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abstract

Convolutions and Convex Combinations of Harmonic Mappings of the Disk

Zachary M Boyd
Department of Mathematics, BYU

Master of Science

Let f1, f2 be univalent harmonic mappings of some planar domain D into the complex
plane C. This thesis contains results concerning conditions under which the convolution
f1 ∗ f2 or the convex combination tf1 + (1− t)f2 is univalent. This is a long-standing prob-
lem, and I provide several partial solutions. I also include applications to minimal surfaces.

Keywords: Geometric function theory, harmonic maps, minimal surfaces, differential geom-
etry
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Chapter 1. Introduction

1.1 Overview

Harmonic mappings in geometric function theory has received a lot of attention in the last

three decades and has become a large and diverse subject, including topics as wide-ranging as

p-valent functions, boundary characterizations, and coefficient bounds. This thesis focuses

primarily on convolution of harmonic mappings and its relationship to univalence and other

geometric conditions. Several original theorems on this subject comprise the bulk of this

work, although I include substantial excursions into the study of convex combinations and

minimal surface theory.

In this first chapter we will discuss some background material about planar harmonic

mappings. These functions can be thought of as a generalization of analytic maps, and so

we will first present a brief overview of analytic univalent mappings. Then we will discuss

harmonic mappings with an emphasis on three topics: the shearing technique, inner mapping

radius, and convolutions. Finally, we will discuss the connection between planar harmonic

mappings and minimal surfaces.

1.2 Analytic univalent maps

Definition 1.1. Let F : D ⊂ C → C. The function F (x + iy) = u(x + iy) + iv(x + iy) is

analytic if:

• u and v are real harmonic in D; and

• u and v are harmonic conjugates

(that is, ux = vy and uy = −vx).

In this context, a function u(x, y) : R2 → R is called real harmonic if uxx + uyy = 0.

While analytic functions may map from any open, connected set in general, the following

theorem allows us to restrict attention to the unit disk D in many cases.
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Theorem 1.2 (Riemann Mapping Theorem). Let G 6= C be a simply-connected domain with

a ∈ G. Then there exists a unique univalent, surjective, analytic function F : G → D such

that F (a) = 0 and F ′(a) > 0.

Thus if D is a simply-connected, proper subset of the complex plane, we may replace

the function f : D → C by the function f ◦ φ : D → C, where the existence of φ : D → D

is guaranteed. Therefore, in the study of univalent (one-to-one) analytic functions, we may

restrict our attention to the following class of functions.

Definition 1.3. The family of analytic, normalized, univalent functions denoted by S is

S = {F : D→ C |F is analytic and univalent,F (0) = 0, F ′(0) = 1}.

The functions in this family are also known as schlicht functions. Note that F ∈ S implies

F (z) = z + a2z
2 + a3z

3 + · · · . The following are two essential examples that will be used

throughout the paper.

Example 1.4 (The analytic right half-plane mapping).

Fh(z) =
z

1− z
=
∞∑
n=1

zn = z + z2 + z3 + · · · ∈ S.

Example 1.5 (The Koebe function).

Fk(z) =
z

(1− z)2
=
∞∑
n=1

nzn = z + 2z2 + 3z3 + · · · ∈ S.

Note that Fk maps to the entire complex plane minus a slit from −1/4 to ∞ (see figure

1.1).

Some important properties of the family S include

• The uniqueness condition in the Riemann Mapping Theorem.

2



Figure 1.1: The image of D under Fk(z) = z
(1−z)2 ∈ S.

• (de Branges’ Theorem) For F ∈ S, |an| ≤ n, for all n.

• (Koebe 1
4
-Theorem) If F ∈ S, then F (D) contains the disk G = {w : |w| < 1

4
}.

See [17] for more background in univalent analytic functions.

1.3 Harmonic univalent maps

Complex-valued harmonic functions are a generalization of the analytic functions in which

the one of the requirements is relaxed.

Definition 1.6. Let f : D ⊂ C→ C. The function f(x, y) = u(x, y)+ iv(x, y) is a (complex-

valued) harmonic function if:

• f is continuous; and

• u and v are real harmonic in D.

This definition views harmonic functions as being composed of real and imaginary parts.

If D is simply-connected, we have a useful characterization (see [4]).

Theorem 1.7. If f = u+ iv is harmonic in a simply-connected domain G, then f = h+ g,

for some analytic functions h and g.

3



Note that f = h+ g is equivalent to f = Re{h+g}+ i Im{h−g}. Also, one consequence

of this theorem is that a harmonic function f is represented by a power series of the form

f(z) = h(z) + g(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
n.

In particular, every harmonic function with domain D is just the sum of analytic and

coanalytic parts, represented by h and g, respectively. To see the geometric effect of including

g, we recall that an analytic map is called conformal if the angle between intersecting curves

in the domain is the same as the angle between their image curves. A harmonic map is the

sum of two maps, one which preserves angles, and another which reverses them. After some

reflection, it should be clear that if |h′(z0)| > |g′(z0)|, then the map is sense-preserving at

z0, meaning that positive angles remain positive, and negative angles remain negative under

the map f . Equivalently, we say that a function is sense-preserving if the left-hand side of a

directed curve is mapped to the left-hand side of its image. The following theorem formalizes

this intuition.

Theorem 1.8 (Lewy [30]). f(z) = h(z) + g(z) is locally univalent and sense-preserving if

and only if |ω(z)| = |g′(z)/h′(z)| < 1 for all z ∈ D.

The function ω = g′/h′ is known as the dilatation of f = h+ g.

In the pages that follow, graphs of functions are usually the image of the unit disk under

the function in question. Also, many of these images have been created by the online applet

ComplexTool [12].

Example 1.9.

4



• Analytic polynomial map: Fp(z) = z − 1
2
z2

Figure 1.2: The image of D under Fp.

• Harmonic polynomial map: fp(z) = z + 1
2
z2

Figure 1.3: The image of D under fp.

Example 1.10.

• Analytic right half-plane map: Fh(z) = z
1−z

Figure 1.4: The image of D under Fh.

5



• Harmonic right half-plane map: fh(z) = Re
(

z
1−z

)
+ i Im

(
z

(1−z)2

)

Figure 1.5: The image of D under fh.

Observe that in the harmonic case, terms involving z are permissible, but terms involving

zz are not. Also, the graphics highlight the fact that the images of radial and circular lines

intersect at right angles in the conformal case, but not in the harmonic case.

The boundary of fp(D) in Example 1.9 consists of concave arcs, and the boundary of

fh(D) in Example 1.10 gets mapped to just two points, w = −1
2

and w =∞. These examples

illustrate an important fact about the boundary behavior of certain harmonic functions:

Theorem 1.11 (Weitsman [42]). Let f be a univalent harmonic mapping with smooth bound-

ary extension. Suppose for any sequence f(zn) = ζn → ζ ∈ ∂f(D), we have |ω(zn)| → 1.

Then the boundary of f(D) is a concave arc.

Example 1.10 also shows that the uniqueness part of the Riemann mapping theorem fails

in the harmonic case, since both maps, Fh and fh, send the disk to the same right half-plane.

As a final point in this section, we note that, in analogy to S, we define the classes SH

and SOH as follows.

Definition 1.12. Let SH be the family of complex-valued, harmonic, univalent mappings

6



that are normalized on the unit disk; that is,

SH = {f : D→ C | f is harmonic and univalent

f(0) = a0 = 0, fz(0) = a1 = 1}.

SOH = {f ∈ SH | fz(0) = b1 = 0}.

Thus, S ⊂ SOH ⊂ SH. Other important classes include K,KH, and KO
H , which are the

subclasses of S, SH, and SOH containing only the convex functions, which are exactly those

whose image is a convex domain in C.

We now introduce some major unsolved problems in the field that have obvious analogues

in the theory of analytic functions. For years, the biggest problem in the theory of univalent

analytic functions was the Bieberbach Conjecture, which was solved by DeBrange in 1984.

Solving this problem allows us to know the sharp bounds on growth and distortion of har-

monic maps, among other things. In the non-analytic case, we have the following. (See [16]

for background on these fundamental conjectures.)

Conjecture 1 (Harmonic Bieberbach Conjecture). Let

f(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
n ∈ SOH .

Then

• |an| ≤ 1
6
(n+ 1)(2n+ 1),

• |bn| ≤ 1
6
(n− 1)(2n− 1),

•
∣∣|an| − |bn|∣∣ ≤ n.

Currently, the best proven bound is that for all functions f ∈ SOH , |a2| < 49. The conjecture

is that |a2| ≤ 5
2
.

Recall that for analytic functions we have the Koebe 1
4
-Theorem, which gives the min-

imum distance between the origin and the boundary image of f for analytic functions. In

7



the harmonic case, we have

Conjecture 2. If f ∈ SOH, then f(D) contains the disk G =
{
w : |w| < 1

6

}
.

Currently, the best result is that the range of f ∈ SOH contains the disk
{
w : |w| < 1

16

}
.

1.4 Shearing

In their paper, Clunie and Sheil-Small introduced the shearing technique that provides a

procedure for constructing harmonic maps f = h + g that are univalent. Before describing

the shearing technique, we need the following definition.

Definition 1.13. A domain Ω is convex in the horizontal direction (CHD) if every line

parallel to the real axis has a connected intersection with Ω.

In Figure 1.6 we see examples of this concept. We can now state the Shearing Theorem.

CHD not CHD

Figure 1.6: Convex in the horizontal direction (CHD).

Theorem 1.14 (Shearing Theorem, [4]). Let f = h + g be a harmonic function that is

locally univalent in D (i.e., |ω(z)| < 1 for all z ∈ D). The function F = h− g is an analytic

univalent mapping of D onto a CHD domain if and only if f = h+ g is a univalent mapping

of D onto a CHD domain.

Summary of the Shearing Technique: To use the shearing technique we start with

• an analytic function F that is CHD, and

• an analytic function ω such that |ω(z)| < 1 for all z ∈ D.

8



Then we solve the system of equations F = h− g and ω = g′/h′ for g and h. The resulting

harmonic function f = h+ g is guaranteed to be univalent.

Notice that it is easy to reformulate Clunie and Sheil-Small’s Shearing Theorem for

functions which are convex in other directions. In particular, consider the case of convex in

the vertical direction which we will use in this paper.

Definition 1.15. A domain Ω is convex in the vertical direction (CVD) if every line parallel

to the imaginary axis has a connected intersection with Ω.

Theorem 1.16. Let f = h + g be a harmonic function that is locally univalent in D (i.e.,

|ω(z)| < 1 for all z ∈ D). The function F = h+g is an analytic univalent mapping of D onto

a CVD domain if and only if f = h+ g is a univalent mapping of D onto a CVD domain.

More generally, shearing in any direction θ can be achieved by considering the function

h− e2iθg. In [4] it was shown that a harmonic function maps to a convex domain if and only

if its shears in every direction are convex in that direction.

Example 1.17. Consider the analytic function

Fp(z) = z − 1
2
z2.

This is the analytic polynomial map Fp given in Example 1.9. It is CHD. Now choose a

dilatation. We will choose

ω(z) = g′(z)/h′(z) = z.

Note that |ω(z)| < 1 ∀z ∈ D. Next, set h(z)− g(z) = Fp(z) = z− 1
2
z2. Taking the derivative

of both sides yields h′(z) − g′(z) = 1 − z. Since g′(z) = zh′(z), we substitute g′(z) into the

previous equation to get h′(z) = 1. Integrating this and normalizing it so that h(0) = 0,

yields h(z) = z. Because g′(z) = zh′(z), we can solve for g to get g(z) = 1
2
z2. Hence, by the

Shearing Theorem

fp(z) = h(z) + g(z) = z + 1
2
z2 ∈ SOH .

9



Thus, we have constructed a harmonic function fp that is univalent and CHD. Note that

this is the harmonic polynomial function fp in Example 1.9.

Example 1.18. Consider

Fk(z) = h(z)− g(z) =
z

(1− z)2
with ω(z) = z.

