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abstract

Counting Threshold Graphs and Finding Inertia Sets

Christopher Guzman
Department of Mathematics, BYU

Master of Science

This thesis is separated into two parts: threshold graphs and inertia sets. First we present
an algorithmic approach to finding the minimum rank of threshold graphs and then progress
to counting the number of threshold graphs with a specific minimum rank.

Second, we find an algorithmic and more automated way of determining the inertia set of
graphs with seven or fewer vertices using theorems and lemmata found in previous papers.
Inertia sets are a relaxation of the inverse eigenvalue problem. Instead of determining all the
possible eigenvalues that can be obtained by matrices with a specific zero/nonzero pattern
we restrict to counting the number of positive and negative eigenvalues.

Keywords: Threshold graphs, minimum rank, inertia sets.
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Chapter 1. Introduction

From linear algebra, we learn that symmetric matrices with real entries have many nice

properties. One property is that they have all real eigenvalues. Another property, is that

they are diagonalizable, or equivalently we can also always find a basis for Rn consisting of

its eigenvectors. Due to the convenient properties of symmetric matrices, they have been

studied extensively. One such branch of study is determining what we can know about a

symmetric matrix that has a specific zero/nonzero pattern. In other words, if we decide

which entries of the symmetric matrix must be zero, and which entries must be nonzero,

then what kind of conclusions may we draw about the matrix? Can we determine whether

the eigenvalues of the matrix will be positive, negative, or both? Can we determine if it is

possible for there to be repeated eigenvalues?

Let A =



d1 a b c

a d2 e f

b e d3 g

c f g d4


. Then A is a general 4×4 symmetric matrix. If we say that

the diagonal entries are arbitrary, and only care about whether the entries in the off-diagonal

positions are zero or nonzero, then there are 2
(4
2)

= 64 possible zero/nonzero patterns for

this matrix.

For an n × n matrix, there are 2
(4
2)

possible zero/non-zero patterns. However, we can

reduce the number of possibilities if we express the zero/nonzero pattern in terms of a graph.

If we number the vertices the same as the row and column numbers, then we say that there

is an edge between vertex i and j, where i 6= j if and only if there is a non-zero number in the

ijth and jith entries of the symmetric matrix. Here are two matrices and their corresponding

graphs. We can see that both of these matrices will yield the same graph.
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d1 0 a b

0 d2 0 c

a 0 d3 0

b c 0 d4

 3 1 4 2



d1 a 0 0

a d2 b 0

0 b d3 c

0 0 c d4


1 2 3 4 .

Disregarding the unspecified diagonal entries, these matrices are permutation similar.



0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0





d1 0 a b

0 d2 0 c

a 0 d3 0

b c 0 d4





0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0


=



d3 a 0 0

a d1 b 0

0 b d4 c

0 0 c d2


Therefore, they share many matrix theoretic properties, such as characteristic polynomial,

determinant, trace, rank, and eigenvalues. For the problems we consider, it suffices to

consider just one of the possible matrix classes corresponding to each graph. It turns out,

that out of the 64 possible zero/nonzero symmetric patterns on 4 × 4 matrices, there are

only 11 graphs.

One of the main sections studied in combinatorial matrix theory is finding out what we

can know about a symmetric matrix that has a specific zero/non-zero pattern. Looking at

the graphs that correspond to these symmetric matrices is a good way to do this.
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1.1 Definitions

Definition 1.1. Given a graph G on n vertices, let S(G) be the set of all real symmetric

matrices A = [aij] such that aij 6= 0, i 6= j, if and only if ij is an edge of G.

Definition 1.2. Given two graphs G and H with V (G)∩ V (H) = ∅, the union of G and H

is the graph (V (G) ∪ V (H), E(G) ∪ E(H)) and is written G ∪H

Definition 1.3. Given two graphs G and H with V (G) ∩ V (H) = ∅, the join of G and H,

written G ∨H, is the graph with vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}

Definition 1.4. Given a graph G = (V,E), the complement of the G, is the graph Gc =

(V,Ec), where Ec consists of all two element sets from V that are not in E.

Definition 1.5. A complete graph on n vertices, denoted Kn, is the graph whose edge set

consists of all possible two element sets from the vertex set.

Definition 1.6. We abbreviate the disjoint union K1 ∪ · · · ∪ K1 (n times) to nK1. So

nK1 = Kc
n, the graph consisting of n isolated vertices.

Definition 1.7. The minimum rank of a graph G is defined as

mr(G) = min
A∈S(G)

{rank(A)}

We illustrate this definition with two easy examples of n vertex graphs. Consider the

graph nK1. The minimum rank of this graph may be attained using the n × n all zeros

matrix. Hence the minimum rank of nK1 = 0.

Now consider the complete graph Kn for n > 1 We notice that the n× n all ones matrix

is found in S(Kn). Therefore mr(Kn) ≤ 1. We also know that for n > 1, there must be at

least one nonzero entry in an off-diagonal position of the matrix. Hence mr(Kn) ≥ 1 (since
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any matrix that has at least one nonzero entry must have a rank of at least one). Therefore,

mr(Kn) = 1.

1.2 Previous Results

Proposition 1.8. [1, Proposition 3.6] Given any graph G,

mr(G ∨K1) =


mr(G) if G has no isolated vertices

mr(G) + 1 if G has one isolated vertex

mr(G) + 2 if G has two or more isolated vertices

Chapter 2. Threshold Graphs

Just as was talked about before, trying to find out what we can know about graphs with

specific patterns is one of the main sections studied in combinatorial matrix theory. In this

chapter we are going to look at a specific type of graph called a threshold graph. Due to

the properties of threshold graphs and Proposition 1.8, we will be able to determine the

minimum rank with relative ease.

2.1 What are Threshold Graphs

Threshold graphs are graphs that can be constructed recursively by starting with K1. We say

that K1 is a threshold graph, and if G is a threshold graph, then so are G∪K1 and G∨K1.

The following flow chart shows the first few threshold graphs. A move to the left in the flow

chart represents the union of the previous graph and K1. A move to the right represents the

join of the previous graph and K1. It may also be noticed from the construction of threshold

graphs and from the flow chart, that there are 2n−1 threshold graphs on n vertices.
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For convenience, I represent each threshold graph on n vertices with a 0,1 sequence of

length n. The 0 represents taking the union of the previous graph with K1, and a 1 represents

a join with K1. The first entry in this vector is always a 0, because to generate the graph,

you always need to start with K1. We may also think of it as the union of the empty graph

with a K1. There is a one-to-one correspondence between the threshold graphs and these

0,1 sequences.

0
00 01

0000 0001 0010 0011 0100 0101 0110 0111

2.2 Minimum Rank of Threshold Graphs

When calculating the minimum rank of threshold graphs, it is easier to use these 0,1 se-

quences as opposed to looking at the graph directly. This comes essentially from Proposition

1.8, which tells us how the minimum rank of a graph G will change when you take the join

of G and K1. It says that when you join K1 to a graph the minimum rank will increase by

0, 1 or 2. We also know that when you take the union of a graph with K1, the minimum

rank will stay the same.

Therefore the algorithmic way to count the minimum rank is:

(i) We check the 0,1 sequence to see if there are places where there are more than two

consecutive 0’s anywhere. If there are we get rid of 0’s until there are only 2 consecutive
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0’s there.

(ii) If there are any 0’s at the end, we just truncate them.

(iii) To then determine the minimum rank, we just count the number of 0’s. That is why

we made the convention that the first entry is always a 0.

Consequently one can always find the minimum rank of a threshold graph, because as

you go forward along the sequence, when you join K1, the minimum rank will go up by

0,1 or 2 depending on how many isolated vertices there are. When you take the union,

the minimum rank will not change. So if {tn} is a sequence corresponding to a threshold

graph G, for convenience, let w(G) = #1’s, and z(G) = #0′s, and {tnk
} be the subsequence

corresponding to the 1’s in the sequence. Then:

Lemma 2.1. The minimum rank of a threshold graph G can be found as follows:

mr(G) =

w(G)∑
k=1

min{2, nk − nk−1 − 1}

where n0 = 0

Proof. Note that nk − nk−1 − 1 will count the number of 0’s between the ones in positions

nk−1 and nk. Then if there are no zeros between two consecutive ones, the minimum rank

will not increase, if there is one zero in between consecutive ones, then the minimum rank

will increase by 1, if there are 2 or more zeros in between consecutive 1’s, then the minimum

rank will increase by 2. By summing all of these increases together, we obtain the minimum

rank of the threshold graph.

Lemma 2.2. Given a threshold graph G, and the (0,1) sequence corresponding to G, then

w(G) ≥
⌈

mr(G)

2

⌉
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Proof.

mr(G) =

w(G)∑
k=1

min{2, nk − nk−1 − 1}

≤
w(G)∑
k=1

2

= 2w(G) =⇒
mr(G)

2
≤ w(G)

but the number of ones is a whole number =⇒

⌈
mr(G)

2

⌉
≤ w(G).

Lemma 2.3. Given a threshold graph G, and the (0, 1) sequence corresponding to G, then

z(G) ≥ mr(G).

Proof.

mr(G) =

w(G)∑
k=1

min{2, nk − nk−1 − 1}

≤
w(G)∑
k=1

(nk − nk−1 − 1)

≤ z(G).

Theorem 2.4. Given a threshold graph G on n vertices,

mr(G) ≤
⌊

2

3
n

⌋
.
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Furthermore, this bound is attainable for each positive integer n.

Proof.

3

2
mr(G) ≤ mr(G) +

⌈
mr(G)

2

⌉
≤ z(G) + w(G) = n =⇒ mr(G) ≤ 2

3
n.

