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abstract

American Spread Option Pricing with Stochastic Interest Rates

An Jiang
Department of Mathematics, BYU

Doctor of Philosophy

In financial markets, spread option is a derivative security with two underlying assets
and the payoff of the spread option depends on the difference of these assets. We consider
American style spread option which allows the owners to exercise it at any time before the
maturity. The complexity of pricing American spread option is that the boundary of the
corresponding partial differential equation which determines the option price is unknown
and the model for the underlying assets is two-dimensional.

In this dissertation, we incorporate the stochasticity to the interest rate and assume that
it satisfies the Vasicek model or the CIR model. We derive the partial differential equations
with terminal and boundary conditions which determine the American spread option with
stochastic interest rate and formulate the associated free boundary problem. We convert
the free boundary problem to the linear complimentarity conditions for the American spread
option, so that we can go around the free boundary and compute the option price numerically.
Alternatively, we approximate the option price using methods based on the Monte Carlo
simulation, including the regression-based method, the Lonstaff and Schwartz method and
the dual method. We make the comparisons among the option prices derived by the partial
differential equation method and Monte Carlo methods to show the accuracy of the result.

Keywords: American Spread Option, Stochastic Interest Rate, Free Boundary Problem,
Linear Complementarity Conditions, CIR Model, Monte Carlo Simulation
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Chapter 1. Introduction

Option pricing can be originated from the beginning of the 20th century when the Brownian

motion was introduced to describe financial behaviors. This drew people’s attention from

deterministic functions to random functions. The biggest question is to seek a counterpart

of the classical calculus for random functions. The situation was resolved by Kiyosi Itô

who introduced the stochastic integral and the celebrated Itô’s formula. After that, Itô

calculus embraced its most successful application. In 1973, Fischer Black, Myron Scholes

[3] and Robert Merton [33] derived the notable Black-Scholes-Merton formula from their

model. Their key idea is the so called delta hedging: buying and selling the underlying

assets of the option in order to eliminate the chance of arbitrage. Their outstanding outcome

inspired mathematicians to look at other financial derivative securities with more complicated

structures, one of them is spread option.

1.1 Spread Option

An option is a contract which gives its owner the right but not the obligation to buy (call

option) or sell (put option) the underlying assets at a specified price (strike price), on a

specified date (European option) or any time before that date (American option).

An spread option is an option with two underlying assets which profits from their price

difference. It is a very popular type of option in the currency markets, fixed income markets,

foreign exchange markets, agricultural futures markets, commodity markets and energy mar-

kets etc. For example, the NOB spread measures the difference between municipal bonds

and treasury bonds; the TED spread measures the difference between treasury bills and

treasury bonds in the U.S. fixed income market. Although most of the spread options are

traded over the counter, crush spread is traded on the Chicago Board of Trade (CBOT). It

has three underlying indexes: future contracts of soybean, soybean oil and soybean meal.

The payoff is the weighted difference between the soybean and its products. Spread option

1



is widely used in the energy markets. For a single commodity, there are temporal spread

and locational spread as a result of the time factor or transportation factor which makes the

commodity price differ. In the case of two or more commodities, spread options measure the

difference between the raw material and the refined product it produces, like crack spread

for crude oil and refined petroleum and spark spread for natural gas and electricity.

Due to the diversity of the assets or indexes, various methods of analysis and numerical

algorithms are applied in mathematical literature to study spread options. For example,

Deng, Johnson and Sogomonian [14] studied two types of spread options (spark spread

option and locational spread option) in the energy market. Johnson, Zulauf, Irwin and

Gerlow [26] studied the crush spread in agricultural markets. Jones [27] studied TED spread

in the fixed income markets. Carmona and Durrleman [8] provided a complete overview of

the spread option category and early research history.

In 2000, Dempster and Hong [13] applied the Fast Fourier Transform(FFT) to study the

spread option with a one-factor stochastic volatility model. Later in 2001, Hong [21] used the

same FFT technique to study the spread option if the two underlying assets have stochastic

correlation. Since then FFT has been employed to numerical computation.

1.2 American Spread Option

American option is a main type of option in the market, unlike the European option, it gives

the owner the right to exercise the option at any time before the expiration date/maturity.

It makes itself more flexible for investment than the European option, but more difficult for

valuation. It requires us to solve an optimal stopping time problem, i.e.,

V (t, x) = max
τ∈T[t,T ]

Ẽ[e−
∫ τ
t r(u)du(K − S(τ))|S(t) = x].

Here V (t, x) is the price of the American option at time t and the underlying asset price is

S(t) = x, r is the interest rate, τ is a stopping time, K is the strike price and the expectation

2



is taken under the risk-neutral measure.

For a non-dividend paying underlying asset, it can be shown that the American call option

price is the same as the European call option price. So we need only to consider the American

put option. To understand its characteristic, it is better to consider the American perpetual

put option first where there is no maturity (T = ∞), then consider the finite-expiration

American put option. In [36], Shreve gives a thorough explanation.

For American option with multiple underlying assets, especially the American spread

option, the main obstacle is the unknown early exercise boundary. Most of the techniques

applied on the European spread option can’t be transferred to the American spread option

to obtain closed form solutions. Therefore, extensive amount of research has been done to

numerically estimate the American spread option price.

In 1997, Broadie and Glasserman [7] introduced a stochastic mesh method based on

Monte Carlo simulation. Later, Tsitsiklis and Van Roy [37, 38] proposed a dynamical pro-

gramming algorithm. The idea is to use a regression formulation employing the least square

method and basis functions to approximate the continuous value of the American option.

Longstaff and Schwartz [31] revised their method using their interleaving value to give a

low-biased estimator for the option price. During 2001 and 2002, Haugh, Kogan [20] and

Rogers [35] independently and almost simultaneously developed dual methods which can give

a tighter upper bound for the American option price. Together with the lower bound given

by Longstaff and Schwartz method, it can provide an interval for the true option price value.

All these methods are based on Monte Carlo simulation, they work well on multidimensional

underlying assets, although they can only give a rough approximation.

In 2008, Jackson, Jaimungal and Surkov [25] applied the Fast Fourier Transform algo-

rithm to price the American spread option with the underlying assets influenced by Levy

processes. In 2011, Chiarella and Ziveyi [11] applied the numerical integration technique

under the Black-Scholes framework. Later that year, they [10] applied the method of lines

to price American spread option under the Heston stochastic volatility model.

3



1.3 The Objectives of the Dissertation

In this dissertation, we will incorporate stochasticity into the interest rate for the American

spread option. The most basic stochastic interest model is the well-known Vasicek model.

Luo used it in pricing the European spread option in [32]. However, there is a major drawback

of the Vasicek model that the interest rate r(t) may have a chance to go negative, which

generally will not happen in the financial market. To compensate for this weakness, we

employ the CIR model as well.

The option pricing strategy will be divided into two parts: partial differential equation

approach and Monte Carlo method. In the first part, we will review the fundamental option

pricing theory including the Itô calculus, risk-neutral pricing method and delta-hedging

strategy, then we will apply them to the partial differential equation for the American spread

option under Vasicek and CIR interest rate models. We will deal with the free boundary

problem and the linear complementarity conditions and use finite difference method to get

numerical approximation. In the second part, we will use different numerical methods based

on the Monte Carlo simulation to approximate the option price. The algorithms are applied

under both Vasicek and CIR models. Comparisons will be made among different interest

rate models and also between the partial differential equation approach and the Monte Carlo

method. Finally, we will conclude this dissertation with directions for future research.

4



Chapter 2. Stochastic Calculus

In this chapter, we will review some basic knowledge in stochastic calculus. Firstly, we will

survey the basic probability concepts and Itô integral. Then we will review the Itô’s formula.

We will also discuss a conditional expectation identity for different measures. Moreover,

we will present Girsanov Theorem and Martingale Representation Theorem. Finally, we

conclude this chapter by discussing the Markov property for the solutions to stochastic

differential equations.

The presentation of this chapter is inspired by [30], [36] and [34].

2.1 Itô Integral

Firstly, we give the definition for probability space, random variable and stochastic process.

Definition 2.1. A probability space is a triple (Ω,F , P ) consisting a nonempty sample space

Ω, a σ-algebra F and a probability measure P .

Definition 2.2. Let (Ω,F , P ) be a probability space, and Σ be a topological space with

Borel σ-algebra G. A random variable X : Ω → Σ is a F -measurable function, i.e., for any

Borel subset B ∈ G,

X−1(B) = {ω : X(ω) ∈ B, B ∈ G} (2.1)

is in the σ-algebra F .

For our purposes, we let the topological space Σ to be the Euclidean space Rn, where n

is a positive integer.

Definition 2.3. A stochastic process is a collection of t-parameterized random variables

X(t, ω) : [0,∞)× Ω→ Rn.
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For the sake of simple notation, we omit the variable ω when we write stochastic processes,

i.e., X(t) = X(t, ω).

An important type of stochastic process is Brownian motion.

Definition 2.4. A stochastic process W (t, ω) is called a Brownian motion if it satisfies the

following conditions:

(i) P{ω : W (0, ω) = 0} = 1.

(ii) For any 0 ≤ s < t, the random variable W (t) −W (s) ∼ N(0, t − s), i.e., normally

distributed with mean 0 and variance t− s.

(iii) W (t, ω) has independent increments, i.e., for any 0 ≤ t1 < t2 < · · · < tn, the random

variables

W (t1),W (t2)−W (t1), ...,W (tn)−W (tn−1)

are independent.

(iv) Almost all sample paths of W (t, ω) are continuous functions, i.e.,

P{ω : W (·, ω) is continuous} = 1.

Definition 2.5. A multidimensional stochastic process W (t, ω) = (W1(t, ω), ...,Wn(t, ω))

is a multidimensional Brownian motion if W1(t, ω), ...,Wn(t, ω) are independent and each

Wi(t, ω), i = 1, ..., n is a Brownian motion.

Secondly, we review filtration and stopping time.

Definition 2.6. Let (Ω,F , P ) be a probability space. A filtration on (Ω,F , P ) is a family of

σ-algebras {F(t), t ≥ 0}, such that for any fixed t, F(t) ⊂ F and if 0 ≤ s ≤ t, F(s) ⊂ F(t).

Definition 2.7. A stochastic process X(t) is said to be adapted to a filtration {F(t), t ≥ 0}

if for any t, X(t) is F(t)-measurable.
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Definition 2.8. Let (Ω,F , P ) be a probability space, W (t), t ≥ 0 be a Brownian motion.

A filtration for the Brownian motion is a filtration {F(t), t ≥ 0}, on the probability space,

satisfying:

(1) The Brownian motion W (t), t ≥ 0 is adapted to the filtration {F(t), t ≥ 0}.

(2) For 0 ≤ t < u, the increment W (u)−W (t) is independent of F(t).

A filtration for a Brownian motion contains two possibilities. In one case, the filtration is

generated by a Brownian motion. In the other case, the filtration is generated by a Brownian

motion and one or more other processes.

Definition 2.9. Let (Ω,F , P ) be a probability space with a filtration {F(t), t ≥ 0}. A

random variable τ : Ω→ I is a stopping time if for any t ∈ I,

{ω : τ(ω) ≤ t} ∈ F(t),

We denote the set of the stopping times by TI .

Next we review the Itô integral. Three steps are needed to define the Itô integral.

Let (Ω,F , P ) be a probability space, W (t), a ≤ t ≤ b, be a Brownian motion and

{F(t), a ≤ t ≤ b} be a filtration for this Brownian motion. Let L2
ad([a, b]×Ω) denote the space

of all adapted stochastic processes f(t, ω), a ≤ t ≤ b, ω ∈ Ω, satisfying
∫ b
a
E(|f(t)|2)dt <∞.

Step 1: Firstly, we define the Itô integral for step stochastic process. Let {a = t0, t1, ..., tn = b}

be a partition of the interval [a, b]. A step stochastic process in L2
ad([a, b]×Ω) is given

by

fn(t, ω) =
n∑
i=1

ξi−1(ω)1[ti−1,ti](t), (2.2)

where ξi−1 is Fti−1
-measurable and E(ξ2

i−1) <∞. The Itô integral for the step stochas-

tic process in L2
ad([a, b]× Ω) is defined by

∫ b

a

fn(t)dW (t) :=
n∑
i=1

ξi−1(W (ti)−W (ti−1)). (2.3)
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Step 2: Let f ∈ L2
ad([a, b] × Ω). Then there exists a sequence {fn, n ≥ 1} of step stochastic

processes in L2
ad([a, b]× Ω) such that

lim
n→∞

∫ b

a

E{|f(t)− fn(t)|2}dt = 0. (2.4)

Step 3: Finally, we can define the Itô integral for f ∈ L2
ad([a, b] × Ω). Let {fn, n ≥ 1} be the

step stochastic processes in L2
ad([a, b]× Ω) in the previous step. Then

∫ b

a

f(t)dW (t) := lim
n→∞

∫ b

a

fn(t)dW (t), in L2(Ω). (2.5)

We will see an important property of the Itô integral.

Definition 2.10. Let (Ω,F , P ) be a probability space and let {F(t), 0 ≤ t ≤ T}, be a

filtration on the probability space. An adapted stochastic process M(t), 0 ≤ t ≤ T , is called

a martingale associated with the filtration {F(t), 0 ≤ t ≤ T}, if

E[M(t)|F(s)] = M(s) (2.6)

for all 0 ≤ s ≤ t ≤ T .

Theorem 2.11. Let (Ω,F , P ) be a probability space, let W (t), 0 ≤ t ≤ T be a Brownian

motion and let {F(t), 0 ≤ t ≤ T}, be a filtration on the probability space. Let f ∈ L2
ad([0, T ]×

Ω). The stochastic process defined by the Itô integral

∫ t

a

f(s)dW (s), 0 ≤ t ≤ T, (2.7)

is a martingale.
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2.2 Itô’s Formula

We are ready to show the celebrated Itô’s formula which is used for computing the derivatives

of composed functions involving stochastic processes.

Definition 2.12. Let (Ω,F , P ) be a probability space associated with a filtration {F(t), a ≤

t ≤ b}. An Itô process is a stochastic process of the form

X(t) = X(a) +

∫ t

a

g(s)ds+

∫ t

a

f(s)dW (s), a ≤ t ≤ b, (2.8)

where X(a) is F -measurable, f ∈ L2
ad([a, b]×Ω) and g is an adapted process and

∫ b
a
|g(t)|dt <

∞ almost surely.

Theorem 2.13 (One-dimensional Itô’s formula). Let X(t) be an Itô process given by (2.8).

Suppose that θ(t, x) is a continuous function with continuous partial derivatives ∂θ
∂t

, ∂θ
∂x

and

∂2θ
∂x2

. Then θ(t,X(t)) is also an Itô process and

θ(t,X(t)) = θ(a,X(a)) +

∫ t

a

[
∂θ

∂t
(s,X(s)) +

∂θ

∂x
(s,X(s))g(s) +

1

2

∂2θ

∂x2
(s,X(s))f 2(s)

]
ds

+

∫ t

a

∂θ

∂x
(s,X(s))f(s)dW (s). (2.9)

Equivalently, the differential form is

dθ(t,X(t)) =
∂θ

∂t
(t,X(t))dt+

∂θ

∂x
(t,X(t))g(t)dt+

1

2

∂2θ

∂x2
(t,X(t))f 2(t)dt

+
∂θ

∂x
(t,X(t))f(t)dW (t). (2.10)

In particular, if we let f(t) ≡ 1, g(t) ≡ 0 and X(a) = 0 then the Itô process X(t) is just

the Brownian motion W (t) and we have the following two simple forms of Itô’s formula.

Corollary 2.14 (The simplest form of Itô’s formula). Let f(x) be a C2-function. Then

f(W (t)) = f(W (a)) +
1

2

∫ t

a

f ′′(W (s))ds+

∫ t

a

f ′(W (s))dW (s). (2.11)
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Equivalently, the differential form is

df(W (t)) =
1

2
f ′′(W (t))dt+ f ′(W (t))dW (t). (2.12)

Corollary 2.15 (Slightly gereralized Itô’s formula). Let f(x) be a continuous function with

continuous partial derivatives ∂f
∂t

, ∂f
∂x

and ∂2f
∂x2

. Then

f(t,W (t)) = f(t,W (a)) +

∫ t

a

(
∂f

∂t
(s,W (s)) +

1

2

∂2f

∂x2
(s,W (s))

)
ds+

∫ t

a

∂f

∂x
(s,W (s))dW (s).

(2.13)

Equivalently, the differential form is

df(t,W (t)) =
∂f

∂t
(t,W (t))dt+

1

2

∂2f

∂x2
(t,W (t))dt+

∂f

∂x
(t,W (t))dW (t). (2.14)

Definition 2.16 (Multi-dimensional Itô process). Let (Ω,F , P ) be a probability space as-

sociated with a filtration {F(t), a ≤ t ≤ b}, and let W1(t), ...,Wm(t) be m independent

Brownian motions. Consider n Itô processes X
(1)
t , ..., X

(n)
t given by

X
(i)
t = X(i)

a +

∫ t

a

gi(s)ds+
m∑
j=1

∫ t

a

fij(s)dWj(s), 1 ≤ i ≤ n, (2.15)

where fij ∈ L2
ad([a, b] × Ω) and gi is an adapted process with

∫ b
a
|g(t)|dt < ∞ almost surely

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. If we introduce the matrices

W (t) =


W1(t)

...

Wm(t)

 , Xt =


X1(t)

...

Xn(t)

 ,

f(t) =


f11(t) . . . f1m(t)

...
. . .

...

fn1(t) . . . fnm(t)

 , g(t) =


g1(t)

...

gn(t)

 ,
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then the Itô processes can be written as a matrix equation:

Xt = Xa +

∫ t

a

g(s) +

∫ t

a

f(s)dW (s). (2.16)

Theorem 2.17 (Multi-dimensional Itô’s formula). Suppose that θ(t, x1, ..., xn) is a con-

tinuous function on [a, b] × Rn with continuous partial derivatives ∂θ
∂t

, ∂θ
∂xi

and ∂2θ
∂xi∂xj

for

1 ≤ i, j ≤ n. Then the stochastic differential of θ(t,X
(1)
t , ..., X

(n)
t ) is given by

dθ(t,X
(1)
t , ..., X

(n)
t ) =

∂θ

∂t
(t,X

(1)
t , ..., X

(n)
t )dt+

n∑
i=1

∂θ

∂xi
(t,X

(1)
t , ..., X

(n)
t )dX

(i)
t

+
1

2

n∑
i,j=1

∂2θ

∂xixj
(t,X

(1)
t , ..., X

(n)
t )dX

(i)
t dX

(j)
t . (2.17)

In particular, the two-dimensional Itô’s formula is given by

dθ(t,X, Y ) = θtdt+ θxdX + θydY +
1

2
θxxdXdX + θxydXdY +

1

2
θyydY dY. (2.18)

Corollary 2.18 (Itô product rule). Let X(t) and Y (t) be two Itô processes. Then

d (X(t)Y (t)) = Y (t)dX(t) +X(t)dY (t) + dX(t)dY (t). (2.19)

2.3 Expectation Identity under Two Different Measures

Since it is very hard to compute the American spread option under the risk-neutral measure,

it is necessary to change it to a different measure. Therefore we need to know how to convert

the conditional expectation under a different measure.

Definition 2.19 (Radon-Nikodym derivative). Give a measurable space (X,Σ), if a σ-finite

measure ν on (X,Σ) is absolutely continuous with respect to a σ-finite measure µ on (X,Σ),

then there is a measurable function f : X → [0,∞), such that for any measurable subset
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A ⊂ X:

ν(A) =

∫
A

f(x)dµ. (2.20)

where f :=
dν

dµ
is the Radon-Nikodym derivative.

In the context of the probability theory, we have

Definition 2.20. In (Ω,F), a probability space, given two equivalent probability measures

P, P̃ , i.e., P (A) = 0 if and only if P̃ (A) = 0 for every A ∈ F . Then denote Z =
d
∼
P

dP
and

P̃ (A) =

∫
A

Z(ω)dP (ω) for all A ∈ F . (2.21)

Proposition 2.21. Z(ω) has the following properties:

(i) P (Z > 0) = 1,

(ii) EZ = 1,

(iii) for any random variable X,

ẼX = E[ZX], (2.22)

where Ẽ is the expectation under measure P̃ .

Definition 2.22. Given a filtration {F(t), 0 ≤ t ≤ T} and in the above setting, the Radon-

Nikodym derivative process is defined as

Z(t) = E[Z|F(t)], 0 ≤ t ≤ T. (2.23)

Note that it is a martingale because of iterated conditioning: for 0 ≤ s ≤ t ≤ T

E[Z(t)|F(s)] = E[E[Z|F(t)]|F(s)]

= E[Z|F(s)]

= Z(s).
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Lemma 2.23. Let Y be an F(t)-measurable random variable, 0 ≤ t ≤ T . Then

ẼY = E[Y Z(t)]. (2.24)

This is the expectation identity for two measures P and P̃ .

