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abstract

Record Linkage

Stasha Ann Bown Larsen
Department of Mathematics, BYU

Master of Science

This document explains the use of different metrics involved with record linkage. There
are two forms of record linkage: deterministic and probabilistic. We will focus on proba-
bilistic record linkage used in merging and updating two databases. Record pairs will be
compared using character-based and phonetic-based similarity metrics to determine at what
level they match. Performance measures are then calculated and Receiver Operating Char-
acteristic (ROC) curves are formed. Finally, an economic model is applied that returns the
optimal tolerance level two databases should use to determine a record pair match in order
to maximize profit.

Keywords: Probabilistic record linkage, Character-based similarity metrics, Phonetic-based
similarity metrics, ROC curves
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Chapter 1. Background Information

1.1 Definition

Record linkage is the process of determining if data records from the same or different data

sources refer to the same entity. Data records can include names, addresses, dates of birth,

social security numbers, occupation, and marital status. Data sources are books, databases,

and websites. An entity is usually a person, but it could also be an organization or a company.

We will focus on record linkage in databases. Databases are sets of structured and prop-

erly segmented data records. Record linkage is similar to mirror detection and anaphora

resolution. Mirror detection deals with detecting similar or identical web pages, whereas

anaphora resolution works on locating different mentions of the same entity in text [1, 2].

Algorithms that are used for mirror detection and anaphora resolution do have some appli-

cations to finding duplicates in databases, but we will not focus on these methods.

1.2 History

The first major scholarly article on record linkage, entitled “Record Linkage”, was in 1946

by Halbert L. Dunn [3]. Dunn’s initial work on record linkage was added upon when Howard

Borden Newcombe, J. M. Kennedy, S.J. Axford, and A.P. James proposed a probabilistic

approach in their 1959 article “Automatic Linkage of Vital Records” [4]. The probabilistic

approach to record linkage was then formalized by Ivan Fellegi and Alan Sunter in “A

Theory For Record Linkage” in 1969 [5]. Fellegi and Sunter showed that the probabilistic

decision rule they described in their paper was optimal when the attributes being compared

were conditionally independent. Their findings are the foundation for many record linkage

applications still used today.

Record linkage has various names among different research disciplines. In the Artificial

Intelligence community it is called database hardening [6] and name matching [7]. In the

database community it is called data deduplication [8], instance identification [9], and merge-

1



purge [10]. In statistics it is also called record matching [5]. Record linkage is also called

coreference resolution, duplicate record detection, and identity uncertainty [11].

Record linkage can be done without a computer. However, computers are used for better

quality control, central supervision of processing, consistency, reproducibility of results, and

speed.

1.3 Why is Record Linkage Important?

Record linkage is needed to join datasets based on entities that may or may not have a

common identifier, or to remove redundant entries in a single dataset. Data sources we

are interested in usually lack a global identifier, otherwise we could join data records on this

identifier and easily remove duplicate entities, which would make the datasets not interesting.

Moreover, records are not consistent across different data sources. For example, there could

be data entry errors resulting in misspellings, invalid data given field constraints, or simply

different conventions for storing the same information. When data sources are managed

independently the structure, semantics, and assumptions about the data are very likely to

be different.

1.4 Data Heterogeneity

Data heterogeneity refers to potential systematic differences that occur in data from dif-

ferent data sources [12]. Resolving such differences is referred to as data cleaning, data

pre-processing, data scrubbing, data standardization, or ETL (extraction, transformation

and loading) [13]. The two types of data heterogeneity are structural and lexical. Structural

heterogeneity happens when fields in different data sources are structured differently. For

example, in one data source an employee’s address can be found in the field called address.

However, in another data source an employee’s address can be located in multiple fields called

street, apartment, city, state, and zip code. Lexical heterogeneity happens when fields across
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data sources are the same, but the data representing the entity is different. An example of

this would be in one data source the field date of birth represents information in the form

Month day, year (example April 11, 1973) and the field date of birth in another data source

represents information in the form month/day/year (example 04/11/73).

To address the problems of data heterogeneity the data must first be prepared, which

generally consists of three steps: parsing, data transformation, and standardization [11].

Parsing is the process of locating, identifying, and isolating individual data elements within

a record so that comparisons can be made between individual elements, rather than the

whole record. Data transformation is the process of converting data in a field from one type

to another, renaming a field, range checking, and dependency checking. Standardization is

the process of transforming the data into a consistent format, so that records that are the

same no longer look different. For example, all names in the data source can be given in the

order last name, first name, all dates are given in the form MM/DD/YYYY, and all states

are represented by their two letter abbreviation. Standardization is done through rule based

data transformations or lexicon based tokenization and probabilistic hidden Markov models.

Standardizing the data so that it looks the same is easier to do than to normalize names

given in the data. This is because there is more than one way to spell many names. For

example, Aaron and Erin are both pronounced the same, but do not have the same spellings.

To help normalize names, first and last names can be run through a phonetic algorithm like

Soundex, NYSIIS, or Double Metaphone to help determine which names really are the same.

After the data has been prepared field matching occurs next. Field matching is done

in order to get rid of duplicate records that occur as a result of misspellings and different

conventions being used to record the same information. Character-based similarity metrics

can be used to help find misspelled words. Examples of these metrics include: edit distance,

affine gap distance, Smith-Waterman distance, Jaro distance, and q-gram distance.
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Chapter 2. Character-Based Similarity Metrics

2.1 Edit Distance

The edit distance (also called Levenshtein distance) metric is the minimum number of single

character edit operations needed for strings s and t, in order to transform the string s into

string t [14]. Edit distance is effective at finding typographical errors, but it is not effective at

finding other types of mismatches. For example, it cannot tell that two names are identical

if in one database the name is written last name, first name and in the other database it is

written first name last name. It also does not work well if strings have been truncated or

shortened.

Copy, insert, delete, and substitute are the four types of edit operations. Copy copies an

identical character from the string, insert inserts a character into the string, delete deletes

a character from the string, and substitute substitutes one character in the string with a

different character. Copying a character from string s to t costs 0, deleting a character from

string s costs 1, inserting a character from string t costs 1, and substituting one character for

another costs 1 [15]. Below we give three examples of calculating the edit distance between

two strings.

Example 2.1. distance(Stasha Bown, Sttasha Brown)

string s = Stasha Bown

string t = Sttasha Brown

operation CCICCCC CICCC, where C = copy and I = insert

cost (cumulative) 0011111 12222
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Example 2.2. distance(SStasha Bawn, Stasha Bown)

string s = SStasha Bawn

string t = Stasha Bown

operation CDCCCCC CSCC, where C = copy, D = delete, and S = substitute

cost (cumulative) 0111111 1222

Example 2.3. distance(SStasha Bawn, Sttasha Brown)

string s = SStasha Bawn

string t = Sttasha Brown

operation CSCCCCC CSICC, where C = copy, I = insert, and S = substitute

cost (cumulative) 0111111 12333

Considering the costs we defined above, if string s = s1s2 · · · sm and string t = t1t2 · · · tn,

the score for the best alignment for comparing s1, s2, . . . , sm to t1, t2, . . . , tn where 1 ≤ i ≤ m

and 1 ≤ j ≤ n is

D(i, j) = min



D(i− 1, j − 1) if si = tj, copy

D(i− 1, j − 1) + 1 if si 6= tj, substitute

D(i− 1, j) + 1 insert

D(i, j − 1) + 1 delete

This can be simplified to

D(i, j) = min


D(i− 1, j − 1) + d(si, tj) for a substitution or copy

D(i− 1, j) + 1 insert

D(i, j − 1) + 1 delete
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Where d(a, b) is a distance function on characters that is related to typo frequencies. Thus

d(a, b) =


0 when a = b

1 otherwise.

We also have that D(i, 0) = i for i inserts and D(0, j) = j for j

deletes [15].

Example 2.4. An example of the edit distance is given below where the strings DAVID and

SDDAVD are being compared and d(a, b) =


0 when a = b

1 otherwise.

D A V I D
S 1 2 3 4 5
D 1 2 3 4 4
D 2 2 3 4 4
A 3 2 3 4 5
V 4 3 2 3 4
D 5 4 3 3 3

Note that the edit distance for comparing DAVID and SDDAVD is 3 (the value found in

the lower right hand corner of the table). These distance values were formed as a result of

comparing the following characters and finding the minimum value.
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s1 s2 s3 s4 s5
t1 d, s a, s v, s i, s d, s

[1] [2, 2] [3, 3] [4, 4] [5, 5]
min val = 1 min val = 2 min val = 3 min val = 4 min val = 5

t2 d, d a, d v, d i, d d, d
[2, 1] [3, 2, 2] [4, 3, 3] [5, 4, 4] [6, 5, 4]

min val = 1 min val = 2 min val = 3 min val = 4 min val = 4
t3 d, d a, d v, d i, d d, d

[2, 2] [3, 3, 2] [4, 3, 3] [5, 4, 4] [5, 5, 4]
min val = 2 min val = 2 min val = 3 min val = 4 min val = 4

t4 d, a a, a v, a i, a d, a
[3, 4] [3, 4, 2] [4, 3, 3] [5, 4, 4] [5, 5, 5]

min val = 3 min val = 2 min val = 3 min val = 4 min val = 5
t5 d, v a, v v, v i, v d, v

[4, 5] [3, 5, 4] [4, 4, 2] [5, 3, 4] [6, 4, 5]
min val = 4 min val = 3 min val = 2 min val = 3 min val = 4

t6 d, d a, d v, d i, d d, d
[5, 5] [4, 6, 5] [3, 5, 4] [4, 4, 3] [5, 4, 3]

min val = 5 min val = 4 min val = 3 min val = 3 min val = 3

Table 2.1: Edit distance table comparing string s = DAVID and string t = SDDAVD.

The more different two strings are, the larger their edit distance will be. For example,

if the strings STASHA and DSSTSGA are compared they would have an edit distance of 4.

It could be that these two strings were both suppose to be STASHA. However, as a result

of the d key being pressed by accident and then over-correcting we ended up with DSS at

the beginning instead. Furthermore, the letter a in the middle is missing and the g key near

the end was hit instead of the h key. So many typos in such a small string are unlikely, but

mistakes do happen. To get a better understanding of why distance(STASHA, DSSTSGA)

= 4, please see the edit distance table below.

S T A S H A
D 1 2 3 4 5 6
S 1 2 3 3 4 5
S 2 2 3 3 4 5
T 3 2 3 4 4 5
S 4 3 3 3 4 5
G 5 4 4 4 4 5
A 6 5 4 5 5 4
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These distance values were formed as a result of comparing the following characters and

finding the minimum value.

s1 s2 s3 s4 s5 s6
t1 s, d t, d a, d s, d h, d a, d

[1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6]
min val = 1 min val = 2 min val = 3 min val = 4 min val = 5 min val = 6

t2 s, s t, s a, s s, s h, s a, s
[2, 1] [3, 2, 2] [4, 3, 3] [5, 4, 3] [6, 4, 5] [7, 5, 6]

min val = 1 min val = 2 min val = 3 min val = 3 min val = 4 min val = 5
t3 s, s t, s a, s s, s h, s a, s

[2, 2] [3, 3, 2] [4, 3, 3] [4, 4, 3] [5, 4, 4] [6, 5, 5]
min val = 2 min val = 2 min val = 3 min val = 3 min val = 4 min val = 5

t4 s, t t, t a, t s, t h, t a, t
[3, 4] [3, 4, 2] [4, 3, 3] [4, 4, 4] [5, 5, 4] [6, 5, 5]

min val = 3 min val = 2 min val = 3 min val = 4 min val = 4 min val = 5
t5 s, s t, s a, s s, s h, s a, s

[4, 4] [3, 5, 4] [4, 4, 3] [5, 4, 3] [5, 4, 5] [6, 5, 5]
min val = 4 min val = 3 min val = 3 min val = 3 min val = 4 min val = 5

t6 s, g t, g a, g s, g h, g a, g
[5, 6] [4, 6, 5] [4, 5, 4] [4, 5, 4] [5, 5, 4] [6, 5, 5]

min val = 5 min val = 4 min val = 4 min val = 4 min val = 4 min val = 5
t6 s, a t, a a, a s, a h, a a, a

[6, 7] [5, 7, 6] [5, 6, 4] [5, 5, 5] [5, 6, 5] [6, 6, 4]
min val = 6 min val = 5 min val = 4 min val = 5 min val = 5 min val = 4

Table 2.2: Edit distance table comparing string s = STASHA and string t = DSSTSGA.

The edit distance of two strings can be calculated by hand or using a computer. The

python code that I used to calculate the edit distance metric is located in the appendix. It is

important to note that the boundary conditions for when i = 0 or j = 0 have to be handled

differently. Furthermore, when si and tj are being compared we have to take into account

how far into the string we are.

2.2 Affine Gap Distance

The affine gap distance metric is an extension of the edit distance metric [16]. With affine

gap distance there are two additional operations called open gap and extend gap.

The cost of a gap of n characters is nG = A+ (n− 1)B, where A is the cost of opening
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the gap and B is the cost of continuing the gap. The affine gap distance D(i, j) can be

calculated as follows:

D(i, j) = max


D(i− 1, j − 1) + d(si, tj)

SI(i− 1, j − 1) + d(si, tj)

TJ(i− 1, j − 1) + d(si, tj)

where d(si, tj) is an arbitrary distance function on characters that is related to typo frequen-

cies.

SI(i, j) = max


D(i− 1, j)− A

SI(i− 1, j)−B

which is the best score for which si is aligned with a gap and

TJ(i, j) = max


D(i, j − 1)− A

TJ(i, j − 1)−B

which is the best score for which tj is aligned with a gap [15].

2.3 Smith-Waterman Distance

The Smith-Waterman distance metric is an extension of the edit and affine gap distance

metrics [17]. With the Smith-Waterman distance metric, mismatches in the middle of the

string have a higher cost than mismatches at the beginning and end. This allows the metric

to have better substring matching.
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The value of the Smith-Waterman distance metric is given by

D(i, j) = max



0 start over

D(i− 1, j − 1)− d(si, tj) for a substitution or copy

D(i− 1, j)−G insert

D(i, j − 1)−G delete

Where the distance is the maximum value over all i, j in the table of D(i, j) [15]. Note

that d(si, tj) is an arbitrary distance function on characters that is related to typo frequencies

and the term G is a penalty cost for having to perform an insertion or deletion. It is also

important to note that the distance cannot be negative, so a start over value of zero is used.

If the distance does become a negative value, then the start over option is applied and the

distance value becomes zero.

Example 2.5. An example of the Smith−Waterman distance metric is given below where

G = 1, d(c, c) = −2, d(c, d) = 1, and start over is not used. e.g.,

D(i, j) = max



D(i− 1, j − 1) + 2 for a copy when si = tj

D(i− 1, j − 1)− 1 for a substitution when si 6= tj

D(i− 1, j)− 1 insert

D(i, j − 1)− 1 delete

D A V I D
S -1 -2 -3 -4 -5
D +1 0 -1 -2 -2
D 0 0 -1 -2 0
A -1 +2 +1 0 -1
V -2 +1 +4 +3 +2
D -3 0 +3 +3 +5
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Note that the Smith-Waterman distance for comparing DAVID and SDDAVD is 5 (the

value found in the lower right hand corner of the table). These distance values were formed

as a result of comparing the following characters and finding the maximum value.

s1 s2 s3 s4 s5
t1 d, s a, s v, s i, s d, s

[-1] [-2, -2] [-3, -3] [-4, -4] [-5, -5]
max val = -1 max val = -2 max val = -3 max val = -4 max val = -5

t2 d, d a, d v, d i, d d, d
[-2, 1] [-3, 0, -2] [-4, -1, -3] [-5, -2, -4] [-6, -3, -2]

max val = 1 max val = 0 max val = -1 max val = -2 max val = -2
t3 d, d a, d v, d i, d d, d

[0, 0] [-1, -1, 0] [-2, -1, -1] [-3, -2, -2] [-3, -3, 0]
max val = 0 max val = 0 max val = -1 max val = -2 max val = 0

t4 d, a a, a v, a i, a d, a
[-1, -4] [-1, -2, 2] [-2, 1, -1] [-3, 0, -2] [-1, -1, -3]

max val = -1 max val = 2 max val = 1 max val = 0 max val = -1
t5 d, v a, v v, v i, v d, v

[-2, -5] [1, -3, -2] [0, 0, 4] [-1, 3, 0] [-2, 2, -1]
max val = -2 max val = 1 max val = 4 max val = 3 max val = 2

t6 d, d a, d v, d i, d d, d
[-3, -3] [0, -4, -3] [3, -1, 0] [2, 2, 3] [1, 2, 5]

max val = -3 max val = 0 max val = 3 max val = 3 max val = 5

Table 2.3: Smith-Waterman distance table comparing string s = DAVID and string t =
SDDAVD.

Example 2.6. If the start over value of 0 is used, then the same two strings being compared

have the following distance table.

D A V I D
S 0 0 0 0 0
D +1 0 0 0 +2
D 0 0 0 0 +2
A 0 +2 +1 0 +1
V 0 +1 +4 +3 +2
D 0 0 +3 +3 +5
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Similarly we see that the Smith-Waterman distance for comparing DAVID and SDDAVD

when the start over value of 0 is used is 5 (the value found in the lower right hand corner of

the table).

Example 2.7. If the strings s = STASHA and t = WTAAHZ where compared using the

Smith-Waterman distance and start over is not used along with G = 1, d(c, c) = −1, d(c, d) =

1, D(i, 0) = i, and D(0, j) = j. Then

D(i, j) = max



D(i− 1, j − 1) + 1 for a copy when si = tj

D(i− 1, j − 1)− 1 for a substitution when si 6= tj

D(i− 1, j)− 1 insert

D(i, j − 1)− 1 delete

Then string s = STASHA and string t = WTAAHZ have the following distance table.

S T A S H A
W -1 -2 -3 -4 -5 -6
T -2 0 -1 -2 -3 -4
A -3 -1 +1 0 -1 -2
A -4 -2 0 0 -1 -2
H -5 -3 -1 -1 +1 0
Z -6 -4 -2 0 0 0

Note that the Smith-Waterman distance for comparing STASHA and WTAAHZ is 0 (the

value found in the lower right hand corner of the table). These distance values were formed

as a result of comparing the following characters and finding the maximum value.
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s1 s2 s3 s4 s5 s6
t1 s, w t, w a, w s, w h, w a, w

[-1] [-2, -2] [-3, -3] [-4, -4] [-5, -5] [-6, -6]
max val = -1 max val = -2 max val = -3 max val = -4 max val = -5 max val = -6

t2 s, t t, t a, t s, t h, t a, t
[-2, -2] [-3, -3, 0] [-1, -4, -3] [-2, -5, -4] [-3, -6, -5] [-4, -7, -6]

max val = -2 max val = 0 max val = -1 max val = -2 max val = -3 max val = -4
t3 s, a t, a a, a s, a h, a a, a

[-3, -3] [-4, -1, -3] [-2, -2, 1] [0, -3, -2] [-1, -4, -3] [-2, -5, -2]
max val = -3 max val = -1 max val = 1 max val = 0 max val = -1 max val = -2

t4 s, a t, a a, a s, a h, a a, a
[-4, -4] [-5, -2, -4] [-3, 0, 0] [-1, -1, 0] [-1, -2, -1] [-2, -3, 0]

max val = -4 max val = -2 max val = 0 max val = 0 max val = -1 max val = 0
t5 s, h t, h a, h s, h h, h a, h

[-5, -5] [-6, -3, -5] [-4, -1, -3] [-2, -1, -1] [-2, -2, 1] [0, -1, -2]
max val = -5 max val = -3 max val = -1 max val = -1 max val = 1 max val = 0

t6 s, z t, z a, z s, z h, z a, z
[-6, -6] [-7, -4, -6] [-5, -2, -4] [-3, -2, -2] [-3, 0, -2] [-1, -1, 0]

max val = -6 max val = -4 max val = -2 max val = -2 max val = 0 max val = 0

Table 2.4: Smith-Waterman distance table comparing string s = STASHA and string t =
WTAAHZ.

Example 2.8. If the start over value of 0 is used, then the same two strings being compared

have the following distance table.

S T A S H A
W 0 0 0 0 0 0
T 0 +1 0 0 0 0
A 0 0 +2 +1 0 +1
A 0 0 +1 +1 0 +1
H 0 0 0 0 +2 +1
Z 0 0 0 0 +1 +1

Then the Smith-Waterman distance for comparing STASHA and WTAAHZ when the

start over value of 0 is used is 1 (the value found in the lower right hand corner of the table).

The python code that I used to calculate the Smith-Waterman distance metric is given

in the appendix.
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2.4 Jaro Distance

The Jaro distance metric is a string comparison algorithm that is primarily used for first

and last name comparison [18]. Given a string s and a string t, c is said to be a common

character in s and t if si = c, tj = c, and |i − j| < min(|s|,|t|)
2

( or i −H ≤ j ≤ i + H where

H = min(|s|,|t|)
2

). Furthermore, the characters d and e are said to be a transposition of each

other if the characters d and e are both characters in string s and string t, but d and e

appear in different orders in s and t. This leads to the Jaro distance metric of strings s and

t to be Jaro(s, t) = average of #common
|s| , #common

|t| , and 0.5#transpositions
#common

[15].

More formally, the Jaro distance metric can be viewed as follows. Let s′ = s′1, s
′
2, ..., s

′
k and

t′ = t′1, t
′
2, ..., t

′
l where s′ consists of the characters that s has in common with t and t′ consists

of the characters that t has in common with s. A transposition in s′ in position i occurs

when s′i < t′i. And a transposition in t′ in position i occurs when s′i > t′i. If we let Ts′,t′ be one

half of the number of transpositions in s′ and t′, then Jaro(s, t) = 1
3

(
|s′|
|s| + |t′|

|t| +
|s′|−Ts′,t′
|s′|

)
[19].

A variant on the Jaro distance metric can be achieved by weighting the errors that occur

earlier in the string more heavily [15].

Example 2.9. Find the Jaro distance between Stasha and Satsha.

s = Stasha, |s| = 6

t = Satsha, |t| = 6

H = min(|s|,|t|)
2

= min(6,6)
2

= 3

s′ = Stasha, |s′| = 6

t′ = Satsha, |t′| = 6

Ts′,t′ = 1
2
(2) = 1

Jaro(s, t) = 1
3

(
6
6

+ 6
6

+ 6−1
6

)
= 17

18
= .94

Example 2.10. Find the Jaro distance between Stasha Bown and SStasja Brpwm.

s = Stasha Bown, |s| = 11

t = SStasja Brpwm, |t| = 13

14



H = min(|s|,|t|)
2

= min(11,13)
2

= 5.5

s′ = Stasa Bw, |s′| = 8

t′ = Stasa Bw, |t′| = 8

Ts′,t′ = 1
2
(0) = 0

Jaro(s, t) = 1
3

(
8
11

+ 8
13

+ 8−0
8

)
= 0.7808857

The python code used to calculate the Jaro distance between Stasha and Satsha along

with Stasha Bown and SStasja Brpwm is given in the appendix. The python code is based

on code written in C for calculating the Jaro distance from the jellyfish library available for

download at https://github.com/sunlightlabs/jellyfish.

2.5 Q-gram Distance

A q-gram is a character substring of length q [20]. If two strings s and t are similar, then they

will have a number of q-grams in common. The more q-grams two strings have in common,

the more likely that the two strings match. A q-gram is formed for a string s by sliding a

window of length q over the characters of s. At the beginning and end of a string, fewer than

q characters will be present. An option available to fix this problem is to pad the string s

at the beginning and the end with q− 1 padding characters that are not part of the original

alphabet [21]. Otherwise, q-grams are formed using only the characters given in the string

s. Letter q-grams (q-grams that are of length one, two, or three) can also be used to help fix

spelling mistakes and for text recognition. Q-grams can be extended to positional q-grams,

which record the position of each q-gram in string s [22].

Example 2.11. Let the string s = STASHA.

If q = 1, then the q-grams of string s are equal to the set S = {S, T,A, S,H,A}.

If q = 2, then the q-grams of string s are equal to the set S = {ST, TA,AS, SH,HA}.

If q = 3, then the q-grams of string s are equal to the set S = {STA, TAS,ASH, SHA}.

If q = 4, then the q-grams of string s are equal to the set S = {STAS, TASH,ASHA}.
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If q = 5, then the q-grams of string s are equal to the set S = {STASH, TASHA}.

If q = 6, then the q-gram of string s is equal to the set S = {STASHA}.

The python code used to generate the q-grams of a string is given in the appendix.

Q-grams can be used as the basis for a distance metric. To calculate the q-gram distance

between string s and string t with a q-gram of size n the following steps are taken. First, the

q-grams of each string must be found. The set of q-grams of size n for the string s will be

called set S and the set of q-grams of size n for the string t will be called set T . Second, the

set U , which contains the q-grams that S and T have in common is formed. The size of the

set U will be denoted by u. Third, the set V is formed which contains the unique q-grams

from sets S and T . The size of the set V will be denoted by v. If the set V is the empty set,

then v = 0. The q-gram distance is then equal to u
v
, if v 6= 0 and is equal to 0 otherwise.

Note that the q-gram distance will be between 0 and 1 inclusive, where two strings are not

similar if they have a q-gram distance of 0 and a q-gram distance of 1 represents a perfect

match. Therefore, the closer to 1 the q-gram distance of two strings is, the more likely the

strings are to be a match. The q-gram distance can then be multiplied by 100 to get a

percentage value for how similar two strings are.

Example 2.12. Let the string s = STASHA, string t = SSTASGA, and q = 4. Then the

q-grams of string s are equal to the set S = {STAS, TASH,ASHA}. And the q-grams of

string t are equal to the set T = {SSTA, STAS, TASG,ASGA}. Then the set U , which

contains the q-grams that S and T have in common is equal to U = {STAS}. There are 6

unique q-grams possible between the two strings and |U | = 1. So the strings have a 16.67%

probability of being a match.