Since mr(G) is a whole number, that means that

mr(G) ≤
⌊

2

3
n

⌋
.

To show that this bound is attainable, we must consider three different cases.

Case 1: n = 3k. Then
⌊

2
3
n
⌋

= 2k. Consider the sequence

001︸︷︷︸ 001︸︷︷︸ · · · 001︸︷︷︸︸ ︷︷ ︸
k times

.

Then using the algorithmic way of calculating the minimum rank of threshold graphs, we find

that we don’t need to delete any zeros because there are never more than two consecutive

zeros. We also don’t need to truncate any zeros because there are none at the end. Then we

need only count the zeros. There are two for every three numbers in the sequence. Hence

there are 2k zeros and therefore, the minimum rank is 2k.

Case 2: n = 3k + 1. Then
⌊

2
3
n
⌋

= 2k. Consider the sequence

001︸︷︷︸ 001︸︷︷︸ · · · 001︸︷︷︸︸ ︷︷ ︸
k times

0.

Then using the algorithmic way of calculating the minimum rank of threshold graphs, we

find that we don’t need to delete any zeros because there are never more than two consec-

utive zeros. We do however need to truncate the terminal zero. Then we need only count

8



the remaining zeros. This is simple however, because it has turned into the same sequence

as above. Hence there are 2k zeros and therefore, the minimum rank is 2k.

Case 3: n = 3k + 2. Then
⌊

2
3
n
⌋

= 2k + 1. Consider the sequence

001︸︷︷︸ 001︸︷︷︸ · · · 001︸︷︷︸︸ ︷︷ ︸
k times

01.

Then using the algorithmic way of calculating the minimum rank of threshold graphs, we find

that we don’t need to delete any zeros because there are never more than two consecutive

zeros. We also don’t need to truncate any zeros because there are none at the end. Then we

need only count the zeros. There are two for every three numbers in the sequence when we

take out the last two elements of the sequence. Hence there are 2k + 1 zeros and therefore,

the minimum rank is 2k + 1.

Therefore, this bound is attainable for each positive integer n.

2.3 Counting Threshold Graphs

In combinatorics, there are two types of problems that occur repeatedly. One is the existence

of something. For example the existence of a formula for the maximum minimum rank. Many

times this may be difficult to find. In the case of threshold graphs, it was fairly simple to

find the formula for the maximum minimum rank. When the existence of a formula or

arrangement is fairly simple, then sometimes we move onto the second type of combinatorial

problem. That is, the enumeration of said arrangement. That is what the next three

theorems are doing.

Theorem 2.5. For each positive integer k, there is one threshold graph on 3k vertices that

attains the maximum minimum rank.

Proof. Given a threshold graph G on n = 3k vertices, we know that the maximum possible

9



minimum rank of G is ⌊
2

3
3k

⌋
= b2kc = 2k

By previous lemmata, we know that

w(G) ≥
⌈

mr(G)

2

⌉
=

⌈
2k

2

⌉
= k

z(G) ≥ mr(G) = 2k.

By using these two inequalities, we get that

n = z(G) + w(G) ≥ 2k + k = 3k = n.

Therefore we have all equalities and z(G) = 2k and w(G) = k. That means that each 1,

or each time we join K1, has to increase the minimum rank by 2, and each 0, or each time

we take the union with K1, has to count towards the minimum rank. In other words, we

can’t take the union more than two times in a row or else at least one of those unions won’t

help to increase the minimum rank when a join occurs. When we consider our minimum

rank equation from Lemma 5.1, the only way for this to happen is to have the pattern 001

repeated k times which accounts for w = k and z = 2k and yields the correct minimum

rank.

Theorem 2.6. For each positive integer k, there are k + 1 threshold graphs on n = 3k + 2

vertices that attain the maximum minimum rank.

Proof. Given a threshold graph G on 3k + 2 vertices that reaches the maximum minimum

rank, that means that

mr(G) =

⌊
2

3
(3k + 2)

⌋
=

⌊
2k +

4

3

⌋
= 2k + 1

10



By previous lemmata, we know that

w(G) ≥
⌈

mr(G)

2

⌉
=

⌈
2k + 1

2

⌉
= k + 1

z(G) ≥ mr(G) = 2k + 1.

Using these two inequalities, we get

n = z(G) + w(G) ≥ 2k + 1 + k + 1 = 3k + 2 = n

Therefore we have all equalities. Each 0 needs to contribute to the minimum rank, and each

1 needs to increase the minimum rank by 1 or 2. Therefore, we need to be able to partition

the 2k+ 1 zeros into k+ 1 parts using 1’s and 2’s. The only option for this is k 2’s, and one

1. That means that we need k copies of 001 and one instance of 01. The 01 can go before

or after any of the 001 and that will generate a different threshold graph. There are k + 1

places to put the 01, therefore, there are k+1 threshold graphs on 3k+2 vertices that attain

the maximum minimum rank of 2k + 1.

Theorem 2.7. For each positive integer k, there are
(

k+2
2

)
+k threshold graphs on n = 3k+1

vertices that attain the maximum minimum rank.

Proof. Given a threshold graph G on 3k + 1 vertices that attains the maximum minimum

rank, then

mr(G) =

⌊
2

3
(3k + 1)

⌋
=

⌊
2k +

2

3
k

⌋
= 2k

Therefore by previous lemmata, we know that

w(G) ≥
⌈

mr(G)

2

⌉
=

⌈
2k

2

⌉
= k

z(G) ≥ mr(G) = 2k

Therefore, we have one extra character that can either be a 0 or a 1.
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Case a: z(G) = 2k + 1 and w(G) = k. That means that one of the 0’s cannot count

towards the minimum rank, because that would give a minimum rank of 2k+1. That means

that there would either need to be a 0 at the end, or one set of three 0’s in a row. However,

since we have w(G) = k they would all need to increase the minimum rank by 2. That means

that we would have to have at least 2 zeros between every 1. So the pattern needs to be k

copies of 001 which accounts for 3k of the elements, and then we can place a 0 before any of

these repetitions (creating three consecutive zeros), or we can place the 0 at the end of the

sequence. Each of these constructions will generate a different threshold graph. There are

k + 1 places to place this 0. Hence there are
(

k+1
1

)
ways to do this.

Case b: z(G) = 2k, w(G) = k + 1, and the extra 1 does not increase the minimum rank.

That means that it had to come after another 1, for only when we join K1 to a connected

graph, does the minimum rank not increase. All of the 0’s must count towards the minimum

rank, but the minimum rank can only be increased k times, therefore, we must also have

the pattern of k copies of 001. The only places that we can put the extra 1 is following one

of these copies which will each generate a different threshold graph. There are k other 1’s,

therefore there are k threshold graphs like this.

Case c: z(G) = 2k, w(G) = k + 1, and every instance of the number 1 increases the

minimum rank. Since z(G) = 2k, every 0 needs to add to the minimum rank. Then 2k

partitioned into k+1 parts using 1’s and 2’s yields k−1 copies of 2 and two 1’s. That means

that there needs to be k − 1 copies of 001 and two copies of 01. There are k places to place

these 01’s which will yield different threshold graphs. There are
(

k
1

)
ways to put the 01’s in

if we place them together and
(

k
2

)
ways to put the 01’s in separately.

Therefore, in total there are

(
k

1

)
+

(
k

2

)
+

(
k + 1

1

)
+ k =

(
k + 1

2

)
+

(
k + 1

1

)
+ k

=

(
k + 2

2

)
+ k

12



Now that we have counted the number of threshold graphs that reach the maximum

minimum rank, we move on to counting the number of threshold graphs that have a given

minimum rank. Specifically, how many threshold graphs on n vertices have minimum rank

r.

Definition 2.8. Let Tn,r be the number of threshold graphs on n vertices with minimum

rank r.

Theorem 2.9. Tn,0 = 1 for all n > 0.

Proof. Given a threshold graph G where mr(G) = 0,

0 =
w∑

k=1

min{2, nk − nk−1 − 1},

so one of two things must occur. Either

nk − nk−1 − 1 = 0 ∀k, or

w(G) = 0

Suppose that w(G) 6= 0. We know however that, n1 ≥ 2 since t1 = 0, but n0 = 0. That

means that n1 − n0 − 1 ≥ 2 − 0 − 1 = 1, which would imply that mr(G) ≥ 1. Therefore

w(G) = 0 and z(G) = n. There is only one threshold graph with an all zero sequence,

nK1.

Theorem 2.10. Tn,1 = n− 1 for all n > 1

Proof. Suppose that

1 =

w(G)∑
k=1

min{2, nk − nk−1 − 1}

That means that w(G) 6= 0 and nk−nk−1−1 = 1 for some k, and for all other k, nk−nk−1−1 =

0. However, we know from the proof of the previous theorem that n1 ≥ 2. If n1 > 2 that
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would imply that mr(G) > 1. Therefore, we need n1 = 2. Then, as long as we have

nk−nk−1−1 = 0 for all 1 < k ≤ w(G), or equivalently, all 1’s are consecutive, the minimum

rank will be 1. Suppose that we have k ones, then the corresponding sequence is

0 11 · · · 1︸ ︷︷ ︸
k times

00 · · · 0︸ ︷︷ ︸
n−k−1 times

and we will obtain the desired minimum rank. Since the number of ones determines the

graph and there are n − 1 choices for w(G), there are n − 1 threshold graphs on n vertices

with minimum rank 1.

Theorem 2.11. There are (n− 2)2 threshold graphs on n vertices with minimum rank 2.