Using the same approach as above, we get

fk(z) = h(z) + g(z) = Re

(
z + 1

3
z3

(1− z)3

)
+ i Im

(
z

(1− z)2

)
∈ SOH .

The harmonic function fk is a slit mapping which maps D onto C minus a slit on the

negative real axis with the tip of the slit at −1
6
. There is considerable evidence that fk can

fill a role in harmonic function theory similar to that of the Koebe function from Example

1.5 in analytic function theory , and for this reason, fk is called the harmonic Koebe function.

To help explore how shearing affects the geometry between analytic and harmonic map-

pings, one can use the online applet ShearTool [12]. The image below demonstrates the

functionality of this applet, which simultaneously plots both h− g and h+ g.

Almost all examples of shearing have used dilatations that are finite Blaschke products.

One important type of mappings that are not finite Blaschke products is a singular inner

function. We give a brief description of this topic. For more details, see [29].

10



Figure 1.7: The image of D under the f = h + g is shown in the bottom right, where f is
constructed from shearing h(z)− g(z) = 1

2
log
(
1+z
1−z

)
with ω(z) = −z2.

Definition 1.19. A bounded analytic function f is called an inner function if | limr→1− f(reiθ)| =

1 almost everywhere with respect to Lebesgue measure on ∂D. If f has no zeros on D, then

f is called a singular inner function.

Every inner function can be expressed in the form

f(z) = eiαB(z) exp
(
−
∫

eiθ + z

eiθ − z
dµ
(
eiθ
) )
,

where α, θ ∈ R, µ is a positive measure on ∂D, and B(z) is a Blaschke product, i.e. B(z) =

eiθ
∏∞

j=1

(
z−aj

1− ajz

)mj
, for some series of constants |aj| < 1 satisfying

∑∞
n=1(1− |an|) <∞.

The function f(z) = e
z+1
z−1 is an example of a singular inner function. Weitsman [41]

provided the following example.

11



Example 1.20. Shear

h(z)− g(z) =
z

1− z
+

1

2
e
z+1
z−1 with ω(z) = e

z+1
z−1 .

By a result by Pommenke [35], it can be shown that h − g is convex in the direction of

the real axis. Shearing h− g with ω(z) = e
z+1
z−1 and normalizing yields

h(z) =

∫
1

(1− z)2
dz =

z

1− z
.

Solving for g we get

g(z) = −1
2
e
z+1
z−1 .

The image given by the map is similar to the image given by the right half-plane map

z
1−z except that there are an infinite number of cusps (see Figure 1.8).

Figure 1.8: Image of D under f(z) = z
1−z −

1
2
e

z+1
z−1 .

A technique to find harmonic mappings whose dilatations are singular inner functions

involves using a theorem by Clunie and Sheil-Small [4].

Theorem 1.21. Let f = h+ g be locally univalent in D and suppose that h+ cg is convex

for some |c| ≤ 1. Then f is univalent.

To develop the technique, we let c = 0 in Theorem 1.21. This means that if h is analytic
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convex and if ω is analytic with |ω(z)| < 1, then f = h+ g is a harmonic univalent mapping.

To establish that a function f is convex, we will use the following theorem (see [17]).

Theorem 1.22. Let f be analytic in D with f(0) = 0 and f ′(0) = 1. Then f is univalent

and maps onto a convex domain if and only if

Re

[
1 +

zf ′′(z)

f ′(z)

]
≥ 0 for all z ∈ D.

Example 1.23. Let

h(z) = z + 2 log(z + 1) with ω(z) = g′(z)/h′(z) = e
z−1
z+1 .

Using Theorem 1.22, we can show that h is convex. Then solving for g we get g(z) =

(z + 1)e(z−1)/(z+1).

Hence,

f(z) = h(z) + g(z) = z + 2 log(z + 1) + (z + 1)e
z−1
z+1 .

By Theorem 1.21, f = h+ g is univalent. The image of D under f is shown in Figure 1.9.

Figure 1.9: Image of D under f(z) = h+ g in Example 1.23.
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1.5 Convolutions

The shearing technique given in Theorem 1.14 provides a way to construct harmonic func-

tions that are univalent. This approach requires certain conditions in order to apply the

technique. Convolutions is another approach to construct harmonic univalent functions. It

also requires certain conditions in order to guarantee that the resulting functions are univa-

lent. In addition, the study of convolutions is an interesting topic on its own.

The convolution of harmonic functions is a generalization of the convolution of ana-

lytic functions which is an important area in the study of schlicht functions (see [37] for

more information about the convolution of analytic functions). However, many of the nice

theorems in the analytic case do not carry over to the harmonic case. For example, the

Pólya-Schoenberg conjecture which was proved by Ruscheweyh and Sheil-Small states that

convexity is preserved under analytic convolution. This convexity preserving property does

not hold for harmonic convolutions. But there are several open areas related to harmonic

convolutions to investigate. In this section we will explore some of these. For more details

about harmonic convolutions, see [5].

Let’s begin with with the definition of the convolution for analytic functions.

Definition 1.24 (Analytic Convolution). Given F1, F2 ∈ S represented by

F1(z) =
∞∑
n=0

Anz
n and F2(z) =

∞∑
n=0

Bnz
n,

their convolution is defined as

F1(z) ∗ F2(z) =
∞∑
n=0

AnBnz
n.

As mentioned above, the analytic convolution preserves convexity since F1, F2 ∈ K ⇒

F1 ∗ F2 ∈ K. The algebra of convolutions is also simplified by viewing certain functions as

operators. For instance, F (z) = z
1−z is the convolution identity because its power series is
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z + z2 + z3 + · · · .

We define an analogous operation for harmonic functions as follows:

Definition 1.25. Given

f1 = h1 + g1 = z +
∞∑
n=2

anz
n +

∞∑
n=1

bn z
n and

f2 = h2 + g2 = z +
∞∑
n=2

cnz
n +

∞∑
n=1

dn z
n,

define harmonic convolution as

f1 ∗ f2 = h1 ∗ h2 + g1 ∗ g2 = z +
∞∑
n=2

ancnz
n +

∞∑
n=1

bndn z
n.

Harmonic convolutions involve difficulties not present in the analytic case. For instance,

it is not difficult to find f1, f2 ∈ KO
H such that f1 ∗ f2 /∈ KO

H . In fact, f1 ∗ f2 may even fail to

be univalent. The example below illustrates this.

Example 1.26. Let fh = hh + gh ∈ KO
H be the harmonic right half-plane map in Example

1.10, where

hh(z) =
z − 1

2
z2

(1− z)2
, gh(z) =

−1
2
z2

(1− z)2
,

and let f2 = h2 + g2 ∈ KO
H be the canonical regular 6-gon map, where

h2(z) = z +
∞∑
n=1

1
6n+1

z6n+1, g2(z) =
∞∑
n=1

−1
6n−1z

6n−1.

Then fh ∗ f2 is not univalent, because

|(gh(z) ∗ g2(z))′/(hh(z) ∗ h2(z))′| = |z4(2 + z6)/(1 + 2z6)| ≮ 1,∀z ∈ D.

Open Problem 1. Let f1, f2 ∈ KO
H . Since f1∗f2 is not necessarily univalent, what additional
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conditions can we impose upon f1, f2 so that f1 ∗ f2 ∈ SOH?

Several researchers have recently published results related to this question (see [3], [6],

[11], [20], [31], [32]). Let’s look at some of these results. Theorem 1.27 ([6]) gives conditions

under which local univalence of the convolution is enough to establish global univalence.

Theorem 1.27. Let f1 = h1 + g1, f2 = h2 + g2 ∈ SOH such that hi(z) + gi(z) = z
1−z . Let ω̃

be the dilatation of f1 ∗ f2. If |ω̃(z)| < 1 for all z ∈ D, then f1 ∗ f2 ∈ SOH and is CHD.

Theorem 1.27 has been used to determine specific cases in which harmonic convolutions

preserve univalence. In [11], the following result is proved.

Theorem 1.28. Consider the right half-plane map

fh(z) = h1(z) + g1(z) =
z − 1

2
z2

(1− z)2
−

1
2
z2

(1− z)2
,

and let f = h + g ∈ KO
H with h(z) + g(z) = z

1−z and ω = g′/h′ = eiθzn (n ∈ Z+, θ ∈ R). If

n = 1, 2, then fh ∗ f ∈ SOH and is CHD.

The proof of this theorem relies on properties on analytic convolutions and results about

the location of zeros of symmetric polynomials. If n > 2 in the above theorem, then fh ∗ f

fails to be univalent. In [3], we get the next theorem.

Theorem 1.29. Let fθ = hθ+gθ, fρ = hρ+gρ ∈ SOH such that hθ(z)+gθ(z) = hρ(z)+gρ(z) =

z
1−z , g′θ/h

′
θ = eiθz, and g′ρ/h

′
ρ = eiρz (θ, ρ ∈ R). Then fθ ∗ fρ ∈ SOH is CHD.

The following theorem was proved in [32]

Theorem 1.30. Let f = h + g ∈ SOH with h(z) + g(z) = z
1−z and ω(z) = z+a

1+az
with |a| < 1.

Then fh ∗ f ∈ SOH and is CHD if and only if

(Re a)2 + 9 (Im a)2 ≤ 1.

16



There are other convolution problems that remain to be investigated. In many theo-

rems, the canonical harmonic right half-plane function fh is convoluted with other harmonic

functions. Can similar theorems be proven if fh is replaced with a different function? For

example, consider the harmonic mapping f1 formed by shearing h1(z) + g1(z) = z
1−z with

other dilatations such as ω(z) = eiθ 1+a
1+az

or ω(z) = z.

Open Problem 2. Let f = h+ g ∈ SOH with h(z) + g(z) = z
1−z and ω = g′/h′ = eiθzn (n ∈

Z+, θ ∈ R). Determine the values of n for which f1 ∗ f is univalent, where f1 is one of the

specific functions mentioned above.

Many of the harmonic convolution results given above require that one of the functions

be a sheared half-plane. In [11] and [20], results are proven about the harmonic convolutions

of strip mappings and polygons.

Open Problem 3. Determine more results about the convolutions of harmonic functions

that are shears of vertical strips or polygons.

1.6 Harmonic maps and minimal surfaces

Planar harmonic mappings with certain properties are related to minimal surfaces in R3,

and it is possible to use results from one area to prove new results in the other area. Before

discussing this further, we need to present some background material about minimal surfaces.

Minimal surfaces are one solution to the problem of finding the minimal surface area

required to span a given curve. Minimal surfaces are guaranteed to minimize area only

locally but often they provide the globally-minimal solution as well. One consequence of

the area-minimizing property is that all minimal surfaces look like saddle surfaces at each

point, and the bending upward in one direction is matched by the downward bending in

the orthogonal direction. (This equal-but-opposite bending property will be defined later as

“zero mean curvature.”) The images below are some well-known minimal surfaces.
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Ennepers Catenoid Helicoid

Figure 1.10: Examples of minimal surfaces

1.6.1 Background. In order to explore minimal surfaces more fully, we introduce three

important concepts from differential geometry. For more details on the material from this

section, see [8].

A surface, M ∈ R3, can be parametrized by a smooth function x : D → R3 if x(D) = M

and x is one-to-one. Parameterizing a surface with smooth functions allows us to do calculus

with the surface and gives us a way to translated geometric concepts into rigorous analytic

language.

v

u

D ⊂ R2

x(u, v) = (x1(u, v), x2(u, v), x3(u, v))

z

y

x
M ⊂ R3

Figure 1.11: The parametrization of a surface.

Isothermal parameterizations are essential for the study of minimal surfaces. Basically, such

parametrizations map small squares to small squares. Every minimal surface in R3 has an

isothermal parametrization.
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M ⊂ IR3D

x

Figure 1.12: An isothermal parametrization maps small squares to small squares.

