1, σ2〉 acts on R3 on the right through Nielsen transformations.

We also know that α ∈ 〈σ1, σ2〉 acts on elements ofQ[x, y, z] on the left by automorphisms.

This can be expanded to an action on Q[x, y, z]3 by acting on each element of a triple

in Q[x, y, z]3 individually. We show that these actions correspond in a sense described

below.

Let σ1 and σ2 act on the left by automorphisms. Their action on (x, y, z) ∈ Q[x, y, z]3

is given by

σ1(x, y, z) = (z, y, 2yz − x);

σ2(x, y, z) = (x, 2xy − z, y).

The right action of σ1 and σ2 on R3 is given by

(X, Y, Z)σ1 = (Z, Y, 2Y Z −X);

(X, Y, Z)σ2 = (X, 2XY − Z, Y ),

where (X, Y, Z) ∈ R3. If we view (X, Y, Z) as elements of Q[x, y, z]3, we obtain an induced

right action of α on Q[x, y, z]3. We will now show that the right action of α and the left

action of α yield the same action on the triple (x, y, z) ∈ Q[x, y, z]3.

Lemma 5.1. For α ∈ 〈σ1, σ2〉 we have

α(x, y, z) = (x, y, z)α.

Proof. We induct on |α|, which we define to be the length of α as a reduced word in the
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σi generators. If |α| = 0, 1 the statement holds by the definitions of the actions.

Assume the result holds for each α such that |α| < n. Let α = α1σ1, with |α1| = n−1

so that |α| = n. By the inductive hypothesis let

α1(x, y, z) = (α1(x), α1(y), α1(z)) = (X(x, y, z), Y (x, y, z), Z(x, y, z)) = (x, y, z)α1.

Then we have the following:

(x, y, z)α = (x, y, z)α1σ1

= (X, Y, Z)σ1

= (Z, Y, 2Y Z −X)

= (α1(z), α1(y), 2α1(y)α1(z)− α1(x))

= α1(z, y, 2yz − x)

= α1σ1(x, y, z)

= α(x, y, z).

The remaining three cases, where α = α1σ
−1
1 , α = α1σ2, and α = α1σ

−1
2 follow similarly.

Theorem 5.2. There is an antiisomorphism from the group 〈σ1, σ2〉, where the elements

of 〈σ1, σ2〉 are viewed as acting on the right, to the group PSL(2,Z).

Proof. Recall that for each element α of B3, we have assigned a matrix using the antiho-

momorphism Φ, where

m1 := Φ(τ1) =

(
1 1

0 1

)
,

m2 := Φ(τ2) =

(
1 0

−1 1

)
,

where τ1 and τ2 are the generators of B3.

Let Φ′ : 〈σ1, σ2〉 → PSL(2,Z), defined by Φ′(σ1) = [m1], Φ′(σ2) = [m2], where [m1]
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and [m2] denote the cosets containing m1 and m2. Now as m1 and m2 generate SL(2,Z),

[m1] and [m2] must generate PSL(2,Z). Thus we can write every element of PSL(2,Z)

as a word in [m1] and [m2]. Therefore, Φ′ is a surjective map. We denote elements of

PSL(2,Z) as square bracketed matrices.

For α ∈ 〈σ1, σ2〉, let (x, y, z)α = (X, Y, Z) where X, Y, Z ∈ Q[x, y, z].

Let Φ′(α) =

[
a b

c d

]
. From (1.5) we have that Φ′(α) =

[
a b

c d

]
if and only if the elements

in B3 it represents, call them υi, have the property that Φ(υi) = ±

(
a b

c d

)
, if and only

if

X(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))) = cos(2π(aθ1 + bθ2)), (5.1)

Y (cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))) = cos(2π(cθ1 + dθ2)), (5.2)

Z(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))) = cos(2π((a+ c)θ1 + (b+ d)θ2)). (5.3)

Note that for both matrices ±Φ(υi), the equations above are the same.

We show that for α ∈ 〈σ1, σ2〉, Φ′(ασji ), for i = 1, 2 j = ±1, is equal to Φ′(σji )Φ
′(α).

We proceed by induction on the length of α. Let |α| be as defined in the proof of Lemma

5.1. The |α| = 0, 1 cases are clear.

Assume that equations (5.1)-(5.3) hold for α, where (x, y, z)α = (X, Y, Z) and Φ′(α) =[
a b

c d

]
, and consider β = ασ1. The other cases are similar.

Then (x, y, z)α = (X, Y, Z) gives (x, y, z)ασ1 = (Z, Y, 2Y Z − X) = (X ′, Y ′Z ′). We

have the following:

Φ′(σ1)Φ′(α) =

[
1 1

0 1

][
a b

c d

]
=

[
a+ c b+ d

c d

]
=

[
a′ b′

c′ d′

]
. (5.4)

We now show that (5.4) satisfies equations (5.1)-(5.3) for ασ1. By our inductive assump-

tion, equations (5.1)-(5.3) hold true for α. Thus we have the following:
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cos(2π(a′θ1 + b′θ2) = cos(2π((a+ c)θ1 + (b+ d)θ2)))

= Z(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2)))

= X ′(2π cos(θ1), cos(2πθ2), cos(2π(θ1 + θ2))).

This satisfies equation (5.1). The proof that equation (5.2) is satisfied follows similarly.

Finally:

Z ′(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2)))

=2Y (cos(2πθ1, cos(2πθ2), cos(2π(θ1 + θ2)))Z(cos(2πθ1), cos(2πθ2),

cos(2π(θ1 + θ2)))−X(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2)))

= 2 cos(2π(cθ1 + dθ2)) cos(2π((a+ c)θ1 + (b+ d)θ2))− cos(2π(aθ1 + bθ2))

= 2 cos(2π(cθ1 + dθ2)) cos(2π((a+ c)θ1 + (b+ d)θ2))

− cos(2π([a+ c]θ1 + [b+ d]θ2]− [cθ1 + dθ2])). (5.5)

We also have

cos((a′ + c′)θ1 + (b′ + d′)θ2) = cos((a+ 2c)θ1 + (b+ 2d)θ2). (5.6)

Let u = aθ1 + bθ2, v = cθ1 +dθ2, w = u+ v. Then the right side of (5.6) equals cos(u+ v),

and (5.5) gives

2 cos(v) cos(w)− cos(w − v) = 2 cos(v) cos(w)− (cos(w) cos(v) + sin(w) sin(v))

= cos(v) cos(w)− sin(w) sin(v) = cos(v + w).

This is sufficient to show that Φ′(ασ1) = Φ′(σ1)Φ′(α). The remaining cases follow simi-

larly.

Continuing with our proof that Φ′ : 〈σ1, σ2〉 → PSL(2,Z) is an antiisomomorphism.

We want to show that Φ′(αβ) = Φ′(β)Φ′(α) for all α, β ∈ 〈σ1, σ2〉. We induct on the
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length of β. The theorem clearly holds if |β|= 0, and if |β|= 1, the theorem holds by our

previous result.

We know that β=β1σ
j
i , where |β1| < |β|. This yields the following:

Φ′(αβ) = Φ′(αβ1σ
j
i ) = Φ′(σji )Φ

′(αβ1) = Φ′(σji )Φ
′(β1)Φ′(α) = Φ′(β)Φ′(α)

This shows that our map Φ′ is an antihomomorphism onto PSL(2,Z).

Now, it is easily seen that (x, y, z)(σ1σ2)3 = (x, y, z), so that the normal closure of

〈(σ1σ2)3〉 lies in the kernel of 〈σ1, σ2〉. It turns out that this subgroup is central. We note

that, by [14], PSL(2,Z) has the presentation

〈[m1], [m2] | [m1][m2][m1] = [m2][m1][m2], ([m1][m2])3〉.