The python code used to generate the q-gram distance between STASHA and SSTASGA

when q = 4 is given in the appendix.

It is important to note that character-based similarity metrics are good at finding ty-

pographical errors and not at detecting rearrangements of words. Token-based similarity
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metrics work to resolve this problem. Token-based similarity metrics include atomic strings,

WHIRL, and Q-grams with tf.idf .
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Chapter 3. Token-Based Similarity Metrics

3.1 Atomic Strings

Atomic strings are sequences of numbers and letters delimited by punctuation characters.

Two strings are said to match if one is the prefix of the other or they are equal to each other.

In this metric, how similar two fields are to each other is given by their number of matching

atomic strings divided by their average number of atomic strings. The algorithm used for

matching fields based on atomic strings was formed by Monge and Elkan [23].

3.2 WHIRL

WHIRL computes the similarity of two fields by looking at the cosine similarity between

strings s and t, along with the tf.idf weighting scheme [24]. First each string s is separated

into words w and each word is assigned a weight υ(w) = log(tfw + 1) · log(idfw). tfw is

the number of times that w appears in the field and idfw = |D|
nw

, where nw is the number of

records in database D that contain w. If w appears a large number of times in the field,

then the tf.idf weight for a word w in a field is high. If w is a lesser used word, then idfw is

high. Then the cosine similarity of string s and t is
∑|D|

j=1 υs(j)·υt(j)
||υs||2·||υt||2 .

WHIRL works well for a large variety of entries and allows for word order to vary. For

example, it sees first name last name as the same as last name, first name. Furthermore,

frequent words have a minimal effect on the similarity of two strings since they have a low

idf weight. An example of this would be if there was a database that had titles attached to

peoples’ names. However, WHIRL is not good at finding spelling errors, especially if there

are multiple spelling errors in the database. This system was formed by William W. Cohen.
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3.3 Q-grams with tf.idf

Q-grams with tf.idf is an extension of the WHIRL system [25]. This metric works on

handling spelling errors by using q-grams as tokens instead of words. This makes it so that

spelling errors have a minimal effect on the set of common q-grams for two strings s and

t. Furthermore, q-grams with tf.idf is able to handle the insertion and deletion of words in

strings without too much difficulty.

Character-based similarity metrics and token-based similarity metrics view a database

as being string based. For strings that are written similarly these are good metrics to use.

However, some strings in a database may be phonetically similar but are not very similar

under character-based or token-based metrics. Phonetic similarity metrics that try to match

such strings are Soundex, New York State Identification and Intelligence System (NYSIIS),

Oxford Name Compression Algorithm (ONCA), Metaphone, and Double Metaphone.
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Chapter 4. Phonetic-Based Similarity Metrics

4.1 Soundex

The most common phonetic similarity metric is Soundex. It is mainly used to match sur-

names and is widely used in genealogy. This is because Soundex works well for caucasian

surnames and surnames of different origins that are not heavily based on vowels, since it

ignores vowels. It was developed by Robert C. Russell and Margaret K. Odell [26, 27].

Soundex groups phonetically similar consonants together and assigns those letters a num-

ber. Only the first letter in the surname is kept, all W’s and H’s are ignored, and the remain-

ing letters are changed to numbers, except for vowels which serve as separators. Repeated

numbers are then located and consolidated to just one representation of that number. After

that the vowels which served as separators are then removed. Lastly, only the letter and

first three numbers are kept.

It is worth noting that more than three numbers can be kept. However, it is customary

that only the letter and first three numbers are kept. (This is the default setting in the

code.) If more or less numbers are desired to be kept or removed, this must be specified

when performing Soundex on a given dataset. If there are fewer than three numbers given

for a surname, then still keep the first letter and any numbers that are present and fill in

the rest of the spaces with zeros.

Example 4.1. Soundex on the surname Simoneit

(i) Keep the first letter S. If there were any W’s or H’s, they would be ignored at this

point. Since there are no instances of W’s or H’s, move on to step two.

(ii) The following letters get assigned to the following numbers.

B, F, P, V to 1

C, G, J, K, Q, S, X, Z to 2

D, T to 3
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L to 4

M, N to 5

R to 6

So Simoneit become SI5O5EI3.

(iii) All the vowels which served as separators are dropped. Thus SI5O5EI3 becomes S553.

(iv) Since S553 has only the first letter and three numbers, it is in the proper form. Meaning

that no numbers need to be truncated and no zeros need to be added for padding.

An image of a 1920 U.S. Census index card for a family with the last name Simoneit is given

in figure 4.1 [28]. The Soundex form of the family’s name (S553) is given in the top left

corner of the card.

Figure 4.1: Image of a 1920 U.S. Census index card for a family with the last name Simoneit.

Example 4.2. Soundex on the surname Avio

(i) Keep the first letter A. If there were any W’s or H’s, they would be ignored at this

point. Since there are no instances of W’s or H’s, move on to step two.
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(ii) The following letters get assigned to the following numbers.

B, F, P, V to 1

C, G, J, K, Q, S, X, Z to 2

D, T to 3

L to 4

M, N to 5

R to 6

So Avio become A1IO.

(iii) All the vowels which served as separators are dropped. Thus A1IO becomes A1.

(iv) Since A1 has only the first letter and one number, then it is not in the proper form.

(Meaning that zeros need to be added for padding.) After adding two zeros, A1 becomes

A100 and is now in standard Soundex form.

An image of a U.S. Department of Labor, Immigration, and Naturalization Service card for

a man with the last name Avio is given in figure 4.2 [29]. The Soundex form of the man’s

surname (A100) is given in the top left corner of the card.

Figure 4.2: Image of a U.S. Department of Labor, Immigration, and Naturalization Service
card for a man with the last name Avio.

The python code used to find the Soundex representation of a name is given in the

appendix. The Soundex python code was written by Gregory Jorgensen and can also be

found at http://code.activestate.com/recipes/52213-soundex-algorithm/.

22



4.2 New York State Identification and Intelligence System

(NYSIIS)

NYSIIS extends upon Soundex and takes into account vowels, changing most of the vowels

to A [30]. Furthermore, NYSIIS does not change phonetically similar consonants to the

same number like Soundex does, but instead it replaces consonants with other phonetically

similar consonants. NYSIIS was invented by Robert Taft and is used by the New York State

Division of Criminal Justice Services.

The steps as given in Name Search Techniques by Taft are [30]:

(i) Translate the first character or characters of the name to the following:

MAC to MCC

KN to N

K to C

PH and PF to FF

SCH to SSS

(ii) Translate the last character of the name to the following:

EE to Y

IE to Y

DT, RT, RD, NT, ND to D

(iii) The first character of the name becomes equal to the first character of the key.

(iv) Translate the remaining characters in the name by the following rules, moving forward

by one character each time.

(a) EV to AF else A, E, I, O, and U to A

(b) Q to G

Z to S

M to N
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(c) KN to N else K to C

(d) SCH to SSS

PH to FF

(e) H to previous character, if the previous character or next is not a vowel

(f) W to A, if the previous character is a vowel

(g) Add current to key if current is not the same as the last key character.

(v) If the last character is S, then remove it.

(vi) If the last characters are AY, then replace AY with Y.

(vii) If the last character is A, then remove it.

(viii) Append the translated key to value from step 3 (removed first character).

(ix) If the result is longer than six characters, then truncate it to the first six characters.

Note that this step is only needed for true NYSIIS and that some versions use the full

key.

Example 4.3. NYSIIS on the surname Simoneit

(i) Since Simoneit does not start with any of these letter combinations, is remains un-

changed for the moment.

(ii) Simoneit does not end with any of these letter combinations, so again Simoneit remains

unchanged.

(iii) Key = S

(iv) E, I, and O are replaced by A, so SIMONEIT becomes SAMANAT. And M is replaced

by N, so SAMANAT becomes SANANAT.

(v) The remaining steps do not apply, so the NYSIIS representation for Simoneit is SANANAT.
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Example 4.4. NYSIIS on the name Kristie

(i) The first letter K is changed to C, so KRISTIE becomes CRISTIE.

(ii) The last letters IE are changed to Y, so CRISTIE becomes CRISTY.

(iii) Key = C

(iv) I is replaced by A, so CRISTY becomes CRASTY.

(v) The remaining steps do not apply, so the NYSIIS representation for KRISTIE is

CRASTY.

The python code used to find the NYSIIS representation of a name is given in the

appendix. The code can also be found at http://utilitymill.com/edit/nysiis.

4.3 Oxford Name Compression Algorithm (ONCA)

ONCA is another extension of Soundex. First ONCA uses a British version of NYSIIS and

then those results are run through Soundex [31].

4.4 Metaphone and Double Metaphone

Metaphone is not an extension of Soundex like NYSIIS and ONCA, but is seen as an alter-

native to Soundex [32]. It uses sixteen consonant sounds that describe a number of sounds

used in many words. The consonants are 0BFHJKLMNPRSTWXY, where 0 represents th,

X represents sh and ch, and the remaining fourteen consonants represent their standard

English pronunciations. Metaphone’s advantage over other metrics is that these consonant

sounds are used in many English and non-English words. It is important to note that the

vowels A, E, I, O, and U are only used if they are at the beginning of the word, otherwise

they are dropped.

Double Metaphone is an extension of Metaphone that allows for more than one encoding

of names that have multiple possible pronunciations [33]. All possible encodings are tested
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when trying to see if names are similar, which allows for more matches to be found. Both

Metaphone and Double Metaphone were proposed by Lawrence Philips.

The steps for transforming a word into its approximate phonetic representation are [34]:

(i) Drop duplicate adjacent letters, except C.

(ii) If the word begins with AE, GN, KN, PN, or WR, drop the first letter.

(iii) Drop B if after M at the end of the word.

(iv) C transforms to X if followed by IA or H, unless in the latter case it is part of -SCH-,

in which case it transforms to K.

C transforms to S if followed by I, E, or Y.

Otherwise, C transforms to K.

(v) D transforms to J if followed by GE, GI, or GY.

Otherwise, D transforms to T.

(vi) Drop G if followed by H and H is not at the end or before a vowel.

Drop G if followed by N or NED and is at the end.

(vii) G transforms to J if before I, E, or Y, and it is not in GG.

Otherwise G transforms to K.

(viii) Drop H if after a vowel and not before a vowel.

(ix) CK transforms to K.

(x) PH transforms to F.

(xi) Q transforms to K.

(xii) S transforms to X if followed by H, IA, or IO.
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(xiii) T transforms to X if followed by IA or IO.

TH transforms to 0.

Drop T if followed by CH.

(xiv) V transforms to F.

(xv) WH transforms to W if at the beginning.

Drop W if not followed by a vowel.

(xvi) X transforms to S if at the beginning.

Otherwise, X transforms to KS.

(xvii) Drop Y if not followed by a vowel.

(xviii) Z transforms to S.

(xix) Drop all vowels other than at the beginning of the word.

Example 4.5. The Double Metaphone representation of Simoneit is SMNT.

Example 4.6. The Double Metaphone representation of Stasha is STX.

The python code used to find the Double Metaphone representation of a name is given in

the appendix. The code can also be found at https://github.com/dracos/double-metaphone

/blob/master/metaphone.py.

Many methods exist for finding similarities in string-based data. However, there is not

much work that has been done to find similarities in numeric data. This is because in

general numbers are treated like strings and compared using the similarity metrics discussed

previously or a range analysis is run on the numbers to locate numbers with similar values.
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Chapter 5. Deterministic and Probabilistic Record Linkage

5.1 Deterministic Record Linkage

Once the data has been prepared, there are two approaches to record linkage: deterministic

and probabilistic [35]. Deterministic record linkage is the simpler of the two kinds of record

linkage. Rules are coded for what an acceptable match will be. For example, records are

joined when entities share the same name and date of birth or when entities have the same

social security number. When it works, a deterministic record linkage algorithm is very fast.

However, such algorithms can be difficult to tune because all cases that arise in the data

source must be covered. Any missing coverage will result in duplicate records being left in,

and any incorrect or overzealous rules will cause incorrect linking to occur.

Interesting data sources are usually missing a global key in all or some of their entries.

When such a key is missing in a data source and deterministic record linkage is to take place,

Wang and Madnick proposed using rules formed by experts that give a set of characteristics

that then are able to form a key for each data record [9]. For example, a rule that would

give a characteristic that would help form a key would be: if age < 18, then status =

student, else status = non-student. The work of Wang and Madnick was expanded upon by

Lim, Prabhakar, Srivastava, and Richardson who suggested that the answers to all the rules

must always be correct [36]. This makes it so that the rules are not defined ad-hoc, and

makes it easier to form a key and join the records. Their work was then further developed

by Hernandez and Stolfo who worked to find similarities between records using similarity

techniques and string comparison techniques [10].

5.2 Probabilistic Record Linkage

Probabilistic record linkage takes into account a wider range of potential identifiers [37].

Weights are calculated for each identifier based on its believed ability to correctly identify

a match or a non-match. These weights are then used to calculate the probability that two
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records correspond to the same entity. Pairs that have probabilities above a certain cut off

point are considered to be matches, while pairs that have probabilities below another cut off

point are considered to be non-matches. Pairs that have probabilities between the two cut

off points are said to be possible matches. Possible matches can be linked or not depending

on the requirements given. This is a key difference between probabilistic record linkage and

deterministic record linkage. Deterministic requires a correct and comprehensive set of rules,

while probabilistic can get by with weights, a definition of columns to compare, and some

tuning, and can even be set to give an operator the hard ones.

5.3 Notation

Let S and T denote the two tables that we wish to join. Without loss of generality, we can

assume that S and T have n fields that can be compared. Let the set M denote the record

pairs that represent a match (e.g. they are the same entity) and U denote the record pairs

that represent a non-match (e.g. they are different entities). Then for s ∈ S and t ∈ T , the

tuple pair < s, t > is either an element of M or U [11].

Each tuple pair < s, t > is then represented by the vector x = [x1, x2, . . . , xn]T , where n

is the number of fields being compared between S and T and xi is the level of agreement of

the ith field between the records s and t. It is often the case that binary values are used for

xi, where xi = 1 if the records s and t are the same in field i and xi = 0 if the records are not

the same in field i. Then x is assigned to be an element of M or U . Another way of looking

at x is that it is the input to a decision rule that assigns x to M or U . If x is assumed to be

a random vector whose density function is different for M and U and the density functions

for M and U are known, then finding duplicate records becomes a Bayesian problem.
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5.4 Bayesian Statistics and Record Linkage

Let x =< s, t > where s ∈ S and t ∈ T . In order to know if < s, t > represents a match or a

non-match a decision rule is defined. Defining a decision rule based on probabilities is given

by

< s, t >∈


M if p(M |x) ≥ p(U |x)

U otherwise.

Bayes Theorem tells us that p(M |x) = p(x|M)p(M)
p(x)

and p(U |x) = p(x|U)p(U)
p(x)

, provided p(x) 6= 0.

Then applying Bayes Theorem this is equivalent to

< s, t >∈


M if l(x) = p(x|M)

p(x|U)
≥ p(U)

p(M)

U otherwise

where l(x) is the likelihood ratio. This new form for whether < s, t >∈ M or U is called

Bayes test for minimum error. Bayes test for minimum error is an optimal classifier, however,

it is rarely the case that the distributions of p(x|M) and p(x|U) as well as the priors p(M)

and p(U) are known.

This is where Naive Bayes comes into play. With Naive Bayes we can compute the

distributions of p(x|M) and p(x|U) by assuming conditional independence and claiming that

the probabilities p(xi|M) and p(xj|M) along with p(xi|U) and p(xj|U) are independent if

i 6= j. Since independence is being assumed, then we obtain

p(x|M) =
n∏
i=1

p(xi|M)

and

p(x|U) =
n∏
i=1

p(xi|U).

p(x|M) and p(x|U) can also be estimated using the general expectation maximization algo-

rithm when it is not reasonable to assume conditional independence [38]. Winkler proposed
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using the general unsupervised expectation maximization algorithm along with the follow-

ing conditions: more than five percent of the data contains matches, the matching pairs

are well-separated from the other classes, the rate of typographical errors is low, there are

sufficiently many redundant identifiers to overcome errors in other fields of the record, and

the estimates computed under the conditional independence assumption result in good clas-

sification performance [39].

Sometimes fields have missing values and Du Bois suggested a method that takes missing

values into account so mismatches do not occur [40]. With the previous algorithms x is

of length n, where n is the number of fields being compared between the two tables that

we wish to join. With Du Bois’s algorithm the comparison vector is called x∗ and is of

length 2n such that x∗ = (x1, x2, . . . , xn, x1y1, x2y2, . . . , xnyn), where yi = 1 if the ith field in

both records is present and yi = 0 otherwise. Finding duplicate records is then improved,

because mismatches from missing data are ignored. Du Bois also did work with finding the

distributions of p(xiyi|M) and p(xiyi|U) by using a training set of pre-labeled record pairs.

While having a decision rule based on probabilities does work, it is not the best way to

create a decision rule [11]. This is because different consequences can occur for misclassifi-

cations of x into M or U . Thus it is reasonable to assign a cost cij to each situation, where

cij is the cost of having x in class i when x should really be in class j. This then leads us to

the expected costs of x being in M and U given by rM(x) and rU(x), where

rM(x) = cMM · p(M |x) + cMU · p(U |x)

rU(x) = cUM · p(M |x) + cUU · p(U |x).

Then the decision rule for x ∈M is

< s, t >∈


M if rM(x) < rU(x)

U otherwise.
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And the minimum cost decision rule is then

< s, t >∈


M if l(x) > (cMU−cUU )·p(U)

(cUM−cMM )·p(M)

U otherwise.

Note that the minimum error and minimum cost decision rules are the same when

cUM − cMM = cMU − cUU [41].

When the likelihood ratio is close to the threshold the error of a decision is high [41].

To counteract this, Fellegi and Sunter proposed adding a reject class R to M and U [5].

R contains record pairs that could or could not be a match. They are assigned to R so

that they may be looked over manually to determine if they are matches or not. The reject

region is defined by setting bounds on the conditional error for M and U . Whereas the reject

probability is the probability of sending a record pair to an expert for review.

ALIAS is a learning-based duplicate records detection algorithm that implements a reject

region in order to reduce the size of the training set [8]. For record pairs that certainly are

a match or not a match they are assigned to M or U like previous algorithms do. However,

when a match is uncertain ALIAS requires that an operator labels the record pair as a match

or not. ALIAS’s way of handling uncertain pairs is similar to Fellegi and Sunter’s algorithm

where uncertain record pairs are put into a reject region for a person to classify later. The

ALIAS algorithm was invented by Sarawagi and Bhamidipaty. Sarawagi and Bhamidipaty’s

work was further expanded upon by Tejada, Knoblock, and Minton who used decision trees

to help the algorithm learn the rules for matching records with more than one field [42].
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Chapter 6. Efficiency in Finding Duplicate Records

The metrics and probabilities that we were looking at previously focused on how good of

a comparison we were making. However, improving the quality of the comparison is just

one part of the process We also have to see how effective the process is. For example, if we

wanted to compare every record in table S with every record in table T it would require

|S| · |T | comparisons, which is very expensive. Another point to keep in mind is that a single

record generally has multiple fields. Comparing more fields proportionally increases the cost

of each comparison. The final cost is more like |S| · |T | · n, where n is the number of fields

compared.

A technique used to reduce the number of comparisons made is blocking [11]. Blocking is

the process of subdividing files into a set of mutually exclusive subsets, referred to as blocks,

where there are no matches between the blocks. For example, to form name blocks programs

such as Soundex, NYSIIS, ONCA, Metaphone, or Double Metaphone can be used. These

programs should be run multiple times on different blocking fields in order to decrease the

rate of incorrect mismatches.

Another technique called the sorted neighborhood approach proposed by Hernandez and

Stolfo consists of three steps: create key, sort data, and merge [10]. Sorted neighborhood

is greatly dependent on the key that is chosen and assumes that duplicate records will be

near each other in the sorted list and then compared in the merge step. This led Hernandez

and Stolfo to expand their technique and create a multi-pass approach. This makes it so

multiple keys can be created and run to eliminate as many duplicate records as possible.

Using transitivity in finding duplicate records was implemented by Monge and Elkan [43].

Transitivity in duplicate records means that if record a is the same as record b and record

b is the same as record c, then record a is the same as record c. This then led Monge and

Elkan to create a union-find structure where duplicate records are merged into a cluster and

only a representative of the cluster is kept for future comparisons.

McCallum, Nigam, and Ungar suggested finding duplicate records by using two compar-

33



isons techniques, which is supposed to led to better results for finding duplicate records [44].

The first comparison groups records into overlapping clusters called canopies. The canopies

are supposed to be a loose comparison framework that is formed quickly. Then a second

more detailed comparison is done within the canopies. McCallum, Nigam, and Ungar’s work

with using canopies was extended by Cohen and Richman [45]. Their work was then again

added upon by Gravano, Ipeirotis, Jagadish, Koudas, Muthukrishnan, and Srivastava [46].

Similarly Chaudhuri, Ganjam, Ganti, and Motwan extended the work of record linkage using

canopies by suggesting the use of an indexable canopy [47]. Lastly Baxter, Christen, and

Churches did work comparing the use of blocking and canopies [48].
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Chapter 7. Tools Available to Find Duplicate Records

The Freely Extensible Biomedical Record Linkage (Febrl) system is an open source data

cleaning toolkit [49]. It standardizes the data records using hidden-Markov models and then

finds the duplicate records using edit distance, Jaro distance, or q-gram distance. In order to

help with finding similar names Febrl uses phonetic similarity metrics Soundex, NYSIIS, and

Double Metaphone. These phonetic similarity metrics use a reversed version of the name

string in order to avoid the problem of errors in the first letter of a name.

TAILOR is a toolbox that allows users to try different duplicate record detection tech-

niques on the same dataset [50]. Different techniques have varying levels of accuracy and

completeness for the same dataset. TAILOR gives the user the ability to compare the dif-

ferent techniques against each other by giving the user the statistics of how effective each

method was for finding duplicate records.

To find similar strings in two data records WHIRL uses a tf.idf token-based similarity

metric [51]. However, this toolkit is only available for academic and research proposes.

Toolkits that are similar to WHIRL that are available to the public include The Flamingo

Project, WizSame by WizSoft, and SoftTF.IDF.

BigMatch uses blocking techniques discussed earlier to find duplicate records in very large

datasets [52]. It is meant to serve as the first step in a two part process that would then run

a more complex algorithm to find duplicate records. It is interesting to note that the US

Census Bureau uses BigMatch to detect duplicate records in its data.
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Chapter 8. The Algorithm

8.1 Traditional Record Linkage

Traditionally record linkage algorithms determine if two records are a match or not at or

above a given tolerance level. This tolerance level is provided by the user and allows the user

to determine at what threshold they want records to be matched or not. When the algorithm

is than run on two databases it returns true or false for each record pair. Returning true

means that that record pair was a match at or above that tolerance level, while returning

false means that it was not. From there the number of true positives, false positives, true

negatives, and false negatives can be calculated for known data pairs.

Running each of the algorithms repeatedly at different tolerance levels is expensive in

terms of time and machine use. Therefore, I took a different approach with finding when

records matched or not. This new approach made it so that each of the algorithms only had

to be run once per given set of algorithm parameters and algorithm threshold, but output

the results for multiple tolerance levels.

8.2 The New Approach

There are two parts to the new testing system; a frontend that the user controls and a

backend that runs the actual merge and updates. The frontend also keeps track of all the

datasets, stats, and outputs of the mergers and updates that are to be run. The worker is

given instructions about what datasets to use and what operations to do on them. When

the worker is handling a job: it loads the data, runs the merge or update, then uploads the

results. Of these three steps the key one is actually running the merge or update. It is also

the most interesting. The way that this is done is different depending if it is a merge or an

update job, although the comparison code is the same either way.

For merge jobs, each row in the first dataset is compared with each row in the second

dataset, like a Cartesian product. For an update job the matcher iterates over each row in
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the dataset and compares it with all previous rows. So that every row is compared with

every other row, exactly once. The matcher is also able to find duplicate entries in a single

dataset. We do not look at examples of this type of datasets here, but it is a possiblity.

When a character-based similarity metric is used the parameters passed in indicate

whether each record pair being compared is a match or not. When a phonetic-based simi-

larity metric is used it compares the outputs to see if they are the same. If the two strings

are identical, then those fields are marked as a match.

When two rows are being compared the new algorithm looks at the ratio of the number of

matched columns to the number of possible matched columns for a given entry. The matcher

keeps a running total of how many rows matched at each tolerance level. The comparison

function returns the ratio of matched columns over possible matched columns. The matcher

is able to tell whether any two rows are supposed to match because it is given a lookup

table. The lookup table contains the row ids (i.e. column name rec id) that should match

with any given row.

8.3 When a Field is Missing Information

With some records, fields are missing because the information was not provided to begin

with or fields were dropped due to a data entry error in the duplicate record. In either case

if data is missing from a given field or two fields that are to be compared against each other,

the algorithm skips over that field or fields and does not count it as a match or non-match,

nor does it count towards the total possible matched columns. Below is an example where

an original database entry and its duplicate entry are missing information.

rec id given name surname street number address 1 address 2 suburb postcode state date of birth age phone number soc sec id
600 caitlin bruty 548 clive steele avenue port augusta 2322 qld 19921019 31 2913484
601 caitlin bruty 548 clive steele avenue port augusta 2322 qld 19912019 31 2913484

Table 8.1: Example of an original database entry with rec id 600 with its duplicate database
entry with rec id 601 where both database entries are missing data in more than one field.

