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ABSTRACT

Busemann G-Spaces, CAT(k) Curvature, and the Disjoint (0,n)-Cells Property

Clarke Alexander Safsten
Department of Mathematics, BYU

Master of Science

A review of geodesics and Busemann G-spaces is given. Aleksandrov curvature and the disjoint
(0,n)-cells property are defined. We show how these properties are applied to and strengthened
in Busemann G-spaces. We examine the relationship between manifolds and Busemann G-spaces
and prove that all Riemannian manifolds are Busemann G-spaces, though not all metric manifolds
are Busemann G-spaces. We show how Busemann G-spaces that also have bounded Aleksandrov
curvature admit local closest-point projections to geodesic segments. Finally, we expound local
properties of Busemann G-spaces and define a new property which we call the symmetric property.
We show that Busemann G-spaces which have the disjoint (0,n)-cells property for every value of
n cannot have the symmetric property.
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ACKNOWLEDGMENTS

Many thanks to my advisor, Denise Halverson, and my wife Emily.



Contents

Table of Contents iv

List of Figures v

1 Introduction 1
1.1 Paths and Geodesics in a Metric Space . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Busemann G-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Aleksandrov Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The Disjoint (0,n)-cells Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Busemann G-spaces and Manifolds 17
2.1 Closed, Connected, Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Busemann G-Spaces with Bounded Aleksandrov Curvature 25
3.1 A Lemma on Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Projection to a Geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Busemann G-Spaces and the Disjoint (0,n)-Cells Property 33
4.1 Local Properties of Balls and Spheres . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 The Symmetric Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 The Orthoplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Essential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Busemann G-Spaces with the Disjoint (0,n)-Cells Property for Each n . . . . . . . 43

5 Conclusion 54

Bibliography 56

Index 58

iv



List of Figures

2.1 Unique local extension of geodesics on a Riemannian manifold . . . . . . . . . . . 21

2.2 Unique global extension of geodesics on a Riemannian manifold . . . . . . . . . . 22

2.3 Failure of geodesics to extend past a cone point . . . . . . . . . . . . . . . . . . . 24

3.1 Isosceles geodesic triangle on a sphere . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 The symmetric property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Level set in a cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



Chapter 1

Introduction

A manifold is defined in purely toplogical terms is a Hausdorff and second-countable topological

space in which every point is contained in a neighborhood homeomorphic to Rn for some integer

n. We may later impose a metric on the manifold. But that metric must respect the topology.

Having a metric is favorable because it introduces a geometric structure on the manifold. With this

geometry, we get geodesics, curvature, and other tools useful for providing a geometric description

of our manifold.

Because the topology of the manifold is introduced first, we are limited in what metrics we

can impose; the metric must respect the topology. What if we choose the metric first? We cannot,

of course, always be sure that a metric space will have a manifold topology, but are there certain

properties which if possessed by a metric space guarantee that it is a manifold? If so, we have

another method for constructing a manifold which is perhaps more natural and intuitive. This is

the question which Herbert Busemann attempted to answer, and the focus of this thesis.

Busemann laid out certain axioms which, if satisfied by a metric space, guarantee that the

metric space has some of the same properties as manifolds. Such a space has become known as a

Busemann G-space. In this thesis, we will study the relationship between Busemann G-spaces and

manifolds.

1



1.1 Paths and Geodesics in a Metric Space 2

As we shall see, it is not currently known if all Busemann G-spaces are manifolds. We shall

prove a partial converse: every smooth manifold may be given a metric making it a Busemann

G-space. This is an important fact to establish because it shows that Busemann G-spaces are a

diverse and interesting class of metric spaces.

We will further support the relationship between manifolds and Busemann G-spaces by exam-

ining the role of curvature in Busemann G-spaces. We will recall a definition of curvature used

in the absence of a smooth structure, and show how a Busemann G-space with bounded curvature

must have certain manifold-like properties.