Proof. Case 1a One way to have a threshold graph with minimum rank 2 is to have 2 or

more zeros in the beginning of the sequence, and then a 1, and then have all the remaining

be zeros. This is the same as having a string of n−3 zeros and one 1 with the position of the

1 arbitrary. There are n-2 places to place the 1 and hence
(

n−2
1

)
ways for that to happen.

Case 1b Another way to have a threshold graph with minimum rank 2 is to start of the

same way as the previous case, but instead of only having one 1, you have multiple ones.

For the threshold graph to still have minimum rank 2, all of the ones would have to be

consecutive. Otherwise with at least one zero somewhere in between, the minimum rank

would increase. To determine how many sequences fit this case, you can choose at which

position the consecutive ones will start and at which position they will end. There are n− 2

positions, and you are choosing two of them. Hence there are
(

n−2
2

)
ways for that to happen.

Case 2 Now suppose that instead of having two zeros in a row followed by a 1, we have

two sets of 01. That will also correspond to threshold graphs that have minimum rank 2.

These sequences are completely determined once we figure out where we want to put the

second 0 and the final 1. After that is decided, then we will place 1’s in between the first one

and the second 0 so that we don’t increase the minimum rank, then if there are positions

between the second 0 and the final 1 we fill them with 1’s, then we will place 0’s after the
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final 1. Since the first two entries are already determined for us, there are n− 2 other places

to choose from. We want to choose two of those positions, where the first one will tell us

where the second zero goes, and the second position tells us where the last 1 goes. Therefore,

we have
(

n−2
2

)
ways for that to happen.

Therefore in total we have

Tn,2 =

(
n− 2

1

)
+

(
n− 2

2

)
+

(
n− 2

2

)
=

(
n− 1

2

)
+

(
n− 2

2

)
=

1

2
(n− 1)(n− 2) +

1

2
(n− 2)(n− 3)

=
1

2
(n− 2)(2n− 4)

= (n− 2)2

We now consider Tn,r for r > 2. Tn,r can be determined by considering how to get to

those graphs by using smaller threshold graphs.

Let Tn,r|1 be the number of threshold graphs on n vertices with minimum rank r whose

sequence ends in a 1. In other words, this is the number of connected threshold graphs on

n vertices with minimum rank r. Similarly we let Tn,r|10 be the number of threshold graphs

on n vertices with minimum rank r whose sequence ends in a 10.

To obtain a formula for Tn,r, we note that here are multiple ways of obtaining a threshold

graph on n vertices with minimum rank r. You could start with a graph that already had

minimum rank r and add something to it that doesn’t increase the minimum rank. That

means that you could take all the threshold graphs on n − 1 vertices with minimum rank

r and just union a K1, or you could take all the connected graphs on n − 1 vertices with

minimum rank r and join K1.

You could also start with a graph that has minimum rank r−1 and make sure that when
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you join K1 the minimum rank increases by 1. That means that there was only one isolated

vertex. That is the same as taking all of the connected threshold graphs on n − 2 vertices

with minimum rank r− 1 and then taking the union with a K1, then taking the join with a

K1.

You could also take the graphs that have minimum rank r− 2 and make sure that when

you join with a K1, the minimum rank increases by 2. That means that there had to be

at least 2 isolated vertices. If we take all of the threshold graphs on n − 3 vertices with

minimum rank r− 2 and take the union with 2K1, then we know for sure that when we take

the join with a K1 the minimum rank will increase by 2.

So from the explanation above, we arrive at the following formula.

Tn,r = Tn−1,r + Tn−1,r|1 + Tn−2,r−1|1 + Tn−3,r−2 (2.1)

Also note that to get the connected threshold graphs on n vertices with minimum rank r,

we can either take all the connected threshold graphs on n− 1 vertices with minimum rank

r and join them with K1, or we can take the threshold graphs on n − 1 vertices that have

minimum rank r − 1 that we are sure will have the minimum rank increase by 1 when we

take the join with K1. This is the same as taking all of the connected threshold graphs on

n− 2 vertices with minimum rank r− 1, because then we can take the union followed by the

join with K1. The last way to obtain these graphs, would be to take graphs on n−1 vertices

with minimum rank r−2 that we are sure will have the minimum rank increase by two when

we join K1. Just as before, that means that there had to be at least two isolated vertices.

Just as before, if we take all of the threshold graphs on n − 3 vertices with minimum rank

r − 2 and take the union with 2K1 and then the join with K1 we know that the resulting

graph will be a connected threshold graph on n vertices with minimum rank r.

That gives us the following equation:

Tn,r|1 = Tn−1,r|1 + Tn−2,r−1|1 + Tn−3,r−2 (2.2)

16



By rewriting (2.1) and (2.2) we get the following two equations

Tn,r − Tn−1,r − Tn−3,r−2 = Tn−1,r|1 + Tn−2,r−1|1 (2.3)

Tn−1,r|1 + Tn−2,r−1|1 = Tn,r|1 − Tn−3,r−2 (2.4)

It follows then from (2.3) and (2.4) that

Tn,r|1 = Tn,r − Tn−1,r (2.5)

Using (2.5), and the fact that n and r are arbitrary, we get the following two equations

Tn−1,r|1 = Tn−1,r − Tn−2,r (2.6)

Tn−2,r−1|1 = Tn−2,r−1 − Tn−3,r−1 (2.7)

Now we plug (2.6) and (2.7) into (2.1) and we find our overall formula

Tn,r = 2Tn−1,r − Tn−2,r + Tn−2,r−1 − Tn−3,r−1 + Tn−3,r−2 (2.8)

The following is a program in MATLAB that will find the number of threshold graphs

on n vertices with minimum rank r. It takes as inputs n and r and outputs Tn,r.

One of the things we can do with this recursive equation, is to give a short alternative

verification for the equation Tn,2 = (n− 2)2.

Proof. We proceed by way of induction. First we consider T2,2. Note that for n = 2, and by

Lemma 2.4 we know that the maximum minimum rank is 1. Therefore, there are no threshold

graphs on 2 vertices that have minimum rank 2. Hence we have T2,2 = 0 = (2 − 2)2. Now

suppose that the formula Tk,2 = (k − 2)2 is correct for all k < n, Then consider

Tn,2 = 2Tn−1,2 − Tn−2,2 + Tn−2,1 − Tn−3,1 + Tn−3,0.
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Then by our inductive hypothesis, Theorem 2.9, and Theorem 2.10 we get

Tn,2 = 2(n− 3)2 − (n− 4)2 + n− 3− (n− 4) + 1

= 2n2 − 12n+ 18− n2 + 8n− 16 + 2

= n2 − 4n− 4

= (n− 2)2

verifying Theorem 2.11.

The formula from equation (2.8) may also be used to generate the formulas for the

number of threshold graphs on n vertices with a small constant minimum rank r. Since

we were able to find the formulas for Tn,0, Tn,1, and Tn,2, we can use them to successively

determine formulas for Tn,3, Tn,4, etc.

Consider

Tn,3 = 2Tn−1,3 − Tn−2,3 + Tn−2,2 − Tn−3,2 + Tn−3,1.

We use the already known formulas from Theorem 2.10 and 2.11 and find that.

Tn,3 = 2Tn−1,3 − Tn−2,3 + (n− 4)2 − (n− 5)2 + (n− 4).

Tn,3 − 2Tn−1,3 + Tn−2,3 = 3n− 13

There are multiple ways to solve this recurrence relation that is now only in one variable. I

chose to use the method of generating functions. We note first of all, that by using Theorem

2.4 we know that Tn,3 = 0 for n ≤ 4. Then if we start at n = 5, applying the MATLAB

program above, we get that the first few nonzero terms of the sequence are 2, 9, 24 and 50.

To use the method of generating functions we take our equation and multiply everything
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by xn and then sum from n = 5 to ∞.

∞∑
n=5

Tn,3x
n − 2

∞∑
n=5

Tn−1,3x
n +

∞∑
n=5

Tn−2,3x
n =

∞∑
n=5

(3n− 13)xn

∞∑
n=5

Tn,3x
n − 2x

∞∑
n=5

Tn,3x
n + x2

∞∑
n=5

Tn,3x
n =

∞∑
n=5

(3n− 13)xn

(1− 2x+ x2)
∞∑

n=5

Tn,3x
n =

∞∑
n=5

(3n− 13)xn

Through further computation, we find that

(1− x)2

∞∑
n=5

Tn,3x
n =

x6 + 2x5

(1− x)2
,

which implies that
∞∑

n=5

Tn,3x
n =

x6 + 2x5

(1− x)4
.

This gives us the generating function. Now we can use this generating function to find the

formula for Tn,3. We find that

1

(1− x)4
=

1

6

∞∑
n=3

n(n− 1)(n− 2)xn−3

=
∞∑

n=3

(
n

3

)
xn−3

Finally we multiply in the last part and solve for the coefficients.

x6 + 2x5

(1− x)4
=

∞∑
n=3

(
n

3

)
xn+3 +

∞∑
n=3

2

(
n

3

)
xn+2

=
∞∑

n=6

(
n− 3

3

)
xn +

∞∑
n=5

2

(
n− 2

3

)
xn

= 2x5 +
∞∑

n=6

[(
n− 3

3

)
+ 2

(
n− 2

3

)]
xn

The coefficient of the generating function gives us the formula for Tn,3. Therefore, we have
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found that

Tn,3 =

(
n− 3

3

)
+ 2

(
n− 2

3

)
, n ≥ 5 (2.9)

We may find the formula for Tn,4 in a similar fashion. Theorem 2.4 tells us that for n ≤ 5,

Tn,4 = 0. So, the first few nonzero terms of this sequence starting at n = 6 are 1, 8, 31, and

85. Then

Tn,4 = 2Tn−1,4 − Tn−2,4 + Tn−2,3 − Tn−3,3 + Tn−3,2.