In the above example both the original database entry and its duplicate are missing data

37



in columns address 2 and phone number. The duplicate entry differs from the original entry

in the tenth column date of birth where the original date of birth provided is 19921019 and

the duplicate date of birth provided is 19912019. When calculating if these two records are

a match only the ten columns that have data both in the original entry and in the duplicate

entry would be taken into account.

8.4 The Frontend of the Testing System

The frontend of the matching algorithm uses the following steps to run a merge or updating

job.

(i) Name the merge or updating job

(ii) Select dataset a

(iii) Select dataset b

(iv) Select the algorithm to use for comparing records.

The algorithms that are available to choose from are:

(a) Edit distance

(b) Smith-Waterman distance

(c) Jaro distance

(d) q-gram distance

(e) Soundex

(f) NYSIIS

(g) Double Metaphone
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(v) Enter the algorithm parameters and threshold. For

(a) edit distance

i. parameters: none

ii. threshold: upper bound for match (a perfect match is 0)

(b) Smith-Waterman distance

i. parameters: G, lower bound, upper bound (inclusive)

ii. threshold: has no effect

(c) Jaro distance

i. parameters: lower bound, upper bound (inclusive)

ii. threshold: has no effect

(d) q-gram distance

i. parameters: q, the q-gram size to use

ii. threshold: lower bound for match, the upper bound is automatically 1

(e) Soundex

i. parameters: the maximum length of the final Soundex string that is returned.

The option defaults to 4, which is the classical behavior of the algorithm.

ii. threshold: has no effect

(f) NYSIIS

i. parameters: none

ii. threshold: has no effect

(g) Double Metaphone

i. parameters: none

ii. threshold: has no effect
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(vi) Enter in the name of the columns that are to be compared. Note that the version of

Soundex that we are using ignores non-alphabetic characters. NYSIIS replaces numbers

with a blank space and special characters with nothing. Double Metaphone does not

handle numbers and special characters and it is run under the assumption that the

input is letters only.

(vii) Once all the options are selected, the job is saved. (At this time the status of the job

is ”Ready”.)

(viii) A new page will appear that shows all the information for the given job and gives the

user a chance to make any changes before running the job.

(ix) If changes need to be made the edit button is selected. After the changes have been

made, they are saved and ready to be reviewed again.

(x) Once the job has been reviewed and requires no additional edits, the run button is

pushed.

(xi) The job is then placed in the queue and waits for an open worker to pick it up. (At

this time the status of the job is changed to ”Queued”.)

(xii) Once a worker has picked up the job, it is removed from the queue and the job’s running

status is updated every ten seconds. (At this time the status of the job is changed to

”Running” and next to the word Running a percentage of the number of comparisons

made over the total number of comparison required is given.)

(xiii) After the job has finished running the data is uploaded. (At this time the status of the

job is changed to ”Uploading” and next to the word Uploading a percentage appears

with how much of the final results have been uploaded.)

(xiv) Once the final results have been uploaded the job is complete. The output, json, and

csv files can be downloaded and the graphs may be viewed. (At this time the status

of the job is changed to ”Complete”.)
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(xv) If for any reason the job fails the worker will stop working on it and delete the job

before picking up a new job from the queue. (At this time the status of the job is

changed to ”Failed”.)
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Chapter 9. Performance Measures

We measure how well a record linkage algorithm performs by looking at the following metrics

[53]:

(i) True positives, denoted by nm

The number of record pairs correctly linked.

(ii) False positives (Type I error), denoted by nfp

The number of record pairs incorrectly linked.

(iii) True negatives, denoted by nu

The number of record pairs correctly not linked.

(iv) False negatives (Type II error), denoted by nfn

The number of record pairs incorrectly not linked.

(v) The total number of matched record pairs, denoted by Nm and equal to nm + nfn.

(vi) The total number of non-matched record pairs, denoted by Nu and equal to nu + nfp.

(vii) Sensitivity, denoted by nm

Nm

The number of record pairs correctly linked divided by the total number of matched

record pairs.

Note that sensitivity measures the percentage of correctly classified record matches.

It is equivalent to recall.

(viii) Specificity, denoted by nu

Nu

The number of record pairs correctly not linked divided by the total number of non-

matched record pairs.

Note that specificity measures the percentage of correctly classified non-matches.
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(ix) Match rate, denoted by
nm+nfp

Nm

The total number of linked record pairs divided by the total number of matched record

pairs.

(x) Positive predictive value (ppv), denoted by nm

nm+nfp

The number of correctly linked record pairs divided by the total number of linked

record pairs.

This is equivalent to precision.

Additional performance criteria can be made in terms of time taken and the number of

records requiring manual review [53]. With time taken this is usually dominated by the

number of record comparisons being performed. If there are a large number of records that

need to be compared, more time will be needed to make the comparisons than if a small

number of records needed to be compared. The number of records requiring manual review

is important because reviewing records is time-consuming (humans are slow), expensive

(humans are expensive), and error prone (humans are inconsistent).

9.1 Receiver Operating Characteristic (ROC) Curve

A Receiver Operating Characteristic (ROC) curve is a graphical plot that shows how well

a classification system performs at different thresholds. A ROC curve is formed by plotting

sensitivity = nm

Nm
on the y-axis against 1− specificity = 1 − nu

Nu
=

nfp

Nu
on the x-axis. The

ratio of the number of true positives to the number of true positives plus the number of false

negatives is called the true positive rate (TPR), and the ratio of the number of false positives

to the number of false positives plus the number of true negatives is called the false positive

rate (FPR).

A ROC curve is also known as a relative operating characteristic curve. This is because

it compares TPR (on the y-axis) and FPR (on the x-axis), which are two operating char-

acteristics, as the threshold changes. Since TPR = sensitivity and FPR = 1 - specificity
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this means that we are looking at a trade off between true positives (sensitivity) and false

positives (specificity). If an ideal prediction method was used then we would get a point

at (0,1) on the ROC curve. Having the curve pass through (0,1) means that there were

no false negatives and the method had one hundred percent sensitivity. Being at the point

(0,1) also means that there were no false positives and that the method had one hundred

percent specificity. Obtaining this point also means that a perfect classification was reached.

Perfect classification is not always possible, but we do want to stay above the line of no

discrimination. The line of no discrimination is the diagonal line going from the bottom left

of the graph to the top right corner of the graph.

The ROC curve also allows us to select an optimal model to classify the data without

introducing a cost parameter. Later on we will introduce an economic model and cost

parameters that affect what the optimal cutoff point will be. Until then, we will examine

ROC curves without cost parameters.

9.2 Applications of ROC Curves

An example of when a ROC curve would be used is for determining the effectiveness of a

medical test. Sensitivity would be the percentage of people who are sick that are correctly

identified as being sick and specificity would be the percentage of people who are not sick who

are correctly identified as being healthy. More formally, sensitivity equals the probability

of a positive test, given that the person is sick and specificity equals the probability of a

negative test, given that the person was healthy. Thus if the medical test was one hundred

percent sensitive, then all the people who were sick were correctly identified as being sick.

If the medical test was one hundred percent specific, then all the people who were healthy

were not identified as being sick.

Example 9.1. A medical test is given to a group of 5000 individuals. Of the 5000 people

that have the test administered to them only 100 of them are actually sick. The table

below shows the number of false negatives, false positives, true negatives, and true positives
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obtained. From there we are able to calculate the sensitivity and specificity of the test.

level comp specificity false negatives false positives sensitivity specificity total people tested total sick total not sick true negatives true positives
0 1 0 4900 1 0 5000 100 4900 0 100

0.083333 0.860408 0 4216 1 0.139592 5000 100 4900 684 100
0.166667 0.851837 0 4174 1 0.148163 5000 100 4900 726 100
0.250000 0.688571 1 3374 0.990000 0.311429 5000 100 4900 1526 99
0.333333 0.419388 4 2055 0.960000 0.580612 5000 100 4900 2845 96
0.416667 0.197347 10 967 0.900000 0.802653 5000 100 4900 3933 90
0.500000 0.075306 31 369 0.690000 0.924694 5000 100 4900 4531 69
0.583333 0.017755 56 87 0.440000 0.982245 5000 100 4900 4813 44
0.666667 0.001633 80 8 0.200000 0.998367 5000 100 4900 4892 20
0.750000 0.000204 94 1 0.060000 0.999796 5000 100 4900 4899 6

Table 9.1: Stats for a medical test.

Figure 9.1: Example of a ROC curve with medical test data.

From the ROC curve we see that this particular medical test is not very sensitive nor

is it very specific in determining who is sick and who is not sick. This is evidenced by the

fact that as the number of false positives decreased so do the number of true positives. The

test does perform better than just a random guess, as the ROC curve stays above the line

of no-discrimination.

In the lower range of tolerance levels from 0 to 0.416̄ the number of false positives is

quite high. In this range the number of true positives decreases from 100 to 90 while the

number of false positives decreases from 4900 to 967. The next tolerance level of 0.5 serves

as our tipping point in that after this level the number of true positives and false positives

rapidly decrease. This test might not be very sensitive nor specific, but it could be a quick
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and inexpensive test that is run as the first part of a multi-stage testing sequence. This is

because if this test returns the results that you are not sick, you are most likely not sick.

However, if this test returns the results that you are sick, you may or may not be sick. A

second more through and expensive test could then be run just on those that have positives

test results.

Example 9.2. A medical test is given to a group of 5000 individuals. Of the 5000 people that

have the test administered to them only 50 of them are actually sick. The table below shows

the number of false negatives, false positives, true negatives, and true positives obtained.

From there we are able to calculate the sensitivity and specificity of the test.

level comp specificity false negatives false positives sensitivity specificity total people tested total sick total not sick true negatives true positives
0 1 0 4950 1 0 5000 50 4950 0 50

0.083333 0.954949 0 4727 1 0.045051 5000 50 4950 223 50
0.166667 0.820404 0 4061 1 0.179596 5000 50 4950 889 50
0.250000 0.713333 0 3531 1 0.286667 5000 50 4950 1419 50
0.333333 0.425657 0 2107 1 0.574343 5000 50 4950 2843 50
0.416667 0.312525 0 1547 1 0.687475 5000 50 4950 3403 50
0.500000 0.067475 0 334 1 0.932525 5000 50 4950 4616 50
0.583333 0.011313 0 56 1 0.988687 5000 50 4950 4894 50
0.666667 0.000808 0 4 1 0.999192 5000 50 4950 4946 50
0.916667 0 0 0 1 1 5000 50 4950 4950 50

1 0 11 0 0.780000 1 5000 50 4950 4950 39

Table 9.2: Stats for a medical test.

Figure 9.2: Example of a ROC curve with medical test data.

From the ROC curve we see that this medical test is very sensitive and very specific in

determining who is sick and who is not sick. This is evidenced by the fact that there is a
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point were there are no false positives and no false negatives. We can also see this visually

by observing that the ROC curve goes through the perfect classification point at (0,1).

From the stats table for the medical test we are able to see that for levels 0 through 0.916̄

there are no false negatives. So if an individual takes the test and it comes back that they

are not sick, then they are most likely not sick. However, the test does have a high false

positive rate when the tolerance level is low. It is only at the level 0.916̄ that the test has

perfect classification. After we go over that threshold false negatives occur. Since this test

performs so well for determining who is not sick at almost all tolerance levels it would be

recommended for widespread use.
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Chapter 10. Merging Two Databases

10.1 Examples of Applications of Record Linkage

Some applications of record linkage can be found in the process of maintaining insurance pol-

icy, census records, political party membership, and mass marketing mailing list databases.

Most health insurance companies have an open enrollment period every year, during which

current members can retain, change, or drop their current insurance policy. New members

can also join during this time. After this open enrollment period has ended, the company

needs to update its database. Ideally after the merge takes place there will only be one

policy in the database for each individual or family. The presence of duplicate records could

cause errors when filing an individual’s claim after they have gone to the doctor or could

cause a person to be told by their doctor that they have to pay out of pocket for their visit

or at a higher rate because the doctor appears to be out of network due to the error in the

insurance company’s database.

It is also important to update the census record database correctly. Census records have

an impact on electoral districts, therefore, it is extremely important that when the new

census records come in every ten years that they are carefully merged with the old database

and no duplicate entries are formed. This can be hard to do since not everyone in the United

States has a unique name and some individuals do not have a social security number.

Because political parties often contact people to solicit financial donations and other

political participation, they must be particularly careful when updating their databases. If

one of their members changed political parties, names, address, or phone number and this

information was not updated in the database and the member was contacted for a donation,

the likelihood of the person giving a donation greatly decreases. This cost is a significant

loss in comparison to the cost the party paid for making the phone call.

A final example of where record linkage occurs is with mass marketing mailing list

databases, in particular coupon mailers. This example is interesting because, incorrect
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records do not lead to huge losses, since if a company spells an individual’s name wrong

or mails to the wrong address the recipient may look at the coupon mailer despite the mis-

take. So in this case it is okay to be wrong some of the time, because the company is still

reaching possible clients and can still make money even if they did not reach the original

intended recipient.

If we then compare the example of mass marketing mailing list databases to that of the

political party an interesting insight can be made: Sometimes it pays to be right, but it is

okay if the company does not reach everyone as long as who they reach is truly the right

person, while other times it is okay to be wrong about which records are linked together

as long as they reach as many people as possible. This is because different applications of

record linkage are sensitive to different costs. Later on in Chapter 12 we will look at an

economic model that examines the trade offs between sensitivity and specificity.

10.2 Background Information on the Datasets

The column names of the data in the databases are rec id, given name, surname, street number,

address 1, address 2, suburb, postcode, state, date of birth, age, phone number, and soc sec id.

The columns rec id, street number, postcode, date of birth, age, phone number, and soc sec id

contain only numbers, while the columns given name, surname, address 1, suburb, and state

contain only letters. The column address 2 is the only column to contain both numbers and

letters.

Knowing what kind of data is in each column is important because not all of the simi-

larity metrics handle letters, numbers, and special characters in the same way. For example

edit distance, Smith-Waterman distance, Jaro Distance, and q-gram distance treat letters,

numbers, and special characters the same. The implementation of Soundex that we are

using ignores all non-alphabetic characters. NYSIIS replaces digits with a blank space and

special characters with nothing. Double Metaphone does not handle numbers and special

characters. The algorithm is run under the assumption that the input string is a single word
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or name. If an algorithm that cannot handle numbers or special characters is given a column

that contains numbers or special characters, the job will give poor or incorrect results.

A duplicate database was generated from an original database for testing purposes. This

way we know what records should match and which ones should not. This also allows us to

be able to control how many duplicate entries there are and what kinds of mutations can be

made to the duplicate entries.

The duplicate entries were formed by making one change in one of the fields from the

original entry. A change can be: a character inserted, a character deleted, a character

changed, the transposition of two characters, the reordering of two words (example: First

Street becomes Street First), the use of a nickname, and the dropping of a field. Examples

of an original entry and its duplicate entry are given below.

rec id given name surname street number address 1 address 2 suburb postcode state date of birth age phone number soc sec id
60 mikaela nes 36 beirne street raby bay 2160 nt 19990509 26 08 73958146 1057852
61 mikaela nrs 36 beirne street raby bay 2160 nt 19990509 26 08 73958146 1057852

Table 10.1: Example of an original database entry with rec id 60 with its duplicate database
entry with rec id 61.

Notice that in the above example the difference between the original entry and the dupli-

cate entry is in the third column surname. In the original entry the surname is nes, whereas

in the duplicate entry the surname is spelled nrs. The letters e and r are right next to each

other on the keyboard, so an error like this is a simple mistake to make.

rec id given name surname street number address 1 address 2 suburb postcode state date of birth age phone number soc sec id
280 max davis 25 mimosa close loxley road croydon 2170 nsw 19780307 36 08 94579332 4928485
281 max davis 25 mimosa close loxley road croydon 2170 nsw 19780377 36 08 94579332 4928485

Table 10.2: Example of an original database entry with rec id 280 with its duplicate database
entry with rec id 281.

In the above example the difference between the original entry and the duplicate entry

is in the tenth column date of birth. In the original entry the date of birth is 19780307, and

in the duplicate entry the date of birth provided is 19780377. The numbers 0 and 7 are not

close to each other on the keyboard, so an error like this is harder to justify.
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To examine the problem of merging two databases together, I used the following databases:

(i) 500 duplicates with 500 originals

(ii) 1250 duplicates with 1250 originals

(iii) 2500 duplicates with 2500 originals

(iv) 5000 duplicates with 5000 originals

Every original entry in database one has a single corresponding duplicate entry in database

two. Therefore, there can be at most 500 true matches obtained when 500 duplicates are

merged with 500 originals, 1250 true matches obtained when 1250 duplicates are merged

with 1250 originals, 2500 true matches obtained when 2500 duplicates are merged with 2500

originals, and 5000 true matches obtained when 5000 duplicates are merged with 5000 orig-

inals.

The similarity metrics that I used when evaluating how similar two strings are during

the process of merging databases were:

(i) edit distance

(ii) Jaro distance

(iii) Smith-Waterman distance

(iv) q-gram distance

(v) Soundex

(vi) NYSIIS

(vii) Double Metaphone

Recall that edit distance, Jaro distance, Smith-Waterman distance, and q-gram distance

are character-based similarity metrics so they can run comparisons on any given column,
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whereas Soundex, NYSIIS, and Double Metaphone are phonetic-based similarity metrics

and are designed to make comparisons between strings that contain only letters. Therefore,

they will only be given the columns given name, surname, address 1, suburb, and state, to

run comparisons on.
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10.3 Merge 500 Duplicates with 500 Originals

Example 10.1. merge 500 duplicates with 500 originals using edit distance

dataset 1: dataset A 500 original

dataset 2: dataset A 500 duplicate

method: edit distance

algorithm threshold: 2.0 (upper bound for match, note that a perfect match is 0)

final dataset: dataset A 500 org 500 dup ed

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 249500 1 0 500 249500 0 500

0.083333 0.988685 0 246677 1 0.011315 500 249500 2823 500
0.166667 0.876196 0 218611 1 0.123804 500 249500 30889 500
0.250000 0.562910 0 140446 1 0.437090 500 249500 109054 500
0.333333 0.227082 0 56657 1 0.772918 500 249500 192843 500
0.416667 0.062112 0 15497 1 0.937888 500 249500 234003 500
0.500000 0.013375 0 3337 1 0.986625 500 249500 246163 500
0.583333 0.002244 0 560 1 0.997756 500 249500 248940 500
0.666667 0.000140 0 35 1 0.999860 500 249500 249465 500
0.916667 0 0 0 1 1 500 249500 249500 500

1 0 107 0 0.786000 1 500 249500 249500 393

Runtime Comparisons Comparisons per Second
81 seconds 250000 3086.4198

Table 10.3: Stats for dataset A 500 org 500 dup ed.

Figure 10.1: ROC curve for dataset A 500 org 500 dup ed.
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Example 10.2. merge 500 duplicates with 500 originals using Soundex

dataset 1: dataset A 500 original

dataset 2: dataset A 500 duplicate

method: Soundex

final dataset: dataset A 500 org 500 dup soundex

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 249500 1 0 500 249500 0 500

0.200000 0.197210 0 49204 1 0.802790 500 249500 200296 500
0.400000 0.002569 0 641 1 0.997431 500 249500 248859 500
0.600000 0.000020 0 5 1 0.999980 500 249500 249495 500
0.800000 0 0 0 1 1 500 249500 249500 500

1 0 109 0 0.782000 1 500 249500 249500 391

Runtime Comparisons Comparisons per Second
13 seconds 250000 19230.7692

Table 10.4: Stats for dataset A 500 org 500 dup soundex.

Figure 10.2: ROC curve for dataset A 500 org 500 dup soundex.

For dataset A 500 original and dataset A 500 duplicate the similarity metrics I used were

edit distance and Soundex. Their ROC curves when run on these datasets are almost identi-

cal and both of them pass through the optimal point (0,1). These results are not surprising

since the algorithm threshold for edit distance was set at 2.0. Recall that the algorithm

threshold for edit distance is the upper bound for a match and that a perfect match has
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an algorithm threshold of 0. Since a duplicate is formed by making one mutation in one of

the fields for each entry, then most duplicate entries should match with the corresponding

original entry at an algorithm threshold of 2.0. Duplicate entries that are more difficult to

match are those were nicknames have replaced given names, words have been reordered, or

fields have been dropped.

Edit distance’s cut off level is 0.916̄, whereas Soundex is 0.83̄. Having similar cut off levels

for edit distance and Soundex is to be expected. This is because given the conditions for

these two example datasets, both should be able to find the correct matches easily except in

the cases of nickname replacement, reordering of words, and dropped fields. This is because

edit distance does not work well when strings have been truncated and neither similarity

metric can tell that two words are the same if their order has been switched.

Additionally, Soundex has a harder time performing well if fields are dropped because it

has less fields to compare to begin with. Of the twelve columns only five of them contain

fields that only have letters in them – edit distance has two and a half times the number

of columns to work with then Soundex does. Thus when a field is dropped it has a bigger

impact on Soundex then it does on edit distance. In the end Soundex was able to get the

maximum number of true positives without any false negatives at a slightly lower level and in

less runtime then edit distance. Thus the phonetic-based similarity metric performed better

at merging dataset A 500 original and dataset A 500 duplicate together.

55



10.4 Merge 1250 Duplicates with 1250 Originals

Example 10.3. merge 1250 duplicates with 1250 originals using Jaro distance

dataset 1: dataset A 1250 original

dataset 2: dataset A 1250 duplicate

method: Jaro distance

algorithm parameters: 0.75, 1.0 (lower bound, upper bound inclusive)

final dataset: dataset A 1250 org 1250 dup jd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 1561251 1 0 1249 1561251 0 1249

0.083333 0.505374 0 789015 1 0.494626 1249 1561251 772236 1249
0.166667 0.124357 0 194152 1 0.875643 1249 1561251 1367099 1249
0.250000 0.016000 0 24980 1 0.984000 1249 1561251 1536271 1249
0.333333 0.001179 0 1840 1 0.998821 1249 1561251 1559411 1249
0.416667 0.000056 0 88 1 0.999944 1249 1561251 1561163 1249
0.500000 0.000002 0 3 1 0.999998 1249 1561251 1561248 1249
0.583333 0.000001 0 1 1 0.999999 1249 1561251 1561250 1249
0.666667 0.000001 2 1 0.998399 0.999999 1249 1561251 1561250 1247
0.750000 0.000001 28 1 0.977582 0.999999 1249 1561251 1561250 1221
0.833333 0.000001 144 1 0.884708 0.999999 1249 1561251 1561250 1105
0.916667 0 531 0 0.574860 1 1249 1561251 1561251 718

1 0 1050 0 0.159327 1 1249 1561251 1561251 199

Runtime Comparisons Comparisons per Second
173 seconds 1562500 9031.7919

Table 10.5: Stats for dataset A 1250 org 1250 dup jd.

Figure 10.3: ROC curve for dataset A 1250 org 1250 dup jd.
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Example 10.4. merge 1250 duplicates with 1250 originals using NYSIIS

dataset 1: dataset A 1250 original

dataset 2: dataset A 1250 duplicate

method: NYSIIS

final dataset: dataset A 1250 org 1250 dup nysiis

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 1561251 1 0 1249 1561251 0 1249

0.200000 0.202827 0 316664 1 0.797173 1249 1561251 1244587 1249
0.400000 0.001896 0 2960 1 0.998104 1249 1561251 1558291 1249
0.600000 0.000005 0 8 1 0.999995 1249 1561251 1561243 1249
0.800000 0.000001 0 1 1 0.999999 1249 1561251 1561250 1249

1 0.000001 500 1 0.599680 0.999999 1249 1561251 1561250 749

Runtime Comparisons Comparisons per Second
71 seconds 1562500 22007.0423

Table 10.6: Stats for dataset A 1250 org 1250 dup nysiis.

Figure 10.4: ROC curve for dataset A 1250 org 1250 dup nysiis.

For dataset A 1250 original and dataset A 1250 duplicate the similarity metrics I used

were Jaro distance and NYSIIS. Their ROC curves when run on these datasets are very

similar and both of them pass through the optimal point (0,1). These results are not sur-

prising since the algorithm parameters for Jaro distance were set at 0.75 and 1.0 inclusive,

where 0.75 is the lower bound for a match and 1.0 is the upper bound for a match. Since
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a duplicate is formed by making one mutation in one of the fields for each entry, then most

duplicate entries should match with their original entry with algorithm parameters of 0.75

and 1.0.

Duplicate entries that are more difficult to match using Jaro distance are those where let-

ters have been inserted or fields have been dropped. In contrast, NYSIIS has more difficulty

with given names that have been replaced with nicknames, reordered words, and dropped

fields. This is because Jaro distance takes substrings into account, so nicknames, reordering

words, and deleted characters have less of an effect on it than on NYSIIS. Dropped fields

affects both Jaro distance and NYSIIS when it comes to matching an original entry with its

duplicate, but missing fields affect NYSIIS more. This is because NYSIIS can only make

comparisons with letters and only five of the twelve columns contain strings that have just

letters. Therefore, a dropped field that should contain a string of letters in it is seen as being

a bigger loss of information when running NYSIIS on the dataset, than Jaro distance.

Jaro distance’s cut off level is 0.583̄, while NYSIIS is 0.8. Having such different cut off

levels for Jaro distance and NYSIIS is to be expected, since Jaro distance can handle these

kinds of mutations better then NYSIIS. This is because NYSIIS is more sensitive to nickname

replacement, dropped fields, and letters being inserted or transposed then Jaro distance is.