Finally, we will explore the issue of dimension. While there are examples of Busemann G-

spaces of each finite dimension, there are no known examples of infinite dimensional Busemann

G-spaces. We will examine a property of metric spaces known as the disjoint (0,n)-cells property

which is closely related to the property of dimension. Infinite dimensional spaces analogous to

manifolds have the disjoint (0,n)-cells property for every value of n. We will then define a new

property possessed by some Busemann G-spaces which we will call the symmetric property. We

will show that a Busemann G-space which has the disjoint (0,n)-cells property for every value

of n cannot have the symmetric property. While a proof that there are no infinite dimensional

Busemann G-spaces eludes us, this is a step toward that conclusion.

1.1 Paths and Geodesics in a Metric Space

In a topological space X , a continuous function γ : [a,b]→ X is a path from γ(a) to γ(b). The

following definitions demonstrate how we can calculate the length of a path whose codomain is a

metric space:

Definition 1.1.1. A partition of the interval [a,b] is any finite set {t0, · · · , tn} ⊂ [a,b] such that

a = t0 < t1 < t2 < · · ·< tn = b. We will denote the set of all partitions of the interval by P([a,b]).
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Definition 1.1.2. Let (X ,d) be a metric space, and let γ : [a,b]→ X . Let

`= sup
{t0,··· ,tn}∈P([a,b])

n

∑
k=1

d(γ(tk−1),γ(tk)).

If ` is finite, we say that γ is a rectifiable path, and ` is its length. If ` is infinite, we say that γ is

non-rectifiable.

In this thesis, we will deal only with rectifiable paths. Therefore, unless otherwise stated, we

will implicitly assume that every path we work with is rectifiable. The length of a rectifiable path

γ is `(γ).

A geodesic is a generalization of a straight line from Euclidean space in spaces where the notion

of “straight” is not immediately and intuitively clear. Chief among the properties of straight lines

is that a straight line segment is the shortest path between its endpoints. A geodesic path is also a

shortest path between its endpoints. The definition we will use, which is equivalent to Busemann’s

definition, is somewhat stronger.

Definition 1.1.3. Let (X ,d) be a metric space. A geodesic path is an isometry of a closed interval

of the real line into X .

Let (X ,d) be a metric space. If γ : [a,b]→ X is a geodesic path, and {t0, · · · , tn} is a partition

of [a,b], then

n

∑
k=1

d(γ(tk−1),γ(tk)) =
n

∑
k=1

tk− tk−1 = tn− t0 = b−a = d(γ(a),γ(b)).

Thus, `(γ) = d(γ(a),γ(b)). Since any path is at least as long as the distance between its endpoints,

a geodesic path from γ(a) to γ(b) is a shortest path from γ(a) to γ(b).

Metric spaces do not always admit geodesic paths between each pair of points. A simple

example is R2 \ {(0,0)}. There are a multitude of paths from (−1,0) to (1,0), but none of them

have length exactly equal to 2. Even if there are shortest paths, there are not necessarily geodesic

paths. Consider the unit circle in R2 with the induced metric. Since it inherits its metric from
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R2, the shortest path within the circle between two antipodal points has length π , but the distance

between antipodal points is 2, so the shortest path is not an isometry, and not a geodesic path. Is

there a metric we can put on the circle so that the shortest paths, if they exist, are geodesic paths?

The answer is yes. Such a metric is called the inner metric.

Definition 1.1.4. Let (X ,d) be a metric space in which every pair of points can be joined by a

rectifiable path. For x,y ∈ X , let Px,y be the set of all rectifiable paths from x to y. The inner metric

d′(·, ·) on X is defined as

d′(x,y) = inf{`(γ) : γ ∈ Px,y}.

It is a simple exercise to show that the inner metric is in fact a metric. We will use this metric

in several examples.

If x,y ∈ X the domain of a geodesic path joining x and y, if it exists, must be an interval of

length d(x,y), such as [0,d(x,y)]. This is cumbersome to write, and in many cases throughout this

thesis, we would prefer a function the domain [0,1] = I. If γ : [0,d(x,y)]→ X is a geodesic path,

then we define the scaled geodesic path γ̃ : [0,1]→ X by γ̃(t) = γ(t ·d(x,y)).

Just as a line is made up of line segments, a geodesic, which we are about to define, is made up

of geodesic paths.