Now, as Φ′ is a surjective antihomomorphism, and since 〈σ1, σ2〉 satisfies the braid rela-

tions σ1σ2σ1 = σ2σ1σ2, and has kernel containing 〈(σ1σ2)3〉, which is a central subgroup,

Φ′ must be an antiisomorphism.

A consequence of the previous theorem is that to each coset m ∈ PSL(2,Z) we

can associate a triple (X(m), Y (m), Z(m)) of polynomials in Q[x, y, z] by choosing some

α ∈ 〈σ1, σ2〉 and letting (X(m), Y (m), Z(m)) = (x, y, z)α, where Φ′(α) = m. We write

Ψ(m) = (X(m), Y (m), Z(m)). So α corresponds to m. From this point forward, to

reduce notational inconvenience, we will write the generators of PSL(2,Z) as m1 and

m2, so that PSL(2,Z) has presentation 〈m1,m2 | m1m2m1 = m2m1m2, (m1m2)3〉.

We now prove the following lemma:

Lemma 5.3. Let n1, n2 ∈ PSL(2,Z).

(i) The following are equivalent:

(a) n1 and n2 have coset representatives having the same first row:

(b) Ψ(n1) and Ψ(n2) have the same first entry:

(c) n1 = Φ′(σk2)n2 for some k ∈ Z.
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(ii) n1 and n2 have coset representatives with the same second row if and only if Ψ(n1)

and Ψ(n2) have the same second entry if and only if n1 = Φ′(σk1)n2 for some k ∈ Z.

Proof. (i) suppose that n1 and n2 have coset representatives with the same first row:

n′1 =

(
a b

c d

)
, ad− bc = 1, n′2 =

(
a b

c′ d′

)
, with ad′ − bc′ = 1. Then

n1n
−1
2 =

[
a b

c d

][
d′ −b
−c′ a

]
=

[
1 0

−k 1

]
.

for some k ∈ Z, which shows that n1 = Φ′(σk2)n2 for some k ∈ Z. Thus (a) implies (c).

Let α1, α2 correspond to n1, n2 so that Φ′(α1) = n1,Φ
′(α2) = n2. Now n1 = Φ′(σk2)n2

gives

Φ′(α1) = Φ′(σk2)Φ′(α2) = Φ′(α2σ
k
2).

Thus, by Theorem 5.2, α1 = α2σ
k
2 . Then Ψ(n1) = (X, Y, Z) = (x, y, z)α1 and Ψ(n2) =

(X ′, Y ′, Z ′). This gives

(X ′, Y ′, Z ′) = (x, y, z)α2 = (x, y, z)α1σ
−k
2 = (X, Y, Z)σ−k2 .

However, the action of σ2 fixes the first entry so that the first rows of Ψ(m1) and Ψ(m2)

are the same. So (c) implies (b).

Now assume that the first entries of Ψ(m1), and Ψ(m2) are the same. Let n1 =

[
a b

c d

]

and n2 =

[
a′ b′

c′ d′

]
. Let Ψ(m1) = (X, Y, Z) and Ψ(m2) = (X ′, Y ′, Z ′). Let αi, i = 1, 2

correspond to the ni. Then

α1(x, y, z) = (x, y, z)α1 = (X, Y, Z), α2(x, y, z) = (x, y, z)α2 = (X, Y ′, Z ′).

We have that α1(x) = X = α2(x) and thus α−1
2 α1(x) = x. Thus

(x, y, z)α−1
2 α1 = α−1

2 α1(x, y, z) = (x, Y1, Z1),
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for some Y1, Z1 ∈ Q[x, y, z]. By Theorem (5.2), we have

Φ′(α−1
2 α1) =

[
1 0

k 1

]
,

which implies that n1n
−1
2 = Φ′(α1)Φ′(α−1

2 ) = Φ′(α−1
2 α1) = Φ′(σk2). So (b) implies (c).

The proof of (ii) is similar.

Definition 5.4. Let

χ = {α(x) : α ∈ 〈σ1, σ2〉}.

Since (x, y, z)σ1σ2 = (z, x, y) and as (x, y, z)(σ1σ2)2 = (y, z, x), we see that χ =

{α(y) : α ∈ 〈σ1, σ2〉} = {α(z) : α ∈ 〈σ1, σ2〉}.

Let Q̂ = Q
⋃
{∞}. We can define Ψ̄ : Q̂→ χ by Ψ̄(a/b) = X, where

m =

[
a b

c d

]
and α(x) = X, Φ′(α) = m. Here we assume that gcd(a, b) = 1. The map Ψ̄

is well defined by Lemma 5.3.

Definition 5.5. For U ∈ Q[x, y, z], let

ν(U) = {(x, y, z) ∈ R3 : U(x, y, z) = 0}.

We also define Pa/b = X and Sa/b = ν(Pa/b). Because 〈σ1, σ2〉 ∼= PSL(2,Z), and by

Lemma 5.3, P(−a)/(−b) = Pa/b, and thus Sa/b = S(−a)/(−b). Also, since σ2 fixes x, P1/0 = x.

For future reference, the case where a = 0 only defines a polynomial if b = ±1. This

case is only important in that it implies that there exists polynomials corresponding to

a denominator b, for any b ∈ Z.

Lemma 5.6. Let X = Pa/b, a/b ∈ Q̂, and α ∈ 〈σ1, σ2〉 where Φ′(α) =

[
a b

c d

]
. Then

X = α(x) and

ν(X) = ν(x)α−1.
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Proof. The first statement has already been shown. To prove the second, let p =

(u, v, w) ∈ ν(X) so that X(u, v, w) = 0. Let (x, y, z)α = (X, Y, Z). Then

p = (u, v, w) = (x, y, z)|p

= (x, y, z)αα−1|p

= (α(x, y, z))α−1|p

= (X, Y, Z)α−1|p

= (X(p), Y (p), Z(p))α−1

= ((0, Y (p), Z(p))α−1 ∈ ν(x)α−1.

This shows that ν(X) ⊂ ν(x)α−1.

If we let q = (r, s, t) ∈ ν(x)α−1, then (r, s, t)α = (0, u, v) for some u, v ∈ R. This gives

the following:

(0, u, v) = (r, s, t)α

= (x, y, z)α|q

= (α(x, y, z))|q

= (X, Y, Z)|q

= (X(q), Y (q), Z(q)).

This shows that X(q) = 0, so that q ∈ ν(X). This gives that ν(X) = ν(x)α−1.

For a/b ∈ Q̂, and m : =

[
a b

c d

]
, define (u/v)m to mean r/s where (u, v)m′ = ±(r, s),

and m′ is a coset representative of m.

Corollary 5.7. Let α ∈ 〈σ1, σ2〉 :

(i) Let X = Pa/b, for some a/b ∈ Q̂, and let m : = Φ′(α) =

[
a b

c d

]
. Then Sa/b =

(S1/0)α−1.

(ii) Let u/v ∈ Q̂. Then S(u,v)m = Su/vα
−1.
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(iii) Let (u/v)m−1 = (r/s). If

(Sa/b ∩ Su/v)α = S1/0 ∩ S(u/v)m−1 ,

Then s = av − cu.

Proof. (i) This follows immediately from Lemma 5.6.

(ii) Let β ∈ 〈σ1, σ2〉 where n = Φ′(β) =

[
u v

u′ v′

]
. Then by (5.2) we have Φ′(αβ) = nm,

and by (i) we have

S(u/v)m = S(1/0)nm

= S(1/0)(αβ)−1

= (S1/0(β)−1)α−1

= S(1/0)nα
−1

= Su/vα
−1.