Both Jaro distance and NYSIIS managed to be optimal and NYSIIS’s runtime was nearly

half of that of Jaro distance, but Jaro distance was able to get the maximum number of

true positives without any false negatives at a much lower level. Thus we have that the

character-based similarity metric performed better when merging dataset A 1250 original

and dataset A 1250 duplicate.
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10.5 Merge 2500 Duplicates with 2500 Originals

Example 10.5. merge 2500 duplicates with 2500 originals using Smith-Waterman distance

dataset 1: dataset A 2500 original

dataset 2: dataset A 2500 duplicate

method: Smith-Waterman distance

algorithm parameters: 1, 6, 10 (G, lower bound, upper bound)

final dataset: dataset A 2500 org 2500 dup swd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.083333 0.440671 18 2753090 0.992800 0.559329 2500 6247500 3494410 2482
0.166667 0.090378 299 564639 0.880400 0.909622 2500 6247500 5682861 2201
0.250000 0.009227 1192 57648 0.523200 0.990773 2500 6247500 6189852 1308
0.333333 0.000465 2116 2904 0.153600 0.999535 2500 6247500 6244596 384
0.416667 0.000007 2449 46 0.020400 0.999993 2500 6247500 6247454 51
0.500000 0 2495 0 0.002000 1 2500 6247500 6247500 5

Runtime Comparisons Comparisons per Second
895 seconds 6250000 6983.2402

Table 10.7: Stats for dataset A 2500 org 2500 dup swd.

Figure 10.5: ROC curve for dataset A 2500 org 2500 dup swd.
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Example 10.6. merge 2500 duplicates with 2500 originals using Double Metaphone

dataset 1: dataset A 2500 original

dataset 2: dataset A 2500 duplicate

method: Double Metaphone

final dataset: dataset A 2500 org 2500 dup dm

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.195716 0 1222737 1 0.804284 2500 6247500 5024763 2500
0.400000 0.002056 0 12847 1 0.997944 2500 6247500 6234653 2500
0.600000 0.000005 0 29 1 0.999995 2500 6247500 6247471 2500
0.800000 0 0 0 1 1 2500 6247500 6247500 2500

1 0 862 0 0.655200 1 2500 6247500 6247500 1638

Runtime Comparisons Comparisons per Second
308 seconds 6250000 20292.2078

Table 10.8: Stats for dataset A 2500 org 2500 dup dm.

Figure 10.6: ROC curve for dataset A 2500 org 2500 dup dm.

For dataset A 2500 original and dataset A 2500 duplicate the similarity metrics I used

were Smith-Waterman distance and Double Metaphone. Their ROC curves are less similar

than the previous examples–only the ROC curve for Double Metaphone passes through the

optimal point (0,1). The ROC curve for Smith-Waterman distance does not pass through

the optimal point because it does not have a clear cut off level in which there are no false
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negatives and the maximum number of true positives possible on the same level. The closest

we were able to get the ROC curve for Smith-Waterman distance to the one for Double

Metaphone was using the algorithm parameters G = 1, lower bound = 6, and upper bound

= 10 (inclusive).

When the original data was mutated to produce the duplicate entries, mutations could

occur at any point in a field. Smith-Waterman distance is more sensitive to mutations that

occur in the middle of the string then those that occur at the beginning or end of the string.

This property has the advantage of making Smith-Waterman good at substring matching,

but if random mutations are introduced into the data in the middle of strings, then Smith-

Waterman is not as useful of a similarity metric to use. Double Metaphone’s main drawback

is that it cannot deal with numbers, which reduces the pool of fields it has to compare on.

Dropped fields also decrease the number of columns to compare on and make it harder to tell

if two records should be linked or not. Double Metaphone’s runtime was also nearly a third of

that of Smith-Waterman distnace. Since Smith-Waterman distance does not have a clear cut

off level and Double Metaphone does at 0.83̄, then we have that the phonetic-based similarity

metric was better at merging dataset A 2500 original and dataset A 2500 duplicate.
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10.6 Merge 5000 Duplicates with 5000 Originals

Example 10.7. merge 5000 duplicates with 5000 originals using q-gram distance

dataset 1: dataset A 5000 original

dataset 2: dataset A 5000 duplicate

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 5000 org 5000 dup qgd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 24995000 1 0 5000 24995000 0 5000

0.083333 0.396341 0 9906543 1 0.603659 5000 24995000 15088457 5000
0.166667 0.073514 0 1837476 1 0.926486 5000 24995000 23157524 5000
0.250000 0.007297 0 182387 1 0.992703 5000 24995000 24812613 5000
0.333333 0.000420 0 10503 1 0.999580 5000 24995000 24984497 5000
0.416667 0.000014 0 359 1 0.999986 5000 24995000 24994641 5000
0.500000 0.000000 0 2 1 1.000000 5000 24995000 24994998 5000
0.583333 0 1 0 0.999800 1 5000 24995000 24995000 4999
0.666667 0 17 0 0.996600 1 5000 24995000 24995000 4983
0.750000 0 151 0 0.969800 1 5000 24995000 24995000 4849
0.833333 0 823 0 0.835400 1 5000 24995000 24995000 4177
0.916667 0 2531 0 0.493800 1 5000 24995000 24995000 2469

1 0 4419 0 0.116200 1 5000 24995000 24995000 581

Runtime Comparisons Comparisons per Second
3434 seconds 25000000 7280.1398

Table 10.9: Stats for dataset A 5000 org 5000 dup qgd.

Figure 10.7: ROC curve for dataset A 5000 org 5000 dup qgd.
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Example 10.8. merge 5000 duplicates with 5000 originals using Soundex

dataset 1: dataset A 5000 original

dataset 2: dataset A 5000 duplicate

method: Soundex

final dataset: dataset A 5000 org 5000 dup soundex

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 24995000 1 0 5000 24995000 0 5000

0.200000 0.198132 0 4952303 1 0.801868 5000 24995000 20042697 5000
0.400000 0.002594 0 64826 1 0.997406 5000 24995000 24930174 5000
0.600000 0.000011 0 274 1 0.999989 5000 24995000 24994726 5000
0.800000 0 0 0 1 1 5000 24995000 24995000 5000

1 0 1124 0 0.775200 1 5000 24995000 24995000 3876

Runtime Comparisons Comparisons per Second
1108 seconds 25000000 22563.1769

Table 10.10: Stats for dataset A 5000 org 5000 dup soundex.

Figure 10.8: ROC curve for dataset A 5000 org 5000 dup soundex.

For dataset A 5000 original and dataset A 5000 duplicate the similarity metrics I used

were q-gram distance and Soundex. Their ROC curves are almost identical and both pass

through the optimal point (0,1). These results are not surprising because when the size of

q is 1, as it is in this example, then the q-gram distance behaves similar to edit distance

in that it looks at character relationships between two strings. In a previous example we
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looked at the ROC curves for dataset A 500 original and dataset A 500 duplicate where the

similarity metrics edit distance and Soundex were used. Since q-gram distance is similar to

edit distance when q = 1, then we should expect to see similar results. However, q-gram

distance also shares some properties similar to those of Jaro distance, in that the algorithm

has a threshold. In this example the lower bound for a match was set at 0.75. For q-gram

distance the upper bound for a match is automatically set to 1.0.

Q-gram distance’s cut off level is 0.5, whereas Soundex is 0.83̄. It is interesting that there

is such a large difference between the optimal cut off levels of the two metrics. If q-gram

distance behaved more like edit distance, then we might have expected the difference to

be small. However, it seems that the properties that make q-gram distance similar to Jaro

distance also make it have a lower cut off level.

It should be noted that both q-gram distance and Soundex performed optimally. Also,

we only looked it q = 1. If q were to equal a different value maybe Soundex would have

performed better with merging these two databases together. Soundex was able to have

the faster runtime and completed the merge job in a third of the time that it took q-gram

distance to run. Given that q = 1 and a lower bound for a match set at 0.75 we have that

q-gram distance was able to get the maximum number of true positives without any false

negatives at a significantly lower level. Thus we have that the character-based similarity

metric was better at merging dataset A 5000 original and dataset A 5000 duplicate.
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10.7 Compare Character-Based and Phonetic-Based Similarity

Metrics

For each dataset (dataset A 500, dataset A 1250, dataset A 2500, dataset A 5000) I used a

character-based similarity metric (edit distance, Jaro distance, Smith-Waterman distance,

q-gram distance) and a phonetic similarity metric (Soundex, NYSIIS, Double Metaphone).

I did this to examine how a particular character-based similarity metric and a particular

phonetic-based similarity metric compare when used to merge each dataset. Any of the

seven metrics can be used on any of the datasets, though a character-based similarity metric

must be given the additional parameters that it uses.

Experimenting with these datasets individually provided interesting results, but raises

more questions. The main one being how does increasing the size of the dataset affect

the algorithm’s effectiveness and runtime? Algorithm may be extremely effective at finding

duplicate records in a small dataset, but could return multiple errors, become much less

effective, or take a very long time to run for a larger dataset. I approached this question by

looking at the speed and effectiveness of algorithms as dataset size increases. To analyze this

progression, I chose the Jaro distance and Double Metaphone algorithms as representative

character-based and phonetic-based similarity metrics.
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Example 10.9. merge 500 duplicates with 500 originals using Jaro distance

dataset 1: dataset A 500 original

dataset 2: dataset A 500 duplicate

method: Jaro distance

algorithm parameters: 0.85, 1.0 (lower bound, upper bound inclusive)

final dataset: dataset A 500 org 500 dup jd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 249500 1 0 500 249500 0 500

0.083333 0.229142 0 57171 1 0.770858 500 249500 192329 500
0.166667 0.013359 0 3333 1 0.986641 500 249500 246167 500
0.250000 0.000269 0 67 1 0.999731 500 249500 249433 500
0.333333 0.000008 0 2 1 0.999992 500 249500 249498 500
0.500000 0 0 0 1 1 500 249500 249500 500
0.583333 0 1 0 0.998000 1 500 249500 249500 499
0.666667 0 2 0 0.996000 1 500 249500 249500 498
0.750000 0 14 0 0.972000 1 500 249500 249500 486
0.833333 0 73 0 0.854000 1 500 249500 249500 427
0.916667 0 261 0 0.478000 1 500 249500 249500 239

1 0 435 0 0.130000 1 500 249500 249500 65

Runtime Comparisons Comparisons per Second
30 seconds 250000 8333.3333

Table 10.11: Stats for dataset A 500 org 500 dup jd.

Figure 10.9: ROC curve for dataset A 500 org 500 dup jd.
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Example 10.10. merge 500 duplicates with 500 originals using Double Metaphone

dataset 1: dataset A 500 original

dataset 2: dataset A 500 duplicate

method: Double Metaphone

final dataset: dataset A 500 org 500 dup dm

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 249500 1 0 500 249500 0 500

0.200000 0.192244 0 47965 1 0.807756 500 249500 201535 500
0.400000 0.002116 0 528 1 0.997884 500 249500 248972 500
0.600000 0.000020 0 5 1 0.999980 500 249500 249495 500
0.800000 0 0 0 1 1 500 249500 249500 500

1 0 170 0 0.660000 1 500 249500 249500 330

Runtime Comparisons Comparisons per Second
13 seconds 250000 19230.7692

Table 10.12: Stats for dataset A 500 org 500 dup dm.

Figure 10.10: ROC curve for dataset A 500 org 500 dup dm.
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Example 10.11. merge 1250 duplicates with 1250 originals using Jaro distance

dataset 1: dataset A 1250 original

dataset 2: dataset A 1250 duplicate

method: Jaro distance

algorithm parameters: 0.85, 1.0 (lower bound, upper bound inclusive)

final dataset: dataset A 1250 org 1250 dup jd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 1561251 1 0 1249 1561251 0 1249

0.083333 0.240923 0 376142 1 0.759077 1249 1561251 1185109 1249
0.166667 0.013824 0 21583 1 0.986176 1249 1561251 1539668 1249
0.250000 0.000338 0 527 1 0.999662 1249 1561251 1560724 1249
0.333333 0.000008 0 12 1 0.999992 1249 1561251 1561239 1249
0.583333 0.000001 0 1 1 0.999999 1249 1561251 1561250 1249
0.666667 0.000001 2 1 0.998399 0.999999 1249 1561251 1561250 1247
0.750000 0.000001 37 1 0.970376 0.999999 1249 1561251 1561250 1212
0.833333 0.000001 183 1 0.853483 0.999999 1249 1561251 1561250 1066
0.916667 0 592 0 0.526021 1 1249 1561251 1561251 657

1 0 1077 0 0.137710 1 1249 1561251 1561251 172

Runtime Comparisons Comparisons per Second
168 seconds 1562500 9300.5952

Table 10.13: Stats for dataset A 1250 org 1250 dup jd.

Figure 10.11: ROC curve for dataset A 1250 org 1250 dup jd.
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Example 10.12. merge 1250 duplicates with 1250 originals using Double Metaphone

dataset 1: dataset A 1250 original

dataset 2: dataset A 1250 duplicate

method: Double Metaphone

final dataset: dataset A 1250 org 1250 dup dm

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 1561251 1 0 1249 1561251 0 1249

0.200000 0.206356 0 322173 1 0.793644 1249 1561251 1239078 1249
0.400000 0.002101 0 3280 1 0.997899 1249 1561251 1557971 1249
0.600000 0.000007 0 11 1 0.999993 1249 1561251 1561240 1249
0.800000 0.000001 0 1 1 0.999999 1249 1561251 1561250 1249

1 0.000001 430 1 0.655725 0.999999 1249 1561251 1561250 819

Runtime Comparisons Comparisons per Second
77 seconds 1562500 20292.2078

Table 10.14: Stats for dataset A 1250 org 1250 dup dm.

Figure 10.12: ROC curve for dataset A 1250 org 1250 dup dm.
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Example 10.13. merge 2500 duplicates with 2500 originals using Jaro distance

dataset 1: dataset A 2500 original

dataset 2: dataset A 2500 duplicate

method: Jaro distance

algorithm parameters: 0.85, 1.0 (lower bound, upper bound inclusive)

final dataset: dataset A 2500 org 2500 dup jd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.083333 0.229632 0 1434624 1 0.770368 2500 6247500 4812876 2500
0.166667 0.013099 0 81833 1 0.986901 2500 6247500 6165667 2500
0.250000 0.000291 0 1820 1 0.999709 2500 6247500 6245680 2500
0.333333 0.000003 0 17 1 0.999997 2500 6247500 6247483 2500
0.583333 0 0 0 1 1 2500 6247500 6247500 2500
0.666667 0 12 0 0.995200 1 2500 6247500 6247500 2488
0.750000 0 78 0 0.968800 1 2500 6247500 6247500 2422
0.833333 0 371 0 0.851600 1 2500 6247500 6247500 2129
0.916667 0 1217 0 0.513200 1 2500 6247500 6247500 1283

1 0 2201 0 0.119600 1 2500 6247500 6247500 299

Runtime Comparisons Comparisons per Second
672 seconds 6250000 9300.5952

Table 10.15: Stats for dataset A 2500 org 2500 dup jd.

Figure 10.13: ROC curve for dataset A 2500 org 2500 dup jd.
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Example 10.14. merge 2500 duplicates with 2500 originals using Double Metaphone

dataset 1: dataset A 2500 original

dataset 2: dataset A 2500 duplicate

method: Double Metaphone

final dataset: dataset A 2500 org 2500 dup dm

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.195716 0 1222737 1 0.804284 2500 6247500 5024763 2500
0.400000 0.002056 0 12847 1 0.997944 2500 6247500 6234653 2500
0.600000 0.000005 0 29 1 0.999995 2500 6247500 6247471 2500
0.800000 0 0 0 1 1 2500 6247500 6247500 2500

1 0 862 0 0.655200 1 2500 6247500 6247500 1638

Runtime Comparisons Comparisons per Second
308 seconds 6250000 20292.2078

Table 10.16: Stats for dataset A 2500 org 2500 dup dm.

Figure 10.14: ROC curve for dataset A 2500 org 2500 dup dm.
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Example 10.15. merge 5000 duplicates with 5000 originals using Jaro distance

dataset 1: dataset A 5000 original

dataset 2: dataset A 5000 duplicate

method: Jaro distance

algorithm parameters: 0.85, 1.0 (lower bound, upper bound inclusive)

final dataset: dataset A 5000 org 5000 dup jd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 24995000 1 0 5000 24995000 0 5000

0.083333 0.229163 0 5727928 1 0.770837 5000 24995000 19267072 5000
0.166667 0.013145 0 328552 1 0.986855 5000 24995000 24666448 5000
0.250000 0.000302 0 7556 1 0.999698 5000 24995000 24987444 5000
0.333333 0.000003 0 80 1 0.999997 5000 24995000 24994920 5000
0.500000 0 0 0 1 1 5000 24995000 24995000 5000
0.583333 0 1 0 0.999800 1 5000 24995000 24995000 4999
0.666667 0 17 0 0.996600 1 5000 24995000 24995000 4983
0.750000 0 145 0 0.971000 1 5000 24995000 24995000 4855
0.833333 0 802 0 0.839600 1 5000 24995000 24995000 4198
0.916667 0 2475 0 0.505000 1 5000 24995000 24995000 2525

1 0 4377 0 0.124600 1 5000 24995000 24995000 623

Runtime Comparisons Comparisons per Second
2666 seconds 25000000 9377.3443

Table 10.17: Stats for dataset A 5000 org 5000 dup jd.

Figure 10.15: ROC curve for dataset A 5000 org 5000 dup jd.
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Example 10.16. merge 5000 duplicates with 5000 originals using Double Metaphone

dataset 1: dataset A 5000 original

dataset 2: dataset A 5000 duplicate

method: Double Metaphone

final dataset: dataset A 5000 org 5000 dup dm

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 24995000 1 0 5000 24995000 0 5000

0.200000 0.194661 0 4865554 1 0.805339 5000 24995000 20129446 5000
0.400000 0.002058 0 51436 1 0.997942 5000 24995000 24943564 5000
0.600000 0.000007 0 168 1 0.999993 5000 24995000 24994832 5000
0.800000 0 0 0 1 1 5000 24995000 24995000 5000

1 0 1701 0 0.659800 1 5000 24995000 24995000 3299

Runtime Comparisons Comparisons per Second
1214 seconds 25000000 20593.0807

Table 10.18: Stats for dataset A 5000 org 5000 dup dm.

Figure 10.16: ROC curve for dataset A 5000 org 5000 dup dm.

The ROC curves for all eight of the datasets are almost identical. All of the ROC curves

go straight up from the point (0,0), pass through the optimal point (0,1), and then go straight

to the right to the point (1,1). So even if the size of the dataset is increased, the algorithms

are still very effective at finding correct record pairs. Jaro distance’s cut off levels for the

four dataset are: 0.5, 0.583̄, 0.583̄, and 0.5 respectively with algorithm parameters 0.85 set
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as the lower bound and 1.0 set as the upper bound, inclusive, while Double Metaphone’s cut

off levels are: 0.8, 0.8, 0.83̄, and 0.8 respectively. Jaro distance was able to get the maximum

number of true positives without any false negatives at a significantly lower level then Double

Metaphone for each of the four datasets, so the character-based similarity metric performed

better for these datasets than the phonetic-based similarity metric.

It should also be noted that neither similarity metric had problems with scalability.

As the size of the datasets increased, it did take longer to run each comparison, but each

comparison was able to finish running in a timely manner. The smaller datasets finished

running in a matter of seconds, whereas the larger datasets took a few minutes and the

largest dataset took under forty-four minutes to run. If the size of the datasets were to be

increased, the algorithms will take longer to run on them, but would still be able to run the

analysis necessary to determine matches or non-matches and at what tolerance levels.
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Chapter 11. Updating a Database With Multiple Duplicate

Entries

To examine the problem of updating a database with another database that has multiple

duplicate entries, four forms of the updating database are used. The format of the updating

database will be described in greater details in the examples to follow.

11.1 Updating a Database With One, Two, or Three Duplicate

Entries

Example 11.1. Form 1

Dataset two consists of the following entries:

(i) 500 new original entries

(ii) 500 duplicates from the 4000 and 500

(a) from the 4000 original entries

i. 250 one time duplicates

ii. 150 two time duplicates

iii. 51 three time duplicates

(b) from the 500 new original entries

i. 49 one time duplicate

dataset 1: dataset A 4000 originals

dataset 2: dataset A 1000 update form1

method: Jaro distance

algorithm parameters: 0.75, 1.0 (lower bound, upper bound inclusive)

final dataset: dataset A 4000 org 1000 dup form1 jd
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level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 3999549 1 0 451 3999549 0 451

0.083333 0.493256 0 1972801 1 0.506744 451 3999549 2026748 451
0.166667 0.118701 0 474752 1 0.881299 451 3999549 3524797 451
0.250000 0.014813 0 59247 1 0.985187 451 3999549 3940302 451
0.333333 0.001046 0 4185 1 0.998954 451 3999549 3995364 451
0.416667 0.000046 0 182 1 0.999954 451 3999549 3999367 451
0.500000 0.000001 0 4 1 0.999999 451 3999549 3999545 451
0.583333 0.000000 0 1 1 1.000000 451 3999549 3999548 451
0.666667 0 4 0 0.991131 1 451 3999549 3999549 447
0.750000 0 20 0 0.955654 1 451 3999549 3999549 431
0.833333 0 76 0 0.831486 1 451 3999549 3999549 375
0.916667 0 223 0 0.505543 1 451 3999549 3999549 228

1 0 398 0 0.117517 1 451 3999549 3999549 53

Runtime Comparisons Comparisons per Second
424 seconds 4000000 9433.9623

Table 11.1: Stats for dataset A 4000 org 1000 dup form1 jd.

Figure 11.1: ROC curve for dataset A 4000 org 1000 dup form1 jd.

Example 11.2. Form 2

Dataset two consists of the following entries:

(i) 500 new original entries

(ii) 500 duplicates from the 4000

(a) 299 one time duplicates

(b) 150 two time duplicates

(c) 51 three time duplicates
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dataset 1: dataset A 4000 originals

dataset 2: dataset A 1000 update form2

method: Soundex

final dataset: dataset A 4000 org 1000 dup form2 soundex

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.195716 0 1222737 1 0.804284 2500 6247500 5024763 2500
0.400000 0.002056 0 12847 1 0.997944 2500 6247500 6234653 2500
0.600000 0.000005 0 29 1 0.999995 2500 6247500 6247471 2500
0.800000 0 0 0 1 1 2500 6247500 6247500 2500

1 0 862 0 0.655200 1 2500 6247500 6247500 1638

Runtime Comparisons Comparisons per Second
308 seconds 6250000 20292.2078

Table 11.2: Stats for dataset A 4000 org 1000 dup form2 soundex.

Figure 11.2: ROC curve for dataset A 4000 org 1000 dup form2 soundex.

77



Example 11.3. Form 3

Dataset two consists of the following entries:

(i) 525 new original entries

(ii) 475 duplicates from the 4000

(a) 274 one time duplicates

(b) 150 two time duplicates

(c) 51 three time duplicates

dataset 1: dataset A 4000 originals

dataset 2: dataset A 1000 update form3

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.7 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 4000 org 1000 dup form3 qgd

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 3999525 1 0 475 3999525 0 475

0.083333 0.490924 0 1963464 1 0.509076 475 3999525 2036061 475
0.166667 0.122668 0 490612 1 0.877332 475 3999525 3508913 475
0.250000 0.016759 0 67028 1 0.983241 475 3999525 3932497 475
0.333333 0.001306 0 5223 1 0.998694 475 3999525 3994302 475
0.416667 0.000064 0 255 1 0.999936 475 3999525 3999270 475
0.500000 0.000001 0 3 1 0.999999 475 3999525 3999522 475
0.583333 0 0 0 1 1 475 3999525 3999525 475
0.666667 0 3 0 0.993684 1 475 3999525 3999525 472
0.750000 0 21 0 0.955789 1 475 3999525 3999525 454
0.833333 0 82 0 0.827368 1 475 3999525 3999525 393
0.916667 0 262 0 0.448421 1 475 3999525 3999525 213

1 0 419 0 0.117895 1 475 3999525 3999525 56

Runtime Comparisons Comparisons per Second
551 seconds 4000000 7259.5281

Table 11.3: Stats for dataset A 4000 org 1000 dup form3 qgd.
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Figure 11.3: ROC curve for dataset A 4000 org 1000 dup form3 qgd.

Example 11.4. Form 4

Dataset two consists of the following entries:

(i) 549 new original entries

(ii) 451 duplicates from the 4000

(a) 250 one time duplicates

(b) 150 two time duplicates

(c) 51 three time duplicates

dataset 1: dataset A 4000 originals

dataset 2: dataset A 1000 update form4

method: Double Metaphone

final dataset: dataset A 4000 org 1000 dup form4 dm
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level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 3999549 1 0 451 3999549 0 451

0.200000 0.194672 0 778601 1 0.805328 451 3999549 3220948 451
0.400000 0.002123 0 8493 1 0.997877 451 3999549 3991056 451
0.600000 0.000004 0 15 1 0.999996 451 3999549 3999534 451
0.800000 0 16 0 0.964523 1 451 3999549 3999549 435

1 0 191 0 0.576497 1 451 3999549 3999549 260

Runtime Comparisons Comparisons per Second
196 seconds 4000000 20408.1633

Table 11.4: Stats for dataset A 4000 org 1000 dup form4 dm.

Figure 11.4: ROC curve for dataset A 4000 org 1000 dup form4 dm.

In all four of the above examples the resulting dataset has a near-perfect ROC curve.

Meaning that the ROC curve goes through or almost goes through the optimal point (0,1).

Also in their respective stats tables there is a clear cut off point in which there are zero false

negatives and the maximum number of true positives possible on the same level. We are

getting these results because of how the duplicate entries are formed.

Recall that a duplicate entry is formed by making one change in one of the fields. A

change consists of one of the following actions: inserting a single character, deleting a single

character, replacing a single character, transposing two characters, or transposing two words

(example: First Street becomes Street First), replacing a name with a nickname, or even

dropping a field. The database I used in the previous examples had only been mutated very
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lightly, which made it easy for the algorithms to produce near-perfect ROC curves. Therefore,

I created my own mutator program mutator.py (which can be found in the appendix) that

performs the same kinds of changes mentioned above, except for nickname replacement.