Definition 1.1.5. Let (X ,d) be a metric space. A geodesic is a continuous map γ : R→ X such

that for each t ∈ R, t is contained in the interior of some closed interval [a,b] such that γ|[a,b] is a

geodesic path. In other words, γ is a local isometry.

It should be noted that there is some disagreement in the literature as to whether the term

“geodesic” ought to refer to a function or the image of that function. As indicated by their defini-

tions, we will use the terms “geodesic path” and “geodesic” to refer to functions, and use the terms

“geodesic segment” and “geodesic line” to refer to their respective images.
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1.2 Busemann G-Spaces

Busemann discovered a set of properties of metric spaces which, if held, result in many interesting

properties which are generally attributed to manifolds. These properties became the axioms of the

metric spaces which are now known as Busemann G-spaces [1].

Definition 1.2.1. A Busemann G-space is a metric space (X ,d) with the following properties:

1. (Finite compactness) Every bounded infinite subset of X has an accumulation point.

2. (Menger convexity) For every pair of distinct points x,z∈ X there is a another point y distinct

from x and z such that d(x,z) = d(x,y)+d(y,z).

3. (Local extension) For each p ∈ X , there exists εp > 0 so that if x,y ∈ Bεp(p) are distinct

points, then there exists another point z distinct from x and y so that d(x,z) = d(x,y)+d(y,z).

4. (Uniqueness of extension) If x,y,z1,z2 ∈ X such that d(x,zi) = d(x,y)+ d(y,zi) for i = 1,2

and d(y,z1) = d(y,z2), then z1 = z2.

Busemann presented these axioms in his 1955 book The Geometry of Geodesics. Of course, as

with every newly defined classification of spaces, it behooves us to show that the class of Busemann

G-spaces is non empty, and indeed contains some interesting examples. We will prove in Chapter

2 that all closed, connected smooth manifolds are Busemann G-spaces.

The next theorem lays out several key properties of Busemann G-spaces which we will find

useful.

Theorem 1.2.2. Let (X ,d) be a Busemann G-space.

1. Every two points of X are joined by a geodesic segment.

2. If p ∈ X and y,z ∈ Bεp(p) (where εp is given in Definition 1.2.1 (3)), then there is a unique

geodesic path joining y and z.
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3. If γ : [a,b]→ X is a geodesic path, then there exists a unique geodesic γ̂ : R→ X so that

γ̂|[a,b] = γ .

4. For every x,y ∈ X, there is a homeomorphism h : X → X so that h(x) = y. If d(x,y) < δ ≤

εx/4, then h can be chosen so that it is the identity outside of B3δ (x).

5. Let p ∈ X and let γ : R→ X be a geodesic. If the image of γ|[a,b] is contained in Bεp(p), then

γ|[a,b] is a geodesic path.

Proof. The proofs of (1) and (3) are contained in Busemann’s book [1]. The proof of (4) is con-

tained in Thurston’s dissertation [2]. It remains to prove (2) and (5).

2 Existence of a geodesic path is guaranteed by (1), so we will focus on uniqueness. Suppose

that γ1,γ2 : [0,d(y,z)]→ X are geodesic paths from y to z. By the axiom of local extension,

there is a point x ∈ X such that

d(x,z) = d(x,y)+d(y,z).

Choose t ∈ [0,d(y,z)]. Let zi = γi(t). Since the geodesic paths are isometries, we have that

d(y,zi) = t and

d(zi,z) = d(y,z)− t.

Therefore,

d(x,z) = d(x,y)+d(y,z) = d(x,y)+d(y,zi)+d(zi,z)≥ d(x,zi)+d(zi,z)≥ d(x,z).

We conclude that the inequalities are equalities, and so

d(x,y)+d(y,zi)+d(zi,z) = d(x,zi)+d(zi,z).

Canceling the d(zi,z) term, we are left with d(x,zi) = d(x,y) + d(y,zi). By the axiom of

uniqueness of extension, we have that γ1(t) = z1 = z2 = γ2(t). Since t is arbitrary, we con-

clude that γ1 = γ2.
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5 Since γ is a geodesic, there is some r > a so that γ|[a,r] is a geodesic path. Let

c = sup{t ∈ [a,b] : γ̂|[a,t] is a geodesic path}.