Lemma 2.24. Let s and t satisfying 0 ≤ s ≤ t ≤ T and let Y be an F(t)-measurable random

variable. Then

Ẽ[Y |F(s)] =
1

Z(s)
E[Y Z(t)|F(s)]. (2.25)

This is the conditional expectation identity for two measures P and P̃ . We will use this

result later when we price the American spread option under the forward measure.

2.4 Girsanov Theorem and Martingale Representation

Girsanov Theorem is a powerful tool to find a new Brownian motion if we need to change

the measure.

Theorem 2.25 (Girsanov Theorem for one-dimensional Brownian motion). ([36, Theorem

5.2.3, p.212]). Let (Ω,F , P ) be a probability space, W (t), 0 ≤ t ≤ T , be a Brownian motion,

{F(t), 0 ≤ t ≤ T}, be a filtration for this Brownian motion, and Θ(t), 0 ≤ t ≤ T , be an

adapted process. Assume that

E

∫ t

0

Θ2(u)du <∞, E

∫ T

0

Θ2(u)Z2(u)du <∞,

where Z(t) is an exponential process which is defined by

Z(t) = exp

{
−
∫ t

0

Θ(u)dW (u)− 1

2

∫ t

0

Θ2(u)du

}
. (2.26)

Set the random variable Z := Z(T ). Then EZ = 1 and the process W̃ (t), 0 ≤ t ≤ T, defined
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by

W̃ (t) := W (t) +

∫ t

0

Θ(u)du (2.27)

is a Brownian motion under the probability measure P̃ given by

P̃ (A) :=

∫
A

Z(ω)dP (ω), ∀A ∈ F . (2.28)

Theorem 2.26 (Girsanov Theorem for multi-dimensional Brownian motion). ([36, Theorem

5.4.1, p.224]). Let (Ω,F , P ) be a probability space, W (t) = (W1(t), ...,Wn(t)), 0 ≤ t ≤ T ,

be an n-dimensional Brownian motion where n is a positive integer, {F(t), 0 ≤ t ≤ T},

be a filtration for this Brownian motion, and Θ(t) = (Θ1(t), ...,Θn(t)), 0 ≤ t ≤ T , be an

n-dimensional adapted process. Assume that

E

∫ t

0

||Θ(u)||2du <∞, E

∫ T

0

||Θ(u)||2Z2(u)du <∞,

where Z(t) is an exponential process which is defined by

Z(t) = exp

{
−
∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

||Θ(u)||2du
}
. (2.29)

Set the random variable Z := Z(T ). Then EZ = 1 and the process W̃ (t), 0 ≤ t ≤ T, defined

by

W̃ (t) := W (t) +

∫ t

0

Θ(u)du (2.30)

is a n-dimensional Brownian motion under the probability measure P̃ given by

P̃ (A) :=

∫
A

Z(ω)dP (ω), ∀A ∈ F . (2.31)

In (2.29), the Itô integral is

∫ t

0

Θ(u) · dW (u) =

∫ t

0

n∑
i=1

Θi(u)dWi(u) =
n∑
i=1

∫ t

0

Θi(u)dWi(u).
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And ||Θ(u)|| denotes the Euclidean norm

||Θ(u)|| =

(
n∑
i=1

Θ2
i (u)

) 1
2

.

Martingale Representation Theorem will help us to derive the partial differential equation

for the American spread option later.

Theorem 2.27 (Martingale Representation Theorem for one-dimensional Brownian mo-

tion). ([36, Theorem 5.3.1, p.221]) Let (Ω,F , P ) be a probability space, T be a fixed positive

time, W (t), 0 ≤ t ≤ T be a Brownian motion, and let {F(t), 0 ≤ t ≤ T} be the filtration

generated by this Brownian motion. Let M(t), 0 ≤ t ≤ T be a martingale with respect to this

filtration. Then there is an adapted process Γ(u), 0 ≤ u ≤ T such that

M(t) = M(0) +

∫ t

0

Γ(u)dW (u), 0 ≤ t ≤ T. (2.32)

Theorem 2.28 (Martingale Representation Theorem for multi-dimensional Brownian mo-

tion). ([36, Theorem 5.4.2, p.225]) Let (Ω,F , P ) be a probability space, T be a fixed positive

time, W (t) = (W1(t), ...,Wn(t)), 0 ≤ t ≤ T be an n-dimensional Brownian motion with a

positive integer n, and let {F(t), 0 ≤ t ≤ T} be the filtration generated by this Brownian mo-

tion. Let M(t) be a martingale with respect to this filtration. Then there is an n-dimensional

adapted process Γ(u), 0 ≤ t ≤ T such that

M(t) = M(0) +

∫ t

0

Γ(u) · dW (u), 0 ≤ t ≤ T. (2.33)

Remark that the differential form of the martingale representation is

dM(t) = Γ(t) · dW (t), 0 ≤ t ≤ T. (2.34)

On the other hand, if a stochastic process is given by (2.33). Then M(t) is a martingale
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because Itô integral is a martingale. Therefore the stochastic process M(t) is a martingale

if and only if the dt term in the differential form of M(t) is equal to 0.

2.5 Markov Property

We conclude this chapter by introducing the Markov property for the solutions to the stochas-

tic differential equations.

Definition 2.29. Let (Ω,F , P ) be a probability space, let T be a fixed positive number, and

let {F(t), 0 ≤ t ≤ T}, be a filtration of sub-σ-algebras of F . Consider an adapted stochastic

process X(t), 0 ≤ t ≤ T . Assume that for all 0 ≤ s ≤ t ≤ T and for every nonnegative ,

Borel-measurable function f , there is another Borel-measurable function g such that

E[f(X(t))|F(s)] = g(X(s)). (2.35)

Then we say that the X is a Markov process.

Theorem 2.30. Let X(u), u ≥ 0, be a solution to the stochastic differential equation

dX(u) = β(u,X(u))du+ γ(u,X(u))dW (u), (2.36)

with initial condition given at time 0. Then for 0 ≤ t ≤ T and any Borel-measurable function

h, there exists a Borel-measurable function g(t, x) such that

E[h(X(T ))|F(t)] = g(t,X(t)). (2.37)

Corollary 2.31. Solutions to stochastic differential equations are Markov processes.
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Chapter 3. Risk-Neutral Pricing

In this chapter, we will present the risk-neutral measure and the risk-neutral pricing formula.

We will also review the fundamental theorems of asset pricing which provide necessary and

sufficient conditions for a financial market to satisfy two assumptions.

3.1 Stock Representation under the Risk-Neutral Measure

Consider the probability space (Ω,F , P ), and a Brownian motion W (t), 0 ≤ t ≤ T . Further,

let {F(t), 0 ≤ t ≤ T} be a filtration for W (t). Assume that a stock price is a generalized

geometric Brownian motion determined by the following stochastic differential equation.

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t), 0 ≤ t ≤ T. (3.1)

Here α(t) is called the mean rate of return of the stock and σ(t) is called the volatility of

the stock and they are adapted processes. Also assume σ(t) is almost surely not zero for all

t ∈ [0, T ]. The equation above can be solved explicitly to get

S(t) = S(0) exp

{∫ t

0

σ(s)dW (s) +

∫ t

0

(α(s)− 1

2
σ2(s))ds

}
. (3.2)

In fact, define f(x) = ln(x), then by Itô’s formula

df(S(t)) = d(ln(S(t))) =
1

S(t)
dS(t) +

1

2

(
− 1

S2(t)

)
dS2(t)

= α(t)dt+ σ(t)dW (t)− 1

2
σ2(t)dt

= σ(t)dW (t) + (α(t)− 1

2
σ2(t))dt.

So

ln(S(t)) = ln(S(0)) +

∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds. (3.3)
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Thus,

S(t) = S(0) exp

{∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

}
.

Definition 3.1. Suppose that r(t) is an adapted interest rate process. The discount process

is defined by

D(t) := e−
∫ t
0 r(s)ds. (3.4)

Its reciprocal is the money market account

M(t) :=
1

D(t)
= e

∫ t
0 r(s)ds. (3.5)

The differential form of the discount process is

dD(t) = −r(t)D(t)dt. (3.6)

In fact, let I(t) =
∫ t

0
r(s)ds, so dI(t) = r(t)dt, dIdI = 0, let f(x) = e−x, f ′(x) =

−f(x), f ′′(x) = f(x).

By Itô’s formula,

dD(t) = df(I(t))

= f ′(I(t))dI(t) +
1

2
f ′′(I(t))dI(t)dI(t)

= −f(I(t))r(t)dt

= −r(t)D(t)dt.

Multiplying the stock price S(t) with the discount process D(t), we get the discounted

stock price:

D(t)S(t) = S(0) exp

{∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− r(s)− 1

2
σ2(s)

)
ds

}
. (3.7)

18



The discounted stock price satisfies the following stochastic differential equation.

d(D(t)S(t)) = (α(t)− r(t))D(t)S(t)dt+ σ(t)D(t)S(t)dW (t)

= σ(t)D(t)S(t)[Θ(t)dt+ dW (t)].

where we let

Θ(t) :=
α(t)− r(t)

σ(t)
. (3.8)

Applying Girsanov Theorem and letting

dW̃ (t) = Θ(t)dt+ dW (t), (3.9)

we have

d(D(t)S(t)) = σ(t)D(t)S(t)dW̃ (t). (3.10)

Let

P̃ (A) :=

∫
A

Z(ω)dP (ω), ∀A ∈ F , (3.11)

where

Z = exp

{
−
∫ T

0

Θ(u)dW (u)− 1

2

∫ T

0

Θ2(u)du

}
.

as defined in the Girsanov Theorem (Theorem (2.25)).

Definition 3.2. A probability measure P̃ is called a risk-neutral measure if

• Measure P̃ is equivalent to the actual measure P (i.e., ∀A ∈ F , P (A) = 0 if and only

if P̃ (A) = 0), and

• under P̃ , the discounted stock price D(t)S(t) is a martingale .

Therefore the probability measure P̃ defined in (3.11) is a risk-neutral measure.

Under the risk-neutral measure P̃ ,

dS(t) = r(t)S(t)dt+ σ(t)S(t)dW̃ (t). (3.12)
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Note that the mean rate of return is equal to the interest rate r(t), and the stochastic

differential equation can be solved explicitly to get

S(t) = S(0) exp

{∫ t

0

σ(s)dW̃ (s) +

∫ t

0

(r(s)− 1

2
σ2(s))ds

}
. (3.13)

An inverse problem is, given an asset S(t), is there a stochastic differential equation in the

form of (3.12) to which S(t) is a solution? The answer is yes and provided by the following

theorem.

Theorem 3.3 (Stochastic representation of assets). ([36, Theorem 9.2.1, p.377]) Let (Ω,F , P̃ )

be a probability space with a Brownian motion W̃ (t), t ≥ 0 under the risk-neutral measure P̃ .

Let S(t) be a strictly positive price process for a non-dividend-paying asset, then there exists

a volatility process σ(t) such that

dS(t)

S(t)
= r(t)dt+ σ(t)dW̃ (t). (3.14)

This equation is equivalent to

d(D(t)S(t))

D(t)S(t)
= σ(t)dW̃ (t). (3.15)

or

D(t)S(t)

S(0)
= exp

{∫ t

0

σ(u)dW̃ (t)− 1

2

∫ t

0

||σ(u)||2du
}
. (3.16)

3.2 Hedging

The fundamental idea behind no-arbitrage pricing is the hedging strategy (or replicating

strategy), introduced by Black and Scholes in their celebrated article [3]. That is to reproduce

the payoff of a derivative security by trading in the underlying asset (stock) and the money

market account.

Definition 3.4. The portfolio is a pair of processes φ(t) and ψ(t) which describe respectively
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the number of units of stock and of money market account which we hold at time t. The

processes can take positive or negative values.

Definition 3.5. If (φ(t), ψ(t)) is a portfolio with stock price S(t) and money market account

price M(t), then (φ(t), ψ(t)) is self-financing if and only if

dX(t) = φ(t)dS(t) + ψ(t)dM(t), (3.17)

where X(t) = φ(t)S(t) + ψ(t)M(t) is the value of the portfolio.

In other words, a portfolio is self-financing if and only if the change in its value only

depends on the change of the asset prices.

Definition 3.6. Suppose that we have a risk-less money market account M(t) and a risky

security S(t) with volatility σ(t), and a payoff V (T ) up to time T . A hedging strategy (or

replicating strategy) for V (T ) is a self-financing portfolio (φ(t), ψ(t)) such that

X(T ) = φ(T )S(T ) + ψ(T )M(T ) = V (T ).

The reason why we care about the hedging strategy is that not only can it replicate the

payoff of the option at the expiration date but also the value of the hedging portfolio is equal

to the value of the option at any time before the expiration date, i.e.,

X(T ) = V (T )⇔ X(t) = V (t), ∀ 0 ≤ t ≤ T. (3.18)

To see this, we assume there is a moment t < T , such that X(t) > V (t). Then an investor

can buy one unit of the option at time t and sell one unit of the portfolio including ∆1(t)

units of S(t) and ∆2(t) units of M(t). Because it is guaranteed that X(T ) = V (T ) at the

expiration date, the option bought and the portfolio sold by the investor will cancel with

each other at time T . Thus the investor could make the profit V (t)−X(t) without any risk.

This contradicts with our basic assumption that the financial market is arbitrage-free. On
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the other hand, if X(t) < V (t), the investor can buy one unit of the portfolio and sell one

unit of the option to achieve the same effect.

3.3 Risk-Neutral Pricing Formula

Definition 3.7. A market model is complete if every derivative security can be hedged.

We will always assume that the market model we deal with is complete. In other word,

for a given payoff V (T ) of the derivative security, we are able to choose an initial capital

X(0) and a portfolio strategy (φ(t), ψ(t)), 0 ≤ t ≤ T , such that

X(T ) = V (T ). (3.19)

It can be proved that

d (D(t)X(t)) = φ(t)d (D(t)S(t)) . (3.20)

In fact, let f(x) = 1
x
, then f ′(x) = − 1

x2
, f ′′(x) = 2

x3
. Apply Itô’s formula,

dM(t) = d (f(D(t)))

= f ′(D(t))dD(t) +
1

2
f ′′(D(t))(dD(t))2

= − 1

D2(t)
(−r(t)D(t)dt)

=
r(t)

D(t)
dt

= r(t)M(t)dt.
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Here we used (3.6). Then since the portfolio X(t) is self-financing, we have

dX(t) = φ(t)dS(t) + ψ(t)dM(t)

= φ(t)(α(t)S(t)dt+ σ(t)S(t)dW (t)) + r(t)ψ(t)M(t)dt

= φ(t)(α(t)S(t)dt+ σ(t)S(t)dW (t)) + r(t)(X(t)− φ(t)S(t))dt

= r(t)X(t)dt+ φ(t)(α(t)− r(t))S(t)dt+ φ(t)σ(t)S(t)dW (t)

= r(t)X(t)dt+ φ(t)σ(t)S(t)[Θ(t)dt+ dW (t)]

= r(t)X(t)dt+ φ(t)σ(t)S(t)dW̃ (t).

Then by Itô’s product rule,

d(D(t)X(t)) = dD(t)X(t) +D(t)dX(t) + dD(t)dX(t)

= −r(t)D(t)X(t)dt+D(t)[r(t)X(t)dt+ φ(t)σ(t)S(t)dW̃ (t)]

= φ(t)σ(t)D(t)S(t)dW̃ (t)

= φ(t)d(D(t)S(t)).

This completes the proof of (3.20).

Then according to the stock representation (3.10),

d (D(t)X(t)) = φ(t)σ(t)D(t)S(t)dW̃ (t). (3.21)

The corresponding integral form is

D(t)X(t) = D(0)X(0) +

∫ t

0

φ(s)σ(s)D(s)S(s)dW̃ (s). (3.22)

Since the Itô integral in the above equation is a martingale under P̃ , D(t)X(t) is a martingale

under P̃ and

D(t)X(t) = Ẽ[D(T )X(T )|F(t)]. (3.23)
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The value X(t) of the hedging portfolio is the value needed at time t in order to reproduce

the payoff V (T ) of the derivative security. Therefore, we define it as the price V (t) of the

derivative security at time t. Thus the above equation becomes

D(t)V (t) = Ẽ[D(T )V (T )|F(t)]. (3.24)

Since D(t) = e−
∫ t
0 r(s)ds, we see

V (t) = Ẽ
[
e−

∫ T
t r(s)dsV (T )|F(t)

]
. (3.25)

We refer to both (3.24) and (3.25) as the risk-neutral pricing formula.

3.4 Fundamental Theorem of Asset Pricing

We conclude this chapter by giving the Fundamental Theorems of asset pricing.

In the asset pricing, it is assumed that the market models do not admit arbitrage. An

arbitrage is a way of trading with zero initial capital, which produces a positive probability

to make money without any chance to lose money. The mathematical model for arbitrage is

stated in the following definition.

Definition 3.8. An arbitrage is a self-financing portfolio value process X(t) satisfying

X(0) = 0 and also satisfying for some time T > 0,

P{X(T ) ≥ 0} = 1, P{X(T ) > 0} > 0. (3.26)

Theorem 3.9 (First fundamental Theorem of asset pricing). ([19, Theorem 2.7, p.25]) The

market model contains no arbitrage opportunities if and only if there exists a risk-neutral

probability measure.

We also assume in the asset pricing that a market model is complete.
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Definition 3.10. A market model is complete if every derivative security can be hedged.

Theorem 3.11 (Second fundamental Theorem of asset pricing). ([36, Theorem 5.4.9, p.232])

Consider a market model that has a risk-neutral probability measure. The model is complete

if and only if the risk-neutral probability measure is unique.
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Chapter 4. Stochastic Interest Rate

In this chapter, we will survey two stochastic interest rate models: Vasicek model and CIR

model. They will be used to valuate the American options and American spread options

later. In the case of constant interest rate, the risk-neutral pricing formula can be used to

derive the partial differential equation for the option price. However, if the interest rate

is stochastic, it is difficult to use the associated risk-neutral pricing formula to derive the

partial differential equation for the option price. Instead we will price the option using

the delta-hedging technique. This method requires the knowledge of the zero-coupon bond

B(t, T ), which will be studied in section 4.2.

4.1 Interest Rate Models

In this section, we consider two interest rate models. The first model is called the Vasicek

model which is determined by the following stochastic differential equation:

dr(t) = (α− βr(t))dt+ σdW̃ (t), (4.1)

where α, β, σ are positive constants, W̃ (t) is a Brownian motion under the risk-neutral

measure P̃ . Here α/β is called the long term mean of the interest rate r(t), β is called the

speed of reversion of the interest rate r(t) and σ is called the volatility of the interest rate

r(t). This equation can be solved explicitly to get

r(t) = r(0)e−βt +
α

β
(1− e−βt) + σ

∫ t

0

e−β(t−s)dW̃ (s). (4.2)
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The expectation and variance are given by

E[r(t)] = r(0)e−βt +
α

β
(1− e−βt), (4.3)

V ar[r(t)] =
σ2

2β
(1− e−2βt). (4.4)

The Vasicek model is a mean-reverting model in the sense that

E[r(t)]→ α

β
as t→∞. (4.5)

As time elapses, the interest rate r(t) tends to drift towards its long-term mean α
β
.

The variance converges to a finite value

V ar[r(t)]→ σ2

2β
as t→∞. (4.6)

The Vasicek model has the disadvantage that r(t) can be negative with a positive probability,

which generally is not true in the financial market.

The second interest rate model is called the Cox-Ingersoll-Ross (CIR) model, which is

determined by the following stochastic differential equation:

dr(t) = (α− βr(t))dt+ σ
√
r(t)dW̃ (t), (4.7)

where α, β, σ are positive constants, W̃ (t) is a Brownian motion under the risk-neutral

measure P̃ . As in the Vasicek model, α/β is called the long term mean of the interest rate

r(t), β is called the speed of reversion of the interest rate r(t) and σ is called the volatility

of the interest rate r(t).

This equation can be solved implicitly to get

r(t) = r(0)e−βt +
α

β
(1− e−βt) + σ

∫ t

0

e−β(t−s)
√
r(s)dW̃ (s). (4.8)
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The expectation and variance are given by

E[r(t)] = r(0)e−βt +
α

β
(1− e−βt), (4.9)

V ar[r(t)] = r(0)
σ2

β
(e−βt − e−2βt) +

ασ2

2β2
(1− e−βt)2. (4.10)

CIR model is also a mean-reverting model since

E[r(t)]→ α

β
as t→∞, (4.11)

and the variance also converges to a finite value

V ar[r(t)]→ ασ2

2β2
as t→∞. (4.12)

Intuitively, if r(t) is very small, so is σ
√
r(t). It is reasonable to neglect the random effect

of the diffusion term. In another word, r(t) is mainly affected by the drift term α − βr(t)

which is close to the positive constant α since r(t) is small at this time, as a consequence

r(t) will be pulled back from going negative and will remain non-negative.

4.2 Zero-Coupon Bond B(t, T )

In this section, we study the zero-coupon bond and derive the stochastic differential equation

for B(t, T ) under the Vasicek and the CIR model.