This program is configurable; the user can choose how many rows to mutate, how many

times they should be mutated, and how many duplicates should be created for each original.

The program mutates the original dataset entries with letters, numbers, and special char-

acters. The letters can be either capital or lowercase from the standard English alphabet,

the number selection goes from zero to nine inclusive, and the special characters available

are a space, period, exclamation point, and question mark. The probability of a character

being inserted is 20%, a character being deleted is 20%, a character being replaced is 20%, a

character being moved is 20%, reordering words is 13.3̄% (i.e. 2 in 15), and a dropped field

is 6.6̄% (i.e. 1 in 15).

Creating the mutated dataset using mutator.py led to more interesting results, where the

ROC curves are more curved and there is no longer a clear, ideal cutoff point in which there

are zero false negatives and the maximum number of true positives possible on the same

level. Below is a sequence where I progressively broke a dataset (creating a dataset with one

or multiple duplicate entries from the original dataset that have been mutated more than

once) and merged it with the original dataset.

11.2 Updating a Database With Duplicate Entries That Have

Multiple Mutations

In this series of examples we will update a dataset with duplicate entires that have been

mutated by letters, numbers, and special characters. This is an important series of examples

to look at because previuosly mutated datasets only looked at the mutations that invloved

letters. Numbers and special characters are also keys that can be selected by mistake when

another key was met to be pressed, so seeing how these affect the number of true positive

and true negatives obtained at each tolerance level should be interesting.
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Example 11.5. Step one in breaking the dataset

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 1021 1031 1041 1051 1061 1071

1081 1091 10101 10111

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100a dup ed

Dataset 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 1021 1031 1041 1051 1061 1071 1081 1091 10101

10111 10:2:1 10:3:1 10:4:1 10:5:1 10:6:1 10:7:1 10:8:1 10:9:1 10:10:1 10:11:1

(i) 10 rows are randomly selected and then 1 duplicate record for each of the rows was

created with 2 mutations.

(ii) 10 rows are randomly selected (from the remaining 490 unchosen rows) and then 1

duplicate record for each of the rows was created with 3 mutations.

(iii) 10 rows are randomly selected (from the remaining 480 unchosen rows) and then 1

duplicate record for each of the rows was created with 4 mutations.

(iv) 10 rows are randomly selected (from the remaining 470 unchosen rows) and then 1

duplicate record for each of the rows was created with 5 mutations.

(v) 10 rows are randomly selected (from the remaining 460 unchosen rows) and then 1

duplicate record for each of the rows was created with 6 mutations.

(vi) 10 rows are randomly selected (from the remaining 450 unchosen rows) and then 1

duplicate record for each of the rows was created with 7 mutations.

(vii) 10 rows are randomly selected (from the remaining 440 unchosen rows) and then 1

duplicate record for each of the rows was created with 8 mutations.
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(viii) 10 rows are randomly selected (from the remaining 430 unchosen rows) and then 1

duplicate record for each of the rows was created with 9 mutations.

(ix) 10 rows are randomly selected (from the remaining 420 unchosen rows) and then 1

duplicate record for each of the rows was created with 10 mutations.

(x) 10 rows are randomly selected (from the remaining 410 unchosen rows) and then 1

duplicate record for each of the rows was created with 11 mutations.

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.986333 0 49218 1 0.013667 100 49900 682 100
0.166667 0.883006 0 44062 1 0.116994 100 49900 5838 100
0.250000 0.623607 0 31118 1 0.376393 100 49900 18782 100
0.333333 0.315591 0 15748 1 0.684409 100 49900 34152 100
0.416667 0.112004 0 5589 1 0.887996 100 49900 44311 100
0.500000 0.026814 0 1338 1 0.973186 100 49900 48562 100
0.583333 0.003287 0 164 1 0.996713 100 49900 49736 100
0.666667 0.000381 1 19 0.990000 0.999619 100 49900 49881 99
0.750000 0 7 0 0.930000 1 100 49900 49900 93
0.833333 0 17 0 0.830000 1 100 49900 49900 83
0.916667 0 44 0 0.560000 1 100 49900 49900 56

1 0 76 0 0.240000 1 100 49900 49900 24

Runtime Comparisons Comparisons per Second
18 seconds 50000 2777.7778

Table 11.5: Stats for dataset A 500 org 100a dup ed.

Figure 11.5: ROC curve for dataset A 500 org 100a dup ed.
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Example 11.6. Step two in breaking the dataset

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 10121 10131 10141 10151 10161

10171 10181 10191 10201 10211

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100b dup ed

Dataset 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 10121 10131 10141 10151 10161 10171 10181 10191

10201 10211 10:12:1 10:13:1 10:14:1 10:15:1 10:16:1 10:17:1 10:18:1 10:19:1 10:20:1 10:21:1

(i) 10 rows are randomly selected and then 1 duplicate record for each of the rows was

created with 12 mutations.

(ii) 10 rows are randomly selected (from the remaining 490 unchosen rows) and then 1

duplicate record for each of the rows was created with 13 mutations.

(iii) 10 rows are randomly selected (from the remaining 480 unchosen rows) and then 1

duplicate record for each of the rows was created with 14 mutations.

(iv) 10 rows are randomly selected (from the remaining 470 unchosen rows) and then 1

duplicate record for each of the rows was created with 15 mutations.

(v) 10 rows are randomly selected (from the remaining 460 unchosen rows) and then 1

duplicate record for each of the rows was created with 16 mutations.

(vi) 10 rows are randomly selected (from the remaining 450 unchosen rows) and then 1

duplicate record for each of the rows was created with 17 mutations.

(vii) 10 rows are randomly selected (from the remaining 440 unchosen rows) and then 1

duplicate record for each of the rows was created with 18 mutations.
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(viii) 10 rows are randomly selected (from the remaining 430 unchosen rows) and then 1

duplicate record for each of the rows was created with 19 mutations.

(ix) 10 rows are randomly selected (from the remaining 420 unchosen rows) and then 1

duplicate record for each of the rows was created with 20 mutations.

(x) 10 rows are randomly selected (from the remaining 410 unchosen rows) and then 1

duplicate record for each of the rows was created with 21 mutations.

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.991242 0 49463 1 0.008758 100 49900 437 100
0.166667 0.904749 0 45147 1 0.095251 100 49900 4753 100
0.250000 0.701683 0 35014 1 0.298317 100 49900 14886 100
0.333333 0.406713 0 20295 1 0.593287 100 49900 29605 100
0.416667 0.161703 1 8069 0.990000 0.838297 100 49900 41831 99
0.500000 0.044890 5 2240 0.950000 0.955110 100 49900 47660 95
0.583333 0.009820 13 490 0.870000 0.990180 100 49900 49410 87
0.666667 0.001222 32 61 0.680000 0.998778 100 49900 49839 68
0.750000 0.000100 62 5 0.380000 0.999900 100 49900 49895 38
0.833333 0.000020 86 1 0.140000 0.999980 100 49900 49899 14
0.916667 0 97 0 0.030000 1 100 49900 49900 3

1 0 99 0 0.010000 1 100 49900 49900 1

Runtime Comparisons Comparisons per Second
16 seconds 50000 3125.0000

Table 11.6: Stats for dataset A 500 org 100b dup ed.

Figure 11.6: ROC curve for dataset A 500 org 100b dup ed.
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Example 11.7. Step three in breaking the dataset

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 10221 10231 10241 10251 10261

10271 10281 10291 10301 10311

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100c dup ed

Dataset 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 10221 10231 10241 10251 10261 10271 10281 10291

10301 10311 10:22:1 10:23:1 10:24:1 10:25:1 10:26:1 10:27:1 10:28:1 10:29:1 10:30:1 10:31:1

(i) 10 rows are randomly selected and then 1 duplicate record for each of the rows was

created with 22 mutations.

(ii) 10 rows are randomly selected (from the remaining 490 unchosen rows) and then 1

duplicate record for each of the rows was created with 23 mutations.

(iii) 10 rows are randomly selected (from the remaining 480 unchosen rows) and then 1

duplicate record for each of the rows was created with 24 mutations.

(iv) 10 rows are randomly selected (from the remaining 470 unchosen rows) and then 1

duplicate record for each of the rows was created with 25 mutations.

(v) 10 rows are randomly selected (from the remaining 460 unchosen rows) and then 1

duplicate record for each of the rows was created with 26 mutations.

(vi) 10 rows are randomly selected (from the remaining 450 unchosen rows) and then 1

duplicate record for each of the rows was created with 27 mutations.

(vii) 10 rows are randomly selected (from the remaining 440 unchosen rows) and then 1

duplicate record for each of the rows was created with 28 mutations.
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(viii) 10 rows are randomly selected (from the remaining 430 unchosen rows) and then 1

duplicate record for each of the rows was created with 29 mutations.

(ix) 10 rows are randomly selected (from the remaining 420 unchosen rows) and then 1

duplicate record for each of the rows was created with 30 mutations.

(x) 10 rows are randomly selected (from the remaining 410 unchosen rows) and then 1

duplicate record for each of the rows was created with 31 mutations.

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.986293 0 49216 1 0.013707 100 49900 684 100
0.166667 0.893267 0 44574 1 0.106733 100 49900 5326 100
0.250000 0.678838 1 33874 0.990000 0.321162 100 49900 16026 99
0.333333 0.405912 4 20255 0.960000 0.594088 100 49900 29645 96
0.416667 0.193948 10 9678 0.900000 0.806052 100 49900 40222 90
0.500000 0.074128 31 3699 0.690000 0.925872 100 49900 46201 69
0.583333 0.017555 56 876 0.440000 0.982445 100 49900 49024 44
0.666667 0.001603 80 80 0.200000 0.998397 100 49900 49820 20
0.750000 0.000180 94 9 0.060000 0.999820 100 49900 49891 6

Runtime Comparisons Comparisons per Second
15 seconds 50000 3333.3333

Table 11.7: Stats for dataset A 500 org 100c dup ed.

Figure 11.7: ROC curve for dataset A 500 org 100c dup ed.
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Example 11.8. Step four in breaking the dataset

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 10321 10331 10341 10351 10361

10371 10381 10391 10401 10411

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100d dup ed

Dataset 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 10321 10331 10341 10351 10361 10371 10381 10391

10401 10411 10:32:1 10:33:1 10:34:1 10:35:1 10:36:1 10:37:1 10:38:1 10:39:1 10:40:1 10:41:1

(i) 10 rows are randomly selected and then 1 duplicate record for each of the rows is

created that has 32 mutations in it.

(ii) 10 rows are randomly selected (from the remaining 490 unchosen rows) and then 1

duplicate record for each of the rows was created with 33 mutations.

(iii) 10 rows are randomly selected (from the remaining 480 unchosen rows) and then 1

duplicate record for each of the rows was created with 34 mutations.

(iv) 10 rows are randomly selected (from the remaining 470 unchosen rows) and then 1

duplicate record for each of the rows was created with 35 mutations.

(v) 10 rows are randomly selected (from the remaining 460 unchosen rows) and then 1

duplicate record for each of the rows was created with 36 mutations.

(vi) 10 rows are randomly selected (from the remaining 450 unchosen rows) and then 1

duplicate record for each of the rows was created with 37 mutations.

(vii) 10 rows are randomly selected (from the remaining 440 unchosen rows) and then 1

duplicate record for each of the rows was created with 38 mutations.
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(viii) 10 rows are randomly selected (from the remaining 430 unchosen rows) and then 1

duplicate record for each of the rows was created with 39 mutations.

(ix) 10 rows are randomly selected (from the remaining 420 unchosen rows) and then 1

duplicate record for each of the rows was created with 40 mutations.

(x) 10 rows are randomly selected (from the remaining 410 unchosen rows) and then 1

duplicate record for each of the rows was created with 41 mutations.

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.993287 0 49565 1 0.006713 100 49900 335 100
0.166667 0.940501 0 46931 1 0.059499 100 49900 2969 100
0.250000 0.791463 5 39494 0.950000 0.208537 100 49900 10406 95
0.333333 0.540381 16 26965 0.840000 0.459619 100 49900 22935 84
0.416667 0.299980 36 14969 0.640000 0.700020 100 49900 34931 64
0.500000 0.133487 58 6661 0.420000 0.866513 100 49900 43239 42
0.583333 0.051483 77 2569 0.230000 0.948517 100 49900 47331 23
0.666667 0.013687 93 683 0.070000 0.986313 100 49900 49217 7
0.750000 0.001844 98 92 0.020000 0.998156 100 49900 49808 2
0.833333 0.000140 99 7 0.010000 0.999860 100 49900 49893 1

Runtime Comparisons Comparisons per Second
15 seconds 50000 3333.3333

Table 11.8: Stats for dataset A 500 org 100d dup ed.

Figure 11.8: ROC curve for dataset A 500 org 100d dup ed.
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Edit distance was used to compare each pair of datasets. Since we are using a character-

based similarity metric to compare the two databases, letters, numbers, and special char-

acters were used to mutate the original data entries to create duplicates. From dataset

dataset A 500 original only twenty percent of the original entries were used to make dupli-

cates. Each duplicate corresponded to one original entry and the duplicate had between two

and forty-one mutations performed on it. As the number of mutations increases, the ROC

curve moves closer to the line of no-discrimination, and looks more like an actual curve.

11.3 Comparing Character-Based and Phonetic-Based Similar-

ity Metrics When There is One Duplicate Entry With

Multiple Mutations

We now know that mutating the duplicates has an effect on the ROC curve. This raises

the question how much of an effect does mutating the duplicates have and does the number

of duplicates play a role in the shape of the ROC curve as well? We also want to compare

a character-based similarity metric with a phonetic-based similarity metric as the number

of mutations and duplicates are manipulated. This will show us whether the two metrics

perform similarly under these varying conditions, and how much of an effect the number of

mutations and duplicates have on performance.

In this first case dataset one will consist of 2500 original entries and dataset set two will

consist of 250 duplicate entries. The duplicate entries have been mutated two to forty-one

times. Mutations were formed by inserting a single letter, deleting a single letter, replacing

a single letter, tranposing two letters, transposing two words, or dropping a field.
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Example 11.9. Step one in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 2 11

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 250a dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 2 11 25:2:1 25:3:1 25:4:1 25:5:1 25:6:1 25:7:1

25:8:1 25:9:1 25:10:1 25:11:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.083333 0.317570 0 198402 1 0.682430 250 624750 426348 250
0.166667 0.045863 0 28653 1 0.954137 250 624750 596097 250
0.250000 0.003585 0 2240 1 0.996415 250 624750 622510 250
0.333333 0.000158 0 99 1 0.999842 250 624750 624651 250
0.416667 0.000005 0 3 1 0.999995 250 624750 624747 250
0.500000 0 1 0 0.996000 1 250 624750 624750 249
0.583333 0 11 0 0.956000 1 250 624750 624750 239
0.666667 0 30 0 0.880000 1 250 624750 624750 220
0.750000 0 77 0 0.692000 1 250 624750 624750 173
0.833333 0 145 0 0.420000 1 250 624750 624750 105
0.916667 0 202 0 0.192000 1 250 624750 624750 48

1 0 241 0 0.036000 1 250 624750 624750 9

Runtime Comparisons Comparisons per Second
93 seconds 625000 6720.4301

Table 11.9: Stats for dataset A 2500 org 250a dup qgd.

Figure 11.9: ROC curve for dataset A 2500 org 250a dup qgd.
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Example 11.10. Step one in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 2 11

method: NYSIIS

final dataset: dataset A 2500 org 250a dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 2 11 25:2:1 25:3:1 25:4:1 25:5:1 25:6:1 25:7:1

25:8:1 25:9:1 25:10:1 25:11:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.200000 0.133812 4 83599 0.984000 0.866188 250 624750 541151 246
0.400000 0.001681 15 1050 0.940000 0.998319 250 624750 623700 235
0.600000 0.000011 57 7 0.772000 0.999989 250 624750 624743 193
0.800000 0 139 0 0.444000 1 250 624750 624750 111

1 0 213 0 0.148000 1 250 624750 624750 37

Runtime Comparisons Comparisons per Second
30 seconds 625000 20833.3333

Table 11.10: Stats for dataset A 2500 org 250a dup nysiis.

Figure 11.10: ROC curve for dataset A 2500 org 250a dup nysiis.
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Example 11.11. Step two in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 12 21

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 250b dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 12 21 25:12:1 25:13:1 25:14:1 25:15:1 25:16:1

25:17:1 25:18:1 25:19:1 25:20:1 25:21:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.083333 0.214580 0 134059 1 0.785420 250 624750 490691 250
0.166667 0.018948 0 11838 1 0.981052 250 624750 612912 250
0.250000 0.000869 2 543 0.992000 0.999131 250 624750 624207 248
0.333333 0.000026 6 16 0.976000 0.999974 250 624750 624734 244
0.416667 0.000002 18 1 0.928000 0.999998 250 624750 624749 232
0.500000 0 45 0 0.820000 1 250 624750 624750 205
0.583333 0 98 0 0.608000 1 250 624750 624750 152
0.666667 0 158 0 0.368000 1 250 624750 624750 92
0.750000 0 210 0 0.160000 1 250 624750 624750 40
0.833333 0 236 0 0.056000 1 250 624750 624750 14
0.916667 0 248 0 0.008000 1 250 624750 624750 2

Runtime Comparisons Comparisons per Second
88 seconds 625000 7102.2727

Table 11.11: Stats for dataset A 2500 org 250b dup qgd.

Figure 11.11: ROC curve for dataset A 2500 org 250b dup qgd.
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Example 11.12. Step two in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 12 21

method: NYSIIS

final dataset: dataset A 2500 org 250b dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 12 21 25:12:1 25:13:1 25:14:1 25:15:1 25:16:1

25:17:1 25:18:1 25:19:1 25:20:1 25:21:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.200000 0.084579 29 52841 0.884000 0.915421 250 624750 571909 221
0.400000 0.000994 116 621 0.536000 0.999006 250 624750 624129 134
0.600000 0.000002 204 1 0.184000 0.999998 250 624750 624749 46
0.800000 0 240 0 0.040000 1 250 624750 624750 10

Runtime Comparisons Comparisons per Second
29 seconds 625000 21551.7241

Table 11.12: Stats for dataset A 2500 org 250b dup nysiis.

Figure 11.12: ROC curve for dataset A 2500 org 250b dup nysiis.
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Example 11.13. Step three in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 22 31

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 250c dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 22 31 25:22:1 25:23:1 25:24:1 25:25:1 25:26:1

25:27:1 25:28:1 25:29:1 25:30:1 25:31:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.083333 0.142359 0 88939 1 0.857641 250 624750 535811 250
0.166667 0.007856 1 4908 0.996000 0.992144 250 624750 619842 249
0.250000 0.000266 11 166 0.956000 0.999734 250 624750 624584 239
0.333333 0.000002 41 1 0.836000 0.999998 250 624750 624749 209
0.416667 0 93 0 0.628000 1 250 624750 624750 157
0.500000 0 147 0 0.412000 1 250 624750 624750 103
0.583333 0 196 0 0.216000 1 250 624750 624750 54
0.666667 0 227 0 0.092000 1 250 624750 624750 23
0.750000 0 245 0 0.020000 1 250 624750 624750 5

Runtime Comparisons Comparisons per Second
88 seconds 625000 7102.2727

Table 11.13: Stats for dataset A 2500 org 250c dup qgd.

Figure 11.13: ROC curve for dataset A 2500 org 250c dup qgd.
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Example 11.14. Step three in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 22 31

method: NYSIIS

final dataset: dataset A 2500 org 250c dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 22 31 25:22:1 25:23:1 25:24:1 25:25:1 25:26:1

25:27:1 25:28:1 25:29:1 25:30:1 25:31:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.200000 0.060154 89 37581 0.644000 0.939846 250 624750 587169 161
0.400000 0.000659 193 412 0.228000 0.999341 250 624750 624338 57
0.600000 0 247 0 0.012000 1 250 624750 624750 3

Runtime Comparisons Comparisons per Second
29 seconds 625000 21551.7241

Table 11.14: Stats for dataset A 2500 org 250c dup nysiis.

Figure 11.14: ROC curve for dataset A 2500 org 250c dup nysiis.
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Example 11.15. Step four in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 32 41

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 250d dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 32 41 25:32:1 25:33:1 25:34:1 25:35:1 25:36:1

25:37:1 25:38:1 25:39:1 25:40:1 25:41:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.083333 0.089111 2 55672 0.992000 0.910889 250 624750 569078 248
0.166667 0.002985 13 1865 0.948000 0.997015 250 624750 622885 237
0.250000 0.000054 65 34 0.740000 0.999946 250 624750 624716 185
0.333333 0 129 0 0.484000 1 250 624750 624750 121
0.416667 0 197 0 0.212000 1 250 624750 624750 53
0.500000 0 227 0 0.092000 1 250 624750 624750 23
0.583333 0 245 0 0.020000 1 250 624750 624750 5
0.666667 0 249 0 0.004000 1 250 624750 624750 1

Runtime Comparisons Comparisons per Second
87 seconds 625000 7183.9080

Table 11.15: Stats for dataset A 2500 org 250d dup qgd.

Figure 11.15: ROC curve for dataset A 2500 org 250d dup qgd.

97



Example 11.16. Step four in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 250 dup 25 1 32 41

method: NYSIIS

final dataset: dataset A 2500 org 250d dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 250 dup 25 1 32 41 25:32:1 25:33:1 25:34:1 25:35:1 25:36:1

25:37:1 25:38:1 25:39:1 25:40:1 25:41:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 624750 1 0 250 624750 0 250

0.200000 0.055920 149 34936 0.404000 0.944080 250 624750 589814 101
0.400000 0.000667 237 417 0.052000 0.999333 250 624750 624333 13
0.600000 0.000003 249 2 0.004000 0.999997 250 624750 624748 1

Runtime Comparisons Comparisons per Second
31 seconds 625000 20161.2903

Table 11.16: Stats for dataset A 2500 org 250d dup nysiis.

Figure 11.16: ROC curve for dataset A 2500 org 250d dup nysiis.
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Looking over the ROC curves for q-gram distance and NYSIIS, the ROC curves for q-

gram distance stayed more consistent and had points closer to (0,1), while the ROC curves

for NYSIIS kept getting closer and closer to the line of no-discrimination as the number of

mutations increased. I believe that we are seeing these results because q-gram distance is

a character-based similarity metric, so it looks at the individual characters that make up

each word in each field, whereas NYSIIS is a phonetic-based similarity metric, so it looks at

each word as a whole in each field. Since the mutations in each duplicate entry were put in

randomly and phoneticly change the makeup of a string, NYSIIS has a harder time knowing

when two strings are the same. Q-gram distance’s ability to look at individual characters

and substrings helps it see when a change has been made, but if duplicate entries have been

mutated too much it has a difficult time finding true matches.

11.4 Comparing Character-Based and Phonetic-Based Similar-

ity Metrics When There are a Varying Number of Dupli-

cate Entries With Multiple Mutations

With the previous examples the character-based similarity metric performed better in com-

parison to the phonetic-based similarity metric where each original entry in dataset one had

one duplicate entry in dataset two. Recall that in the previous series the duplicate entries

ranged from being manipulated two times to forty-one times. In this series of examples we

will look at what happens when the originals in the first dataset have multiple duplicates in

the mutated dataset. This series will show us whether or not the character-based similar-

ity metric continues to out-perform the phonetic-based similarity metric as the number of

duplicates and mutations change.
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Example 11.17. Step one in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 5000 dup 25 20 2 11

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 5000 dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 5000 dup 25 20 2 11 25:2:20 25:3:20 25:4:20 25:5:20 25:6:20

25:7:20 25:8:20 25:9:20 25:10:20 25:11:20

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 12494150 1 0 5850 12494150 0 5850

0.083333 0.320783 597 4007908 0.897949 0.679217 5850 12494150 8486242 5253
0.166667 0.046266 823 578057 0.859316 0.953734 5850 12494150 11916093 5027
0.250000 0.003548 847 44328 0.855214 0.996452 5850 12494150 12449822 5003
0.333333 0.000146 850 1818 0.854701 0.999854 5850 12494150 12492332 5000
0.416667 0.000002 855 31 0.853846 0.999998 5850 12494150 12494119 4995
0.500000 0 896 0 0.846838 1 5850 12494150 12494150 4954
0.583333 0 1053 0 0.820000 1 5850 12494150 12494150 4797
0.666667 0 1473 0 0.748205 1 5850 12494150 12494150 4377
0.750000 0 2344 0 0.599316 1 5850 12494150 12494150 3506
0.833333 0 3690 0 0.369231 1 5850 12494150 12494150 2160
0.916667 0 4954 0 0.153162 1 5850 12494150 12494150 896

1 0 5659 0 0.032650 1 5850 12494150 12494150 191

Runtime Comparisons Comparisons per Second
1781 seconds 12500000 7018.5289

Table 11.17: Stats for dataset A 2500 org 5000 dup qgd.

Figure 11.17: ROC curve for dataset A 2500 org 5000 dup qgd.
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Example 11.18. Step one in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 5000 dup 25 20 2 11

method: NYSIIS

final dataset: dataset A 2500 org 5000 dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 5000 dup 25 20 2 11 25:2:20 25:3:20 25:4:20 25:5:20 25:6:20

25:7:20 25:8:20 25:9:20 25:10:20 25:11:20

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 12494150 1 0 5850 12494150 0 5850

0.200000 0.138755 813 1733630 0.861026 0.861245 5850 12494150 10760520 5037
0.400000 0.001435 1142 17934 0.804786 0.998565 5850 12494150 12476216 4708
0.600000 0.000004 2055 50 0.648718 0.999996 5850 12494150 12494100 3795
0.800000 0 3645 0 0.376923 1 5850 12494150 12494150 2205

1 0 5178 0 0.114872 1 5850 12494150 12494150 672

Runtime Comparisons Comparisons per Second
563 seconds 12500000 22202.4867

Table 11.18: Stats for dataset A 2500 org 5000 dup nysiis.