We know that c ≥ r > a since γ[a,r] is a geodesic path. Let x = γ(a) and y = γ(c). Suppose

that c < b. Then y must be contained in Bεp(p). By the property of local extension, there

exists z ∈ X so that d(x,y)+ d(y,z) = d(x,z). Let λ : [c,e] be a geodesic path from y to z

where e = c+d(y,z). Define ψ : [0,e]→ X by

ψ(t) =


γ(t) a≤ t < c

λ (t) c≤ t ≤ e
.

We will show that ψ is an isometry. Suppose a ≤ s ≤ t ≤ e. If s and t both fall on the

same side of c, then ψ(s) and ψ(t) are both in the image of γ|[a,c] or λ , both of which are

isometries. Therefore, we will consider the case that s < c≤ t. By the triangle inequality,

d(ψ(s),ψ(t))≤ d(ψ(s),y)+d(y,ψ(t)).

We claim that these are in fact equal. If not, then

d(x,z)≤ d(x,ψ(s))+d(ψ(s),ψ(t))+d(ψ(t),z)

< d(x,ψ(s))+d(ψ(s),y)+d(y,ψ(t))+d(ψ(t),z)

= d(x,y)+d(y,z),

which is a contradiction. Therefore, we must have that

d(ψ(s),ψ(t)) = d(ψ(s),y)+d(y,ψ(t)) = d(x,y)− s+ t−d(x,y) = t− s.

Hence, ψ is an isometry and so it is a geodesic path. Suppose that z is not in the image of γ .

Then ψ extends to a geodesic ψ̂ : R→ X which agrees with γ on [a,c], but which is distinct

from γ . This is a contradiction to the uniqueness of extension of geodesic paths. Therefore, z
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is in the image of γ . This means that γ[a,e] is an isometry. Since e > c, this is a contradiction.

We therefore conclude that c≥ b and that therefore, γ[a,b] is a geodesic path.

We will rely on the fact that geodesics paths with endpoints contained in the neighborhood of

the form Bεp(p) depend continuously on their endpoints.

Proposition 1.2.3. Let (X ,d) be a Busemann G-space, and let p ∈ X. For x,z ∈ Bεp(p), we know

there is a unique scaled geodesic path from x to z, γx,z : [0,1]→ X. Then γx,z depends continuously

on all three entries.

Proof. Let (xn) and (zn) be sequences of points in Bεp(p) converging to x and z respectively. Let

(tn)⊂ [0,1] converge to t. Let yn = γxn,zn(tn). We know that for each n,

d(xn,yn)+d(yn,zn) = d(xn,zn).

Since (zn) ⊂ Bεp(p), (yn) is a bounded sequence and by the finite compactness property of Buse-

mann G-spaces, it must have a convergent subsequence. This subsequence converges to a point y,

which by continuity of the metric, has the property that

d(x,y)+d(y,z) = d(x,z).

There exists a unique geodesic path from x to y, and that geodesic path extends to a unique

geodesic. By the uniqueness of extension property, that geodesic must pass through z. There-

fore, y lies in the image of the scaled geodesic segment γx,y.

Next we need to establish that γx,z(t) = y. We know by the definition of the scaled geodesic

path that

d(x,γx,z(t)) = td(x,z).

Furthermore,

d(xn,yn) = tnd(xn,zn),



1.2 Busemann G-Spaces 9

so as n→ ∞, we get that d(x,y) = td(x,z). By the same argument, we get that d(γx,z(t),z) =

d(y,z) = (1− t)d(x,z). Since y and γx,z(t) all lie on the geodesic segment joining x and z, one of

the following is true:

d(x,y)+d(y,γx,z(t))+d(γx,z(t),z) = d(x,z),

d(x,γx,z(t))+d(γx,z(t),y)+d(y,z) = d(x,z).

In either case, this reduces to

d(x,z) = td(x,z)+d(y,γx,z(t))+(1− t)d(x,z) = d(y,γx,z(t))+d(x,z).

Therefore, d(y,γx,z(t)) = 0, and y = γx,z(t). Thus, we have proved that every convergent subse-

quence of (yn) converges to γx,z(t).

