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abstract

Compression Bodies and Their Boundary Hyperbolic Structures

Vinh Xuan Dang
Department of Mathematics, BYU

Doctor of Philosophy

We study hyperbolic structures on the compression body C with genus 2 positive boundary
and genus 1 negative boundary. We consider individual hyperbolic structures as well as
special regions in the space of all such hyperbolic structures. We use some properties of
the boundary hyperbolic structures on C to establish an interesting property of cusp shapes
of tunnel number one manifolds. This extends a result of Nimershiem in [26] to the class
of tunnel number one manifolds. We also establish convergence results on the geometry of
compression bodies. This extends the work of Ito in [13] from the punctured-torus case to
the compression body case.

Keywords: Hyperbolic Manifolds, Kleinian Groups, Compression Bodies



Acknowledgments

I thank my advisor, Jessica Purcell, for teaching me all the mathematics needed for this 

work and for providing many key ideas and insights for me to complete it. Without her 

constant support and encouragement, I would have given up on this path long ago. The 

journey through learning mathematics has always been fascinating to me, but it has never 

been easy. And I am truly thankful for all my teachers and my family, especially my parents 

and my wife, QuynhTram, for being the source of inspiration and strength in this 

challenging endeavor.



Contents

Contents iv

1 Introduction 1

2 Cusp Shapes, Compression Bodies and Tunnel-Number-One Manifolds 5

2.1 Cusp Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Compression Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Tunnel-Number-One Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Hyperbolic Structures on Compression Bodies 9

3.1 Geometry of PSL(2,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Hyperbolic Structures on the (1; 2)-compression body . . . . . . . . . . . . . 10

3.3 Isometric Spheres, Ford Domains and the Poincaré Polyhedron Theorem . . 12
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Chapter 1. Introduction

An unknotting tunnel for a 3-manifold M with torus boundary components is defined to

be an arc τ whose endpoints are on the boundary of M such that the complement of a

neighborhood of τ in M is a handlebody. Tunnel number one manifolds are manifolds

(other than a solid torus) that admit as single unknotting tunnel. In [2], Adams initiated

the study of the relationship between unknotting tunnels and hyperbolic structures on tunnel

number one manifolds. This relationship is part of a major task in the study of 3-manifolds

to relate topological invariants to geometric ones. Recently, there has been further process

in the study of the geometry of unknotting tunnels. In [9], Cooper, Lackenby and Purcell

investigated lengths of unknotting tunnels. In [10], this was extended by Cooper, Futer and

Purcell. Throughout these studies they answered multiple long-standing questions posed

by Adams in [2] and Sakuma and Weeks in [28] and also posed more open questions for

further investigations. A natural generalization of the study of tunnel number one manifolds

is the study of compression bodies. A compression body is either a handlebody or the

result of attaching 1-handles to a boundary of a surface crossed with an interval as in

Figure 2.3. The reason compression bodies come into the study of tunnel number one

manifolds and unknotting tunnels is because any tunnel number one manifold is built by

attaching a compression body to a handlebody, and the unknotting tunnel corresponds

to an arc in the compression body. Furthermore, compression bodies are interesting in

themselves because every compact, orientable 3-manifold admits a Heegaard splitting into

two compression bodies. Thus, compression bodies are buiding blocks for many manifolds.

In [15], Lackenby and Purcell initiated the study of hyperbolic structures on compression

bodies and their relationship with unknotting tunnels in tunnel number one manifolds. Some

of this work was extended to more complicated compression bodies by Burton and Purcell in

[6]. However, there is still much to discover concerning hyperbolic structures even for simple

compression bodies.
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This thesis is an attempt to understand more about the hyperbolic structures of the

simplest possible compression body, the (1; 2)-compression body. We consider individual

hyperbolic structures as well as special regions in the space of all such hyperbolic structures.

This can be used to establish interesting properties of tunnel number one manifolds, and to

establish convergence results on the geometry of compression bodies.

In the first part of the thesis, which comprises Chapter 1 to 5, we apply techniques

introduced in [9], [10], [6], and [15], especially an understanding of boundary of the space

of hyperbolic structures on the (1; 2)-compression body, to prove two theorems which reveal

more attractive features of tunnel-number-one manifolds, their unknotting tunnels, and their

cusp shapes. In particular, we prove

Theorem 1.1 (Cusp Shapes Theorem). For any ε > 0 and any similarity class of flat

metrics [T ] on the torus, there exists a complete, finite volume, tunnel number one hyperbolic

manifold M with a single rank-2 cusp Tε × [0,∞) whose shape [Tε] is ε-close to [T ].

Cusps of hyperbolic manifolds and cusp shapes will be defined in more details in Section

2.1 of Chapter 2. Basically, the theorem says that the set of possible cusp shapes corre-

sponding to cusps of tunnel number one hyperbolic manifolds is dense in the set of possible

Euclidean metrics on a torus. This extends a result by Nimershiem [26] to the class of tunnel

number one manifolds.

Moreover, in trying to generalize Theorem 1.1 to manifolds with large tunnel numbers,

we have constructed manifolds which have a cusp whose shape is arbitrarily close to a

prescribed shape and a tunnel system of arbitrarily many tunnels, each of which satisfies

certain geometric property. Specifically, we prove

Theorem 1.2. Let [T ] be any similarity class of flat metrics on the torus. For any natural

number n, any real number R > 0 and any ε > 0, there exists a complete, finite volume

hyperbolic manifold with a single rank-2 cusp whose shape is ε-close to [T ] and which admits

a system of tunnels {τ1, . . . , τn} such that the geodesic representative of the homotopy class

of each tunnel τi has length at least R.
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Some interesting open questions about about cusp shapes and cusp areas of manifolds

with unknotting tunnels still remain and these are described at the end of of Chapter 5.

The key in proving Theorem 1.1 and Theorem 1.2 lies in the fact that maximally cusped

structures, which are special structures on the boundary of the space of hyperbolic structures

on the (1; 2)-compression body, are dense on this boundary (see [7]). Yet, there is much that

is unknown about this boundary.

In the second part of this thesis, which comprises Chapter 6 and 7, we prove some inter-

esting properties about convergence of “slices” of this boundary. The foundational work of

Culler and Shalen in [11] has provided the framework to parameterize the space of hyperbolic

structures on 3-manifolds using trace coordinates. Furthermore, work of Bromberg in [5] and

Magid in [18] has provided a local model for the subspace consisting of minimally parabolic

and geometrically finite hyperbolic structures on many manifolds. In [13], Ito applied these

theories to the special case of the manifold M = S × I where S is a punctured torus and I

is an interval. He proved some convergence results on the slices of the space of hyperbolic

structures on M . These results definitely give a better quantitative understanding of this

space. We are the first to consider the analogue of Ito’s result to the case of the (1; 2)-

compression body. In particular, our main theorem in the second part of the thesis is the

following:

Theorem 1.3 (Slice Convergence Theorem). If {cn} is a sequence of complex numbers in

C \ [−2, 2] such that {cn} converges to 2 horocyclically, then the slices L(cn) converge to the

slice L(2) in the sense of Hausdorff.

The various types of convergence and “slices” of the boundary of the space of hyperbolic

structures on the (1; 2)-compression body will be discussed carefully in Chapter 6 and 7.

Roughly speaking, Theorem 1.3 says that these special slices are determined by the trace

coordinates. When the traces converge in a certain sense (horocyclically), the slices will

converge to a slice which contains special structures on the boundary.

Here is a more detailed summary of the content of each chapter in this thesis:
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• Chapter 2 introduces the central players in the Cusp Shape Theorem 1.1. In section

2.1, we define cusp shapes, which are similarity classes of flat metrics on cusp cross-

sections of a hyperbolic manifold and we survey some known results about cusp shapes

of hyperbolic manifolds. Section 2.2 introduces compression bodies, especially the

(1; 2)-compression bodies, which are building blocks for tunnel-number-one manifolds.

Section 2.3 gives some concrete examples of tunnel-number-one manifolds.

• Chapter 3 discusses hyperbolic structures on compression bodies. We start by briefly

describing the classification of elements of PSL(2;C) based on their actions on the

upper half space model H3. In section 3.2, we define precisely what it means to give

the (1; 2)-compression body a hyperbolic structure and define two special types of hy-

perbolic structures, geometrically finite structures and minimally parabolic structures.

We give an explicit example of a hyperbolic structure on the (1; 2)-compression body

that is both geometrically finite and minimally parabolic. In section 3.3, we carefully

explain the Poincare Polyhedron Theorem 3.10, the main tool for proving that a given

subgroup of PSL(2;C) is discrete and geometrically finite, hence, gives rise to a hyper-

bolic manifold. We repeatedly apply the Poincare Polyhedron Theorem throughout

this thesis to construct hyperbolic structures on (1; 2)-compression bodies.

• Chapter 4 focuses on very special hyperbolic structures on the boundary of the space

MP(C, T ) of all geometrically finite and minimally parabolic structures on the (1; 2)-

compression body C, called cusped structures. In section 4.2, we give an example

of a class of cusped structures which will be very useful in the proof of the Cusp

Shape Theorem 5.1. In section 4.3, we present an explicit construction of maximally

cusped structures, which are special cusped structures for which every component of the

boundary of the convex core of the corresponding hyperbolic manifold is a 3-punctured

sphere. These structures are dense on the boundary of MP(C, T ) and are used in a

crucial way in the proof of Theorem 1.1.
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• Chapter 5 is the heart of part one. We prove the Cusp Shape Theorem in section

5.1. We also present a more general result on cusp shapes of manifolds with tunnel

number at most n, namely Theorem 1.2. This chapter concludes with section 5.3 where

we discuss some open questions about cusp shapes and cusp areas of manifolds with

unknotting tunnels.

• Chapter 6 is the beginning of part two of the thesis where we shift our attention to the

space MP(C, T ). Section 6.1 describes a local model for this space due to Bromberg.

In section 6.2 and 6.3, we prove some important properties of this local model which

will then be applied in the proof of the Slice Convergence Theorem 1.3.

• Chapter 7 contains the proof of two important results. Theorem 7.2 is about neigh-

borhoods of points inM, hereM is roughly a model for the class of cusped structures

described in Chapter 4. This theorem is a key step in the proof of the Slice Convergence

Theorem, which is proved in section 7.3.

Chapter 2. Cusp Shapes, Compression Bodies and

Tunnel-Number-One Manifolds

This chapter introduces the central players in the Cusp Shape Theorem 5.1, which is the

main theorem in the first part of the thesis.

2.1 Cusp Shapes

For ease of exposition, we assume in this section that M is a complete, finite-volume, non-

compact, orientable hyperbolic manifold. Such a manifold can be decomposed into a compact

manifold Mcore with toroidal boundary components and finitely many ends (see Figure 2.1).

Each end of M is isometric to a manifold of the form Tj×[0,∞) where Tj is homeomorphic

to a torus. Such an end is called a cusp of M and Tj is called a cusp cross-section. The
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Figure 2.1: Thick-Thin Decomposition of a Finite Volume, Non-compact Hyperbolic Mani-
fold

Figure 2.2: Different Similarity Classes on a Torus

hyperbolic metric on M induces a flat metric on the cusp cross-section Tj which is well-

defined up to similarity. These similarity classes of flat metrics on the cusp cross-sections

are called the cusp shapes of M . We shall denote the cusp shape corresponding to a cusp

cross-section Tj by [Tj] (see Figure 2.2).

Since there are uncountably many similarity classes of flat metrics on the torus T2 and

there are only countably many finite volume manifolds (see [30]), not all similarity classes

of flat metrics on T2 can appear as cusp shapes of finite-volume, hyperbolic manifolds.

Nevertheless, in [26], Nimershiem proved that the set of similarity classes of T2 occurring as

cusp shapes of finite-volume hyperbolic manifolds is dense in the set S(T2) of all similarity

classes of flat metrics on T2. In the same paper she extended the above result and proved that

the set of similarity classes of T2 that bound 1-cusped hyperbolic manifolds is also dense

in S(T2). These results were later generalized to higher dimensions by McReynolds who

proved in [24] that given a flat n-manifold Q, the set of similarity classes of flat metrics on

Q occurring as cusp shapes of hyperbolic (n+ 1)-orbifolds is dense in the set of all similarity

classes of flat metrics on Q. He also proved that if Q is a flat n-torus then “orbifolds” can

6



Figure 2.3: The (1; 2)-compression body

be replaced by “manifolds.”

The main result of the first part of this thesis generalizes Nimershiem’s result to a class

of manifolds called tunnel-number-one manifolds. The building blocks for constructing these

tunnel-number-one manifolds are simple manifolds called compression bodies.

2.2 Compression Bodies

To define a compression body, we start with S, which is a closed, orientable (possibly dis-

connected) surface whose genus is at least 1 and the interval I = [0, 1]. A compression body

C is either a handlebody or the result of attaching 1-handles to S × I along S × {1} such

that the result is connected. The negative boundary is S × {0} and is denoted ∂−C. The

positive boundary is ∂C \ ∂−C and is denoted ∂+C.

The compression body that we primarily study here is one for which ∂−C is a torus and

∂+C is a genus 2 surface. We will call this the (1; 2)-compression body and denote it by

C(1; 2) or just C when there is no confusion. Note that C(1; 2) is obtained by attaching a

single 1-handle to T2 × I (See Figure 2.3).

The fundamental group of C = C(1; 2) is π1(C) = (Z×Z)∗Z because C(1; 2) deformation

retracts to a torus union the arc γ in Figure 2.3. This arc is called the core tunnel of C.

From now on, we will denote the generators of the Z×Z factor by α and β and by abuse of

notation we will denote the generator of the last Z factor by γ.

A more general compression body, which is the object of study of [8] or [16] for example,

7



Figure 2.4: A more general compression body

Figure 2.5: A tunnel-number-one manifold

is shown in Figure 2.4.

Compression bodies can be used to build manifolds with unknotting tunnels. In particular,

the (1; 2)-compression body can be used to build tunnel-number-one manifolds which we will

define in the following section.

2.3 Tunnel-Number-One Manifolds

A tunnel-number-one manifold is a manifold which admits a properly embedded arc τ such

that the complement in M of a neighborhood of τ is a handlebody. The complement of the

knot in Figure 2.5 is an example of a tunnel-number-one manifold.

The geometry of tunnel-number-one manifolds is an interesting subject of study. See [2],

[3], [9], [6], and [15] for some results and open questions.