(iii) (Sa/b ∩ Su/v)α = (Sa/b)α ∩ (Su/v)α, and (Sa/b)α = S(a/b)m−1 = S1/0 and (Su/v)α =

S(u/v)m−1 , which gives the first part of the result. The rest follows easily.

Theorem 5.8. Let a, b, c, d ∈ Z with gcd(a, b) = gcd(c, d) = 1, and let f = ad− bc. Then

T hits Sa/b ∩ Sc/d in 2|f | points. The set Sa/b ∩ Sc/d is a union of |f | copies of R, each

an unbounded 1-manifold.

Proof. Since gcd(a, b) = 1, the Euclidean algorithm guarantees a coset representative

m for a coset m′ ∈ PSL(2,Z) such that

(
a b

c d

)
m−1 =

(
1 0

e f

)
, with e ∈ Z, and

where f = ad − bc, as the determinant of m−1 is 1. Now m′ = Φ′(α) for some element

α ∈ 〈σ1, σ2〉, and by Corollary (5.7), we have that Sa/b ∩ Sc/d and S1/0 ∩ S(c/d)m−1 are

images of each other under α. Thus we can assume that a/b = 1/0, c/d = e/f , where

gcd(e, f) = 1.

Thus we now solve

x = P1/0 = 0, Pe/f = 0.
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In this situation, we see that S1/0 meets T in the circle y2 + z2 = 1, as evaluating

x2 + y2 + z2− 2xyz = 1 at x = 0, leaves one with y2 + z2 = 1. So S1/0 ∩T ∩Se/f consists

of a finite number of points on this circle. We show that there are 2|f | solutions to the

corresponding equations

cos(2πθ1) = 0, cos(2π(eθ1 + fθ2)) = 0.

Without loss of generality, assume that f is greater than 0. On the torus, S1/0 ∩ Se/f

corresponds to the lines

1θ1 + 0θ2 = ±1
4
and eθ1 + fθ2 = ±1

4
+ k, k ∈ Z,

respectively. This gives the solutions

θ1 =
ε1
4
, θ2 =

1

f

(ε2
4

+ k − eε1
1

4

)
,

where εi = ±1, i = 1, 2. This gives 4f possibilities. However, these come in pairs that

are negatives of each other. Thus there are really only 2f such points of S1/0 ∩ Se/f on

T .

Call these 2f points p1, . . . , p2f . Note that each surface S1/0, Se/f intersects trans-

versely near each pk, as the corresponding lines in θ space are not parallel. This gives a

curve of intersection γk(s) near pk.

Theorem 5.9. The points p1, . . . , p2f are connected in pairs by smooth curves of S1/0 ∩

Se/f . Each such smooth arc is given by a single Puiseux-Newton series solution to one of

the irreducible factors of a polynomial P (y, z) = Pa,b,c,d(y, z).

Proof. The surface Se/f is determined by Pe/f (x, y, z); however, for the case

S1/0 ∩ Se/f , our polynomial has x = 0, so Pe/f = Pe/f (0, y, z). Without loss of generality,

we can assume that Pe/f (x, y, z) is the first entry of (x, y, z)α, for some α ∈ 〈σ1, σ2〉.

Lemma 5.10. For all α ∈ 〈σ1, σ2〉 we have

(α(x, y, z))|x=0 = ((x, y, z)α)|x=0 = (0, y, z)α.
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Proof. The first equality has already been shown in Lemma 5.1. We now proceed by

induction on the length n = |α| as word in the generators σ±1
i . This is clear for the case

n ≤ 1. Assume the statement holds for |α| = n, and consider α′ = σ1α, with the rest of

the cases following similarly.

(x, y, z)α = (X, Y, Z), for X = X(x, y, z), Y = Y (x, y, z), Z = Z(x, y, z).

This gives the following:

(x, y, z)σ1α|x=0 = (z, y, 2yz − x)α|x=0

= (X(z, y, 2yz − x), Y (z, y, 2yz − x), Z(z, y, 2yz − x))|x=0

= (X(z, y, 2yz), Y (z, y, 2yz), Z(z, y, 2yz))

= (z, y, 2yz)α

= (0, y, z)σ1α.

Thus we have (α(x, y, z))|x=0 = ((x, y, z)α)|x=0 = (0, y, z)α.

We consider again γi(s), the smooth arc created by the intersection of S1/0 and Se/f .

We can choose γi(0) = pi. This arc is determined by some irreducible factor of Pe/f . Call

this factor Pe/f,i(y, z). By the Newton-Puiseux theorem (see [15]), the factor Pe/f,i(y, z)

and the point pi determine a Puiseux series that we denote by γi(t), that parameterizes

the curve S1/0 ∩ Se/f near pi. Thinking of points in the plane S1/0 (i.e. x = 0), that

are near γi(t), we see that for |t| small, on one side of γ(t), the function Pe/f,i(y, z) will

be positive, while on the other side, the function will be negative. This shows that each

arc of S1/0 ∩ Se/f continues until it meets a non-manifold point p. Further, there is an

interval [r, s) such that γ(r) = pi, and the image γ([r, s)) is a part of S1/0∩Se/f . It follows

by continuity, that γ(s) = p. Now, there is a Puiseux-Newton series g(t) for S1/0 ∩ Se/f

centered at the point p. The series g(t) must agree, perhaps after reparameterization,

with the Puiseux series γ(t) for points of S1/0 ∩ Se/f just before p, but g(t) is defined for

points of S1/0 ∩ Se/f not in f([r, s)). Thus we have points of S1/0 ∩ Se/f that determine a

smooth curve that contains p in its interior. We continue along this curve until we either
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hit one of the pj, or we hit another non-manifold point. In the second situation we repeat

the previous argument. This process terminates as there are only finitely many non-

manifold points. As a consequence, we obtain an infinitely long smooth curve connecting

pi to some pj, j 6= i as required.

From the above, the following theorem follows easily.

Proposition 5.11. The set of curves Sa/b(0, y, z) = ν(Pa/b(0, y, z)) hits T 2|b| times.

Proof. The determinant of

(
1 0

a b

)
is b.

For the remainder of this thesis, we study the polynomials Pa/b(0, y, z), with their

corresponding varieties Sa/b(0, y, z) = ν(Pa/b(0, y, z)). This is equivalent to studying the

curves given by Sa/b ∩ Sc/d, by Lemma 5.10.
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Figure 5.1: Contour Plot of S2/19 ∩ S1/0.
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Figure 5.2: Contour Plot of S2/19 ∩ S1/0, with the unit circle y2 + z2 = 1 which comes
from the equation E(0, y, z) = 1.
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Chapter 6. Relations Between the

Polynomials Pa/b(0, y, z)

We now begin our study of the polynomials Pa/b(0, y, z). In particular, we desire to

know how many distinct polynomials there are for a given b value. This will take up

most of the following two chapters. In this chapter, we will study relations between the

polynomials Pa/b(0, y, z) and P−a/b(0, y, z), and we will study relations between the poly-

nomials Pa/b(0, y, z) and P(b−a)/b(0, y, z). In the first case, we will show that Pa/b(0, y, z) =

±P−a/b(0, y, z) and in the second case, we will show that P(b−a)/b(0, z, y) = Pa/b(0, y, z).

Theorem 6.1. Let b ∈ Z. Then

{{±Pa/b(0, y, z)} : a ∈ Z, gcd(a, b) = 1}

is a finite set of cardinality at most 2ϕ(b), where ϕ is the euler phi function.