The last thing to do is to show that every subsequence of (yn) converges. Suppose that there

is a subsequence (ynk) of (yn) that does not converge. This means that there is some ε > 0 so that

infinitely many of the terms of (ynk) lie outside of Bε(y). These infinitely many points constitute

another subsequence, called (ynkm
) which is bounded, and is also bounded away from y. Therefore,

(ynkm
) contains yet another subsequence which converges. But every convergent subsequence

must converge to y. Since (ynkm
) is bounded away from y, none of its subsequences can possibly

converge to y. This is a contradiction. So we conclude that every subsequence of (yn) = (γxn,zn(tn))

converges to γx,z(t). So γx,z is continuous in x and z.

The question of principal importance since Busemann first introduced his geodesic spaces is

the question which has since become known as the Busemann conjecture [1]:

Conjecture 1.2.4. Every n dimensional Busemann G-space is an n dimensional topological man-

ifold.

This conjecture, if true, gives us a way to describe manifolds from a completely geometric point

of view. Busemann himself proved the conjecture for Busemann G-spaces of dimensions n = 1,2
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in his 1955 book [1]. In 1968, Krakus proved that the conjecture holds for dimension n = 3 [3].

Then in 1993, Thurston proved that the conjecture holds in dimension n = 4 [2]. Though the

conjecture has been shown to hold in some other special cases (which we will discuss later), the

question remains open for dimension greater than four.

1.3 Aleksandrov Curvature

Curvature is a central topic in differential geometry [4]. As reproducing results from differential

geometry is an aim of the theory of Busemann G-spaces, we ought to have a notion of curvature

which depends only on a metric. Such a notion for curvature was introduced in 1948 by Aleksandr

Aleksandrov, and applies to length spaces [5]. Length spaces are metric spaces in which every

pair of points can be joined by a geodesic path, as is the case in a Busemann G-space. Therefore,

Aleksandrov’s notion of curvature applies to Busemann G-spaces. The name for this type of cur-

vature is an acronym created from the names of the three mathematicians who first used it–Cartan,

Aleksandrov, and Toponogov. Hence, it is called CAT curvature.

Just as curvature in Riemannian manifolds can be described with a real scalar, we can do the

same for CAT curvature. For a given real number k, CAT curvature is a property possessed by

so-called CAT(k) spaces. In order to define CAT(k) spaces, we need a number of preliminary

definitions.

Definition 1.3.1. Suppose (X ,d) is a length space. Let x,y,z∈ X be distinct. The geodesic triangle

with endpoints x, y, and z is the union of the images of the three geodesic paths joining respectively

x and y, y and z, and z and x. This is denoted ∆xyz, or simply ∆ when the endpoints are not

important.

Each of the three geodesic paths that make up a geodesic triangle is one of its edges. As with

a triangle in R2, we may calculate the perimeter of a geodesic triangle by summing the lengths of
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each of its three geodesic edges. Aleksandrov’s CAT(k) curvature relies on comparing a length

space to a Riemannian manifold where curvature is already unambiguously defined. Specifically,

we focus on 2-manifolds of constant curvature.

Definition 1.3.2. For all real numbers k, the comparison space of curvature k is the unique simply

connected Riemannian 2-manifold of constant sectional curvature k. The comparison space inherits

a length metric dk, and is denoted (Mk,dk).

For k < 0, Mk is a hyperbolic plane. If k = 0, then Mk is R2. When k > 0, Mk is a 2-sphere.

Definition 1.3.3. Given a real number k, the diameter of the comparison space Mk is

Dk =


∞ k ≤ 0

π√
k

k > 0
.

Note that if k > 0, then Mk is a sphere. The metric placed on it is the standard Riemannian

metric, which is the same as the inner metric induced by the standard embedding of S2 into R3 so

that the resulting sphere has radius 1/
√

k. The distance between two points in the sphere under the

inner metric is the length of the shortest path in the sphere where the path length is measured using

the standard metric on R3. Thus, the diameter of the sphere under in Definition 1.3.3 is seen to be

the farthest two points can be separated under the inner metric. The more common usage of the

term diameter refers to the distance between antipodes of the sphere using the metric in R3–the

induced metric–which is distinct from the Riemannian metric, or the inner metric, which we will

be using. We compare a length space to a Riemannian manifold by mapping geodesic triangles

into the manifold using an expanding map, which we define here.