Note that a tunnel-number-one manifold can be constructed by gluing a (1; 2)-compression

body and a genus 2 handlebody along their genus 2 boundaries. As a result, a complete un-

8



derstanding of the geometric structures on compression bodies could lead to many interest-

ing results about the geometry of tunnel-number-one manifolds. For example in [9], Cooper,

Lackenby and Purcell built tunnel-number-one manifolds with arbitrarily long unknotting

tunnels by studying hyperbolic structures on the (1; 2)-compression body. One of the main

goals of this thesis is to understand some aspects of the space of geometric structures on the

(1; 2)-compression body. In the next Chapter, we will provide some background material on

geometric structures, specifically, hyperbolic structures on the (1; 2)-compression body.

Chapter 3. Hyperbolic Structures on Compression Bodies

To give a compression body a hyperbolic structure amounts to constructing a discrete and

faithful representation from the fundamental group of the compression body to PSL(2,C).

In the first section, we briefly review some important properties of elements and subgroups

of PSL(2,C).

3.1 Geometry of PSL(2,C)

Recall that PSL(2,C) = SL(2,C)/{±I} where SL(2,C) is the group of 2-by-2 matrices of

determinant 1 and I is the identity matrix. An element A of PSL(2,C) acts on the sphere at

infinity S∞ = C ∪ {∞} of the upper half space H3 as a Möbius transformation. Specifically,

the action of A =

a b

c d

 on C ∪ {∞} is given by

z 7−→ A(z) =
az + b

cz + d
,∀z ∈ C ∪ {∞}.

Since a Möbius transformation is a composition of reflections in circles in C ∪ {∞} and a

reflection in a circle in C ∪ {∞} can be extended to a reflection in the hemisphere in H3

bounded by that circle, this action can be extended to an action on H3 (see [19] for more

9



details). Elements of PSL(2,C) can be classified based on their action on H3 (see Chapter 1

of [22] for a very nice exposition). More algebraically, one can classify these elements based

on their traces. In particular, an element A ∈ PSL(2,C) is

• parabolic if tr(A) = ±2,

• loxodromic if tr(A) ∈ C \ [−2, 2],

• elliptic if tr(A) ∈ (−2, 2).

Note that a parabolic element has exactly one fixed point, a loxodromic element has

exactly two fixed points, and an elliptic element has infinitely many fixed points in H3∪S∞.

The fixed points of parabolic and loxodromic elements belong to the sphere at infinity (see

[19], Section 1.1).

We will be concerned with subgroups of PSL(2,C) which are images of representations

of the fundamental group π1(C) of the (1; 2)-compression body C into PSL(2,C). For such

a representation to correspond to a hyperbolic structure on C, it is necessary that its image

is a discrete subgroup of PSL(2,C). A subgroup Γ of PSL(2,C) is discrete if the identity

is isolated in Γ, i.e., there is no infinite sequence of distinct elements in Γ which converges

to the identity (see [19], Section 2.2 for equivalent conditions of “discreteness”). Since a

discrete subgroup Γ of PSL(2,C) acts on H3, we can study its quotient space H3/Γ. If

Γ is torsion-free, i.e., it contains no elliptic elements, then H3/Γ is a complete, hyperbolic

manifold (see [19], Chapter 2 for more details).

We are now ready to discuss some background material on hyperbolic structures on the

(1; 2)-compression body.

3.2 Hyperbolic Structures on the (1; 2)-compression body

Definition 3.1. Let C = C(1; 2) be the (1; 2)-compression body. To give C a hyperbolic

structure is to construct a discrete and faithful representation ρ : π1(C) −→ PSL(2,C) such

that the manifold H3/Γ is homeomorphic to the interior of C. Here Γ = ρ(π1(C)) is the

10



image of π1(C) under ρ. The representation ρ is discrete if Γ is discrete and it is faithful if

it is a monomorphism.

We are mostly interested in special hyperbolic structures on C called geometrically finite

and minimally parabolic structures.

Definition 3.2. A hyperbolic structure on C is geometrically finite if Γ admits a finite-sided,

convex fundamental domain.

Definition 3.3. A hyperbolic structure on C is minimally parabolic if Γ has no rank one

parabolic subgroups. Here a rank one parabolic subgroup of Γ is a cyclic group generated

by a parabolic element of Γ. We will also call such a subgroup a rank-1 cusp.

Note that Γ = ρ(π1(C)) is minimally parabolic if for all g ∈ π1(C), the element ρ(g) of Γ

is parabolic if and only if g is conjugate to an element of the fundamental group of the torus

boundary component of C.

Here is an example of a discrete and faithful representation which gives C a geometrically

finite and minimally parabolic hyperbolic structure:

Example 3.4. Recall that π1(C) = ( Z︸︷︷︸
〈α〉

× Z︸︷︷︸
〈β〉

) ∗ Z︸︷︷︸
〈γ〉

. Construct ρ : π1(C) −→ PSL(2,C)

by specifying ρ on the generators α, β and γ as

ρ(α) =

1 100

0 1

 , ρ(β) =

1 100i

0 1

 , ρ(γ) =

6i −1

1 0


and extend ρ to the whole group.

To prove that ρ is discrete and gives C a geometrically finite structure, we will construct

a special fundamental domain for the action of Γ = ρ(π1(C)) on H3 called the Ford domain

(see Figure 3.1) and apply the Poincaré Polyhedron Theorem. To prove that the structure

is minimally parabolic, we will need to analyze the visibility of the isometric spheres corre-

sponding to elements of Γ. Since we will use these tools repeatedly later on, we recall them

in a more general setting in the next section.

11
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Figure 3.1: A Ford Domain for the action of Γ

3.3 Isometric Spheres, Ford Domains and the Poincaré Poly-

hedron Theorem

This section closely follows [15]; the reader can consult that paper for proofs of various results

cited here.

Let Γ be a discrete subgroup of PSL(2,C) and let M = H3/Γ be the quotient manifold

corresponding to Γ. We assume that Γ has a single rank-2 cusp, i.e., a free Abelian subgroup

Γ∞ of rank 2 generated by 2 parabolic elements. By conjugating Γ, we can assume that

Γ∞ admits {∞} as its unique fixed point. Note that if an element g of Γ fixes {∞}, then

g ∈ Γ∞. Also note that topologically, a rank-2 cusp corresponds to the cross product of a

torus and an interval as in Section 2.1.

Definition 3.5. Let g ∈ Γ \ Γ∞ and g =

a b

c d

. The isometric sphere of g, denoted by

I(g), is the Euclidean hemisphere centered at g−1(∞) = −d/c with radius 1/|c|.

Remark. (i) Note that if H is any horosphere centered at ∞ in the upper half space H3,

then I(g) is the set of points in H3 equidistant from H and g−1(H) (see Section 2 of

[15]).

(ii) The element g maps I(g) isometrically to I(g−1) and it maps the half ball B(g) bounded

by I(g) to the exterior of the half ball B(g−1) bounded by I(g−1) (Lemma 2.15 of [15]).

12



Definition 3.6. The equivariant Ford domain for the action of Γ, denoted by F , is the set

F = H3 \
⋃

g∈Γ\Γ∞

B(g).

Definition 3.7. A vertical fundamental domain for Γ∞ is a fundamental domain for the

action of Γ∞ cut out by finitely many vertical geodesics planes in H3.

Definition 3.8. A Ford domain for the action of Γ is the intersection of F with a vertical

fundamental domain for the action of Γ∞.

Example 3.9. Let Γ = ρ(π1(C)) where ρ is as in Example 3.4. Then the isometric sphere

I(ρ(γ)) has center 0 and radius 1 and the isometric sphere I(ρ(γ−1)) has center 6i and

radius 1. In this case, the group Γ∞ is generated by ρ(α) and ρ(β) and it acts by Euclidean

translations on H3. By choice of ρ(α) and ρ(β), all translates of I(ρ(γ)) and I(ρ(γ−1)) are

disjoint. It turns out that the equivariant Ford domain F consists of the exterior of the half

balls B(ρ(γ)) and B(ρ(γ−1)) and their translates under Γ∞. We will also prove later that

the Ford domain for ρ is as shown in Figure 3.1.

Remark. Note that the manifold M = H3/Γ is geometrically finite if and only if Γ admits a

Ford domain with a finite number of faces (Corollary 2.10. of [15]).

We are now in the position to state the Poincaré Polyhedron Theorem and an important

corollary.

Theorem 3.10 (Poincaré Polyhedron Theorem). Let g1, . . . , gn be elements of PSL(2,C) and

let Γ∞ ∼= Z × Z be a parabolic subgroup of PSL(2,C) fixing {∞}. Let P be the polyhedron

cut out by isometric spheres corresponding to {g1, . . . , gn} and {g−1
1 , . . . , g−1

n } and a vertical

fundamental domain for the action of Γ∞. Let M be the object obtained from P by gluing

isometric spheres corresponding to gj and g−1
j via the isometry gj and gluing faces of the

vertical fundamental domain by parabolic isometries in Γ∞. Suppose that each face pairing

maps a face of P isometrically to another face of P and let Γ be the group generated by
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all the face pairings. If the sum of the dihedral angles about each edge of M is 2π and the

monodromy around the edge is the identity. Then

• M is a smooth hyperbolic manifold with π1(M) ∼= Γ, and

• Γ is discrete.

Proof. See Theorem 2.25 of [15]. �

The Poincaré Polyhedron Theorem has the following useful Corollary

Corollary 3.11. Let Γ be a subgroup of PSL(2,C) with a rank 2 parabolic subgroup Γ∞

fixing ∞. Suppose the isometric spheres corresponding to a finite set of elements of Γ as well

as a vertical fundamental domain for Γ∞ cut out a polyhedron P so that face pairings given

by the isometries corresponding to isometric spheres and to elements of Γ∞ yield a smooth

hyperbolic manifold with fundamental group Γ. Then Γ is discrete, the manifold H3/Γ is

geometrically finite and P is a Ford domain of H3/Γ.

Proof. See Lemma 2.26. of [15]. �

We give an example where the Poincaré Polyhedron Theorem and Corollary 3.11 is ap-

plied to show that a representation of π1(C) is discrete and gives C a geometrically finite

structure.

Example 3.12. The representation ρ : π1(C) −→ PSL(2,C) defined on the generators α, β

and γ of π1(C) as

ρ(α) =

1 100

0 1

 , ρ(β) =

1 100i

0 1

 , ρ(γ) =

6i −1

1 0


is a discrete representation of π1(C) into PSL(2,C) and ρ gives C a geometrically finite

hyperbolic structure.
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In fact, as discussed above, the isometric spheres I(ρ(γ)) and I(ρ(γ−1)) and their trans-

lates under Γ∞ are all disjoint. By choice of ρ(α) and ρ(β), we can choose a vertical fun-

damental domain for Γ∞ which contains I(ρ(γ)) and I(ρ(γ−1)). Let P be the region in

the interior of the vertical fundamental domain and exterior to the half balls B(ρ(γ)) and

B(ρ(γ−1)). Let M be the object obtained by gluing the vertical sides of P via elements of Γ∞

and gluing I(ρ(γ)) to I(ρ(γ−1)) via ρ(γ). Since the only edges of M come from the vertical

fundamental domain, the Poincaré Polyhedron Theorem applies to show that M is a smooth

hyperbolic manifold with π1(M) ∼= Γ and Γ is discrete. Moreover, Corollary 3.11 implies

that P is a Ford domain for the action of Γ and M is geometrically finite. Finally, when

we glue the sides of the vertical fundamental domain of Γ∞, the result is homeomorphic to

T2 × (0, 1). And gluing the face I(ρ(γ)) and I(ρ(γ−1)) is topologically equivalent to attach-

ing a 1-handle to T2 × (0, 1), resulting in a manifold homeomorphic to the interior of the

(1; 2)-compression body C. So, the geometrically finite hyperbolic manifold M = H3/Γ is

homeomorphic to the interior of C. Therefore, the representation ρ gives C a geometrically

finite hyperbolic structure by definition.

Finally, to prove that ρ gives C a minimally parabolic structure, we apply the following

result of [15].

Proposition 3.13. Suppose that ρ : π1(C) −→ PSL(2,C) gives C a geometrically finite

hyperbolic structure. If none of the visible isometric spheres of the Ford domain for the

action of Γ = ρ(π1(C)) are visibly tangent on their boundaries, then ρ gives C a minimally

parabolic structure.

Proof. See Lemma 2.18. of [15] �

Now, by the discussion above, we have seen that the Ford domain for Γ = ρ(π1(C)) in

Example 3.4 is as shown in Figure 3.1. By inspection, the only visible isometric spheres of Γ

are I(ρ(γ)) and I(ρ(γ−1)) and they are not visibly tangent on their boundaries. Therefore,

Proposition 3.13 implies that this structure is minimally parabolic.
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This concludes our discussion of putting a geometrically finite, minimally parabolic struc-

ture on the (1; 2)-compression body. Proving our Cusp Shape Theorem will also require an

understanding of the space of all hyperbolic structures on C, and special structures on the

boundary of this space. This is the subject of the next chapter.

Chapter 4. Cusped Structures and Maximally Cusped

Structures

Throughout this chapter, C = C(1; 2) is the (1; 2)-compression body and T is the torus

boundary component of C.

4.1 Space of Hyperbolic Structures - AH(C, T ) and MP(C, T )

We first define the representation space of C with parabolic locus T to be the space

R(C, T ) = {representation ρ : π1(C) −→ PSL(2,C) : g ∈ π1(T ) =⇒ ρ(g) is parabolic}.

The space AH(C, T ) of hyperbolic structures on C is the set (defined below) equipped with

the topology of algebraic convergence

AH(C, T ) = {ρ ∈ R(C, T ) : ρ is discrete and faithful}/ ∼,

where we quotient out by the equivalence relation ∼ given by ρ ∼ ρ′ if they are conjugate

representations.

The topology on AH(C, T ) is given by algebraic convergence. We say that a sequence

of representations {ρn} in AH(C, T ) converges algebraically to a representation ρ if the

sequence {ρn(g)} converges to ρ(g) for every g ∈ π1(C). Here we regard ρn(g) as a point

in the manifold PSL(2,C) and so {ρn(g)} converges to ρ(g) in the sense of convergence of
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points in PSL(2,C).

Suppose {ρn} converges to ρ algebraically. Algebraic convergence does not reveal much

geometric information, i.e., we do not know much about the relationship between the se-

quence of quotient manifolds H3/ρn(π1(C)) and the limiting manifold H3/ρ(π1(C)). Later

on, we will need a stronger notion of convergence, called geometric convergence. We will

define geometric convergence of the images Γn = ρn(π1(C)) and Γ = ρ(π1(C)) of the repre-

sentations.

Definition 4.1. We say that a sequence of subgroups Γn of PSL(2,C) converges geometri-

cally to a subgroup Γ if

(i) For each ζ ∈ Γ, there exists ζn ∈ Γn such that {ζn} converges to ζ.