Then we can use Equation (2.9) and Theorem 2.11 we find that

Tn,4 − 2Tn−1,4 + Tn−2,4 =

(
n− 5

3

)
+ 2

(
n− 4

3

)
−
(
n− 6

3

)
− 2

(
n− 5

3

)
+ (n− 5)2.

Tn,4 − 2Tn−1,4 + Tn−2,4 =
5

2
n2 − 55

2
n+ 76.

Following the same steps as in the first part, except this time starting the sum at n = 6

(1− 2x+ x2)
∞∑

n=6

Tn,4x
n =

∞∑
n=6

(
5

2
n2 − 55

2
n+ 76

)
xn

Therefore,
∞∑

n=6

Tn,4x
n =

x6 + 3x7 + x8

(1− x)5

Through similar calculations as in the previous part, we get

∞∑
n=6

Tn,4x
n = x6 + 8x7 +

∞∑
n=8

[(
n− 2

4

)
+ 3

(
n− 3

4

)
+

(
n− 4

4

)]
xn.

Therefore, in this case we have found that

Tn,4 =

(
n− 2

4

)
+ 3

(
n− 3

4

)
+

(
n− 4

4

)
, n ≥ 8 (2.10)
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Chapter 3. Inertia Sets

In this chapter we will investigate the well known concept of the inertia of a symmetric

matrix and its combinatorial extension to the set of all possible inertias of matrices in S(G)

for a given undirected graph G.

I used a previous paper [2], in which it is outlined by various theorems and lemmata how

to find the inertia sets of graphs on 7 or fewer vertices. It is complex and time consuming

however to carry out the necessary calculations on paper, and I therefore, set up a more

algorithmic way and implemented it through MATLAB.

I wrote a recursive program that will output these inertia sets. One difficult aspect of

writing a program like this in MATLAB is that there is no nice way of representing the graph

except by a matrix. I chose to use the adjacency matrix to represent these graphs. However,

there are many different adjacency matrices corresponding to different vertex labelings that

represent the same graph. All of these matrices are permutation similar, so they have many

of the same properties. My program had to be able to determine properties about a graph

given any of the adjacency matrices that represent it.

The program is also able to find the inertia set for many other graphs that have more

than seven vertices.

3.1 More Definitions

Definition 3.1. Given a graph G on n vertices, the adjacency matrix A(G) = [aij] such

that

aij =


1 i 6= j, i ∼ j

0 otherwise

Here i ∼ j means that i is adjacent to j.

Definition 3.2. The row sum vector is found by multiplying the adjacency matrix by the

all ones vector. In other words it is the column vector formed by taking all of the row sums.
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Definition 3.3. Given a graph G on n vertices, the degree of a vertex vi is the number of

other vertices that are adjacent to it. One way to find the degree of each vertex using the

adjacency matrix is by looking at the row sum vector.

Definition 3.4. Given a graph G on n vertices, the Laplacian Matrix is defined as

L(G) =


deg(vi) if i = j

−1 if i ∼ j and i 6= j

0 otherwise

where deg(vi) is the degree of vertex vi.

Definition 3.5. Given a graph G on n vertices, H is called an induced subgraph if you can

get from G to H by removing a number of vertices and their corresponding edges.

Definition 3.6. A set of vertices in a graph G is an independent set if its vertices are

pairwise non-adjacent. The independence number of G, denoted α(G), is the size of the

largest independent set in G.

Definition 3.7. A bipartite graph is a graph whose vertices can be partitioned into two

disjoint (possibly empty) independent sets. Given m,n ∈ N, the graph mK1 ∨ nK1 is called

a complete bipartite graph and is written Km,n.

Definition 3.8. A complete tripartite graph is a graph whose vertices can be partitioned

three independent sets, where each vertex is adjacent to every vertex in the two set to which

it does not belong. It is denoted Kp,q,r where p, q, and r are the sizes of the independent

sets.

Definition 3.9. A k-connected graph is one in which there does not exist a set of k − 1

vertices whose removal results in either a disconnected or trivial graph.

Definition 3.10. The graph Q3Y∆ is defined to be
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Definition 3.11. Let G1 and G2 be graphs with at least two vertices, each with a vertex

labeled v. The vertex sum of G1 and G2 is found by identifying the vertices labeled v in both

graphs. In other words, you create a new graph by leaving all the edges from both graphs

and taking the two vertices labeled v and making them one vertex.

v v v

Definition 3.12. Given a graphG = (V,E), a 2-separation (if it exists) is a pair of subgraphs

(G1, G2) satisfying the following:

(i) V (G1) ∪ V (G2) = V

(ii) |V (G1) ∩ V (G2)| = 2

(iii) E(G1) ∪ E(G2) = E

(iv) E(G1) ∩ E(G2) = ∅.

Definition 3.13. Let G be a graph on at least two vertices and let uv be an edge of G. An

edge contraction on the edge uv is found by deleting the edge between u and v, and then

coalescing u and v into one vertex.
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u u

v v uv

Sometimes this creates multiple edges between two vertices called parallel edges.

u u

v v uv

We will also need an extension of the previous definition to include the case in which u

and v are not adjacent.

Definition 3.14. Let G be a graph on at least two vertices, and let u and v be vertices of G.

We construct a new graph G/uv by inserting the edge uv if it doesn’t exist and then taking

the edge contraction on the edge uv. If the edge uv already exists, then G/uv is merely the

edge contraction on the edge uv.

u u

v v uv

For convenience in working with parallel edges, we consider an expanded definition of

S(G).
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Definition 3.15. [6, Definition 2.4] Let G = (V,E) be a graph with V = {1, 2, · · · , n} which

we allow to have parallel edges. We denote by F2 the field with only two elements. If F is

a field unequal to F2, we define SF (G) as the set of all F -valued symmetric n× n matrices

A = [ai,j] with

(i) ai,j = 0, if i 6= j and i and j are not adjacent,

(ii) ai,j 6= 0 if i 6= jand i and j are connected by exactly one edge,

(iii) ai,j ∈ F if i 6= j and i and j are connected by multiple edges, and

(iv) ai,i ∈ F for all i ∈ V

For our purposes, we need only consider graphs that will have at most two edges joining

a given pair of vertices. Therefore, two vertices could be joined by no edges, one edge, or a

pair of parallel edges. [2]

Definition 3.16. Given a graph G, consider the following ways of reducing it:

(i) delete an edge,

(ii) contract an edge,

(iii) delete an isolated vertex.

A minor of G is any graph H that can be produced from G by successive application of

these reductions.

Definition 3.17. Given an n× n real symmetric matrix A, the inertia of A is the ordered

triple (π(A), ν(A), δ(A)), where π(A) is the number of positive eigenvalues of A, ν(A) is the

number of negative eigenvalues of A, and δ(A) is the multiplicity of 0 as an eigenvalue of A.

Then π(A) + ν(A) + δ(A) = n and π(A) + ν(A) = rank(A).

If the order of A is known, then we lose no information by discarding the third number

of the triple.
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Definition 3.18. Given a real symmetric matrix A, the partial inertia of A is the ordered

pair (π(A), ν(A)), written pin(A).

Definition 3.19. Given a graph G, the inertia set I(G) is the set of all possible partial

inertias of matrices in S(G). That is,

I(G) = {(r, s)| pin(A) = (r, s) for some A ∈ S(G)}

Definition 3.20. [5] The minimum rank line of a graph G consists of all points (r, s) ∈ I(G)

such that r + s = mr(G).

Definition 3.21. Let m and n be non-negative integers with m ≤ n. When plotted as

points in R2, the set

{(r, s) ∈ N2 |m ≤ r + s ≤ n}

forms a trapezoid, where N is the set of nonnegative integers. We denote this set by T[m,n].

For example, the set

{(2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}

is denoted T[2, 4].
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Observation 3.22. [5] For any graph G on n vertices I(G) ⊆ T[mr(G), n].

Definition 3.23. [5] Let G be a graph on n vertices. If I(G) = T[k, n] for some nonnegative

integer k, we say that I(G) is a trapezoid.

Observation 3.24. [5] If I(G) is a trapezoid then I(G) = T[mr(G), n].

Definition 3.25. [5] Let G be a graph. Then I(G)→ is the set that results from adding

(1, 0) to each element of I(G). Similarly, I(G)↑ is the set that results from adding (0, 1) to

each element of I(G).

It will also be necessary to calculate the inertia set of a graph G with parallel edges.

Definition 3.26. [2, Page 4491] For such a graph we say that the simple graph H is a simple

realization of G, denoted H ≺ G, if H can be obtained from G by replacing each pair of

parallel edges of G by either one edge or no edge: if G has k pairs of parallel edges, there

are 2k simple realizations of G having the same vertex labeling.

Definition 3.27. Given a graph G, possibly with parallel edges,

I(G) =
⋃

H≺G

I(H).

Definition 3.28. An atom is a 3-connected graph that is not a join.

3.2 Previous Results

Here is a list of the theorems and propositions that were used. Unless otherwise designated,

these can be found in [2]. That paper discusses how to find the inertia set on graphs that

have 7 or fewer vertices. Many of those theorems and propositions became the basis for the

program that I wrote that will take as input the adjacency matrix and find the inertia set

of all 1252 graphs that have 7 or less vertices.
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Lemma 3.29. [3, Lemma 3.6] [Northeast Lemma] Let G be a graph on n vertices and

suppose that A ∈ S(G) with pin(A) = (π, ν). Then for every pair of integers r ≥ π and

s ≥ ν satisfying r + s ≤ n, there exists a matrix B ∈ S(G) with pin(B) = (r, s).

