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abstract

Euclidean Domains

Vandy Jade Tombs
Department of Mathematics, BYU

Master of Science

In the usual definition of a Euclidean domain, a ring has a norm function whose codomain
is the positive integers. It was noticed by Motzkin in 1949 that the codomain could be re-
placed by any well-ordered set. This motivated the study of transfinite Euclidean domains in
which the codomain of the norm function is replaced by the class of ordinals. We prove that
there exists a (transfinitely valued) Euclidean Domain with Euclidean order type for every
indecomposable ordinal. Modifying the construction, we prove that there exists a Euclidean
Domain with no multiplicative norm.

Following a definition of Clark and Murty, we define a set of admissible primes. We
develop an algorithm that can be used to find sets of admissible primes in the ring of integers
of Q(

√
d) and provide some examples.

Keywords: k-stage Euclidean domain, indecomposable ordinal, multiplicative norm, (trans-
finitely valued) Euclidean domain, admissible primes
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Chapter 1. Introduction and History

1.1 Introduction

One might recall the following definition of Euclidean domains from an introductory abstract

algebra class.

Definition 1.1.1. An integral domain R is a Euclidean domain if there exists a function,

called a Euclidean norm, ϕ : R→ Z≥0 such that for all non-zero n, d ∈ R either d |n or there

exists some q ∈ R satisfying ϕ(n− qd) < ϕ(d).

Generalizing this definition, Motzkin in [9], noted that the codomain of the Euclidean norm

need not be restricted to the natural numbers, but instead could be any well-ordered set,

which led to the following definition.

Definition 1.1.2. LetW be a well-ordered set. A transfinitely valued Euclidean domain is an

integral domain R where there exists a function ϕ : R→ W , such that for all n, d ∈ R−{0},

there exists some q ∈ R satisfying either ϕ(n− qd) < ϕ(d) or n− qd = 0. As before, we say

that ϕ is a Euclidean norm on R.

Throughout, we will consider W to be some fixed ordinal and thus all Euclidean norms

are assumed to have codomain in Ord, the class of all ordinals. See Section 1.2 for review

of ordinal numbers. We will refer to transfinitely valued Euclidean domains as Euclidean

domains. If we restrict to the finitely valued case, we will emphasize this fact.

The definition for transfinitely valued Euclidean domains does not differ much from the

definition for finitely valued ones, and it might not be readily apparent why we want to

consider these more general norms. However, there are many reasons that this concept is

useful. First, we note that the class of transfinitely valued Euclidean domains is strictly

larger than class of finite Euclidean domains. To see this we first define the Euclidean order
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type of a Euclidean domain R to be

min{α ∈ Ord : ϕ(R \ {0}) ⊆ α}

where ϕ ranges among all possible Euclidean norms on R. Finite Euclidean domains have

two possible order types: ω0 = 1 when R is a field and ω1 = ω when R is a non-field.

Hiblot in [5] and Nargata in [10] independently found examples of Euclidean domains with

Euclidean order type of ω2. In Section 2.2, we completely classify all possible Euclidean

order types (this work also appears in [3]).

Another reason it is useful to consider transfinitely valued Euclidean domains is that this

definition shares many of the same properties as finitely valued ones. Recall that a ring R is

a principal ideal domain (PID) if every ideal is generated by a single element (such an ideal

is called principal). It is well known that finitely valued Euclidean domains are PID’s, but

it is also true of transfinitely valued Euclidean domains.

Proposition 1.1.3. Euclidean domains are PIDs.

Proof. We will show that every ideal is principal. Consider an ideal I in a Euclidean domain

R. If I = (0) then we are done. So let I be non-zero, and choose d ∈ I to be some non-zero

element of minimal norm. Clearly (d) ⊆ I, so we need only show the reverse containment.

Let a ∈ I and write a = qd + r with r = 0 or ϕ(r) < ϕ(d), then r = a − qd ∈ I. By the

minimality condition of d, we have r = 0, hence a = qd ∈ (d). Thus I = (d).

Another similarity between transfinitely valued Euclidean domains and finite ones is that

the division algorithm terminates in finite time.

There are other generalizations of Euclidean domains. For example, one may generalize

the division algorithm in the following way. Suppose for all a, b ∈ R, either b | a, or there

exists a q1 such that a = q1b+ r1 with ϕ(r1) < ϕ(b), or there exists q1, q2 ∈ R such that

a = q1b+ r1, b = q2r1 + r2.
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and ϕ(r2) < ϕ(b) . Then we can still carry out a division algorithm on pairs (a, b) since,

after finite number of steps, we can produce a remainder with smaller norm. We call rings

satisfying this condition 2-stage Euclidean. To generalize this further, we loosely follow

definitions in [4].

Definition 1.1.4. Let R be an integral domain.

(1) For a, b ∈ R, and k ∈ Z≥1, a k-stage division chain starting from the pair (a, b) is a

sequence of equations in R

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3

...

rk−2 = qkrk−1 + rk.

Such a division chain is said to be terminating if the last remainder rk is 0.

(2) If there is a function N : R→ Ord (we call N a norm) and for every pair (a, b) with

there exists a k-stage division chain starting from (a, b) for some 1 ≤ k ≤ n such that the

last remainder rk is either 0 or satisfies N(rk) < N(b) then R is said to be n-stage Euclidean

with respect to N .

We say R is ω-stage or quasi-Euclidean if for every pair (a, b) there is a terminating

k-stage division chain for some k ∈ Z≥1.

Unlike Euclidean domains, k-stage Euclidean domains are not necessarily PIDs.

Example 1.1.5. Consider the ring of algebraic integers, denoted by R. We will show that

R is 2-stage Euclidean but not a PID. To do this, we will follow the proof of Vaserstein in

[12] to show that given any two relatively prime algebraic integers a and b, there exists an

algebraic integer q such that a− qb is a unit.
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First note that if b = 0 then letting q = 0, we have R(a + qb) = Ra = Ra + Rb = R.

Otherwise, we can find a natural number n such that (−a)n ∈ 1 +Rb. Such an n must exist

since the multiplicative group R/Rb is torsion and a 6∈ Rb. Thus there must exist an r ∈ R

such that

br = (−a)n − 1.

Since Ran−1 +Rbn−1 = R, we can find c, d ∈ R such that

−r = c(−a)n−1 + dbn−1.