(ii) If ζnj ∈ Γnj , and {ζnj} converges to ζ, then ζ ∈ Γ.

The following Theorem (see [14]) relates the two notions of convergence

Theorem 4.2 (Jorgensen and Marden). Suppose the sequence of discrete representations

{ρn} converges to a discrete representation ρ algebraically. Let Γn = ρn(π1(C)) and Γ =

ρ(π1(C)). Then there exists a subsequence {Γnj} of {Γn} such that {Γnj} converges geo-

metrically to a discrete group Γ′. Moreover, Γ is a subgroup of Γ′. Hence, the manifold

M = H3/Γ is a covering manifold of the manifold M ′ = H3/Γ′.

Finally, the space MP(C, T ) of geometrically finite, minimally parabolic hyperbolic struc-

tures on C is a subspace of AH(C, T ) equipped with the subspace topology. It is defined

as

MP(C, T ) = {[ρ] ∈ AH(C, T ) : ρ gives C a geometrically finite, minimally parabolic structure}.

The relationship between MP(C, T ) and AH(C, T ) is completely described in the following

two difficult theorems.
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Theorem 4.3 (Marden [20] and Sullivan [29]).

MP(C, T ) = Int(AH(C, T )).

And

Theorem 4.4 (Density Theorem, see [25] and [27]).

AH(C, T ) = MP(C, T )

We are now in the position to discuss the structures on the boundary of MP(C, T ).

4.2 Cusped Structures

From Theorem 4.4, the boundary ∂MP(C, T ) = AH(C, T )\MP(C, T ) of the space MP(C, T )

consists of equivalence classes of representations which give C structures that are geomet-

rically finite but not minimally parabolic or structures that are geometrically infinite (not

geometrically finite). Also from Theorem 4.4, every structure on the boundary of MP(C, T )

is the algebraic limit of a convergent sequence in MP (C, T ). We call structures that are

geometrically finite but not minimally parabolic cusped structures. The following Lemma

provides the construction of a family of examples of cusped structures. Such structures will

be very useful in our proof of the Cusp Shape Theorem.

Lemma 4.5. Let ρ : π1(C) −→ PSL(2,C) be defined on the generators α, β and γ of π1(C)

as

ρ(α) =

1 a

0 1

 , ρ(β) =

1 b

0 1

 , ρ(γ) =

2 −1

1 0


where a and b are complex numbers which are linearly independent over R with |a| > 4 and

|b| > 4. Then ρ gives C a cusped structure.
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Figure 4.1: A Ford Domain for the action of Γ in Lemma 4.5

Proof. We first prove that [ρ] is in AH(C, T ). It suffices to prove that ρ is discrete. We will

see that the Ford domain for the action of Γ = ρ(π1(C)) is as shown in Figure 4.1.

By inspection, the only visible isometric spheres of Γ are I(ρ(γ)), I(ρ(γ−1)) and their

translates under Γ∞ = 〈ρ(α), ρ(β)〉. The isometric spheres corresponding to ρ(γk) for k ∈

Z \ {±1} are all invisible, so are their translates under Γ∞. By choice of a and b, we can

choose a vertical fundamental domain for Γ∞ which contains I(ρ(γ)) and I(ρ(γ−1)). Let

P be the polyhedron cut out by the isometric spheres I(ρ(γ)) and I(ρ(γ−1)) and a vertical

fundamental domain for the action of Γ∞ as in Figure 4.1. The polyhedron P has six faces

and the face pairings are ρ(α), ρ(β) and ρ(γ). Each of them maps a face of P isometrically

to another face of P . Moreover, P has one edge corresponding to the vertical fundamental

domain, which satisfies the requirements of the Poincaré Polyhedron Theorem 3.10. The

theorem applies to show that H3/Γ is a smooth hyperbolic manifold and Γ is discrete, i.e.,

ρ is discrete. Furthermore, the manifold obtained by gluing the faces of P is homeomorphic

to C. Also, Corollary 3.11 implies that P , which is finite-sided, is a Ford domain for the

action of Γ. Thus, ρ gives C a geometrically finite hyperbolic structure.

However, ρ(γ) is parabolic but γ is not an element of the free Abelian rank 2 subgroup

π1(T ) of π1(C). Hence, ρ is not minimally parabolic by definition. Thus, ρ gives C a structure

which is geometrically finite but not minimally parabolic, i.e., a cusped structure. �
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4.3 Maximally Cusped Structures

Maximally cusped structures are special cusped structures on the boundary of MP(C, T )

which will play an important role in our proof of the Cusp Shape Theorem. We define them

and explicitly compute some examples in this section. By abuse of language, from now on

we will call a representation ρ that gives C a hyperbolic structure a structure.

Definition 4.6. A maximally cusped structure is a cusped structure ρ such that every

component of the boundary of the convex core of H3/ρ(π1(C)) is a 3-punctured sphere.

Maximally cusped structures are useful because of the following result (see Theorem 16.2.

of [7]):

Theorem 4.7 (Canary - Culler - Hersonsky - Shalen). Maximally cusped structures are

dense on the boundary ∂MP(C, T ) of the space MP(C, T ).

Although it is not necessary to explicitly construct maximally cusped structures to prove

our Cusp Shape Theorem, the computation of maximally cusped structures on the (1, 2)-

compression body is both interesting and nontrivial. Therefore, we will make a detour here

to present our construction.

4.3.1 Construction of Maximally Cusped Structures. To produce a maximally

cusped structure on the (1; 2)-compression body C, we must pinch 3 curves that form a pants

decomposition of the genus 2 boundary ∂+C of C. Suppose we start with a geometrically

finite, minimally parabolic structure in MP(C, T ); such a structure is given by, for example,

the representation ρ with

ρ(α) =

1 a

0 1

 , ρ(β) =

1 b

0 1

 , ρ(γ) =

c −1

1 0


where a and b are complex numbers which are linearly independent over R with |a| > 2|c|

and |b| > 2|c|, and c ∈ R.
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Figure 4.2: Two Curves To Be Pinched on ∂+C

Figure 4.3: 4-punctured sphere obtain from cutting along 2 curves on ∂+C

We start by choosing 2 convenient curves to pinch, namely, the red and the green curve

in Figure 4.2, where the endpoints of these curves are identified under ρ(π1(C)).

Note that if we fix an appropriate base point, then the green curve corresponds to the

word γ and the red curve corresponds to the word α−1γ in π1(C). Now, we need to figure

out the last curve which, together with the red and the green curve, will form a pants

decomposition of ∂+C. Cut along the red and the green curve; we obtain a 4-punctured

sphere S0,4. The process is depicted in Figure 4.3.

It is well-known that there is a one-to-one correspondence between simple closed curves
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Figure 4.4: The 2/1 curve on the 4-punctured sphere

Figure 4.5: Generators of π1(S0,4)

on S0,4 and the set Q∪{1/0} (see Section 2 of [9]). For example, Figure 4.4 shows the curve

2/1 where the 4-punctured sphere is drawn in a projection plane with 4 points removed.

Any p/q curve on S0,4, together with the curve γ and α−1γ, will form a pants decompo-

sition of ∂+C. It remains to express the p/q curve as a word in the generators α, β and γ

of π1(C). We know π1(S0,4) = 〈x, y, z, t|xyzt = 1〉 where x, y, z, t are the 4 curves in Figure

4.5.

Therefore, it suffices to express x, y and z as words in the generators α, β and γ. We do

so by choosing a base point O for ∂+C and performing curve tracing as in Figure 4.6.
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Figure 4.6: Generators of π1(S0,4) on ∂+C
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On ∂+C, we see that the simple closed curve x goes from the base point O to the point

y1. The point y1 is then identified to the point αy1 in the opposite side. The curve then

goes from αy1 to x1 which is then identified to the point γ−1x1. Finally, the curve goes from

γ−1x1 back to the base point O. We use the following arrow diagram to trace this curve

O // y1 ∼ αy1
// x1 ∼ γ−1x1

// O.

It follows that the curve x corresponds to the word γ−1α in π1(C). Similarly, the diagram

we obtain when tracing the curve y is

O // x2 ∼ β−1x2
// y2 ∼ αy2

// x3 ∼ γ−1x3
// x4 ∼ βx4

// O.

Thus, the curve y corresponds to the word βγ−1αβ−1 in π1(C). Finally, the diagram for

the curve z is

O // x5 ∼ β−1x5
// x6 ∼ γx6

// x7 ∼ βx7
// O.

Hence, the curve z corresponds to the word βγβ−1 in π1(C). Since xyzt = 1, we can also

express t as a word in α, β and γ if we need to.

Now, suppose we want to express a p/q curve on the 4-punctured sphere, say the 2/1

curve as a word in α, β and γ. We first note that in terms of the generators x, y, z, t for

π1(S0,4), the 2/1 curve is zxyx−1. Therefore, by the above result, the 2/1 curve corresponds

to the word βγβ−1γ−1αβγ−1αβ−1α−1γ.

Now, the green and the red curve in Figure 4.2 together with the 2/1 curve on S0,4 form

a pant decomposition of ∂+C. To obtain a maximally cusped structure on C, all we need

to do is to pinch these 3 curves. This amounts to setting the trace of images under the

representation ρ of the words in the generators α, β and γ corresponding to these 3 curves
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Figure 4.7: Isometric Spheres Pattern for a Maximally Cusped Structure

equal to 2 or −2. For example, we set

tr(ρ(γ)) = 2 to pinch the green curve in Figure 4.2,

tr(ρ(α−1γ)) = 2 to pinch the red curve in Figure 4.2

tr(ρ(βγβ−1γ−1αβγ−1αβ−1α−1γ)) = 2 to pinch the 2/1 curve on S0,4.

A solution for these 3 trace equations is c = 2, a = 4 and b = −1 + i
√

3. Therefore, a

representation ρ which gives C a maximally cusped structure is

ρ(α) =

1 4

0 1

 , ρ(β) =

1 −1 + i
√

3

0 1

 , ρ(γ) =

2 −1

1 0


A portion of the isometric sphere pattern for the group Γ = ρ(π1(C)), drawn by a program

written by Dr. Jessica Purcell, is shown in Figure 4.7. The full pattern would include spheres

tangent in a hexagon pattern covering the entire plane.

We can apply the above procedure to pinch the red and green curve in Figure 4.2 and
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any p/q curve on S0,4. However, the computations become more complex rather quickly. A

more general procedure for constructing maximally cusped structures would be interesting.

Chapter 5. Cusp Shapes of Tunnel-Number-One Manifolds

5.1 Cusp Shapes of Tunnel-Number-One Manifolds

Throughout this section, C = C(1; 2) is the (1; 2)-compression body. We state and prove

the main theorem in this first part of the thesis here.

Theorem 5.1 (Cusp Shape Theorem). For any ε > 0 and any similarity class of flat metrics

[T ] on the torus, there exists a complete, finite volume, tunnel number one hyperbolic manifold

M with a single rank-2 cusp Tε × [0,∞) whose shape [Tε] is ε-close to [T ].

Before we go into more details, here is an outline of the proof:

(1) Construct a cusped structure ρ on the (1; 2)-compression body C such that ρ gives C

cusp shape [T ].

(2) Find a maximally cusped structure ρ′ on C that is very close to ρ, hence, ρ′ gives C a

cusp shape close to [T ].

(3) Glue the convex core of C equipped with ρ′ to the convex core of a genus two handlebody

H equipped with a maximally cusped structure along the genus two boundary compo-

nents to obtain a finite volume, tunnel number one manifold M̂ with 4 rank-2 cusps, one

of which has shape very close to [T ].

(4) Apply Thurston’s Hyperbolic Dehn Surgery Theorem to fill in 3 of the rank-2 cusps of

M̂ to obtain M .

Step (1) is accomplished by the following Lemma
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Lemma 5.2. Let [T ] be any similarity class of flat metrics on the torus. There exists a

cusped structure ρ on C such that ρ gives C cusp shape [T ].

Proof. Let the representation ρ : π1(C) −→ PSL(2,C) be defined on the generators α, β and

γ of π1(C) as

ρ(α) =

1 a

0 1

 , ρ(β) =

1 b

0 1

 , ρ(γ) =

2 −1

1 0

 ,

where a and b are complex numbers such that

(i) a and b are linearly independent over R with |a| > 4 and |b| > 4, and

(ii) [R2/〈ρ(α), ρ(β)〉] = [T ].

Condition (i) ensures that a and b satisfy the hypothesis of Lemma 4.5. Hence, ρ gives C a

cusped structure. Condition (ii) ensures that the shape on the rank-2 cusp of C equipped

with this structure is [T ]. �

Step (2) essentially follows from Theorem 4.7. We show this more precisely in another

Lemma.

Lemma 5.3. Let [T ] be any similarity class of flat metrics on the torus. For any ε > 0,

there exists a maximally cusped structure ρ′ on C such that ρ′ gives C cusp shape [Tε/2] which

is ε/2-close to [T ].

Proof. Construct a cusped structure ρ such that ρ gives C cusp shape [T ] as in Lemma 5.2.

By Theorem 4.7, maximally cusped structures are dense on the boundary ∂MP(C, T ) of

the space MP(C, T ) of geometrically finite, minimally parabolic structures on C. Therefore,

the fact that ρ ∈ ∂MP (C) implies that there exists a sequence {ρn} of maximally cusped

structures on C which converges algebraically to ρ. Thus, we can choose a maximally cusped

structure ρ′ which is ε/2-close to ρ. In particular, ρ′(α) and ρ′(β) are ε/2-close to ρ(α) and

ρ(β) because the convergence is algebraic. As a result, ρ′ gives C cusp shape [Tε/2] which is

ε/2-close to [T ]. �
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We now construct a finite volume, tunnel number one manifold M̂ with 4 rank-2 cusps,

one of which has shape [Tε/2].

Lemma 5.4. Let [T ] be any similarity class of flat metrics on the torus. For any ε > 0,

there exists a complete, finite volume, tunnel-number-one hyperbolic manifold M̂ with 4 rank-

2 cusps, one of which has shape [Tε/2] which is ε/2-close to [T ].

Proof. The main idea of this proof is summarized in Figure 5.1.

Let C be the compression body with the maximally cusped structure ρ′ as in Lemma

5.3. Let H be a genus two handlebody. There exists a maximally cusped structure on H.

Indeed, Canary, Culler, Hersonsky and Shalen (See Corrollary 15.1 of [7]) proved that such

structures are dense in the boundary of geometrically finite structures on H. Therefore,

there exists a hyperbolic manifold H3/Γ1 homeomorphic to the interior of H such that the

boundary of the convex core of H3/Γ1 consists of two 3-punctured spheres.