Definition 1.3.4. Let (X ,d) and (Y,ρ) be metric spaces. A continuous function f : X → Y is said

to be an expanding map if for all x,y ∈ X ,

d(x,y)≤ ρ( f (x), f (y)).
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Definition 1.3.5. For a length space (X ,d), a geodesic triangle ∆⊂ X is said to satisfy the CAT(k)

inequality if there exists an expanding map f : ∆→Mk which restricts to an isometry on each of

the edges of ∆.

Finally, we can characterize the curvature of a length space globally by examining whether the

geodesic triangles satisfy the CAT(k) inequality.

Definition 1.3.6. A length space (X ,d) is said to be a CAT(k) space if every geodesic triangle in

(X ,d) with perimeter less than 2Dk satisfies the CAT(k) inequality.

For some results, we need not have curvature globally bounded, but merely that we can bound

the curvature locally.

Definition 1.3.7. A length space (X ,d) has locally bounded curvature if every point in X is con-

tained in a geodesically convex neighborhood which is CAT(k) space for some value of k.

We have a few results regarding CAT curvature. None of these facts is hard to prove, but see [5]

for details.

Proposition 1.3.8. The following are properties of CAT curvature.

1. A length space (X ,d) is a CAT(k) space if and only if it is also a CAT(k′) space for all k′≥ k.

2. Suppose (X ,d) is a CAT(k) space. If x,y ∈ X with d(x,y) < Dk, then there is a unique

geodesic path joining x and y, and this geodesic path depends continuously on its endpoints.

3. The space Mk is a CAT(k) space.

The following result, proved in 2001 by Berestovskii [6], shows the importance of Busemann

spaces with bounded Aleksandrov curvature:

Theorem 1.3.9. Busemann G-spaces of dimension n ≥ 5 having Aleksandrov curvature bounded

above (that is, which are CAT(k) spaces for some value of k) are topological n-manifolds.
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1.4 The Disjoint (0,n)-cells Property

When working with manifolds and similar structures, a useful property related to dimension is

known as the disjoint (m,n)-cells property. We will not define the full disjoint (m,n)-cells property,

as we will only need a weaker version of it [7]:

Definition 1.4.1. Let (X ,d) be a metric space, and let Bn denote the n-disk for n ∈ N∪{0}. If for

every point x ∈ X , continuous map f : Bn→ X , and ε > 0, there exists a point x′ ∈ X and a map

f ′ : Bn→ X such that

• d(x,x′)< ε ,

• d( f (y), f ′(y))< ε for all y ∈ Bn, and

• x′ 6∈ f ′(Bn)

then we say that (X ,d) has the disjoint (0,n)-cells property.

The following proposition is important in establishing the link between dimension and the

disjoint (0,n)-cells property. It is proved in [8].

Proposition 1.4.2. Manifolds of dimension k have the disjoint (0,n)-cells property for each

n = 0,1, · · · ,k−1.

We will also make use of the following fact, whose proof is a simple exercise.

Proposition 1.4.3. If X has the disjoint (0,n)-cells property, then every open subset of X also has

the disjoint (0,n)-cells property.

Proposition 1.4.4. If (X ,d) has the disjoint (0,n)-cells property, it also has the disjoint (0,k) cells

property for all 0≤ k ≤ n.
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Proof. If k < n, we may view Bk as a subset of Bn. In fact, Bk is actually a retract of Bn, so any

map f : Bk→ X extends to a map F : Bn→ X . The result follows.

By the contrapositive, we can also say that if X does not have the disjoint (0,n)-cells property,

then it does not have the disjoint (0,k)-cells property for each k ≥ n. We therefore have three

classes of spaces:

1. Spaces which do not have the disjoint (0,n)-cells property for any value of n. Such spaces

include discrete metric spaces.

2. Spaces for which there exists an integer n so that the space has the disjoint (0,k)-cells prop-

erty for k = 0,1, · · · ,n, but not the disjoint (0,k)-cells property for k > n. Such spaces include

(n+1) dimensional manifolds.