Next, we need to discuss the idea of normal curvature. At each point p on the surface

M , there is a unit normal n. The normal curvature measures how much the surface bends

toward n as you travel in the direction of the tangent vector w at p. Specifically, given the

normal vector n at each point p ∈M , we can find a plane P containing n that intersects M

in some curve c, which has a curvature value k. As the plane P revolves around the unit

normal n at p, we get a continuous function of curvature values k(θ). Let k1 and k2 be the

maximum and minimum curvature values at p. The mean curvature of a surface M at p is

H = 1
2
(k1 + k2).

n plane P

σ
w

M ⊂ R3 c(s)

Figure 1.13: Normal curvature.

Definition 1.31. A minimal surface is a surface M with H = 0 at all p ∈M .

Recall that the intuition behind vanishing mean curvature is that M is a saddle sur-

face with positive curvature in one direction being matched by negative curvature in the

orthogonal direction.

Just as the Shearing Theorem links analytic function theory to harmonic function theory,

the Weierstrass Representation links harmonic function theory to minimal surface theory.
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Theorem 1.32 (General Weierstrass Representation). If we have analytic functions ϕk

(k = 1, 2, 3) such that

• φ2 = (ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2 = 0

• |φ|2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 6= 0 and is finite,

then the parametrization

x =
(

Re

∫
ϕ1(z)dz,Re

∫
ϕ2(z)dz,Re

∫
ϕ3(z)dz

)

defines a minimal surface.

We also have the following converse.

Theorem 1.33. Let M be a surface with parametrization x = (x1, x2, x3) and let φ =

(ϕ1, ϕ2, ϕ3), where ϕk = ∂xk
∂z

.

x is isothermal ⇐⇒ φ2 = (ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2 = 0.

If x is isothermal, then

M is minimal if and only if each ϕk is analytic.

We can apply the above theorems to planar harmonic mappings. First, recall f = h+ g =

Re(h + g) + i Im(h− g). In Theorem 1.32, choose ϕ1 = h′ + g′ and ϕ2 = −i(h′ − g′). Then

we find ϕ3 that will satisfy the requirements of the Weierstrass representation. That is,

0 =(ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2

= (h′ + g′)
2

+ [−i(h′ − g′)]2 + (φ3)
2.

Solving for ϕ3 yields (ϕ3)
2 = −4h′g′, so ϕ3 = −2i

√
h′g′.
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Notice that
√
h′g′ may not always exist as an analytic function, but whenever it does,

the Weierstrass representation applies. Since
√
h′g′ = h′

√
ω, it is enough for the dilatation

to have an analytic square root. Thus, we have the following result.

Theorem 1.34 (Weierstrass Representation - (h, g)). Let the harmonic mapping f = h+ g

be univalent with g′/h′ being the square of an analytic function. Then the parametrization

X =

(
Re (h+ g) , Im (h− g) , 2 Im

∫ √
h′g′
)

defines a minimal graph whose projection is f(D).

MinSurfTool [12] is another applet available online that allows for quick and easy visual-

ization of minimal surfaces.

Figure 1.14: The MinSurfTool applet.

Example 1.35. Consider the harmonic map

f(z) = h(z) + g(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
.

It can be constructed by shearing h(z) − g(z) = 1
2

log
(
1+z
1−z

)
with g′(z)/h′(z) = −z2 and is

therefore univalent. Note that f(D) is a square region (see Figure 1.15).
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Figure 1.15: The image of D under f , the harmonic square map.

Since the dilatation is the square of an analytic function, we can apply Theorem 1.34.

Then x3(z) = 2 Im

∫ √
h′g′ = 1

2
Im
[
i log

(
1+z2

1−z2

)]
.

By the Weierstrass representation, we have the parametrization of a minimal graph given

by

x =

(
Re (h+ g) , Im (h− g) , 2 Im

∫ √
h′g′
)

=

(
Re

[
i

2
log

(
i+ z

i− z

)]
, Im

[
1

2
log

(
1 + z

1− z

)]
, Im

[
i

2
log

(
1 + z2

1− z2

)])
.

This minimal surface is Scherk’s doubly periodic surface. In Figure 1.16 the curved

object is the minimal surface and the flat object is the image of the the unit disk under the

corresponding harmonic map (it can also be viewed as the projection of the minimal surface

into the complex plane).
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Figure 1.16: Scherk’s doubly periodic minimal surface.

We might wonder if the integrals found in the Weierstrass representations are well-defined.

In certain cases, they may indeed be multi-valued. But in such cases, the ill-definedness

reflects the fact that surface is periodic in one or more of the coordinates, as is the case with

the Scherk surfaces.

With the background we just discussed, we are ready to explore applications of harmonic

maps to minimal surface theory.

1.6.2 Connecting harmonic maps to specific minimal graphs. The Weierstrass

Representation allows us to take an harmonic univalent function with an appropriate dilata-

tion and lift it to a minimal graph. Several recent papers have used this technique ([14], [15],

[19], [22], [33], [34]). However, it is often difficult to identify the resulting minimal graphs.

One approach to recognizing the minimal surface is to use a change of variable (see [10]).

Example 1.36. Shearing h(z)− g(z) = z
(1−z)2 with ω(z) = z2 yields the univalent harmonic

slit-map

f(z) =
z − z2 + 1

3
z3

(1− z)3
+

1
3
z3

(1− z)3
.

The parametrization of the corresponding minimal graph is

x =

(
Re

{
z − z2 + 2

3
z3

(1− z)3

}
, Im

{
z

(1− z)2

}
, Im

{
2z2 − 2

3
z3

(1− z)3

})
.
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This is not a standard form for a known minimal surface. However, using the substitu-

tion z → z̃+1
z̃−1 and interchanging the second and third coordinate functions, we derive the

parametrization

x̃ =
(
−1

4
Re
{
z̃ + 1

3
z̃3
}
, 1
4

Im
{
z̃ − 1

3
z̃3
}
, 1
4

Im
{
z̃2
})
.

This is Ennepers surface. Thus, the original surface x is the part of Ennepers surface formed

by using a right half-plane as the domain instead of the standard unit disk.

Open Problem 4. Determine the minimal graphs formed by lifting harmonic univalent

mappings in any of the following papers [14], [15], [19], [33], [34].

Open Problem 5. Use the shearing technique to generate a univalent harmonic map with

a dilatation that is a perfect square and use the Weierstrass representation to construct the

minimal graph. Then determine what surface it is.

1.6.3 Connecting results about harmonic maps with results about minimal sur-

faces. Since certain types of harmonic univalent functions are related to minimal graphs,

it should be true that theorems and concepts from one field should relate to theorems and

concepts from the other field.

One example of this concerns a harmonic convolution theorem and Krust Theorem about

conjugate minimal surfaces.

Definition 1.37. Let x and y be isothermal parametrizations of two minimal surfaces such

that their component functions are pairwise harmonic conjugates. Then, x and y are called

conjugate minimal surfaces.

The helicoid and the catenoid are conjugate surfaces. Any two conjugate minimal surfaces

can be joined through a one-parameter family of associated minimal surfaces by the equation

z = (cos t)x + (sin t)y,
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where t ∈ R. Figure 1.17 displays several associated surfaces that are formed as the helicoid

is transformed to the catenoid, its conjugate surface.

Figure 1.17: The helicoid, the catenoid, and some of their associated surfaces.

An important theorem in minimal surface theory is Krust Theorem.

Theorem 1.38 (Krust). If an embedded minimal surface X : D → R3 can be written as

a graph over a convex domain in C, then all associated minimal surfaces Z : D → R3 are

graphs.

Now consider the following less well known theorem about harmonic convolutions [4].

Theorem 1.39 (Clunie and Sheil-Small). If f = h+ g ∈ KH and ϕ ∈ K, then the functions

h ∗ ϕ+ αg ∗ ϕ

are univalent and close-to-convex, where (|α| ≤ 1) and ∗ denotes harmonic convolution.

Open Problem 6. Determine theorems and properties of harmonic maps that relate to

theorems and properties of minimal surfaces.

As a second example, we will prove a result about minimal surfaces using results from

harmonic univalent mappings. In particular, we will consider a family of minimal surfaces
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known as Scherk’s dihedral surfaces and determine the parameter values for which these

surfaces are embedded. First, some background information.

While minimal surfaces can be parametrized by the Weierstrass representation, there

is no guarantee the surface will not have self-intersections. Minimal surfaces that have no

self-intersections are known as embedded minimal surfaces, and they are a major interest

in minimal surface theory. The family Fn(ϕ) of singly periodic Scherk surfaces with higher

dihedral symmetry have n number of vertical planes that extend to infinity. The smallest

angle, ϕ, between these symmetric planes varies (see Figure 1.18).

n = 4 n = 4

ϕ = π
2 ϕ = π

3

Figure 1.18: Two examples from the family of Scherk’s dihedral surfaces.

We can look at the projection of one piece of these surfaces onto C which is also the image

of the unit disk under the corresponding harmonic univalent mappings (sees Figure 1.19).

n = 4 n = 4

ϕ = π
2 ϕ = π

3

Figure 1.19: The projection onto C of one piece from each example in Figure 1.18.
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These minimal surfaces are embedded provided that

π

2
− π

n
<
n− 1

n
ϕ <

π

2
.

We can prove this inequality using results planar harmonic mappings. We summarize the

proof below.

Proof. Consider the following family of harmonic maps: fn(z) = hn(z) + gn(z), n ≥ 2,

ϕ ∈ [0, π
2
], where

h′n(z) =
1

(zn − eiϕ)(zn − e−iϕ)
, g′n(z) =

z2n−2

(zn − eiϕ)(zn − e−iϕ)

(see Figure 1.20).

n = 4 n = 4 n = 4 n = 4

ϕ = π
2 ϕ = π

3 ϕ = π
6 ϕ = 0

Figure 1.20: Images of the unit disk under f = hn + gn.

It is known that fn = hn + gn maps D onto a 2n-gon, and in [33] it was shown that fn is

univalent and convex for every ϕ ∈
(

n
n−1

(
π
2
− π

n

)
, π
2

]
. Using the Weierstrass representation,

we can lift fn to an embedded minimal surface X. Since X is over a convex domain, Krust’s

theorem guarantees that the conjugate surfaces Y are embedded. These conjugate surfaces

Y are Scherk surfaces with higher dihedral symmetry and this establishes the inequality.

Open Problem 7. Use theorems and properties about harmonic univalent mappings to

prove results about minimal surfaces.

27



1.6.4 Using harmonic maps to construct new minimal surfaces. Finally, we show

an example in which a harmonic univalent function is lifted to form a minimal graph that

appears to be new. The construction is outlined below. Complete details are found in [2]

and in chapter ?? of this thesis.

Let f = h+ g, where

h (z) =
1

2
log

(
1 + z

1− z

)
,

and let ω =
(
e
z+1
z−1

)2
. Since g′ = h′ω = 1

1−z2 e
2 z+1
z−1 , we know that

g (z) = −1

2
E1

(
z + 1

−z + 1

)
+

1

2
E1 (1) ,

where E1 (z) is the exponential integral function. By a result by Clunie and Sheil-Small,

f = h+ g is univalent. The image of f(D) is shown in Figure 3.5.

Figure 1.21: The image of f(D) and a close-up of that image.

By the Weierstrass representation f = h + g lifts to an embedded minimal surface (see

Figure 3.6).
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Figure 1.22: Images of the minimal surface constructed from f

This surface is constructed from a harmonic univalent map that has a dilatation being a

singular inner function (i.e., a function which never equals zero and which has modulus

equal to one on the unit disk). One consequence of having such a dilatation is that there is

no (finite) point where the function is approximately analytic. This corresponds to the idea

that the minimal surface never has zero Gauss curvature. The surface also has an infinite

number of cusps and a singularity with unusual behavior.

Open Problem 8. Construct other minimal surfaces from harmonic univalent maps with

dilatations that are singular inner functions.

Open Problem 9. Determine the necessary and sufficient conditions for a harmonic func-

tion to have a singular inner function as its dilatation. Specifically, determine the kind of

growth and boundary behavior exhibited by such harmonic functions.