Glue the convex cores of C and H (equipped with these maximally cusped structures)

along the 3-punctured spheres via an isometry on each sphere. Since both C and H are

geometrically finite, their convex cores have finite volumes and by a result of Adams (see [1])

the resulting manifold M̂ is a complete, finite volume hyperbolic manifold. The manifold

M̂ is a tunnel-number-one manifold, being the result of gluing a (1; 2)-compression body

and the genus 2 handle body along their genus 2 boundaries. Furthermore, M̂ has 4 rank-2

cusps, three of which come from gluing the 3 rank-1 cusps on the boundaries of the convex

cores of C and H and the remaining one is the rank-2 cusp of C whose shape is [Tε/2].

�

Before we proceed with the proof of Theorem 5.1, we briefly recall Thurston’s Hyperbolic

Dehn Surgery Theorem specialized to our context (See Chapter 4 of [19] for the most general

version of the theorem) .

Suppose the 3 rank-2 cusps of M̂ which come from gluing the 3 rank-1 cusps on the

boundaries of the convex cores of C and H are Ti × [0,∞), i = 1, 2, 3. Let M̂ ′ be the

compact manifold bounded by the 3 tori Ti, 1 ≤ i ≤ 3, resulting from removing the interior
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Figure 5.1: Constructing M̂

of the cusps of M̂ . For each i choose a homology basis (µi, λi) for Ti. Let S2 denote the

extended complex plane C ∪ {∞}. Let di = (pi, qi) ∈ Z2 ⊂ S2 where pi, qi are relatively

prime integers and let d = (d1, d2, d3) ∈ Z2×Z2×Z2 ⊂ S2×S2×S2. Let M̂d be the manifold

obtained by doing (pi, qi)-Dehn surgery on Ti for each i. This means that we glue to M̂ ′ a

solid torus along each Ti such that the curve piµi+ qiλi bounds a disk in the new solid torus.

Then we have:

Theorem 5.5 (Hyperbolic Dehn Surgery Theorem). There exists a neighborhood U of ∞ =

(∞,∞,∞) ∈ S2× S2× S2 such that for all d ∈ U , the manifold M̂d is hyperbolic. Moreover,

as d→∞, the hyperbolic manifolds M̂d converge to M̂ geometrically.

We are now ready to prove Theorem 5.1

Proof of Theorem 5.1. Let M̂ be the manifold constructed in Lemma 5.4. Note that M̂ has

a Heegaard surface S resulting from gluing the boundary of H and the positive boundary of

C. Let M̂ ′ be the manifold obtained by removing the interior of the cusps of M̂ . Then S∩M̂

intersects M̂ ′ in a surface S ′ with boundary on T1, T2, T3. Choose a homology basis (µi, λi)

for each Ti where λi is a component of ∂S ′∩Ti and µi is any curve with intersection number
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1 with λi. Let di = (1, ki), 1 ≤ i ≤ 3 where ki is a positive integer. Let d = (d1, d2, d3). As

in the proof of Lemma 4.6 of [6], the manifold M̂d obtained by doing (1, ki)-Dehn surgery

on Ti for each i always has Heegaard surface S, one side of which is a genus 2 handlebody

and the other side is a (1; 2) compression body. Thus, M̂d is a tunnel-number-one manifold.

Moreover, M̂d has only one rank-2 cusp by construction. Let ki → ∞. Then d → ∞ and

Theorem 5.5 gives us a sequence of complete, finite volume, tunnel-number-one hyperbolic

manifolds M̂d which converges geometrically to M̂ .

It follows that there exists a base point O in the universal cover H3 and a sequence

of fundamental polyhedra P(M̂d) for M̂d centered at O which converges to a fundamental

polyhedron P(M̂) for M̂ , also centered at O (See Proposition 4.3.2 of [19]: geometric conver-

gence is equivalent to polyhedral convergence). As a result, the sequence of links in P(M̂d)

for the cross-section of the unique rank-2 cusp of each of the manifolds M̂d converges to the

link for the cross-section of the rank-2 cusp of M̂ whose shape is [Tε/2]. Hence, there exists

a manifold M whose unique rank-2 cusp has shape ε/2-close to [Tε/2]. Therefore, M is a

tunnel-number-one manifold with a single rank-2 cusp whose shape is ε-close to [T ]. This

proves Theorem 5.1. �

5.2 Towards a Generalization

We would like to extend Theorem 5.1 to the case of manifolds with an arbitrarily large tunnel

number. However, we have not been able to achieve that goal yet. What we are able to do,

nevertheless, is to construct manifolds which have a rank-2 cusp whose shape is arbitrarily

close to a prescribed shape and a tunnel system of arbitrarily many tunnels, each of which

satisfies certain geometric property. In particular, we make use of a construction by Cooper,

Lackenby and Purcell in [9] to obtain the following theorem:

Theorem 5.6. Let [T ] be any similarity class of flat metrics on the torus. For any natural

number n, any real number R > 0 and any ε > 0, there exists a complete, finite volume

hyperbolic manifold with a single rank-2 cusp whose shape is ε-close to [T ] and which admits
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a system of tunnels {τ1, . . . , τn} such that the geodesic representative of the homotopy class

of each tunnel τi has length at least R.

We start by constructing a hyperbolic structure ρ on a (1;n + 1)-compression body C

which gives C a prescribed cusp shape and a system of long tunnels. The construction of ρ

which gives C long tunnels is a straightforward generalization of the construction in Example

3.2. of [9].

Proposition 5.7. Let [T ] be any similarity class of flat metrics on the torus. For any natural

number n and any real number R > 0, there exists a geometrically finite, minimally parabolic

structure ρ on C such that ρ gives C cusp shape [T ] and a system of n tunnels {τ1, . . . , τn}

in which the length of the geodesic representative of the homotopy class of each tunnel τi is

at least R.

Proof. We first note that for the (1;n + 1) compression body C, the fundamental group of

C is

π1(C) = ( Z︸︷︷︸
〈α〉

× Z︸︷︷︸
〈β〉

) ∗ Z︸︷︷︸
〈γ1〉

. . . ∗ Z︸︷︷︸
〈γn〉

where γ1, . . . , γn can be taken to be freely homotopic to the core tunnel of the 1-handles.

We define a representation ρ : π1(C) −→ PSL(2,C) by defining ρ on the generators of

π1(C) as follows:

ρ(γ1) =

 i(1+λ)√
λ

i√
λ

− i√
λ
− i√

λ


where λ is a real number satisfying 0 < λ < exp(−R).

Note that the isometric spheres I(ρ(γ1)) and I(ρ(γ−1
1 )) have the same radius

√
λ and they

have centers at −1 and −1− λ, respectively. The isometric spheres I(ρ(γ2
1)) and I(ρ(γ−2

1 ))

have the same radius 1 and they have centers at 0 and −2 − λ, respectively. The spheres

I(ρ(γk1 )) where k = ±1,±2 are shown (side view) in Figure 5.2.

Direct computations show that all the isometric spheres I(ρ(γk1 )) where k 6∈ {±1,±2}

are invisible: they are contained in the above four isometric spheres. The picture (viewed
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Figure 5.2: Visible Isometric Spheres ρ(γ±1,±2
1 ) in Proposition 5.7

Figure 5.3: A lot of Isometric Spheres ρ(γk1 ) in Proposition 5.7

from the point at ∞ in H3) is shown in Figure 5.3 where the red and blue spheres are those

of Figure 5.2 and the green spheres are some of the spheres I(ρ(γk1 )) with k 6∈ {±1,±2}.

Now we shall define ρ(γ2). Let A =

1 K

0 1

 where K > 0 is to be specified shortly.

Note that

I(Aρ(γ1)A−1) = {x ∈ H3 : d(x,H) = d(x,Aρ(γ−1
1 )A−1H)}

= {x ∈ H3 : d(x,H) = d(x,Aρ(γ−1
1 )H)}

= {x ∈ H3 : d(A−1x,H) = d(A−1x, ρ(γ−1
1 )H)}

= A{y ∈ H3 : d(y,H) = d(y, ρ(γ−1
1 )H)}

= AI(ρ(γ1)).

Here H is a horosphere centered at ∞ and we have used Remark (i) that follows Defini-

tion 3.5. The above calculation shows that the isometric sphere of the element Aρ(γ1)A−1 is

obtained from that of ρ(γ1) by horizontal translation by K. Similarly, for any integer k, the

isometric spheres of Aρ(γk1 )A−1 are obtained from the corresponding spheres of ρ(γk1 ) by hori-
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Figure 5.4: Isometric Sphere Pattern for ρ(π1(C)) in Proposition 5.7

zontal translation by K. Thus, we can choose K sufficiently large such that the configuration

of spheres ρ(γk1 ) in Figure 5.3 does not intersect with the K-translated configuration.

With such a choice for K, define ρ(γ2) = Aρ(γ1)A−1. Similarly, define ρ(γi+1) =

Aρ(γi)A
−1 for 2 ≤ i ≤ n − 1. The configuration of isometric spheres corresponding to

ρ(γi), 1 ≤ i ≤ n and their powers is shown in Figure 5.4.

Now we define

ρ(α) =

1 a

0 1

 , ρ(β) =

1 b

0 1


where a and b are complex number linearly independent over R chosen such that

• The magnitudes |a| and |b| are sufficiently large that none of I(ρ(γi)) and I(ρ(γ−1
i ))

meets any of their translates under ρ(α) and ρ(β) and

• [R2/〈ρ(α), ρ(β)〉] = [T ].

Choose a vertical fundamental domain for the action of Γ∞ = 〈ρ(α), ρ(β)〉 that avoids

the isometric spheres I(ρ(γi)
k). Let P be the polyhedron cut out by the visible isometric

spheres I(ρ(γ±1
i )), I(ρ(γ±2

i )) for 1 ≤ i ≤ n and the vertical fundamental domain for Γ∞.

Let N be the object obtained from P by gluing isometric spheres corresponding to gj and

g−1
j via the isometry gj (here gj is one of the ρ(γ±1

i ) or ρ(γ±2
i )), and gluing the faces of the

vertical fundamental domain by the isometries ρ(α) and ρ(β). Let Γ be the group generated

by the face pairing isometries of P . Then we claim that
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Figure 5.5: Dual Edges to Isometric Spheres

Lemma 5.8. The group Γ is discrete and N is a smooth, geometrically finite hyperbolic

manifold with π1(N) ∼= Γ. Moreover, N is homeomorphic to a (1;n+1) compression body C.

Thus, the representation ρ constructed above gives C a minimally parabolic and geometrically

finite hyperbolic structure.

Assume Lemma 5.8 is true. The fact that ρ gives C cusp shape [T ] immediately follows

from the choice of a and b. Now it remains to prove that ρ gives C a system of n long tunnels.

For each i, 1 ≤ i ≤ n, let d̃i be the vertical geodesic in H3 dual to the isometric sphere

I(ρ(γ−1
i )) (see Figure 5.5). By Lemma 2.16 of [6], in the quotient manifold H3/ρ(π1(C)), the

images of the d̃i are homotopic to the core tunnels of C.

Now let {τ1, . . . , τn} be a tunnel system of C where each τi is homotopic to a core tunnel

of C. In H3, choose a maximal horoball neighborhood of ∞ and let H be the horosphere

boundary of this neighborhood. For each i, let Pi and Qi be the points of intersection

between d̃i and I(ρ(γ−1
i )) and H, respectively. We note that by definition, the length of

the geodesic representative of a homotopy class of a tunnel τi of C is measured outside a

maximal neighborhood of the cusp. Therefore, for each i this length is at least the length

of the image of PiQi in the quotient manifold which is the same as the hyperbolic length of

PiQi in the universal cover H3. Since I(ρ(γ2
i )) has radius 1, the height of H is at least 1, so

is the height of the point Qi. Thus,

lhyp(PiQi) =

∣∣∣∣ln z(Qi)

z(Pi)

∣∣∣∣ ≥ ln

(
1√
λ

)
≥ R.

The last inequality holds by choice of λ. Therefore, the geodesic representative of a homotopy
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class of each τi has length at least R.

So, we just proved that ρ gives C cusp shape [T ] and a system of n tunnels {τ1, . . . , τn}

each of whose length is at least R. �

It remains to prove Lemma 5.8.

Proof of Lemma 5.8. We will again apply Poincaré Polyhedron Theorem 3.10 to show that

Γ is discrete and N is a smooth hyperbolic manifold. To that end, it suffices to verify the

monodromy condition and the dihedral angle condition about each edge class of P . Note

that the polyhedron P has 3n edges which consists of 3 visible edges in the configuration of

isometric spheres corresponding to ρ(γi) and its powers for each i. Moreover, for each i, the

3 edges ei,1 = I(ρ(γi))∩ I(ρ(γ2
i )), ei,2 = I(ρ(γ−1

i ))∩ I(ρ(γi)) and ei,3 = I(ρ(γ−1
i ))∩ I(ρ(γ−2

i ))

are glued to a single edge class [ei]. In particular, ei,1 is glued to ei,2 via γi, ei,2 is glued to

ei,3 also via γi and ei,3 is glued back to ei,1 via γ−2
i which completes the edge cycle. Thus the

monodromy about [ei] is γi ◦ γi ◦ γ−2
i = Id, which also implies that the dihedral angle about

[ei] is 2π. Hence, the conditions for Theorem 3.10 are satisfied. As a result, Γ is discrete

and N is a smooth hyperbolic manifold with π1(N) ∼= Γ. Moreover, by Corollary 3.11, P is

a Ford domain for the action of Γ on H3 and N is a geometrically finite manifold.

To see that N is homeomorphic to a (1;n + 1)-compression body C, we note that when

the sides of the vertical fundamental domain are glued via ρ(α) and ρ(β), the result is home-

omorphic to T 2 × (0, 1). Moreover, for each i, the gluing of the isometric spheres I(ρ(γ−2
i ))

and I(ρ(γ−1
i )) to I(ρ(γ2

i )) and I(ρ(γi)) is equivalent (after applying a homeomorphism) to

attaching a 1-handle to T 2 × (0, 1).

Finally, none of the visible isometric spheres in P are visibly tangent on their boundaries

and so Proposition 3.13 applies to show that ρ gives C a minimally parabolic structure. �

Now, unlike the situation in Lemma 5.2, the representation ρ in Proposition 5.7 belongs

to the interior of MP (C). The next step is to deform ρ until we obtain a structure on the

boundary of MP(C, T ).
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Figure 5.6: Deforming ρ while preserving the cusp shape

Proposition 5.9. Let [T ] be any similarity class of flat metrics on the torus. For any natural

number n and any real number R > 0, there exists a structure ρ′ on C such that

(i) The structure ρ′ belongs to the boundary of MP(C, T ), and

(ii) ρ′ gives C cusp shape [T ], and

(iii) ρ′ gives C a system of n tunnels {τ1, . . . , τn} in which the length of the geodesic repre-

sentative of the homotopy class of each tunnel τi is at least R.