3. Spaces which have the disjoint (0,n)-cells property for every value of n. Such spaces include

Hilbert cube manifolds (Hilbert cube manifolds are infinite dimensional spaces analogous to

manifolds in the sense that every point therein is contained in a neighborhood homeomorphic

to the Hilbert cube).

While the disjoint (0,n)-cells property correlates nicely with dimension in sufficiently nice

spaces, we should be careful to keep separate the two ideas. For example, consider the Cantor set

C. It is completely disconnected, so any image of an n-cell in the Cantor set is a point. But every

point of the Cantor set is a limit point of the Cantor set, so we conclude that if f : Bn → C and

ε > 0 then there is a map g : Bn→C which maps Bn to a point ε-close to the image of f , which is

necessarily a point by connectedness. Thus, the Cantor set has the disjoint (0,n)-cells property for

all n. But the Cantor set is a zero-dimensional space. Furthermore, Halverson and Daverman and

Walsh [9, 10] constructed spaces which are four dimensional, but which do not posses the disjoint

(0,2)-cells property.
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In the case of a Busemann G-space possessing the disjoint (0,n)-cells property, we can infer a

slightly stronger property which we will utilize in the proofs contained in this thesis.

Proposition 1.4.5. Suppose (X ,d) is a Busemann G-space which has the disjoint (0,n)-cells prop-

erty. Then for every x ∈ X, every map f : Bn→ X, and every ε > 0, there exists a map g : Bn→ X

such that

• x 6∈ g(Bn),

• d( f (y),g(y))< ε for each y ∈ Bn, and

• if d( f (y),x)> ε , then f (y) = g(y).

Note the two differences between this result and the disjoint (0,n)-cells property. The first is

subtle–the image of g excludes x itself, not just a point close to x. Next, the perturbation of f need

only affect the function in a neighborhood of x.

Proof. Suppose that (X ,d) is a Busemann G-space which has the disjoint (0,n)-cells property.

Choose x ∈ X , let f : Bn→ X , and fix ε > 0. Choose δ > 0 so that 3δ < εx/2 and δ < ε/7. By the

disjoint (0,n)-cells property, there exists a map f ′ : Bn→ X and a point x′ so that

• d(x,x′)< δ ,

• d( f (y), f ′(y))< δ for all y ∈ Bn, and

• x′ 6∈ f ′(Bn).

If a,b ∈ Bεx(x), then there is a unique scaled geodesic path a to b by Theorem 1.2.2 (2). We know

that δ < εx. Therefore, there is a unique scaled geodesic path γy : [0,1]→ X which joins f (y) and

f ′(y). By Proposition 1.2.3, γy(t) is continuous in both y and t. Define the map f ′′ : Bn → X as
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follows:

f ′′(y) =


f (y) d(x, f (y))≥ 3δ

γy

(
3− d( f (y),x)

δ

)
2δ ≤ d(x, f (y))< 3δ

f ′(y) d(x, f (y))< 2δ .

By the pasting lemma, f ′′ is continuous.

Let y ∈ Bn. We have three cases:

(1) d(x, f (y))≥ 3δ ,

(2) 2δ ≤ d(x, f (y))< 3δ , and

(3) d(x, f (y))< 2δ .

For each of these three cases, we will prove two things: d( f (y), f ′′(y))< δ and f ′′(y) 6= x′.

Case 1: If d(x, f (y))≥ 3δ , then f (y) = f ′′(y), so d( f (y), f ′′(y)) = 0 < δ and d(x, f ′′(y))≥ 3δ .

Since d(x,x′)< δ , we conclude that f ′′(y) 6= x′.

Case 2: If 2δ ≤ d(x, f (y)) < 3δ , we know that f ′′(y) lies on the geodesic segment from f (y)

to f ′′(y). Therefore, d( f (y), f ′′(y))≤ d( f (y), f ′(y))< δ . Furthermore,

d( f ′′(y),x)≥ d( f (y),x)−d( f ′′(y), f (y))> 2δ −δ = δ .

Since d(x,x′)< δ , f ′′(y) 6= x′.