Choose q ∈ R satisfying the monic polynomial xn + cxn−1 + d = 0. Then (a + qb − a)n +

bc(a+ qb− a)n−1 + dbn = 0. This implies

(−a)n + bc(−a)n−1 + dbn = −
n∑
k=1

(
n
k

)
(bq + a)k(−a)n−k −

n−1∑
k=1

(
n−1
k

)
(bq + a)k(−a)n−1−k

Thus

1 = 1 + b(r + (−a)n−1c+ bn−1d)

= 1 + br + bc(−a)n−1 + bnd

= 1 + (−a)n − 1 + bc(−a)n−1 + bnd

= (−a)n + bc(−a)n−1 + bnd ∈ R(a+ qb).

Hence the set of algebraic integers is 2-stage Euclidean.

To see that R is not a PID, consider the ideal I = (21/n : n ∈ N).

However, using an argument similar to that in 1.1.3, we see that any finitely generated

ideal in a k-stage Euclidean ring is principal. A ring which satisfies every finitely generated

ideal is principal are called Bezout domains.

Recall that a unique factorization domain (UFD) is an integral domain such that every
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element factors uniquely into a product of irreducibles up to associates and order. It is

well-known that Euclidean domains are UFDs and the typical proof only uses the following

facts,

• every element factors into indecomposables, and

• for any pair (a, b) with b 6= 0 there is a terminating division chain.

Using these two facts, we have proved the following proposition.

Proposition 1.1.6. Let R be a ω-stage Euclidean domain such that every element of R

factors into indecomposables. Then R is a UFD.

Corollary 1.1.7. Let R be a k-stage Euclidean domain for some k ∈ Z≥1 such that every

element of R factors into indecomposables. Then R is a UFD.

The k-stage Euclidean domains are related to a notion introduced by Cohn (see [2]).

Recall an elementary matrix with coefficients in an integral domain R is a square matrix of

one of three types:

• a diagonal matrix with entries that are units in R,

• a matrix with differs from the identity matrix by the presence of a single nonzero

element off the diagonal, or

• a permutation matrix.

Note that elementary matrices are invertible. Also recall that GLn(R) is the set of n×n

invertible matrices with coefficients in R, meaning those matrices whose determinants are

units in R.

Cohn in [2] gave the following definition.

Definition 1.1.8. A domain R is called GEn if GLn(R) is generated by n × n elementary

matrices.
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The following proposition was noticed and proved by Cooke in [4].

Proposition 1.1.9. An ω-stage Euclidean domain in GEn for every n.

Proof. We work by induction on n. First, we note that every domain is GE1. Now suppose

that R is ω-stage Euclidean and GEn−1. In order to show that R is GEn, we just need

to show that every invertible n × n matrix is reducible to the identity by elementary row

operations. Let M ∈ GLn(R). Then the det(M) is a unit of R. Expanding the determinant

down the first column shows that the entries in the first column of M must generate R. Let


α1

...

αn


be the first column of M .

Consider α1 and α2. We may add any multiple of α1 to α2 without altering any of the

other entries in the column. By assumption, α1 and α2 have a terminating division chain.

Hence by successive row operations, we may reduce M so that the first column becomes



δ1

0

α3

...

αn


where δ1 is the next to last remainder in the division chain of α1 and α2. Now do this for δ1

and α3 and call the next to last remainder of the division chain of δ1 and α3, δ2. Continue

until α3, . . . , αn. Then δn is a unit of R since (δn) = (α1, . . . , αn) = R. Hence we have
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reduced the first column of M to 

1

0

...

0


.

Let M11 be obtained by deleting the first column and row of M . Then after making the

above reductions, M11 is invertible. Thus by inductive hypothesis, M11 can be reduced to

the identity by elementary row operations (which will not affect the first column or row), so

M is row equivalent to the matrix



1 ∗ · · · ∗

0 1 · · · 0

...
. . .

...

0 1


which is clearly able to be reduced to the identity.

Example 1.1.10. Let R be the ring of integers of Q(
√
−19). Cohn showed in [2] that R is

not GEn for any n ≥ 2. Thus by Propositions 1.1.9, R is not ω-stage Euclidean. However,

R is a PID, thus there does exist a PID which is not ω-stage Euclidean.

1.2 Review of Ordinals

Recall that a set is totally ordered if there is a relation ≤ which is reflexive, anti-symmetric,

transitive and any two elements are comparable. A well-ordering is a total ordering on a set

for which every non-empty subset has a least element. Equivalently, a totally ordered set is

well-ordered if there is no infinitely decreasing sequence. The ordinals are a generalization of

the natural numbers, which describe the order type of a well-ordered set. The first infinite

ordinal is ω which describes the order type of the natural numbers.

It is not necessary that a non-empty well-ordered set has a maximum element. If a well-
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ordered set does have a maximum element, then the ordinal describing that set is said to be

a successor ordinal. Any non-zero ordinal which is not a successor ordinal is a limit ordinal.

For example, the ordinal ω is a limit ordinal. Equivalently, α is a limit ordinal if whenever

an ordinal γ is less than α, then there exists an ordinal β such that γ < β < α.

If S and T are two disjoint well-ordered sets with order type α and β respectively, then

the order type of S∪T is α+β. If the sets are not disjoint then one set may be replaced with

an order isomorphic set. Note that this addition is not commutative. To see this consider the

set {a < b < c} with order type 3 and the natural numbers. Then the ordinal 3+ω describes

the order type of the set {a < b < c < 0 < 1 < ...}, which after relabeling, also has order

type ω. However, the ordinal ω + 3, which describes the set {0 < 1 < 2 < ... < a < b < c},

is not equivalent to ω, since ω + 3 is a successor ordinal and ω is a limit ordinal.

We may also define ordinal multiplication. For any two well-ordered sets S and T with

order type α and β respectively, the order type of S×T is α ·β. Note that this multiplication

is not commutative. We may also define ordinal exponentiation. We will do this inductively,

meaning given ordinals α and β we define α0 = 1, αβ+1 = αβ · α, and if β is a limit ordinal,

we define αβ to be the limit of αγ for all γ < β.

Every ordinal γ can be written uniquely in Cantor normal form

γ = ωα1n1 + ωα2n2 + · · ·+ ωαknk =
k∑
i=1

ωαini

where α1 > α2 > · · · > αk are ordinals, the coefficients n1, n2, . . . , nk are positive integers

and k ∈ ω. Since ordinal addition is not commutative, summation will be written from left

to right as in the equality above.

An ordinal is indecomposable if it is nonzero and cannot be written as a sum of two

smaller ordinals. An example would be ω. In fact, all indecomposable ordinals are of the

form ωα for some ordinal α.