Definition 4.1. A zero-coupon bond B(t, T ), 0 ≤ t ≤ T is a debt security that does not

pay interest (a coupon) but is traded at a deep discount. A zero-coupon bond is bought at

a price lower than its face value, with the face value repaid at the time of maturity. In the

context of option pricing, we assume the face value is B(T, T ) = 1. T is the maturity of

the zero-coupon bond. According to the risk-neutral pricing formula (3.25), the zero-coupon
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bond price at time t maturing at T is given by 1

B(t, T ) = Ẽ[e−
∫ T
t r(s)ds|F(t)]. (4.13)

In particular, under the Vasicek and the CIR models, the zero-coupon bond B(t, T ) can

be expressed as an exponential of an affine function of r(t).

Theorem 4.2. If the interest rate r(t) is determined by the Vasicek model, then the bond

price is of the form

B(t, T ) = e−r(t)C(t,T )−A(t,T ), (4.14)

where C(t, T ), A(t, T ) are deterministic functions of t and T given by

C(t, T ) =

∫ T

t

e−
∫ s
t βdvds =

1

β
(1− e−β(T−t)),

A(t, T ) =

∫ T

t

(
αC(s, T )− 1

2
σ2C2(s, T )

)
ds

=

(
α

β
− σ2

2β2

)
(T − t) +

1

β

(
−α
β

+
σ2

β2

)(
1− e−β(T−t))

− σ2

4β3

(
1− e−2β(T−t)) .

(4.15)

If the interest rate r(t) is determined by the CIR model, then the bond price is of the

form

B(t, T ) = e−r(t)C(t,T )−A(t,T ), (4.16)

1Note that if the interest rate is not a constant, the zero-coupon bond should be a function of r(t). We
use B(t, T ) to denote the zero-coupon bond only for convention, it does not mean B only depends on t and
T .
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where C(t, T ), A(t, T ) are deterministic functions of t and T given by

C(t, T ) =
sinh(γ(T − t))

γ cosh(γ(T − t)) + 1
2
β sinh(γ(T − t))

,

A(t, T ) = −2α

σ2
ln

[
γe

1
2
β(T−t)

γ cosh(γ(T − t)) + 1
2
β sinh(γ(T − t))

]

γ =
1

2

√
β2 + 2σ2.

(4.17)

Next we study the stochastic differential equation for the zero-coupon bond B(t, T ) under

two interest rate models. Recall that for both the Vasicek and CIR models, the zero-coupon

bond is of the form

B(t, T ) = e−C(t,T )r(t)−A(t,T ).

Firstly, suppose that r(t) is determined by the Vasicek model. Let f(x) = ex then f ′(x) =

f ′′(x) = ex. Apply Itô’s formula

dB(t, T ) = f ′(−C(t, T )r(t)− A(t, T ))d(−C(t, T )r(t)− A(t, T ))

+
1

2
f ′′(−C(t, T )r(t)− A(t, T ))(d(−C(t, T )r(t)− A(t, T )))2

= B(t, T )d(−C(t, T )r(t)− A(t, T ))

+
1

2
B(t, T )(d(−C(t, T )r(t)− A(t, T )))2. (4.18)

Here

d(−C(t, T )r(t)− A(t, T )) = −r(t)dC(t, T )− C(t, T )dr(t)− dA(t, T )

= [−r(t)C ′(t, T )− C(t, T )(α− βr(t))− A′(t, T )]dt

− σC(t, T )dW̃ (t). (4.19)

And

(d(−C(t, T )r(t)− A(t, T )))2 = σ2C2(t, T )dt. (4.20)
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Plugging (4.19) and (4.20) to (4.18), we get

dB(t, T )

B(t, T )
=

[
−r(t)C ′(t, T )− C(t, T )(α− βr(t))− A′(t, T )dt+

1

2
σ2C2(t, T )

]
dt

− σC(t, T )dW̃ (t). (4.21)

A simple computation using (4.15) can show that the drift term (the square bracket part)

of the above stochastic differential equation is equal to r(t). Hence, for the Vasicek model,

we have the stochastic differential equation of the zero-coupon bond under the risk-neutral

measure

dB(t, T )

B(t, T )
= r(t)dt− σC(t, T )dW̃ (t). (4.22)

Similarly, for the CIR model, the stochastic differential equation is given by

dB(t, T )

B(t, T )
= r(t)dt− σC(t, T )

√
r(t)dW̃ (t). (4.23)

Plugging in the associated values of C(t, T ) for Vasicek model and CIR model respectively to

the stochastic differential equations above, we obtain the volatility of the zero-coupon bond

B(t, T ):

For the Vasicek model, the volatility of B(t, T ) is

σV = −σ
β

(1− e−β(T−t)). (4.24)

Then

dB(t, T ) = r(t)B(t, T )dt+ σVB(t, T )dW̃ (t). (4.25)

For the CIR model, the volatility of B(t, T ) is

σC = −σ
√
r(t)

sinh(γ(T − t))
γ cosh(γ(T − t)) + 1

2
β sinh(γ(T − t))

, (4.26)
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where γ =
1

2

√
β2 + 2σ2. Then

dB(t, T ) = r(t)B(t, T )dt+ σCB(t, T )dW̃ (t). (4.27)
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Chapter 5. American Option

In this chapter, we will incorporate stochasticity into the interest rate and price the American

option under the Vasicek model and CIR model. Firstly we will derive the partial differential

equation for the corresponding European option. Then we will formulate the free boundary

problem associated with the American option. In order to go around the free boundary and

implement the numerical computation, we will convert the free boundary problem to the

linear complementarity conditions for the American option. We will conclude this chapter

by numerical computation using finite difference method.

5.1 Introduction

In order to understand the American option, we need to introduce the European option. An

European option is a contract which gives its owner the right but not the obligation to buy

(call option) or sell (put option) the underlying asset S(t), 0 ≤ t ≤ T at a specified price K

(strike price), on a specified date T (expiration date). The payoff of the European option

is the value of the option on the expiration date, which is V (T ) = (S(t) −K)+ for the call

option and V (T ) = (K−S(t))+ for the put option. Thus by the risk-neutral pricing formula

(3.25), the European option price at time t is given by

V (t) = Ẽ
[
e−r(T−t)V (T )|F(t)

]
, (5.1)

where r is the constant interest rate and the expectation is taken under the risk-neutral

measure P̃ .

The American option is more flexible than the European option. It can be exercised any

time before or on the expiration date. The precise definition is given as follows.

Definition 5.1. Let 0 ≤ t ≤ T , x ≥ 0 be given. Assume S(t) = x. The price at time t of
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the American option expiring at time T is defined to be

V (t, x) = max
τ∈T[t,T ]

Ẽ[e−r(τ−t)V (τ)|S(t) = x]. (5.2)

where V (τ) = (S(τ)−K)+ for the call option and V (τ) = (K − S(τ))+ for the put option.

T[t,T ] denotes the set of stopping times for the filtration {Ft(u), t ≤ u ≤ T}, taking values in

[t, T ] or taking the value ∞, where Ft(u), t ≤ u ≤ T denotes the σ-algebra generated by the

process S(v), t ≤ v ≤ u.

From now on, we will consider the American put option. Pricing the American call option

is similar.

The key of pricing the American option is to determine if we need to hold the option or

exercise the option immediately at time t. It is shown in [36, p.356–361] that the optimal

exercise policy for the American option is of the form: “Exercise the put option as soon as

S(t) falls to a certain level L.” In other words, the owner of the American put option should

wait until the underlying asset price falls to a certain level L before exercising. This is a

defining property of the American option, i.e., the American option price determined by this

optimal exercise policy is the same as the one in Definition 5.1.

By the discussion above, we can divide the set {(t, x) : 0 ≤ t ≤ T, x ≥ 0} into two

regions, once the underlying asset price falls into the stopping region S, the owner of the put

option should exercise it immediately to obtain the immediate payoff value (intrinsic value).

Thus the stopping region can be characterized as

S = {(t, x) : V (t, x) = (K − x)+}. (5.3)

On the other hand, if S(t) remains in the continuation region C, the owner should wait

and the current value of the American put option is the same as the current value of the
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corresponding European put option. Thus the continuation region can be characterized as

C = {(t, x) : V (t, x) = the corresponding European put option price}. (5.4)

The level L mentioned in the optimal exercise policy is the free boundary between S and C

which is denoted by

L : L(T − t, x) = 0. (5.5)

Since in the stopping region, the American put option price has already been determined

and equals to the intrinsic value, we just need to consider the option price in the continuation

region. In the next section, we will price the corresponding European put option.

5.2 The Corresponding European Put Option

In this section, We derive the partial differential equation for the corresponding European

put option with stochastic interest rate based on Fang’s approach in [18]. Firstly we will set

up the stochastic differential equations for the underlying asset and the interest rate. Then

we will use the delta-hedging technique to derive the partial differential equation for the put

option.

In the Black-Scholes framework, the underlying asset S1(t) is a geometric Brownian

motion which satisfies the following stochastic differential equation.

dS(t) = rS(t)dt+ σ1S(t)dW̃1(t),

where r is the interest rate, σ1 is the volatility of S1(t), and they are both positive constants.

W̃1(t) is a Brownian motion under the risk-neutral measure.

Now we consider stochastic interest rate process r(t). Then the underlying asset price
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satisfies the following stochastic differential equation.

dS(t) = r(t)S(t)dt+ σ1S(t)dW̃1(t), (5.6)

where the interest rate r(t) satisfies one of the following models we mentioned in the previous

chapter under the risk-neutral measure: 1

• Vasicek model

dr(t) = (α− βr(t))dt+ σ3dW̃3(t) (5.7)

• CIR model

dr(t) = (α− βr(t))dt+ σ3

√
r(t)dW̃3(t) (5.8)

Here the two Brownian motions are assumed to have the correlation ρ2:

dW̃1(t)dW̃3(t) = ρ2dt. (5.9)

Note that the constants α, β, σ3, ρ2 are all positive. Equation (5.9) is the differential form

for the cross variation of W̃1, W̃3

[W̃1, W̃3](t) = lim
||Π||→0

n−1∑
i=0

[W̃1(ti+1)− W̃1(ti)][W̃3(ti+1)− W̃3(ti)] = ρ2t, (5.10)

where Π = {t0, ..., tn : 0 = t0 ≤ t1 ≤ · · · ≤ tn = t} is a partition of the interval [0, t].

The key of delta-hedging technique is to find a hedging portfolio of the option

X(t) = ∆1(t)S(t) + ∆2(t)B(t, T ) + [X(t)−∆1(t)S(t)−∆2(t)B(t, T )],

such that X(T ) = V (T ). Here we invest ∆1(t) units of stock S(t), ∆2(t) units of zero-

coupon bond B(t, T ) and invest the rest in the money market account. We also assume that

1 The reason we use index 1, 3 here instead of 1, 2 is for the consistency with the next chapter.
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the portfolio X(t) is self-financing, i.e., dX(t) = ∆1(t)dS(t) + ∆2(t)dB(t, T ) + r(t)[X(t) −

∆1(t)S(t)−∆2(t)B(t, T )]dt. We have seen in (3.18) that the value of the hedging portfolio

is equal to the value of the option at any time before the expiration date, i.e., X(t) =

V (t), ∀ 0 ≤ t ≤ T .

With the preparation above, we will derive the partial differential equation for the put

option in three steps:

Step 1 We compute the evolution of the portfolio under the Vasicek model and the CIR model.

For the Vasicek model,

dX(t) = ∆1(t)dS(t) + ∆2(t)dB(t, T )

+ r(t)[X(t)−∆1(t)S(t)−∆2(t)B(t, T )]dt

= ∆1(t)[r(t)S(t)dt+ σ1S(t)dW̃1(t)]

+ ∆2(t)[r(t)B(t, T )dt+ σVB(t, T )dW̃3(t)]

+ r(t)[X(t)−∆1(t)S(t)−∆2(t)B(t, T )]dt

= r(t)X(t)dt+ ∆1(t)σ1S(t)dW̃1(t) + ∆2(t)σVB(t, T )dW̃3(t).

Here we used (4.25) in the second line above.

Replace X(t) by V (t), we have

dV (t) = r(t)V (t)dt+ ∆1(t)σ1S(t)dW̃1(t) + ∆2(t)σVB(t, T )dW̃3(t). (5.11)

37



For the CIR model,

dX(t) = ∆1(t)dS(t) + ∆2(t)dB(t, T )

+ r(t)[X(t)−∆1(t)S(t)−∆2(t)B(t, T )]dt

= ∆1(t)[r(t)S(t)dt+ σ1S(t)dW̃1(t)]

+ ∆2(t)[r(t)B(t, T )dt+ σCB(t, T )dW̃3(t)]

+ r(t)[X(t)−∆1(t)S(t)−∆2(t)B(t, T )]dt

= r(t)X(t)dt+ ∆1(t)σ1S(t)dW̃1(t) + ∆2(t)σCB(t, T )dW̃3(t).

Here we used (4.27) in the second line above.

Replace X(t) by V (t), we have

dV (t) = r(t)V (t)dt+ ∆1(t)σ1S(t)dW̃1(t) + ∆2(t)σCB(t, T )dW̃3(t). (5.12)

Step 2 By the Itô’s formula, we can compute the evolution of the option price V (t).

For the Vasicek model,

dV (t, S(t), r(t)) = Vtdt+ VSdS(t) + Vrdr(t)

+
1

2
VSSdS(t)dS(t) +

1

2
Vrrdr(t)dr(t) + VSrdS(t)dr(t)

= Vtdt+ VS[r(t)S(t)dt+ σ1S(t)dW̃1(t)]

+ Vr[(α− βr(t))dt+ σ3dW̃3(t)]

+
1

2
σ2

1S
2(t)VSSdt+

1

2
σ2

3Vrrdt+ σ1σ3ρ2S(t)VSrdt

= [Vt + r(t)S(t)VS + (α− βr(t))Vr +
1

2
σ2

1S
2(t)VSS

+
1

2
σ2

3Vrr + σ1σ3ρ2S(t)VSr]dt

+ σ1S(t)VSdW̃1(t) + σ3VrdW̃3(t). (5.13)
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For the CIR model,

dV (t, S(t), r(t)) = Vtdt+ VSdS(t) + Vrdr(t)

+
1

2
VSSdS(t)dS(t) +

1

2
Vrrdr(t)dr(t) + VSrdS(t)dr(t)

= Vtdt+ VS[r(t)S(t)dt+ σ1S(t)dW̃1(t)]

+ Vr[(α− βr(t))dt+ σ3

√
rdW̃3(t)]

+
1

2
σ2

1S
2(t)VSSdt+

1

2
σ2

3rVrrdt+ σ1σ3ρ2

√
rS(t)VSrdt

= [Vt + r(t)S(t)VS + (α− βr(t))Vr

+
1

2
σ2

1S
2(t)VSS +

1

2
σ2

3rVrr

+ σ1σ3ρ2

√
rS(t)VSr]dt+ σ1S(t)VSdW̃1(t) + σ3

√
rVrdW̃3(t). (5.14)

Step 3 Equating the evolutions of the portfolio (5.11, 5.12) with the evolutions of the option

price (5.13, 5.14) respectively to get:

(a)For the Vasicek model,

∆1(t) = VS(t), ∆2(t) =
σ3Vr

σVB(t, T )
, (5.15)

and

r(t)V (t) = Vt(t) + r(t)S(t)VS(t)

+ (α− βr(t))Vr +
1

2
σ2

1S
2(t)VSS(t) +

1

2
σ2

3Vrr(t) + σ1σ3ρ2S(t)VSr(t) (5.16)

Replacing S(t), r(t) by x, r and simplifying the equation above, we get the desired

partial differential equation

rV = Vt(t) + rxVx + (α− βr)Vr +
1

2
σ2

1x
2(t)Vxx +

1

2
σ2

3Vrr + σ1σ3ρ2xVxr. (5.17)
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(b)For the CIR model,

∆1(t) = VS(t), ∆2(t) =
σ3

√
rVr

σCB(t, T )
, (5.18)

and

r(t)V (t) = Vt(t) + r(t)S(t)VS(t)

+ (α− βr(t))Vr +
1

2
σ2

1S
2(t)VSS(t) +

1

2
σ2

3r(t)Vrr(t) + σ1σ3ρ2

√
r(t)S(t)VSr(t) (5.19)

Replacing S(t), r(t) by x, r and simplifying the equation above, we get the desired

partial differential equation

rV = Vt(t) + rxVx + (α− βr)Vr +
1

2
σ2

1x
2(t)Vxx +

1

2
σ2

3rVrr + σ1σ3ρ2

√
rxVxr. (5.20)

5.3 Free Boundary Problem of American Put Option

In this section, we will formulate the free boundary problem of the American put option

with stochastic interest rate. According to the optimal exercise policy, we know there exists

an early exercise boundary L such that the American put option needs to be immediately

exercised if the underlying asset price falls to L. Although the boundary L is unknown, we

can derive the conditions for the value of the option in the stopping region and the contin-

uation region respectively. Furthermore, we can give the terminal and boundary conditions

for the American put option.

Similar to the case of the constant interest rate, the set {(t, x, r) : 0 ≤ t ≤ T, x ≥ 0, r ≥ 0}

can be divided into two regions, the stopping region

S = {(t, x, r) : V (t, x, r) = (K − x)+} (5.21)
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and the continuation region

C = {(t, x, r) : V (t, x, r) = the corresponding European put option price}. (5.22)

The free boundary between S and C is the one mentioned in the optimal exercise policy

L : L(T − t, x, r) = 0. (5.23)

Correspondingly, it is optimal to exercise immediately to obtain the intrinsic value of the

American put option when (t, x, r) is in the stopping region S. While in the continuation

region C, it is optimal to hold the American put option. Thus in the continuation region,

the American put option price is equal to the corresponding European put option price and

satisfies the partial differential equations we derived in the previous section.

Next we consider the terminal and boundary conditions for the American put option.

Firstly, the payoff on the expiration date is the terminal condition

V (T, x, r) = (K − x)+. (5.24)

Secondly, we assume that the option price V and the derivatives Vx, Vr are continuous. Since

V (t, x, r) = K − x is the option price in the stopping region S, the left-hand derivative with

respect to x on L is Vx(t, x−, r) = −1 and the left-hand derivative with respect to r on L is

Vr(t, x, r−) = 0. Then the option price satisfies the smooth-pasting condition

Vx(t0, x0, r0) = lim
x→x+0

Vx(t0, x, r0) = lim
x→x−0

Vx(t0, x, r0) = −1, ∀(t0, x0, r0) ∈ L (5.25)

Vr(t0, x0, r0) = lim
r→r+0

Vr(t0, x0, r) = lim
r→r−0

Vr(t0, x0, r) = 0, ∀(t0, x0, r0) ∈ L. (5.26)
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Furthermore, we have the asymptotic conditions 2

lim
x→∞

V (t, x, r) = 0 (5.27)

lim
r→∞

V (t, x, r) = 0. (5.28)

Equation (5.27) is set due to the fact that if the underlying asset price is large then the put

option is unlikely to be exercised and gains no value. For Equation (5.28), notice that the

underlying asset satisfies the stochastic differential equation

dS(t)

S(t)
= r(t)dt+ σ1dW̃1(t).

A large interest rate will induce large increment of the asset price within a small period of

time. Thus S may approach infinity, which is the case in Equation (5.27).

Finally, if the interest rate is approaching zero, there is no time value. The current

option price should equal to its payoff on the expiration date, which is unknown beforehand.

However, we can still find this boundary condition by letting r = 0 in Equation (5.17),

Equation (5.20) and directly solving the partial differential equations. This will be done

after we simplify the partial differential equations.

5.4 Simplification of the Free Boundary Problem

In this section, we will simplify the partial differential equations (5.17) and (5.20) by change

of variables. Equipped with the simplified partial differential equations, we can reformulate

the free boundary problem of the American put option.

Let τ = T − t, x = eu and h(τ, u, r) = V (t, x, r). Then the partial derivatives of V can

2As x→ 0, option price is in the stopping region, so V = (K − x)+.
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be expressed as

Vt = hτ
dτ

dt
= −hτ (5.29)

Vx = hu
du

dx
=

1

x
hu (5.30)

Vr = hr (5.31)

Vrr = hrr (5.32)

Vxr =
1

x
hur (5.33)

Vxx =
∂

∂x
(
1

x
hu) = − 1

x2
hu +

1

x
huu

du

dx
= − 1

x2
hu +

1

x2
huu (5.34)

Plugging (5.29)–(5.34) to the partial differential equation (5.17), we have the simplified

partial differential equation for the Vasicek model

rh+ hτ = (r − 1

2
σ2

1)hu + (α− βr)hr +
1

2
σ2

1huu +
1

2
σ2

3hrr + σ1σ3ρ2hur (5.35)

And we let

Qh = rh+ hτ − [(r − 1

2
σ2

1)hu + (α− βr)hr +
1

2
σ2

1huu +
1

2
σ2

3hrr + σ1σ3ρ2hur] (5.36)

Plugging (5.29)–(5.34) to the partial differential equation (5.20), we have the simplified

partial differential equation for the CIR model

rh+ hτ = (r − 1

2
σ2

1)hu + (α− βr)hr +
1

2
σ2

1huu +
1

2
σ2

3rhrr + σ1σ3ρ2

√
rhur (5.37)

And we let

Qh = rh+ hτ − [(r − 1

2
σ2

1)hu + (α− βr)hr +
1

2
σ2

1huu +
1

2
σ2

3rhrr + σ1σ3

√
rρ2hur] (5.38)

Now we formulate the free boundary problem associated with the function h(τ, u, r). We
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firstly make the following change of variables for the American put option.