Proof. Let ρ be the representation constructed in Proposition 5.7. To obtain ρ′, we deform ρ

by keeping ρ(γi) fixed for 1 ≤ i ≤ n and decreasing the translation distance of ρ(α) and ρ(β)

while preserving the cusp shape [T ], i.e., preserving the similarity class [R2/〈ρ(α), ρ(β)〉] (see

Figure 5.6).

As soon as the minimal translation distance of ρ(α) or ρ(β) becomes smaller than the

radius of an isometric sphere, we obtain an indiscrete representation of π1(C); this is an

application of Shimizu’s Lemma (see Lemma 2.28. of [15] for a statement directly applicable

to our case and See Proposition II.C.5 of [21] for a nice proof). Thus, this deformation

gives rise to a continuous path from ρ which is in the interior of MP(C) to an indiscrete

representation ρI in the representation space R(C, T ). Since R(C, T ) contains MP(C, T ), this

path must meet the boundary ∂MP(C, T ) of MP(C, T ) at some point ρ′. Note that ρ′ gives

C the same cusp shape as ρ does by the way we deform ρ. Moreover, for each i, the radii of

the isometric spheres I(ρ(γ±1
i )) and I(ρ(γ±2

i )) remain unchanged during this deformation.
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Therefore, by the proof of Proposition 5.7, the length of the geodesic representative of

each core tunnel of C is still at least R. So, ρ′ is a structure on C which satisfies all

the requirements stated in the Proposition. �

From here the proof of Theorem 5.6 follows in a way similar to that of Theorem 5.1.

Proof of Theorem 5.6. Let ρ′ be the representation constructed in Proposition 5.9. Since

ρ′ ∈ ∂MP(C, T ), there exists a maximally cusped structure ρ′′ of C which is arbitrarily close

to ρ′ by Theorem 4.7. As a result, ρ′′ gives C a cusp shape [Tε] which is arbitrarily close to

[T ] and also a tunnel system in which the geodesic representative of each tunnel has length

at least R.

We then glue the convex cores of C equipped with ρ′′ and of a genus n handlebody H

also equipped with a maximally cusped structure along their boundaries. The manifold M̂

obtained is a finite volume manifold with (3n + 1) rank-2 cusps, 3n of which come from

gluing rank-1 cusps on the boundaries of the convex cores of C and H. The remaining cusp

is the cusp of C with shape [Tε]. Moreover, M̂ also has a tunnel system with n long tunnels.

Fill in 3n cusps of M̂ , and apply Theorem 5.5, we obtain the manifold M in Theorem 5.6.

�

We conclude the first part of this thesis by posing some open questions about cusp shapes

and cusp areas of manifolds with unknotting tunnels.

5.3 Some open questions about cusp shapes and cusp areas of

manifolds with unknotting tunnels

We already mentioned the first question at the beginning of the previous section. More

precisely, the question is

Question 5.10. For each natural number n, is the set of cusp shapes of complete, finite-

volume, tunnel-number-n hyperbolic manifolds dense in the set S(T2) of all similarity classes

of flat metrics on the torus?
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Note that Theorem 5.6 constructs manifolds which admits a system of n tunnels, that

is, the tunnel number of the manifold is at most n, but we do not know whether the tunnel

number could be lower.

A second question, which actually motivates our work in the second part of this thesis is

this

Question 5.11. Can we construct tunnel-number-one hyperbolic manifolds with cusp areas

arbitrarily close to a prescribed cusp area?

Recall that a cusp of a hyperbolic manifold corresponds to a torus boundary component.

To define the area of the cusp, we expand a horoball neighborhood of this torus boundary

component until it meets itself. This maximal horoball neighborhood completely determines

a flat metric on the torus and we can measure the area on the torus using the metric. So, the

cusp area depends on a maximal horoball neighborhood of the torus boundary component

corresponding to the cusp. On the other hand, the cusp shape only depends on the similarity

class of the flat metric on the torus induced by the hyperbolic metric of the manifold.

In our case, the key in proving our cusp shape theorem is a sequence of maximally

cusped structures ρn converging algebraically to a structure ρ with a prescribed cusp

shape. Algebraic convergence is enough to say that ρn(α) → ρ(α) and ρn(β) → ρ(β). The

cusp shape of ρ depends on the similarity class of 〈ρ(α), ρ(β)〉 only. The cusp shape of ρn

depends on the similarity class of 〈ρn(α), ρn(β)〉 only. So, the cusp shape of ρn is close to

that of ρ when n is large. If we want cusp area, we will need a tube around the thin part

of Mn = H3/Γn (this is the quotient of H3 by the maximal horoball neighborhood described

above) to be very close to that of M = H3/Γ when n is large. Algebraic convergence is not

enough to guarantee this. Geometric convergence would guarantee it, but we do not have

geometric convergence here.
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Chapter 6. A Local Model for MP(C, T )

This chapter is the beginning of the second part of the thesis. In this part, we shift our focus

to the space MP(C, T ) of geometrically finite, minimally parabolic hyperbolic structures on

the (1; 2)-compression body. From work of Bromberg in [5], this space can be parameterized

locally by a subset of C3. We analyze the slices of this subset and prove a convergence

theorem about certain slices (See Theorem 7.1).

In this chapter, we will discuss Bromberg’s local model for MP(C, T ) and prove Theorem

6.2 which relates a point in the model to the trace coordinates of the representation corre-

sponding to that point. This result will then be used in the next chapter in proving our Slice

Convergence Theorem 7.1.

We will start by defining various subsets of C3 and C2 which are the key ingredients in

constructing a local model for MP(C, T ).

6.1 Local Model for MP(C, T )

6.1.1 The Space T . Recall that R(C, T ) is the PSL(2;C)-representation space for π1(C)

where each representation takes elements of π1(T ) to parabolics. Let R(C, T ) be R(C, T )

modulo conjugation. By abuse of notation, we will use ρ to denote the equivalence class of

a representation ρ. Define the map t : R(C, T ) −→ C3 as

t(ρ) = (t1(ρ), t2(ρ), t3(ρ)),

where t1(ρ) = tr(ρ(αγ)), t2(ρ) = tr(ρ(βγ)), and t3(ρ) = tr(ρ(γ)).

By work of Culler-Shalen (see Section 1 of [11]) and Gonzalez-Montesinos (see Section 3

of [12]), t is an embedding of R(C, T ) into C3.

Recall from Section 4.1. that AH(C, T ) is the subspace of R(C, T ) consisting of conjugacy
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classes of discrete and faithful representations. We define

T = t(AH(C, T )).

More explicitly,

T = {(a, b, c) ∈ C3 : ∃ρ ∈ AH(C, T ) with t(ρ) = (a, b, c)}.

We can think about the space T as the “trace coordinates” for points in AH(C, T ).

6.1.2 The Space M. Let P = T ∪Aγ where Aγ is an annulus on the positive boundary

of C(1; 2) whose core curve is freely homotopic to γ. We define the spaces R(C,P), AH(C,P)

and MP(C,P) in analogy with R(C, T ), AH(C, T ) and MP(C, T ) by extending the parabolic

locus to P . Specifically,

R(C,P) = {representations ρ : π1(C) −→ PSL(2;C)|ρ(g) is parabolic for each g ∈ P}.

AH(C,P) = {ρ ∈ R(C,P)|ρ is discrete and faithful}/ ∼,

where we quotient out by the action of PSL(2,C) via conjugation.

MP(C,P) = {[ρ] ∈ AH(C,P)|ρ is geometrically finite and minimally parabolic}.

Now for (a, b) ∈ C2, we construct a representation σa,b ∈ R(C,P) as

σa,b(α) =

1 a

0 1

 , σa,b(β) =

1 b

0 1

 , σa,b(γ) =

2 −1

1 0

 .

Define

M = {(a, b) ∈ C2|σa,b ∈ MP(C,P)}.
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Remark. Note that all the “special” representations which give C the cusped structures that

appear in the proof of our Cusp Shape Theorem 5.1 are contained in the space M.

6.1.3 The Space B. Let W be a tubular neighborhood of the core tunnel γ in C(1; 2).

Let Tγ be the boundary of W . Define Ĉ = C \W and P̂ = P ∪ Tγ. We can define R(Ĉ, P̂),

AH(Ĉ, P̂) and MP(Ĉ, P̂) in analogy with R(C,P), AH(C,P) and MP(C,P) by considering

the PSL(2,C)-representation space of π1(Ĉ) with parabolic locus P̂ . We note that

π1(Ĉ) = ( Z︸︷︷︸
〈α〉

× Z︸︷︷︸
〈β〉

) ∗ ( Z︸︷︷︸
〈γ〉

× Z︸︷︷︸
〈δ〉

).

Now for (a, b, d) ∈ C3, construct a representation σa,b,d ∈ R(Ĉ, P̂) as

σa,b,d(α) = σa,b(α), σa,b,d(β) = σa,b(β), σa,b,d(γ) = σa,b(γ), σa,b,d(δ) =

d+ 1 −d

d 1− d

 .

We define

B = {(a, b, d) ∈ C3 : σa,b,d ∈ MP(Ĉ, P̂)}.

We are now ready to describe a local model for the space MP(C, T ).

6.1.4 Bromberg’s Local Model for MP(C, T ). Let A = B ∪ (M×{∞}). We note

that a point (a, b) is inM if and only if (a, b,∞) ∈ A. It follows from Bromberg’s work (see

section 3 of [5]) that we have the following:

Theorem 6.1 (Local Model for MP(C, T )). Given (a, b) in M, there exists a neighborhood

U of the point (a, b,∞) in A, a neighborhood V of σa,b in MP(C,P) ∪ MP(C, T ) and a

homeomorphism Φ from U ∩ B to V ∩MP(C, T ).

Most of the work to establish this theorem has already been done by Bromberg in [5], the

only difference is that in [5] the manifolds have incompressible boundary whereas our com-

pression body has compressible boundary. This requires a slight modification in Proposition
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3.7 of [5]. We give an outline of Bromberg’s proof here.

Proof. We will construct two maps: Ψ from AH(C, T ) to A and Φ from A to AH(C, T ) and

show that we can choose appropriate neighborhoods of these spaces such that these maps

are continuous and are inverses of each other on these neighborhoods.

We start with Ψ. Fix a representation ρ in MP (C,P). By Lemma 3.3 and Lemma 3.4 of

[5], there exists a neighborhood V ′ of ρ in AH(C, T ) and a map ω : V ′ −→ AH(C,P) such

that ω is continuous at all points in V ′ ∩MP (C,P). The map ω is defined as follows:

For a representation σ in V ′. Assume that σ(γ) is not parabolic. Let Mσ = H3/σ(π1(C)).

Fix a smooth embedding sσ : C −→ Mσ. Let γσ be the geodesic representative of γ in Mσ.

Let M̂σ be the γσ-drilling of Mσ given by the Filling-Drilling Theorem of Hodgson, Kerckhoff,

and Bromberg. Let

ψσ : Mσ − {thin parts} −→ M̂σ − {thin parts}

be the drilling map. Let Mσ be the cover of M̂σ induced by the image of π1(C) under

(ψσ ◦ sσ)∗. Let sσ : N −→Mσ be the lift of ψσ ◦ sσ. Lemma 3.3 of [5] goes through without

change to give us that the pair (Mσ, sσ) is a marked hyperbolic 3-manifold. As a result,

(Mσ, sσ) determines a representation in AH(C,P). The map ω is then given by

ω(σ) =


(Mσ, sσ) if σ(γ) is not parabolic

σ if σ(γ) is parabolic

Assume that σ(γ) is not parabolic; we can conjugate so that ω(σ)(γ) =

1 2

0 1

. Let δ

be an essential loop in M̂σ such that ψ−1
σ (δ) bounds a disk in the Margulis tube in Mσ, then

there is a unique element of π1(M̂σ) freely homotopic to δ whose PSL(2,C)-representative is
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of the form

1 z

0 1

 with Im(z) > 0. The map Ψ is defined as

Ψ(σ) =


(ω(σ), z) if σ(γ) is not parabolic

(ω(σ),∞) if σ(γ) is parabolic

The proof of Proposition 3.8 in [5] goes through to show that the map Ψ is continuous

on V ′ ∩MP (C,P).

Now we define the map Φ from A to AH(C, T ). By abuse of notation, we identify a point

(a, b) inM with the corresponding representation σa,b. Hence, a point in A can be identified

with the ordered pair (σa,b, d) where d is possibly ∞. Now we will need to apply the filling

map in the Drilling-Filling Theorem and for it to work, we must restrict to the subspace AK

of A consisting of pairs (σa,b, d) where |d|√
Im(d)

> K (see the proof of Theorem 6.2 for a more

detailed explanation of this quantity). Moreover, it is sufficient for our purpose to further

restrict to the subspace ÅK consisting of pairs (σa,b, d) where σa,b,d ∈ MP(Ĉ, P̂) or d = ∞.

For (σa,b, d) ∈ ÅK , let M̂σa,b,d be the quotient hyperbolic manifold for the representation

σa,b,d. Let Mσa,b,d be the filled manifold. Let

φσa,b,d : M̂σa,b,d − {thin parts} −→Mσa,b,d − {thin parts}

be the filling map. Let fσa,b : N −→ Mσa,b be a smooth marking map for the hyperbolic

manifold Mσa,b which is the quotient manifold for the representation σa,b. Since σa,b,d is an

extension of σa,b, Mσa,b is a cover of M̂σa,b,d. Let πσa,b,d be the covering map. Let fσa,b,d =

φσa,b,d ◦ πσa,b,d ◦ fσa,b . Lemma 3.6 of [5] goes through without change to give us that (fσa,b,d)∗

is an isomorphism and (Mσa,b,d, fσa,b,d) is a marked hyperbolic manifold in AH(C, T ). The

map Φ is defined as
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Φ(σa,b, d) =


(Mσa,b,d, fσa,b,d) if d 6=∞

σa,b if d =∞

Now we come to the key difference between Bromberg’s case and ours. That is to show

that the map Φ, so defined, is continuous on ÅK . To do so, we need to invoke the Ahlfors-

Bers parameterization AB for MP(C, T ) and the parametrization ÂB for MP(Ĉ, P̂). Since

the compression body C has compressible boundary, the images of these Ahlfors-Bers pa-

rameterizations are quotients of Teichmuller spaces. More specifically, we have

AB : MP(C, T ) −→ Teich(∂+C)/Mod0(C)

and

ÂB : MP(Ĉ, P̂) −→ Teich(∂+C)/Mod0(Ĉ).