Let γ, δ be two ordinals. After adding zero coefficients to their Cantor normal form (as

necessary), we may write γ =
∑k

i=1 ω
αimi and δ =

∑k
i=1 ω

αini where α1 > α2 > · · · > αk
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are ordinals, each mi, ni are non-negative integers and k ∈ ω. The Hessenburg sum of γ and

δ is the ordinal

γ ⊕ δ =
k∑
i=1

ωαi(mi + ni)

The Hessenburg sum is commutative and cancellative.

1.3 Motzkin Sets

The Euclidean Algorithm provides a way to move from one denominator to ‘simpler’ denom-

inator. Using the divisibility relation, we can measure the simplicity of a denominator. The

simplest denominators would be those that divide every element in R (i.e. x ∈ R is such

that x | y for all y ∈ R). We can then recursively assign complexities with respect to this

relation, leading to the following definition.

Definition 1.3.1. Given any ring R and any ordinal α, define a Motzkin set

Eα(R) := {d ∈ R : if n ∈ R then d |n or there exists q ∈ R and β < α

such that n− qd ∈ Eβ(R)}.

For example, the first few Motzkin sets are as follows:

E0(R) = {d ∈ R : if n ∈ R then d |n} = U(R)

E1(R) = {d ∈ R : if n ∈ R then d |n or there exists q ∈ R and β < α

such that n− qd ∈ E0(R)}.

Notice that E0(R) contains the simplest denominators, the units of the ring. The set

E1(R)− E0(R), called the set of universal side divisors of R, are next in simplicity. Notice

that 0 will be the most complex element of R since 0 - r for any non-zero r ∈ R. This

preserves the typical order of ideals by set containment.
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Example 1.3.2. We will determine the Motzkin sets for Z.

We have U(Z) = {−1, 1} = E0(Z). For E1(Z), we need to determine what integers

have a remainder of ±1 or 0 when dividing another integer. The only integers to satisfy

this property are ±2 and ±3. Hence E1(Z) = {±2,±3} ∪ E0(Z). Inductively, we see that

Eα(Z) = {x ∈ Z : |x| < 2α+1} − {0}. For α = ω, we have 0 ∈ Eα(R). Thus, the first ordinal

where Z = Eα(R) is ω.

The next three results are some known properties of Motzkin sets that were first noted

in [11] without proof.

Proposition 1.3.3. For any ordinals α < β, and for any ring R we have that Eα(R) ⊆

Eβ(R).

Proof. Let α < β and let R be any ring. Given d ∈ Eα(R) then for every n ∈ R, there exists

q ∈ R, γ < α such that n− qd ∈ Eγ(R) thus d ∈ Eβ(R) since γ < α < β.

Remark 1.3.4. This means the Eα(R)’s form a non-decreasing chain of subsets of R.

E0(R) ⊆ E1(R) ⊆ ... ⊆ Eω(R) ⊆ Eω+1(R) ⊆ ...

This chain is strictly increasing until it stabilizes. For every ring, there exists α ∈ Ord

such that Eα(R) = Eα+1(R) where α ≤ |R|.

Proposition 1.3.5. Let R be a ring. If Eα(R) = Eα+1(R) for some ordinal α then Eα(R) =

Eβ(R) for all β > α.

Proof. Let R be a ring and suppose that Eα(R) = Eα+1(R) for some ordinal α. We work by

induction on β to show that Eα(R) = Eβ(R) for all β ≥ α. Assume that for all α ≤ γ < β,

that Eα(R) = Eγ(R). By Proposition 1.3.3, we know that Eα(R) ⊆ Eβ(R). It remains to

show the reverse inclusion. Let d ∈ Eβ(R) where β > α+ 1. Let n be arbitrary. If d |n there

is nothing to show, otherwise, there exists q ∈ R, γ < β so that n − qd ∈ Eγ(R). We may
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assume that α ≤ γ < β, then Eγ(R) = Eα(R) by inductive hypothesis, thus n− qd ∈ Eα(R)

which implies that d ∈ Eα+1(R) and thus d ∈ Eα(R).

Proposition 1.3.6. If Eα(R) = R for some ordinal α then R is a PID.

Proof. Suppose that Eα(R) = R for some ordinal α. We will show that every ideal I ≤ R

is principal. Let I ≤ R be an ideal of R. We may suppose that I 6= (0). Since Eα(R) = R

there is a smallest ordinal β such that I ∩ Eβ(R) 6= ∅. Fix x ∈ I ∩ Eβ(R) with x 6= 0.

Clearly, (x) ⊆ I. To show reverse inclusion, let y ∈ I. Since x ∈ Eβ(R), then either x | y,

which implies y ∈ (x) or there exists q ∈ R, γ < β such that y − qx ∈ Eγ(R), contradicting

minimality of β. Thus I = (x) and R is a PID.

Remark 1.3.7. In the next Section, we will see that if R satisfies Proposition 1.3.6 then R is

also a Euclidean domain.
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Chapter 2. Transfinitely Valued Euclidean

Domains can have Arbitrary Indecom-

posable Order Type

2.1 Minimal Euclidean Norm

Throughout this section, we assume that R is a domain and that R = Eα(R) for some ordinal

α. Define τ : R→ Ord by the following rule,

τ(x) = min{α ∈ Ord : x ∈ Eα(R)}

Proposition 2.1.1. τ defined above is a Euclidean norm on R.

Proof. Let n, d ∈ R and assume that d - n. Since R = Eα(R) for some ordinal α, we have

d ∈ Eβ(R) for β < α. Choose β to be minimal. Since d ∈ Eβ(R), there exists q ∈ R such

that n− qd ∈ Eγ(R) for some γ < β. Thus τ(n− qd) < γ < β = τ(d).

Motzkin observed in [9] that τ defined above is minimal among all Euclidean norms of

R, meaning if ϕ is any Euclidean Norm on R then τ(x) ≤ ϕ(x) for all x ∈ R. We will call

such a Euclidean norm on a domain R the minimal Euclidean norm. It is easy to see that

the minimal Euclidean norm satisfies τ(x) ≤ τ(xy), with equality if and only if y ∈ U(R)

or x = 0. Lenstra noted the following proposition (see [8], Proposition 2.1), which gives

another definition for the minimal Euclidean norm.