V (t, x, r) = h(τ, u, r) (5.39)

τ = T − t (5.40)

x = eu. (5.41)

And we define the payoff function associated with h(τ, u, r) as

g(τ, u, r) := (K − eu)+, (5.42)

Then the free boundary problem associated with the function h(τ, u, r) is stated as follows:

In the stopping region S 3

Qh > 0 (5.43)

h(τ, u, r) = g(τ, u, r). (5.44)

In the continuation region C

Qh = 0 (5.45)

h(τ, u, r) > g(τ, u, r). (5.46)

The initial condition is

h(0, u, r) = g(0, u, r) = (K − eu)+. (5.47)

The smooth-pasting conditions are

hu(τ0, u0, r0) = lim
u→u+0

hu(τ0, u, r0) = lim
u→u−0

hu(τ0, u, r0) = −eu0 , ∀(τ0, u0, r0) ∈ L (5.48)

3Replacing h by g in 5.35 and 5.37, we get Qh > 0.

44



hr(τ0, u0, r0) = lim
r→r+0

hr(τ0, u0, r) = lim
r→r−0

hr(τ0, u0, r) = 0, ∀(τ0, u0, r0) ∈ L. (5.49)

The asymptotic conditions 4 are

lim
u→∞

h(τ, u, r) = 0 (5.50)

lim
r→∞

h(τ, u, r) = 0. (5.51)

Finally, if the interest rate r = 0, then

h(τ, u, 0) =

max

{
KΦ

(
lnK − u+ 1

2
σ2

1τ

σ1

√
τ

)
− euΦ

(
lnK − u− 1

2
σ2

1τ

σ1

√
τ

)
, (K − eu)+

}
, (5.52)

where Φ is the cumulative distribution function of the standard normal distribution. The

derivation is in Appendix A and Appendix B.

5.5 Linear Complementarity Conditions

The major difficulty of pricing American option is that the early exercise boundary L is

unknown. Although we can compute numerically the partial differential equations in the

free boundary problem in the previous section, it is difficult to track the early exercise

boundary L. On the other hand, the function h in the previous section satisfies the linear

complementarity conditions that can help us go around the free boundary problem.

In practice, when we use numerical schemes to compute the option price, it is impossible

to implement infinity on computers. Instead, we consider the spatial variable u in the

interval −u− ≤ u ≤ u+, where u−, u+ are large positive numbers. Similarly, r is in the

interval 0 ≤ r ≤ r+, where r+ is a large positive number.

4As u→ −∞, option price is in the stopping region, so h = g.
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The linear complementarity conditions for the function h is:

Qh · (h(τ, u, r)− g(τ, u, r)) = 0

Qh ≥ 0, h(τ, u, r) ≥ g(τ, u, r)

(5.53)

with the initial and boundary conditions

h(0, u, r) = g(0, u, r) = (K − eu)+

h(τ,−u−, r) = g(τ,−u−, r) = K

h(τ, u+, r) = 0

h(τ, u, 0) =

max

{
KΦ

(
lnK − u+ 1

2
σ2

1τ

σ1

√
τ

)
− euΦ

(
lnK − u− 1

2
σ2

1τ

σ1

√
τ

)
, (K − eu)+

}
h(τ, u, r+) = 0.

(5.54)

5.6 Finite Difference Method And Implementation

The finite difference discretization of the the partial derivatives of h are as follows:

• Forward difference

hτ ≈
hm+1
i,k − hmi,k

∆τ
+O(∆τ) (5.55)

• Central difference

hu ≈
hmi+1,k − hmi−1,k

2∆u
+O((∆u)2) (5.56)

hr ≈
hmi,k+1 − hmi,k−1

2∆r
+O((∆r)2) (5.57)
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• Symmetric central difference

huu ≈
hmi+1,k − 2hmi,k + hmi−1,k

(∆u)2
+O((∆u)2) (5.58)

hrr ≈
hmi,k+1 − 2hmi,k + hmi,k−1

(∆r)2
+O((∆r)2) (5.59)

hur ≈
hmi+1,k+1 − hmi−1,k+1 − hmi+1,k−1 + hmi−1,k−1

4∆u∆r
+O((∆u)2 + (∆r)2) (5.60)

Let N,M,R be large positive numbers, then

∆τ =
T

N

∆u =
u+ + u−

M − 1

∆r =
r+

R− 1

and

τ = 0 +m∆τ = m∆τ, 1 ≤ m ≤ N

u = −u− + (i− 1)∆u, 1 ≤ i ≤M

r = 0 + (k − 1)∆r = (k − 1)∆r, 1 ≤ k ≤ R.

Plugging Equations (5.55)–(5.60) into the PDE (5.35), we obtain the discretization of
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the partial differential equation for the Vasicek model.

rhmi,k +
hm+1
i,k − hmi,k

∆τ
+O(∆τ) = (r − 1

2
σ2

1)

[
hmi+1,k − hmi−1,k

2∆u
+O((∆u)2)

]
+ (α− βr)

[
hmi,k+1 − hmi,k−1

2∆r
+O((∆r)2)

]
+

1

2
σ2

1

[
hmi+1,k − 2hmi,k + hmi−1,k

(∆u)2
+O((∆u)2)

]
+

1

2
σ2

3

[
hmi,k+1 − 2hmi,k + hmi,k−1

(∆r)2
+O((∆r)2)

]
+ σ1σ3ρ2

[
hmi+1,k+1 − hmi−1,k+1 − hmi+1,k−1 + hmi−1,k−1

4∆u∆r
+O((∆u)2 + (∆r)2)

]
. (5.61)

Let

A =
1

2

∆τ

∆u

(
r − 1

2
σ2

1

)
B =

1

2

∆τ

∆r
(α− βr)

C =
1

2
σ2

1

∆τ

(∆u)2

D =
1

2
σ2

3

∆τ

(∆r)2

E =
1

4
σ1σ3ρ2

∆τ

∆u∆r
.

Ignoring the higher order terms, we obtain the finite difference scheme of h for the Vasicek

model

hm+1
i,k = Ehmi+1,k+1 + (A+ C)hmi+1,k − Ehmi+1,k−1

+ (B +D)hmi,k+1 + (1− r∆τ − 2C − 2D)hmi,k + (−B +D)hmi,k−1

− Ehmi−1,k+1 + (−A+ C)hmi−1,k + Ehmi−1,k−1. (5.62)

Plugging Equations (5.55)–(5.60) into the PDE (5.37), we obtain the discretization of
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the partial differential equation for the CIR model.

rhmi,k +
hm+1
i,k − hmi,k

∆τ
+O(∆τ) = (r − 1

2
σ2

1)

[
hmi+1,k − hmi−1,k

2∆u
+O((∆u)2)

]
+ (α− βr)

[
hmi,k+1 − hmi,k−1

2∆r
+O((∆r)2)

]
+

1

2
σ2

1

[
hmi+1,k − 2hmi,k + hmi−1,k

(∆u)2
+O((∆u)2)

]
+

1

2
σ2

3r

[
hmi,k+1 − 2hmi,k + hmi,k−1

(∆r)2
+O((∆r)2)

]
+ σ1σ3ρ2

√
r

[
hmi+1,k+1 − hmi−1,k+1 − hmi+1,k−1 + hmi−1,k−1

4∆u∆r
+O((∆u)2 + (∆r)2)

]
. (5.63)

Let

A =
1

2

∆τ

∆u

(
r − 1

2
σ2

1

)
B =

1

2

∆τ

∆r
(α− βr)

C =
1

2
σ2

1

∆τ

(∆u)2

D =
1

2
σ2

3r
∆τ

(∆r)2

E =
1

4
σ1σ3ρ2

√
r

∆τ

∆u∆r
.

Ignoring the higher order terms, we obtain the finite difference scheme of h for the CIR

model.

hm+1
i,k = Ehmi+1,k+1 + (A+ C)hmi+1,k − Ehmi+1,k−1

+ (B +D)hmi,k+1 + (1− r∆τ − 2C − 2D)hmi,k + (−B +D)hmi,k−1

− Ehmi−1,k+1 + (−A+ C)hmi−1,k + Ehmi−1,k−1. (5.64)

To make the notation simpler, we denote both the right hand side of equation (5.62) and
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equation (5.64) as Hhm. Then the finite difference scheme of h is abbreviated as

hm+1
i,k = Hhm. (5.65)

To let h satisfy the linear complementarity conditions, we need to modify the finite

difference scheme above to be

hm+1
i,k = max

{
Hhm, (K − eu)+

}
. (5.66)

That is to say for each time step, h takes the maximum between the value of the correspond-

ing European put option and the immediate payoff if the early exercise is optimal.

Eventually, by the change of variables

V (t) = h(τ, u, r)

τ = T − t

x = eu.

we can get the option price at the current time V (0).
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Figure 5.1: American Put Option under Vasicek model
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Figure 5.2: American Put Option under CIR model
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Chapter 6. American Spread Option

In this chapter, we price the American spread option with stochastic interest rate under the

Vasicek model and CIR model. We extend the idea and method used in the previous chapter

for pricing the American option to price the American spread option. Similar to Chapter

5, we firstly derive the partial differential equation for the corresponding European spread

option. Then we formulate the free boundary problem associated with the American spread

option. In order to go around the free boundary and implement numerical computation,

we formulate the linear complementarity conditions for the American spread option. We

conclude this chapter by numerical computation using finite difference method.

6.1 Introduction

An European spread option has two underlying assets S1(t) and S2(t). The payoff on the

expiration date depends on the difference of the two assets, which is V (T ) = ((S1(T ) −

S2(T ))−K)+ for the spread call option and V (T ) = (K − (S1(T )− S2(T )))+ for the spread

put option. By the risk-neutral pricing formula (3.25), the European spread option price at

time t is given by

V (t) = Ẽ[e−r(T−t)V (T )|F(t)], (6.1)

where r is the constant interest rate and the expectation is taken under the risk-neutral

measure.

The American spread option can be exercised any time before or on the expiration date.

The definition is given as follows.

Definition 6.1. Let 0 ≤ t ≤ T , x ≥ 0 and y ≥ 0 be given. Assume S1(t) = x and S2(t) = y.

The price at time t of the American spread option expiring at time T is defined to be

V (t, x, y) = max
τ∈T[t,T ]

Ẽ[e−r(τ−t)V (τ))|S1(t) = x, S2(t) = y]. (6.2)
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where V (τ) = ((S1(t) − S2(t)) −K)+ for the spread call option and V (τ) = (K − (S1(t) −

S2(t)))+ for the spread put option, T[t,T ] denotes the set of stopping times for the filtration

{Ft(u), t ≤ u ≤ T}, taking values in [t, T ] or taking value∞. Here Ft(u), t ≤ u ≤ T denotes

the σ-algebra generated by the process S1(v1), t ≤ v1 ≤ u and S2(v2), t ≤ v2 ≤ u.

From now on, we will consider the American spread put option. Pricing the American

spread call option is similar.

As the American put option, there is also an optimal exercise policy for the American

spread put option. The option price determined by the optimal exercise policy is the same

as the one in Definition 6.1. The optimal exercise policy is of the form: “Exercise the spread

put option as soon as (S1(t) − S2(t)) falls to a certain level L.” In other words, the owner

of the American spread put option should wait until the difference of the underlying assets

falls to a certain level L before exercising.

By the discussion above, we divide the set {(t, x, y) : 0 ≤ t ≤ T, x ≥ 0, y ≥ 0} into two

regions, once the difference of the underlying asset prices falls into the stopping region S,

the owner of the spread put option should exercise it immediately to obtain the immediate

payoff value. Thus the stopping region can be characterized as

S = {(t, x, y, r) : V (t, x, y, r) = (K − (x− y))+}, (6.3)

On the other hand, if S(t) remains in the continuation region C, the owner should wait and

then the value of the American spread put option is the same as that of the corresponding

European spread put option. Thus the continuation region can be characterized as

C = {(t, x, y, r) : V (t, x, y, r) = the corresponding European spread put option}, (6.4)

The level L mentioned in the optimal exercise policy is the free boundary between S and C

which is denoted by

L : L(T − t, x, y) = 0. (6.5)

54



We have already known that the American spread put option is equal to the intrinsic

value in the stopping region. So in the next section, we will derive the American spread put

option in the continuation region, which is equal to the corresponding European spread put

option.

6.2 The Corresponding European Spread Put Option

In this section, we will derive the partial differential equation for the corresponding European

spread put option with stochastic interest rate using the delta-hedging method. In the first

part of this section, we will set up the stochastic differential equations for the two underlying

asset and the interest rate. In the second part, we will find a hedging portfolio for the

American spread put option and derive the partial differential equation for the option.

Assume that the underlying assets S1(t), S2(t) satisfy the following stochastic differential

equations

dS1(t) = r(t)S1(t)dt+ σ1S1(t)dW̃1(t) (6.6)

dS2(t) = r(t)S2(t)dt+ σ2S2(t)dW̃2(t), (6.7)

where the volatilities σ1, σ2 are positive constants and W̃1(t), W̃2(t) are two Brownian motions

under the risk-neutral measure. The stochastic interest rate r(t) satisfies one of the following

models under the risk-neutral measure:

• Vasicek model

dr(t) = (α− βr(t))dt+ σ3dW̃3(t) (6.8)

• CIR model

dr(t) = (α− βr(t))dt+ σ3

√
r(t)dW̃3(t) (6.9)

where the constants α, β, σ3 are positive and W̃3(t) is a Brownian motion under the risk-

neutral measure.
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The three Brownian motions are assumed to have the following cross variation relations

dW̃1(t)dW̃2(t) = ρ1dt (6.10)

dW̃1(t)dW̃3(t) = ρ2dt (6.11)

dW̃2(t)dW̃3(t) = ρ3dt, (6.12)

where the correlations 0 ≤ ρ1, ρ2, ρ3 ≤ 1.

We want to find a hedging portfolio which is of the form:

X(t) = ∆1(t)S1(t)+∆2(t)S2(t)+∆3(t)B(t, T )+[X(t)−∆1(t)S1(t)−∆2(t)S2(t)−∆3(t)B(t, T )],

such that X(T ) = V (T ). Here we invest ∆1(t) share of stock S1(t), ∆2(t) share of stock

S2(t) and ∆3(t) share of zero-coupon bond B(t, T ) and invest the rest in the money market

account. We also assume that the portfolio X(t) is self-financing, i.e., dX(t) = ∆1(t)dS1(t)+

∆2(t)dS2(t)+∆3(t)dB(t, T )+r(t)[X(t)−∆1(t)S1(t)−∆2(t)S2(t)−∆3(t)B(t, T )]dt. Moreover,

(3.18) guarantees that the value of the hedging portfolio is equal to the value of the option

at any time before the expiration date, i.e., X(t) = V (t),∀0 ≤ t ≤ T .

With the preparation above, we can derive the partial differential equation for the put

option in three steps:

Step 1 We compute the evolution of the portfolio under the Vasicek model and the CIR model.
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For the Vasicek model,

dX(t) = ∆1(t)dS1(t) + ∆2(t)dS2(t) + ∆3(t)dB(t, T )

+ r(t)[X(t)−∆1(t)S1(t)−∆2(t)S2(t)−∆3(t)B(t, T )]dt

= ∆1(t)[r(t)S1(t)dt+ σ1S1(t)dW̃1(t)]

+ ∆2(t)[r(t)S2(t)dt+ σ2S2(t)dW̃2(t)]

+ ∆3(t)[r(t)B(t, T )dt+ σVB(t, T )dW̃3(t)]

+ r(t)[X(t)−∆1(t)S1(t)−∆2(t)S2(t)dW̃2(t)−∆3(t)B(t, T )]dt

= r(t)X(t)dt+ ∆1(t)σ1S1(t)dW̃1(t)

+ ∆2(t)σ2S2(t)dW̃2(t) + ∆3(t)σVB(t, T )dW̃3(t).

Here we used (4.25) in the second equation above.

Replace X(t) by V (t), we have

dV (t) = r(t)V (t)dt

+ ∆1(t)σ1S1(t)dW̃1(t) + ∆2(t)σ2S2(t)dW̃2(t) + ∆3(t)σVB(t, T )dW̃3(t). (6.13)
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For the CIR model,

dX(t) = ∆1(t)dS1(t) + ∆2(t)dS2(t) + ∆3(t)dB(t, T )

+ r(t)[X(t)−∆1(t)S1(t)−∆2(t)S2(t)−∆3(t)B(t, T )]dt

= ∆1(t)[r(t)S1(t)dt+ σ1S1(t)dW̃1(t)]

+ ∆2(t)[r(t)S2(t)dt+ σ2S2(t)dW̃2(t)]

+ ∆3(t)[r(t)B(t, T )dt+ σVB(t, T )dW̃3(t)]

+ r(t)[X(t)−∆1(t)S1(t)−∆2(t)S2(t)dW̃2(t)−∆3(t)B(t, T )]dt

= r(t)X(t)dt+ ∆1(t)σ1S1(t)dW̃1(t)

+ ∆2(t)σ2S2(t)dW̃2(t) + ∆3(t)σCB(t, T )dW̃3(t).

Here we used (4.27) in the second equation above.

Replace X(t) by V (t), we have

dV (t) = r(t)V (t)dt

+ ∆1(t)σ1S1(t)dW̃1(t) + ∆2(t)σ2S2(t)dW̃2(t) + ∆3(t)σCB(t, T )dW̃3(t). (6.14)

Step 2 By the Itô’s formula, we can compute the evolution of the option price V (t):
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For the Vasicek model,

dV (t, S(t), r(t)) = Vtdt+ VS1dS1(t) + VS2dS2(t) + Vrdr(t)

+
1

2
VS1S1dS1(t)dS1(t) +

1

2
VS2S2dS2(t)dS2(t)

+
1

2
Vrrdr(t)dr(t) + VS1S2dS1(t)dS2(t)

+ VS1rdS1(t)dr(t) + VS2rdS2(t)dr(t)

= Vtdt+ VS1 [r(t)S1(t)dt+ σ1S1(t)dW̃1(t)]

+ VS2 [r(t)S2(t)dt+ σ2S2(t)dW̃2(t)]

+ Vr[(α− βr(t))dt+ σ3dW̃3(t)]

+
1

2
σ2

1S
2
1(t)VS1S1dt+

1

2
σ2

2S
2
2(t)VS2S2dt+

1

2
σ2

3Vrrdt

+ σ1σ2ρ1S1(t)S2(t)VS1S2dt+ σ1σ3ρ2S1(t)VS1rdt

+ σ2σ3ρ3S2(t)VS2rdt

= [Vt + r(t)S1(t)VS1 + r(t)S2(t)VS2 + (α− βr(t))Vr

+
1

2
σ2

1S
2
1(t)VS1S1 +

1

2
σ2

2S
2
2(t)VS2S2 + +

1

2
σ2

3Vrr

+ σ1σ2ρ1S1S2VS1S2 + σ1σ3ρ2S1(t)VS1r

+ σ2σ3ρ3S2(t)VS2r]dt+ σ1S1(t)VS1dW̃1(t)

+ σ2S2(t)VS2dW̃2(t) + σ3VrdW̃3(t). (6.15)
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For the CIR model,

dV (t, S(t), r(t)) = Vtdt+ VS1dS1(t) + VS2dS2(t) + Vrdr(t)

+
1

2
VS1S1dS1(t)dS1(t) +

1

2
VS2S2dS2(t)dS2(t)

+
1

2
Vrrdr(t)dr(t) + VS1S2dS1(t)dS2(t)

+ VS1rdS1(t)dr(t) + VS2rdS2(t)dr(t)

= Vtdt+ VS1 [r(t)S1(t)dt+ σ1S1(t)dW̃1(t)]

+ VS2 [r(t)S2(t)dt+ σ2S2(t)dW̃2(t)]

+ Vr[(α− βr(t))dt+ σ3

√
r(t)dW̃3(t)]

+
1

2
σ2

1S
2
1(t)VS1S1dt+

1

2
σ2

2S
2
2(t)VS2S2dt

+
1

2
σ2

3r(t)Vrrdt+ σ1σ2ρ1S1(t)S2(t)VS1S2dt

+ σ1σ3ρ2S1(t)
√
r(t)VS1rdt+ σ2σ3ρ3S2(t)

√
r(t)VS2rdt

= [Vt + r(t)S1(t)VS1 + r(t)S2(t)VS2 + (α− βr(t))Vr

+
1

2
σ2

1S
2
1(t)VS1S1 +

1

2
σ2

2S
2
2(t)VS2S2 + +

1

2
σ2

3r(t)Vrr

+ σ1σ2ρ1S1S2VS1S2 + σ1σ3ρ2S1(t)
√
r(t)VS1r

+ σ2σ3ρ3S2(t)
√
r(t)VS2r]dt+ σ1S1(t)VS1dW̃1(t)

+ σ2S2(t)VS2dW̃2(t) + σ3VrdW̃3(t). (6.16)

Step 3 Equating the evolutions of the portfolio (6.13, 6.14) with the evolutions of the option

price (6.15 6.16) respectively to get:

(a)For the Vasicek model,

∆1(t) = VS1(t), ∆2(t) = VS2(t), ∆3(t) =
σ3Vr(t)

σVB(t, T )
, (6.17)
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and

r(t)V (t) = Vt(t) + r(t)S1(t)VS1(t) + r(t)S2(t)VS2(t) + (α− βr(t))Vr

+
1

2
σ2

1S
2
1(t)VS1S1(t) +

1

2
σ2

2S
2
2(t)VS2S2(t) +

1

2
σ2

3Vrr(t)

+ σ1σ2ρ1S1(t)S2(t)VS1S2(t) + σ1σ3ρ2S1(t)VS1r(t)

+ σ2σ3ρ3S2(t)VS2r(t).