Figure 11.18: ROC curve for dataset A 2500 org 5000 dup nysiis.

101



Example 11.19. Step two in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 3750 dup 25 15 12 21

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 3750 dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 3750 dup 25 15 12 21 25:12:15 25:13:15 25:14:15 25:15:15

25:16:15 25:17:15 25:18:15 25:19:15 25:20:15 25:21:15

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 9370475 1 0 4525 9370475 0 4525

0.083333 0.212296 618 1989312 0.863425 0.787704 4525 9370475 7381163 3907
0.166667 0.019023 758 178258 0.832486 0.980977 4525 9370475 9192217 3767
0.250000 0.000862 785 8081 0.826519 0.999138 4525 9370475 9362394 3740
0.333333 0.000019 836 175 0.815249 0.999981 4525 9370475 9370300 3689
0.416667 0.000000 1020 1 0.774586 1.000000 4525 9370475 9370474 3505
0.500000 0 1460 0 0.677348 1 4525 9370475 9370475 3065
0.583333 0 2241 0 0.504751 1 4525 9370475 9370475 2284
0.666667 0 3125 0 0.309392 1 4525 9370475 9370475 1400
0.750000 0 3894 0 0.139448 1 4525 9370475 9370475 631
0.833333 0 4340 0 0.040884 1 4525 9370475 9370475 185
0.916667 0 4493 0 0.007072 1 4525 9370475 9370475 32

Runtime Comparisons Comparisons per Second
1315 seconds 9375000 7129.2776

Table 11.19: Stats for dataset A 2500 org 3750 dup qgd.

Figure 11.19: ROC curve for dataset A 2500 org 3750 dup qgd.
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Example 11.20. Step two in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 3750 dup 25 15 12 21

method: NYSIIS

final dataset: dataset A 2500 org 3750 dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 3750 dup 25 15 12 21 25:12:15 25:13:15 25:14:15 25:15:15

25:16:15 25:17:15 25:18:15 25:19:15 25:20:15 25:21:15

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 9370475 1 0 4525 9370475 0 4525

0.200000 0.086135 1155 807123 0.744751 0.913865 4525 9370475 8563352 3370
0.400000 0.000955 2507 8950 0.445967 0.999045 4525 9370475 9361525 2018
0.600000 0.000003 3766 29 0.167735 0.999997 4525 9370475 9370446 759
0.800000 0 4368 0 0.034696 1 4525 9370475 9370475 157

1 0 4510 0 0.003315 1 4525 9370475 9370475 15

Runtime Comparisons Comparisons per Second
423 seconds 9375000 22163.1206

Table 11.20: Stats for dataset A 2500 org 3750 dup nysiis.

Figure 11.20: ROC curve for dataset A 2500 org 3750 dup nysiis.
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Example 11.21. Step three in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 1250 dup 25 5 22 31

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 1250 dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 1250 dup 25 5 22 31 25:22:5 25:23:5 25:24:5 25:25:5 25:26:5

25:27:5 25:28:5 25:29:5 25:30:5 25:31:5

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 3123750 1 0 1250 3123750 0 1250

0.083333 0.145462 2 454386 0.998400 0.854538 1250 3123750 2669364 1248
0.166667 0.008408 15 26266 0.988000 0.991592 1250 3123750 3097484 1235
0.250000 0.000242 69 755 0.944800 0.999758 1250 3123750 3122995 1181
0.333333 0.000004 216 14 0.827200 0.999996 1250 3123750 3123736 1034
0.416667 0 456 0 0.635200 1 1250 3123750 3123750 794
0.500000 0 779 0 0.376800 1 1250 3123750 3123750 471
0.583333 0 1028 0 0.177600 1 1250 3123750 3123750 222
0.666667 0 1174 0 0.060800 1 1250 3123750 3123750 76
0.750000 0 1226 0 0.019200 1 1250 3123750 3123750 24
0.833333 0 1247 0 0.002400 1 1250 3123750 3123750 3

Runtime Comparisons Comparisons per Second
436 seconds 3125000 7167.4312

Table 11.21: Stats for dataset A 2500 org 1250 dup qgd.

Figure 11.21: ROC curve for dataset A 2500 org 1250 dup qgd.

104



Example 11.22. Step three in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 1250 dup 25 5 22 31

method: NYSIIS

final dataset: dataset A 2500 org 1250 dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 1250 dup 25 5 22 31 25:22:5 25:23:5 25:24:5 25:25:5 25:26:5

25:27:5 25:28:5 25:29:5 25:30:5 25:31:5

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 3123750 1 0 1250 3123750 0 1250

0.200000 0.069344 475 216612 0.620000 0.930656 1250 3123750 2907138 775
0.400000 0.000841 996 2626 0.203200 0.999159 1250 3123750 3121124 254
0.600000 0.000003 1221 10 0.023200 0.999997 1250 3123750 3123740 29
0.800000 0 1249 0 0.000800 1 1250 3123750 3123750 1

Runtime Comparisons Comparisons per Second
141 seconds 3125000 22163.1206

Table 11.22: Stats for dataset A 2500 org 1250 dup nysiis.

Figure 11.22: ROC curve for dataset A 2500 org 1250 dup nysiis.
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Example 11.23. Step four in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 500 dup 25 2 32 41

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 500 dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 500 dup 25 2 32 41 25:32:2 25:33:2 25:34:2 25:35:2 25:36:2

25:37:2 25:38:2 25:39:2 25:40:2 25:41:2

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 1249500 1 0 500 1249500 0 500

0.083333 0.093437 9 116750 0.982000 0.906563 500 1249500 1132750 491
0.166667 0.003409 44 4260 0.912000 0.996591 500 1249500 1245240 456
0.250000 0.000077 127 96 0.746000 0.999923 500 1249500 1249404 373
0.333333 0.000001 257 1 0.486000 0.999999 500 1249500 1249499 243
0.416667 0 372 0 0.256000 1 500 1249500 1249500 128
0.500000 0 451 0 0.098000 1 500 1249500 1249500 49
0.583333 0 486 0 0.028000 1 500 1249500 1249500 14
0.666667 0 497 0 0.006000 1 500 1249500 1249500 3

Runtime Comparisons Comparisons per Second
172 seconds 1250000 7267.4419

Table 11.23: Stats for dataset A 2500 org 500 dup qgd.

Figure 11.23: ROC curve for dataset A 2500 org 500 dup qgd.
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Example 11.24. Step four in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 500 dup 25 2 32 41

method: NYSIIS

final dataset: dataset A 2500 org 500 dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 500 dup 25 2 32 41 25:32:2 25:33:2 25:34:2 25:35:2 25:36:2

25:37:2 25:38:2 25:39:2 25:40:2 25:41:2

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 1249500 1 0 500 1249500 0 500

0.200000 0.059808 291 74730 0.418000 0.940192 500 1249500 1174770 209
0.400000 0.000819 460 1023 0.080000 0.999181 500 1249500 1248477 40
0.600000 0.000004 498 5 0.004000 0.999996 500 1249500 1249495 2

Runtime Comparisons Comparisons per Second
58 seconds 1250000 21551.7241

Table 11.24: Stats for dataset A 2500 org 500 dup nysiis.

Figure 11.24: ROC curve for dataset A 2500 org 500 dup nysiis.
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The ROC curves for when the second dataset is dataset A from 2500 org 5000 dup 25 20

2 11 and dataset A from 2500 org 3750 dup 25 15 12 21 look fairly similar for both q-gram

distance and NYSIIS. Neither of them have a point close to the perfect classification point

(0,1) on the ROC curve, but all of the ROC curves stay way above the line of no-discrimination.

However, when the mutated dataset is dataset A from 2500 org 1250 dup 25 5 22 31 and

dataset A from 2500 org 500 dup 25 2 32 41 the ROC curves for the character-based simi-

larity metric and the phonetic-based similarity metric do not look similar. In fact, q-gram

distance has a better ROC curve in both of the latter cases than NYSIIS does. In the last

two cases there were not many duplicates, but there were a high number of mutations. The

fact that the ROC curves looked similar when there were a high number of duplicates and

a low numbers of mutations, this then leads us to examine the effects of a high number of

duplicates and mutations.

11.5 Comparing Character-Based and Phonetic-Based Similar-

ity Metrics When There are Multiple Duplicate Entries

With Multiple Mutations

We have already looked at what happens when dataset two has one duplicate for each

original entry with two to forty-one mutations and when dataset two has a varying number

of duplicate entries. This last series of examples will than allow us to look at what happens

when all the originals have a large number of duplicates and manipulations performed on

them.
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Example 11.25. Step one in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 2 11

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 2500a dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 2 11 25:2:10 25:3:10 25:4:10 25:5:10 25:6:10

25:7:10 25:8:10 25:9:10 25:10:10 25:11:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.083333 0.323640 0 2021938 1 0.676360 2500 6247500 4225562 2500
0.166667 0.046454 0 290222 1 0.953546 2500 6247500 5957278 2500
0.250000 0.003531 0 22057 1 0.996469 2500 6247500 6225443 2500
0.333333 0.000141 0 881 1 0.999859 2500 6247500 6246619 2500
0.416667 0.000003 3 16 0.998800 0.999997 2500 6247500 6247484 2497
0.500000 0 25 0 0.990000 1 2500 6247500 6247500 2475
0.583333 0 115 0 0.954000 1 2500 6247500 6247500 2385
0.666667 0 337 0 0.865200 1 2500 6247500 6247500 2163
0.750000 0 766 0 0.693600 1 2500 6247500 6247500 1734
0.833333 0 1392 0 0.443200 1 2500 6247500 6247500 1108
0.916667 0 2064 0 0.174400 1 2500 6247500 6247500 436

1 0 2408 0 0.036800 1 2500 6247500 6247500 92

Runtime Comparisons Comparisons per Second
886 seconds 6250000 7054.1761

Table 11.25: Stats for dataset A 2500 org 2500a dup qgd.

Figure 11.25: ROC curve for dataset A 2500 org 2500a dup qgd.
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Example 11.26. Step one in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 2 11

method: NYSIIS

final dataset: dataset A 2500 org 2500a dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 2 11 25:2:10 25:3:10 25:4:10 25:5:10 25:6:10

25:7:10 25:8:10 25:9:10 25:10:10 25:11:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.145619 15 909753 0.994000 0.854381 2500 6247500 5337747 2485
0.400000 0.001443 145 9016 0.942000 0.998557 2500 6247500 6238484 2355
0.600000 0.000004 581 26 0.767600 0.999996 2500 6247500 6247474 1919
0.800000 0 1387 0 0.445200 1 2500 6247500 6247500 1113

1 0 2153 0 0.138800 1 2500 6247500 6247500 347

Runtime Comparisons Comparisons per Second
283 seconds 6250000 22084.8057

Table 11.26: Stats for dataset A 2500 org 2500a dup nysiis.

Figure 11.26: ROC curve for dataset A 2500 org 2500a dup nysiis.
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Example 11.27. Step two in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 12 21

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 2500b dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 12 21 25:12:10 25:13:10 25:14:10 25:15:10

25:16:10 25:17:10 25:18:10 25:19:10 25:20:10 25:21:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.083333 0.210896 0 1317570 1 0.789104 2500 6247500 4929930 2500
0.166667 0.018759 2 117199 0.999200 0.981241 2500 6247500 6130301 2498
0.250000 0.000881 9 5506 0.996400 0.999119 2500 6247500 6241994 2491
0.333333 0.000021 48 133 0.980800 0.999979 2500 6247500 6247367 2452
0.416667 0.000000 172 1 0.931200 1.000000 2500 6247500 6247499 2328
0.500000 0 533 0 0.786800 1 2500 6247500 6247500 1967
0.583333 0 1042 0 0.583200 1 2500 6247500 6247500 1458
0.666667 0 1640 0 0.344000 1 2500 6247500 6247500 860
0.750000 0 2106 0 0.157600 1 2500 6247500 6247500 394
0.833333 0 2379 0 0.048400 1 2500 6247500 6247500 121
0.916667 0 2481 0 0.007600 1 2500 6247500 6247500 19

1 0 2499 0 0.000400 1 2500 6247500 6247500 1

Runtime Comparisons Comparisons per Second
875 seconds 6250000 7142.8571

Table 11.27: Stats for dataset A 2500 org 2500b dup qgd.

Figure 11.27: ROC curve for dataset A 2500 org 2500b dup qgd.
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Example 11.28. Step two in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 12 21

method: NYSIIS

final dataset: dataset A 2500 org 2500b dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 12 21 25:12:10 25:13:10 25:14:10 25:15:10

25:16:10 25:17:10 25:18:10 25:19:10 25:20:10 25:21:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.083919 334 524284 0.866400 0.916081 2500 6247500 5723216 2166
0.400000 0.000948 1204 5921 0.518400 0.999052 2500 6247500 6241579 1296
0.600000 0.000004 2024 25 0.190400 0.999996 2500 6247500 6247475 476
0.800000 0 2406 0 0.037600 1 2500 6247500 6247500 94

1 0 2497 0 0.001200 1 2500 6247500 6247500 3

Runtime Comparisons Comparisons per Second
281 seconds 6250000 22241.9929

Table 11.28: Stats for dataset A 2500 org 2500b dup nysiis.

Figure 11.28: ROC curve for dataset A 2500 org 2500b dup nysiis.
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Example 11.29. Step three in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 22 31

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 2500c dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 22 31 25:22:10 25:23:10 25:24:10 25:25:10

25:26:10 25:27:10 25:28:10 25:29:10 25:30:10 25:31:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.083333 0.140478 2 877634 0.999200 0.859522 2500 6247500 5369866 2498
0.166667 0.008145 31 50885 0.987600 0.991855 2500 6247500 6196615 2469
0.250000 0.000245 141 1528 0.943600 0.999755 2500 6247500 6245972 2359
0.333333 0.000004 430 22 0.828000 0.999996 2500 6247500 6247478 2070
0.416667 0 943 0 0.622800 1 2500 6247500 6247500 1557
0.500000 0 1538 0 0.384800 1 2500 6247500 6247500 962
0.583333 0 2062 0 0.175200 1 2500 6247500 6247500 438
0.666667 0 2357 0 0.057200 1 2500 6247500 6247500 143
0.750000 0 2459 0 0.016400 1 2500 6247500 6247500 41
0.833333 0 2494 0 0.002400 1 2500 6247500 6247500 6
0.916667 0 2499 0 0.000400 1 2500 6247500 6247500 1

Runtime Comparisons Comparisons per Second
868 seconds 6250000 7200.4608

Table 11.29: Stats for dataset A 2500 org 2500c dup qgd.

Figure 11.29: ROC curve for dataset A 2500 org 2500c dup qgd.
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Example 11.30. Step three in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 22 31

method: NYSIIS

final dataset: dataset A 2500 org 2500c dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 22 31 25:22:10 25:23:10 25:24:10 25:25:10

25:26:10 25:27:10 25:28:10 25:29:10 25:30:10 25:31:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.066194 897 413547 0.641200 0.933806 2500 6247500 5833953 1603
0.400000 0.000825 1990 5154 0.204000 0.999175 2500 6247500 6242346 510
0.600000 0.000004 2410 22 0.036000 0.999996 2500 6247500 6247478 90
0.800000 0 2497 0 0.001200 1 2500 6247500 6247500 3

Runtime Comparisons Comparisons per Second
281 seconds 6250000 22241.9929

Table 11.30: Stats for dataset A 2500 org 2500c dup nysiis.

Figure 11.30: ROC curve for dataset A 2500 org 2500c dup nysiis.
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Example 11.31. Step four in breaking the dataset with a character-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 32 41

method: q-gram distance

algorithm parameters: 1 (the size of q)

algorithm threshold: 0.75 (lower bound for match – upper bound is automatically set to 1.0)

final dataset: dataset A 2500 org 2500d dup qgd

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 32 41 25:32:10 25:33:10 25:34:10 25:35:10

25:36:10 25:37:10 25:38:10 25:39:10 25:40:10 25:41:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.083333 0.082036 28 512517 0.988800 0.917964 2500 6247500 5734983 2472
0.166667 0.002761 183 17250 0.926800 0.997239 2500 6247500 6230250 2317
0.250000 0.000042 624 260 0.750400 0.999958 2500 6247500 6247240 1876
0.333333 0.000000 1239 2 0.504400 1.000000 2500 6247500 6247498 1261
0.416667 0 1837 0 0.265200 1 2500 6247500 6247500 663
0.500000 0 2235 0 0.106000 1 2500 6247500 6247500 265
0.583333 0 2429 0 0.028400 1 2500 6247500 6247500 71
0.666667 0 2482 0 0.007200 1 2500 6247500 6247500 18
0.750000 0 2498 0 0.000800 1 2500 6247500 6247500 2

Runtime Comparisons Comparisons per Second
855 seconds 6250000 7309.9415

Table 11.31: Stats for dataset A 2500 org 2500d dup qgd.

Figure 11.31: ROC curve for dataset A 2500 org 2500d dup qgd.
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Example 11.32. Step four in breaking the dataset with a phonetic-based similarity metric

dataset 1: dataset A 2500 original

dataset 2: dataset A from 2500 org 2500 dup 25 10 32 41

method: NYSIIS

final dataset: dataset A 2500 org 2500d dup nysiis

Dataset 2 was formed by the following process: ./mutator.py dataset A 2500 original.csv

rec id dataset A from 2500 org 2500 dup 25 10 32 41 25:32:10 25:33:10 25:34:10 25:35:10

25:36:10 25:37:10 25:38:10 25:39:10 25:40:10 25:41:10

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 6247500 1 0 2500 6247500 0 2500

0.200000 0.058276 1490 364079 0.404000 0.941724 2500 6247500 5883421 1010
0.400000 0.000749 2312 4678 0.075200 0.999251 2500 6247500 6242822 188
0.600000 0.000007 2476 43 0.009600 0.999993 2500 6247500 6247457 24
0.800000 0 2499 0 0.000400 1 2500 6247500 6247500 1

Runtime Comparisons Comparisons per Second
279 seconds 6250000 22401.4337

Table 11.32: Stats for dataset A 2500 org 2500d dup nysiis.

Figure 11.32: ROC curve for dataset A 2500 org 2500d dup nysiis.
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The ROC curves for q-gram distance stayed consistent as the number of mutations in-

creased and the number of duplicates stayed the same. For NYSIIS, however, the ROC

curves moved closer and closer to the line of no-discrimination as the number of mutations

increased and the number of duplicates stayed the same. The results for this series were

surprisingly similar to those found in the first series of examples where there was only one

duplicate and the number of mutations increased. Furthermore, the number of duplicates

had less of an effect on the ROC curve than the number of mutations did.
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Chapter 12. Economic Model

When datasets are being linked for a company there is a payoff for being right (correctly

linking two records that should be linked) and a penalty for being wrong (linking two records

together that should not be linked). Lets say that for every record that is correctly linked

the company receives a pay off of b dollars and for every record that they incorrectly link

they lose a dollars. An example of this would be that when a company links two records

if they were a correct match then they still have that individual’s business and when they

link incorrect individuals they lose that person’s future business with them. Using this

information we can then build an economic model that will allow us to find what tolerance

level we need to merge two datasets together in order to maximize our profit.

Being right corresponds to the number of true positives and being wrong corresponds to

the number of false positives. Recall that sensitivity = true positives/(true positives + false

negatives) and specificity = true negatives/(true negatives + false positives). Now the y-

axis on the ROC curve corresponds to sensitivity and the x-axis corresponds to 1-specificity

or what we called comp specificity where comp specificity = false positives/(false positives

+ true negatives). Applying this information we then are able to say that not only does

being right correspond to the number of true positives, but it also relates to the y-axis and

sensitivity, while being wrong corresponds to the number of false positives and relates to the

x-axis and comp specificity. Then b is how much weight we put on being right and a is how

much we put on being wrong.

Using this information we are then able to create a profit function that is dependent on

how many records were linked correctly, how many were linked incorrectly, the cost given to

being right, and the penalty given for being wrong. Thus the profit function is linear and is

equal to a ∗ (1− comp specificity) + b ∗ sensitivity.

The bounded region that the profit function is supposed to be maximized over is created

by the line of no-discrimination (the diagonal line going from the point (0,0) to (1,1)) and

the ROC curve. The points (0,0), (1,1), and those of the form (comp specificity, sensitivity)
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are the vertices of this bounded region. It is important to note that this bounded region is

concave, thus we can maximize a function over it. The point that gives the profit function

the greatest value with the given cost of being right and penalty for being wrong, maximizes

the profit function.

Since profit = a ∗ (1 − comp specificity) + b ∗ sensitivity, where comp specificity

represents the x-axis and sensitivity represents the y-axis, then the slope of the profit

equation is a
b
. Using this information we then can form the equation that maximizes profit

using point slope form. Thus maximum profit is obtained when

y = m ∗ (x− comp specificity[max profit index]) + sensitivity[max profit index].

With the above method we are looking at true positives and false positives indirectly in

terms of sensitivity and specificity. This then leads to the question what if we perform a

linear transformation and look at the number of true positives and false positives directly?

The complete number of negatives is equal to the number of false positives plus the number

of true negatives. Whereas the complete number of positives is equal to the number of true

positives plus the number of false negatives.

Recall that sensitivity = true positives/(true positives + false negatives) and corresponds

to the y-axis and 1-specificity = comp specificity = false positives/(false positives + true

negatives) and corresponds to the x-axis. Then this would mean that the number of false

positives are represented on the x-axis and the number of true positives are represented on

the y-axis. To convert to the false positive cost simply multiply −a by the complete number

of positives and to convert to the true positives cost multiply b by the complete number of

negatives.

The profit function is then equal to the false positive cost times the false positives plus

the true positive cost times the true positives. After all of the possible profits are calculated,

the index of the maximum profit is found. This then tells us what false positive and true

positive count gave us the greatest profit. From there we can then find the slope of the line
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that corresponds to the maximum profit equation. Since true positives are represented on

the x-axis and false positives are represented on the y-axis, then the slope of the line is -false

positive cost/true positives cost. Using point-slope form we can then form an equation to

the line that will give us the maximum profit. So

y2 = m2 ∗ (x2−false positives[max profit index 2])+ true positives[max profit index 2].

Below we will use the datasets from breaking a dataset and merging it with its original

to find what equation maximizes the profit function and at what tolerance level should the

datasets be merged at. Note that for all of the examples a = 7, b = 2, and both methods are

used. The python code profit.py used to generate these results can be found in the appendix.

Example 12.1.

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 1021 1031 1041 1051 1061 1071

1081 1091 10101 10111

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100a dup ed

Data set 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 1021 1031 1041 1051 1061 1071 1081 1091 10101

10111 10:2:1 10:3:1 10:4:1 10:5:1 10:6:1 10:7:1 10:8:1 10:9:1 10:10:1 10:11:1
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level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.986333 0 49218 1 0.013667 100 49900 682 100
0.166667 0.883006 0 44062 1 0.116994 100 49900 5838 100
0.250000 0.623607 0 31118 1 0.376393 100 49900 18782 100
0.333333 0.315591 0 15748 1 0.684409 100 49900 34152 100
0.416667 0.112004 0 5589 1 0.887996 100 49900 44311 100
0.500000 0.026814 0 1338 1 0.973186 100 49900 48562 100
0.583333 0.003287 0 164 1 0.996713 100 49900 49736 100
0.666667 0.000381 1 19 0.990000 0.999619 100 49900 49881 99
0.750000 0 7 0 0.930000 1 100 49900 49900 93
0.833333 0 17 0 0.830000 1 100 49900 49900 83
0.916667 0 44 0 0.560000 1 100 49900 49900 56

1 0 76 0 0.240000 1 100 49900 49900 24

Runtime Comparisons Comparisons per Second
18 seconds 50000 2777.7778

Table 12.1: Stats for dataset A 500 org 100a dup ed.

After running profit.py on the conditions given we learn that the equation that maximizes

profit is: y = 3.5(x− 0.000381) + 0.99 and the tolerance level should be set at 0.6666666667

in order to maximize profit using the first method. Using the second method where false pos-

itives and true positives have weights directly applied to them the equation that maximizes

profit is: y = 0.007014(x− 19) + 99 and the tolerance level should be set at 0.6666666667 in

order to maximize profit.

Figure 12.1: ROC curve with profit function for dataset A 500 org 100a dup ed using
method one.
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Figure 12.2: The profit function for dataset A 500 org 100a dup ed using method two.

Example 12.2.

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 10121 10131 10141 10151 10161

10171 10181 10191 10201 10211

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100b dup ed

Data set 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 10121 10131 10141 10151 10161 10171 10181 10191

10201 10211 10:12:1 10:13:1 10:14:1 10:15:1 10:16:1 10:17:1 10:18:1 10:19:1 10:20:1 10:21:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.991242 0 49463 1 0.008758 100 49900 437 100
0.166667 0.904749 0 45147 1 0.095251 100 49900 4753 100
0.250000 0.701683 0 35014 1 0.298317 100 49900 14886 100
0.333333 0.406713 0 20295 1 0.593287 100 49900 29605 100
0.416667 0.161703 1 8069 0.990000 0.838297 100 49900 41831 99
0.500000 0.044890 5 2240 0.950000 0.955110 100 49900 47660 95
0.583333 0.009820 13 490 0.870000 0.990180 100 49900 49410 87
0.666667 0.001222 32 61 0.680000 0.998778 100 49900 49839 68
0.750000 0.000100 62 5 0.380000 0.999900 100 49900 49895 38
0.833333 0.000020 86 1 0.140000 0.999980 100 49900 49899 14
0.916667 0 97 0 0.030000 1 100 49900 49900 3

1 0 99 0 0.010000 1 100 49900 49900 1

Runtime Comparisons Comparisons per Second
16 seconds 50000 3125.0000

Table 12.2: Stats for dataset A 500 org 100b dup ed.
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After running profit.py on the conditions given we learn that the equation that maximizes

profit is: y = 3.5(x− 0.00982) + 0.87 and the tolerance level should be set at 0.5833333333

in order to maximize profit using method one. Using method two where false positives and

true positives have weights directly applied to them the equation that maximizes profit is:

y = 0.007014(x − 490) + 87 and the tolerance level should be set at 0.5833333333 in order

to maximize profit.