Proposition 2.1.2. A Euclidean norm ϕ on R is the minimal Euclidean norm if and only

if for all x ∈ R and for ordinals γ < α, there exists y ∈ R− (x) such that ϕ(z) ≥ γ for every

z ∈ y + (x).

The following property was noticed and proved by Lenstra (see [8], Proposition 3.4);

however, because of the usefulness of this theorem, we will also include it.
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Lemma 2.1.3. Given x, y ∈ R \ {0}, τ(xy) ≥ τ(x)⊕ τ(y).

Proof. We work by induction on τ(xy). Suppose, by way of contradiction, that τ(xy) <

τ(x) ⊕ τ(y) then, interchanging x and y if necessary, we may assume τ(xy) ≤ γ ⊕ τ(y) for

some γ < τ(x). By Proposition 2.1.2, there exists r ∈ R − (x) such that for all s ∈ r + (x),

τ(s) ≥ γ. Now choose sy ∈ ry + (xy) so that τ(sy) ≤ τ(xy), then s ∈ r + (x) and

τ(s) ≥ γ. Thus τ(sy) ≤ τ(xy) ≤ γ ⊕ τ(y). But, by inductive assumption, we should have

τ(sy) ≥ τ(s)⊕ τ(y) ≥ γ ⊕ τ(y).

Motzkin noticed the following Proposition in [9]. For completeness we provide the proof

here.

Proposition 2.1.4. R is a Euclidean domain if and only if Eα(R) = R for some ordinal α.

Proof. The forward direction follows immediately from Proposition 2.1.1. For the converse,

suppose that R is a Euclidean domain with Euclidean norm ϕ. We claim that d ∈ Eϕ(d)(R).

We work by induction on ϕ(d). Since R is a Euclidean domain, there exists q ∈ R such that

ϕ(n − qd) < ϕ(d) or n − qd = 0. By the inductive hypothesis n − qd ∈ Eϕ(n−qd)(R) which

implies that d ∈ Eϕ(d)(R). Since ϕ maps R to Ord, and is defined on all of R, we have that

Eα(R) = R for some ordinal. (see also [8] pg 11)

Corollary 2.1.5. A domain R is a finite Euclidean domain if and only if Eω(R) = R

Proposition 2.1.6. Let R be a domain. If α is the smallest ordinal such that Eα(R) = R

then α is an indecomposable ordinal.

Proof. Write the Cantor normal form for α as ωβ1c1 + ωβ2c2 + · · · + ωβkck where k ∈ ω,

k ≥ 2, ci ∈ Z>0 and β1 > β2 > · · · > βk ≥ 0 are ordinals. Assume by way of contradiction,

that α is not indecomposable. Then, since Eω(R) = R, there exists some r ∈ R such that

τ(r) = ωβ1 but then by Theorem 1, we have τ(rc1+1) ≥ τ(r)⊕ · · · ⊕ τ(r) = ωβ1(c1 + 1) > α,

a contradiction.
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Recall that the Euclidean order type of R is minϕ{α ∈ Ord : ϕ(R \ {0}) ⊆ α} where

ϕ ranges among all possible Euclidean norms on R. Since τ defined above is the minimal

Euclidean norm on a domain R and by Proposition 2.1.4, we may also define the Euclidean

order type to be the first ordinal α such that R = Eα(R). Alternatively, the Euclidean order

type is defined to be τ(0). By Proposition 2.1.6, we see that the Euclidean order type must

be an indecomposable ordinal.

2.2 Euclidean Domain with Arbitrary Indecomposable Order

Type

The purpose of this section is to prove the following theorem.

Theorem 2.2.1. For every ordinal α, there exists a Euclidean Domain with Euclidean order

type of ωα.

To prove this, we construct such a Euclidean Domain. First, fix an arbitrary ordinal α.

Let F be a field and define R0 = F [x{β},0 : 0 < β < ωα], where the elements of {x{β},0}0<β<ωα

are independent indeterminates over F . For any r ∈ R0 \ F , define

Sub(r) = {β ∈ Ord : β is an element of the first index of some variable in the support of r}.

(2.2.2)

For example, if r = x{1},0x{2},0 − x3{3},0 then Sub(r) = {1, 2, 3}.

Next, we define a function ϕ : R0 \ {0} → Ord by letting ϕ(p) = max(Sub(p)) for any

prime p ∈ R0, and set

ϕ(r) =
n⊕
i=1

ϕ(pi), where r = u

n∏
i=1

pi is a prime factorization of r with u ∈ F \ {0} (2.2.3)

We also define ϕ(u) = 0 for u ∈ F \ {0}. Returning to our previous example, if r =

x{1},0x{2},0 − x3{3},0, then it is prime, so ϕ(r) = 3. Note that since R0 is a polynomial ring

over a field, it is a U.F.D., thus prime factorizations are unique and ϕ is well-defined.
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Now we define,

S0 = {(n, d) ∈ R0 ×R0 : gcd(n, d) = 1 and ϕ(n) ≥ ϕ(d) ≥ 1}.

The elements of S0 are those for which we will adjoin a new quotient q such that ϕ(n−qd) <

ϕ(d). Thus we define

R1 = R0[x{β},1, yT,1,n,d : 0 < β < ωα, (n, d) ∈ S0]

where T = T (n, d) := Sub(n) ∪ Sub(d) ∪ {0}. We want q = yT,1,n,d to act as a quotient for

the pair (n, d). Since n−qd is a monic irreducible polynomial over q, it is prime in R1, which

we will call a special prime, with corresponding special variable q. For any r ∈ R1 \F , define

Sub(r) exactly as in (2.2.2). For reducible elements r ∈ R, we will extend ϕ to R1 in the

obvious way, (i.e. write r in its prime factorization r = u
∏n

i=1 pi where u ∈ F and each pi

is a prime then ϕ(r) =
⊕n

i=1 ϕ(pi)) and for primes p ∈ R1, we extend ϕ by the rule

ϕ(p) =


max{β ∈ T : β < ϕ(d)} if p is a special prime with special variable q

max(Sub(p)) otherwise

(2.2.4)

Notice that if p ∈ R0 that ϕ(p) agrees with its previous definition on R0, thus we have truly

extended ϕ to R1.