Definition 3.30. A generating set of an inertia set I(G), is a set of partial inertias that

will give us the inertia set when you apply the Northeast lemma to it.

Minkowski Sum: If R and S are subsets of N× N, then

R + S = {(a+ c, b+ d) : (a, b) ∈ R and (c, d) ∈ S}.

Proposition 3.31. Let the graph G be a disjoint union of two graphs G1 and G2. Then

I(G) = I(G1) + I(G2).

We may extend this further to:

Proposition 3.32. Let the graph G be a disjoint union of k graphs G1, · · · , Gk. Then

I(G) =
∑k

i=1 I(Gi).

This proposition is one of the key ones used in my program. If we are given the adjacency

matrix of a graph, then to use this proposition, one needs to find the separate components

of the graph and find the Inertia set of each of those and then add them together using the

Minkowski sum.

Sometimes when we do this though, we end up with points (e, f) such that e + f > n,

where n is the number of vertices of G. We simply remove these points from the sum. Given

a set R ⊂ N× N, then we define

[R]n = {(a, b) : (a, b) ⊆ R and a+ b ≤ n}.

Theorem 3.33. Let G be the graph on n vertices that is a vertex sum of G1 and G2; i.e.,

G1 and G2 are disjoint graphs on at least two vertices, each with a vertex labeled v, and G
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is the graph defined by identifying the vertices labeled v in G1 and G2. Then

I(G) = [I(G1) + I(G2)]n ∪ [I(G1 − v) + I(G2 − v) + {(1, 1)}]n.

Theorem 3.34. [2, van der Holst] Let (G1, G2) be a 2-separation of a graph G with n vertices

and let {v1, v2} = V (G1)∩ V (G2). Let H1 and H2 be obtained from G1 and G2, respectively,

by adding an edge(possibly creating a parallel edge) between v1 and v2. Then

I(G) = [I(G1) + I(G2)]n ∪ [I(G1/v1v2) + I(G2/v1v2) + {(1, 1)}]n

∪ [I(G1 − v1) + I(G2 − v1) + {(1, 1)}]n

∪ [I(G1 − v2) + I(G2 − v2) + {(1, 1)}]n

∪ [I(G1 − {v1, v2}) + I(G2 − {v1, v2}) + {(2, 2)}]n

∪ [I(H1) + I(H2)]n.

The following theorem has been reformulated in a more convenient form.

Theorem 3.35. [4, Theorem 9] Let G be a graph with exactly t isolated vertices. Then

I(G ∨K1) =


I(G) + {(0, 0), (1, 0), (0, 1)} if t = 0

I(G) + {(1, 0), (0, 1)} if t = 1[
I(G) + {(1, 1), (t, 0), (0, t)}

]
n

if t ≥ 2

Note that Theorem 3.35 generalizes Proposition 1.8 from the minimum rank to inertia

sets.

Corollary 3.36. Given a connected graph G, then

I(G ∨K1) = I(G ∪K1).
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Proof. Since G is a connected graph, that means that it doesn’t have any isolated vertices.

I(G ∨K1) = I(G) + {(0, 0), (0, 1), (1, 0)}

= I(G) + I(K1)

= I(G ∪K1).

Proposition 3.37. The inertia set of a complete graph on n vertices is T [1, n] for n > 1.

Proposition 3.38. The inertia set of a complete bipartite graph Km,n is the inertia set

generated from the generating set

{(0,max(m,n)), (max(m,n), 0), (1, 1)}.

Theorem 3.39. [5, Theorem 5.1] Let G 6= Kn be a connected graph on n ≥ 3 vertices for

which Gc is a disjoint union of complete bipartite graphs. Then

I(G) = T [2, n].

Proposition 3.40. If an atom G on n vertices contains Kn−2 as a minor, then I(G) =

T [3, n].

Proposition 3.41. If an atom G on seven vertices is nonplanar and has K2 ∪ (2K1) as an

induced subgraph, where the vertices of the K2 are not twins (i.e., they have different sets of

neighbors), then

I(G) = T [4, 7] ∪ {(2, 1), (1, 2)}.

Proposition 3.42. If G is a planar atom on seven vertices with no K2,2,2 or Q3Y4 minor

then I(G) = T [4, 7].
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Proposition 3.43. The remaining 6 atoms on seven vertices, which were not covered by the

previous theorems, have I(G) = T [3, 7].

3.3 Calculations of the Inertia of a Graph

I am now going to discuss the methods that I used to find the inertia sets of graphs in my

program given an adjacency matrix.

3.3.1 Inertia Set of a Disjoint Union. There are some cases where it would be easier

to find the inertia set of a graph by hand than by a computer. For example, consider the

following two graphs and their corresponding adjacency matrices.

1 4

2 3 5 6

7

8 9

A1 =



0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0


and
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1 3

4 7 6 9

2

5 8

A2 =



0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0


When considering these graphs, we see that they are both the union

K3 ∪K3 ∪K3.

We note that to find the inertia set of a disjoint union, we need only add the inertia sets of

each component together. Hence we need only add the inertia sets for K3 three times. The

result is T [1, 3] + T [1, 3] + T [1, 3] = T [3, 9].
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However, in my program, I needed to be able to determine the inertia set from both of

those adjacency matrices. In the first adjacency matrix, it is fairly easy to see that there are

three disjoint parts by taking the 3× 3 blocks down the diagonal and seeing that there are

no other places that have ones. It is more difficult to see that from the second adjacency

matrix. I used a preexisting program from MATLAB called graphconncomp. What this

program does, is it takes in an adjacency matrix, and it outputs two things. The first output

is a positive integer which represents the number of components. The second output is a

vector that tells you which vertices correspond to which component.

For example, if we were to run

[S1, C1] = graphconncomp(sparse(A1),′ directed′, false)

we would get

S1 = 3

C1 =

[
1 1 1 2 2 2 3 3 3

]
if we were to run

[S1, C1] = graphconncomp(sparse(A2),′ directed′, false)

we would get

S1 = 3

C1 =

[
1 2 3 1 2 3 1 2 3

]
Once I was able to determine which vertices corresponded to which component, I could take

the principal submatrices corresponding to each component and plug those back into my

program so that it could find the inertia set of each of those components separately. That is

how I was able to use Proposition 3.32 in my program.

From this point on, we will only need to consider connected graphs. That is because

whenever we have a disconnected graph, we can find the inertia sets of the connected com-

ponents separately.
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3.3.2 Inertia Set of a Complete Graph. If the adjacency matrix is the 1× 1 matrix

[0], then we know that we have K1 as our graph. If this is the case, then the inertia set is

{(0, 0), (0, 1), (1, 0)}.

If we are given an adjacency matrix that is n×n for n > 1, then to check if this adjacency

matrix represents a complete graph, we check to see if the degree of every vertex is n − 1,

equivalently, all entries in the row sum vector are n− 1. If that is the case, then we get the

inertia set from Proposition 3.37.

3.3.3 Inertia Set of a Complete Bipartite Graph. To find out if a graph is a com-

plete bipartite graph, we may check the complement to see if the complement is made up of

two complete graphs. To do this in my program, I find the complement by taking a matrix of

the same size of all ones, subtract the identity matrix of the same size and then subtract the

adjacency matrix. Next, check to see if there are two components using the graphconncomp

program. Then if there are two components, I use the output of graphconncomp to extract

the principal submatrices and check if those correspond to complete graphs using the row

sum vector as in the previous section.

3.3.4 The Inertia Set of a Join. A graph G on n vertices is a join with another graph

G1 on n−1 vertices and K1, if and only if it has a dominating vertex, that is a vertex adjacent

to the rest of the vertices. So if there is a vertex that has degree n−1, we can reduce finding

the inertia set to finding the inertia set of G1 and finding out how many isolated vertices

there are in G1, then apply Theorem 3.35. To find out if there is a dominating vertex, we

take the row sum vector and do a simple search to see if any of the degrees are equal to n−1.

Then to see how many isolated vertices there are in G1, we just need to find the principal

submatrix that corresponds to G1. We take that matrix and find the row sum vector. The

number of 0 entries in the vector is the number of vertices that have degree 0, which is the

same as the number of isolated vertices. Now we apply Theorem 3.35
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3.3.5 Inertia Set of a Vertex Sum. Now let’s consider the following graph.

G

v

which we notice is a vertex sum of the following two graphs:

G1 v v G2

So in this case, to find the inertia set, we are able to use Theorem 3.33. So we find the

inertia set of G1 and G2 separately and add them together. We see that both of these graphs

are K3, so their inertia sets are T [1, 3]. Then we find the inertia set of G1 − v = K2 and

G2 − v = K2

G1 v G2 v

and add those together along with the set {(1, 1)}. So we end up with

[T [1, 3] + T [1, 3]]5 ∪ [T [1, 2] + T [1, 2] + {(1, 1)}]5 = T [2, 5].
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The procedure just outlined can be programmed as follows. To recognize whether or not

a graph is a vertex sum in my program, I would run through every vertex and see if its

removal gave me a disconnected graph. To do that I would delete column and row i and

check to see if the resulting matrix corresponds to a disconnected graph. To do this I use the

same program, which found the components of a graph, referenced in the beginning of the

section. If I find a vertex that separates the graph, then I can use that vertex as my vertex

labeled v in Theorem 3.33. Now that I have found my vertex v, I need to find the vertices

that correspond to G1 − v and G2 − v because then by adding the vertex v we will have G1

and G2. Since I used graphconncomp to find out if the removal of the vertex disconnected

the graph, I am also able to use that program to determine which vertices correspond to the

components.

At this point, I would be able to find the principal submatrices corresponding to all of

the subgraphs needed for Theorem 3.33. So I need only find the inertia set of each of those

graphs and plug them back into the formula.