Here, recall that for a hyperbolic manifold M , Mod0(M) is the group of isotopy classes of

homeomorphisms of M which are homotopic to the identity. Since Mod0(Ĉ) is a subgroup

of Mod0(C), we have a covering map Π : Teich(∂+C)/Mod0(Ĉ) −→ Teich(∂+C)/Mod0(C).

Let τ be the map defined by τ((σa,b, d)) = σa,b,d. Then by Lemma 3.2 of [5], τ is a local

homeomorphism at all points (σa,b, d) such that σa,b,d ∈ AH(Ĉ, P̂). We also have

Φ(σa,b, d) = AB−1 ◦ Π ◦ ÂB ◦ τ(σa,b, d).

From this, the rest of Bromberg’s argument in Proposition 3.7 goes through to show that

Φ is continuous on ÅK .

To sum up, we constructed two continuous maps Ψ : AH(C, T ) −→ A and Φ : A −→

AH(C, T ). Proposition 3.9 in Bromberg’s paper goes through to show that if we restrict to

appropriate neighborhoods U of A and V of the subspace MP(C,P)∪MP(C, T ) of AH(C, T ),

then Ψ◦Φ is the identity on U ∩B. Moreover, the proof of Proposition 3.10 can be simplified
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significantly in our case to show that Φ ◦Ψ is the identity on V ∩MP(C, T ). In fact, the key

in his proof of Proposition 3.10 (translated to our case) is to show that the two manifolds

M̂σa,b , which is the manifold obtained by drilling the curve γ from Mσa,b , and M̂σa,b,d, which is

the manifold corresponding to the extended representation σa,b,d, are the same. This requires

a difficult topological lemma for the incompressible boundary case in Bromberg’s paper. In

our case, both manifolds correspond to the same representation, hence, they are the same.

This concludes the proof. �

Now given (a, b,∞) in A let (a′, b′, d) be a point in the neighborhood U ∩B of (a, b,∞) as

in Theorem 6.1. Then Φ(a′, b′, d) is a representation in V ∩MP(C, T ). The trace coordinates

for Φ(a′, b′, d) are (x, y, z) = t(Φ(a′, b′, d)). Our goal now is to relate these trace coordinates

to the point (a′, b′, d). Before we do so, we briefly review the concept of the complex length

of a loxodromic element in PSL(2,C).

6.2 Complex Lengths of Loxodromic Elements

Let A ∈ PSL(2,C) be loxodromic, then A has two distinct fixed points on the boundary at

infinity C ∪ {∞} of the upper half space H3. The geodesic joining these two fixed points

is called the axis of A. The axis of A is invariant under the action of A. Moreover, A acts

as a translation on its axis and it rotates points in H3 around its axis. This information is

encoded in the complex length of A which is denoted by `(A). Specifically, the imaginary

part of `(A) encodes the angle incurred in translating along the axis of A a distance equal

to the real part of `(A).

Note that A is conjugate to one of the matrices ±

exp(`(A)/2) 0

0 exp(−`(A)/2)

 and

one can also prove (see Lemma 12.1.2 of [17]) that the trace of a representative of A is related

to the complex length of A by the formula

tr2(A) = 4 cosh2

(
`(A)

2

)
.
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Note that `(A) is uniquely determined if we take it in the strip

Λ = {z ∈ C : Re(z) > 0 and − π ≤ Im(z) < π}.

The map z 7→ 2 cosh(z/2) takes Λ to the right-half plane C+ = {z ∈ C : Re(z) > 0}.

Following Ito’s notation (see Section 5.1 of [13]), we will denote the inverse of this map by

λ. So λ is the map λ : C+ \ (0, 2) −→ Λ with

λ(z) = 2 cosh−1
(z

2

)
.

Note that for a loxodromic element A with trA ∈ C+ \ (0, 2), we have λ(trA) = `(A).

6.3 The Neighborhood Refinement Theorem

We have the following theorem which relates a point in the model to the trace coordinates

of the representation corresponding to that point.

Theorem 6.2. Given (a, b) in M and ε > 0, we can choose the neighborhood U in Theorem

6.1 such that the following is satisfied:

For any (a′, b′, d) in U ∩ B, we have

(i) max{|(a′ + 2)− x|, |(b′ + 2)− y|} < ε and

(ii)

∣∣∣∣d− 2πi

λ(z)

∣∣∣∣ < εIm(d).

where (x, y, z) = t(Φ(a′, b′, d)).

Proof. First, choose neighborhoods U and V with a homeomorphism Φ : U ∩ B −→ V ∩

MP(C, T ) as in Theorem 6.1. We shall prove that we can refine U so that the inequality in

Theorem 6.2 holds.

Now take any (a′, b′, d) in U ∩ B; let ρ denote the representation Φ(a′, b′, d). Then ρ ∈

MP(C, T ). Let

M = H3/ρ(π1(C)) and N = H3/σa′,b′,d(π1(Ĉ)).
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Take ε1 smaller than the 3-dimensional Margulis constant. Let Tε1(Tγ) be the component of

the thin part of N corresponding to the rank-2 cusp Tγ. Then

π1 (∂Tε1(Tγ)) = 〈σa′,b′,d (γ) , σa′,b′,d (δ)〉 =

〈2 −1

1 0

 ,

d+ 1 −d

d 1− d

〉 .

We can conjugate this group by the matrix A =

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 to obtain

A〈σa′,b′,d (γ) , σa′,b′,d (δ)〉A−1 =

〈1 2

0 1

 ,

1 2d

0 1

〉 .
It follows that the normalized length of the geodesic representative of δ in ∂Tε1(Tγ) is

length(δ)√
Area(∂Tε1(Tγ)

=
|d|√
Im(d)

The inequality in Theorem 6.2 follows from the Filling theorem of Hodgson, Kerckhoff,

and Bromberg (see [5]) and a theorem of Magid (Theorem 1.2 in [18]). The key requirement

in both theorems is that we can choose the normalized length of δ to be sufficiently large.

We can achieve this here by choosing the neighborhood U such that d is close to∞ in a way

that |d|√
Im(d)

−→∞. The detail of the proof is as follows.

By the Filling theorem of Hodgson, Kerckhoff and Bromberg, for (a′, b′, d) in U , there

exists an embedding fa′,b′,d, called the filling map with fa′,b′,d : N −→ M . The manifold M

is called the filled manifold and the manifold N is called the drilled manifold.

Moreover, let Tε1(γ) be the ε1-Margulis tube around the geodesic representative of γ in

M ; the Filling theorem says that for every ε2 > 0, if the normalized length of δ is sufficiently

large, then the filling map fa′,b′,d can be chosen so that it restricts to a (1 + ε2)-biLipschitz

diffeomorphism

fa′,b′,d : N \ Tε1(Tγ) −→M \ Tε1(γ).
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Now the existence of such a diffeomorphism allows us to invoke a result of McMullen (see

Lemma 3.20 of [23]) to compare the traces tr(σa′,b′,d(αγ)) and tr(σa′,b′,d(βγ)) with a′ and b′.

In fact, McMullen’s result says that suppose we have a pair of hyperbolic solid tori, M1

and M2 where Mj = H3/〈γj〉, j = 1, 2 whose core geodesics gj have lengths bounded by some

upper bound R, and suppose further that we have a (1 + ε2)-quasi-isometric embedding ψ

of a unit neighborhood of g1 in M1 to M2 such that ψ(g1) is homotopic to g2. Then

∣∣tr2(γ1)− tr2(γ2)
∣∣ < C(R)ε2

where C(R) is a constant which depends on R only.

Now in our case, consider the two pairs of hyperbolic solid tori, namely, the pair

H3/〈σa′,b′,d(αγ)〉 and H3/〈ρ(αγ)〉,

and the pair

H3/〈σa′,b′,d(βγ)〉 and H3/〈ρ(βγ)〉.

The (1 + ε2)-biLipschitz diffeomorphism fa′,b′,d restricts to a (1 + ε2)-quasi-isometric embed-

ding of a unit neighborhood of the core geodesic of one torus to the other torus in each pair,

and the core geodesics of these solid tori have bounded length. Therefore, McMullen’s result

applies and we have

∣∣tr2(σa′,b′,d(αγ))− tr2(ρ(αγ))
∣∣ < (constant K1)ε2,

and ∣∣tr2(σa′,b′,d(βγ))− tr2(ρ(βγ))
∣∣ < (constant K2)ε2,

Note that tr(σa′,b′,d(αγ)) = a′ + 2, tr(σa′,b′,d(βγ)) = b′ + 2, tr(ρ(αγ)) = x and tr(ρ(βγ)) = y.

Thus, for a given ε > 0, we can choose ε2 small enough so that max{K1, K2}ε2 < ε and

we can choose the normalized length of δ sufficiently large so that the above inequalities
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hold. We then obtain

|(a′ + 2)− x| < ε and |(b′ + 2)− y| < ε,

Now to obtain

∣∣∣∣d− 2πi

λ(z)

∣∣∣∣ < ε. We shall apply Theorem 1.2 of [18].

Let L2 denote the square of the normalized length of δ, i.e.,

L2 =
|d|2

Im(d)

and let

A2 =
|d|2

Re(d)

Since tr(ρ(γ)) = z, the complex length of the core curve γ of the filling torus Tε1(γ) is λ(z).

Suppose λ(z) = l + iθ. Then Theorem 1.2 of Magid (see [18]) says that

∣∣∣∣l − 2π

L2

∣∣∣∣ ≤ C1

L4
,

and ∣∣∣∣θ − 2π

A2

∣∣∣∣ ≤ C2

L4
,

where C1 and C2 are some constants. It follows from the triangle inequality that for some

constant C, we have

∣∣∣∣λ(z)−
(

2π

L2
+ i

2π

A2

)∣∣∣∣ ≤ C

L4∣∣∣∣λ(z)− 2πi

|d|2
(−iIm(d) + Re(d))

∣∣∣∣ ≤ C

L4∣∣∣∣λ(z)− 2πi

dd
d

∣∣∣∣ ≤ C

L4
.

Hence, ∣∣∣∣λ(z)− 2πi

d

∣∣∣∣ ≤ C

L4
= C

(Im(d))2

|d|4
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From  L2 =
|d|2

Im(d)
, we have Re

(
2πi

d

)
=

2π

L2
. This together with the above inequality implies

that |λ(z)| > 1

2

∣∣∣∣2πid
∣∣∣∣ =

π

|d|
when L is sufficiently large. Now, multiply both sides of the

above inequality by

∣∣∣∣ d

λ(z)

∣∣∣∣, we have

∣∣∣∣d− 2πi

λ(z)

∣∣∣∣ ≤ C
(Im(d))2

|λ(z)||d|3
≤ C

(Im(d))2

π|d|2
=

C

πL2
Im(d) ≤ εIm(d)

when L is sufficiently large.

Thus, when the normalized length L of δ is sufficiently large, we have

(i) max{|(a′ + 2)− x|, |(b′ + 2)− y|} < ε and

(ii)

∣∣∣∣d− 2πi

λ(z)

∣∣∣∣ < εIm(d).

�

We are now in a position to study certain slices of the space T , i.e., slices of hyperbolic

structures on the (1; 2)-compression body C; and to prove our Slice Convergence Theorem

7.1 in the next chapter.

Chapter 7. Convergence of Slices of Hyperbolic Structures

on the (1; 2)-Compression Body

7.1 Slices of Hyperbolic Structures

Recall from the previous chapter that the space T is the subset of C3 consisting of points

(a, b, c) which are trace coordinates for representations in AH(C, T ). We now look at slices

of this space. For each complex number c, define

L(c) = {(a, b) ∈ C2 : (a, b, c) ∈ T }.
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We note that L(c) 6= ∅ for any c ∈ C with |c| > 2. Indeed, given such a c, let a and b in

C be linearly independent over R with |a| > 2|c| and |b| > 2|c|.

Let ρ : π1(C) −→ PSL(2,C) be the representation defined by

ρ(α) =

1 a

0 1

 , ρ(β) =

1 b

0 1

 , ρ(γ) =

c −1

1 0

 .

By Lemma 2.27 in [15], ρ ∈ MP(C, T ) ⊂ AH(C, T ). Thus, (a, b) ∈ L(c).

Note also that if c = 2, then L(2) 6= ∅ because all the cusped structures in Lemma 4.5

belong to L(c).

It turns out that the convergence of the slices L(c) depends only on the behavior of

the complex number c. In particular, in this chapter we prove the following theorem which

generalizes a result of Kentaro Ito (see [13]) from the once-punctured torus case to the

compression body case.

Theorem 7.1 (Slice Convergence Theorem). If {cn} is a sequence of complex numbers in

C \ [−2, 2] such that {cn} converges to 2 horocyclically, then the slices L(cn) converge to the

slice L(2) in the sense of Hausdorff.

Here, a sequence of complex numbers {zn} converges to 2 horocyclically if for every

ε > 0, there exists a natural number N such that λ(zn) lies in the ball Bε(ε) for each n ≥ N .

Equivalently, {zn} converges to 2 horocyclically if and only if the sequence {Im
(

2πi
λ(zn)

)
}

approaches ∞. See Figure 7.1.

Also, a sequence of subsets Xn of C2 converges in the sense of Hausdorff to a subset X

of C2 if the following two conditions are satisfied

(1) For each x ∈ X, there exists xn ∈ Xn such that {xn} converges to x.

(2) If xnj ∈ Xnj , and {xnj} converges to x, then x ∈ X.

Note the similarity between this and geometric convergence of a sequence of discrete

subgroups Γn of PSL(2,C) to a subgroup Γ.
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Figure 7.1: Horocyclic Convergence

The remaining of this chapter is devoted to the proof of Theorem 7.1. We follow the

strategy that Ito used for the punctured-torus case in [13]. We will make use of the local

model for MP(C, T ) as well as the estimates for points in the model as provided by Theorem

6.1 and Theorem 6.2. The main innovation is Theorem 7.2 which is proved in the next

section.

7.2 Neighborhoods of points in M

Suppose that (a, b) is a point in M, equivalently, (a, b,∞) is in A. Let U and V be the

neighborhoods provided by Theorem 6.2.