29



Chapter 2. Convolutions of Half-plane Maps

2.1 Background

It is shown in [6] that if f = h + g ∈ SOH maps the unit disk onto the right half-plane

R = {w : Rew > −1/2}, then it must satisfy the following condition

h(z) + g(z) =
z

1− z
. (2.1)

Let SOH(R) denote the class of harmonic mappings f = h+ g ∈ SOH that satisfy (2.1). They

are the so called vertical shears of the conformal half-plane mapping ϕ(z) = z/(1 − z). It

was proved in [6] that if fj = hj + gj ∈ SOH(R), j = 1, 2, and f1 ∗ f2 is locally univalent

and sense-preserving, then f1 ∗ f2 ∈ SOH and is convex in the direction of the real axis. As

observed in [11], the assumption of the local univalency of the convolution function in this

statement cannot be omitted. Our main theorem in this chapter is the following:

Theorem 2.1. If fk = hk + gk ∈ SOH(R), k = 1, 2, and ω1(z) = g′1(z)/h′1(z) = −xz,

ω2(z) = g′2(z)/h′2(z) = −yz with |x| = |y| = 1, then the function f̃ = f1 ∗ f2 is convex in the

direction of the real axis. In particular, if x = y = −1, then f̃ is convex.

In the proof of the main theorem, we will use the following characterization of the class

of analytic functions mapping D conformally onto a domain convex in one direction due to

Royster and Ziegler [36].

Theorem 2.2. A nonconstant and analytic function F maps D univalently onto a domain

Ω convex in the direction of the imaginary axis if and only if there are numbers µ ∈ [0, 2π)

and ν ∈ [0, π], such that

Re
{
−ieiµ

(
1− 2 cos νe−iµz + e−2iµz2

)
F ′(z)

}
≥ 0, z ∈ D.

In the proof of our theorem we will also take advantage of the theory of harmonic Hardy
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spaces. A function f(z) harmonic in the unit disk is said to be of class hp (0 < p < ∞) if

the integral means

1

2π

∫ π

−π

∣∣f(reiθ)
∣∣p dθ

are bounded for 0 ≤ r < 1; h∞ is simply the collection of bounded harmonic functions on

D. The usual Hardy spaces Hp consist of the functions in hp that are analytic in D. It is

clear that an analytic function belongs to Hp if and only if its real and imaginary parts are

both in hp. It is well known that every function f ∈ Hp has a non-tangential limit f(eiθ) for

almost every θ ∈ (−π, π]. We will apply the following theorem concerning harmonic Hardy

spaces, (see [27, p. 15], [24, p. 38]).

Theorem 2.3. Let 1 < p ≤ ∞, and assume that f ∈ hp. Then for almost all θ, f(z) tends

nontangentially to a finite limit f(eiθ), as z → eiθ, f(eiθ) ∈ Lp(−π, π), and, for 0 ≤ r < 1,

f(reiθ) =
1

2π

∫ π

−π

1− r2

1 + r2 − 2r cos(θ − t)
f(eiθ)dt.

Let us emphasize that Theorem 2.3 does not hold for p = 1. In the remark we give an

example of a function f ∈ h1 which cannot be recovered from its boundary behavior.

We also note that this theorem actually implies an extended version of the maximum

(minimum) principle for real harmonic functions in D.

2.2 Proof of Theorem 2.1

The following lemma is a modified version of Lemma 2.5 in [23].

Lemma 2.4. If f = h+ g ∈ SOH(R), then f(D) is convex.

Proof. By Theorem 5.7 in [4], it suffices to show that the function h− e2iθg is convex in the

direction θ for every θ ∈ [0, π) (see Theorem 1.14 for an intuition). The function h − e2iθg

is convex in the direction θ if and only if Fθ = ie−iθ
(
h− e2iθg

)
is convex in the vertical

direction.
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Let us first assume that θ ∈ [0, π/2]. We apply Theorem 2.2 with µ = ν = 0. We have

Re
{
−iF ′θ(z)(1− z)2

}
= Re

{
e−iθ[h′(z)− e2iθg′(z)](1− z)2

}
= Re

{
[e−iθh′(z)− eiθg′(z)](1− z)2

}
= Re

{[
(h′(z)− g′(z)) cos θ − i (h′(z) + g′(z)) sin θ

]
(1− z)2

}
.

Since h′(z)+g′(z) = 1/(1− z)2, and because the function h′(z)−g′(z)
h′(z)+g′(z)

= 1−g′(z)/h′(z)
1+g′(z)/h′(z)

= 1−ω(z)
1+ω(z)

=

p(z) has a positive real part, it follows that

Re
{
−iF ′θ(z)(1− z)2

}
= Re p(z) cos θ ≥ 0

for θ ∈ [0, π/2]. By Theorem 2.2, the function Fθ is convex in the direction of the imaginary

axis for θ ∈ [0, π/2]. The same conclusion can be drawn for the function Fθ with θ ∈ (π/2, π)

if we apply Theorem 2.2 with µ = ν = π.

Proof of Theorem 2.1. Let us set the notation f̃ = f1 ∗ f2 = h1 ∗ h2 + g1 ∗ g2 = H + G. By

the result of Dorff [6], it suffices to show that f̃ is locally univalent and sense-preserving.

Additionally, if x = 1 or y = 1, then the assertion follows from Theorem 3 in [11]. Assume

now that x, y 6= 1. Then we solve the system of equations h1 + g1 = z
1−z and g′1/h

′
1 = −xz,

easily obtaining

h1(z) =
−x̄

1− x̄
z

1− z
− 1

(1− x̄)(1− x)
log

1− z
1− xz

, (2.2)

g1(z) =
1

1− x̄
z

1− z
+

1

(1− x̄)(1− x)
log

1− z
1− xz

. (2.3)

Next, we use the following three identities:

• z(F1 ∗ F2)
′ = F1 ∗ (zF ′)

• z
1−z ∗ F = F
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• log 1−z
1−xz ∗ F =

∫ −F (x)+F (zx)
z

dz

all three of which can easily be verified by computing the power series involved. Consequently,

we get

zH ′(z) = h1(z) ∗ zh′2(z) =
1

1− x̄

(
−x̄zh′2(z)− 1

1− x
(−h2(z) + h2(zx))

)

and

zG′(z) = g1(z) ∗ zg′2(z) =
1

1− x̄

(
zg′2(z) +

1

1− x
(−g2(z) + g2(zx))

)
.

In order to prove the local univalence of f̃ , it suffices to show that for z ∈ D we have

|H ′(z)|2 > |G′(z)|2,

that is,

∣∣∣∣x̄h′2(z) +
1

z(1− x)
(−h2(z) + h2(zx))

∣∣∣∣2 > ∣∣∣∣g′2(z) +
1

z(1− x)
(−g2(z) + g2(zx))

∣∣∣∣2 .
Since

g′2(z) = −yzh′2(z),

the last inequality can be written in an equivalent way

∣∣∣∣x̄+
1

z(1− x)

h2(zx)− h2(z)

h′2(z)

∣∣∣∣2 > ∣∣∣∣−yz +
1

z(1− x)

g2(zx)− g2(z)

h′2(z)

∣∣∣∣2 . (2.4)

First note that for z = 0 the last inequality becomes |1− x̄| > 0. Moreover, we can rewrite

(2.4) as

∣∣∣∣x̄+
1

z(1− x)

h2(zx)− h2(z)

h′2(z)

∣∣∣∣2 > ∣∣∣∣−y +
1

z2(1− x)

g2(zx)− g2(z)

h′2(z)

∣∣∣∣2 |z|2.
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It is therefore sufficient to show that

∣∣∣∣x̄+
1

z(1− x)

h2(zx)− h2(z)

h′2(z)

∣∣∣∣2 > ∣∣∣∣−y +
1

z2(1− x)

g2(zx)− g2(z)

h′2(z)

∣∣∣∣2 ,
that is,

1 + 2 Re

(
x

z(1− x)

h2(zx)− h2(z)

h′2(z)

)
+

∣∣∣∣ 1

z(1− x)

h2(zx)− h2(z)

h′2(z)

∣∣∣∣2
> 1− 2 Re

(
ȳ

z2(1− x)

g2(zx)− g2(z)

h′2(z)

)
+

∣∣∣∣ 1

z2(1− x)

g2(zx)− g2(z)

h′2(z)

∣∣∣∣2 .
(2.5)

It follows from Lemma 2.4 that the function f2 = h2 + g2 is convex, hence a result of

Clunie and Sheil-Small (Corollary 5.8 in [4]) applies, which gives the following

|K(z)| =
∣∣∣∣ g2(zx)− g2(z)

h2(zx)− h2(z)

∣∣∣∣ < 1, z ∈ D.

Moreover, since K(0) = 0, the Schwarz lemma gives

∣∣∣∣ g2(zx)− g2(z)

h2(zx)− h2(z)

∣∣∣∣ < |z|, z ∈ D.

Consequently,

∣∣∣∣ 1

z(1− x)

h2(zx)− h2(z)

h′2(z)

∣∣∣∣2 > ∣∣∣∣ 1

z2(1− x)

g2(zx)− g2(z)

h′2(z)

∣∣∣∣2 .
Thus inequality (2.5) will be proved once we establish that

Re J(z) = Re

(
x

z(1− x)

h2(zx)− h2(z)

h′2(z)
+

ȳ

z2(1− x)

g2(zx)− g2(z)

h′2(z)

)
> 0.

Since h2 and g2 can be expressed by formulas (2.2) and (2.3) with x replaced by y, one can
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find that

J(z) =
(1− z)(1− yz)

z(1− y)
+
ȳ(1− xyz)(1− z)2(1− yz)

|1− y|2z2(1− x)

(
log

1− xz
1− xyz

− log
1− z
1− yz

)
. (2.6)

Note that the function J(z) is analytic in the unit disk and it takes value (1−x)/2 for z = 0.

We first consider the case when x = y. Then the last formula is reduced to

J(z) =
(1− z)(1− xz)

z(1− x)
+
x̄(1− x2z)(1− z)2(1− xz)

|1− x|2z2(1− x)

(
log

1− xz
1− x2z

− log
1− z

1− xz

)
. (2.7)

It is easy to see that in this case the function J(z) has a continuous extension to D. Therefore

it suffices to prove that

min{Re J(z) : |z| = 1} ≥ 0. (2.8)

Assume first that x = eiα, where α ∈ (0, π]. Then for J given by (2.7),

Re J(eit) = Re

(
8i

sin α+t
2

sin
(
α + t

2

)
sin2 t

2

(2− 2 cosα) sin α
2

(
log

1− ei(α+t)

1− ei(2α+t)
− log

1− eit

1− ei(α+t)

))
.

Since

Im log
1− eiαeit

1− ei2αeit
=


−α

2
if t ∈ (0, 2π − 2α) ∪ (2π − α, 2π)

π − α
2

if t ∈ (2π − 2α, 2π − α)

and

Im log
1− eit

1− eiαeit
=


−α

2
if t ∈ (0, 2π − α)

π − α
2

if t ∈ (2π − α, 2π),
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we have

Im

(
log

1− ei(α+t)

1− ei(2α+t)
− log

1− eit

1− ei(α+t)

)
=


0 if t ∈ (0, 2π − 2α)

π if t ∈ (2π − 2α, 2π − α)

−π if t ∈ (2π − α, 2π).

From this and from the formula for Re J(eit) inequality (2.8) follows in the case of x = eiα,

α ∈ (0, π]. Similar arguments apply to the case α ∈ (−π, 0).

We remark that in the case when x 6= y the above reasoning cannot be applied because

the function J does not have a continuous extension for z = x̄. To prove the general case

we will use Theorem 2.3.

Assume that x = eiα and y = eiβ. Then for eit 6= 1, e−iα, e−iβ, e−i(α+β),

Re J(eit) = Re

(
8i

sin
(
α+β+t

2

)
sin
(
β+t
2

)
sin2 t

2

(2− 2 cos β) sin α
2

(
log

1− ei(α+t)

1− ei(α+β+t)
− log

1− eit

1− ei(β+t)

))
.