We now recursively define rings Rj for each j < ω and extend ϕ to Rj. Similar to passing

from R0 to R1, if we have defined some Ri (i ≥ 1) and have extended ϕ to Ri so that (2.2.4)

holds, we define

Si = {(n, d) ∈ Ri ×Ri : gcd(n, d) = 1 and ϕ(n) ≥ ϕ(d) ≥ 1}

and let

Ri+1 = Ri[x{β},i+1, yT,i+1,n,d : 0 < β < ωα, (n, d) ∈ Si}
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where T is defined as above. Note that each q = yT,i+1,n,d is a special variable for exactly

one special prime n − qd (up to unit multiples). As done previously, we define Sub(r)

on Ri+1 exactly as in (2.2.2) and extend ϕ to Ri+1 using (2.2.4), completing the recursive

construction. Note that in our extension of ϕ, we have defined ϕ in terms of its previous

values which causes no problems since if n− qd ∈ Rj+1 is a special prime then d ∈ Rj, thus

this recursion stops in finite time.

Lastly, we let R∞ = ∪∞j=0Rj and let U be the set of elements which are products of

special primes (including empty products) with ϕ-value of 0 and non-zero elements of F (i.e.

U = {r ∈ R∞ : ϕ(r) = 0}). Let R = U−1R∞. For r ∈ R, write r = u−1r′ where u ∈ U and

r′ ∈ R∞ and extend ϕ to R by ϕ(r) = ϕ(u−1r′) = ϕ(r′). We will now show that R has the

desired properties.

Lemma 2.2.5. The map ϕ is a Euclidean norm on R.

Proof. Let n, d ∈ R with d 6= 0 and assume d - n. We want to find some q ∈ R such that

ϕ(n − qd) < ϕ(d). Since multiplying by units does not change the value of ϕ, may assume

neither n nor d has any special prime factors from U . If ϕ(n) < ϕ(d), then we can take

q = 0. Thus we reduce to the case when ϕ(n) ≥ ϕ(d). Let r = gcd(n, d). We may write

n = n′r and d = d′r for some n′, d′ ∈ R∞ with gcd(n′, d′) = 1. Note that d′ 6= 1 or else d

would divide n thus ϕ(d′) ≥ 1. By the definition of ϕ, we have

ϕ(n′) ≥ ϕ(d′). (2.2.6)

Let q = yT,i,n,d, where i is chosen large enough so that n′, d′ ∈ Ri−1, then ϕ(n′− qd′) < ϕ(d′)

by the first case of (2.2.4). Thus we have

ϕ(n− qd) = ϕ(r(n′ − qd′)) = ϕ(r)⊕ ϕ(n′ − qd′) < ϕ(r)⊕ ϕ(d′) = ϕ(d). (2.2.7)

Lemma 2.2.8. The map ϕ is the minimal Euclidean Norm τ on R.
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Proof. We work by induction to show that ϕ(d) = τ(d) for all d ∈ R \ {0}. First, ϕ(d) = 0

if and only if d is a unit, which occurs if and only if τ(d) = 0. This covers the base case.

Now let β ≥ 1. Assume, inductively that for all r ∈ R \ {0} that satisfies ϕ(r) < β, that

ϕ(r) = τ(r).

Assume by way of contradiction, that β := τ(d) < ϕ(d) for some d ∈ R \ {0}. By

Lemma 2.1.3, the definition of ϕ and the fact that τ(r) ≤ ϕ(r) for all r ∈ R \ {0}, we need

only consider the case that d is irreducible. We know that d ∈ Rj for some j < ω. Set

n := x{β},j+1. Then d - n. Thus we can find q ∈ R where τ(n−qd) < τ(d) = β. By inductive

hypothesis, we know that ϕ(n− qd) = τ(n− qd). After clearing denominators, we get

un− q′d = r (2.2.9)

for some u, q′, r ∈ R∞ with u ∈ U and ϕ(r) < β. If u and q′ share a factor then we can

remove that factor from both sides of (2.2.9), thus we may assume that u and q′ share no

common factors. Since d is irreducible with positive ϕ-norm, it also shares no factors with

u.

Also, if n |q′d then n |r which would imply that ϕ(r) ≥ ϕ(n) = β, a contradiction. Thus

we have that un and q′d share no common factors in R∞ and by (2.2.9) the same is true for

any two polynomials un, q′d and r.

Let ψ : R∞ → R∞ be the unique ring homomorphism fixing F and all variables in R∞

except ψ(n) = 0. Note that n does not appear as a monomial in d since d ∈ Rj, thus

ψ(d) = d, hence after applying ψ to (2.2.9) we get −ψ(q′)d = ψ(r). Thus d | ψ(r). Since

d - r, we have that ψ(r) 6= r. Thus n must appear in some irreducible factor of r, say r1.

Note that r1 must be special or else ϕ(r) ≥ ϕ(r1) ≥ β, which is a contradiction. Thus r has

a special variable which has β in its first index and its second index is greater than j. Let

q1 = yT1,k1,n1,d1 be a special variable that is either in r or u such that β ∈ T1 and k1 > j is

maximal with respect to these properties.

Suppose that q1 appears in an irreducible factor of r′ of r but not as a corresponding

17



special variable. The factor r′ cannot be special by maximality of k1 but then ϕ(r) ≥ ϕ(r′) ≥

β which is a contradiction. Thus if q1 occurs in an irreducible factor of r, it must occur in a

special prime as the corresponding special variable.

On the other hand, if q1 appears in some irreducible of u, then since every such factor is

special and k1 is maximal, q1 is the corresponding special variable.

Since gcd(u, r) = 1, we have that q1 must occur in exactly one prime factor (not counting

multiplicity) of u or r (not both) and only as the corresponding special variable. Further,

k1 > j thus q1 does not appear in a factor of d. Thus the only way for (2.2.9) to hold is if q1

appears in q′.

First, consider the case that q1 appears in r. We can write r = s(n1 − q1d1)m for some

integer m ≥ 1 maximal with respect to s ∈ R∞. Thus r in (2.2.9) as a polynomial in the

variable q1, has leading term of (−1)mdm1 s. However, the only place where q1 appears on the

left side of (2.2.9) is in q′ and thus the left hand side of (2.2.9) has leading term divisible by

d. Thus d | dm1 s. Since gcd(d, r) = 1 and d is irreducible, we must have d | d1 which implies

ϕ(d1) ≥ ϕ(d). Since β ∈ T1 and β < ϕ(d), by (2.2.4), we have that ϕ(r) ≥ ϕ(n1− q1d1) ≥ β,

which contradicts ϕ(r) < β.