Proof. We show that P(a+4b)/b(0, y, z) = Pa/b(0, y, z). Let

α = αa/b, so that Φ′(α) =

[
a b

c d

]
. We note that (0, y, z)σ−4

2 = (0, y, z), thus

(0, y, z)σ−4
2 α = (0, y, z)α.

Thus

P(1/0)Φ′(σ−4
2 α) = P(1/0)Φ′(α)

But

Φ′(σ−4
2 α) = Φ′(α)Φ′(σ−4

2 ) =

[
a b

c d

][
1 0

4 1

]
=

(
a+ 4b b

c+ 4d d

)
.

This implies that we have at most 4ϕ(b) polynomials Pa/b(0, y, z).

Let G = 〈σ1, σ2〉, and let H = 〈σ2
1, σ2〉. The Reidemeister-Schreier process (see [16])

shows that [G : H] = 3. Here, a right transversal is 1, σ1, σ1σ2.

Lemma 6.2. For all α ∈ H, if (x, y, z)α = (X, Y, Z), then (x,−y,−z)α = (X,−Y,−Z).
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Proof. We induct on the length n = |α|, of α as a product of the generators σ±1
i . The case

n = 0 holds. Assume that α ∈ H satisfies the inductive hypothesis. First, let β = ασ2,

so |β| > |α|. Then

(x, y, z)β = (x, y, z)ασ2 = (X, Y, Z) = (X, 2XY − Z, Y ).

Then we have

(x,−y,−z)β = (x,−y,−z)ασ2 = (X,−Y,−Z)σ2

= (X,−(2XY − Z),−Y ).

The case β = ασ−1
2 is similar.

If β = ασ2
1, then we have

(x, y, z)β = (x, y, z)ασ2
1 = (X, Y, Z)σ2

1 = (2Y Z −X, Y, 4Y 2Z − 2XY − Z),

and

(x,−y,−z)β = (x,−y,−z)ασ2
1 = (X,−Y,−Z)σ2

1

= (2(−Y )(−Z)−X,−Y, 4Y 2(−Z)− 2X(−Y )− (−Z))

= (2Y Z −X,−Y,−(4Y 2Z − 2XY − Z)),

as required. The case β = ασ−2
1 is similar.

Now suppose that (0, y, z)α = (X, Y, Z), where α ∈ H. Then we have

(0, y, z)σ−2
2 α = (0,−y,−z)α = (X,−Y,−Z).

Thus for Φ′(α) =

[
a b

c d

]
as above, we see that

Pa/b(0, y, z) = X = Pe/f (0, y, z),

where (e, f) is the first row of a coset representative of

Φ′(σ−2
2 α) = Φ′(α)Φ′(σ−2

2 ) =

[
a b

c d

][
1 0

2 1

]
=

[
a+ 2b b

c+ 2d d

]
,
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so that (e, f) = ±(a+ 2b, b).

We note that H is the subgroup of cosets that have even (1, 2) entry. Thus if b is

even, then there are at most 2ϕ(b) values. If b is odd, the α is either in the coset Hσ1 or

in the coset Hσ1σ2.

First suppose that α ∈ Hσ1, then ασ1 ∈ H. Now let

(0, y, z)α = (X, Y, Z),

so that

(0, y, z)ασ1 = (X, Y, Z)σ1 = (Z, Y, 2Y Z −X).

Since ασ1 ∈ H, we see that

(0,−y,−z)ασ1 = (X, Y, Z)σ1 = (Z,−Y,−(2Y Z −X)),

which gives

(0,−y,−z)α = (0,−y,−z)ασ1σ
−1
1 = (Z,−Y,−(2Y Z −X))σ−1

1 = (−X,−Y,−Z).

This shows that

(0, y, z)σ−2
2 α = (0,−y,−z)α = (−X,−Y, Z),

so we have that P(a+2b)/b(0, y, z) = −Pa/b(0, y, z), which gives the result in this case.

Lastly, suppose that α ∈ Hσ1σ2. As in the above, let (0, y, z)α = (X, Y, Z), so that

(0, y, z)ασ−1
2 σ−1

1 = (X, Y, Z)σ−1
1 σ−1

2 = (Y, Z,X).

Since ασ−1
2 σ−1

1 ∈ H, we see that

(0,−y,−z)ασ−1
2 σ−1

1 = (Y,−Z,−X).

So

(0,−y,−z)α = (0,−y,−z)α(σ−1
2 σ−1

1 (σ−1
2 σ−1

1 )−1

= (Y,−Z,−X)(σ−1
2 σ−1

1 )−1
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= (Y,−Z,−X)σ1σ2

= (−X, Y,−Z).

This shows that P(a+2b)/b(0, y, z) = −Pa/b(0, y, z). The lemma follows.

We now continue with a technical lemma which will lead us to further classify the

polynomials Pa/b(0, y, z). The following shows that given a coset ω =

[
a b

c d

]
, the parity

of c and d, depend only on the parity of a and b, and the length of ω as a word in m1,

and m2. We note that it makes sense at this point to think of the word length of ω as

having a parity, as based on the presentation 〈m1,m2 | m1m2m1 = m2m1m2, (m1m2)3〉

for PSL(2,Z), we can easily see that if two words are equivalent, then they have the

same parity as words in m1, and m2. This follows easily from the fact that the only

relations possible to change words, are to switch an odd number of elements for an odd

number of elements, as in applying m1m2m1 = m2m1m2, or by canceling an even number

of elements, as in (m1m2)3, or as in canceling adjacent elements that are inverses of each

other.

Lemma 6.3. For ω =

[
a b

c d

]
∈ PSL(2,Z):

1. Assume a is odd and b is odd:

(i) If the length of ω is even, then c is odd and d is even.

(ii) If the length of ω is odd, then c is even and d is odd.

2. Assume a is odd and b is even:

(i) If the length of ω is even, then c is even and d is odd.

(ii) If the length of ω is odd, then c is odd and d is odd.

3. Assume a is even and b is odd:

(i) If the length of ω is even, then c is odd and d is odd.

(ii) If the length of ω is odd, then c is odd and d is even.
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Proof. We start by noting that this includes all of the cases, as if ω is in PSL(2,Z), a

and b must be coprime. We induct on the length of ω as a word in m1 and m2.

We note that in the initial case ω=

[
1 0

0 1

]
, the length of ω is even, a is odd, b is even,

c is even and d is odd. This matches 2(i). Next, assume that a is odd and b is odd, and

the length of ω is even. Let ω =

[
a b

c d

]
by the inductive hypothesis, c is odd and d is

even. Consider

β =

[
a b

c d

][
1 1

0 1

]
=

[
a′ b′

c′ d′

]
=

[
a a+ b

c c+ d

]
.

The end result has the length of β being odd, a′ odd and b′ even. Additionally, c′ is odd

and d′ is odd, which matches 2(ii). Next,

β =

[
a b

c d

][
1 10

−1 1

]
=

[
a′ b′

c′ d′

]
=

[
a− b b

c− d d

]
.

The end result has the length of β being odd, a′ even, b′ odd. Additionally, c′ is odd and

d′ is even. This matches 3(ii). The other five cases follow identically.

For notational convenience, let Pa/b(y, z) = Pa/b(0, y, z).

Theorem 6.4. For a, b ∈ Z, with gcd(a, b) = 1, we have Pa/b(y, z) = ±Pa/−b(y, z).

Proof. We start by proving the following lemma. Let ω = ω(m1,m2) a word in the

generators m1 and m2.