A calculation shows that if 0 < α ≤ β < 2π and α + β < 2π, then

Im log
1− eiαeit

1− eiα+βeit
=


−β

2
if t ∈ (2π − α, 2π) ∪ (0, 2π − (α + β))

π − β
2

if t ∈ (2π − (α + β), 2π − α)

and

Im log
1− eit

1− eiβeit
=


−β

2
if t ∈ (0, 2π − β)

π − β
2

if t ∈ (2π − β, 2π).

Hence

Im

(
log

1− eiαeit

1− eiα+βeit
− log

1− eit

1− ei(β+t)

)
=


π if t ∈ (0, 2π − β)

−π if t ∈ (2π − α, 4π − (α + β))

0 otherwise.
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From this and formula (2.6) for Re J(eit) we see that in this case Re J(eit) ≥ 0. Now,

suppose that 0 < α ≤ β < 2π and α + β > 2π.

Then, analogously, we have

Im log
1− eiαeit

1− eiα+βeit
=


−β

2
if t ∈ (2π − α, 4π − (α + β))

π − β
2

if t ∈ (4π − (α + β), 2π) ∪ (0, 2π − α)

and

Im log
1− eit

1− eiβeit
=


−β

2
if t ∈ (0, 2π − β)

π − β
2

if t ∈ (2π − β, 2π).

Hence

Im

(
log

1− eiαeit

1− eiα+βeit
− log

1− eit

1− ei(β+t)

)
=


π if t ∈ (0, 2π − β)

−π if t ∈ (2π − α, 4π − (α + β))

0 otherwise,

and Re J(eit) ≥ 0 also in this case. One can easily check that when 0 < α < β < 2π

and α + β = 2π, then again Re J(eit) ≥ 0. It then follows that Re J(eit) ≥ 0 for eit 6=

1, e−iα, e−iβ, e−i(α+β) and α ≤ β. The symmetry of a convolution implies that Re J(eit) ≥ 0

also if α > β.

Now it will be useful to note that J ∈ Hp, 1 < p < ∞. Indeed, analyticity guarantees

boundedness of the integral means for 0 ≤ |z| ≤ r0, where 0 < r0 < 1. The first term in

formula (2.6) is also bounded for r0 < |z| < 1. This shows that the first term is in H∞.

Since the Hp spaces are nested with H∞ ⊂ Hp for all p ≥ 1, it is now enough to show that

the second term lies in Hp for some p > 1, and that the integral means of the second term

behave as those of log(1− z). So consider the case p = 2.
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∫ 2π

0

| log(1− reit)|2dt =

∫ 2π

0

log(1− reit)log(1− reit)dt

=

∫ 2π

0

(
log |1− reit|

)2
+
(
arg(1− reit)

)2
dt

=

∫ π/2

−π/2

(
log |1− reit|

)2
dt+ const

=
1

4

∫ π/2

−π/2

(
log |1− reit|2

)2
dt+ const

=
1

4

∫ π/2

−π/2

(
log(1− reit)(1− re−it)

)2
dt+ const

=
1

4

∫ π/2

−π/2

(
log(1− 2r cos t+ r2)

)2
dt+ const

≤ 1

4

∫ π/2

−π/2
(log(2(1− cos t)))2 dt+ const

=
1

4

∫ π/2

−π/2

(
log

(
4 sin2

(
t

2

)))2

dt+ const

=
1

2

∫ π/4

−π/4

(
log
(
4 sin2 (t)

))2
dt+ const

= 4

∫ π/4

0

(log (2 sin (t)))2 dt+ const

≤ 4

∫ π/4

0

(
log

(
4

π
t

))2

dt+ const

The latter integral is easily seen to be finite using calculus. So the second term is in H2.

Consequently, Re J ∈ hp, 1 < p < ∞. Next we appeal to Theorem 2.3 to deduce that Re J

is the Poisson integral of its boundary value, so it is positive in D.

Finally, we study the function f̃ = f ∗ f , where f = h + g ∈ SOH(R) and ω(z) =

g(z)/h(z) = z. Then

h(z) =
1

4
log

(
1 + z

1− z

)
+

1

2

z

1− z
, (2.9)
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g(z) = −1

4
log

(
1 + z

1− z

)
+

1

2

z

1− z
. (2.10)

Thus

h′(z) =
1

2

(
1

(1− z)2
+

1

1− z2

)
,

g′(z) =
1

2

(
1

(1− z)2
− 1

1− z2

)
.

If now, as in the above, f̃ = f ∗ f = h ∗ h+ g ∗ g = H +G, then by examining the power

series of the functions, we have

zH ′(z) = h(z) ∗ zh′(z) =
1

2

(
zh′(z) +

1

2
(h(z)− h(−z))

)
,

zG′(z) = g(z) ∗ zg′(z) =
1

2

(
zg′(z)− 1

2
(g(z)− g(−z))

)
.

Hence

zH ′(z) =
1

2

(
z

2(1− z)2
+

z

1− z2
+

1

4
log

1 + z

1− z

)
,

zG′(z) =
1

2

(
z

2(1− z)2
− z

1− z2
+

1

4
log

1 + z

1− z

)
.

We will show that f̃ = H + G is convex. To this end, as in the proof of Lemma 2.4, it

is enough to show that the function H − e2iθG is convex in the direction θ for all θ ∈ [0, π),

or equivalently, that Fθ = ie−iθ
(
H − e2iθG

)
is convex in the direction of the imaginary

axis for all θ ∈ [0, π). We now apply Theorem 2.2 with constants µ = ν = π/2. Since
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H ′(z)−G′(z) = 1/(1− z2), we have

Re
{(

1− z2
)
F ′θ(z)

}
=− Im

{
(1− z2)

(
e−iθH ′(z)− eiθG′(z)

)}
=− Im

{
(1− z2)

z

(
e−iθzH ′(z)− eiθzG′(z)

)}
=− Im

{
(1− z2)

z

(
− i (zH ′(z) + zG′(z)) sin θ

+ (zH ′(z)− zG′(z)) cos θ
)}

=− Im

{
−i sin θ

(
1

2

1 + z

1− z
+

1− z2

4z
ln

1 + z

1− z

)}
=

1

2
sin θRe

{
1 + z

1− z
+

1− z2

2z
log

1 + z

1− z

}
≥ 0,

where the last inequality is due to the fact that z 7→ log (1 + z)/(1− z) is convex. Indeed,

if ϕ is a convex analytic function such that ϕ(0) = 0, then it is starlike, and so it satisfies

the condition Re ϕ(z)
zϕ′(z)

> 0.

Remark. One can describe the image of the unit disk under the convex function f̃ =

f ∗ f = H +G considered in the last part of the proof. We first note that f = h+ g, where

h and g are given by (2.9) and (2.10), maps univalently D onto the half-strip {w : Re{w} >

−1/2, |Im{w}| < π/4} (see e.g. [16, p. 42]). A calculation shows that

H(z) =
1

4

(
z

1− z
+ log

1 + z

1− z
+

1

2
Li2(z)− 1

2
Li2(−z)

)
,

G(z) =
1

4

(
z

1− z
− log

1 + z

1− z
+

1

2
Li2(z)− 1

2
Li2(−z)

)
,

where Li2(z) denotes the dilogarithm function defined by the series

Li2(z) =
∞∑
n=1

zn

n2
, for |z| ≤ 1.
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Hence

f̃(z) =
1

4
Re

1 + z

1− z
+

1

2
Re

∞∑
n=0

z2n+1

(2n+ 1)2
− 1

4
+
i

2
arg

1 + z

1− z
.

We observe first that the function f̃ has unrestricted limit lim f̃(z), as z → eiθ, z ∈ D, and

is continuous for all points eiθ ∈ ∂D \ {1,−1}. Moreover, f̃(eiθ) is given by

f̃(eiθ) =


−1

4
+ 1

2

∑∞
n=0

cos(2n+1)θ
(2n+1)2

+ iπ
4
, θ ∈ (0, π)

−1
4

+ 1
2

∑∞
n=0

cos(2n+1)θ
(2n+1)2

− iπ
4
, θ ∈ (π, 2π).

It is worth noting here that the boundary function f̃(eiθ) is bounded on (0, π) ∪ (π, 2π) and

has finite one-sided limits: limθ→π− f̃(eiθ) = −4+π2

16
+ iπ

4
, limθ→π+ f̃(eiθ) = −4+π2

16
− iπ

4
, and

limθ→0+ f̃(eiθ) = −4+π2

16
+ iπ

4
, limθ→2π− f̃(eiθ) = −4+π2

16
− iπ

4
.

We remark that the function f̃ is an example of the convex mappings described in The-

orem 2.4 in [1]. This theorem says that if f is a univalent, harmonic orientation-preserving

mapping from D onto an unbounded convex domain which is neither a strip nor a half-plane,

then f ∈ h1 and there is only one point eiλ that corresponds to ∞, and for some constant

A ∈ C,

f(z) =

∫ 2π

0

P (z, θ)f(eiθ)dθ + AP (z, λ)

where P denotes the Poisson kernel

P (z, θ) =
1

2π
Re

eiθ + z

eiθ − z
.

A calculation shows that our function f̃ can be written as

f̃(z) =

∫ 2π

0

P (z, θ)f̃(eiθ)dθ +
1

4
P (z, 0),

where f̃(eiθ) is the function defined above. It then follows from the proof of Theorem 2.4
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in [1] that the range of f̃ is the half-strip

{
w : Re{w} > −4 + π2

16
, |Im{w}| < π

4

}
.

2.3 Conclusion

In summary, we have proved the following theorem

Theorem 2.5. If fk = hk + gk, k = 1, 2, map into the right half-plane Re(z) > 1
2

in C and

satisfy ω1(z) = g′1(z)/h′1(z) = −xz, ω2(z) = g′2(z)/h′2(z) = −yz with |x| = |y| = 1, then the

function f̃ = f1 ∗ f2 is convex in the direction of the real axis. In particular, if x = y = −1,

then f̃ is convex.

This shows the broad applicability of an earlier theorem of Dorff in [6] by proving that

a large family of functions satisfy its hypotheses. More broadly, it contributes to the search

for understanding of when the convolution of two harmonic univalent functions is again

univalent. Around the same time that this result was published in [3], other authors (see

[28, 31, 32, 11]) also contributed to an expanded family of known result involving half-planes,

and this is still an active area of discovery. It is expected that this will be an important class

of convolution examples for years to come.
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Chapter 3. Harmonic univalent mappings with singular inner

function dilatation

3.1 Introduction

Most examples of univalent harmonic mappings have a dilatation that is a finite Blaschke

product (see [14], [15], [18], [21], [40]). In [29], planar harmonic mappings with infinite

Blaschke product dilatation are discussed. While finite Blaschke product dilatations have

been the subject of much research, very little has been done with singular inner function

dilatations (SIFD). Laugesen posed the problem of finding necessary and sufficient conditions

on the boundary of a harmonic function f for it to be SIFD. However, he was unaware of any

nontrivial examples of such functions. Since then, Weitsmann has given two examples [41].

In this chapter, we improve upon this by constructing an infinite family of SIFD functions

and establishing a method to construct additional examples. We also consider questions

about the boundary behavior of harmonic functions with singular inner dilatation.

3.2 Background

A Blaschke product is an expression of the form

B (z) = eiθ
∞∏
j=1

(
z − aj
1− ajz

)mj
.

Blaschke products are a part of the more general class of inner functions. By definition, an

inner function is a bounded analytic function f : D→ C such that lim|z|→1 |f (z) | = 1. Any

inner function can be written in the form

f (z) = eiαB (z) exp

(
−
∫

eiθ + z

eiθ − z
dµ
(
eiθ
))

,
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where α, θ ∈ R, µ is a singular positive measure on ∂D, and B (z) is a Blaschke product

[24]. In addition, we say that an inner function is singular if f has no zeroes on D. A basic

example of a singular inner function is f (z) = e
z+1
z−1 .