Finally, consider the case when q1 occurs in u. By the same argument as the previous

paragraph we have that d |d1 thus ϕ(d1) ≥ ϕ(d) > β. Since 1 ∈ T1 and β < ϕ(d), by (2.2.4),

we have that ϕ(u) ≥ ϕ(n1− q1d1) ≥ β ≥ 1, which contradicts ϕ(u) = 0 completing the proof

of our claim and thus proving that ϕ(d) = τ(d).

We have now shown that ϕ is the minimal Euclidean norm on R, hence the Euclidean

order type of R is

{ϕ(x) : x ∈ R \ {0}}.

We have that ϕ(1) = 0 and ϕ(x{β},0) = β so this set contains every ordinal less than ωα.

Also, any ordinal that appears in the first index of any of the variables is less than ωα. Since

the Euclidean order type must be indecomposable, the Euclidean order type of R must be

ωα.
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2.3 Finitely Valued Euclidean Domain With No Multiplicative

Norm

It has been a long standing question (see, for example [7]) whether every finitely valued

Euclidean domain has some multiplicative Euclidean norm, meaning a Euclidean norm ψ :

R \ {0} → Z≥0 such that ψ(xy) = ψ(x)ψ(y) for all x, y ∈ R \ {0} → Z≥0. Modifying the

ring we constructed in Section 2.2, we prove that there is a finitely-valued Euclidean domain

with no multiplicative Euclidean norm. We modify the construction in the following ways.

1. Fix α = 1 so that the ring will be a finitely valued Euclidean domain.

2. Restrict F to have characteristic 0.

3. At the initial stage of the construction, adjoin one more variable z = z{1},0

4. Redefine ϕ to be

ϕ(r) = ϕ(zk)⊕
n⊕
i=1

ϕ(pi) (2.3.1)

where r = uzk
∏n

i=1 pi is a prime factorization, u ∈ F \{0}, and zk ||r, with ϕ(zk) = kk

for each integer k ≥ 1. Thus ϕ still satisfies (2.2.3) except on powers of z. The

definition of ϕ remains the same on primes.

5. At the recursive stages of the construction, we expand the set Si by allowing pairs

(n, d) ∈ Ri ×Ri that satisfy gcd(n, d) = 1 and ϕ(n) < ϕ(d) if z |n. This produces new

special primes and special variables, which are subject to the previous conditions.

With these changes, Lemma 2.2.5 still holds with the following adjustments to the proof.

No changes are needed when (2.2.6) holds. We need only consider the case when ϕ(n) ≥ ϕ(d)

and ϕ(n′) < ϕ(d′), which can only occur when z | r and z | n′. In this case there is still a

special variable q = yT,i,n′,d′ due to the expansion of Si. Since gcd(n′, d′) = 1, we have that

z | d′ thus z - (n′ − qd′). Thus by (2.3.1), equation (2.2.7) still holds thus ϕ is a Euclidean

Norm on our new ring R.
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Now we will show that Lemma 2.2.8 still holds. In the second paragraph, in order to

reduce to the case that d is irreducible, we must now use 2.3.1, which allows for the possibility

that d = zk for some k ≥ 2. We need only consider this case since the original will remain

unchanged. The proof proceeds as previously until we reach the point d |dm1 . (We need only

deal with the case that r − s(n1 − q1d1)
m for some m ≥ 1, since the case with q1 in u is

similar). Since d |dm1 we have z |d1. Looking at 2.2.9 as a polynomial in the variable q1, we

have that the leading coefficient of the right hand side is −mnm−11 d1s. The leading coefficient

of the left hand side of 2.2.9 is divisible by d. Since m 6= 0 and F has characteristic 0, we

have d |(nm−11 d1s). Since z |d1 and gcd(n1, d1), d1 |d and the rest of the proof proceeds as in

Lemma 2.2.8.

Now that ϕ is the minimal norm, we may now prove the main theorem of this Section.

Theorem 2.3.2. There is a finitely valued Euclidean domain with no multiplicative Eu-

clidean norm.

Proof. Let ψ : R \ {0} → Z≥0 be any Euclidean norm on R. Set k := ψ(z). Note that since

z is not a unit, we must have k ≥ 1. Fix ` ∈ N large enough so that k` < ``. If ψ was

multiplicative, we would have

ψ(z`) = ψ(z)` = k` < `` = ϕ(z`)

which contradicts the fact that ϕ is the minimal Euclidean norm.

2.4 Consequences

Lenstra in [8] on page 34, notices for Z and k[x] where k is a field, that the following is

true. If ψ : R \ {0} → Ord is a map which is not an algorithm (a technical definition in [8])

then there exists a finite subset E ⊆ R \ {0} such that there is no norm ϕ : R \ {0} → Ord

with ψ|E = ϕ|E. Lenstra then remarks that he does not know how generally true this is.
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Modifying our construction, there is a finitely-valued ring which contains a finite set E where

a map ψ does not agree with any norm on E but remains a norm.

Let ϕ be the minimal norm defined in Section 2.2. To begin, let E = {d1, . . . , dk} with

where ϕ(dj) = 1. Define ψ : R \ {0} → ω to satisfy ψ = ϕ except ψ(dj) = 2. Let Si be as

previously defined and define

Vi = {(dj, r) ∈ E ×Ri : gcd(dj, r) = 1, ϕ(r) = 2}.

Then at the recursive stage of the construction define

Ri+1 = Ri[x{β},i+1, yT,i+1,n,d, y
′
T,i+1,dj ,r

: β < ω, (n, d) ∈ Si, (dj, r) ∈ Vi].

Take R∞, U and R to be as defined in Section 2.2. Then ϕ as defined in 2.2.3 with ϕ(dj −

y′r) = 0 is still a norm by the proof given in Lemma 2.2.5. Then since ϕ is a norm, in

order to show that ψ is a norm, we need only consider the case when dj is a numerator and

ϕ(d) = 2 where d is the divisor of dj. Then ψ(dj) = ψ(d). But then we have some y′ ∈ R

where ψ(dj − y′d) = ϕ(dj − y′d) = 0 thus ψ is a norm.
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Chapter 3. Admissible Primes

3.1 Definitions and Theorems

Through out this section, let R be a PID with quotient field K. Following Clark and Murty

in [1], we make the following definition.

Definition 3.1.1. A set {π1, π2, . . . , πn} of distinct non-associate prime elements of R is

said to be admissible if for any β = πa11 π
a2
2 · · · πann , where each ai is a non-negative integer,

every co-prime residue class of β can be represented by a unit of R. We say that a single

prime π is admissible if {π} is admissible.