Lemma 6.5. If ω(m1,m2) =

[
a b

c d

]
, then ω(m−1

1 ,m−1
2 ) =

[
a −b
−c d

]
.

Proof. We proceed by induction on n = |ω(m1,m2)|. There is a case for each possibility

given in Lemma 6.3, but we will only demonstrate one of these cases. The initial case,

the empty word corresponding to the identity, is clear. Assume that

ω(m1,m2) =

[
a b

c d

]
, ω(m−1

1 ,m−1
2 ) =

[
a −b
−c d

]
.
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Then

ω(m1,m2)m1 =

[
a b

c d

][
1 1

0 1

]
=

[
a a+ b

c c+ d

]
,

ω(m−1
1 m−1

2 )m−1
1 =

[
a −b
−c d

][
1 −1

0 1

]
=

[
a −a− b
−c c+ d

]
,

and

ω(m1,m2)m2 =

[
a b

c d

][
1 0

−1 1

]
=

[
a− b b

c− d d

]
,

ω(m−1
1 m−1

2 )m−1
2 =

[
a −b
−c d

][
1 0

1 1

]
=

[
a− b −b
d− c d

]
.

Thus the induction holds in these cases.

We now classify the actions of α(σ1, σ2) and α(σ−1
1 , σ−1

2 ) by the length of α in regards

to its generators, σ1 and σ2, and in regards to the top row of a matrix representing the

coset corresponding to α.

Lemma 6.6. Assume the following:

(a) (0, y, z)α(σ1, σ2) = (X(y, z), Y (y, z), Z(y, z)),

(b) (0, y, z)α(σ−1
1 , σ−1

2 ) = (X ′(y, z), Y ′(y, z), Z ′(y, z)),

(c) Φ′(α(σ1, σ2)) = ω(m1,m2) =

[
a b

c d

]
.

1. Assume a is odd and b is odd:

(i) If the length of alpha is even, then X ′ = −X, Y ′ = −Y , Z ′ = 2Y X − Z.

(ii) If the length of α is odd, then X ′ = −X, Y ′ = Y , Z ′ = Z − 2XY .

2. Assume a is odd and b is even:

(i) If the length of α is even, then X ′ = −X, Y ′ = Y , Z ′ = Z − 2XY .

(ii) If the length of α is odd, then X ′ = −X, Y ′ = −Y , Z ′ = 2Y X − Z.
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3. Assume a is even and b is odd:

(i) If the length of α is even, then X ′ = X, Y ′ = −Y , Z ′ = Z − 2XY .

(ii) If the length of α is odd, then X ′ = X, Y ′ = −Y , Z ′ = Z − 2XY .

Proof. The result will follow by induction on the length of α. There are six cases, we

will prove one of them, the rest follow identically. Assume that a is odd, b is odd, and

|α| is even. Then by the previous lemma, we know that c is odd and d is even. Also, by

assumption, X ′ = −X, Y ′ = −Y , and Z ′ = 2XY − Z. Then

(0, y, z)α(σ1, σ2)σ1 = (Z, Y, 2Y Z −X),

and

(0, y, z)α(σ−1
1 , σ−1

2 )σ−1
1 = (2X ′Y ′ − Z ′, Y ′, X ′)

= (Z,−Y,−X).

We note that in the resulting case, the length of β = ασ1 is odd, and also that if a′ and

b′ are in the top row of the matrix representing the coset corresponding to β:

[
1 1

0 1

][
a b

c d

]
=

[
a+ c b+ d

c d

]
=

[
a′ b′

c′ d′

]

implies that a′ is even and b′ is odd. The results we obtained from (0, y, z)β(σ1, σ2) and

(0, y, z)β(σ−1
1 , σ−1

2 ) correspond with this result. That is, applying 3(ii), we see that given

(0, y, z)β(σ1, σ2) = (Z, Y, 2Y Z −X),

we should obtain the corresponding term to be

(Z,−Y, 2Y Z −X − 2Y Z) = (Z,−Y,−X),
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which indeed was our result. Doing the same thing with σ2, we obtain

(0, y, z)α(σ1, σ2)σ2 = (X, 2XY − Z, Y ),

and

(0, y, z)α(σ−1
1 , σ−1

2 )σ−1
2 = (X ′, Z ′, 2X ′Z ′ − Y ′)

= (−X, 2XY − Z, Y − 4X2Y + 2XZ).

Multiplication of any coset in PSL(2,Z) on the left by m2 does not change the parity

of a′ and b′. This results in the order of β = ασ2 being odd, with a′ and b′ odd. The

relations between (0, y, z)β(σ1, σ2) and (0, y, z)β(σ−1
1 , σ−1

2 ) correspond with this result.

The remaining five cases follow easily.

Theorem 6.4 now follows, for in every case, the first termX, in (0, y, z)α(σ1, σ2) always

equals the first term of (0, y, z)α(σ−1
1 , σ−1

2 ) up to sign.
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Figure 6.1: Contour Plot of S3/13 ∩ S1/0 and S−3/13 ∩ S1/0.

Lemma 6.7. Assume that (0, y, z)α(σ1, σ2) = (X(y, z), Y (y, z), Z(y, z)), then

(0, y, z)σ−1
2 α(σ−1

1 , σ−1
2 ) = (X(z, y), Y (z, y), (2XY − Z)(z, y)).

Proof. We induct on the length of α. If the length of α is zero, then we have for the first

term (0, y, z) and for the second, (0, z,−y), which satisfies the conclusions of the theorem.

89



Assume the length of α is not zero. Let (0, y, z)α(σ1, σ2) = (X(y, z), Y (y, z), Z(y, z)). By

the inductive hypothesis, (0, y, z)σ−1
2 α(σ−1

1 , σ−1
2 ) = (X(z, y), Y (z, y), (2XY − Z)(z, y)).

Proceeding first with the term α(σ2, σ1)σ1, we obtain the following.

(0, y, z)α(σ1, σ1) = σ1(X(y, z), Y (y, z), Z(y, z))σ1

= (X(y, z), Y (y, z), (2Y Z −X)(y, z)),

(0, y, z)α(σ−1
1 , σ−1

2 ) = σ(X(z, y), Y (z, y), (2XY − Z)(z, y))σ−1
1

= (Z(z, y), Y (z, y), X(z, y)).

As 2Z(y, z)Y (y, z)− (2Z(y, z)Y (y, z)−X(y, z)) = X(y, z), the new element satisfies the

conclusions of the theorem. We now show the same is true for α(σ1, σ2)σ2.

(0, y, z)α(σ1, σ2)σ2 = (X(y, z), Y (y, z), Z(y, z))σ2

= (X(y, z), (2XY − Z)(y, z), Y (y, z)),

while

(0, y, z)α(σ−1
1 , σ−1

2 ) =(X(z, y), Y (z, y), (2XY − Z)(z, y))σ−1
2

=(X(z, y), (2XY − Z)(z, y),

2X(z, y)(2XY − Z)(z, y)− Y (z, y)).

As 2X(y, z)(2XY − Z)(y, z) − Y (y, z) matches the last term, this new element satisfies

the conclusion of the theorem.

Theorem 6.8. For all a, b ∈ Z with gcd(a, b) = 1, Pa/b(y, z) = P(b−a)/b(z, y).

Proof. Assume that Φ′(α(σ1, σ2)) =

[
a b

c d

]
. Then Φ′(α(σ−1

1 , σ−1
2 )) =

[
a −b
−c d

]
.
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We know that σ−1
2 α(σ−1

1 , σ−1
2 ) corresponds to

[
a −b
−c d

][
1 0

1 1

]
=

[
a− b −b
d− c d

]
.