Previous examples of SIFD functions have relied on the shearing technique. We restate

the shearing theorem here for reference.

Theorem 3.1. Let h and g be analytic functions on the unit disk D such that f = h + g

is locally univalent. Then f is a univalent CHD function of D if and only if the analytic

function ϕ = h− g has the same property.

As previously noted, the condition that |ω| < 1 guarantees the local univalence of f .

The advantage of the shearing technique is that it guarantees the univalence of f for a given

CHD analytic function and a given dilatation.

We illustrate both the shearing technique and how it can be used to construct SIFD

harmonic mappings with the following example, originally given by Weitsman [5] (for another

example, see Greiner [21]).

Example 3.2. The analytic function

ϕ =
z

1− z
+

1

2
e
z+1
z−1

is univalent and CHD (see [5]). Hence shearing ϕ with dilatation ω (z) = e
z+1
z−1 , yields

h =
z

1− z
and g =

−1

2
e
z+1
z−1 ,

which gives the harmonic univalent function

f = h+ g =
z

1− z
− 1

2
e
z+1
z−1

with singular inner function dilatation.
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Figure 3.1: Images of ϕ(D) and f(D) in Example 3.2.

This approach requires a careful selection of the original analytic mapping to get an

integral expression that can be handled algebraically. Currently, this approach has led to

only a few examples of SIFD functions.

3.3 New Examples of SIFD Harmonic Functions

The following example extends Example 3.2. It utilizes the shearing theorem to construct an

infinite family of harmonic functions that can be expressed in terms of exponential integrals.

We will require a result by Royster and Zeigler [36].

Theorem 3.3. Let ϕ be an analytic mapping of D that satisfies

Re
{
−eiµ

(
1− 2 cos(ν)e−iµz + e−2iµz2

)
ϕ′ (z)

}
≥ 0

for some µ, ν ∈ [0, π]. Then ϕ is a univalent mapping of D onto a CHD domain.

Example 3.4. Consider the analytic function

ϕ = h− g =

∫ z

0

1− e
ζ+1
ζ−1

1− 2 cos (ν)ζ + ζ2
dζ.

By setting µ = 0 in Theorem 3.3, we see that ϕ is univalent and CHD. Shearing ϕ with the
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dilatation ω = e
ζ+1
ζ−1 , yields

h(z) =

∫ z

0

1

1− 2 cos νζ + ζ2
dζ

g(z) =

∫ z

0

e
z+1
z−1

1− 2 cos νζ + ζ2
dζ.

Let α = 1 + cos ν, β = 1− cos ν, and u = z+1
z−1 . For ν ∈ (0, π), we can solve these integrals

to get

h(z) =
−1√
αβ

arctan

(
−z + cos ν√

αβ

)
− h0(ν)

g(z) =
−1

2
√
−αβ

(
e−
√
−α/βE1

(
−u−

√
−α/β

)
− e
√
−α/βE1

(
−u+

√
−α/β

))
− g0(ν),

where h0(ν) and g0(ν) are normalizing constants, and E1 is the exponential integral. The-

orem 3.1 guarantees that the harmonic mapping f = h + g will be CHD and univalent for

every value of ν. Note that when ν = 0 we get the normalized version of Weitsman’s example.

ν = 0 ν = π
2

ν = π

Figure 3.2: Images of f(D) for various values of ν in Example 3.4.

We now present a new technique for creating SIFD harmonic functions, based on the

following theorem by Clunie and Sheil-Small in [4].

Theorem 3.5. Let f = h+ g be locally univalent in D and suppose that h+ cg is convex for

some |c| ≤ 1. Then f is univalent.
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Example 3.6. Let

h (z) =
1

2
log

(
1 + z

1− z

)
and let ω = e

z+1
z−1 . Then

g′ = h′ω =
1

1− z2
e
z+1
z−1 .

It follows from Theorem 3.5 with c = 0 that f = h+ g is univalent. Integrating g gives

g (z) = −1

2
E1

(
z + 1

−z + 1

)
+

1

2
E1 (1) ,

where En (z) is the exponential integral function

En (z) =

∫ ∞
1

e−zt

tn
dt, Re (z) > 0.

(a) Image of f(D) (b) Close up image

Figure 3.3: Images in Example 3.6.

Using Theorem 3.5 and the approach in Example 3.6, we can construct many examples

of harmonic univalent SIFD functions. Figure 3.4 has a collection of more examples.
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3.4 Boundary Behavior

In each of these examples, it appears that the image of the harmonic map has infinitely

many cusps. We will now give a heuristic analysis that confirms this for Examples 3.2 and

3.4. We require a theorem by Greiner [21].

Theorem 3.7. Let ϕ be a conformal mapping of the unit disk D onto a domain convex in

the direction of the real axis and let ω be an analytic function with |ω (z) | < 1 in D. Let f

be the horizontal shear of ϕ with dilatation ω. If I = {eiθ|θ ∈ (a, b)} is an arc up to which

ω is continuous and if

ω
(
eiθ
)
∈ ∂D \ {1}, lim

r→1

∂ϕ

∂θ

(
reiθ
)
∈ C \ R, and lim

r→1

∂2ϕ

∂θ2
(
reiθ
)
∈ C

for all θ ∈ (a, b), then

f̂ (I) =
{

lim
r→1

f
(
reiθ
)
|θ ∈ (a, b)

}
is a strictly concave boundary arc.

We will approach this analysis by finding all points in the domain of ϕ that do not meet

the above criteria. That is, we are looking for the set A of points on ∂D up to which

1. ω does not extend continuously, or

2. ω extends continuously but

a) ω
(
eiθ
)

= 1,

b) limr→1
∂ϕ
∂θ

(
reiθ
)
∈ R ∪ {∞}, or

c) limr→1
∂2ϕ
∂θ2

(
reiθ
)
/∈ C.

First we note that ω is continuous up to ∂D except at z = 1. By taking the second partial

derivative of ϕ with respect to θ it is easy to see that condition 2c) is satisfied only when

z = 1 or z = e±iν . Next, consider condition 2a). Notice

e
eiθ+1

eiθ−1 = e−i cot
θ
2 .
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Thus ω
(
eiθ
)

= 1 exactly when θ = π. Finally, consider condition 2b). A simple computation

yields

∂φ

∂θ

(
reiθ
)

=

ireiθ
(

1− e
reiθ+1

reiθ+1

)
1− 2 cos (ν)reiθ + r2e2iθ

,

which extends continuously to ∂D except at z = 1 and z = e±iν . Thus for all other points

on ∂D,

lim
r→1

∂φ

∂θ

(
reiθ
)

=
∂φ

∂θ

(
eiθ
)
.

Notice that for these points,

lim
r→1

∂φ

∂θ

(
reiθ
)
∈ R ∪ {∞}

⇐⇒ Im

{
∂φ

∂θ

(
eiθ
)}

= Im

 ieiθ
(

1− e−i cot θ2
)

1− 2 cos (ν)eiθ + e2iθ

 = 0

⇐⇒ Im
{
ieiθ

(
1− e−i cot

θ
2

) (
1− 2 cos (ν)e−iθ + e−2iθ

)}
= (2 cos θ − 2 cos ν)

(
1− cos

(
cot

θ

2

))
= 0.

Thus for z 6= 1, z 6= e±iν ,

Im

{
∂φ

∂θ
(eiθ)

}
= 0 ⇐⇒ cot

θ

2
= 2kπ, k ∈ Z.

In summary, the set A consists of the points
{
z = eiθ|θ = ±ν, or cot θ

2
= 2kπ, k ∈ Z

}
. Theo-

rem 3.7 says that at every point of ∂D not in A, the boundary of the image of ϕ is a concave

arc. Thus the image of ϕ has infinitely many cusps which occur at the points of A.
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3.5 More Examples

(a) h = log(1 + z);ω = e
z+1
z−1 (b) h = log(1 + z);ω = −e

z+1
z−1

(c) h = 1
2 log

(
1+z
1−z

)
;ω = e

z+1
z−1 (d) h = 1

2 log
(
1+z
1−z

)
;ω = −e

z+1
z−1

(e) h = 2 log
(

z
2−z

)
;ω = e

z+1
z−1 (f) h = 2 log

(
z

2−z

)
;ω = −e

z+1
z−1

50



(g) h = z
1−z ;ω = e

z+1
z−1 (h) h = z

1−z ;ω = −e
z+1
z−1

(i) h = 1
2i log

(
1+iz
1−iz

)
;ω = e

z+1
z−1 (j) h = 1

2i log
(
1+iz
1−iz

)
;ω = −e

z+1
z−1

Figure 3.4: Summary of Examples

3.6 Using harmonic maps to construct new minimal surfaces

In this section we show an example in which a harmonic univalent function is lifted to form a

minimal graph that appears to be new. The construction is along the same lines as Example

3.6 and is only outlined below.

Let f = h+ g, where

h (z) =
1

2
log

(
1 + z

1− z

)
and let ω =

(
e
z+1
z−1

)2
. Since g′ = h′ω = 1

1−z2 e
2 z+1
z−1 , we know that

g (z) = −1

2
E1

(
z + 1

−z + 1

)
+

1

2
E1 (1) ,
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where E1 (z) is the exponential integral function. Theorem 3.5 shows that, f = h + g is

univalent. The image of f(D) is shown in Figure 3.5.

Figure 3.5: The image of f(D) and a close-up of that image.

By the Weierstrass representation f = h + g lifts to an embedded minimal surface (see

Figure 3.6).

Figure 3.6: Images of the minimal surface constructed from f

The fact that the harmonic function has nonvanishing dilatation means that there is no

(finite) point where the function is approximately analytic. In terms of minimal surfaces,

this means that the minimal surface never has zero Gauss curvature. The many cusps of the

harmonic map lift to wrinkles in the edge of the surface. (It can be seen that this the same
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is true of the corners in the map that induces Scherk’s doubly-periodic surface.) It also has

a singularity with unusual behavior when z → 1.
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Chapter 4. Convolutions of Non-vertical Shears

Up to this point, we have considered only shears in the vertical direction. While there are

unique features of vertical shearing, we show that it is possible to generalize results about

vertical shears to arbitrary directions. Thus working only in the vertical direction is often

sufficient. This section provides one approach to the generalization and gives examples.

We emphasize that the most important application is the transition between vertical and

horizontal shearing.

To state the identity, we must first establish some more covenenient notation. We will

use fα,ω to denote the shear of ϕ(z) =
z

1− z
in the α direction with dilatation e−2iαω. That

is, fα,ω = hα,ω + gα,ω, where hα,ω − e2iαgα,ω =
z

1− z
and g′/h′ = e−2iαω.

Lemma 4.1. Let α, β ∈ R, and let ω be analytic on D with |ω| < 1. Then hα,ω = hβ,ω and

gα,ω = e−2i(α−β)gβ,ω.

Proof. We examine the steps of the shearing technique, keeping track of the relationship

between the two shears. Differentiating the equation ϕ = hα,ω − e2iαgα,ω gives

ϕ′ = h′α,ω − e2iαg′α,ω

= h′α,ω(1− e2iα(e−2iαω))

= h′α,ω(1− ω).

Hence h′α,ω = ϕ′/(1− ω). Likewise, we have h′β,ω = ϕ′/(1− ω). This shows that hα,ω = hβ,ω.

This gives immediately gα,ω = e−2iα(hα,ω − ϕ) and likewise gβ,ω = e−2iβ(hβ,ω − ϕ). We

conclude that gα,ω = e−2i(α−β)gβ,ω.

Theorem 4.2. Let α, β ∈ R, and let ω1, ω2 be analytic on D with |ω1| < 1 and |ω2| < 1.