Replacing S(t), r(t) by x, r and simplifying the equation above, we get the desired

partial differential equation

rV = Vt + rxVx + ryVy + (α− βr)Vr +
1

2
σ2

1x
2Vxx

+
1

2
σ2

2y
2Vyy +

1

2
σ2

3Vrr + σ1σ2ρ1xyVxy + σ1σ3ρ2xVxr + σ2σ3ρ3yVyr.

(6.18)

(b)For the CIR model,

∆1(t) = VS1(t), ∆2(t) = VS2(t), ∆3(t) =
σ3

√
rVr(t)

σCB(t, T )
, (6.19)

and

r(t)V (t) = Vt(t) + r(t)S1(t)VS1(t) + r(t)S2(t)VS2(t) + (α− βr(t))Vr

+
1

2
σ2

1S
2
1(t)VS1S1(t) +

1

2
σ2

2S
2
2(t)VS2S2(t) +

1

2
σ2

3r(t)Vrr(t)

+ σ1σ2ρ1S1(t)S2(t)VS1S2(t) + σ1σ3ρ2S1(t)
√
r(t)VS1r(t)

+ σ2σ3ρ3S2(t)
√
r(t)VS2r(t).

Replacing S(t), r(t) by x, r and simplifying the equation above, we get the desired
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partial differential equation

rV = Vt + rxVx + ryVy + (α− βr)Vr +
1

2
σ2

1x
2Vxx +

1

2
σ2

2y
2Vyy +

1

2
σ2

3rVrr

+ σ1σ2ρ1xyVxy + σ1σ3ρ2x
√
rVxr + σ2σ3ρ3y

√
rVyr. (6.20)

6.3 Free Boundary Problem of American Spread Put Option

In this section, we formulate the free boundary problem of the American spread put option

with stochastic interest rate. According to the optimal exercise policy, we know there ex-

ists an early exercise boundary L such that the American spread put option needs to be

exercised immediately if the underlying asset price falls to L. Although the boundary L is

unknown, we can derive the conditions for the value of the option in the stopping region and

the continuation region respectively. Furthermore, we can give the terminal and boundary

conditions for the American spread put option.

By the optimal exercise policy of the American spread put option, the set {(t, x, y, r) :

0 ≤ t ≤ T, x ≥ 0, y ≥ 0, r ≥ 0} can be divided into two regions, the stopping region

S = {(t, x, y, r) : V (t, x, y, r) = (K − (x− y))+}, (6.21)

and the continuation region

C = {(t, x, y, , r) : V (t, x, y, r) = the corresponding European spread put option}. (6.22)

The free boundary between S and C is the one mentioned in the optimal exercise policy

L : L(T − t, x, y, r) = 0. (6.23)

Correspondingly, it is optimal to exercise immediately to obtain the intrinsic value when

(t, x, y, r) is in the stopping region S, while in the continuation region C, it is optimal to hold
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the American spread put option. Thus in the continuation region, the American spread put

option price is equal to the corresponding European spread put option price and satisfies the

partial differential equations we derived in the previous section.

Next we consider the terminal and boundary conditions for the American spread put

option. Firstly, the payoff on the expiration date is the terminal condition

V (T, x, y, r) = (K − (x− y))+. (6.24)

Secondly, we assume that the option price V and the derivatives Vx, Vy, Vr are continuous.

Since V (t, x, y, r) = K − (x − y) is the option price in the stopping region S, the left-

hand derivative with respect to x on L is Vx(t, x−, y, r) = −1, the left-hand derivative with

respect to y on L is Vy(t, x, y−, r) = 1 and the left-hand derivative with respect to r on L is

Vr(t, x, y, r−) = 0. Then the option price satisfies the smooth-pasting conditions

Vx(t0, x0, y0, r0) = lim
x→x+0

Vx(t0, x, y0, r0) = lim
x→x−0

Vx(t0, x, y0, r0) = −1, ∀(t0, x0, y0, r0) ∈ L

(6.25)

Vy(t0, x0, y0, r0) = lim
y→y+0

Vx(t0, x0, y, r0) = lim
y→y−0

Vy(t0, x0, y, r0) = 1, ∀(t0, x0, y0, r0) ∈ L

(6.26)

Vr(t0, x0, y0, r0) = lim
r→r+0

Vr(t0, x0, y0, r) = lim
r→r−0

Vr(t0, x0, y0, r) = 0, ∀(t0, x0, y0, r0) ∈ L.

(6.27)
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Furthermore, we have the asymptotic conditions

lim
x→∞

V (t, x, y, r) = 0 (6.28)

lim
x→0

V (t, x, y, r) = (K + y)+ (6.29)

lim
y→∞

V (t, x, y, r) = y (6.30)

lim
y→0

V (t, x, y, r) = AMput(t, x, r) (6.31)

lim
r→∞

V (t, x, y, r) = 0. (6.32)

Equation (6.28) is set due to the fact that if the first underlying asset price is large then

the spread put option is unlikely to be exercised and gains no value. Equation (6.30) is

set because if the second underlying asset is large, the option price will be dominated by it.

Equation (6.29) is reasonable because as x approaches 0, the difference of the two underlying

assets x − y is negative and is in the stopping region. In Equation (6.31), AMput(t, x, r)

is the American put option price with only one underlying asset, which is the result of the

previous chapter.

Finally, if the interest rate is approaching zero, we can find the boundary condition by

letting r = 0 in Equation (6.18), Equation (6.20) and directly solving the partial differential

equations. This will be done after we simplify the partial differential equations.

6.4 Simplification of the Free Boundary Problem

In this section, we will simplify the partial differential equations (6.18) and (6.20) by change

of variables. We will then reformulate the free boundary problem of the American spread

put option using the simplified partial differential equations.

Let τ = T − t, x = eu, y = ev and h(τ, u, v, r) = V (t, x, y, r). Then the partial derivatives
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of f can be expressed as

Vt = hτ
dτ

dt
= −hτ (6.33)

Vx = hu
du

dx
=

1

x
hu (6.34)

Vy = hv
dv

dy
=

1

y
hv (6.35)

Vr = hr (6.36)

Vrr = hrr (6.37)

Vxr =
1

x
hur (6.38)

Vyr =
1

y
hvr (6.39)

Vxy =
1

xy
huv (6.40)

Vxx =
∂

∂x
(
1

x
hu) = − 1

x2
hu +

1

x
huu

du

dx
= − 1

x2
hu +

1

x2
huu (6.41)

Vyy =
∂

∂y
(
1

y
hv) = − 1

y2
hv +

1

y
hvv

dv

dy
= − 1

y2
hv +

1

y2
hvv. (6.42)

Plugging (6.33)–(6.42) to Equation (6.18), we have the the simplified partial differential

equation for the Vasicek model

rh+ hτ = (r − 1

2
σ2

1)hu + (r − 1

2
σ2

2)hv + (α− βr)hr

+
1

2
σ2

1huu +
1

2
σ2

2hvv +
1

2
σ3hrr + σ1σ2ρ1huv + σ1σ3ρ2hur + σ2σ3ρ3hvr.

(6.43)

We let

Qh := rh+ hτ −
[
(r − 1

2
σ2

1)hu + (r − 1

2
σ2

2)hv + (α− βr)hr

+
1

2
σ2

1huu +
1

2
σ2

2hvv +
1

2
σ3hrr + σ1σ2ρ1huv + σ1σ3ρ2hur + σ2σ3ρ3hvr

]
.

Plugging (6.33)–(6.42) to Equation (6.20), we have the the simplified partial differential
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equation for the CIR model

rh+ hτ = (r − 1

2
σ2

1)hu + (r − 1

2
σ2

2)hv + (α− βr)hr

+
1

2
σ2

1huu +
1

2
σ2

2hvv +
1

2
σ3rhrr + σ1σ2ρ1huv + σ1σ3ρ2

√
rhur + σ2σ3

√
rρ3hvr.

(6.44)

We let

Qh := rh+ hτ −
[
(r − 1

2
σ2

1)hu + (r − 1

2
σ2

2)hv + (α− βr)hr

+
1

2
σ2

1huu +
1

2
σ2

2hvv +
1

2
σ3rhrr + σ1σ2ρ1huv + σ1σ3ρ2

√
rhur + σ2σ3ρ3

√
rhvr

]
.

Now we formulate the free boundary problem associated with the function h(τ, u, v, r).

We firstly make the following change of variables for the American spread put option.

V (t, x, y, r) = h(τ, u, v, r) (6.45)

τ = T − t (6.46)

x = eu (6.47)

y = ev. (6.48)

We define the payoff function associated with h(τ, u, v, r) as

g(τ, u, v, r) := (K − (eu − ev))+. (6.49)

We state the free boundary problem associated with the function h(τ, u, v, r) as follows:

In the stopping region S

Qh > 0 (6.50)

h(τ, u, v, r) = g(τ, u, v, r) =
(K − (eu − ev))+

B(τ, r)
. (6.51)
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In the continuation region C

Qh = 0 (6.52)

h(τ, u, v, r) > g(τ, u, v, r) =
(K − (eu − ev))+

B(τ, r)
. (6.53)

The initial condition is

h(0, u, v, r) = g(0, u, v, r) = (K − (eu − ev))+. (6.54)

The smooth-pasting conditions are

hu(τ0, u0, v0, r0) = lim
u→u+0

hu(τ0, u, v0, r0) = lim
u→u−0

hu(τ0, u, v0, r0) = −eu0 , ∀(τ0, u0, v0, r0) ∈ L

(6.55)

hv(τ0, u0, v0, r0) = lim
v→v+0

hu(τ0, u0, v, r0) = lim
v→v−0

hv(τ0, u0, v, r0) = ev0 , ∀(τ0, u0, v0, r0) ∈ L

(6.56)

hr(τ0, u0, v0, r0) = lim
r→r+0

hr(τ0, u0, v0, r) = lim
r→r−0

hr(τ0, u0, v0, r) = 0, ∀(tau0, u0, v0, r0) ∈ L.

(6.57)

The asymptotic conditions are

lim
u→∞

h(τ, u, v, r) = 0 (6.58)

lim
u→−∞

h(τ, u, v, r) = K + ev (6.59)

lim
v→∞

h(τ, u, v, r) = ev (6.60)

lim
v→−∞

h(τ, u, v, r) = AMput(τ, u, r) (6.61)

lim
r→∞

h(τ, u, v, r) = 0. (6.62)

67



Finally, if the interest rate r = 0, then

h(τ, u, v, 0) = max{(K − (eu − ev))+,

1

4πτ
e

1
4

(σ2
1+σ2

2)τ+ 1
2

(u+v)

∫
R2

e
−

(

√
2u
σ1
−ξ)2+(

√
2v
σ2
−η)2

4τ
− 1

2
√
2

(σ1ξ+σ2η)
[
K − (e

σ1√
2
ξ − e

σ2√
2
η
)
]+

d(ξ, η)}.

(6.63)

The derivation is in Appendix C.

6.5 Linear Complementarity Conditions

In this section, we convert the free boundary problem associated with h in the previous

section to linear complementarity conditions for the function h. The linear complementarity

conditions helps to go around the free boundary and implement numerical computation for

the American spread put option.

In practice, we consider the spatial variable u, v in the interval −u− ≤ u ≤ u+ and

−v− ≤ v ≤ v+, where u−, u+, v−, v+ are large positive numbers. Similarly, we consider r in

the interval 0 ≤ r ≤ r+, where r+ is a large positive number.

The linear complementarity problem for the function h is:

Qh · (h(τ, u, v, r)− g(τ, u, v, r)) = 0

Qh ≥ 0, h(τ, u, v, r) ≥ g(τ, u, v, r),

(6.64)
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with the initial and boundary conditions 1

h(0, u, v, r) = g(0, u, v, r) = (K − (eu − ev))+

h(τ,−u−, v, r) = g(τ,−u−, v, r) =
K + ev

B(τ, r)

h(τ, u+, v, r) = 0

h(τ, u,−v−, r) = AMput(τ, u, r)

h(τ, u, v+, r) =
ev

+

B(τ, r)

h(τ, u, v, 0) = max{eA(τ,T )(K − (eu − ev))+,

1

4πτ
e

1
4

(σ2
1+σ2

2)τ+ 1
2

(u+v)

∫
R2

e
−

(

√
2u
σ1
−ξ)2+(

√
2v
σ2
−η)2

4τ
− 1

2
√
2

(σ1ξ+σ2η)
[
K − (e

σ1√
2
ξ − e

σ2√
2
η
)
]+

d(ξ, η)}

h(τ, u, v, r+) = 0.

(6.65)

6.6 Finite Difference Method and Implementation

The finite difference discretization of the the partial derivatives of h are as follows:

• Forward difference

hτ ≈
hm+1
i,j,k − hmi,j,k

∆τ
+O(∆τ) (6.66)

• Central difference

hu ≈
hmi+1,j,k − hmi−1,j,k

2∆u
+O((∆u)2) (6.67)

hv ≈
hmi,j+1,k − hmi,j−1,k

2∆v
+O((∆v)2) (6.68)

hr ≈
hmi,j,k+1 − hmi,j,k−1

2∆r
+O((∆r)2) (6.69)

1In practice, due to the complexity of the double integral, we use h(τ, u, v, 0) = (K − (eu − ev))+ to
estimate the the boundary condition when r = 0.
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• Symmetric central difference

huu ≈
hmi+1,j,k − 2hmi,j,k + hmi−1,j,k

(∆u)2
+O((∆u)2) (6.70)

hvv ≈
hmi,j+1,k − 2hmi,j,k + hmi,j−1,k

(∆v)2
+O((∆v)2) (6.71)

hrr ≈
hmi,j,k+1 − 2hmi,j,k + hmi,j,k−1

(∆r)2
+O((∆r)2) (6.72)

huv ≈
hmi+1,j+1,k − hmi−1,j+1,k − hmi+1,j−1,k + hmi−1,j−1,k

4∆u∆v
+O((∆u)2 + (∆v)2) (6.73)

hur ≈
hmi+1,j,k+1 − hmi−1,j,k+1 − hmi+1,j,k−1 + hmi−1,j,k−1

4∆u∆r
+O((∆u)2 + (∆r)2) (6.74)

hvr ≈
hmi,j+1,k+1 − hmi,j−1,k+1 − hmi,j+1,k−1 + hmi,j−1,k−1

4∆v∆r
+O((∆v)2 + (∆r)2) (6.75)

Let N,M,W,R be large positive numbers, then

∆τ =
T

N

∆u =
u+ + u−

M − 1

∆v =
v+ + v−

W − 1

∆r =
r+

R− 1
,

and

τ = 0 +m∆τ = m∆τ, 1 ≤ m ≤ N

u = −u− + (i− 1)∆u, 1 ≤ i ≤M

v = −v− + (i− 1)∆v, 1 ≤ j ≤ W

r = 0 + (k − 1)∆r = (k − 1)∆r, 1 ≤ k ≤ R.

Plugging Equations (6.66)–(6.75) into Equation (6.43), we obtain the discretization of the

70



partial differential equation for the Vasicek model.

rhmi,j,k +
hm+1
i,j,k − hmi,j,k

∆τ
+O(∆τ) = (r − 1

2
σ2

1)

[
hmi+1,j,k − hmi−1,j,k

2∆u
+O((∆u)2)

]
(r − 1

2
σ2

2)

[
hmi,j+1,k − hmi,j−1,k

2∆v
+O((∆v)2)

]
+ (α− βr)

[
hmi,j,k+1 − hmi,j,k−1

2∆r
+O((∆r)2)

]
+

1

2
σ2

1

[
hmi+1,j,k − 2hmi,j,k + hmi−1,j,k

(∆u)2
+O((∆u)2)

]
+

1

2
σ2

2

[
hmi,j+1,k − 2hmi,j,k + hmi,j−1,k

(∆v)2
+O((∆v)2)

]
+

1

2
σ2

3

[
hmi,j,k+1 − 2hmi,j,k + hmi,j,k−1

(∆r)2
+O((∆r)2)

]
+ σ1σ2ρ1

[
hmi+1,j+1,k − hmi−1,j+1,k − hmi+1,j−1,k + hmi−1,j−1,k

4∆u∆v
+O((∆u)2 + (∆v)2)

]
+ σ1σ3ρ2

[
hmi+1,j,k+1 − hmi−1,j,k+1 − hmi+1,j,k−1 + hmi−1,j,k−1

4∆u∆r
+O((∆u)2 + (∆r)2)

]
+ σ2σ3ρ3

[
hmi,j+1,k+1 − hmi,j−1,k+1 − hmi,j+1,k−1 + hmi,j−1,k−1

4∆v∆r
+O((∆v)2 + (∆r)2)

]
. (6.76)
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Let

A =
1

2

∆τ

∆u

(
r − 1

2
σ2

1

)
B =

1

2

∆τ

∆v

(
r − 1

2
σ2

2

)
C =

1

2

∆τ

∆r
(α− βr)

D =
1

2
σ2

1

∆τ

(∆u)2

E =
1

2
σ2

2

∆τ

(∆v)2

F =
1

2
σ2

3

∆τ

(∆r)2

G =
1

4
σ1σ2ρ1

∆τ

∆u∆v

H =
1

4
σ1σ3ρ2

∆τ

∆u∆r

I =
1

4
σ2σ3ρ3

∆τ

∆v∆r

Ignoring the higher order terms, we obtain the finite difference scheme of h for the Vasicek

model

hm+1
i,j,k = Ghmi+1,j+1,k +Hhmi+1,j,k+1 + (A+D)hmi+1,j,k −Hhmi+1,j,k−1

−Ghmi+1,j−1,k + Ihmi,j+1,k+1 + (B + E)hmi,j+1,k − Ihmi,j+1,k−1

+ (C + F )hmi,j,k+1 + (1− r∆τ − 2D − 2E − 2F )hmi,j,k + (−C + F )hmi,j,k−1

− Ihmi,j−1,k+1 + (−B + E)hmi,j−1,k + Ihmi,j−1,k−1 −Ghmi−1,j+1,k

−Hhmi−1,j,k+1 + (−A+D)hmi−1,j,k +Hhmi−1,j,k−1 +Ghmi−1,j−1,k (6.77)

Plugging Equations (6.66)–(6.75) into Equation (6.44), we obtain the discretization of the
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partial differential equation for the CIR model.

rhmi,j,k +
hm+1
i,j,k − hmi,j,k

∆τ
+O(∆τ) = (r − 1

2
σ2

1)

[
hmi+1,j,k − hmi−1,j,k

2∆u
+O((∆u)2)

]
(r − 1

2
σ2

2)

[
hmi,j+1,k − hmi,j−1,k

2∆v
+O((∆v)2)

]
+ (α− βr)

[
hmi,j,k+1 − hmi,j,k−1

2∆r
+O((∆r)2)

]
+

1

2
σ2

1

[
hmi+1,j,k − 2hmi,j,k + hmi−1,j,k

(∆u)2
+O((∆u)2)

]
+

1

2
σ2

2

[
hmi,j+1,k − 2hmi,j,k + hmi,j−1,k

(∆v)2
+O((∆v)2)

]
+

1

2
σ2

3r

[
hmi,j,k+1 − 2hmi,j,k + hmi,j,k−1

(∆r)2
+O((∆r)2)

]
+ σ1σ2ρ1

[
hmi+1,j+1,k − hmi−1,j+1,k − hmi+1,j−1,k + hmi−1,j−1,k

4∆u∆v
+O((∆u)2 + (∆v)2)

]
+ σ1σ3ρ2

√
r

[
hmi+1,j,k+1 − hmi−1,j,k+1 − hmi+1,j,k−1 + hmi−1,j,k−1

4∆u∆r
+O((∆u)2 + (∆r)2)

]
+ σ2σ3ρ3

√
r

[
hmi,j+1,k+1 − hmi,j−1,k+1 − hmi,j+1,k−1 + hmi,j−1,k−1

4∆v∆r
+O((∆v)2 + (∆r)2)

]
. (6.78)
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Let

A =
1

2

∆τ

∆u

(
r − 1

2
σ2

1

)
B =

1

2

∆τ

∆v

(
r − 1

2
σ2

2

)
C =

1

2

∆τ

∆r
(α− βr)

D =
1

2
σ2

1

∆τ

(∆u)2

E =
1

2
σ2

2

∆τ

(∆v)2

F =
1

2
σ2

3r
∆τ

(∆r)2

G =
1

4
σ1σ2ρ1

∆τ

∆u∆v

H =
1

4
σ1σ3ρ2

√
r

∆τ

∆u∆r

I =
1

4
σ2σ3ρ3

√
r

∆τ

∆v∆r

Ignoring the higher order terms, we obtain the finite difference scheme of h for the CIR

model.

hm+1
i,j,k = Ghmi+1,j+1,k +Hhmi+1,j,k+1 + (A+D)hmi+1,j,k −Hhmi+1,j,k−1

−Ghmi+1,j−1,k + Ihmi,j+1,k+1 + (B + E)hmi,j+1,k − Ihmi,j+1,k−1

+ (C + F )hmi,j,k+1 + (1− r∆τ − 2D − 2E − 2F )hmi,j,k + (−C + F )hmi,j,k−1

− Ihmi,j−1,k+1 + (−B + E)hmi,j−1,k + Ihmi,j−1,k−1 −Ghmi−1,j+1,k

−Hhmi−1,j,k+1 + (−A+D)hmi−1,j,k +Hhmi−1,j,k−1 +Ghmi−1,j−1,k (6.79)

To make the notation simpler, we denote the right hand side of Equation (6.77) and

Equation (6.79) as Hhm. Then the finite difference scheme of h is abbreviated by

hm+1
i,k = Hhm. (6.80)
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In order to make h satisfy the linear complementarity conditions, we need to modify the

finite difference scheme above to be

hm+1
i,k = max

{
Hhm, [K − (eu − ev)]+

}
. (6.81)

That is to say for each time step, h takes the maximum between the value of the correspond-

ing European spread put option and the immediate payoff if the early exercise is optimal.