Which implies that, by Lemma 6.7, Pa/b(y, z) = P(a−b)/−b(z, y) = P(b−a)/b(z, y).
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Figure 6.2: Contour Plot of S23/41 ∩ S1/0.
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Figure 6.3: Contour Plot of S18/41 ∩ S1/0.

Our eventual goal, which will be achieved in the next chapter, is to prove that there

are precisely φ(b) sets of curves Sa/b(y, z) associated to the polynomials Pa/b(y, z).
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Chapter 7. Uniqueness of the Curves

Sa/b ∩ S0/1

The ultimate goal of this chapter will be to show that there are precisely φ(b) polynomials

Pa/b(y, z), up to sign, for each b ∈ Z. We will obtain many interesting results along the

way. Of particular note, we will determine the degree of a polynomial Pa/b(y, z) in terms

of a and b.

We start by classifying the polynomials Pa/b(y, z) mod the ideal I = (y2 + z2 − 1).

Let Un = Un(z), Tn = Tn(z). Acting on (0, y, z) mod I actually only yields six possible

sets of polynomials for (X, Y, Z) These are

(i) (Ta, yUa+b, yUb);

(ii) (yUa, Tb, yUa+b);

(iii) (yUa, yUa+b, Tb);

(iv) (−Ta, yUa+b,−yUb);

(v) (−yUa,−Tb, yUa+b);

(vi) (yUa,−yUa+b,−Tb).

Here the a and b do not necessarily correspond to the matrices corresponding to the

images of (0, y, z). Now, recall that U−n = −Un−2 and T−n = Tn. We will show that this

set of types is preserved mod I, under the action of 〈σ1, σ2〉.

Lemma 7.1. The previously discussed types of polynomials are the only possible polyno-

mials generated by 〈σ1, σ2〉 mod I.

Proof. It is clear that the actions of σ1 and σ2 take one of these forms mod I

(1)(Ta, yUa+b, uUb)σ1 = (yUb, yUa+b,−Ta+2b+2) = (yUb,−yU−a−b−2,−T−a−2b−2)

(2)(Ta, yUa+b, yUb)σ2 = (Ta, yU2a+b, yUa+b)
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(3)(yUa, Tb, yUa+b)σ1 = (yUa+B, Tb, yUa+2b)

(4)(yUa, Tb, yUa+b)σ2 = (yUa, yUa−b, T−b)

(5)(yUa, yUa+b, Tb)σ1 = (Tb, yUa+b, yUa+2b)

(6)(yUa, yUa+b, Tb)σ2 = (yUa,−T2a+b+2, yUa+b) = (−yU−a−2,−T2a+b+2, yUa+b)

(7)(−Ta, yUa+b,−yUb)σ1 = (−yUb, yUa+b, Ta+2b+2) = (yU−b−2, yUa+b, Ta+2b+2)

(8)(−Ta, yUa+b,−yUb)σ2 = (−Ta,−yU2a+b, yUa+b) = (−T−a, yU−2a−b−2, yU−a−b−2)

(9)(−yUa,−Tb, yUa+b)σ1 = (yUa+b,−T−b, yU−a−b−2)

(10)(−yUa,−Tb, yUa+b)σ2 = (−yUa, yUb−a−2,−Tb) = (yU−a−2, yUb−a−2,−Tb)

(11)(yUa,−yUa+b,−Tb)σ1 = (−Tb,−yUa+b, yUa+b) = (−Tb, yU−a−b−2,−yU−a−2b−2)

(12)(yUa,−yUa+b,−Tb)σ2 = (yUa, T−2a−b−2, yU−a−b−2).

Thus we see that that the only possible polynomials generated by 〈σ1, σ2〉 mod I are the

ones previously described.

Viewing the actions of σ1 and σ2 as permutations, we induce a homomorphism

Σ: PSL(2,Z)→ S6 :

σ1 → (1, 6, 4, 3), σ1 → (2, 3, 5, 6).

This image is isomorphic to S4. We now have the following lemma.

Lemma 7.2. Let α ∈ 〈σ1, σ2, 〉, where Φ′(α) =

[
a b

c d

]
. Let (0, y, z)α = (X, Y, Z). Then

(i) deg(X) = |b|;

(ii) deg(Y ) = |d|;

(iii) deg(Z) = |b− d|.

Proof. We can assume that b > 0, using the fact that Pa/b = P(−a)/(−b). Let (x, y, z)α =

(X ′, Y ′, Z ′), and let (0, y, z)α = (X, Y, Z). Then by Lemma 5.10 we have thatX ′(0, y, z) =

X, Y ′(0, y, z) = Y, Z ′(0, y, z) = Z. Each of these polynomials has a unique term of highest

degree. Further, considering X, then if we reduce X mod (y2 + z2− 1), which eliminates
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all even powers of y from X, the leading term reduces to dzε or dyzε, for some constant

d, and ε ∈ N. We note that this does not change the total degree of X. Now, let θ1 = 1
4
.

We have that

X ′(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2))) =X ′(0, cos(2πθ2),− sin(2πθ2))

=X(0, cos(2πθ2),− sin(2πθ2)).

There are similar equations for Y ′ and Z ′. However, using equation (5.1), we know that

X(0, cos(2πθ2),− sin(2πθ2)) =X ′(cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2)))

= cos
(aπ

2
+ 2πbθ2

)
. (7.1)

Now, letting z = − sin(2πθ2), y = cos(2πθ2), we see that we already have that y2 +z2 = 1,

which implies that X(0, cos(2πθ2),− sin(2πθ2) is of the form Tn(− sin(2πθ2)), or is of the

form cos(2πθ2)Un−1(− sin(2πθ2)). Assume that we have an equation of the first form.

Then

Tn(− sin(2πθ2)) = Tn

(
cos
(π

2
+ 2πθ2

))
= cos

(nπ
2

+ 2nπθ2

)
.

The equality (7.1) holds only if n = b. Which implies that X(0, y, z) mod (x2 +y2−1) is

of degree b. As X(0, y, z) mod (x2 + y2− 1) has the same degree as X(0, y, z), X(0, y, z)

must have degree b. The other case follows similarly.

This is important in proving the next theorem.

Theorem 7.3. Let α ∈ 〈σ1, σ2〉. Assume (0, y, z)α = (X(y, z), Y (y, z), Z(y, z)). Also

assume that ν as a word in σ±1
i corresponds to some word ω in m±1

1 ,m±1
2 , where ω is the

coset

[
a b

c d

]
, and has the property that with the property that |a| < |b|, and |c| < |d|.

Then the degrees of the leading terms of the polynomials X, Y , and Z are given by the

following:

(i) X(y, z) has leading term c1y
||b|−|a||z|b|−||b|−|a||

(ii) Y (y, z) has leading term c2y
|d|−|c||z|d|−||d|−|c||
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(iii) Z(y, z) has leading term c3y
||b+d|−|a+c||z|b+d|−||b+d|−|a+c||

where ci, i = 1, 2, 3 are constants.

Proof. We prove this for the Z case, the rest follow similarly. We induct on |a| + |b| +

|c|+ |d|. If |a|+ |b|+ |c|+ |d| = 2, the statement holds, as the possibilities are only ±I.

This is the smallest possible case in PSL(2,Z). It suffices to show that if the result holds

for

[
a b

c d

]
, it holds for mε

i

[
a b

c d

]
=

[
a′ b′

c′ d′

]
, where |a′| < |b′|, |c′| < |d′|, i = 1, 2 and

ε = ±1. Also, it is easy to note that since a′d′ − b′c′ = 1, if |a| increases, |b| increases

(assuming c,d fixed as in the σ1 case). The same holds true for |c| and |d| in the σ2 case.