3.3.6 Inertia Set of a 2-Separation. This part of the program was a little more dif-

ficult. The first step, is to figure out if the graph has a 2-separation. I went about this

in much the same way that I went about determining the presence of a cut vertex. I take

every possible combination of two vertices at a time, and check to see if their removal gives
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a disconnected graph. If the removal of two vertices disconnects the graph, then I proceed

to the next step. I save the two vertices, and call them v1 and v2 as in Theorem 3.34. First

I find the vertices corresponding to the graphs G1 − {v1, v2} and G2 − {v1, v2} by using the

program graphconncomp. Now that I have the vertices corresponding to those two graphs, I

can find the vertices corresponding to G1, G2, G1−{v1}, G1−{v2}, G2−{v1}, and G2−{v2}.

There are only four remaining graphs that I need to find to be able to use the formula from

Theorem 3.34. Since I have found the vertices corresponding to G1 and G2, I can find H1

and H2, by finding the principal submatrices corresponding to G1 and G2. Then I add one

to the positions corresponding to the edge v1v2. If there was already an edge there, then by

adding one, I create a parallel edge. If there wasn’t an edge then I merely create one.

To find the inertia set of a graph with parallel edges, I needed to find a way of representing

parallel edges. I changed the way that my program would take in the adjacency matrices.

If there was a two in an off-diagonal position of the matrix, then I said that represented

a parallel edge. Whenever that happened, I would take that matrix and create two new

matrices. The first with a one in that same position, and the second with a zero in that

position. In other words, I would rerun the program once with an edge there, and once with

no edge there.

The last two graphs that I needed to find were G1/v1v2 and G2/v1v2. To get G1/v1v2

when starting with the adjacency matrix corresponding to G1, we need to make v1 and v2

become one vertex, but we also need to make sure that all of the edges that were adjacent

to v1 and v2 will still be adjacent to the new combined vertex v. To do this using the

adjacency matrix, I would replace the column corresponding to v1 by the sum of the vectors

corresponding to v1 and v2. Then I would replace the row corresponding to v1 by the sum

of the rows corresponding to v1 and v2. This would ensure that all of the edges that were

adjacent to either v1 or v2 are now adjacent to the new vertex represented by the new row

and column. If v1 and v2 were adjacent to the same vertex, then the new row and column

will have a 2 in that place. Just as before, that represents a parallel edge. Sometimes, this
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will create a nonzero entry on the diagonal of the matrix. If this occurs then we change it to

a zero. Lastly, we change the column and row corresponding to v2 to zeros. We don’t delete

this row and column to allow the convenience of working with the same size matrices. We

find G2/v1v2 in the same way that we found G1/v1v2. Now that we have found the matrices

corresponding to all of the graphs in Theorem 3.34, we need only plug their inertia sets into

that formula.

3.3.7 Applying Theorem 3.39. To apply this theorem, I first found the complement

as in a previous part. Then I took each of the components of the complement. I then checked

each of those components to see if they were bipartite graphs just as in previous section. If

each of those parts was a bipartite graph, then this theorem was satisfied, and I could find

the inertia set.

3.3.8 The Inertia Set of an Atom on n Vertices that contains Kn−2 as a Minor.

At this point in my program, I have found the inertia set for all graphs that are not atoms

on 7 or fewer vertices. So when trying to apply Proposition 3.40, we need only check that

Kn−2 is a minor. This part of the program was fairly difficult conceptually. I had to be able

to contract or delete edges and delete vertices and find a complete graph as a minor. There

were two cases that I considered in my program.

The first case was if I could find three vertices, so that when I removed them, I was

left with a complete graph; if those three vertices induce a component of the graph, and if

collectively those vertices are adjacent to the remaining vertices, then we will have Kn−2 as

a minor. That is because we will be able to edge contract twice since there are at least two

edges that exist between the three vertices, and then because collectively they were adjacent

to the remaining vertices, and because the remaining vertices are all adjacent to each other,

we will be left with a complete graph once we delete the parallel edges. To do this in my

program, I would go through every set of three vertices and check each of those parts. First

I would check to see if when I removed those three vertices I was left with a complete graph.
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I did that by checking the row sum vector as in the previous sections. Then if I found that,

I would see if those three vertices together formed a connected graph. Since there were only

three vertices, if there were at least two edges, then it was connected. So I just checked to

make sure that there was at least one vertex with degree two. Then if that was true, I would

sum the three columns corresponding to each of the vertices and I would check to make sure

that each entry was nonzero.

The next case is similar, except now instead of finding three connected vertices, I needed

to find two pairs of adjacent vertices. So I would try to find four vertices such that if I

removed them I was left with a complete graph. I would do that the same way that I did in

the previous case except I would remove every set of four vertices instead of every set of 3

vertices. Then I would find the row sum vector and check if the remaining vertices formed

a complete graph. If that was the case, then I needed to make sure that I could separate

the four vertices into two sets, each with two vertices that were adjacent to each other. To

do that I would find the principal submatrix of each and make sure that both vertices had

degree 1. If that was the case, then I had to make sure that each pair of vertices found were

collectively adjacent to all remaining vertices, and at least one vertex in the other pair. I do

this in much the same way that I did the previous case.

If either of these cases is true, then I apply Proposition 3.40. Otherwise Kn−2 is not a

minor.

3.3.9 Inertia Set of Graphs Satisfying Proposition 3.41. First, I would take all

possible sets of four vertices. Then I would check to see if their induced subgraph had only

one edge. If that is true, then we have K2 ∪ (2K1) as an induced subgraph. To see this, I

merely check the row sum vector, and make sure that there are two vertices with degree one,

and two vertices with degree 0. Next I check to make sure that the two vertices that form

the K2 i.e. the two vertices with degree one are not twins. To do that, I make sure that their

neighbors are not the same. I do this by adding ones to the diagonal of the original adjacency

matrix and then comparing the columns corresponding to each vertex. If they are the same,
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then they are twins and I would keep checking, or move on to the next part. If they are not

twins, then I would move onto the next part of the proposition, that is to determine if the

graph is nonplanar. To be nonplanar, a graph must either have K5 as a minor, or it must

have K3,3 as a minor. Since we are only dealing with graphs on 7 vertices at this point, and

we already know that it doesn’t have Kn−2 (K5 in this case) as a minor, then the only way

for these graphs to be nonplanar is for them to have K3,3 as a minor. So now we only need

to check to see if K3,3 is a minor. Examining all of the graphs in [2] the determination of

whose inertia set relies on this proposition, the minor K3,3 was found by finding the edge

contraction on the K2 subgraph that we found in the first part. So in my program, I would

find the edge contraction on the edge in the K2 subgraph and then I would check to see if

that graph contained K3,3 as a minor. To check this I would find the complement of the

graph. Then if the complement is a subgraph of 2K3, then K3,3 is a minor of the original

graph. To check to see if the complement is a subgraph of 2K3, I would check the number of

components of the complement, as well as the size of the components. If there were four or

more components then it is true. If there are 3 components, and the biggest component has

3 vertices, then it is true. If there are 2 components, and both components have 3 vertices,

then it is true, and if there is only one component then it is not true. To check all of these

things I used the graphconncomp program built into MATLAB.

3.3.10 The Inertia Set of the Remaining Graphs on Seven Vertices. There are

only two propositions remaining, so if I can find all of the graphs that satisfy one of them,

then the rest of the graphs will be satisfied by the other proposition. I first examined the 6

atoms in Proposition 3.43 and found, upon deleting edges, that Q3Y4 is a subgraph (and

therefore a minor) of each. Therefore Proposition 3.42 could be applied without considering

whether or not K2,2,2 is a minor. The difficulty in finding Q3Y4 as a subgraph is that there

are many vertex labelings that could occur for this graph. So we cannot just compare the

adjacency matrices; we need to compare something else. I looked at all of the graphs on 7

vertices that have the same number of edges as Q3Y4, and the characteristic polynomial of
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Q3Y4 was unique.

Therefore, if I have a graph that has the same number of edges as Q3Y4, then I compare

the characteristic polynomial, and if they are the same, then I know the inertia set. If the

graph has more edges than Q3Y4, then I delete edges until it has the right number and

compare the characteristic polynomials again. However, I need to check all the possible

combinations of deleting the right number of edges. If it turns out that Q3Y4 is a minor of

the graph, then I know the inertia set from Proposition 3.43. Otherwise, we get the inertia

set from Proposition 3.42.

On the following page, I give the adjacency matrices of 3 atoms that satisfy the hypotheses

of Propositions 3.43, 3.41, and 3.42, respectively, and to the right of each I give the output

from my program. The program follows on the next 19 pages.
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G1005 =



0 1 1 1 0 0 0

1 0 1 0 1 1 0

1 1 0 0 0 1 1

1 0 0 0 1 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 1

0 0 1 1 0 1 0



G1004 =



0 1 1 1 0 0 0

1 0 1 0 1 1 0

1 1 0 1 0 0 1

1 0 1 0 1 1 0

0 1 0 1 0 0 1

0 1 0 1 0 0 1

0 0 1 0 1 1 0



G999 =



0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 0 1

1 0 1 0 0 0 1

0 1 0 1 1 1 0
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The following program executes my main program.

function RunInertiaSet(A)

inerset = InertiaSet(A);

if ~isempty(inerset)

figure

plot(inerset(:,1),inerset(:,2),’bs’,’MarkerFaceColor’,[.49 1 .63]);

grid on

axis square

set(gca, ’XTick’, 0:max(max(inerset)))

set(gca, ’YTick’, 0:max(max(inerset)))

else

disp(’The program is not yet capable of finding the inertia set’)

end

This is my main program.

function inerset = InertiaSet(A)%A is the adjacency matrix of the graph G

inerset=[];

n = size(A,1);

%This part checks to see if any of the entries in the incoming matrix are

%not either 0 or 1. This part is skipped at the beginning because only an

%adjacency matrix is input. However, later on in the program I create

%matrices that have 2 as inputs to represent a parallel edge which can

%either be used or not used and you need to take into account both. If

%this happens, then I rerun the program once with the edge there, and once

%without.