Eventually, by change of variables

V (t, x, y, r) = h(τ, u, v, r)

τ = T − t

x = eu

y = ev.

we can get the option price at the current time V (0).
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Figure 6.1: American Spread Put Option under Vasicek model (r(0)=0.05)
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Figure 6.2: American Spread Put Option under CIR model (r(0)=0.05)
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Chapter 7. Monte Carlo Methods

In this chapter, we do the numerical computation based on the Monte Carlo simulation for

the American spread put option with stochastic interest rate. In section 7.1, we compute

numerically the stochastic interest rate r(t) and the underlying assets S1(t), S2(t). In section

7.2, we apply the regression-based method in [17] to get an upper bound of the option price

and apply the Longstaff and Schwartz method introduced in [31] to get a lower bound of

the option price. In section 7.3, we use the dual method to get a tighter upper bound of the

option price, so that we have a smaller estimation range for the option price.

7.1 Simulation of r(t), S1(t) and S2(t)

In this section, we compute numerically the stochastic interest rate r(t) and the underlying

assets S1(t), S2(t). All the simulations in this section will be done under the risk-neutral

measure.

We divide the time interval 0 ≤ t ≤ T into N−1 subintervals with equal length ∆t = T
N−1

.

Denote the endpoints as t1, t2, ..., tN . Let ri := r(ti), i = 1, ..., N and apply the Euler scheme

for the interest rate processes.

For the Vasicek model

dr(t) = (α− βr(t))dt+ σ3ρ2dB̃1(t) + σ3ρ4dB̃2(t) + σ3ρ5dB̃3(t), (7.1)

its Euler scheme is

ri+1 = ri + (α− βri)∆t+ σ3ρ2∆B̃1(ti) + σ3ρ4∆B̃2(ti) + σ3ρ5∆B̃3(ti). (7.2)

For the CIR model

dr(t) = (α− βr(t))dt+ σ3ρ2

√
r(t)dB̃1(t) + σ3ρ4

√
r(t)dB̃2(t) + σ3ρ5

√
r(t)dB̃3(t), (7.3)
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its Euler scheme is

ri+1 = ri + (α− βri)∆t+ σ3ρ2

√
ri∆B̃1(ti) + σ3ρ4

√
ri∆B̃2(ti) + σ3ρ5

√
ri∆B̃3(ti). (7.4)

Here i = 1, ..., N − 1. ∆B(ti) = B(ti+1)−B(ti) =
√

∆tw follows a normal distribution with

mean 0 and variance ∆t, w is a standard normal random variable.

A way to refine the Euler scheme is the Milstein scheme which requires to use the Itô’s

formula to expand the diffusion term to get a higher order accuracy. It does not improve

the Vasicek model because the diffusion term is constant and has no way to be expanded.

Therefore we will only consider the case of the CIR model.

The integral form of the CIR model is

r(ti+1) = r(ti) +

∫ ti+1

ti

(α− βr(t))dt

+ σ3ρ2

∫ ti+1

ti

√
r(t)dB̃1(t) + σ3ρ4

∫ ti+1

ti

√
r(t)dB̃2(t) + σ3ρ5

∫ ti+1

ti

√
r(t)dB̃3(t) (7.5)

Instead of taking the left-end point approximation for the integrals in the Euler scheme, we

are going to find a better approximation for
√
r(t) on the interval [ti, ti+1].

Let f(x) =
√
x, then f ′(x) = 1

2
√
x

and f ′′(x) = − 1
4x3/2

. By the Itô’s formula we obtain

d(
√
r(t)) = df(r(t)) = f ′(r(t))dr(t) +

1

2
f ′′(r(t))(dr(t))2

=
1

2
√
r(t)

dr(t)− σ2
3r(t)

8(r(t))3/2
(ρ2

2 + ρ2
4 + ρ2

5)dt

=

[
α− βr(t)
2
√
r(t)

− σ2
3

8
√
r(t)

]
dt+

σ3

2
√
r(t)

(ρ2dB̃1(t) + ρ4dB̃2(t) + ρ5dB̃3(t))
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Integrate both sides on [ti, t], ti ≤ t ≤ ti+1 and apply the Euler scheme to obtain

√
r(t) =

√
r(ti) +

[
α− βr(ti)
2
√
r(ti)

− σ2
3

8
√
r(ti)

]
(t− ti)

+
σ3

2
√
r(ti)

[
ρ2(B̃1(t)− B̃1(ti)) + ρ4(B̃2(t)− B̃2(ti)) + ρ5(B̃3(t)− B̃3(ti))

]
(7.6)

We get rid of the second term above because it is of order O(t− ti) while the stochastic term

is just of order O(
√
t− ti). Thus we have

√
r(t) =

√
r(ti)

+
σ3

2
√
r(ti)

[
ρ2(B̃1(t)− B̃1(ti)) + ρ4(B̃2(t)− B̃2(ti)) + ρ5(B̃3(t)− B̃3(ti))

]
(7.7)

Then

∫ ti+1

ti

√
r(t)dB̃1(t) =

∫ ti+1

ti

{√
r(ti)

+
σ3

2
√
r(ti)

[
ρ2(B̃1(t)− B̃1(ti)) + ρ4(B̃2(t)− B̃2(ti)) + ρ5(B̃3(t)− B̃3(ti))

]}
dB̃1(t) (7.8)

The mixed integrals, i.e.,

∫ ti+1

ti

(B̃2(t)− B̃2(ti))dB̃1(t) and

∫ ti+1

ti

(B̃3(t)− B̃3(ti))dB̃1(t) (7.9)

are called Levy area terms which are hard to simulate. Thus we get rid of the Levy area

terms to obtain

∫ ti+1

ti

√
r(t)dB̃1(t) =

√
r(ti)∆B̃1 +

σ3ρ2

2
√
r(ti)

∫ ti+1

ti

(B̃1(t)− B̃1(ti))dB̃1(t)

=
√
r(ti)∆B̃1 +

σ3ρ2

2
√
r(ti)

(
1

2
∆B̃1

2
− 1

2
∆t

)
= − σ3ρ2

4
√
r(ti)

∆t+
√
r(ti)∆B̃1 +

σ3ρ2

4
√
r(ti)

∆B̃1

2
(7.10)
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Similarly we have

∫ ti+1

ti

√
r(t)dB̃2(t) = − σ3ρ4

4
√
r(ti)

∆t+
√
r(ti)∆B̃2 +

σ3ρ4

4
√
r(ti)

∆B̃2

2
(7.11)∫ ti+1

ti

√
r(t)dB̃3(t) = − σ3ρ5

4
√
r(ti)

∆t+
√
r(ti)∆B̃3 +

σ3ρ5

4
√
r(ti)

∆B̃3

2
(7.12)

Plugging the three integrals above to Equation (7.5) and apply the left-end point approx-

imation to the drift term, we get the Milstein scheme for the CIR interest rate model:

ri+1 = ri +

(
α− βri −

σ2
3

4
√
ri

)
∆t

+ σ3

√
ri(ρ2∆B̃1 + ρ4∆B̃2 + ρ5∆B̃3) +

σ2
3

4
√
ri

(ρ2
2∆B̃1

2
+ ρ2

4∆B̃2

2
+ ρ2

5∆B̃3

2
) (7.13)

For the underlying assets

dS1(t) = r(t)S1(t)dt+ σ1S1(t)dB̃1(t) (7.14)

dS2(t) = r(t)S2(t)dt+ σ2ρ1S2(t)dB̃1(t) + σ2

√
1− ρ2

1S2(t)dB̃2(t). (7.15)

We can solve the stochastic differential equations explicitly. In fact, let f(x) = lnx then
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f ′(x) = 1
x
, f ′′(x) = − 1

x2
. Apply Itô’s formula,

d(f(S1(t))) = f ′(S1(t))dS1 +
1

2
f ′′(S1(t))dS1dS1

=
1

S1(t)
[r(t)S1(t)dt+ σ1S1(t)dB̃1(t)] +

1

2

(
− 1

S2
1(t)

)
σ2

1S
2
1(t)dt

=

(
r(t)− 1

2
σ2

1

)
dt+ σ1dB̃1(t)

d(f(S2(t))) = f ′(S2(t))dS2 +
1

2
f ′′(S2(t))dS2dS2

=
1

S2(t)

[
r(t)S2(t)dt+ σ2ρ1S2(t)dB̃1(t) + σ2

√
1− ρ2

1S2(t)dB̃2(t)

]
+

1

2

(
− 1

S2
2(t)

)(
σ2

2ρ
2
1S

2
2(t)dt+ σ2

2(1− ρ2
1)S2

2(t)dt
)

=

(
r(t)− 1

2
σ2

2

)
dt+ σ2ρ1dB̃1(t) + σ2

√
1− ρ2

1dB̃2(t).

Apply the integral

lnS1(t) = lnS1(0) +

∫ t

0

(
r(s)− 1

2
σ2

1

)
ds+

∫ t

0

σ1dB̃1(s)

lnS2(t) = lnS2(0) +

∫ t

0

(
r(s)− 1

2
σ2

2

)
ds+

∫ t

0

σ2ρ1dB̃1(s) +

∫ t

0

σ2

√
1− ρ2

1dB̃2(s),

and then take the exponential to both sides to obtain

S1(t) = S1(0) exp

{∫ t

0

r(s)ds− 1

2
σ2

1t+ σ1B̃1(t)

}
(7.16)

S2(t) = S2(0) exp

{∫ t

0

r(s)ds− 1

2
σ2

2t+ σ2ρ1B̃1(t) + σ2

√
1− ρ2

1B̃2(t)

}
. (7.17)

Under the same sample paths of Wiener processes as in the computation of r(t) above, the
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underlying assets are

S1(ti) = S1(0) exp

{∫ ti

0

r(s)ds− 1

2
σ2

1ti + σ1

i−1∑
j=0

∆B̃1(ti)

}
(7.18)

S2(ti) =

S2(0) exp

{∫ ti

0

r(s)ds− 1

2
σ2

2ti + σ2ρ1

i−1∑
j=0

∆B̃1(ti) + σ2

√
1− ρ2

1

i−1∑
j=0

∆B̃2(ti)

}
, (7.19)

or recursively,

S1(ti+1) = S1(ti) exp

{∫ ti+1

ti

r(s)ds− 1

2
σ2

1∆ti + σ1∆B̃1(ti)

}
(7.20)

S2(ti+1) =

S2(ti) exp

{∫ ti+1

ti

r(s)ds− 1

2
σ2

2∆ti + σ2ρ1∆B̃1(ti) + σ2

√
1− ρ2

1∆B̃2(ti)

}
. (7.21)

Use the Trapezoidal rule to approximate the integral

∫ ti

0

r(s)ds ≈ ∆t

2
(r1 + 2r2 + 2r3 + · · ·+ 2ri−2 + 2ri−1 + ri) . (7.22)

Alternatively, we can apply the Euler scheme to the underlying assets:

S1(ti+1) = S1(ti) + r(ti)S1(ti)∆t+ σ1S1(ti)∆B̃1(ti) (7.23)

S2(ti+1) = S2(ti) + r(ti)S2(ti)∆t+ σ2ρ1S2(ti)∆B̃1(ti) + σ2

√
1− ρ2

1S2(ti)∆B̃2(ti). (7.24)

And the Milstein scheme:

For the integral form of the underlying assets

S1(ti+1) = S1(ti) +

∫ ti+1

ti

r(t)S1(t)dt+ σ1

∫ ti+1

ti

S1(t)dB̃1(t)

S2(ti+1) = S2(ti) +

∫ ti+1

ti

r(t)S2(t)dt+ σ2ρ1

∫ ti+1

ti

S2(t)dB̃1(t) + σ2

√
1− ρ2

1

∫ ti+1

ti

S2(t)dB̃2(t)
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For integral
∫ ti+1

ti
S1(t)dB̃1(t), we apply the Euler scheme and get rid of the (t− ti) term and

obtain

∫ ti+1

ti

S1(t)dB̃1(t) =

∫ ti+1

ti

{
S1(ti) + σ1S1(ti)

(
B̃1(t)− B̃1(ti)

)}
dB̃1(t)

= S1(ti)∆B̃1 + σ1S1(ti)

(
1

2
∆B̃1

2
− 1

2
∆t

)
= −1

2
σ1S1(ti)∆t+ S1(ti)∆B̃1

2
+

1

2
σ1S1(ti)∆B̃1

2
.

Similarly,

∫ ti+1

ti

S2(t)dB̃1(t) = −1

2
σ2ρ1S2(ti)∆t+ S2(ti)∆B̃1 +

1

2
σ2ρ1S2(ti)∆B̃1

2
(7.25)

and

∫ ti+1

ti

S2(t)dB̃2(t) = −1

2
σ2

√
1− ρ2

1S2(ti)∆t+ S2(ti)∆B̃2 +
1

2
σ2

√
1− ρ2

1S2(ti)∆B̃2

2
. (7.26)

Plugging back to the original expressions and simplifying, we have

S1(ti+1) = S1(ti) + (r(ti)−
1

2
σ2

1)S1(ti)∆t+ σ1S1(ti)∆B̃1 +
1

2
σ2

1S1(ti)∆B̃1

2
(7.27)

S2(ti+1) = S2(ti) + (r(ti)−
1

2
σ2

2)S2(ti)∆t+ σ2ρ1S2(ti)∆B̃1

+ σ2

√
1− ρ2

1S2(ti)∆B̃2 +
1

2
σ2

2ρ
2
1S2(ti)∆B̃1

2
+

1

2
σ2

2(1− ρ2
1)S2(ti)∆B̃2

2
(7.28)

7.2 Regression-Based Method

7.2.1 Introduction. Due to the early exercise characteristic of the American spread

options, the owner needs to determine whether to exercise or hold the options at the current
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time. This suggests that we can use a dynamic programming formulation as follows:

Ṽm(x) = h̃m(x)

Ṽi−1(x) = max{h̃i−1(x), E[Di−1,i(Xi)Ṽi(Xi)|Xi−1 = x]}, i = 1, ...,m.

where Ṽi is the option price at time ti, h̃i is the payment function which indicates the

intrinsic value of the option at time ti and Di−1,i = e
−

∫ ti
ti−1

r(s)ds
is the discount factor from

ti−1 to ti. Xi is the underlying assets’ price vector at time ti, in the spread option case,

Xi = (S1(ti), S2(ti)). That is to say, to obtain the American option price, one needs to

compare the intrinsic value if the option is exercised immediately with the corresponding

European option price if the option will be held. The whole formulation is based on a

backward induction mechanism.

Although the formulation above is used in practical implementation, it is not as conve-

nient as the following formulation for introducing the algorithm:

Vm(x) = hm(x)

Vi−1(x) = max{hi−1(x), E[Vi(Xi)|Xi−1 = x]}, i = 1, ...,m.

where we applied the replacement

hi(x) = D0,i(x)h̃i(x), i = 1, ...,m

Vi(x) = D0,i(x)Ṽi(x), i = 0, 1, ...,m.

For the simplicity of the expression, we denote the conditional expectation in the formulation

above as

Ci(x) = E[Vi+1(Xi+1)|Xi = x], i = 0, ...,m− 1.

This is the continuation value if we want to hold the option. Note that at the terminal time
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m, the continuation value Cm ≡ 0 if the option is not exercised. Thus,

Vi(x) = max{hi(x), Ci(x)}, i = 1, ...,m.

The key to approximate the option price Vi is to approximate the continuation value Ci.

Similar to the idea of Taylor expansion and Fourier series expansion, we assume there are

some basis functions φj : R2 → R and constants θij, j = 1, ..., L, such that

Ci(x, θi) = E[Vi+1(Xi+1)|Xi = x] =
L∑
j=1

θijφj(x). (7.29)

By denoting

θ>i = (θi1, ..., θiL), φ(x) = (φ1(x), ..., φL(x))>,

we can simplify the continuation value as

Ci(x, θi) = θ>i φ(x).

Under this hypothesis, the coefficient vector can be solved by

θi = (E[φ(Xi)φ(Xi)
>])−1E[φ(Xi)Vi+1(Xi+1)].

In the practical implementation, however, the previous equation cannot be guaranteed. The

accuracy of the approximation depends on the diversity of the functions φ. For the constants

θi, we use the arithmetic average to estimate the expectations, therefore

θ̂i = (
1

M

M∑
j=1

φ(X
(j)
i )φ(X

(j)
i )>)−1(

1

M

M∑
j=1

φ(X
(j)
i )Vi+1(X

(j)
i )>), (7.30)
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where θ̂i is the estimator for θ. We will use this convention later on. So

Ĉi(x) = θ̂>i φ(x). (7.31)

We can summarize it as the algorithm for the regression-based method :

• Simulate M independent paths

{X(j)
1 , ..., X

(j)
N }, j = 1, ...,M,

where

X
(j)
i = (S

(j)
1 (i), S

(j)
2 (i)).

• At the expiry (i = N), set

V̂
(j)
N = hN(X

(j)
N ), j = 1, ...,M.

• For i = N − 1, ..., 1,

– Calculate θ̂i as in (7.30).

– Calculate Ĉi as in (7.31).

– Set

V̂
(j)
i = max{hi(X(j)

i ), Ĉi(X
(j)
i )}, j = 1, ...,M. (7.32)

• Set V̂0 =
1

M

∑M
j=1 V̂

(j)
1 . This algorithm gives a high-biased estimator in the sense that

E[V̂0] ≥ V0.

This approach is introduced in [37] and is showed in [38] that V̂0 → V0(X0) as M → ∞

if the assumption of the basis function representation holds for all i = 1, ..., N − 1. In [31],
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Longstaff and Schwartz use their interleaving estimator

V̂
(j)
i =


hi(X

(j)
i ), hi(X

(j)
i ) ≥ Ĉi(X

(j)
i )

V̂
(j)
i+1, hi(X

(j)
i ) < Ĉi(X

(j)
i )

(7.33)

in place of Equation (7.32). This algorithm produces a low-biased estimator in the sense

that

E[V̂0] ≤ V0,

and it has been proved to have almost sure convergence as M →∞.

7.2.2 Numerical Implementations. Now we can implement the two algorithms in the

last section to estimate American spread option prices under two stochastic interest models,

we can also compare these results with the constant interest rate case. Throughout this

section, we set S1(0) = 50, S2(0) = 40, r(0) = 0.05, α = 1, β = 2, σ1 = 0.2, σ2 = 0.2,

σ3 = 0.3, ρ1 = 0.5, ρ2 = 0.4, ρ3 = 0.3, T = 0.5 and K = 10. We use M to denote the

number of independent paths for the underlying assets (S1, S2), N the number of chances to

exercise the option before the maturity date(exercise times for short). In other words, we

discretize the time interval [0, T ] into N points and simulate on these points. We do this for

two reasons:(1)In the real world, because of the existence of the transaction time and the rest

period of Exchanges, the chance for exercising the option or any other financial derivatives

is not continuous. (2)When N →∞, the simulation on the discretized points will approach

the simulation on the time interval.