Remark 3.1.2. Note that {π1, π2, . . . , πn} forms an admissible set if and only if the unit group

of R maps onto
(
R/(πa11 π

a2
2 · · · πann )

)∗
for any choice of ai (1 ≤ i ≤ n).

The usefulness of admissible primes can be seen in the following theorem of Clark and

Murty (see [1] pg 153).

Theorem 3.1.3. Let R be a PID whose quotient field K is a totally real Galois extension

of Q of degree nk. Suppose that an admissible set of |nk − 4|+ 1 primes of R can be found,

then R is a Euclidean Domain.

Hence, we may use these admissible set of primes to determine when the ring of integers

of certain number fields are Euclidean. Our main interest was to find examples of primes that

would be admissible (see Section 3.2). Before we present our algorithm for finding admissible

primes in the ring of integers of Q(
√
d) where d is a positive square-free integer, we note the

following proposition of Clark and Murty (see [1] pg 160). Because our algorithm in Section

3.2 relies heavily upon this proposition, we will include the proof.

Theorem 3.1.4. Let R be a PID whose quotient field K is a totally real Galois extension of

Q of degree nk. Suppose that π1, π2, . . . , πn are non-ramified prime elements of residue class

degree one in R not lying above 2. If π2
1π

2
2 · · · π2

n is such that every co-prime residue class

can be represented by a unit, then {π1, π2, . . . , πn} is an admissible set of primes.
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Proof. We expand on the proof of Clark and Murty. We will use induction to show if the

unit group U(R) maps onto
(
R/(π2

1π
2
2 · · · π2

n)
)∗

then U(R) maps onto
(
R/(πa11 π

a2
2 · · · πann )

)∗
for each ai ≤ 2 as i ranges from 1 to n.

Suppose that the claim has been proven for the product πb11 · · · πbnn , for each choice of

integers b1, . . . , bn such that bi ≤ ci for 1 ≤ i ≤ n, with at least one of the inequalities strict.

Without loss of generality, suppose that c1 ≥ 3 and consider the product πc1−11 πc22 · · · πcnn .

By the inductive hypothesis, U(R) maps onto
(
R/(πc1−11 πc22 · · · πcnn )

)∗
. By the Chinese Re-

mainder Theorem,

R/(πc1−11 πc22 · · · πcnn ) ∼= R/(πc1−11 )×
n∏
i=2

R/(πcii ),

thus U(R) maps onto (
R/(πc1−11 )

)∗ × n∏
i=2

(
R/(πcii )

)∗
.

Since
(
R/(πc1−1)

)∗
is a cyclic group of order pc1−21 (p1− 1) where p1 is the prime lying above

π1, we may find ε1 ∈ U(R) such that ε1 ≡ 1 mod πi for every 2 ≤ i ≤ n and ε1 is a generator

for
(
R/(πc1−1)

)∗
, meaning ε1 has order pc1−21 (p1− 1) mod πc1−11 πc22 · · · πcnn . Notice that ε1 is

in the group
(
R/(πc1−2)

)∗
since gcd(ε1, π1) = 1. We have that the order of

(
R/(πc1−2)

)∗
is

pc1−31 (p1 − 1) thus ε
p
c1−3
1 (p1−1)

1 ≡ 1 mod πc1−21 πc22 · · · πcnn hence

ε
p
c1−3
1 (p1−1)

1 = 1 + kπc1−21 πc22 · · · πcnn ,

where π1 - k. After raising both sides to the p1 we have,

ε
p
c1−2
1 (p1−1)

1 =

p1∑
j=0

(
p1
j

)
(kπc1−21 πc22 · · · πcnn )j

= 1 + p1kπ
c1−2
1 πc22 · · · πcnn +

p1∑
j=2

(
p1
j

)
(kπc1−21 πc22 · · · πcnn )j

= 1 + αkπc1−11 πc22 · · · πcnn +

p1∑
j=2

(
p1
j

)
(kπc1−21 πc22 · · · πcnn )j
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where p1 = απ1 and π1 - α since π1 is non-ramified. Notice that

p1∑
j=2

(
p1
j

)
(kπc1−21 πc22 · · · πcnn )j =

p1∑
j=2

(p1−1)!
j!(p1−j)!k

jαπjc1−2j+1
1 (πc22 · · · πcnn )j

=

p1∑
j=2

(p1−1)!
j!(p1−j)!k

jαπ
(j−1)c1−2j+1
1 (πc22 · · · πcnn )j−1(πc11 π

c2
2 · · · πcnn )

Since c1 ≥ 3 we have (j − 1)c1 − 2j + 1 ≥ 3(j − 1)− 2j + 1 ≥ j − 2 ≥ 0. Thus

p1∑
j=2

(
p1
j

)
(kπc1−21 πc22 · · · πcnn )j ≡ 0 mod πc11 π

c2
2 · · · πcnn .

So we have

ε
p
c1−2
1 (p1−1)

1 ≡ 1 + k′πc1−11 mod πc11 π
c2
2 · · · πcnn

where π1 - k′. Hence we have shown that in the group
(
R/(πc11 )

)∗
, which has order

pc1−11 (p1 − 1), that any power of ε1 less that the order of the group does not give the identity

which implies that ε1 is a generator for
(
R/(πc11 )

)∗
.

We can likewise find elements εi ∈ U(R) such that εi ≡ 1 mod π
cj
j for j 6= i and εi

has the order pci−1i (pi − 1) mod (πc11 π
c2
2 · · · πcnn ). This then shows that U(R) maps onto(

R/(πc11 π
c2
2 · · · πcnn )

)∗
.

Remark 3.1.5. The point of this theorem is that when checking if a set of non-ramified primes

are admissible, we need only to determine if the co-prime residue classes of π2
1π

2
2 · · · π2

n are

represented by a unit.

3.2 Finding Admissible Primes in Quadratic Extensions of Q

Now let K = Q(
√
d), where d is a positive square-free integer, and let OK be the ring of

integers of K. We will determine when {π1, π2, . . . , πn} is an admissible set of primes. Let

β = π2
1 · · · π2

n. By Theorem 3.1.4, we need only check that the co-prime residue classes of β

are represented by a unit.
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We first present the case where d ≡ 2, 3 mod 4. An integral basis for OK is {1,
√
d}.

Let u be the fundamental unit of OK . For each co-prime residue class of β, with class

representative r = r1 + r2
√
d, we would like to find a natural number m and a choice of sign

such that

±(um) ≡ r mod β.