Then fα,ω1 ∗ f−α,ω2 = fβ,ω1 ∗ f−β,ω2.
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Proof. This is a direct computation. We can express the various functions as follows.

fα,ω1(z) = hα,ω1(z) + gα,ω1(z) =
∞∑
n=1

anz
n +

∞∑
n=1

bnz
n

f−α,ω2(z) = h−α,ω2(z) + g−α,ω2(z) =
∞∑
n=1

Anz
n +

∞∑
n=1

Bnz
n

fβ,ω1(z) = hβ,ω1(z) + gβ,ω1(z) =
∞∑
n=1

cnz
n +

∞∑
n=1

dnz
n

f−β,ω2(z) = h−β,ω2(z) + g−β,ω2(z) =
∞∑
n=1

Cnz
n +

∞∑
n=1

Dnz
n

We then have

(fα,ω1 ∗ f−α,ω2)(z) =
∞∑
n=1

anAnz
n +

∞∑
n=1

bnBnz
n

(fβ,ω1 ∗ f−β,ω2)(z) =
∞∑
n=1

cnCnz
n +

∞∑
n=1

dnDnz
n

From the Lemma we have an = cn, bn = e−2i(α−β)dn, An = Cn, and Bn = e−2i(−α+β)Dn for

all n. Hence

(fβ,ω1 ∗ f−β,ω2)(z) =
∞∑
n=1

anAnz
n +

∞∑
n=1

e−2i(α−β)dne−2i(−α+β)Dnz
n

=
∞∑
n=1

anAnz
n +

∞∑
n=1

dnDnz
n

= (fα,ω1 ∗ f−α,ω2)(z).

This theorem has the aesthetically displeasing aspect that the two functions being con-

volved are shears in different directions. The exceptions to this are the vertical and horizontal

directions, which is where this theorem seems most useful. We demonstrate this with the

following alternate versions of the same theorems.
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4.1 First Example

The following is a theorem from [11], and the investigation of whether an analogue held

in the horizontal direction was the impetus for discoving the relationship exposed in this

chapter.

Theorem 4.3. Consider the right half-plane map f1 = h1 +g1 ∈ S0
H with h1 +g1 = z/(1−z)

and ω(z) = −z. Let f ∈ h + g ∈ S0
H with h + g = z/(1 − z) and ω(z) = eiθzn (n ∈ N and

θ ∈ R). If n = 1, 2, then fα ∗ f ∈ S0
H and is convex in the horizontal direction.

The analogue is

Corollary 4.4. Consider the right half-plane map f1 = h1+g1 ∈ S0
H with h1−g1 = z/(1−z)

and ω(z) = z. Let f ∈ h + g ∈ S0
H with h − g = z/(1 − z) and ω(z) = eiθzn (n ∈ N and

θ ∈ R). If n = 1, 2, then f1 ∗ f ∈ S0
H and is convex in the horizontal direction.

4.2 Second Example

We can also generalize the main theorem of a previous chapter with almost no effort.

Theorem 4.5. Let f1 be the shear of ϕ(z) = z/(1−z) in the vertical direction with dilatation

ω1 = eiθz, θ ∈ R. Let f2 be the shear of ϕ(z) = z/(1 − z) in the vertical direction with

dilatation ω2 = eiρz, ρ ∈ R. Then f1 ∗ f2 ∈ SH and is convex in the horizontal direction.

Here is the generalization:

Corollary 4.6. Let f1 be the shear of ϕ(z) = z/(1 − z) in the α direction with dilatation

ω1 = eiθz, θ ∈ R. Let f2 be the shear of ϕ(z) = z/(1− z) in the −α direction with dilatation

ω2 = eiρz, ρ ∈ R. Then f1 ∗ f2 ∈ SH and is convex in the horizontal direction.
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Chapter 5. Convolution of Strip Mappings

5.1 Introduction

It is known (see [6]) that any harmonic mapping h+ g onto the strip

Ωα =

{
w :

α− π
2 sinα

< Re(w) <
α

2 sinα

}

has the form h+ g = 1
2i sinα

log
(

1+zeiα

1+ze−iα

)
. Also in [6], there is the following theorem

Theorem 5.1. Let f = h+ g ∈ KO
H be a vertical strip mapping. If f ∗ f is locally univalent

and satisfies Re ((1− z)2(h′ − g′)) > 0, then f ∗ f is CHD.

The proof relies on a convexity criterion, a lemma of Ruscheweyh and Sheil-Small, and

clever computations. Here are the criterion and lemma, which we will also use in our analysis.

Theorem 5.2 (Royster and Ziegler, [36]). Let f be analytic in D with f(0) = 0 and f ′(0) 6= 0,

and let

φ(z) =
z

(1 + zeiθ)(1 + ze−iθ)
,

where θ ∈ R. If

Re

(
zf ′(z)

φ(z)

)
then f is CHD.

Notice that φ is the derivative of the functional form for a half-plane map. The following

lemma was used to prove a famous conjecture in convolution theory (see [39]).

Lemma 5.3. Let φ and G be analytic in D with φ(0) = G(0) = 0. If φ is convex and G is

starlike, then for each function F analytic in D and satisfying Re(F (z)) > 0, we have

Re

(
(φ ∗ FG)(z)

(φ ∗G)(z)

)
> 0.
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5.2 Main Theorem

We find that Theorem 5.1 can be generalized by allowing that the two convolution factors

be different functions. Here is the theorem and proof.

Theorem 5.4. Fix α ∈ [π
2
, π), and let fk = hk +gk be vertical strip mappings, i.e. hk +gk =

1
2i sin(α)

log
(

1+eiαz
1+e−iαz

)
for k = 1, 2. If f1∗f2 is locally-univalent and if Re ((1− z)2(h′k − g′k)) >

0 then f1 ∗ f2 is CHD.

Proof. Consider

F1 = (h1 + g1)(h2 − g2) = h1 ∗ h2 − h1 ∗ g2 + h2 ∗ g1 + g1 ∗ g2

F2 = (h1 − g1)(h2 + g2) = h1 ∗ h2 + h1 ∗ g2 − h2 ∗ g1 + g1 ∗ g2.

Then we have

1

2
(F1 + F2) = h1 ∗ h2 − g1 ∗ g2.

So it is enough to show that Re
(
zF ′k(z)

φ(z)

)
> 0 for φ(z) = z

(1+eiαz)(1+e−iαz)
. Now zF ′1(z) =

z ((h1 + g1) ∗ (h2 − g2))′ = (h1 + g1) ∗ z(h′2 − g′2) = (h1 + g1) ∗
[

z
(1−z)2 (1− z)2(h′2 − g′2)

]
and φ(z) = z

(1+eiαz)(1+e−iαz)
= (h1 + g1) ∗ z

(1−z)2 , so by Theorem 5.3 and the hypothesis of

Theoem 5.4, we have

Re

(
zF ′1(z)

φ(z)

)
= Re

(h1 + g1) ∗
[

z
(1−z)2 (1− z)2(h′2 − g′2)

]
(h1 + g1) ∗ z

(1−z)2

 > 0.

This completes the proof.
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Figure 5.1: Image of f1 ∗ f1.

5.3 Examples

5.3.1 Example 1. Consider α = π
2

and ω = −z. Then h1 + g1 = 1
2i

log
(
1+iz
1−iz

)
. By

shearing, we find h1 and g1.

h1 = −1

2
log(1− z) +

√
2

4
ei
π
4 log(1− iz)−

√
2

4
e−i

π
4 log(1 + iz)

g1 =
1

2
log(1− z) +

√
2

4
e3i

π
4 log(1− iz) +

√
2

4
e−3i

π
4 log(1 + iz)

Now we need to verify Re{(1− z)2(h′1− g′1)}>0. Computing, we find (1− z)2(h′1− g′1) =

1− z2

1 + z2
. By subordination, it suffices to consider the map

1− z
1 + z

, which clearly has positive

real part.

5.3.2 Example 2. Now for f2, consider α = π
2

and ω = −z2. Again by shearing, we

compute

h2 = −1

4
log(1− z) +

i

4
log(1− iz)− i

4
log(1 + iz) +

1

4
log(1 + z)

g2 =
1

4
log(1− z) +

i

4
log(1− iz)− i

4
log(1 + iz) +

1

4
log(1 + z).

Again, we must check Re{(1− z)2(h′2 − g′2)}>0. Computing, we get (1− z)2(h′1 − g′1) =

1− z
1 + z

, which certainly has positive real part.
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Figure 5.2: Image of f1 ∗ f2.

The above calculations all assumed an α value of π
2
. Just for interest, we include images

of the corressponding calculations with different α values.

1 2 3 4 5
-3
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-1

0

1

2

3

1.5 2.0 2.5 3.0 3.5 4.0
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0.5
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Figure 5.3: Images with ω = −z for f1 and ω = −z2 for f2 for α = 2π
3
, 5π

8
, and 3π

4
, respectively.
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Chapter 6. Convex Combinations

In this section, we present two main theorems, Theorem 6.3 and Theorem 6.5. The first

concerns the convex combination of polygon maps, and the second generalizes a theorem by

Dorff and Viertel, giving several applications, including an application to minimal surfaces.

6.1 Background

To proceed, we need just a little background. Consider the following condition, which is

relevant when considering linear combinations of harmonic univalent functions.

Condition A. For a function f , complex-valued harmonic and non-constant in D, there

exist sequences {z′n}, {z′′n} convergent to z = 1 and z = −1, respectively, such that

lim
n→∞

Re{f(z′n)} = sup
|z|<1

Re{f(z)}

lim
n→∞

Re{f(z′′n)} = inf
|z|<1

Re{f(z)}

This condition is important because of the following characterization, due to Hengartner

and Schober.

Theorem 6.1. Suppose f is analytic and non-constant in D. Then

Re{(1− z2)f ′(z)} ≥ 0,∀z ∈ D

if and only if

• f is convex in the vertical direction, and

• Condition A holds.

There is no known general condition under which the linear combination of univalent

harmonic functions is again univalent, and the search for partial results in special cases is
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an active area of research.

The following proposition justifies the proof strategy we will use. Indeed it generalizes

the proof of Theorem 6.4.

Proposition 6.2. Let f1, f2 be harmonic maps convex in the imaginary direction and satis-

fying Condition A, and let t ∈ [0, 1]. Then their convex combination, tf1+(1−t)f2, is convex

in the imaginary direction and satisfies Condition A if and only if it is locally univalent.

Proof. Assume f3 is locally-univalent. Then by the shearing theorem, f3 = h3 + g3 is convex

in the vertical direction if and only if h3 + g3 is too. Using Hengartner and Schober’s

condition, we get

Re
(
(1− z2)(h′3 + g′3)

)
= Re

(
(1− z2) [t(h′1 + g′1) + (1− t)(h′2 + g′2)]

)
= tRe

(
(1− z2)(h′1 + g′1)

)
+ (1− t)Re

(
(1− z2)(h′2 + g′2)

)
.

Observe that by the shearing theorem, hj+gj is convex in the vertical direction. Also, hj+gj

satisfies Condition A since Re{fj} = Re{hj + gj} = Re{hj + gj}. Therefore, Hengartner and

Schober’s theorem guarantees that Re ((1− z2)(h′1 + g′1)) > 0 and Re ((1− z2)(h′2 + g′2)) > 0,

so f3 is convex in the vertical direction.

6.2 Convex Combinations of Polygons

Mary Goodloe (see [20]) studied the canonical n-gon maps, which are given by

h′n =
1

1− zn

and

g′n =
−zn−2

1− zn
.

We seek to understand their behavior under convex combination. To do so, we will use

Proposition 6.2.
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Theorem 6.3. Let fn and fm be the canonical n-gon and m-gon maps, respectively. Then

their convex combination, tfn+(1− t)fm is univalent and convex in the imaginary direction.