%This will only find the first time that there is an entry larger than 1

%and rerun the program. I chose to do it that way because it was easier
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%than figuring out how many times it happened (k) and making a loop that

%would find the inertia set for 2^k different graphs. Since the program was

%already written recursively, it seemed better to just have this part use

%that property of the program.

[I,J] = find(A>1,1);

if ~isempty(I)

%This makes that entry that we found a 1.

A1 = A;

A1(I,J) = 1;

A1(J,I) = 1;

%This makes that entry that we found a 0.

A2 = A;

A2(I,J)=0;

A2(J,I)=0;

%This finds the union of those two inertia sets.

inerset = unique([InertiaSet(A1);InertiaSet(A2)],’rows’);

return

end

% Second, check whether or not it is connected. If it is disconnected, do

% each part separately

[S,C] = graphconncomp(sparse(A),’directed’,false);

if S>1 %If there are two or more components.

inerset = [0 0];

for i=1:S

%We add up the inertia sets of all of the components.

inerset =addsets(inerset,InertiaSet(A(C==i,C==i)),n);
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end

return

end

%If it is just K1, then return [0 0] as the inertia set. I do this part

%separately because although K1 is a complete graph, it has a different

%inertia set than Kn.

if n==1

inerset =usegenset([0 0],1);

return

end

%Check to see if it is a complete graph. If it is, then compute the inertia

%set.

if sum(sum(A))==n*(n-1)

genset = [0 1;1 0];

inerset = usegenset(genset,n);

return

end

%Check to see if it is a complete bipartite graph. If so, then compute the

%inertia set.

if n>3

complement = ones(n)-eye(n)-A;

[Sc,Cc] = graphconncomp(sparse(complement),’directed’,false);

%If the complement is disconnected and has two components.

if Sc==2

comp1 = complement(Cc==1,Cc==1);

comp2 = complement(Cc==2,Cc==2);
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mc1=length(comp1);

mc2=length(comp2);

%If each of those components is a complete graph

if (sum(sum(comp1))== mc1*(mc1-1))&& (sum(sum(comp2))==mc2*(mc2-1))

mn = max(mc1,mc2);

inerset = usegenset([1 1;0 mn;mn 0],n);

return

end

end

end

%If the graph is a join of another graph G and K1

I = find(sum(A)==(n-1),1);

if ~isempty(I)

G=A;

Acheck = A;

G(I,:)=0;

Acheck(I,:)=[];

G(:,I)=0;

Acheck(:,I)=[];

J=sum(sum(Acheck)==0);

%If it is the join with a connected graph

if J==0

inerset= InertiaSet(G);

return

%If it is the join with a graph that has one isolated vertex.

elseif J==1
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inerset = addsets(InertiaSet(G),[1 0;0 1],n);

return

%If it is the join with a graph that has J isolated vertices.

else

inerset = addsets(InertiaSet(G),[J 0;0 J;1 1],n);

return

end

end

%Find out if there is a cut vertex

for j = 1:n

temppointsvec = 1:n;

temppointsvec(j) = [];

%If any induced subgraph on n-1 vertices is disconnected.

conn = checkcon(A(temppointsvec,temppointsvec));

if conn ~=0

cutvert=j;

break

end

end

%Cut vertex formula

if conn==1

G = A;

G(cutvert,:)=0;

G(:,cutvert)=0;

[S1,C1] = graphconncomp(sparse(G),’directed’,false);

compnum = C1(cutvert);%Since I only zeroed out the row and column, the
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%cut vertex will be its own component. In this line I figure out which

%one it is.

compnotv = 1:S1;

compnotv(compnum)=[];%Then I get rid of it.

inerset1 = [0 0];

for i=1:S1-1 %I got rid of the component corresponding to the cut

%vertex.

index = C1==compnotv(i);

index(cutvert)=true; %Take each component with the cut vertex

%included and add all of the inertia sets of those graphs together.

inerset1 = addsets(inerset1,InertiaSet(A(index,index)),n);

end

inerset2 = [0 0];

for i=1:S1-1

%Then take the inertia set of all of the components with the cut

%vertex taken out and add all the inertia sets of those graphs

%together.

inerset2 =addsets(inerset2,InertiaSet(A(C1==compnotv(i),...

C1==compnotv(i))),n);

end

inerset2 = addsets(inerset2,[1 1],n);%Then add [1 1] to those

%inertia sets.

inerset=unique([inerset1;inerset2],’rows’); %Then take the union of

%those two things.

return
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end

%Find out if there is a two separation

if conn==0

for j=1:n

for k = j+1:n

temppointsvec = 1:n;

temppointsvec([j,k]) = [];

% If any induced subgraph on n-2 vertices is disconnected.

conn = checkcon(A(temppointsvec,temppointsvec));

if conn~=0

conn=2;

cutvert = [j,k];

break

end

end

if conn==2

break

end

end

end

%Two separation formula

if conn==2

G = A;

%zero out the rows and columns corresponding to the 2-separation

G(cutvert,:)=0;

G(:,cutvert)=0;
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[S2,C2] = graphconncomp(sparse(G),’directed’,false);

%But now, both of those vertices will be their own components.

compnum = C2(cutvert);

compnotv = 1:S2;

%So I get rid of them as components.

compnotv(compnum) = [];

%finding I(G1)+I(G2)

%G1 is the first component, and G2 the union of all the rest. Still not

%including the vertices corresponding to the 2-separation.

indexG1=C2==compnotv(1);

indexG1(cutvert)=true;

G1 = A;

G1(~indexG1,:)=0;

G1(:,~indexG1) = 0;

indexG2 = C2~=compnotv(1);

G2 = A;

G2(~indexG2,:)=0;

G2(:,~indexG2)=0;

G2(cutvert,cutvert) =0;

inerset1 = addsets(InertiaSet(G1),InertiaSet(G2),n);

%finding I(G1/v1v2)+I(G2/v1v2)+{[1 1]}

G1modv12 = G1;

G1modv12(cutvert(1),:) = G1modv12(cutvert(1),:)+G1modv12(cutvert(2),:);

G1modv12(:,cutvert(1)) = G1modv12(:,cutvert(1))+G1modv12(:,cutvert(2));

G1modv12(cutvert(1),cutvert(1))=0;
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G1modv12(cutvert(2),:)=0;

G1modv12(:,cutvert(2))=0;

G2modv12 = G2;

G2modv12(cutvert(1),:) = G2modv12(cutvert(1),:)+G2modv12(cutvert(2),:);

G2modv12(:,cutvert(1)) = G2modv12(:,cutvert(1))+G2modv12(:,cutvert(2));

G2modv12(cutvert(1),cutvert(1))=0;

G2modv12(cutvert(2),:)=0;

G2modv12(:,cutvert(2))=0;

inerset2 = addsets(InertiaSet(G1modv12),InertiaSet(G2modv12),n);

inerset2 = addsets(inerset2,usegenset([1 1],n),n);

%finding I(G1-v1)+I(G2-v1)+{[1 1]}

indexG1minv1 = indexG1;

indexG1minv1(cutvert(1))=false;

G1minv1=A;

G1minv1(~indexG1minv1,:)=0;

G1minv1(:,~indexG1minv1) = 0;

indexG2minv1 = indexG2;

indexG2minv1(cutvert(1))=false;

G2minv1=A;

G2minv1(~indexG2minv1,:)=0;

G2minv1(:,~indexG2minv1) = 0;

inerset3 = addsets(InertiaSet(G1minv1),InertiaSet(G2minv1),n);

inerset3 = addsets(inerset3,usegenset([1 1],n),n);

%finding I(G1-v2)+I(G2-v2)+{[1 1]}

indexG1minv2 = indexG1;
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indexG1minv2(cutvert(2))=false;

G1minv2=A;

G1minv2(~indexG1minv2,:)=0;

G1minv2(:,~indexG1minv2) = 0;

indexG2minv2 = indexG2;

indexG2minv2(cutvert(2))=false;

G2minv2=A;

G2minv2(~indexG2minv2,:)=0;

G2minv2(:,~indexG2minv2) = 0;

inerset4 = addsets(InertiaSet(G1minv2),InertiaSet(G2minv2),n);

inerset4 = addsets(inerset4,usegenset([1 1],n),n);

%finding I(G1-{v1,v2})+I(G2-{v1,v2})+{[2 2]}

indexG1minv12 = indexG1;

indexG1minv12(cutvert)=false;

G1minv12=A;

G1minv12(~indexG1minv12,:)=0;

G1minv12(:,~indexG1minv12) = 0;

indexG2minv12 = indexG2;

indexG2minv12(cutvert)=false;

G2minv12=A;

G2minv12(~indexG2minv12,:)=0;

G2minv12(:,~indexG2minv12) = 0;

inerset5 = addsets(InertiaSet(G1minv12),InertiaSet(G2minv12),n);

inerset5 = addsets(inerset5,usegenset([2 2],n),n);

%finding I(H1)+I(H2)
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jkmat = zeros(n);

jkmat(cutvert,cutvert) = [0 1;1 0];

H1 = G1+jkmat;

H2 = G2+jkmat;

inerset6=addsets(InertiaSet(H1),InertiaSet(H2),n);

inerset=unique([inerset1;inerset2;inerset3;inerset4;inerset5;...

inerset6],’rows’);

return

end

if n>=3%Theorem 5.1 in Inertia Sets for Graphs on Six or Fewer Vertices

Gcomp = ones(n)-eye(n)-A;

[S C] = graphconncomp(sparse(Gcomp),’directed’,false);

svec = false(1,S);

for i = 1:S

Anew = Gcomp(C==i,C==i);

nnew = size(Anew);

complement = ones(nnew)-eye(nnew)-Anew;

[Sc,Cc] = graphconncomp(sparse(complement),’directed’,false);

%If the complement is disconnected and has two components.

if nnew==1 %K1 is a bipartite graph

svec(i)=true;

elseif Sc==2

comp1 = complement(Cc==1,Cc==1);

comp2 = complement(Cc==2,Cc==2);

mc1=length(comp1);
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mc2=length(comp2);

%If each of those components is a complete graph

if (sum(sum(comp1))== mc1*(mc1-1))&&...