We will compare the price value varying M = {1000, 5000, 10000, 20000, 50000, 100000}

and N = {5, 10, 100}.
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 3.0927 0.1255 3.8143 0.2223 5.2369 2.4099

5000 3.1508 0.5289 3.7764 1.1492 5.3238 12.1812

10000 3.1977 0.9898 3.7557 2.1463 5.2875 23.4154

20000 3.1814 1.8829 3.7504 4.6652 5.3314 48.1620

50000 3.1456 4.6373 3.7328 10.8806 5.3628 118.7494

100000 3.1471 9.3768 3.7379 22.9579 5.3338 234.8219

Table 7.1: Monte Carlo with high-biased estimator under constant interest rate model
((S1, S2)–explicit)

Figure 7.1: 2D-Monte Carlo with high-biased estimator under constant interest rate model
((S1, S2)–explicit)
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Figure 7.2: 3D-Monte Carlo with high-biased estimator under constant interest rate model
((S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.3853 0.1472 2.5129 0.2036 2.3352 2.2232

5000 2.4594 0.5414 2.4338 0.9867 2.2111 10.7613

10000 2.4446 0.8963 2.3859 1.9456 2.2365 21.5603

20000 2.4605 1.7567 2.3774 3.9288 2.1778 43.0085

50000 2.4650 4.3240 2.3934 9.7510 2.2489 110.1174

100000 2.4483 8.6268 2.4138 19.3397 2.2382 219.3565

Table 7.2: Monte Carlo with Low-biased estimator under constant interest model ((S1, S2)–
explicit)

Figure 7.3: 2D-Monte Carlo with low-biased estimator under constant interest model
((S1, S2)–explicit)
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Figure 7.4: 3D-Monte Carlo with low-biased estimator under constant model ((S1, S2)–
explicit)

91



N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.7402 0.0946 3.5949 0.2012 5.5629 2.2166

5000 2.9749 0.4608 3.2586 1.0335 5.1939 10.8081

10000 2.9205 0.8923 3.4921 1.9456 5.6241 21.6271

20000 2.9183 1.7449 3.4418 3.8575 5.3490 43.1369

50000 2.8483 4.4333 3.5885 9.6949 5.3909 111.7667

100000 2.8641 9.1737 3.6523 19.4059 5.5515 223.2383

Table 7.3: Monte Carlo with high-biased estimator under Vasicek model (r–Euler scheme,
(S1, S2)–explicit)

Figure 7.5: 2D-Monte Carlo with high-biased estimator under Vasicek model (r–Euler
scheme, (S1, S2)–explicit)
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Figure 7.6: 3D-Monte Carlo with high-biased estimator under Vasicek model (r–Euler
scheme, (S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.1169 0.1223 2.3142 0.2073 2.1809 2.1876

5000 2.2230 0.4782 2.3401 1.0415 2.0573 11.3607

10000 2.3006 0.9250 2.2682 2.1062 2.0499 22.2239

20000 2.2894 1.7803 2.2292 3.9393 2.0860 46.9122

50000 2.2626 4.3754 2.2102 9.7568 2.0862 115.2364

100000 2.2735 9.0513 2.2368 19.7889 2.0800 227.3569

Table 7.4: Monte Carlo with low-biased estimator under Vasicek model (r–Euler scheme,
(S1, S2)–explicit)

Figure 7.7: 2D-Monte Carlo with low-biased estimator under Vasicek model (r–Euler scheme,
(S1, S2)–explicit)
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Figure 7.8: 3D-Monte Carlo with low-biased estimator under Vasicek model (r–Euler scheme,
(S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.1169 0.1438 3.3812 0.2148 5.1030 2.1691

5000 2.9484 0.4689 3.4577 1.0042 5.1567 11.2310

10000 2.9431 1.0193 3.5206 2.1162 5.1639 21.9891

20000 2.9472 1.7882 3.5456 3.9196 5.1681 43.5762

50000 2.8988 4.5008 3.5056 9.8785 5.1168 106.7266112.8242

100000 2.9625 8.8873 3.5195 19.8227 5.1756 239.8470

Table 7.5: Monte Carlo with high-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–explicit)

Figure 7.9: 2D-Monte Carlo with high-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–explicit)
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Figure 7.10: 3D-Monte Carlo with high-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.3970 0.1564 2.2730 0.2038 1.9817 2.1077

5000 2.2849 0.5157 2.1384 0.9662 2.1314 10.6454

10000 2.2933 0.9249 2.2523 1.9465 2.1091 21.4584

20000 2.2744 1.7118 2.2190 4.2281 2.0822 43.3503

50000 2.2893 4.1916 2.2306 10.4662 2.0784 105.1366

100000 2.2981 8.4950 2.2525 19.9697 2.0732 214.4767

Table 7.6: Monte Carlo with low-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–explicit)

Figure 7.11: 2D-Monte Carlo with low-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–explicit)
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Figure 7.12: 3D-Monte Carlo with low-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.9322 0.1528 3.4227 0.2092 4.9908 2.1547

5000 2.8865 0.5148 3.4744 1.0097 5.1440 10.7550

10000 2.9054 0.9154 3.5727 1.9469 5.0964 21.6158

20000 2.8978 1.7245 3.4940 3.8606 5.2265 43.5733

50000 2.9780 4.2444 3.5054 9.7363 5.1239 106.3768

100000 2.9289 8.9010 3.5017 19.3355 5.0567 211.8942

Table 7.7: Monte Carlo with high-biased estimator under CIR model (r–Milstein scheme,
(S1, S2)–explicit)

Figure 7.13: 2D-Monte Carlo with high-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–explicit)
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Figure 7.14: 3D-Monte Carlo with high-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.3149 0.1841 2.4115 0.2301 2.1297 2.3252

5000 2.2239 0.4954 2.2546 1.1066 2.0592 11.2984

10000 2.3214 0.9679 2.2402 2.3431 2.1294 23.4278

20000 2.2950 1.8823 2.2429 4.1519 2.0692 45.6496

50000 2.2880 4.7307 2.2429 10.4549 2.0837 114.6067

100000 2.2866 9.7160 2.2341 21.3634 2.0687 230.5335

Table 7.8: Monte Carlo with low-biased estimator under CIR model (r–Milstein scheme,
(S1, S2)–explicit)

Figure 7.15: 2D-Monte Carlo with low-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–explicit)
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Figure 7.16: 3D-Monte Carlo with low-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–explicit)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.8826 0.1200 3.4103 0.2054 5.1653 2.1792

5000 2.9687 0.5360 3.4503 1.0177 5.1649 10.8793

10000 2.9554 0.9085 3.5253 2.0352 5.2292 21.9725

20000 2.8959 1.7278 3.4961 4.0847 5.1405 43.5237

50000 2.9262 4.5254 3.4500 9.7267 5.2651 109.6005

100000 2.8825 8.8693 3.4471 19.6880 5.1634 220.0782

Table 7.9: Monte Carlo with high-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–Euler scheme)

Figure 7.17: 2D-Monte Carlo with high-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–Euler scheme)
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Figure 7.18: 3D-Monte Carlo with high-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–Euler scheme)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.2257 0.1317 2.4608 0.2056 2.1102 2.1735

5000 2.2581 0.4509 2.2306 0.9845 2.0429 10.9243

10000 2.2717 0.8994 2.2305 1.9841 2.1032 21.8706

20000 2.2612 1.8355 2.1962 3.9093 2.0875 44.6741

50000 2.2635 4.5275 2.1865 9.8917 2.0683 109.4263

100000 2.2480 8.9134 2.2321 19.7539 2.0916 224.3356

Table 7.10: Monte Carlo with low-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–Euler scheme)

Figure 7.19: 2D-Monte Carlo with low-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–Euler scheme)
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Figure 7.20: 3D-Monte Carlo with low-biased estimator under CIR model (r–Euler scheme,
(S1, S2)–Euler scheme)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.7524 0.1889 3.6754 0.2199 5.0451 2.2230

5000 2.8346 0.5150 3.4649 1.0403 5.1030 11.1932

10000 2.8863 0.9322 3.4761 2.0637 5.0849 22.7213

20000 2.8701 1.7854 3.4919 4.0568 5.1585 45.1394

50000 2.8593 4.5222 3.5394 10.2142 5.0493 111.2069

100000 2.8446 9.1876 3.5143 20.9338 5.1514 222.0717

Table 7.11: Monte Carlo with high-biased estimator under CIR model (r–Milstein scheme,
(S1, S2)–Milstein scheme)

Figure 7.21: 2D-Monte Carlo with high-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–Milstein scheme)
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Figure 7.22: 3D-Monte Carlo with high-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–Milstein scheme)
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N=5 N=10 N=100

M Price Time Price Time Price Time

1000 2.4004 0.1909 2.3235 0.1983 2.1748 2.2148

5000 2.2205 0.5030 2.1996 0.9608 2.0870 11.298410.5842

10000 2.2067 0.8709 2.2238 1.9696 2.0932 21.0577

20000 2.2480 1.7025 2.2171 3.7999 2.1081 42.2822

50000 2.2537 4.1982 2.2351 9.5597 2.0862 105.0757

100000 2.2590 8.4957 2.2157 19.0516 2.0680 210.0973

Table 7.12: Monte Carlo with low-biased estimator under CIR model (r–Milstein scheme,
(S1, S2)–Milstein scheme)

Figure 7.23: 2D-Monte Carlo with low-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–Milstein scheme)
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Figure 7.24: 3D-Monte Carlo with low-biased estimator under CIR model (r–Milstein
scheme, (S1, S2)–Milstein scheme)
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Based on these data, we can summarize the differences and characteristics among these

models:

In the case of comparing the high-biased and low-biased estimators under these three

interest rate models: (1) Under each interest rate model, the average of the price data

for the high-biased estimator is bigger than that for the low-biased estimator. This result

coincides with the description of the two estimators which was showed before, i.e., E[V̂0] ≥ V0

for the high-biased estimator and E[V̂0] < V0 for the low-biased estimator. (2) For each high-

biased estimator under these three interest rate models, the option price V is increasing as

the number of the exercise chances N is increasing; on the other hand, for each low-biased

estimator under these three interest rate models, the option price V is decreasing as N is

increasing. (3) For each high-biased estimator under these three interest rate models, those

three lines(blue, red, green) which indicate the evolution of the option prices have a trend

of divergence as the number of the independent paths M increases; on the other hand, for

each low-biased estimator under these three interest models, those three lines have a trend

of convergence as M increases. This suggests that the low-biased estimators are more stable

than the high-biased estimators.

In the case of comparing the behaviors of the estimators under the constant interest rate

and the stochastic interest rate models: Both the high-biased and the low-biased estimator

under the stochastic interest models give relatively close results, while the estimator in the

constant interest rate model produces option prices far bigger than those in the stochastic

interest rate models. The reason behind this phenomenon comes from the stochastic interest

models

dr(t) = (α− βr(t))dt+ · · · = β(α/β − r(t))dt+ · · · .

In the parenthesis, α/β is the long-term mean of the interest rate. Recall that we set it

as α/β = 1/2 = 0.5 in the implementation above. However, the initial interest rate value

was set as 0.05 for all the models. Thus the stochastic interest rates will evolve towards

their long term means while the constant interest rate remains unchanged. The increasing
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of the interest rate leads to a rapid percentage growth of the underlying assets and then

bigger difference between two assets S1 − S2. In other words, we may have smaller payoffs

(K − (S1 − S2))+ under the stochastic interest rate models than that under the constant

interest model.

7.3 Dual Method

7.3.1 Introduction. In the last section, we have used the regression method to derive

a high-biased estimator for the option price. The purpose of this section is to find a tighter

upper bound for the option price. Together with the low estimator, we can determine a

small interval that the option price lives in.

Unlike the regression method which is always seeking for the maximum elements among

the intrinsic value and the continuous value, the duality method requires us to solve a max-

min question:

V0(X0) = sup
τ
E[hτ (Xτ )] ≤ inf

M
E[ max

k=1,...,N
{hk(Xk)−Mk}] (7.34)

where the infimum is taken over all martingales with initial value 0. It is not hard to see how

to get this inequality. Again we use the index k to express the exercise times tk, k = 1, ..., N.

Let {Mk, k = 0, 1, ..., N} be a discrete martingale with M0 = 0. Then

E[hτ (Xτ )] = E[hτ (Xτ )−Mτ ] ≤ E[ max
k=1,...,N

(hk(Xk)−Mk)]

for stopping time τ taking values in the exercise times {t1, ..., tN}. Taking infimum on both

sides to obtain

E[hτ (Xτ )] ≤ inf
M
E[ max

k=1,...,N
(hk(Xk)−Mk)]

Then take the supremum over all the stopping times, we get the thing we desired.

The key reason that Equation (7.34) can be used to practically approximate V0 is that
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the minimum can be achieved by a martingale which makes it to an equality. The martingale

is given by

Mi = ∆1 + · · ·+ ∆i

i = 1, ..., N with M0 = 0. Here

∆i = Vi(Xi)− E[Vi(Xi)|Xi−1] (7.35)

i = 1, ..., N . It is a martingale since

E[Mi|Xi−1] = E[∆1 + · · ·+ ∆i|Xi−1]

= E[∆1 + · · ·+ ∆i−1|Xi−1] + E[∆i|Xi−1]

= E[∆1 + · · ·+ ∆i−1|Xi−1]

= E[Mi−1|Xi−1]

= Mi−1

i = 1, ..., N . The third equation holds because

E[∆i|Xi−1] = E[Vi(Xi)− E[Vi(Xi)|Xi−1]|Xi−1]

= E[Vi(Xi)|Xi−1]− E[E[Vi(Xi)|Xi−1]Xi−1]

= E[Vi(Xi)|Xi−1]− E[Vi(Xi)|Xi−1]

= 0.

The last equation holds because Mi−1 is σ{Xi−1}-measurable.

We use induction to show that

Vi(Xi) = max{hi(Xi), hi+1(Xi+1)−∆i+1, ..., hN(XN)−
i+1∑
j=N

∆j} (7.36)
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i = 1, ..., N . We have seen that Vm(Xm) = hm(Xm). Now if it holds for i, then

Vi−1(Xi−1) = max{hi−1(Xi−1), E[Vi(Xi)|Xi−1]}

= max{hi−1(Xi−1), Vi(Xi)−∆i}

Since Equation (7.36) holds for i, extending Vi(Xi) will complete the induction. In particular,

V1(X1) = max
k=1,...,N

(hk(Xk)− (Mk −∆1))

Thus by Equation (7.35),

V0(X0) = E[V1(X1)|X0] = V1(X1)−∆1 = max
k=1,...,N

(hk(Xk)−Mk).

So the question of computing the price V0 becomes computing the martingale {Mk}, or

equivalently computing

∆i = Vi(Xi)− Ci−1(Xi−1).

The No.1 principle of the duality formulation is that {M̂k}, the approximation to the mar-

tingale Mk, is still a martingale. If it is true, then according to Equation (7.34),

max
k=1,...,N

(hk(Xk)− M̂k)

is a valid upper bound for the option price. The martingale principle is equivalent to

E[∆̂i|Xi−1] = 0. (7.37)

Now for

∆̂i = V̂i(Xi)− Ĉi−1(Xi−1), (7.38)
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we can approximate the first term using the technique in the last section, namely

V̂i(Xi) = max{hi(Xi), Ĉi(Xi)}.

But for the second term, if we continue using the regression method to approximate the

continuation value, the martingale principle would fail. However, since

Ĉi−1(Xi−1) = E[V̂i(Xi)|Xi−1].

We can simply use average to approximate the conditional expectation. FixXi−1, we generate

n independent random variable {X(j)
i }, j = 1, ...,M of the next exercise time. Take the

average

1

M

M∑
j=1

V̂i(X
(j)
i )

to approximate

∆̂i = V̂i(Xi)−
1

M

M∑
j=1

V̂i(X
(j)
i )

To show it satisfies our big principle

E[∆̂i|Xi−1] = E[V̂i(Xi)−
1

M

M∑
j=1

V̂i(X
(j)
i )|Xi−1]

= E[V̂i(Xi)|Xi−1]− E[
1

M

M∑
j=1

V̂i(X
(j)
i )|Xi−1]

= E[V̂i(Xi)|Xi−1]− 1

M

M∑
j=1

E[V̂i(X
(j)
i )|Xi−1]

= E[V̂i(Xi)|Xi−1]− 1

M
×ME[V̂i(X

(j)
i )|Xi−1]

= E[V̂i(Xi)|Xi−1]− E[V̂i(X
(j)
i )|Xi−1]

= 0.

Here we used the fact that {X(j)
i } and Xi are independent identical distributions conditioned
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on Xi−1.

7.3.2 Numerical implementations. We now implement the dual algorithm in the last

section to approximate the American spread option prices under two stochastic interest

models. Again we will compare these results with the constant interest rate case. We keep

using the same value for the inputs except that we set M = {10, 50, 100, 200, 500, 1000} and

N = {5, 10, 20}. Recall the other parameters are set as S1(0) = 50, S2(0) = 40, r(0) = 0.05,

α = 1, β = 2, σ1 = 0.2, σ2 = 0.2, σ3 = 0.3, ρ1 = 0.5, ρ2 = 0.4, ρ3 = 0.3, T = 0.5 and K = 10.

From Table 7.13, 7.14 and 7.15, we see overall that the American option prices are

decreasing as M and N are increasing. In other word, the upper bound is getting tighter

and tighter if have a finer grid.

The dual method under CIR model did much better than that under the other two

models. As M and N increases, the prices under the CIR model is more stable than the

prices under the other models.
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N=5 N=10 N=20

M Price Time Price Time Price Time

10 1.4725 0.0247 5.4344 0.0496 6.0062 0.1646

50 4.5122 0.0334 2.3355 0.1124 0.6696 0.3624

100 0.9313 0.0429 3.0445 0.1568 3.1882 0.5682

200 2.1713 0.0720 3.0414 0.2532 6.1207 0.9814

500 2.5148 0.1365 3.5693 0.5391 3.8729 2.4356

1000 7.3304 0.2354 3.1994 1.0811 2.7829 4.7259

Table 7.13: Duality under constant interest rate model ((S1(t), S2(t))-explicit)

Figure 7.25: 2D-Duality under constant interest rate model ((S1(t), S2(t))-explicit)
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Figure 7.26: 3D-Duality under constant interest rate model ((S1(t), S2(t))-explicit)
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N=5 N=10 N=20

M Price Time Price Time Price Time

10 4.8967 0.0229 2.6760 0.0679 4.2786 0.2394

50 3.3871 0.0481 6.3426 0.1701 2.8119 0.3896

100 2.2351 0.0592 -0.9121 0.2087 4.5666 0.5823

200 3.6658 0.0817 3.3954 0.2650 4.3678 0.9732

500 4.4409 0.1438 5.9959 0.5464 1.8340 2.1786

1000 1.9274 0.2639 2.4602 1.0144 2.9386 4.1563

Table 7.14: Duality under Vasicek model (r(t)-Euler, (S1(t), S2(t))-explicit)

Figure 7.27: 2D-Duality under Vasicek model (r(t)-Euler, (S1(t), S2(t))-explicit)
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Figure 7.28: 3D-Duality under Vasicek model (r(t)-Euler, (S1(t), S2(t))-explicit)
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N=5 N=10 N=20

M Price Time Price Time Price Time

10 7.8646 0.0393 -0.4352 0.0726 7.0401 0.2788

50 4.2871 0.0625 5.4728 0.1548 6.7649 0.3813

100 0.9778 0.0637 2.0144 0.1857 2.3866 0.5657

200 4.1056 0.0871 1.3412 0.2625 5.0917 1.0600

500 2.7548 0.1470 2.5185 0.5406 3.3313 2.1866

1000 3.9301 0.2439 2.5753 1.0055 2.9970 4.1989

Table 7.15: Duality under CIR model (r(t)-Euler, (S1(t), S2(t))-explicit)

Figure 7.29: 2D-Duality under CIR model (r(t)-Euler, (S1(t), S2(t))-explicit)
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Figure 7.30: 3D-Duality under CIR model (r(t)-Euler, (S1(t), S2(t))-explicit)
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N=5 N=10 N=20

M Price Time Price Time Price Time

10 2.0529 0.0547 2.2907 0.0529 8.9518 0.1799

50 7.5424 0.0388 2.1723 0.1582 3.9779 0.3996

100 0.6387 0.1045 3.4671 0.1820 2.7465 0.7043

200 4.7809 0.0979 4.3321 0.2839 2.4456 1.0762

500 4.0037 0.1576 2.6695 0.6007 5.9982 2.2830

1000 1.6641 0.3088 1.5114 1.0891 2.6819 4.6409

Table 7.16: Duality under CIR model (r(t)-Milstein, (S1(t), S2(t))-explicit)

Figure 7.31: 2D-Duality under CIR model (r(t)-Milstein, (S1(t), S2(t))-explicit)
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Figure 7.32: 3D-Duality under CIR model (r(t)-Milstein, (S1(t), S2(t))-explicit)
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N=5 N=10 N=20

M Price Time Price Time Price Time

10 2.0529 0.0547 2.2907 0.0529 8.9518 0.1799

50 7.5424 0.0388 2.1723 0.1582 3.9779 0.3996

100 0.6387 0.1045 3.4671 0.1820 2.7465 0.7043

200 4.7809 0.0979 4.3321 0.2839 2.4456 1.0762

500 4.0037 0.1576 2.6695 0.6007 5.9982 2.2830

1000 1.6641 0.3088 1.5114 1.0891 2.6819 4.6409

Table 7.17: Duality under CIR model (r(t)-Euler, (S1(t), S2(t))-Euler)

Figure 7.33: 2D-Duality under CIR model (r(t)-Euler, (S1(t), S2(t))-Euler)
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Figure 7.34: 3D-Duality under CIR model (r(t)-Euler, (S1(t), S2(t))-Euler)
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N=5 N=10 N=20

M Price Time Price Time Price Time

10 2.0529 0.0547 2.2907 0.0529 8.9518 0.1799

50 7.5424 0.0388 2.1723 0.1582 3.9779 0.3996

100 0.6387 0.1045 3.4671 0.1820 2.7465 0.7043

200 4.7809 0.0979 4.3321 0.2839 2.4456 1.0762

500 4.0037 0.1576 2.6695 0.6007 5.9982 2.2830

1000 1.6641 0.3088 1.5114 1.0891 2.6819 4.6409

Table 7.18: Duality under CIR model (r(t)-Milstein, (S1(t), S2(t))-Milstein)

Figure 7.35: 2D-Duality under CIR model (r(t)-Milstein, (S1(t), S2(t))-Milstein)
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Figure 7.36: 3D-Duality under CIR model (r(t)-Milstein, (S1(t), S2(t))-Milstein)
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7.4 The Comparison of Numerical Methods

Now we compare the four numerical methods we used to compute the American spread put

option price: regression-based method with high-biased estimator, Longstaff and Schwartz

method with low-biased estimator, the dual method and the finite difference method in

Chapter 6. The comparisons will be done for the constant interest rate, Vasicek model and

CIR model respectively. We set the exercise time number N = 20.