Proof. Observe first that fn and fm are certainly convex in the imaginary direction. Further-

more, since these functions are constructed via Poisson integration of a piecewise-constant

boundary function, the value as z → ±1 along the real axis approach a real number which

is either a vertex or the midpoint between two vertices. Therefore Condition A certainly

applies. So Proposition 6.2 implies that the convex combination is univalent, if we can bound

the dilatation by 1. If m = n, the claim is trivial, so assume without loss of generality that

m > n. Then the dilatation is given by

tg′m + (1− t)g′n
th′m + (1− t)h′n

=
t−z

m−2

1−zm + (1− t)−zn−2

1−zn

t 1
1−zm + (1− t) 1

1−zn

=
−tzm−2(1− zn)− (1− t)zn−2(1− zm)

t(1− zn) + (1− t)(1− zm)

= zn−2
zm − tzm−n − (1− t)
1− tzn − (1− t)zm

.

Observe that, by symmetry of the coefficents, if the numerator above has a root z0, then

the denominator has root 1/z0, so the dilatation factors as

zn−2
m∏
k=1

z − ai
1− aiz

,

where the ai are the roots of φ(z) = zm − tzm−n − (1 − t). Since the factors in the above

expression map into the disk if |ai| < 1, it would be enough to show that |ai| < 1 for each i.

For this, we may apply Rouche’s Theorem to φ. So we consider a circle of radius 1+ ε, where

ε > 0. Then we need to show that

|tzm−n + (1− t)| < |zm|

63



whenever |z| = 1 + ε. The LHS above is bounded by t(1 + ε)m−n + (1− t). observe that this

expression is linear as a function of t and has positive slope as t increases, so a maximum

is attained when t = 1. So the LHS is bounded by (1 + ε)m−n, which is certainly strictly

less than (1 + ε)m, the value of the RHS. Thus, since ε was arbitrary, Rouche’s Theorem

guarantees that φ has all its zeros on the closed unit disk.

Suppose there is some root on the boundary of the unit disk. Then the presence of the

leading zn−2 ensures that the dilatation is still strictly bounded by one.

So we see that the linear combination tfm + (1− t)fn is locally univalent.

6.3 Statement and Proof of Theorem 6.5

The main theorem of this section is a generalization of the following theorem.

Theorem 6.4. Let f1 = h1+g1 and f2 = h2+g2 be mappings convex in the vertical direction

and ω2 = ω1. If f1 and f2 satisfy Condition A, then f3 = tf1 + (1− t)f2 where 0 ≤ t ≤ 1 is

convex in the vertical direction.

This theorem is innovative in that it uses a dilatation condition to guarantee that the

convex combination is univalent. Our aim is to improve on Theorem 6.4 by loosening the

dilatation condition to include more cases. It will be seen that this loosening allows for

applications beyond those of Theorem 6.5. Here is the extended theorem.

Theorem 6.5. Let f1 = h1+g1 and f2 = h2+g2 be mappings convex in the vertical direction

satisfying ω2 = eiθω1 for some −π < θ ≤ π. If f1 and f2 satisfy Condition A, then for each

0 ≤ t ≤ 1, the linear combination f3 = tf1 + (1 − t)f2 is convex in the vertical direction if

θ = 0 or Re
(
−θiei θ2 h

′
2

h′1

)
> 0.

Proof. The case θ = 0 is 6.4. So assume θ 6= 0 and that Re
(
−θiei θ2 h

′
2

h′1

)
> 0.

The Shearing Theorem only applies to locally-univalent functions. To see that f3 is locally
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univalent, use g′1 = ω1h
′
1 and g′2 = ω2h

′
2 = eiθω1h

′
2. Then

ω3 =
tg′1 + (1− t)g′2
th′1 + (1− t)h′2

=
tω1h

′
1 + (1− t)eiθω1h

′
2

th′1 + (1− t)h′2
= ω1

1 + eiθ 1−t
t

h′2
h′1

1 + 1−t
t

h′2
h′1

.

Observe that this is just a Mobius transformation of 1−t
t

h′2
h′1

that maps a half-plane to the

unit disk. A quick calculation shows that the half-plane Re
(
−θiei θ2w

)
> 0 is mapped to

the unit disk. Therefore, we have local univalence if and only if Re
(
−θiei θ2 h

′
2

h′1

)
> 0.

6.4 Applications

This theorem can be applied in several directions, some of which we illustrate now.

6.4.1 Minimal Surfaces. Theorem 6.5 applies to the theory of associated minimal sur-

faces.

Definition 6.6. Let M be a minimal surface parameterized by φ : C → R3. Then the

conjugate minimal surface is given by ψ : C→ R3, where ψ is the harmonic conjugate of φ.

There is then a family of associated minimal surfaces given by (cos θ)φ+ (sin θ)ψ.

The properties of associated and conjugate minimal surfaces are fascinating and have

received well-deserved attention.

Here is how 6.5 applies to minimal surface theory: Let both f = h+g and fθ = h+eiθg, be

convex in the vertical direction and satisfy Condition A. Then using the special case h1 = h2

of 6.5, we know that tf+(1−t)fθ = h+[t+ (1− t)eiθ] g with t ∈ [0, 1] is univalent and convex

in the vertical direction. If the dilatation of f is the square of an analytic function, then

h+g induces a minimal graph. The associated minimal surfaces of f are easily calculated to

be the same as the surfaces induced by fθ. Therefore,the convex combination of associated

minimal graphs is again a minimal graph even though the combined graph will not typically

be an associated minimal surface in the sense of 6.6. Thus, this represents a new class of

minimal surfaces that we can calculate explicitly in terms of the classical minimal surfaces.
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Example 6.7. We can use this theorem to build a bridge between two classical minimal

surfaces, namely Scherk’s first and second surfaces. They are the first and last surfaces in

Figure 6.1, respectively. The first Scherk surface is the surface that would be formed by a

bubble spanning wire rods in a box shape, and the second Scherk surface is its harmonic

conjugate surface. We’ve already taken the time to construct Scherk’s first surface in an

earlier example from the introduction, which is worth refering to again before reading this

example. Here is the formula for the first surface’s projection onto the complex plane. (Can

you see the easy way to get the formula for the second surface from this one?)

f(z) = h(z) + g(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
.

The function above maps onto a square in the complex plane, and its conjugate function

maps to a hypocycloid with four cusps. It is quite easy to show that these maps are convex

in the vertical direction and satisfy Condition A, so we may apply Theorem 6.5 to see that

the family of functions

h+ (t+ (1− t)(−1)) g(z),

together with their corresponding minimal surfaces, are univalent. Notice that the introduc-

tion of the parameter t simply has the effect of shrinking the dilatation and then reversing

it. Indeed, when the dilatation is zero, the corresponding harmonic map is planar. Thus

this family forms a minimal surface bridge between the two Scherk surfaces and the plane.

It is also interesting to note that the first three images correspond to four of the sides

acting as rigid boundary conditions and the last three images correspond to the other four

sides acting as rigid boundaries. Imagine this in terms of transforming wire frames spanned

by bubbles.

6.4.2 Special Cases in the Plane. Several well-known classes of functions h1, h2 satisfy

the hypothesis of this theorem. To facilitate the discussion, we introduce the following special

classes of functions, together with characterizations of them.
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Figure 6.1: A transition between the two Scherk surfaces and the plane

Definition 6.8. A schlicht function f is called convex if f(D) is a convex subset of the

plane. These functions are characterized by fact that zf ′(z) is starlike.

Definition 6.9. A schlicht function f is called close-to-convex if there exist a real constant

β and a convex function φ such that

Re

(
eiβ
f ′(z)

φ′(z)

)
> 0

for all z ∈ D.

Definition 6.10. A schlicht function f is called starlike if for each z, the segment tf(z), t ∈

[0, 1) lies entirely in f(D). These functions are characterized by the relation

Re

(
zf ′(z)

f(z)
> 0

)
.

Definition 6.11. A schlicht function f is called convex in one direction if there is a real

number α such that the intersection of any line that has direction eiα with f(D) is either

empty or connected. These functions are characterized by the existence of constants b1, θ1,
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and θ2 such that Re
(
zf ′(z)
φ(z)

)
> 0, where φ(z) = b1z

(1+eiθ1z)(1+eiθ2z)
.

Each of these classes has been well-studied and is known to possess special properties.

Here are some examples of applications to special subclasses. Some are quite general, and

others are very restrictive. In each of these, we take f1 = h1 + g1, f2 = h2 + g2, each of of

which is CVD and satisfies Condition A.

• If h1 is close-to-convex and h2 is an associated convex function from Definition 6.9 with

constant β = θ−π
2

(for θ ∈ [0, π]), then Theorem 6.5 applies.

• If h1 is starlike, and h2 = czh′1, where arg c = − arg−θieiθ/2 then the theorem applies

by the standard characterization of starlikeness.

• If h2 is convex in one direction and h2 = b1
(1−eiθ1z)(1−eiθ−2z)

, for appropriate constants

b1, θ1, and θ2, then the theorem applies, which again follows from a standard charac-

terization of functions convex in one direction.

• If fθ = h + eiθg is convex in the vertical direction and satisfies Condition A for all θ,

then h+ εg is convex in the vertical direction for all |ε| < 1. The theorem applies since

every ε ∈ D can be written in the form t+ (1− t)eiθ for some real θ.

• Under the assumptions of the previous bullet, h is convex in the vertical direction,

which is seen by letting ε = 0.
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Chapter 7. Conclusion

7.1 Summary

In this thesis, I have presented several original theorems on the convolution and linear

combination of harmonic univalent maps, including applications to minimal surface theory.

In Chapter 2, we chose an infinite family of harmonic half-plane map and proved it is

univalent by extensive computations and some hp theory. In Chapter 3, we constructed

a multi-parameter infinite family of harmonic functions, each of which has singular inner

function dilatation. The boundary behavior of these functions is unusual, and we explained

its causes. We lifted some of this family as minimal surfaces and investigated the unusual

properties of these surfaces. In Chapter 4, we showed how many theorems about shearing

in one direction can be automatically reformulated as theorems about shearing in other

directions, including some prominent examples that influenced recent research attempts.

In Chapter 5, we developed a criterion for the univalence of the convolution of vertical

strip mappings. This parallels the very successful theory surrounding harmonic half-plane

mappings. We included some geometrically-interesting examples in detail. In Chapter 6,

we proved two main theorems concerning convex combinations. The first is that the convex

combination of canonical polygon maps is univalent, and the second was a generalization of a

condition on the dilatation of two maps such that their convex combination is univalent. We

found that the extended dilatation condition allows for new applications to minimal surface

theory, including the discovery of a nex class of minimal surfaces. As a special case, this

gives a continuous deformation between the two Scherk surfaces that is different from the

classical deformation through associate surfaces and which passes through the plane. This

deformation has an interesting physical interpretation in terms of wire frames and boundary

conditions.
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7.2 Future Work

These theorems leave open several possibilities that are worth investigating.

• Our investigation of harmonic half-plane maps required extensive computation. Is

there a simpler way? Can we make a broader determination about which dilatations

in f1 and f2 yield local univalence in f1 ∗ f2?

• For instance, our theorem on the convex combination of polygons relied heavily on

the functional form of the standard polygon maps. Is there some other approach that

generalizes to a larger class of polygon mappings, which do not have this convenient

functional form? In light of the Rado-Knesser-Choquet theorem, we know that any

piecewise-continuous curve which outlines a polygon induces a univalent harmonic map,

so the class of polygon maps left to be investigated is still quite large.

• In our investigation of SIFD harmonic maps, we were able to construct an unusual

minimal surface. What is the proper way to describe its ends? Also, can more such

surfaces be constructed? What general properties is and SIFD function guaranteed to

have?

• In our work on the relationship between linear combinations and dilatations, we re-

lied on the functions being CVD and satisfying Condition A. Is this necessary? Are

there less restrictive conditions we might impose? The class of CVD functions satisfy-

ing Condition A includes many familiar examples, but it would be nice to lose these

restrictions.

• We have also given a condition on the dilatation of two harmonic strip maps that

guarantees the univalence of their convex combination. The condition is still quite

restrictive, so we might ask if there is a better condition that will include more pairs of

functions? Indeed, it seems as though local univalence should be enough to guarantee

global univalence in these situations.
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