(sum(sum(comp2))==mc2*(mc2-1))

svec(i)=true;

end

end

end

if all(svec)

inerset = Trap(2,n);

return

end

end

%Finding out whether or not K_{n-2} is a minor

if n>5

verts = nchoosek(1:n,n-3);

for v=1:size(verts,1)

if sum(sum(A(verts(v,:),verts(v,:))))==(n-3)*(n-4)

vertcontract = 1:n;

vertcontract(verts(v,:))=[];

G = A;

G(vertcontract(1),:)=sum(G(vertcontract,:),1);

if sum(sum(A(vertcontract,vertcontract)))>=4

if isempty(find(G(vertcontract(1),verts(v,:))==0,1))

inerset = usegenset([3 0;2 1;1 2;0 3],n);

return
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end

end

end

end

verts = nchoosek(1:n,n-4);

for v=1:size(verts,1)

if sum(sum(A(verts(v,:),verts(v,:))))==(n-4)*(n-5)

vertcontract = 1:n;

vertcontract(verts(v,:))=[];

for j=2:4

verts1 = vertcontract([1,j]);

verts2 = vertcontract;

verts2([1,j])=[];

if (sum(sum(A(verts1,verts1)))==2)&& sum(sum(A(verts2,...

verts2)))==2

G = A;

G(verts1(1),:)=sum(G(verts1,:),1);

% G(:,verts1(1))=sum(:,G(verts1),2);

G(verts2(1),:)=sum(G(verts2,:),1);

% G(:,verts2(1))=sum(:,G(verts2),2);

if isempty(find(G(verts1(1),verts(v,:))==0,1))&&...

isempty(find(G(verts2(1),verts(v,:))==0,1))

if length(find(G(verts1(1),verts2)==0,2))~=2&&...

length(find(G(verts2(1),verts1)==0,2))~=2

inerset = usegenset([3 0;2 1;1 2;0 3],n);

return

end
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end

end

end

end

end

end

if n==7

%nonplanar with K_2 U 2K_1 on 7 vertices without twins

for k=1:size(verts,1)

vertcontract = 1:n;

vertcontract(verts(k,:))=[];

G = A(vertcontract,vertcontract);

if sum(sum(G))==2

[I J]=find(G,1);

NewA = A+eye(size(A));

if sum(abs(NewA(vertcontract(I),:)-NewA(vertcontract(J),:)))~=0

K33check = [vertcontract(I) vertcontract(J)];

% for p=1:n

% findK33 = 1:n;

% findK33(p)=[];

% if checkK33(A(findK33,findK33))

% inerset = usegenset([2,1;1,2;4,0;0,4],n);

% return

% end

% end

% [K33checki K33checkj] = find(A);
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% K33checkspots =K33checki< K33checkj;

% K33check = [K33checki(K33checkspots) ...

% K33checkj(K33checkspots)];

% for p = 1:size(K33check,1)

Aidentify = A;

Aidentify(K33check(1),:) = Aidentify(K33check(1),:)...

+Aidentify(K33check(2),:);

Aidentify(:,K33check(1)) = Aidentify(:,K33check(1))...

+Aidentify(:,K33check(2));

Aidentify = Aidentify-diag(diag(Aidentify));

identvert = 1:n;

identvert(K33check(2))=[];

Aidentify = real(Aidentify(identvert,identvert)>0);

%All of the graphs covered by this proposition have K33

%as a minor. To find this minor, you need to find the

%edge contraction of the graph G on the edge in the K2.

if checkK33(Aidentify)

inerset = usegenset([2,1;1,2;4,0;0,4],n);

return

end

% end

end

end

end

% Find out if Q3Y\delta is a minor

numedges = sum(sum(A))/2;

if numedges>=12 && numedges<=15
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%For this one I had to check that the characteristic polynomial of

%Q3Y\delta was unique when compared to graphs of with a similar

%number of vertices and edges. I used the characteristic

%polynomial, because it is provably difficult to determine whether

%two adjacency matrices are permutation similar.

G1005=[0 1 1 1 0 0 0;1 0 1 0 1 1 0;1 1 0 0 0 1 1;1 0 0 0 1 0 1;

0 1 0 1 0 1 0;0 1 1 0 1 0 1;0 0 1 1 0 1 0];% Q3Y\delta

P = poly(G1005);

%If A does have the right number of vertices and edges then we need

%only compare the characteristic polynomial.

if numedges==12

if norm(P-poly(A))<1e-10

inerset = usegenset([0 3;1 2;2 1;3 0],n);

return

else

inerset = usegenset([0 4;1 3;2 2;3 1;4 0],n);

return

end

end

%If it doesn’t have the correct number of edges, but does have the

%correct number of vertices, then we need to delete edges until it

%has the right number. Then compare the characteristic polynomials

%again. I try to do this in a way that will cut down the number of

%checks that I do. For example, I won’t erase edges that will lower

%the degree of a vertex to below what the minimum degree of

%Q3Y\delta.

[Y,I]=sort(sum(A),’descend’);
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A = A(I,I);

[checki checkj] = find(A);

checkspots =checki< checkj;

checki = checki(checkspots);

checkj = checkj(checkspots);

bad = find(Y==3,1);

options = find(checkj==bad,1)-1;

eraseedges = nchoosek(1:options,numedges-12);

for i=1:size(eraseedges,1)

newA = A;

for j = 1:numedges-12

points= [checki(eraseedges(i,j)) checkj(eraseedges(i,j))];

newA(points,points)=0;

end

if norm(P-poly(newA))<1e-10

inerset = usegenset([0 3;1 2;2 1;3 0],n);

return

end

end

%If it is not a minor, then I return the inertia set.

inerset = usegenset([0 4;1 3;2 2;3 1;4 0],n);

return

end

end

function conn = checkcon(B)

%This function will check to see if the graph is connected. It will do so
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%by checking the second smallest eigenvalue of the LaPlacian matrix. If the

%second smallest eigenvalue is 0, then it is disconnected. That is because

%the multiplicity of zero as an eigenvalue is equal to the number of

%components.

conn = 0;

L = diag(sum(B))-B;

lam = eig(L);

if lam(2)<eps

conn=1;

end

end

function insets = addsets(G1,G2,n)

%This is the Minkowski sum

v1=size(G1,1);

v2 = size(G2,1);

h=[];

repvec = v1*ones(v2,1);

h(cumsum(repvec))=1;

G2rep=G2(cumsum(h)-h+1,:);

G1rep = repmat(G1,v2,1);

insets = G1rep+G2rep;

insets = unique(insets,’rows’);

insets = insets(sum(insets,2)<=n,:);

end

function inertiaset = usegenset(gensetmat,n)
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%Uses the generating set given and uses the northeast lemma to find the

%inertia set. It takes each point in the generating set and gets all of

%the points that satisfy the northeast lemma and then takes that union

%of all of those points.

inertiaset = [];

for m = 1:size(gensetmat,1)

x = gensetmat(m,1);

y = gensetmat(m,2);

xvec = (x:n)’;

yvec = (y:n)’;

yvec = repmat(yvec,n-x+1,1);

xvec = sort(repmat(xvec,n-y+1,1));

tempinerset = [xvec,yvec];

%This makes sure that we don’t go out too far. We can’t have the

%partial inertia add up to more than n.

tempinerset = tempinerset(sum(tempinerset,2)<=n,:);

inertiaset = [inertiaset;tempinerset];

end

inertiaset=unique(inertiaset,’rows’);

end

function prop10= checkK33(GcheckK33)

%Checks to see if K33 is a minor. It is helpful to know whether or not

%K33 is a minor for one of the propositions used to determine the

%inertia set. To find out whether or not K33 is a minor, we consider

%the complement of the graph.

[Scomp,Ccomp] = graphconncomp(sparse(ones(size(GcheckK33))...
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-eye(size(GcheckK33))-GcheckK33),’directed’,false);

switch Scomp

case {4,5,6}

%If the complement has 4 or more components, then that means

%that K33 is a minor.

prop10=true;

case 3

%If the complement has 3 components and at least one of those

%components has three vertices, that means that K33 is a minor

sizecomp = sort([sum(Ccomp==1) sum(Ccomp==2) sum(Ccomp==3)]);

prop10 = sizecomp(3)==3;

case 2

%If the complement has 2 components, and both components have 3

%vertices, then K33 is a minor.

prop10=(sum(Ccomp==1)==3);

otherwise

prop10=false;

end

end

function I = Trap(a,b)

n1 = min(a,b);

n2 = max(a,b);

gensettrap = [(0:n1)’ (n1:-1:0)’];

I = usegenset(gensettrap,n2);

end

end
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