Finally, the fact that a′d′ − b′c′ = 1 allows us to determine the sign of the third element

given the other three. We can assume that a > 0, by representing our coset with the

matrix which has a positive a value. This significantly reduces the number of cases we

have to deal with. We proceed with one nontrivial case, the rest follow similarly. Consider

the element m1

[
a b

c d

]
=

[
1 1

0 1

][
a b

c d

]
. Assume a > 0, d > 0, c < 0, and b < 0. Then

|c| > |2a| and |d| > |2b|, or else the magnitude of the values in the (1, 1) and (1, 2) slots

decreases. We can assume that each polynomial can be built up without ever reducing

its degree at any step, which allows us to say that we simply require deg(Y Z) = deg(Z ′),

where Y ,Z are determined by a,b,c,d, and Z ′ is determined by a′, b′, c′, d′. Thus we desire

||d| − |c||+ ||b+ d| − |a+ c|| = ||b+ 2d| − |a+ 2c||.

If this holds, then the exponents of y in the third term of (0, y, z)α, and the expected

values given by the action corresponding to

[
a′ b′

c′ d′

]
, are the same. By Lemma 7.2, this

determines the exponent of z in the highest degree term. Hence, the theorem is proved

for this case. The rest of the cases follow similarly.

For the last theorem, we assumed that |a| < |b|. We now show that every polynomial

is equivalent up to sign to a polynomial satisfying the above condition.

Lemma 7.4. Every polynomial Pa/b is equivalent up to sign, with a polynomial Pa′/b

where |a′| < |b|.
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Proof. Again assume that b > 0. Note that (0, y, z)σ±2
2 = (0,−y,−z), and (0, y, z)σ±4

4 =

(0, y, z). Now, by Lemma 6.2, if (0, y, z)α = (X(y, z), Y (y, z), Z(y, z)), then (0,−y,−z)α =

(−X(y, z), Y (y, z),−Z(y, z)). Assume that Φ′(α) = A =

[
a b

c d

]
∈ PSL(2,Z). Now,

Am2k
2 =

[
a− 2bk b

c− 2dk d

]
.

The fact that there exists a k ∈ Z that forces |a− 2bk| < |b| is a trivial algebraic result.

Choosing such k, we note that the coset Am2k
2 is the image of σ2k

2 α under Φ′. Now,

(0, y, z)σ2k
2 α = (0,±y,±z)α = (±X,±Y,±Z), and this completes the lemma.

This gives us the main result of the section.

Theorem 7.5. Each polynomial Pa/b(y, z), 0 ≤ a < b is unique, and each defines a

unique set of curves Sa/b(y, z). Every other polynomial Pa/b(y, z). with a any element of

Z such that gcd(a, b) = 1, is equivalent, up to sign, to a polynomial Pa′/b, 0 ≤ a′ < b.
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Chapter 8. Characteristics of the

Polynomials Pb(y, z)

Definition 8.1. For b ∈ N, define

Pb(y, z) =
b−1∑
i=1

gcd(i,b)=1

Pa/b(y, z). (8.1)

The polynomial Pb(y, z) is the object of study for this chapter of the thesis. The

polynomial Pb is of interest, because it is the sum of all polynomials corresponding to a

particular b ∈ Z. It has some interesting properties, one of which we can state immedi-

ately.

Theorem 8.2. For any b ∈ N, (y + z) is always a factor of Pb(y, z)

To prove this, we use the following lemma:

Lemma 8.3. Assume that (0, y, z)α = (X, Y, Z) is associated to some coset of the form[
a b

c d

]
, where we assume 0 < |a| < |b|, and 0 < |c| < |d|. Then, each of X(y, z), Y (y, z),

and Z(y, z) is either odd or even in both y and z.

Proof. We prove this by induction on the length of α as a word in σ1 and σ2. It clearly

holds in the case where |α| = 0, 1. Note that since we don’t care that much about the

eventual sign, we can apply Theorem 6.4, which will allow us to assume that a, b, c, d are

positive, this reduces the number of cases that have to be done. Now assume the lemma

is true for X(y, z), Y (y, z) and Z(y, z). The triple (X, Y, Z) is associated to some coset[
a b

c d

]
. We note that by Theorem 7.3, we can determine the parities of X, Y and Z in

the variables y and z in which variable based on the parity of a, b, c, and d. We will do

one case. Assume that b is odd, a is even, d is even and c is odd. Then we have that,

by Theorem 7.3, that X(y, z) is odd in y, and even in z, Y (y, z) is odd in y and odd in

z, and Z(y, z) is even in y, and odd in z. Consider (X, Y, Z)σ1 = (Z, Y, 2Y Z − X). In

this case, the first two elements of the triple, Z and Y , clearly satisfy the lemma, and it

remain to show that the last element of the triple does. For the last element, note that
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Y Z is odd in y and even in z, which matches X, hence 2Y Z −X is odd in y and even in

z, and thus satisfies the lemma. The rest of the cases follow similarly.

We now prove Theorem 8.2.

Proof. We note that since gcd(a, b) = 1, X(y, z) is odd in exactly of the variables y and

z, by Theorem 7.3. Thus plugging in y = −z into Pa/b(t, z) and into Pb−a/b(y, z) we see

that since Pa/b(y, z) = Pb−a/b(z, y), we have Pa/b(−z, z) + Pb−a/b(−z, z) = 0. Thus, since

for each a there is a corresponding b− a that is also relatively prime to b, all terms must

cancel out, and we are left with Pb(−z, z) = 0 This implies that (y + z) is a factor of

Pb(y, z)

Returning to the polynomial types of Pa/b(y, z) mod I given in Lemma 7.1, we derive

further information on the polynomials Pb(y, z). Recall that we have a homomorphism

Σ: PSL(2,Z)→ S6 defined by letting

σ1 → (1, 6, 4, 3), σ1 → (2, 3, 5, 6).

This image is isomorphic to S4. A magma calculation tells us that the kernel of Σ is the

congruence mod 4 subgroup. This implies that the index of the kernel of Σ is order 24.

Magma gives a transversal for ker(Σ) that we order as follows.

(1) id =

[
1 0

0 1

]
, (2) m1 =

[
1 1

0 1

]
, (3) m2 =

[
1 0

−1 1

]
,

(4) m−1
1 =

[
1 −1

0 1

]
, (5) m−1

2 =

[
1 0

0 1

]
, (6 )m2

1 =

[
1 2

0 1

]
,

(7) m1m2 =

[
0 1

−1 1

]
, (8) m1m

−1
2 =

[
2 1

1 1

]
, (9) m2m1 =

[
1 1

−1 0

]
,

(10) m2
2 =

[
1 0

−2 1

]
, (11) m2m

−1
1 =

[
1 −1

−1 2

]
, (12) m−1

1 =

[
2 −1

−1 1

]
,

(13) m−1
1 m−1

2 =

[
0 −1

1 1

]
, (14) m−1

2 m1 =

[
1 1

1 2

]
, (15) m−1

2 m−1
1 =

[
1 −1

1 0

]
,
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(16) m2
1m2 =

[
−1 2

−1 1

]
, (17) m2

1m
−1
2 =

[
3 2

1 1

]
, (18) m1,m2m1 =

[
0 1

−1 0

]
,

(19)m1m
2
2 =

[
−1 1

−2 1

]
, (20) m1m2m

−1
1 =

[
0 1

−1 2

]
, (21) m1m

−1
2 m1 =

[
2 3

1 2

]
,

(22) m1m
−1
2 m1 =

[
2 −1

1 0

]
, (23) m2

2m1 =

[
1 1

−2 −1

]
, (24) m2

1m
2
2 =

[
−3 2

−2 1

]
.