Theorem 7.2 shows that there is a nice subset of C3 which is contained in U ∩ B. More

specifically, we have the following

Theorem 7.2. Given (a, b) in M, there exists κ > 0 and I > 0 such that the set Nκ,I(a, b)

is a subset of U ∩ B where Nκ,I(a, b) is defined as

Nκ,I(a, b) = Bκ(a, b)× {z ∈ C : Im(z) > I}.
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Note that by restricting U , we can assume that for sufficiently small κ > 0 and sufficiently

large I > 0, every point (a′, b′, d) in the neighborhood Nκ,I(a, b) must also be in U . The

difficult part is to prove that there exists a choice of κ and I such that every point (a′, b′, d)

in Nκ,I(a, b) is in B as well, that is, the representation σa′,b′,d is in MP(Ĉ, P̂). (See Section

6.1.3 to recall the definition of σa′,b′,d)

This is done via a few lemmas. Lemma 7.3 and Lemma 7.4 establish some important

properties of the isometric sphere pattern of the Ford domain corresponding to the action of

σa′,b′,d(π1(Ĉ)) where (a′, b′, d) is in Nκ,I(a, b) for appropriate choices of small κ and large I.

Then Lemma 7.5 and Lemma 7.6 show that for such choices of κ and I, the representation

σa′,b′,d is indeed a representation in MP(Ĉ, P̂).

Lemma 7.3. There exists κ > 0 such that the number of visible isometric spheres for all

representations σa′,b′ as (a′, b′) runs through the entire ball Bκ(a, b) is finite.

Proof of Lemma 7.3. Since (a, b) ∈ M, the representation σa,b is geometrically finite and

minimally parabolic, that is σa,b is in MP(C,P). Since MP(C,P) is open, there exists

an open ball about σa,b. Pulling this back to M, we can find an κ1 > 0 such that the

open ball Bκ1(a, b) is contained in M. Choose κ > 0 such that the closed ball Bκ(a, b)

is contained in Bκ1(a, b). For each point (a′, b′) in Bκ(a, b), the number of visible isometric

sphere corresponding to any Ford domain of σa′,b′ is finite. We need to prove that the number

of visible isometric spheres for all representations σa′,b′ as (a′, b′) runs through the entire ball

Bκ(a, b) is finite.

Suppose to the contrary that there were infinitely many visible isometric spheres. It

follows that there exists an infinite sequence of points {(an, bn)} in the ball Bκ(a, b) such

that all the representations σan,bn corresponding to these points have Ford domains with

distinct visible isometric spheres. The representations σan,bn all belong to a closed ball in

MP(C,P); therefore, there exists a subsequence σanj ,bnj which converges algebraically to a

representation ρ. By Theorem 4.2, there exists a subsequence which, by abuse of notation

is denoted also by σanj ,bnj which converges geometrically to a representation ρ′. Since these
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representations are minimally parabolic, they are type-preserving as in [4], it follows from

Theorem 4.1 of [4] that the geometric limit and the algebraic limit agree, that is, ρ = ρ′.

Now, by Proposition 4.3.2 of [19], there exists a sequence F(σanj ,bnj ) of Ford domains for

σanj ,bnj which converges to a Ford domain F(ρ) of ρ. Since ρ is geometrically finite, F(ρ)

has only finitely many visible isometric spheres which contradicts the assumption that the

number of isometric spheres in the sequence F(σanj ,bnj ) is infinite. �

Next, for any (a′, b′) in the ball Bκ(a, b) conjugate the representation σa′,b′ by the matrix

A =

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

. Algebraically, we conjugate the group Γ′ = 〈σa′,b′(α), σa′,b′(β), σa′,b′(γ)〉

by the matrix A. So the fixed point {∞} of Γ′∞ = 〈σa′,b′(α), σa′,b′(β)〉 is taken to the fixed

point {−1} of AΓ′∞A
−1 and the fixed point {1} of σa′,b′(γ) is taken to {∞}. An example of

a Ford domain for the conjugated representation is shown in Figure 7.2.

Figure 7.2: An example of the conjugated structure Aσa′,b′A
−1

Now we claim that

Lemma 7.4. There exists R > 0 such that for an arbitrary (a′, b′) in Bκ(a, b), the half ball

with center −1 and radius R on Ĉ contains all the finitely many visible isometric spheres of

any Ford domain for Aσa′,b′A
−1. (An example of such a ball is depicted by the dotted pink

circle in Figure 7.2)
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Proof of Lemma 7.4. By Lemma 7.3, we have a list {g1, g2, . . . , gl} of the finitely many group

elements of π1(C) giving visible isometric spheres of the Ford domains for all representations

Aσa′,b′A
−1 as (a′, b′) runs through the entire ball Bκ(a, b). That is, there exist elements

g1, g2, . . . , gl of π1(C) such that for each j, there exists (a′, b′) in Bκ(a, b) for which the

isometric sphere corresponding to σa′,b′(gj) is visible. For each j, consider the function

Radj(I(σa′,b′(gj))) which gives the radius of the sphere I(σa′,b′(gj)) for an arbitrary point

(a′, b′) in Bκ(a, b). Note that Radj is continuous because Radj can be read off of the matrix

σa′,b′(gj) (see Definition 3.5).Therefore, as (a′, b′) runs through the closed ball Bκ(a, b), Radj

attains a maximum value, called it Rj.

Choose R such that R >
∑l

j=1 2Rj. We claim that such a choice satisfies the condition

in Lemma 7.4. Indeed, let (a′, b′) be an arbitrary point in Bκ(a, b). The isometric sphere

pattern of any Ford domain for σa′,b′ is connected.

In fact, we can first choose (a∗, b∗) with |a∗| > 4 and |b∗| > 4, then σa∗,b∗ has a connected

isometric sphere pattern which is explicitly described in Lemma 4.5. Since there exists an

analytic path in M from (a∗, b∗) to (a, b), Lemma 5.4 of [15] applies to show that σa,b has

a connected isometric sphere patten. Since (a′, b′) is in a small neighborhood of (a, b), the

same argument applies to show that the isometric sphere pattern of a Ford domain of σa′,b′

is connected as well.

Now, in the worst case scenario, the visible isometric spheres of a Ford domain for σa′,b′

are all the possible visible isometric spheres from the list {g1, . . . , gl} and they are arranged

in a way that each sphere is visibly tangent to exactly one other sphere and intersects no

other spheres. In this case, the half ball B(−1, R) with center −1 and radius R on Ĉ will

still contain all these spheres for the above choice of R. Thus, the condition in the Lemma

is satisfied. This will hold for all the conjugated representations Aσa′,b′A
−1 as well. �

Now, for the isometric sphere pattern of each Aσa′,b′A
−1, we can then add two vertical

planes outside of the ball B(−1, R) which contains all the existing isometric spheres. See

Figure 7.3 for an example; here we added two green vertical planes to the existing isometric
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sphere pattern in Figure 7.2.

Figure 7.3: Adding two vertical planes to the existing sphere pattern

Identify these two added planes via translation by the matrix D =

1 2d

0 1

 for d with

Im(d) sufficiently large. In particular, if we choose I > R, then the choice of Im(d) > I

will determine a pair of planes outside B(−1, R). Hence, the two added vertical planes

together with the vertical planes corresponding to 〈Aσa′,b′(γ)A−1〉 provide us with a vertical

fundamental domain for the action of 〈Aσa′,b′(γ)A−1, D〉. Now, this vertical fundamental

domain together with the isometric spheres contained in the ball B(−1, R) provides us with

a candidate for the Ford domain for the action of the group Aσa′,b′,d(π1(Ĉ))A−1. We will

show that it is indeed a Ford domain for the action of Aσa′,b′,d(π1(Ĉ))A−1 via Lemma 7.5

and 7.6.

Lemma 7.5. There exists κ > 0 and I > 0 such that for all (a′, b′, d) ∈ Nκ,I(a, b), the

representation σa′,b′,d is a discrete, faithful and geometrically finite representation of π1(Ĉ).

Proof of Lemma 7.5. We have established above that if κ is sufficiently small and I is suffi-

ciently large, then a candidate for the Ford domain for the action of Aσa′,b′,d(π1(Ĉ))A−1 where

(a′, b′) ∈ Bκ(a, b) and Im(d) > I consists of finitely many isometric spheres contained in a half

ball B(R) and a vertical fundamental domain for the action of 〈Aσa′,b′(γ)A−1, D〉. Note that

this vertical fundamental domain certainly satisfies the dihedral angle condition and the face
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pairing condition of Poincaré Polyhedron Theorem 3.10. The finitely many isometric spheres

contained in B(R) also satisfy these conditions because they are obtained by conjugating the

isometric sphere pattern of the Ford domain for the action of σa′,b′(π1(C)) and such a pattern

satisfies these conditions by assumption on κ. Therefore, when we glue up all the isomet-

ric spheres contained in B(R) and the vertical fundamental domain for 〈Aσa′,b′(γ)A−1, D〉,

we obtain a smooth manifold Q with π1(Q) ∼= Aσa′,b′,d(π1(Ĉ))A−1 ∼= σa′,b′,d(π1(Ĉ)). More-

over, it also follows from Theorem 3.10 that the group Aσa′,b′,d(π1(Ĉ))A−1 is discrete and

geometrically finite. Hence, so is σa′,b′,d(π1(Ĉ)). �

It remains to prove that the manifold H3/σa′,b′,d(π1(Ĉ)) is homeomorphic to Ĉ. This is

done in the next lemma.

Lemma 7.6. The manifold H3/σa′,b′,d(π1(Ĉ)) is homeomorphic to the interior of Ĉ.

Proof of Lemma 7.6. Consider the manifold H3/σa′,b′,d(π1(Ĉ)) which is homeomorphic to the

manifold Q obtained by gluing the isometric spheres contained in the half ball B(R) and

the faces of the vertical fundamental domain for the action of 〈Aσa′,b′(γ)A−1, D〉. We will

show that Q is homeomorphic to Ĉ. The boundary of B(R) intersects the interior of the

aforementioned vertical fundamental domain in a disk. The blue disk shaded in Figure 7.4

illustrates this disk for the example of Figure 7.3. Two curves on this disk are the intersection

between the boundary of B(R) and the two vertical walls corresponding to the translation

by Aσa′,b′(γ)A−1. In the example in Figure 7.4, these two curves are the pink curves with

arrows. This forms an annulus A1(R) from the blue disk. This annulus separates Q into two

parts. One part contains the point at infinity, the other one contains finitely many isometric

spheres.

The interior of the part which contains the point at infinity is homeomorphic to T2×(0, 1).

Indeed, a side view of this part looks like Figure 7.5 where each purple curve in the figure

corresponds to a torus T2.

Now, the torus T2 × {0} is made up of two annuli A1(R) and A2(R) where A2(R) is the

annulus shaded in yellow in Figure 7.4.
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Figure 7.4: The annulus in Lemma 7.6

Figure 7.5: T2 × (0, 1) in Lemma 7.6

Since A1(R) only intersects the two vertical walls corresponding to the translation by

Aσa′,b′(γ)A−1, it will only intersect exactly two isometric spheres in the “pre-conjugate struc-

ture.” The situation is illustrated in Figure 7.6.

Figure 7.6: The annulus A1(R) is the pre-conjugate structure

The gluing of all isometric spheres is unchanged from σa′,b′ aside from the isometric

spheres corresponding to σa′,b′(γ) and σa′,b′(γ
−1), which are still glued, only with A1(R)

removed. Thus, the part of Q which contains the isometric spheres is homeomorphic to a
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(1; 2)-compression body together with A1(R) a marked annulus on ∂+C. So Q is obtained

by gluing a (1; 2)-compression body C and T2× (0, 1) along the annulus A1(R). We need to

determine the curve of A1(R) on ∂+C to finish the proof.

Now, let d1 and d2 be the geodesics dual to the 2 isometric spheres corresponding to

σa′,b′(γ) and σa′,b′(γ
−1) which intersect A1(R) (see Figure 5.5 for an example of dual geodesics

to isometric spheres). The geodesics d1 and d2 intersect some horosphere about infinity at

P1 and P2. Note that P1P2 is homotopic to a separating curve of the annulus A1(R). By

Lemma 2.16 of [6], the geodesics d1 and d2 and P1P2 glue up to a curve homotopic to the

core curve γ of the compression body. It then follows that the annulus A1(R) is parallel to

the core curve γ of the compression body.

When we glue the annulus A1(R) in T2 × (0, 1) to A1(R) in ∂+C, the annulus A2(R) is

attached to ∂A1(R) along its boundary curves. Hence, we obtain the torus T2 × {0} which

is parallel to the core curve γ of the compression body. So Q is obtained by taking a (1; 2)-

compression body and stacking on T2 × (0, 1) to a torus which is parallel to its core curve.

It then follows that Q is homeomorphic to Ĉ. �

Proof of Theorem 7.2. Choose κ as in Lemma 7.3 and I > R where R is chosen as in

Lemma 7.4. Then from Lemma 7.5 and Lemma 7.6, we conclude that the representation

σa′,b′,d corresponding to a point (a′, b′, d) ∈ Nκ,I(a, b) is in MP(Ĉ, P̂). This, together with

the remark right after the statement of the theorem shows that with such a choice of κ and

I, (a′, b′, d) is in U ∩ B. Hence, Nκ,I(a, b) ⊂ U ∩ B. �

7.3 Proof of the Slice Convergence Theorem

We first define a map Ψ : C2 × (C+ \ (0, 2)) −→ C2 × Ĉ as

Ψ(u, v, w) = (u, v,
2πi

λ(w)
),

For a given (a, b) ∈M and given ε > 0, choose the neighborhood U of (a, b,∞) as in the
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Neighborhood Refinement Theorem and consider the sequence of maps

U ∩ B Φ−→V ∩MP(C, T )
t−→C2 × (C+ \ (0, 2))

Ψ−→C2 × Ĉ,

Here t is the trace map defined in Section 6.1, Φ is the homeomorphism from Theorem

6.1 and U , V are the neighborhoods provided by Theorem 6.2.

Let χ = Ψ ◦ t ◦ Φ. Then χ is a homeomorphism from U to its image. We have the

following lemma

Lemma 7.7. Given (a, b) ∈ M, there exists κ0 > 0 such that for every κ with 0 < κ < κ0,

there exists I > 0 such that Nκ/2,2I(a+ 2, b+ 2) ⊂ χ (Nκ,I(a, b)).

Proof. Let U , V and χ be as above. By Theorem 7.2, there exist κ0 > 0 and I > 0 such that

Nκ0,I(a, b) ⊂ U ∩ B

Take κ with 0 < κ < κ0. For sufficiently large I, the following estimates are satisfied for

each point (u, v, w) in Nκ,I(a, b) by the Neighborhood Refinement Theorem 6.2:

|(u+ 2)− u′| < κ

8
(7.1)

|(v + 2)− v′| < κ

8
(7.2)

|w − w′| < κ

8
Im(w) (7.3)

where (u′, v′, w′) = χ(u, v, w)

We claim that for such a choice of κ and I, Nκ
2
,2I(a+ 2, b+ 2) ⊂ χ (Nκ,I(a, b)).