This is equivalent to solving

±(um)− r = β(x+ y
√
d)

for some m ∈ N, x, y ∈ Z and choice of sign. Our algorithm will iterate over the powers of

the fundamental unit for a finite interval, hence, for the time being, we will let v = ±(um)

where we have fixed m and some choice of sign. We may write

v = v1 + v2
√
d

for some v1, v2 ∈ Z and

β = b1 + b2
√
d

where b1, b2 ∈ Z. Showing that r is represented by the unit v is equivalent to solving the

following system of equations:

b1 db2

b2 b1


x
y

 =

v1 − r1
v2 − r2

 .
Solving for x, y gives x

y

 =
1

NK(β)

 b1 −db2

−b2 b1


v1 − r1
v2 − r2

 ,
where NK is the usual norm on OK , so NK(β) = b21 − db22.
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Notice that x, y ∈ Z if and if only

b1(v1 − r1)− db2(v2 − r2) ≡ 0 mod NK(β)

b1(v2 − r2)− b2(v1 − r1) ≡ 0 mod NK(β).

If these congruences hold, then r is represented by the unit v.

We will now determine the fixed interval that m, the power of the fundamental unit,

must range over. We know that (OK/(β))∗ is a finite group, thus m must be less than the

size of (OK/(β))∗. We have that

(
OK/(β)

)∗ ∼= n∏
i=1

(
OK/(π2

i )
)∗

so |
(
OK/(β)

)∗| = ∏n
i=1 |

(
OK/(π2

i )
)∗|. Let

∣∣(OK/(π2
i )
)∗∣∣ = αi. Note that αi is finite for each i

ranging from 1 to n, thus m ≤ lcmi(αi). We have that
∣∣(OK/(π2

i )
)∗∣∣ ≤ ∣∣OK/(π2

i )
∣∣ = NK(π2

i )

(see [6] pg 126) hence 1 ≤ m ≤ NK(β).

Note, for a non-ramified split prime πi, that a + b
√
d ≡ r mod π2

i for any a, b ∈ Z and

for some r ∈ Z, hence we need only consider the case when r is a primitive root of NK(β).

Algorithm 3.1 describes a function which will determine if a set of non-associate non-ramified

split primes is admissible in Z[
√
d]. See the appendix for implementation of this algorithm

in Mathematica.

26



Algorithm 3.1 Find Admissible Primes in OK of Q(
√
d) for d ≡ 2, 3 mod 4

P = {π1, . . . , πn} is a set of non-ramified primes

u = u1 + u2
√
d is the fundamental unit

function checkAdmissible(P, d, u1, u2):

β =
n∏
i=1

π2
i , b1 = First(β), b2 = Second(β)

N = b21 − db22

r = PrimitiveRoot(N)

v
(0)
1 = u1, v

(0)
2 = u2

for i = 0, i ≤ N , i=i+1 do . This iterates over the powers of the fundamental unit

if b1(v1 − r)− db2v2 % N == 0 AND b2v2 − b2(v1 − r) % N == 0 then

return TRUE

else if −b1(v1 − r) + db2v2 % N == 0 AND −b2v2 + b2(v1 − r) % N == 0 then

return TRUE

else

v
(n+1)
1 = u1(u1v

(n)
1 + u2d) % N

v
(n+1)
1 = u2(u2v

(n)
2 + u2d) % N

return FALSE

The case when d ≡ 1 mod 4 is similar. An integral basis for OK , in this case, is

{1, 1+
√
d

2
}. Let u be the fundamental unit of OK . For each co-prime residue class of β, with

class representative r = r1 + r2(
1+
√
d

2
), we would, again, like to find a natural number n and

a choice of sign such that

±(un) ≡ r mod β.

This is equivalent to solving

±(un)− r = β
(
x+ y(1+

√
d

2
)
)

for some m ∈ N, x, y ∈ Z and choice of sign. Our algorithm will iterate m over the interval
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1 to NK(β), hence, for the time being, we will let v = ±(um) where we have fixed m and

some choice of sign. We may write

v = v1 + v2
(
1+
√
d

2

)
for some v1, v2 ∈ Z and

β = b1 + b2
(
1+
√
d

2

)
where b1, b2 ∈ Z. Showing that r is represented by the unit v is equivalent to solving the

following system of equations:

b1 + b2
2

2b1+b2(1+d)
4

b2
2

b1+b2
2


x
y

 =

v1 − r1 + u2
2
− r2

2

v2
2
− r2

2

 .
Solving for x, y gives

x
y

 =
1

NK(β)

b1 + b2 −b1 − b2(1+d)
2

−b2 2b1 + b2


v1 − r1 + u2

2
− r2

2

v2
2
− r2

2

 .
Notice that, if the following congruences hold, then r is represented by the unit v.

(b1 + b2)(v1 − r1 + v2
2
− r2

2
)−

(
b1 + b2(1+d)

2

)(
u2
2
− r2

2

)
≡ 0 mod NK(β)

b1(v1 − r1 + v2
2
− r2

2
) + (2b1 + b2)

(
v2
2
−− r2

2

)
≡ 0 mod NK(β).

3.3 Results and Further Research

Clark and Murty proved that in Z[
√

14] no three primes can form an admissible set primes.

We were interested to see how frequently an individual prime in Z[
√

14] was admissi-

ble. Figure 3.1 shows that 61.25 % of the first 80 non-ramified, split primes are admis-

sible. We also found pairs of primes which formed admissible sets together. For example,
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{3 +
√

14, 5 + 2
√

14} is a set of admissible primes.

Admissible Primes Among Non-Ramified Primes in Z[
√

14]

Figure 3.1: The blue dots are the norms of the first 80 non-ramified, split primes in Z[
√

14]
and the green dots are the admissible primes. 61.25 % of the first 80 non-ramified, split
primes in Z[

√
14] are admissible primes.

We we also ran our algorithm on Z[
√

2], and in this case 60.52 % of the first 76 non-

ramified, split primes were admissible (see Figure 3.2). Thus we do not initially see a

significant distinction between the frequency of primes being admissible for rings which are

norm-Euclidean (Z[
√

2]) and rings which are not norm-Euclidean (Z[
√

14]).
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Admissible Primes Among Non-Ramified Primes in Z[
√

2]

Figure 3.2: The dots are the norms of the first 76 non-ramified, split primes in Z[
√

2] and
the green dots are the admissible primes. 60.52 % of the first 76 non-ramified, split primes
in Z[

√
2] are admissible primes.
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Appendix A. Mathematica Implementation

of Algorithm 3.1
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