Figure 12.3: ROC curve with profit function for dataset A 500 org 100b dup ed using
method one.

Figure 12.4: The profit function for dataset A 500 org 100b dup ed using method two.
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Example 12.3.

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 10221 10231 10241 10251 10261

10271 10281 10291 10301 10311

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100c dup ed

Data set 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 10221 10231 10241 10251 10261 10271 10281 10291

10301 10311 10:22:1 10:23:1 10:24:1 10:25:1 10:26:1 10:27:1 10:28:1 10:29:1 10:30:1 10:31:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.986293 0 49216 1 0.013707 100 49900 684 100
0.166667 0.893267 0 44574 1 0.106733 100 49900 5326 100
0.250000 0.678838 1 33874 0.990000 0.321162 100 49900 16026 99
0.333333 0.405912 4 20255 0.960000 0.594088 100 49900 29645 96
0.416667 0.193948 10 9678 0.900000 0.806052 100 49900 40222 90
0.500000 0.074128 31 3699 0.690000 0.925872 100 49900 46201 69
0.583333 0.017555 56 876 0.440000 0.982445 100 49900 49024 44
0.666667 0.001603 80 80 0.200000 0.998397 100 49900 49820 20
0.750000 0.000180 94 9 0.060000 0.999820 100 49900 49891 6

Runtime Comparisons Comparisons per Second
15 seconds 50000 3333.3333

Table 12.3: Stats for dataset A 500 org 100c dup ed.

After running profit.py on the conditions given we learn that the equation that maximizes

profit is: y = 3.5(x − 0.074128) + 0.69 and the tolerance level should be set at 0.5 in order

to maximize profit using the first method. Using the second method where false positives

and true positives have weights directly applied to them the equation that maximizes profit

is: y = 0.007014(x− 19) + 99 and the tolerance level should be set at 0.6666666667 in order

to maximize profit.
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Figure 12.5: ROC curve with profit function for dataset A 500 org 100c dup ed using
method one.

Figure 12.6: The profit function for dataset A 500 org 100c dup ed using method two.
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Example 12.4.

dataset 1: dataset A 500 original

dataset 2: dataset A from 500 org 100 dup 10321 10331 10341 10351 10361

10371 10381 10391 10401 10411

method: edit distance

algorithm threshold: 2.0

final dataset: dataset A 500 org 100d dup ed

Data set 2 was formed by the following process: ./mutator.py dataset A 500 original.csv

rec id dataset A from 500 org 100 dup 10321 10331 10341 10351 10361 10371 10381 10391

10401 10411 10:32:1 10:33:1 10:34:1 10:35:1 10:36:1 10:37:1 10:38:1 10:39:1 10:40:1 10:41:1

level comp specificity false negatives false positives sensitivity specificity total matches total non matches true negatives true positives
0 1 0 49900 1 0 100 49900 0 100

0.083333 0.993287 0 49565 1 0.006713 100 49900 335 100
0.166667 0.940501 0 46931 1 0.059499 100 49900 2969 100
0.250000 0.791463 5 39494 0.950000 0.208537 100 49900 10406 95
0.333333 0.540381 16 26965 0.840000 0.459619 100 49900 22935 84
0.416667 0.299980 36 14969 0.640000 0.700020 100 49900 34931 64
0.500000 0.133487 58 6661 0.420000 0.866513 100 49900 43239 42
0.583333 0.051483 77 2569 0.230000 0.948517 100 49900 47331 23
0.666667 0.013687 93 683 0.070000 0.986313 100 49900 49217 7
0.750000 0.001844 98 92 0.020000 0.998156 100 49900 49808 2
0.833333 0.000140 99 7 0.010000 0.999860 100 49900 49893 1

Runtime Comparisons Comparisons per Second
15 seconds 50000 3333.3333

Table 12.4: Stats for dataset A 500 org 100d dup ed.

After running profit.py on the conditions given we learn that the equation that max-

imizes profit is: y = 3.5(x − 0.051483) + 0.23 and that the tolerance level should be set

at 0.5833333333 in order to maximize profit using method one. Using method two where

false positives and true positives have weights directly applied to them the equation that

maximizes profit is: y = 0.007014(x − 2569) + 23 and the tolerance level should be set at

0.6666666667 in order to maximize profit.

126



Figure 12.7: ROC curve with profit function for dataset A 500 org 100d dup ed using
method one.

Figure 12.8: The profit function for dataset A 500 org 100d dup ed using method two.

It is interesting to note that the curves for the two methods are the same, except for the

scaling. The scaling is due to a linear transformation that maps the data points between

the two graphs. Thus whether we look directly at the false positives and true positives, or

indirectly in terms of comp specificity and sensitivity, we get the same results.
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Appendix A. Edit Distance Python Code

1 # EditDistance.py

2

3 def ed(s, t):

4 n = len(s)

5 m = len(t)

6

7 if n == 0 or m == 0:

8 return None

9

10 if n < m:

11 return ed(t, s)

12

13 d = [[0 for j in range(m)] for i in range(n)]

14

15 for i in range(n):

16 for j in range(m):

17 if s[i] == t[j]:

18 cost = 0

19 else:

20 cost = 1

21

22 vals = []

23 if i > 0:

24 vals.append(d[i-1][j] + 1) # insert

25 if j > 0:

26 vals.append(d[i][j-1] + 1) # delete

27 if i > 0 and j > 0:

28 vals.append(d[i-1][j-1] + cost) # substitute or copy

29 elif i > 0:

30 # cost of skipping the first i values in the string s

31 vals.append(cost + i)
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32 elif j > 0:

33 # cost of skipping the first j values in the string t

34 vals.append(cost + j)

35 else:

36 vals.append(cost) # special case when i = 0 and j = 0

37

38 d[i][j] = min(vals)

39

40 return d[n-1][m-1]

41

42 if __name__ == ‘__main__ ’:

43 #s = ‘DAVID ’

44 #t = ‘SDDAVD ’

45

46 s = ‘STASHA ’

47 t = ‘DSSTSGA ’

48

49 print ed(s, t)

Appendix B. Smith-Waterman Distance Python Code

1 # SmithWatermanDistance.py

2

3 def sw(s, t, G):

4 n = len(s)

5 m = len(t)

6

7 if n == 0 or m == 0:

8 return None

9 elif n < m:

10 return sw(t, s, G)

11
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12 prev = [2 if s[0] == t[0] else 0]

13 prev_append = prev.append

14 for j in xrange(1,m):

15 prev_append(max(-((-2 if s[0] == t[j] else 1) + j), prev[-1] - G,

0))

16

17 for i in xrange(1,n):

18 curr_s = s[i]

19 curr = [max(-((-2 if curr_s == t[0] else 1) + i), prev [0] - G, 0)]

20 curr_append = curr.append

21 for j in xrange(1, m):

22 cost = -2 if curr_s == t[j] else 1

23 curr_append(max(0, prev[j] - G, curr[-1] - G, prev[j-1] - cost

))

24

25 prev = curr

26

27 return prev[-1]

28

29 if __name__ == ‘__main__ ’:

30 s = ‘david ’

31 t = ‘sddavd ’

32 G = 1

33

34 #s = ‘stasha ’

35 #t = ‘wtaahz ’

36 #G = 1

37

38 print sw(s, t, G)
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Appendix C. Jaro Distance Python Code

1 # JaroDistance.py

2

3 def jd(s, t):

4 if len(s) == 0 or len(t) == 0:

5 return 0

6

7 s_flag = [False for i in range(len(s))]

8 t_flag = [False for j in range(len(t))]

9

10 search_range = max(0, (min(len(s), len(t)) / 2) - 1)

11

12 common_chars = 0

13 for i in range(len(s)):

14 for j in range(max(i - search_range , 0), min(i + search_range + 1,

len(t))):

15 if (not t_flag[j]) and t[j] == s[i]:

16 t_flag[j] = True

17 s_flag[i] = True

18 common_chars += 1

19 break

20

21 if common_chars == 0:

22 return 0

23

24 k = trans_count = 0

25 for i in range(len(s)):

26 if s_flag[i]:

27 for j in range(k, len(t)):

28 if t_flag[j]:

29 k = j + 1

30 break
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31 if s[i] != t[j]:

32 trans_count += 1

33 trans_count /= 2

34

35 return (( common_chars / float(len(s))) + (common_chars / float(len(t))

) + (float(common_chars - trans_count) / common_chars)) / 3

36

37 if __name__ == ‘__main__ ’:

38 #s = ‘Stasha ’

39 #t = ‘Satsha ’

40

41 s = ‘Stasha Bown’

42 t = ‘SStasja Brpwm ’

43

44 print jd(s, t)

Appendix D. Q-gram Python Code

1 #Qgram.py

2

3 def qg(s, q):

4 vals = []

5 n = len(s)

6

7 for i in range(n):

8 if n-i+1 > q:

9 vals.append(s[i:i+q])

10 return vals

11

12 if __name__ == ‘__main__ ’:

13 s = ‘stasha ’

14 q = 3
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15

16 print qg(s, q)

Appendix E. Q-gram Distance Python Code

1 #QgramDistance.py

2

3 def qgd(s, t, q):

4 vals1 = []

5 vals2 = []

6 n = len(s)

7 m = len(t)

8

9 for i in range(n):

10 if n-i+1 > q:

11 vals1.append(s[i:i+q])

12

13 for j in range(m):

14 if m-j+1 > q:

15 vals2.append(t[j:j+q])

16

17 intersect = set(vals1).intersection(vals2) # intersection of vals1

and vals2

18 uniq = list(set(vals1 + vals2)) # unique elements in vals1 and vals2

19 qgramdist = 1.0* len(intersect)/len(uniq)*100

20 return "%.2f" %qgramdist

21

22 if __name__ == ‘__main__ ’:

23 s = ‘stasha ’

24 t = ‘sstasga ’

25 q = 4

26
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27 print qgd(s, t, q)

Appendix F. Soundex Python Code

1 # Soundex.py

2

3 def soundex(name , len =4):

4 """ soundex module conforming to Knuth’s algorithm

5 implementation 2000 -12 -24 by Gregory Jorgensen

6 public domain

7 """

8

9 # digits holds the soundex values for the alphabet

10 digits = ’01230120022455012623010202 ’

11 sndx = ’’

12 fc = ’’

13

14 # translate alpha characters in name to soundex digits

15 for c in name.upper():

16 if c.isalpha ():

17 if not fc: fc = c # remember first letter

18 d = digits[ord(c)-ord(’A’)]

19 # duplicate consecutive soundex digits are skipped

20 if not sndx or (d != sndx [-1]):

21 sndx += d

22

23 # replace first digit with first alpha character

24 sndx = fc + sndx [1:]

25

26 # remove all 0s from the soundex code

27 sndx = sndx.replace(’0’,’’)

28
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29 # return soundex code padded to len characters

30 return (sndx + (len * ’0’))[:len]

31

32 if __name__ == ‘__main__ ’:

33 name = ‘Simoneit ’

34 #name = ‘Avio’

35

36 print soundex(name)

Appendix G. NYSIIS Python Code

1 # NYSIIS.py

2

3 #import line added for compatibility with code execution change.

4 #You can remove all but what is needed.

5 import calendar , datetime , difflib , math , random , re , string , time , urllib

6

7 """ NYSIIS phonetic code algorithm

8 adapted from http :// metagram.webreply.com/downloads/nysiis.py

9 """

10

11 _DIGITre = re.compile(r"\d")

12 _JRSRre = re.compile(r" [JS]R$")

13 _VIre = re.compile(r" [VI]+$")

14 _VOWELWre = re.compile(r"[AEIOU ]+W")

15 _VOWELre = re.compile(r"[AEIOU ]+")

16 _AHHAre = re.compile(r"AH|HA")

17 _DUPSre = re.compile(r"([A-Z])\1+")

18

19 _suffixMap = {

20 "IX": "IC",

21 "EX": "EC",
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22 "YE": "Y",

23 "EE": "Y",

24 "IE": "Y",

25 "DT": "D",

26 "RT": "D",

27 "RD": "D",

28 "NT": "N",

29 "ND": "N",

30 }

31

32 def prepare(s):

33 """ Return a string with stripped whitespace , no numbers or punctuation

, collapsed consecutive spaces , and converted to uppercase """

34 s = s.strip ().upper ()

35 for char in s:

36 if char in ’1234567890 ’:

37 s = s.replace(char , ’ ’)

38 elif char in ’!"#$%&\ ’()*+,-./:;<=>?@[\\]^_ ‘{|}~’:

39 s = s.replace(char , ’’)

40 s = " ".join(s.split ())

41 return s

42

43 def nysiis(name):

44 """ Calculates the NYSIIS phonetic code for the given name """

45 if _DIGITre.search(name):

46 raise Exception("ERROR: Numerics found in NYSIIS input!")

47 name = prepare(name)

48 name = _JRSRre.sub("", name) #drop JR/SR suffixes

49 name = _VIre.sub("", name) #drop trailing roman numerals

50 name = name.rstrip("SZ") #remove trailing SZ

51 if name.startswith("MAC"): #MAC -> MC

52 name = "MC" + name [3:]

53 if name.startswith("PF"): #PF -> F

136



54 name = name [1:]

55 #change spelling on some suffixes

56 if len(name) > 2:

57 suffix = name [-2:]

58 name = name [:-2] + _suffixMap.get(suffix , suffix)

59 #change ’EV’ to ’EF’ if not at start of name

60 if len(name) > 2 and name [2:]. find("EV") > -1:

61 name = name [:2] + name [2:]. replace("EV", "EF")

62 #save first vowel for later

63 firstletter = name [0]

64 #remove any ’W’ that follows a vowel

65 name = _VOWELWre.sub("A", name)

66 #replace all vowels with ’A’

67 name = _VOWELre.sub("A", name)

68 #change GHT ->GT , DG->G, PH->F

69 for pattern , replacement in [("GHT","GT"), ("DG","G"), ("PH","F")

]:

70 name = name.replace(pattern , replacement)

71 #change non -initial AH, or HA to just A

72 name = name [0] + _AHHAre.sub("A", name [1:])

73 #change KN ->N, K->C

74 name = name.replace("KN", "N")

75 name = name.replace("K", "C")

76 #change non initial M->N, Q->G

77 if len(name) > 1:

78 name = name [0] + name [1:]. replace("M", "N")

79 name = name [0] + name [1:]. replace("Q", "G")

80 for pattern , replacement in [("SH", "S"),

81 ("SCH", "S"),

82 ("YW", "Y")]:

83 name = name.replace(pattern , replacement)

84 #if not first or last character , change ’Y’ to ’A’

85 if len(name) > 2:
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86 first = name [0]

87 mid = name [1:]

88 last = ""

89 if len(mid) > 2:

90 last = mid[-1]

91 mid = mid[:-1]

92 name = first + mid.replace("Y","A") + last

93 #change ’WR’ to ’R’

94 name = name.replace("WR", "R")

95 #if not first character , change ’Z’ to ’S’

96 name = name [0] + name.replace("Z", "S")

97 if name [-2:] == "AY":

98 name = name [:-2] + "Y"

99 #remove trailing vowels

100 while name and name[-1] == "A":

101 name = name [:-1]

102 #remove all duplicated letters

103 name = _DUPSre.sub(r"\1", name)

104 #if first char of original name was a vowel , append it to the code

105 if firstletter in "AEIOU":

106 name = firstletter + name [1:]

107

108 return name

109

110 #Conditional execution added to satisfy import.

111 #http :// featurelist.org/features/details /238

112 #Further refinements made for use as a module

113 #and to allow execution from within Python 3.0

114 if __name__ == ’__builtin__ ’:

115 try:

116 print (nysiis(INPUT))

117 except:

118 import sys
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119 print (sys.exc_info ()[1]. args [0])

120

121 #name = ’Simoneit ’

122 name = ’Kristie ’

123

124 print nysiis(name)

Appendix H. Double Metaphone Python Code

1 # DoubleMetaphone.py

2

3 #!python

4 #coding= utf -8

5 # This script implements the Double Metaphone algorythm (c) 1998, 1999 by

Lawrence Philips

6 # it was translated to Python from the C source written by Kevin Atkinson

(http :// aspell.net/metaphone /)

7 # By Andrew Collins - January 12, 2007 who claims no rights to this work

8 # http ://www.atomodo.com/code/double -metaphone/metaphone.py/view

9 # Tested with Pyhon 2.4.3

10 # Updated Feb 14, 2007 - Found a typo in the ’gh’ section

11 # Updated Dec 17, 2007 - Bugs fixed in ’S’, ’Z’, and ’J’ sections. Thanks

Chris Leong!

12 # Updated June 25, 2010 - several bugs fixed thanks to Nils Johnsson for a

spectacular

13 # bug squashing effort. There were many cases where this function

wouldn ’t give the same output

14 # as the original C source that were fixed by his careful attention

and excellent communication.

15 # The script was also updated to use utf -8 rather than latin -1.

16 def dm(st) :

17 """dm(string) -> (string , string or None)
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18 returns the double metaphone codes for given string - always a

tuple

19 there are no checks done on the input string , but it should be a

single word or name."""

20 vowels = [’A’, ’E’, ’I’, ’O’, ’U’, ’Y’]

21 st = st.decode(’utf -8’, ’ignore ’)

22 st = st.upper() # st is short for string. I usually prefer

descriptive over short , but this var is used a lot!

23 is_slavo_germanic = (st.find(’W’) > -1 or st.find(’K’) > -1 or st.

find(’CZ’) > -1 or st.find(’WITZ’) > -1)

24 length = len(st)

25 first = 2

26 st = (’-’) * first + st + (’ ’ * 5) # so we can index beyond the

begining and end of the input string

27 last = first + length -1

28 pos = first # pos is short for position

29 pri = sec = ’’ # primary and secondary metaphone codes

30 #skip these silent letters when at start of word

31 if st[first:first +2] in ["GN", "KN", "PN", "WR", "PS"] :

32 pos += 1

33 # Initial ’X’ is pronounced ’Z’ e.g. ’Xavier ’

34 if st[first] == ’X’ :

35 pri = sec = ’S’ #’Z’ maps to ’S’

36 pos += 1

37 # main loop through chars in st

38 while pos <= last :

39 #print str(pos) + ’\t’ + st[pos]

40 ch = st[pos] # ch is short for character

41 # nxt (short for next characters in metaphone code) is set

to a tuple of the next characters in

42 # the primary and secondary codes and how many characters

to move forward in the string.

43 # the secondary code letter is given only when it is
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different than the primary.

44 # This is just a trick to make the code easier to write

and read.

45 nxt = (None , 1) # default action is to add nothing and

move to next char

46 if ch in vowels :

47 nxt = (None , 1)

48 if pos == first : # all init vowels now map to ’A’

49 nxt = (’A’, 1)

50 elif ch == ’B’ :

51 #"-mb", e.g", "dumb", already skipped over ... see

’M’ below

52 if st[pos +1] == ’B’ :

53 nxt = (’P’, 2)

54 else :

55 nxt = (’P’, 1)

56 elif ch == ’C’ :

57 # various germanic

58 if (pos > (first + 1) and st[pos -2] not in vowels

and st[pos -1: pos+2] == ’ACH’ and \

59 (st[pos+2] not in [’I’, ’E’] or st[pos -2:pos+4]

in [’BACHER ’, ’MACHER ’])) :

60 nxt = (’K’, 2)

61 # special case ’CAESAR ’

62 elif pos == first and st[first:first +6] == ’CAESAR

’ :

63 nxt = (’S’, 2)

64 elif st[pos:pos +4] == ’CHIA’ : #italian ’chianti ’

65 nxt = (’K’, 2)

66 elif st[pos:pos +2] == ’CH’ :

67 # find ’michael ’

68 if pos > first and st[pos:pos +4] == ’CHAE’

:
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69 nxt = (’K’, ’X’, 2)

70 elif pos == first and (st[pos +1: pos +6] in

[’HARAC’, ’HARIS ’] or \

71 st[pos +1: pos +4] in ["HOR", "HYM", "HIA"

, "HEM"]) and st[first:first +5] != ’

CHORE’ :

72 nxt = (’K’, 2)

73 #germanic , greek , or otherwise ’ch’ for ’

kh’ sound

74 elif st[first:first +4] in [’VAN ’, ’VON ’]

or st[first:first +3] == ’SCH’ \

75 or st[pos -2: pos +4] in ["ORCHES", "

ARCHIT", "ORCHID"] \

76 or st[pos +2] in [’T’, ’S’] \

77 or ((st[pos -1] in ["A", "O", "U", "E"]

or pos == first) \

78 and st[pos+2] in ["L", "R", "N", "M", "

B", "H", "F", "V", "W", " "]) :

79 nxt = (’K’, 1)

80 else :

81 if pos > first :

82 if st[first:first +2] == ’

MC’ :

83 nxt = (’K’, 2)

84 else :

85 nxt = (’X’, ’K’,

2)

86 else :

87 nxt = (’X’, 2)

88 #e.g, ’czerny ’

89 elif st[pos:pos +2] == ’CZ’ and st[pos -2: pos +2] !=

’WICZ’ :

90 nxt = (’S’, ’X’, 2)
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91 #e.g., ’focaccia ’

92 elif st[pos +1: pos +4] == ’CIA’ :

93 nxt = (’X’, 3)

94 #double ’C’, but not if e.g. ’McClellan ’

95 elif st[pos:pos +2] == ’CC’ and not (pos == (first

+1) and st[first] == ’M’) :

96 #’bellocchio ’ but not ’bacchus ’

97 if st[pos +2] in ["I", "E", "H"] and st[pos

+2:pos+4] != ’HU’ :

98 #’accident ’, ’accede ’ ’succeed ’

99 if (pos == (first +1) and st[first

] == ’A’) or \

100 st[pos -1: pos +4] in [’UCCEE’, ’

UCCES’] :

101 nxt = (’KS’, 3)

102 #’bacci ’, ’bertucci ’, other

italian

103 else:

104 nxt = (’X’, 3)

105 else :

106 nxt = (’K’, 2)

107 elif st[pos:pos +2] in ["CK", "CG", "CQ"] :

108 nxt = (’K’, ’K’, 2)

109 elif st[pos:pos +2] in ["CI", "CE", "CY"] :

110 #italian vs. english

111 if st[pos:pos +3] in ["CIO", "CIE", "CIA"]

:

112 nxt = (’S’, ’X’, 2)

113 else :

114 nxt = (’S’, 2)

115 else :

116 #name sent in ’mac caffrey ’, ’mac gregor

117 if st[pos +1: pos +3] in [" C", " Q", " G"] :
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118 nxt = (’K’, 3)

119 else :

120 if st[pos +1] in ["C", "K", "Q"]

and st[pos+1:pos+3] not in ["CE

", "CI"] :

121 nxt = (’K’, 2)

122 else : # default for ’C’

123 nxt = (’K’, 1)

124 elif ch == u’ ’ :

125 nxt = (’S’, 1)

126 elif ch == ’D’ :

127 if st[pos:pos +2] == ’DG’ :

128 if st[pos +2] in [’I’, ’E’, ’Y’] : #e.g. ’

edge’

129 nxt = (’J’, 3)

130 else :

131 nxt = (’TK’, 2)

132 elif st[pos:pos +2] in [’DT’, ’DD’] :

133 nxt = (’T’, 2)

134 else :

135 nxt = (’T’, 1)

136 elif ch == ’F’ :

137 if st[pos +1] == ’F’ :

138 nxt = (’F’, 2)

139 else :

140 nxt = (’F’, 1)

141 elif ch == ’G’ :

142 if st[pos +1] == ’H’ :

143 if pos > first and st[pos -1] not in vowels

:

144 nxt = (’K’, 2)

145 elif pos < (first + 3) :

146 if pos == first : #’ghislane ’,
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ghiradelli

147 if st[pos +2] == ’I’ :

148 nxt = (’J’, 2)

149 else :

150 nxt = (’K’, 2)

151 #Parker ’s rule (with some further

refinements) - e.g., ’hugh’

152 elif (pos > (first + 1) and st[pos -2] in [

’B’, ’H’, ’D’] ) \

153 or (pos > (first + 2) and st[pos -3] in

[’B’, ’H’, ’D’] ) \

154 or (pos > (first + 3) and st[pos -4] in

[’B’, ’H’] ) :

155 nxt = (None , 2)

156 else :

157 # e.g., ’laugh ’, ’McLaughlin ’, ’

cough ’, ’gough ’, ’rough ’, ’

tough ’

158 if pos > (first + 2) and st[pos -1]

== ’U’ \

159 and st[pos -3] in ["C", "G", "L"

, "R", "T"] :

160 nxt = (’F’, 2)

161 else :

162 if pos > first and st[pos

-1] != ’I’ :

163 nxt = (’K’, 2)

164 elif st[pos +1] == ’N’ :

165 if pos == (first +1) and st[first] in

vowels and not is_slavo_germanic :

166 nxt = (’KN’, ’N’, 2)

167 else :

168 # not e.g. ’cagney ’
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169 if st[pos +2: pos +4] != ’EY’ and st[

pos +1] != ’Y’ and not

is_slavo_germanic :

170 nxt = (’N’, ’KN’, 2)

171 else :

172 nxt = (’KN’, 2)

173 # ’tagliaro ’

174 elif st[pos +1: pos +3] == ’LI’ and not

is_slavo_germanic :

175 nxt = (’KL’, ’L’, 2)