Suppose, by way of contradiction, that there exists a point

(a′, b′, d′) ∈ Nκ
2
,2I(a+ 2, b+ 2) \ χ (Nκ,I(a, b)) .
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Let (x, y, z) = χ(a′ − 2, b′ − 2, d′). Since (a′, b′) ∈ Bκ
2
(a+ 2, b+ 2), we have

√
|a′ − (a+ 2)|2 + |b′ − (b+ 2)|2 < κ

2

It follows that |a′ − (a+ 2)| < κ
2

and |b′ − (b+ 2)| < κ
2
. Equivalently, |(a′ − 2)− a| < κ

2
and

|(b′− 2)− b| < κ
2
, that is, (a′− 2, b′− 2) ∈ Bκ

2
(a, b). Hence, (a′− 2, b′− 2, d′) ∈ Nκ

2
,2I(a, b) ⊂

Nκ,I(a, b). As a result, (x, y, z) = χ(a′ − 2, b′ − 2, d′) satisfies the estimates (7.1), (7.2) and

(7.3). Specifically, we have

|a′ − x| < κ

8
(7.4)

|b′ − y| < κ

8
(7.5)

|d′ − z| < κ

8
Im(d′) (7.6)

Now consider the line segment connecting (x, y, z) and (a′, b′, d′), that is,

γ(t) = (1− t)(x, y, z) + t(a′, b′, d′), 0 ≤ t ≤ 1.

We have γ(0) = (x, y, z) ∈ χ(Nκ,I(a, b)) and γ(1) = (a′, b′, d′) 6∈ χ(Nκ,I(a, b)). Since

|a′−x| < κ
8

and |a′−(a+2)| < κ
2

(because (a′, b′) ∈ Bκ
2
(a+2, b+2)), we have |x−(a+2)| < 5κ

8
.

Similarly, |y − (b+ 2)| < 5κ
8

.

Now from |d′ − z| < κ
8
Im(d′) and Im(d′) > 2I, we get

Im(z) > 2I − κ

8
· 2I =

8− κ
4
· I

We just established that both endpoints (x, y, z) and (a′, b′, d′) are contained in the neigh-

borhood N 5κ
8
, 8−κ

4
I(a+ 2, b+ 2). Thus, γ([0, 1]) ⊂ N 5κ

8
, 8−κ

4
I(a+ 2, b+ 2).

Let t∞ = {t : γ(t) 6∈ χ (Nκ,I(a, b))}. Then 0 < t∞ ≤ 1. Choose a sequence tn approaching
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t∞ from below and let (a′n, b
′
n, d

′
n) = γ(tn). Then (a′n, b

′
n, d

′
n) = γ(tn) ∈ χ (Nκ,I(a, b)). It

follows that (an, bn, dn) ∈ Nκ,I(a, b) where (an, bn, dn) = χ−1(a′n, b
′
n, d

′
n).

We will show that (an, bn, dn) belongs to a slightly smaller neighborhood, namely, N 3κ
4
,I+8(a, b).

First, since (an, bn, dn) is in Nκ,I(a, b) and (a′n, b
′
n, d

′
n) = χ (an, bn, dn), Theorem 6.2 gives

the estimates |a′n − (an + 2)| < κ
8

, |b′n − (bn + 2)| < κ
8

and |d′n − dn| < κ
8
Im(dn).

Second, since (a′n, b
′
n, d

′
n) = γ(tn) ∈ N 5κ

8
, 8−κ

4
I(a + 2, b + 2), we have |a′n − (a + 2)| < 5κ

8
,

|b′n − (b+ 2)| < 5κ
8

and Im(d′n) > 8−κ
4
I.

It follows that

|an − a| ≤ |(an + 2)− a′n|+ |a′n − (a+ 2)| < κ

8
+

5κ

8
=

3κ

4

Similarly, |bn − b| < 3κ
4

. And so (an, bn) ∈ B 3κ
4

(a, b).

Now, we claim that Im(dn) > I + 8. Suppose not, that is, Im(dn) ≤ I + 8. Then

|dn − d′n| <
κ

8
Im(dn) ≤ κ

8
(I + 8) =

κ

8
I + κ.

Thus, Im(d′n) < Im(dn) + κ
8
I + κ ≤ I + 8 + κ

8
I + κ.

But we already have that Im(d′n) > 8−κ
4
I = 2I − κ

4
I. This yields a contradiction for

sufficiently small κ.

Therefore, we have established that (an, bn, dn) belongs to the neighborhood N 3κ
4
,I+8(a, b).

It follows that the accumulation point (a∞, b∞, d∞) of the sequence (an, bn, dn) belongs to

the neighborhood Nκ,I(a, b). Consequently, γ(t∞) = χ(a∞, b∞, d∞) belongs to χ(Nκ,I(a, b)).

Since χ is a homeomorphism, this contradicts the definition of t∞. This contradiction shows

that Nκ
2
,2I(a+ 2, b+ 2) ⊂ χ (Nκ,I(a, b)). �

Lemma 7.8. Suppose that {cn} ⊂ C\[−2, 2] and {cn} converges to 2 horocyclically. Then for

any (a, b) ∈M, there exists ε > 0 and a natural number N such that the ball Bε(a+ 2, b+ 2)

is contained in L(cn) for all n ≥ N .
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Proof. Given (a, b) ∈M, choose U as in Theorem 6.2. By Theorem 7.2 and Lemma 7.7, we

can choose κ > 0 and I > 0 such thatNκ,I(a, b) ⊂ U∩B andNκ
2
,2I(a+2, b+2) ⊂ χ (Nκ,I(a, b)).

Choose ε such that 0 < ε < κ
2
. Suppose that (u, v) ∈ Bε(a + 2, b + 2). It follows that

(u, v) ∈ Bκ
2
(a + 2, b + 2). Since {cn} converges to 2 horocyclically, Im

(
2πi

λ(cn)

)
−→ ∞,

therefore, there exists N > 0 such that if n ≥ N , Im

(
2πi

λ(cn)

)
> 2I. It follows that the

point

(
u, v,

2πi

λ(cn)

)
lies in the set Nκ

2
,2I(a+2, b+2) by definition. Since Nκ

2
,2I(a+2, b+2) ⊂

χ (Nκ,I(a, b)), there exists a point (a′, b′, d) ∈ Nκ,I(a, b) ⊂ U ∩ B such that

(
u, v,

2πi

λ(cn)

)
=

χ(a′, b′, d). It then follows that (u, v, cn) = t(Φ(a′, b′, d)). Since Φ(a′, b′, d) is a representation

in V ∩MP(C, T ) ⊂ MP(C, T ) ⊂ AH(C, T ), we must have (u, v, cn) ∈ T = t(AH(C, T )) by

definition. Therefore, (u, v) ∈ L(cn).

We just proved that every point in the ball Bε(a + 2, b + 2) also lies in L(cn). This

concludes the proof. �

We are now in a position to prove our main theorem, the Slice Convergence Theorem 7.1

Proof of the Slice Convergence Theorem 7.1. To establish that L(cn) converges to L(2) in

the sense of Hausdorff, there are two things to prove:

(i) Given (a, b) ∈ L(2), there exists a sequence {(an, bn)} ∈ L(cn) such that {(an, bn)}

converges to (a, b) (as a sequence in C2).

(ii) If (anj , bnj) ∈ L(cnj) and the sequence {(anj , bnj)} converges to (a, b) as a sequence in

C2, then (a, b) ∈ L(2).

Proof of (i):

Let (a, b) ∈ L(2). There exists a sequence {(amj , bmj)} ⊂ L(2) such that {(amj , bmj)}

converges to (a, b) since L(2) is a closed subspace of C2. Apply Lemma 7.8 to the point

(a − 2, b − 2) ∈ M, we can choose ε > 0 such that the ball Bε(a, b) is contained in L(cn)

for sufficiently large n. Now, since {(amj , bmj)} −→ (a, b), (amj , bmj) ∈ Bε(a, b) for mj large

enough. Thus, for every mj sufficiently large, we can choose Mj such that (amj , bmj) ∈ L(cn)
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for all n ≥ Mj. Choose the sequence {Mj} to be increasing. Put (an, bn) = (amj , bmj) for

every n with Mj ≤ n ≤ Mj+1. The sequence {(an, bn)} so constructed converges to (a, b).

Moreover, (an, bn) ∈ L(cn) for sufficiently large n.

Proof of (ii):

Suppose that (anj , bnj) ∈ L(cnj) and the sequence {(anj , bnj)} converges to (a, b). Since

(anj , bnj) ∈ L(cnj), there exists a discrete and faithful representation ρanj ,bnj such that

tr(ρanj ,bnj (αγ)) = anj , tr(ρanj ,bnj (βγ)) = bnj and tr(ρanj ,bnj (γ)) = cnj .

Conjugate ρanj ,bnj so that it has the form

ρanj ,bnj (α) =

1 anj − cnj

0 1

 , ρanj ,bnj (β) =

1 bnj − cnj

0 1

 , ρanj ,bnj (γ) =

cnj −1

1 0

 .

Let Γ0 = ρan1 ,bn1 (π1(C)) and for each nj 6= n1, let Γj = ρanj ,bnj (π1(C)). Then Γ0

and Γj, j ≥ 1 are non-elementary Kleinian groups and Γj ∼= Γ0(∼= π1(C)) for each j ≥ 1.

Moreover, the maps

ρj = ρanj ,bnj ◦ ρ
−1
an1 ,bn1

: Γ0 −→ Γj

are isomorphisms.

Now, since {(anj , bnj)} −→ (a, b) and {cnj} −→ 2, the representations ρanj ,bnj converges

to the representation σ of π1(C) with

σ(α) =

1 a− 2

0 1

 , σ(β) =

1 b− 2

0 1

 , σ(γ) =

2 −1

1 0

 .

Let ρ = σ ◦ ρ−1
an1 ,bn1

. Then for each g ∈ π1(C), ρj(g) −→ ρ(g). Let

Γ = {ρ(g) : g ∈ π1(C)},

then Jorgensen’s Theorem (see Theorem 4.1.2 of [19]) says that Γ is a non-elementary

Kleinian group and ρ is an isomorphism. This implies that the representation σ must be
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discrete and faithful. Since σ(αγ) = a, σ(βγ) = b and σ(γ) = 2, we must have (a, b) ∈ L(2)

by definition. �
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[12] F. González-Acuña and José Maŕıa Montesinos-Amilibia. On the character variety of
group representations in SL(2,C) and PSL(2,C). Math. Z., 214(4):627–652, 1993.

[13] Kentaro Ito. Linear slices close to a Maskit slice. Geom. Dedicata, 171:303–327, 2014.

[14] T. Jørgensen and A. Marden. Algebraic and geometric convergence of Kleinian groups.
Math. Scand., 66(1):47–72, 1990.

[15] Marc Lackenby and Jessica S. Purcell. Geodesics and compression bodies. Exp. Math.,
23(2):218–240, 2014.

[16] Michelle Lee. Dynamics on the PSL(2,C)-character variety of a compression body.
Algebr. Geom. Topol., 14(4):2149–2179, 2014.

66



[17] Colin Maclachlan and Alan W. Reid. The arithmetic of hyperbolic 3-manifolds, volume
219 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.

[18] Aaron D. Magid. Deformation spaces of Kleinian surface groups are not locally con-
nected. Geom. Topol., 16(3):1247–1320, 2012.

[19] A. Marden. Outer Circles. Cambridge University Press, first edition, 2007.

[20] Albert Marden. The geometry of finitely generated kleinian groups. Ann. of Math. (2),
99:383–462, 1974.

[21] B. Maskit. Kleinian Groups. Springer-Verlag, 1988.

[22] Katsuhiko Matsuzaki and Masahiko Taniguchi. Hyperbolic manifolds and Kleinian
groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University
Press, New York, 1998. Oxford Science Publications.

[23] Curtis T. McMullen. Renormalization and 3-manifolds which fiber over the circle, vol-
ume 142 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,
1996.

[24] D. B. McReynolds. Arithmetic cusp shapes are dense. Geom Dedicata, 129:47–55, 2007.

[25] Hossein Namazi and Juan Souto. Non-realizability and ending laminations: proof of
the density conjecture. Acta Math., 209(2):323–395, 2012.

[26] B. Nimershiem. Isometry classes of flat 2-tori appearing as cusps of hyperbolic 3-
manifolds are dense in the moduli space of the torus. Proceedings of Low-Dimensional
Topology, pages 133–142, 1994.

[27] Ken’ichi Ohshika. Realising end invariants by limits of minimally parabolic, geometri-
cally finite groups. Geom. Topol., 15(2):827–890, 2011.

[28] Makoto Sakuma and Jeffrey Weeks. Examples of canonical decompositions of hyperbolic
link complements. Japan. J. Math. (N.S.), 21(2):393–439, 1995.

[29] Dennis Sullivan. Quasiconformal homeomorphisms and dynamics. II. Structural stabil-
ity implies hyperbolicity for Kleinian groups. Acta Math., 155(3-4):243–260, 1985.

[30] W. Thurston. The Geometry and Topology of Three-Manifolds. Princeton Uni. Math.
Dept. Notes, 1979.

67


	Brigham Young University
	BYU ScholarsArchive
	2015-12-01

	Compression Bodies and Their Boundary Hyperbolic Structures
	Vinh Xuan Dang
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Cusp Shapes, Compression Bodies and Tunnel-Number-One Manifolds
	2.1 Cusp Shapes
	2.2 Compression Bodies
	2.3 Tunnel-Number-One Manifolds

	3 Hyperbolic Structures on Compression Bodies
	3.1 Geometry of PSL(2,C)
	3.2 Hyperbolic Structures on the (1;2)-compression body
	3.3 Isometric Spheres, Ford Domains and the Poincaré Polyhedron Theorem

	4 Cusped Structures and Maximally Cusped Structures
	4.1 Space of Hyperbolic Structures - AH(C,T) and Metapost(C,T)
	4.2 Cusped Structures
	4.3 Maximally Cusped Structures

	5 Cusp Shapes of Tunnel-Number-One Manifolds
	5.1 Cusp Shapes of Tunnel-Number-One Manifolds
	5.2 Towards a Generalization
	5.3 Some open questions about cusp shapes and cusp areas of manifolds with unknotting tunnels

	6 A Local Model for Metapost(C,T)
	6.1 Local Model for Metapost(C,T)
	6.2 Complex Lengths of Loxodromic Elements
	6.3 The Neighborhood Refinement Theorem

	7 Convergence of Slices of Hyperbolic Structures on the (1;2)-Compression Body
	7.1 Slices of Hyperbolic Structures
	7.2 Neighborhoods of points in M
	7.3 Proof of the Slice Convergence Theorem

	Bibliography