Constant interest rate

M High Low Duality

10 6.5175 2.9314 6.0062

50 5.2964 2.6153 0.6696

100 4.7202 2.5023 3.1882

200 3.8585 2.5094 6.1207

500 4.1888 2.2346 3.8729

1000 4.1162 2.1706 2.7829

Table 7.19: Algorithms comparison with constant interest rate

Vasicek model

M High Low Duality PDE

10 3.5721 3.7459 4.2786

50 3.0235 2.9648 2.8119

100 3.9147 1.9686 4.5666

200 4.4055 2.1023 4.3678

500 4.2458 1.9719 1.8340

1000 4.2563 2.3619 2.9386 2.6350

Table 7.20: Algorithms comparison under Vasicek model
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CIR model

M High Low Duality PDE

10 3.7805 1.0033 7.0401

50 3.6117 2.9259 6.7649

100 4.8747 2.3451 2.3866

200 4.1241 2.0881 5.0917

500 3.8851 2.1799 3.3313

1000 4.0216 2.2197 2.9970 2.6283

Table 7.21: Algorithms comparison under CIR model

For the Constant interest rate, Vasicek and the CIR models, the prices in the Duality

columns are generally lower than the prices in the High estimator columns and are higher

than the prices in the Low estimator columns. This is particularly obvious for the last two

rows in Table 7.19, Table 7.20 and Table 7.21 when we have more independent paths M . For

the stochastic interest rate cases, we can also compare the results in the last rows with the

American spread put option prices which are obtained by the partial differential equation

approach in the previous chapter. For the last row of Table 7.20, as we discussed, the real

option price should be inside the interval (2.3619, 2.9386). It happens that 2.6352, the option

price obtained by the partial differential equation approach, is exactly in this interval. Simi-

larly, for the last row of Table 7.21, 2.6283 is also located inside the interval (2.2197, 2.9970).

This, to some extent, demonstrates the reliability of both the partial differential equation

approach and the direct Monte Carlo simulation method.
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Chapter 8. Future Research

For the options of multidimensional underlying assets, the spread option is just a special

kind. Instead of depending on the difference of the two underlying assets, we can construct

many other payoffs:

• American max option

h̃(S1(t), S2(t)) = (K −max(S1(t), S2(t)))+

• American min option

h̃(S1(t), S2(t)) = (K −min(S1(t), S2(t)))+

• Asian-American spread option

h̃(S1(t), S2(t)) = (K − (
1

t

∫ t

0

S1(u)du− S2(t)))+

or some option not existing in the world with payoff

h̃(S1(t), S2(t)) = (K − S1(t)× S2(t))+.

Complicated form of payoff functions may results in difficult situation for option pricing.

Furthermore, for the underlying assets and interest rate models, we may incorporate

stochasticity into the volatility and correlation parameters. It is well known that the implied

volatility is not a constant, and the volatility smile phenomenon has be detected. Also, the

dependence of the underlying assets should vary randomly as time elapses.
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More techniques of numerical computation can be used: Fast Fourier Transform, stochas-

tic mesh methods on Monte Carlo simulation, numerical integration methods and method

of lines. Our goal is to find a more effective approximation algorithm which is less time

consuming and more accurate.

Finally, we can further consider jump underlying asset processes. Since in the real world,

the price of a tradable asset (like a stock) is given as a set of discrete numbers, it is important

to consider discontinuous asset and their different behaviors.
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Appendix A. Derivation of the Value of

American Option when the Interest

Rate is Zero

When r = 0, function h only depends on τ, u, that is,

h(τ, u, 0) = h(τ, u).

The computation of h(τ, u) would be divided according to the continuous region and the

stopping region.

In the continuous region the partial differential equations (5.35) and (5.37) both reduce

to

hτ =
1

2
σ2

1(huu − hu) (A.1)

The parabolic partial differential equation (A.1) can be further reduced to be heat equation.

In fact, we can always express h as

h(τ, u) = f(τ)g(u)z(τ, u) (A.2)

Its partial derivatives are

hτ = fτgz + fgzτ

hu = fguz + fgzu

huu = fguuz + 2fguzu + fgzuu

Inserting these equations to Equation (A.1), we obtain

fτgz + fgzτ =
1

2
σ2

1(fguuz + 2fguzu + fgzuu − fguz − fgzu) (A.3)
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Now we decide to let f and g be of the exponential form

f(τ) = c1 exp [f̂(τ)], g(u) = c2 exp [ĝ(u)] (A.4)

where c1, c2 are constants. Thus the derivatives become

fτ = ff̂τ

gu = gĝu

guu = guĝu + gĝuu = gĝ2
u + gĝuu.

Inserting these derivatives into Equation (A.3) and simplify it to attain

zτ =
1

2
σ2

1zuu +
1

2
σ2

1(2ĝu − 1)zu +

[
1

2
σ2

1(ĝuu + ĝ2
u − ĝu)− f̂τ

]
z. (A.5)

In order for the Equation (A.5) to be a heat equation, we need

1

2
σ2

1(2ĝu − 1) = 0

1

2
σ2

1(ĝuu + ĝ2
u − ĝu)− f̂τ = 0

which implies

f̂(τ) = −1

8
σ2

1τ + d1

ĝ(u) =
1

2
u+ d2

where d1, d2 are constants.
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Plugging these expressions back to Equation (A.2) to get

h(τ, u) = f(τ)g(u)z(τ, u)

= c1e
f̂(τ)c2e

ĝ(u)z(τ, u)

= c1c2e
− 1

8
σ2
1τ+d1e

1
2
u+d2z(τ, u)

= c1c2e
d1ed2e−

1
8
σ2
1τ+ 1

2
uz(τ, u)

= ce−
1
8
σ2
1τ+ 1

2
uz(τ, u).

In the last equation, we let c = c1c2e
d1ed2 . Without loss of generality, we can set c = 1.

Then the parabolic partial differential equation is reduced to the form of heat equation:

zτ =
1

2
σ2

1zuu (A.6)

via the separation of variables

h(τ, u) = e−
1
8
σ2
1τ+ 1

2
uz(τ, u). (A.7)

From the initial condition (5.47) for h, we can induce the initial condition for z

z(0, u) = e−
1
2
u(K − eu)+. (A.8)

Next we are going to solve the heat equation with the initial value. This can be done by

the Fourier transform and its inverse.

Definition A.1. The Fourier transform of function f(x) is defined as

F(f(x))(k) = f̃(k) =
1√
2π

∫
R
f(x)e−ikxdx (A.9)
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Property A.2. Denote f (n)(x) the n-th derivative of f(x), then

F(f (n)(x))(k) = (ik)nF(f(x))(k). (A.10)

By Property (A.2), the Fourier transform of the heat equation (A.6) with respect to the

spatial variable u is

z̃τ = −1

2
σ2

1k
2z̃. (A.11)

Its solution is

z̃(τ, k) = z̃(0, k)e−
1
2
.σ2

1k
2τ (A.12)

In order to solve for z(τ, u), the inverse Fourier transform needs to be applied to equation

(A.12).

Definition A.3. The inverse Fourier transform of the function f̃(k) is defined as

F−1(f̃(k))(x) = f(x) =
1√
2π

∫
R
f̃(k)eikxdk. (A.13)

Theorem A.4 (Convolution Theorem). If

(f ∗ g)(x) :=
1√
2π

∫
R
f(x− y)g(y)dy (A.14)

then

F(f ∗ g) = F(f)F(g) (A.15)

or

f̃ ∗ g = f̃ · g̃ (A.16)
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If we introduce z1, z2 such that

F(z1) = z̃1 = e−
1
2
σ2
1k

2τ

F(z2) = z̃2 = z̃(0, k)

then Equation (A.12) can be expressed as

z̃(τ, k) = z̃1(τ, k)z̃2(τ, k). (A.17)

Therefore the Convolution Theorem implies that

z(τ, u) = (z1 ∗ z2)(τ, u) =
1√
2π

∫
R
z1(τ, u− ξ)z2(τ, ξ)dξ. (A.18)

By a simple computation, we obtain

z1 = F−1(z̃1) =
1

σ1

√
τ
e
− u2

2σ21τ

z2 = F−1(z̃2) = z(0, u).

Inserting them to Equation (A.18), we therefore have

z(τ, u) =
1

σ1

√
2πτ

∫
R
e
− (u−ξ)2

2σ21τ z(0, ξ)dξ. (A.19)
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Plug the initial condition (A.8) into the equation above to get

z(τ, u) =
1

σ1

√
2πτ

∫
R
e
− (u−ξ)2

2σ21τ

(
Ke−

1
2
ξ − e

1
2
ξ
)+

dξ (A.20)

=
1

σ1

√
2πτ

∫ lnK

−∞
e
− (u−ξ)2

2σ21τ

(
Ke−

1
2
ξ − e

1
2
ξ
)
dξ (A.21)

=
K

σ1

√
2πτ

∫ lnK

−∞
e
− (u−ξ)2

2σ21τ
− 1

2
ξ
dξ − 1

σ1

√
2πτ

∫ lnK

−∞
e
− (u−ξ)2

2σ21τ
+ 1

2
ξ
dξ (A.22)

= KI− 1
2
− I 1

2
. (A.23)

In (A.21), we used the fact that Ke−
1
2
ξ−e 1

2
ξ > 0 if and only if u < lnK. In the last equation

we denoted the two integrals as

I− 1
2

=
1

σ1

√
2πτ

∫ lnK

−∞
e
− (u−ξ)2

2σ21τ
− 1

2
ξ
dξ

I 1
2

=
1

σ1

√
2πτ

∫ lnK

−∞
e
− (u−ξ)2

2σ21τ
+ 1

2
ξ
dξ.

As in the Appendix B, these two integrals can be computed and have a simpler form

Ia = eau+
a2σ21τ

2 Φ

(
lnK − u− aσ2

1τ

σ1

√
τ

)
(A.24)

where

Φ(ζ) =
1√
2π

∫ ζ

−∞
e−

η2

2 dη (A.25)

is the cumulative distribution function of the standard normal distribution.

Inserting (A.24) into (A.23), we have

z(τ, u) = Ke−
1
2
u+

σ21τ

8 Φ

(
lnK − u+ 1

2
σ2

1τ

σ1

√
τ

)
− e

1
2
u+

σ21τ

8 Φ

(
lnK − u− 1

2
σ2

1τ

σ1

√
τ

)
. (A.26)

Then by the separation of variables (A.7), we get

h(τ, u) = KΦ

(
lnK − u+ 1

2
σ2

1τ

σ1

√
τ

)
− euΦ

(
lnK − u− 1

2
σ2

1τ

σ1

√
τ

)
. (A.27)

142



While in the stopping region

h(τ, u) = eA(τ,T )(K − eu)+. (A.28)

Thus combine the results in these two regions to get

h(τ, u, 0) = max

{
KΦ

(
lnK − u+ 1

2
σ2

1τ

σ1

√
τ

)
− euΦ

(
lnK − u− 1

2
σ2

1τ

σ1

√
τ

)
, eA(τ,T )(K − eu)+

}
.

(A.29)

Appendix B. Computation of a Class of In-

tegrals

The task of this section is computing and simplifying

Ia =
1

σ1

√
2πτ

∫ lnK

−∞
e
− (u−ξ)2

2σ21τ
+aξ

dξ. (B.1)

We complete the square for the exponent:

− (u− ξ)2

2σ2
1τ

+ aξ = −c1(c2 − ξ)2 + c3. (B.2)

Expanding both sides gives

− ξ2

2σ2
1τ

+

(
u

σ2
1τ

+ a

)
ξ − u2

2σ2
1τ

= −c1ξ
2 + 2c1c2ξ − c1c

2
2 + c3. (B.3)
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Equating the like terms to get

c1 =
1

2σ2
1τ

c2 = u+ aσ2
1τ

c3 = au+
a2σ2

1τ

2
,

so

Ia =
ec3

σ1

√
2πτ

∫ lnK

−∞
e−c1(c2−ξ)2dξ. (B.4)

Let η = (c2 − ξ)
√

2c1 then dη = −
√

2c1dξ. When ξ → −∞, η → ∞ and when ξ = lnK,

η = (c2 − lnK)
√

2c1. Thus

Ia = − ec3

2σ1
√
c1πτ

∫ (c2−lnK)
√

2c1

∞
e−

η2

2 dη. (B.5)

Finally let ζ = −η then dζ = −dη. Therefore,

Ia =
ec3

2σ1
√
c1πτ

∫ (lnK−c2)
√

2c1

−∞
e−

ζ2

2 dζ (B.6)

=
ec3

σ1

√
2c1τ

Φ((lnK − c2)
√

2c1). (B.7)

Notice that

ec3 = eau+
a2σ21τ

2

σ1

√
2c1τ = 1

(lnK − c2)
√

2c1 =
lnK − u− aσ2

1τ

σ1

√
τ

.

Therefore

Ia = eau+
a2σ21τ

2 Φ

(
lnK − u− aσ2

1τ

σ1

√
τ

)
. (B.8)
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Appendix C. Derivation of the Value of

American Spread Option when the

Interest Rate is Zero

When r = 0, function h only depends on τ, u, v, that is,

h(τ, u, v, 0) = h(τ, u, v).

The computation of h(τ, u, v) would be divided according to the continuous region and the

stopping region.

In the continuous region the partial differential equations (6.43) and (6.44) both reduce

to

hτ =
1

2
σ2

1(huu − hu) +
1

2
σ2

2(hvv − hv) + σ1σ2ρ1huv. (C.1)

The parabolic partial differential equation (C.1) can be further reduced to heat equation. In

fact, we can always express h as

h(τ, u, v) = f(τ)g(u)p(v)z(τ, u, v). (C.2)

Its partial derivatives are

hτ = fτgpz + fgpzτ

hu = fgupz + fgpzu

hv = fgpvz + fgpzv

huu = fguupz + 2fgupzu + fgpzuu

hvv = fgpvvz + 2fgpvzu + fgpzvv

huv = fgupvz + fgupzv + fgpvzu + fgpzuv.
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Inserting these equations to Equation (C.1), we obtain

fτgpz + fgpzτ =
1

2
σ2

1(fguupz + 2fgupzu + fgpzuu − fgupz − fgpzu)

+
1

2
σ2

2(fgpvvz + 2fgpvzu + fgpzvv − fgpvz − fgpzv)

+ σ1σ2ρ1(fgupvz + fgupzv + fgpvzu + fgpzuv). (C.3)

Now we decide to let f , g and p be of the exponential form

f(τ) = c1 exp [f̂(τ)], g(u) = c2 exp [ĝ(u)], p(v) = c3 exp [p̂(v)], (C.4)

where c1, c2, c3 are constants. Thus the derivatives become

fτ = ff̂τ

gu = gĝu

guu = guĝu + gĝuu = gĝ2
u + gĝuu

pv = pp̂v

pvv = pvp̂v + pp̂vv = pp̂2
v + pp̂vv.

Inserting these derivatives into Equation (C.3) and simplify it we attain

zτ =
1

2
σ2

1zuu +
1

2
σ2

2zvv +
1

2
σ2

1(2ĝu − 1)zu +
1

2
σ2

2(2p̂v − 1)zv

+

[
1

2
σ2

1(ĝuu + ĝ2
u − ĝu) +

1

2
σ2

2(p̂vv + p̂2
v − p̂v)− f̂τ

]
z. (C.5)
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In order for the Equation (C.5) to be a heat equation, we need

1

2
σ2

1(2ĝu − 1) = 0

1

2
σ2

2(2p̂v − 1) = 0

1

2
σ2

1(ĝuu + ĝ2
u − ĝu) +

1

2
σ2

2(p̂vv + p̂2
v − p̂v)− f̂τ = 0

which implies

ĝ(u) =
1

2
u+ d1

p̂(v) =
1

2
v + d2

f̂(τ) = −1

8
(σ2

1 + σ2
2)τ + d3

where d1, d2, d3 are constants.

Plugging these expressions back to Equation (C.2) to get

h(τ, u, v) = f(τ)g(u)p(v)z(τ, u, v)

= c3e
f̂(τ)c1e

ĝ(u)c2e
p̂(v)z(τ, u, v)

= c1c2c3e
− 1

8
(σ2

1+σ2
2)τ+d3e

1
2
u+d1e

1
2
v+d2z(τ, u, v)

= c1c2c3e
d1ed2ed3e−

1
8

(σ2
1+σ2

2)τ+ 1
2

(u+v)z(τ, u, v)

= ce−
1
8

(σ2
1+σ2

2)τ+ 1
2

(u+v)z(τ, u, v).

In the last equation, we let c = c1c2e
d1ed2 . Without loss of generality, we can set c = 1.

Then the parabolic partial differential equation is reduced to the form of heat equation:

zτ =
1

2
σ2

1zuu +
1

2
σ2

2zvv (C.6)
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via the separation of variables

h(τ, u, v) = e−
1
8

(σ2
1+σ2

2)τ+ 1
2

(u+v)z(τ, u, v). (C.7)

To make it prettier, let

u =
σ1√

2
m, v =

σ2√
2
n

l(τ,m, n) = z(τ, u, v)

. (C.8)

Then

lτ = ∆l = lmm + lnn. (C.9)

From the initial condition (6.54) for h, we can induce the initial condition for l

l(0,m, n) = e
− 1

2
√
2

(σ1m+σ2n)
[
K − (e

σ1√
2
m − e

σ2√
2
n
)
]+

. (C.10)

Next we are going to solve the heat equation with the initial value. This can be done by

the two-dimensional Fourier transform and its inverse. (see [16])

l(τ,m, n) =
1

4πτ

∫
R2

e−
|(m,n)−(ξ−η)|2

4τ l(0, ξ, η)d(ξ, η). (C.11)

Then

z(τ, u, v) =
1

4πτ

∫
R2

e
−

(

√
2

σ1
u−ξ)2+(

√
2

σ2
v−η)2

4τ
− 1

2
√
2

(σ1ξ+σ2η)
[
K − (e

σ1√
2
ξ − e

σ2√
2
η
)
]+

d(ξ, η). (C.12)
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Finally,

h(τ, u, v) = e−
1
8

(σ2
1+σ2

2)τ+ 1
2

(u+v)z(τ, u, v)

=
1

4πτ
e−

1
8

(σ2
1+σ2

2)τ+ 1
2

(u+v)

∫
R2

e
−

(

√
2

σ1
u−ξ)2+(

√
2

σ2
v−η)2

4τ
− 1

2
√
2

(σ1ξ+σ2η)
[
K − (e

σ1√
2
ξ − e

σ2√
2
η
)
]+

d(ξ, η).

(C.13)

While in the stopping region

h(τ, u, v) = (K − (eu − ev))+. (C.14)

Thus combine the results in these two regions we get

h(τ, u, v, 0) = max{(K − (eu − ev))+,

1

4πτ
e

1
4

(σ2
1+σ2

2)τ+ 1
2

(u+v)

∫
R2

e
−

(

√
2u
σ1
−ξ)2+(

√
2v
σ2
−η)2

4τ
− 1

2
√
2

(σ1ξ+σ2η)
[
K − (e

σ1√
2
ξ − e

σ2√
2
η
)
]+

d(ξ, η)}.

(C.15)
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