176 # -ges -,-gep -,-gel -, -gie - at beginning

177 elif pos == first and (st[pos +1] == ’Y’ \

178 or st[pos +1: pos +3] in ["ES", "EP", "EB", "EL",

"EY", "IB", "IL", "IN", "IE", "EI", "ER"]) :

179 nxt = (’K’, ’J’, 2)

180 # -ger -, -gy-

181 elif (st[pos +1: pos +2] == ’ER’ or st[pos +1] == ’Y’)

\

182 and st[first:first +6] not in ["DANGER", "RANGER

", "MANGER"] \

183 and st[pos -1] not in [’E’, ’I’] and st[pos -1:

pos+2] not in [’RGY’, ’OGY’] :

184 nxt = (’K’, ’J’, 2)

185 # italian e.g, ’biaggi ’

186 elif st[pos +1] in [’E’, ’I’, ’Y’] or st[pos -1: pos

+3] in ["AGGI", "OGGI"] :

187 # obvious germanic

188 if st[first:first +4] in [’VON ’, ’VAN ’]

or st[first:first +3] == ’SCH’ \

189 or st[pos +1: pos +3] == ’ET’ :

190 nxt = (’K’, 2)

191 else :

192 # always soft if french ending
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193 if st[pos +1: pos +5] == ’IER ’ :

194 nxt = (’J’, 2)

195 else :

196 nxt = (’J’, ’K’, 2)

197 elif st[pos +1] == ’G’ :

198 nxt = (’K’, 2)

199 else :

200 nxt = (’K’, 1)

201 elif ch == ’H’ :

202 # only keep if first & before vowel or btw. 2

vowels

203 if (pos == first or st[pos -1] in vowels) and st[

pos +1] in vowels :

204 nxt = (’H’, 2)

205 else : # (also takes care of ’HH ’)

206 nxt = (None , 1)

207 elif ch == ’J’ :

208 # obvious spanish , ’jose ’, ’san jacinto ’

209 if st[pos:pos +4] == ’JOSE’ or st[first:first +4] ==

’SAN ’ :

210 if (pos == first and st[pos +4] == ’ ’) or

st[first:first +4] == ’SAN ’ :

211 nxt = (’H’,)

212 else :

213 nxt = (’J’, ’H’)

214 elif pos == first and st[pos:pos +4] != ’JOSE’ :

215 nxt = (’J’, ’A’) # Yankelovich/Jankelowicz

216 else :

217 # spanish pron. of e.g. ’bajador ’

218 if st[pos -1] in vowels and not

is_slavo_germanic \

219 and st[pos+1] in [’A’, ’O’] :

220 nxt = (’J’, ’H’)
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221 else :

222 if pos == last :

223 nxt = (’J’, ’ ’)

224 else :

225 if st[pos +1] not in ["L",

"T", "K", "S", "N", "M"

, "B", "Z"] \

226 and st[pos -1] not in ["

S", "K", "L"] :

227 nxt = (’J’,)

228 else :

229 nxt = (None , )

230 if st[pos +1] == ’J’ :

231 nxt = nxt + (2,)

232 else :

233 nxt = nxt + (1,)

234 elif ch == ’K’ :

235 if st[pos +1] == ’K’ :

236 nxt = (’K’, 2)

237 else :

238 nxt = (’K’, 1)

239 elif ch == ’L’ :

240 if st[pos +1] == ’L’ :

241 # spanish e.g. ’cabrillo ’, ’gallegos ’

242 if (pos == (last - 2) and st[pos -1: pos +3]

in ["ILLO", "ILLA", "ALLE"]) \

243 or ((st[last -1: last +1] in ["AS", "OS"]

or st[last] in ["A", "O"]) \

244 and st[pos -1:pos+3] == ’ALLE’) :

245 nxt = (’L’, ’’, 2)

246 else :

247 nxt = (’L’, 2)

248 else :
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249 nxt = (’L’, 1)

250 elif ch == ’M’ :

251 if st[pos +1: pos +4] == ’UMB’ \

252 and (pos + 1 == last or st[pos+2:pos+4] == ’ER’

) \

253 or st[pos +1] == ’M’ :

254 nxt = (’M’, 2)

255 else :

256 nxt = (’M’, 1)

257 elif ch == ’N’ :

258 if st[pos +1] == ’N’ :

259 nxt = (’N’, 2)

260 else :

261 nxt = (’N’, 1)

262 elif ch == u’ ’ :

263 nxt = (’N’, 1)

264 elif ch == ’P’ :

265 if st[pos +1] == ’H’ :

266 nxt = (’F’, 2)

267 elif st[pos +1] in [’P’, ’B’] : # also account for

"campbell", "raspberry"

268 nxt = (’P’, 2)

269 else :

270 nxt = (’P’, 1)

271 elif ch == ’Q’ :

272 if st[pos +1] == ’Q’ :

273 nxt = (’K’, 2)

274 else :

275 nxt = (’K’, 1)

276 elif ch == ’R’ :

277 # french e.g. ’rogier ’, but exclude ’hochmeier ’

278 if pos == last and not is_slavo_germanic \

279 and st[pos -2:pos] == ’IE’ and st[pos -4:pos -2]
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not in [’ME’, ’MA’] :

280 nxt = (’’, ’R’)

281 else :

282 nxt = (’R’,)

283 if st[pos +1] == ’R’ :

284 nxt = nxt + (2,)

285 else :

286 nxt = nxt + (1,)

287 elif ch == ’S’ :

288 # special cases ’island ’, ’isle ’, ’carlisle ’, ’

carlysle ’

289 if st[pos -1: pos +2] in [’ISL’, ’YSL’] :

290 nxt = (None , 1)

291 # special case ’sugar -’

292 elif pos == first and st[first:first +5] == ’SUGAR’

:

293 nxt =(’X’, ’S’, 1)

294 elif st[pos:pos +2] == ’SH’ :

295 # germanic

296 if st[pos +1: pos +5] in ["HEIM", "HOEK", "

HOLM", "HOLZ"] :

297 nxt = (’S’, 2)

298 else :

299 nxt = (’X’, 2)

300 # italian & armenian

301 elif st[pos:pos +3] in ["SIO", "SIA"] or st[pos:pos

+4] == ’SIAN’ :

302 if not is_slavo_germanic :

303 nxt = (’S’, ’X’, 3)

304 else :

305 nxt = (’S’, 3)

306 # german & anglicisations , e.g. ’smith ’ match ’

schmidt ’, ’snider ’ match ’schneider ’
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307 # also , -sz - in slavic language altho in hungarian

it is pronounced ’s’

308 elif (pos == first and st[pos +1] in ["M", "N", "L"

, "W"]) or st[pos +1] == ’Z’ :

309 nxt = (’S’, ’X’)

310 if st[pos +1] == ’Z’ :

311 nxt = nxt + (2,)

312 else :

313 nxt = nxt + (1,)

314 elif st[pos:pos +2] == ’SC’ :

315 # Schlesinger ’s rule

316 if st[pos +2] == ’H’ :

317 # dutch origin , e.g. ’school ’, ’

schooner ’

318 if st[pos +3: pos +5] in ["OO", "ER",

"EN", "UY", "ED", "EM"] :

319 # ’schermerhorn ’, ’

schenker ’

320 if st[pos +3: pos +5] in [’ER

’, ’EN’] :

321 nxt = (’X’, ’SK’,

3)

322 else :

323 nxt = (’SK’, 3)

324 else :

325 if pos == first and st[

first +3] not in vowels

and st[first +3] != ’W’

:

326 nxt = (’X’, ’S’,

3)

327 else :

328 nxt = (’X’, 3)
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329 elif st[pos +2] in [’I’, ’E’, ’Y’] :

330 nxt = (’S’, 3)

331 else :

332 nxt = (’SK’, 3)

333 # french e.g. ’resnais ’, ’artois ’

334 elif pos == last and st[pos -2: pos] in [’AI’, ’OI’]

:

335 nxt = (’’, ’S’, 1)

336 else :

337 nxt = (’S’,)

338 if st[pos +1] in [’S’, ’Z’] :

339 nxt = nxt + (2,)

340 else :

341 nxt = nxt + (1,)

342 elif ch == ’T’ :

343 if st[pos:pos +4] == ’TION’ :

344 nxt = (’X’, 3)

345 elif st[pos:pos +3] in [’TIA’, ’TCH’] :

346 nxt = (’X’, 3)

347 elif st[pos:pos +2] == ’TH’ or st[pos:pos +3] == ’

TTH’ :

348 # special case ’thomas ’, ’thames ’ or

germanic

349 if st[pos +2: pos +4] in [’OM’, ’AM’] or st[

first:first +4] in [’VON ’, ’VAN ’] \

350 or st[first:first +3] == ’SCH’ :

351 nxt = (’T’, 2)

352 else :

353 nxt = (’0’, ’T’, 2)

354 elif st[pos +1] in [’T’, ’D’] :

355 nxt = (’T’, 2)

356 else :

357 nxt = (’T’, 1)

152



358 elif ch == ’V’ :

359 if st[pos +1] == ’V’ :

360 nxt = (’F’, 2)

361 else :

362 nxt = (’F’, 1)

363 elif ch == ’W’ :

364 # can also be in middle of word

365 if st[pos:pos +2] == ’WR’ :

366 nxt = (’R’, 2)

367 elif pos == first and (st[pos +1] in vowels or st[

pos:pos +2] == ’WH’) :

368 # Wasserman should match Vasserman

369 if st[pos +1] in vowels :

370 nxt = (’A’, ’F’, 1)

371 else :

372 nxt = (’A’, 1)

373 # Arnow should match Arnoff

374 elif (pos == last and st[pos -1] in vowels) \

375 or st[pos -1: pos +5] in ["EWSKI", "EWSKY", "OWSKI

", "OWSKY"] \

376 or st[first:first +3] == ’SCH’ :

377 nxt = (’’, ’F’, 1)

378 # polish e.g. ’filipowicz ’

379 elif st[pos:pos +4] in ["WICZ", "WITZ"] :

380 nxt = (’TS’, ’FX’, 4)

381 else : # default is to skip it

382 nxt = (None , 1)

383 elif ch == ’X’ :

384 # french e.g. breaux

385 nxt = (None ,)

386 if not(pos == last and (st[pos -3: pos] in ["IAU", "

EAU"] \

387 or st[pos -2: pos] in [’AU’, ’OU’])):
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388 nxt = (’KS’,)

389 if st[pos +1] in [’C’, ’X’] :

390 nxt = nxt + (2,)

391 else :

392 nxt = nxt + (1,)

393 elif ch == ’Z’ :

394 # chinese pinyin e.g. ’zhao’

395 if st[pos +1] == ’H’ :

396 nxt = (’J’,)

397 elif st[pos +1: pos +3] in ["ZO", "ZI", "ZA"] \

398 or (is_slavo_germanic and pos > first and st[

pos -1] != ’T’) :

399 nxt = (’S’, ’TS’)

400 else :

401 nxt = (’S’,)

402 if st[pos +1] == ’Z’ :

403 nxt = nxt + (2,)

404 else :

405 nxt = nxt + (1,)

406 # ----------------------------------

407 # --- end checking letters ------

408 # ----------------------------------

409 #print str(nxt)

410 if len(nxt) == 2 :

411 if nxt [0] :

412 pri += nxt[0]

413 sec += nxt[0]

414 pos += nxt[1]

415 elif len(nxt) == 3 :

416 if nxt [0] :

417 pri += nxt[0]

418 if nxt [1] :

419 sec += nxt[1]
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420 pos += nxt[2]

421 if pri == sec :

422 return (pri , None)

423 else :

424 return (pri , sec)

425 return pri

426

427 if __name__ == ’__main__ ’ :

428 names = {’maurice ’:(’MRS’, None),’aubrey ’:(’APR’, None),’cambrillo

’:(’KMPRL’,’KMPR’)\

429 ,’heidi’:(’HT’, None),’katherine ’:(’K0RN’,’KTRN’),’Thumbail ’:(’0

MPL’,’TMPL’)\

430 ,’catherine ’:(’K0RN’,’KTRN’),’richard ’:(’RXRT’,’RKRT’),’

bob’:(’PP’, None)\

431 ,’eric’:(’ARK’, None),’geoff’:(’JF’,’KF’),’Through ’:(’0R’,’TR’), ’

Schwein ’:(’XN’, ’XFN’)\

432 ,’dave’:(’TF’, None),’ray’:(’R’, None),’steven ’:(’STFN’,

None),’bryce’:(’PRS’, None)\

433 ,’randy’:(’RNT’, None),’bryan’:(’PRN’, None),’Rapelje ’:(’RPL’,

None)\

434 ,’brian ’:(’PRN’, None),’otto’:(’AT’, None),’auto’:(’AT’,

None), ’Dallas ’:(’TLS’, None)\

435 , ’maisey ’:(’MS’, None), ’zhang’:(’JNK’, None), ’Chile’:(’XL’,

None)\

436 ,’Jose’:(’HS’, None), ’Arnow’:(’ARN’,’ARNF’), ’solilijs ’:(’SLLS’,

None)\

437 , ’Parachute ’:(’PRKT’, None), ’Nowhere ’:(’NR’, None), ’Tux

’:(’TKS’, None)}

438 for name in names.keys() :

439 assert (dm(name) == names[name]), ’For "%s" function

returned %s. Should be %s.’ % (name , dm(name), names[

name])

440
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441 #st = ’Stasha ’

442 #st = ’Simoneit ’

443

444 #print dm(st)

Appendix I. Mutator Python Code

1 #!/usr/bin/env python

2 from __future__ import print_function

3

4 import random

5 import csv

6 import argparse

7 import json

8

9 # Running this should be as easy as marking it as executable (chmod +x

mutator.py), and running it like so:

10 # ./ mutator.py <file > <id_field > <out_filename > <mutation > [<mutation >

...]

11 # Where

12 # - file is the input file to read and select from

13 # - id_field is the name of the column that has the IDs (assumed to be

integers)

14 # - out_filename is the beginning part of the name of the output (so if

you wanted the output to be "mutated_dataset.csv", then say "

mutated_dataset" here)

15 # - mutation looks like this: <n>:<m>:<d>, where n is the number of rows

to select , m is the number of mutations to do , and d is the number of

duplicates to generate for each row. You can specify multiple

mutations , although the rows that are selected for each mutation are

removed from the pool so that they won’t be selected later.

16 # Example: 100:3:2 200:5:3 first selects 100 rows from the input and
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creates 2 duplicates for each of those rows , mutating each 3 times , and

then selects 200 other rows from the input and creates 3 duplicates

for each of the rows , mutating each 5 times. (The output would have a

total of (100*2) + (200*3) = 800 rows).

17 # An oracle file is automatically generated to go along with the dataset.

18 # Take the output name , and add ". oracle.json" instead of ".csv".

19 #

20 # Example command:

21 # ./ mutator.py dataset_A_1000.csv rec_id dups_A_1000 300:6:2 100:7:4

22 # this will read dataset_A_1000.csv , output to dups_A_1000.csv , write an

oracle to dups_A_1000.oracle.json , use "rec_id" as the ID column , and

select 300 rows , make 2 duplicates with 6 mutations , and then select

100 rows , make 4 duplicates with 7 mutations.

23 #

24 # You can optionally specify a -s <SEED > or --seed <SEED > option , which

expects an integer , and is used as the seed for the random number

generator.

25 # You can also specify -e <FIELD > or --exclude -field <FIELD > option , which

excludes a field from being mutated.

26

27 parser = argparse.ArgumentParser(description=’Mutate a Dataset ’)

28 parser.add_argument(’-s’, ’--seed’, type=int , help=’Random Seed’, default=

None)

29 parser.add_argument(’-e’, ’--exclude -field’, type=str , action=’append ’,

default =[])

30 parser.add_argument(’file’, type=str , help=’File to Mutate ’)

31 parser.add_argument(’id_field ’, type=str , help=’ID Field’)

32 parser.add_argument(’out_filename ’, type=str , help=’Name of output (add .

csv or .oracle.json)’)

33 parser.add_argument(’mutation ’, type=str , nargs=’+’)

34

35 def mutate(filename , config):

36 random.seed(config.get(’seed’, None))
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37 print(’Random Seeded ’)

38 records , fields = load_records(filename)

39

40 id_field = config[’id_field ’]

41 print(’Loaded Records ’)

42 print(’ID Field: %s’ % id_field)

43 print(’Excluded Fields: %s’ % ’, ’.join(config[’exclude_fields ’]))

44 mutateable_fields = filter(lambda f: (f != config[’id_field ’]) and not

f in config[’exclude_fields ’], fields)

45

46 out_records = []

47 oracle = {}

48

49 for in_record_count , mutation_count , duplicates_count in config[’

mutations ’]:

50 print("select %d records , create %d duplicates with %d mutations"

% (in_record_count , duplicates_count , mutation_count))

51 generate_mutations(out_records , oracle , records , id_field ,

mutateable_fields , in_record_count , mutation_count ,

duplicates_count)

52

53 write_output(config[’out_filename ’], fields , out_records , oracle)

54

55 def load_records(filename):

56 with open(filename , ’r’) as inFile:

57 reader = csv.DictReader(inFile)

58 return [record for record in reader], reader.fieldnames

59

60 def write_output(out_filename , fields , out_records , oracle):

61 with open(out_filename + ’.csv’, ’w’) as csv_out:

62 writer = csv.DictWriter(csv_out , fields)

63 writer.writeheader ()

64 for r in out_records:
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65 writer.writerow(r)

66 with open(out_filename + ’.oracle.json’, ’w’) as json_out:

67 json.dump(oracle , json_out)

68

69

70 def generate_mutations(out_records , oracle , in_records , id_field ,

mutateable_fields , in_count , mutation_count , dup_count):

71 while in_count > 0 and len(in_records) > 0:

72 idx = random.randrange(len(in_records))

73 record = in_records[idx]

74 in_records = in_records [:idx] + in_records[idx + 1:]

75

76 if not record[id_field] in oracle:

77 oracle[record[id_field ]] = []

78

79 for d in xrange(dup_count):

80 out_record = mutate_record(dict(record), mutateable_fields ,

mutation_count)

81 out_record[id_field] = str(int(out_record[id_field ]) + d)

82 oracle[record[id_field ]]. append(out_record[id_field ])

83 out_records.append(out_record)

84

85 in_count -= 1

86 random.shuffle(out_records)

87

88 class InvalidMutationException(Exception):

89 pass

90

91

92 CHARSET = ’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

.!?’

93 def random_char(charset=CHARSET):

94 return random.choice(charset or CHARSET)
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95

96 def letter_insert(field , charset=None):

97 if field is None:

98 raise InvalidMutationException ()

99 position = random.randrange(len(field) + 1)

100 return field[: position] + random_char(charset) + field[position :]

101

102 def letter_delete(field):

103 if field is None or len(field) == 0:

104 raise InvalidMutationException ()

105 position = random.randrange(len(field))

106 if position == len(field) - 1:

107 return field[: position]

108 return field [: position] + field[position + 1:]

109

110 def letter_replace(field , charset=None):

111 if field is None or len(field) == 0:

112 raise InvalidMutationException ()

113 position = random.randrange(len(field))

114 return field [: position] + random_char(charset) + field[position + 1:]

115

116 def letter_move(field):

117 if field is None or len(field) < 2:

118 raise InvalidMutationException ()

119 src_position = random.randrange(len(field))

120 dst_position = random.randrange(len(field) - 1)

121 char = field[src_position]

122 res = field[: src_position] + field[src_position + 1:]

123 return res[: dst_position] + char + res[dst_position :]

124

125 def drop_field(field):

126 if field is None or field == ’’:

127 raise InvalidMutationException ()
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128 return ’’

129

130 def reorder_words(field):

131 words = field.split(’ ’)

132 if len(words) < 2:

133 raise InvalidMutationException ()

134 src_position = random.randrange(len(words))

135 dst_position = random.randrange(len(words) - 1)

136 w = words[src_position]

137 res = words[: src_position] + words[src_position + 1:]

138 return ’ ’.join(res[: dst_position] + [w] + res[dst_position :])

139

140 MUTATORS = (

141 letter_insert , letter_insert , letter_insert ,

142 letter_delete , letter_delete , letter_delete ,

143 letter_replace , letter_replace , letter_replace ,

144 letter_move , letter_move , letter_move ,

145 drop_field ,

146 reorder_words , reorder_words

147 )

148 def mutate_record(record , fields , count =1):

149 while count > 0:

150 try:

151 field = random.choice(fields)

152 record[field] = random.choice(MUTATORS)(record[field])

153 count -= 1

154 except InvalidMutationException:

155 pass

156 return record

157

158 if __name__ == ’__main__ ’:

159 args = parser.parse_args ()

160
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161 mutate(args.file , {

162 ’seed’: args.seed ,

163 ’id_field ’: args.id_field ,

164 ’exclude_fields ’: args.exclude_field ,

165 ’mutations ’: map(lambda m: map(int , m.split(’:’)), args.mutation),

166 ’out_filename ’: args.out_filename

167 })

Appendix J. Economic Model Python Code

1 # profit.py

2

3 import numpy as np

4 from matplotlib import pyplot as plt

5 import argparse

6 import csv

7

8 parser = argparse.ArgumentParser(description=’Plot an Economic Model

optimization against a ROC curve’)

9 parser.add_argument(’file’, type=str , help=’Run Data to Plot’)

10 parser.add_argument(’a’, type=float , help=’penalty for being wrong (

positive value)’)

11 parser.add_argument(’b’, type=float , help=’reward for being right (

positive value)’)

12

13 def load_data(filename):

14 data = []

15 with open(filename , ’r’) as infile:

16 for item in csv.DictReader(infile):

17 data.append(item)

18 return data

19
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20 def plot(data , a, b):

21 # First Method

22 comp_specificity = [float(item[’comp_specificity ’]) for item in data]

23 sensitivity = [float(item[’sensitivity ’]) for item in data]

24 level = [float(item[’level ’]) for item in data]

25

26 x = np.arange (0.0, 1.1, 0.1)

27 y = np.arange (0.0, 1.1, 0.1)

28

29 plt.figure (0)

30

31 plt.plot(comp_specificity , sensitivity , ’o’)

32 plt.plot(comp_specificity , sensitivity , ’-’, label=’ROC curve’)

33 plt.plot(x, y, ’--’, label="Line of no -discrimination")

34

35 plt.xlim ([0 ,1])

36 plt.ylim ([0 ,1])

37

38 plt.xlabel(’False Positive Rate’)

39 plt.ylabel(’True Positive Rate’)

40

41 n = len(sensitivity)

42 profit = [0]*n

43

44 for i in range(0, n):

45 profit[i] = a*(1 - comp_specificity[i]) + b*sensitivity[i]

46

47 max_profit_index = profit.index(max(profit))

48

49 profit_x = np.arange (-1.0, 1.1, 0.1)

50

51 # m = slope

52 m = float(a)/b
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53

54 # profit_y = m*( profit_x - comp_specificity_of_max_profit) +

sensitivity_of_max_profit

55 profit_y = m*( profit_x - comp_specificity[max_profit_index ]) +

sensitivity[max_profit_index]

56

57 print "profit_y = %f (x - %f) + %f" %(m, comp_specificity[

max_profit_index], sensitivity[max_profit_index ])

58 print "optimal tolerance level:", level[max_profit_index]

59

60 plt.plot(profit_x , profit_y , ’--’, label="Profit function")

61

62 plt.legend(loc = ’lower right’)

63

64 # Second Method

65 false_positives = [float(item[’false_positives ’]) for item in data]

66 true_positives = [float(item[’true_positives ’]) for item in data]

67

68 c_negatives = float(data [0][’false_positives ’]) + float(data [0][’

true_negatives ’])

69 c_positives = float(data [0][’true_positives ’]) + float(data [0][’

false_negatives ’])

70 x_2 = np.arange (0.0, c_negatives * 1.1, c_negatives / 10.0)

71 y_2 = np.arange (0.0, c_positives * 1.1, c_positives / 10.0)

72

73 plt.figure (1)

74

75 plt.plot(false_positives , true_positives , ’o’)

76 plt.plot(false_positives , true_positives , ’-’)

77 plt.plot(x_2 , y_2 , ’--’, label="Line of no -discrimination")

78

79 plt.xlim([0, c_negatives ])

80 plt.ylim([0, c_positives ])
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81

82 plt.xlabel(’False Positives ’)

83 plt.ylabel(’True Positives ’)

84

85 fp_cost = -1 * a * c_positives

86 tp_cost = b * c_negatives

87

88 profit_2 = [0] * n

89 for i in range(0, n):

90 profit_2[i] = (fp_cost * false_positives[i]) + (tp_cost *

true_positives[i])

91

92 max_profit_index_2 = profit_2.index(max(profit_2))

93

94 profit_x_2 = np.arange (-1.0 * c_negatives , 1.1 * c_negatives , 0.1 *

c_negatives)

95

96 # m = slope

97 m_2 = float(-fp_cost)/tp_cost

98

99 # profit_y = m*( profit_x - comp_specificity_of_max_profit) +

sensitivity_of_max_profit

100 profit_y_2 = m_2*( profit_x_2 - false_positives[max_profit_index_2 ]) +

true_positives[max_profit_index_2]

101 print "fp_cost = %f" % fp_cost

102 print "tp_cost = %f" % tp_cost

103 print "profit_y_2 = %f (x - %f) + %f" %(m_2 , false_positives[

max_profit_index_2], true_positives[max_profit_index_2 ])

104 print "optimal tolerance level for profit_y_2:", level[

max_profit_index_2]

105

106 plt.plot(profit_x_2 , profit_y_2 , ’--’, label="Profit function")

107
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108 plt.legend(loc = ’lower right’)

109

110 plt.show()

111

112 if __name__ == ’__main__ ’:

113 args = parser.parse_args ()

114

115 print args.file

116 data = load_data(args.file)

117

118 plot(data , args.a, args.b)
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