The matrices above correspond to the images (0, y, z)α as follows:

(1) (0, y, z) = (yU−1, yU0, T1);

(2) (0, y, z)σ1 = (z, y, 2yz) = (T1, yU0, yU1);

(3) (0, y, z)σ2 = (0,−z, y) = (yU−1, T1, yU0);

etc.

Proposition 8.4. (a) If a, b ∈ Z are odd with a ≡ b mod 4, and gcd(a, b) = 1, then

Pa/b(y, z) ≡ Tb(z) mod I.

(b) If a, b ∈ Z are odd with a 6≡ b mod 4 and gcd(a, b) = 1, then

Pa/b(y, z) ≡ −Tb(z) mod I.

(c) If a, b ∈ Z, gcd(a, b) = 1, with (a, b) mod 4 in {(3, 0), (1, 2), (2, 3), (0, 1)}, then

Pa/b(y, z) ≡ yUb−1(z) mod I.

(d) If a, b ∈ Z, with gcd(a, b) = 1, with (a, b) mod 4 in {(0, 3), (2, 1), (3, 2), (1, 0)}, then

Pa/b(y, z) ≡ −yUb−1(z) mod I.
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Proof. For α ∈ 〈σ1, σ2〉, we can write α = αiβ where β ∈ ker(Σ), and αi is one of the

coset representatives. Let (X, Y, Z) = (0, y, z)αi.

Here, β is in the kernel of Σ so that β does not change the type of the first entry of

(0, y, z)αi mod I. Hence if (0, y, z)αi = (Tc, yUc+d, yUd), then

(0, y, z)α = (0, y, z)αiβ = (Tc′ , yUc′+d′ , yUd′).

Given this, we simply check the 24 αi cases. We have already checked the first few

above.

This finally allows us to prove the following.

Corollary 8.5. Let p be an odd prime.

(i) If p ≡ 1 mod 4, then
∑p−1

i=1 Pi/p(y, z) ∈ I.

(ii) If p ≡ 3 mod 4, then
∑p−1

i=1 Pi/p(y, z) 6∈ I.

Proof. (i) if i ≡ 1 mod p, then Proposition 8.4 (a) gives Pi/p(y, z) = Tp(z) mod I. If

i ≡ 2 mod p, then Proposition 8.4 (d) gives Pi/p(y, z) = −Tp(z) mod I. If i ≡ 3

mod p, then Proposition 8.4 (b) gives Pi/p(y, z) = −Tp(z) mod I. If i ≡ 0 mod p,

then Proposition 8.4 (c) gives Pi/p(y, z) = yUp−1(z) mod I.

Thus, considering the sum
∑p−1

i=1 Pi/p we see that writing i = 1 + 4k, 2 + 4k, 3 +

4k, 4 + 4k, we obtain the terms Tp(z) − yUp−1(z) − Tp(z) + yUp−1(z) = 0. Given

that p ≡ 1 mod 4, the result follows, as p− 1 ≡ 0 mod 4.

(ii) Using the same idea, Proposition 8.4 tells us that the contribution to the sum∑p−1
i=1 Pi/p from i = 1 + 4k, 2 + 4k, 3 + 4k, 4 + 4k is −Tp(z) + yUp−1(z) + Tp(z) −

yUp−1(z) = 0. However, since p ≡ 3 mod 4, and the cycle that leads to cancellation

is of length four, the sum cannot be 0 mod I. In particular, the sum is equal to

−Tp(z) + yUp−1(z) 6≡ 0 mod I.

This concludes the proof.

Corollary 8.5 implies several ideas. The first is that (x2 +y2−1) is a factor of Pb(y, z)

for all b given that b is prime and b ≡ 1 mod 4. A consequence of this is that the
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intersection of Pb(y, z) and the level surface T in the plane x = 0 is the entirety of T

intersected with the x = 0 plane.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 8.1: Contour Plot of P7(y, z) = 0

-2 -1 0 1 2

-2

-1

0

1

2

Figure 8.2: Contour Plot of P13(y, z) = 0
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Chapter 9. Conclusion

We conclude this thesis with a review of the results. We have studied the duality of the

fixed points on T of the action induced by αn. We have not studied this in general for

γnm, but we know how to do so. We understand the fixed points of the action of αn and

γnm on T . We have identified and studied a class of period two points of the action of

γnm on R3. We have not been able to study the fixed points on T for most elements of

B3. We do not yet have a complete understanding of the period two points of either αn

or γnm, nor have we studied the duality of the period two points we have found. In the

second part of the thesis, we have a fairly good understanding of the properties of the

polynomials Pa/b(y, z). We have shown that understanding these polynomials reduces to

understanding the polynomials Pa′/b(y, z), where 0 < a′ < b, and we understand several

of the properties that the sum Pb(y, z) has, where Pb(y, z) is the sum of the distinct

polynomials Pa/b(y, z), for a specific b value.

9.1 Further Research

Further research questions might include: explicitly calculating the dual points of the

action of γnm; investigating the duality of period two points; investigating other trace

maps, along with their invariant sets; and determining what families of diffeomorphisms

of R3 are induced by trace maps.

In addition to the previous, there are several other things that we do not understand

very well, that have not received any attention in the thesis so far, but are directly related

to the results therein. Consider the following image, given in Section 2.5.
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Figure 9.1: Projection of T , curves given by G22, and fixed points.

Consider the set of intersection points marked on the above image. Recall that these

are the x and y coordinates of the reversing fixed points of the action of α22, unioned

with the preserving fixed points of α22 that lie on the boundary of the unit square.
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Figure 9.2: The x and y coordinates of reversing and boundary points of the action of
α22 on T

If we take the curves given by projecting T to the x− y plane using the substitution

z = x(1 + Un−2(y))/Un−1(y), and rotate them 90◦, and superimpose the points given in

Figure 9.2 onto these curves, we obtain the following.
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Figure 9.3: The x and y coordinates of the reversing and boundary points, with a rotation
of the projection of T .

We see that each reversing fixed point, and each boundary point lies not only on the

projection of T , but also on the projection of T rotated 90◦. This isn’t that surprising,

as the system is very symmetrical. However, if we look at the projection of T and its

rotation, as well as the reversing fixed points and the boundary points of the action of

α22, we obtain the following image.

106
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Figure 9.4: The x and y coordinates of the reversing and boundary points, with the
projection of T and its rotation.

Figure 9.4 shows that each of the previous points lie on the intersection of the pro-

jection of T , and its 90◦ rotation. However, these points only account for approximately

half of the intersection points. Consider the following.
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Figure 9.5: The x and y coordinates of the intersection of the projection of T and its
rotation.

Recall that the element α22 ∈ B3 acts on R via the diffeomorphism σ22
1 σ

22
2 . In Figure

9.5, we have plotted the x and y coordinates of the reversing and boundary points of the

diffeomorphism σ22
1 σ
−22
2 restricted to T , in addition to the x and y coordinates of the

reversing and boundary points of the diffeomorphism σ22
1 σ

22
2 .

The fact that the intersections of the projection of T and its rotation yield the revers-

ing and boundary points of the diffeomorphisms σn1σn2 and σn1σ
−n
2 holds for each example

we have tried, and in fact would not be particularly difficult to prove in general, but

we do not know why this occurs. It is worth investigating, as it could shed light on the

relationship between trace maps and invariant sets.
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