Case 3: Finally, if d(x, f (y))< 2δ , then f ′′(y) = f ′(y), so d( f (y), f ′′(y)) = d( f (y), f ′(y))< δ .

Since the image of f ′ does not contain x′, f ′′(y) 6= x′.

By Theorem 1.2.2 (4), there exists a homeomorphism h : X → X so that h(x′) = x and h is the

identity outside of B3δ (x). Note then that for z ∈ X , d(z,h(z)) < 6δ . Define g = h◦ f ′′ : Bn→ X .

Since x′ is the only point that maps to x under h, x 6∈ f ′′(Bn). Let y ∈ Bn. Then

d( f (y),g(y))≤ d( f (y), f ′′(y))+d( f ′′(y),g(y))< δ +6δ = 7δ < ε.



Chapter 2

Busemann G-spaces and Manifolds

In the first section of this chapter, we will show that the class of Busemann G-spaces contains all

closed, connected, smooth manifolds. This is important because it shows that Busemann G-spaces

form a nontrivial class of spaces, and gives a rich class of examples of Busemann G-spaces. In

the second section, we will demonstrate an important point: not all metrics placed on topological

manifolds yield Busemann G-spaces.

2.1 Closed, Connected, Smooth Manifolds

The proof that all closed, connected, smooth manifolds are Busemann G-spaces is rather long, and

relies heavily on facts from differential geometry [4] 1. To simplify the proof, we will first remind

the reader of some of these basic facts.

A smooth manifold M of dimension n admits a Riemannian metric, which in turn both guaran-

tees the existence of and provides a method to calculate equations for geodesics in M. This method

involves solving the so-called geodesic equation, a second order ordinary differential equation.

Thus, by the uniqueness of solutions to differential equations, if two geodesics g,h : R→M pass

1See DoCarmo’s book for more information on each of these facts

17
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through the same point, and at this point have the same derivative, then there is some T ∈R so that

g(t) = h(t +T ).

Each point p ∈ M has an associated tangent plane TpM which is a copy of Rn. There is a

neighborhood Up of the origin in TpM so that for each vector v ∈ Up, there is a unique scaled

geodesic path γv : [0,1]→M such that γv(0) = p and dγv(t)
dt

∣∣∣
t=0

= v. If Up can be chosen to be all

of TpM for each p ∈M, then M is called a geodesically complete manifold.

The exponential map expp : Up→M is defined as expp(v) = γv(1). For each point p, there is

an εp > 0 such that the expp is injective on Bεp(0). Furthermore, observe that the image of Bεp(0)

under expp is precisely Bεp(p)⊂M. Finally the injectivity radius of M is defined as

ε = inf
p∈M

sup{δ : expp is injective on Bδ (0)⊂ TpM}.

If the injectivity radius is positive, this means points separated by no more than ε can be joined by

a unique geodesic. In a compact manifold, it can be shown that the injectivity radius is positive.

The exponential map on compact manifolds gives us another way to represent geodesics and

geodesic paths. If γ : R→M is a geodesic on a Riemannian manifold with γ(0) = x and γ ′(0) =

v ∈ TxM, then we have the following equality:

γ(t) = expx(tv).

Note that since a geodesic is a local isometry, v is necessarily a unit vector. Moreover, the length

of the path traced out by expx(tv) for a≤ t ≤ b is exactly b−a.

An important theorem which we will cite is the Hopf-Rinow theorem, which is as follows:

Theorem 2.1.1. (Hopf-Rinow) Let M be a connected Riemannian manifold and let p ∈ M. The

following are equivalent:

(a) expp is defined on all of TpM.

(b) The closed and bounded sets of M are compact.
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(c) M is complete as a metric space.

(d) M is geodesically complete.

(e) There is a sequence of compact subsets Kn ⊂ M, Kn ⊂ Kn+1, and
⋃

n Kn = M, such that if

qn 6∈ Kn, then d(p,qn)→ ∞.

Furthermore, each of the above imply that

(f) For any q ∈M there exists a geodesic path from p to q.

We now have the foundation we need to prove this section’s theorem.

Theorem 2.1.2. Every closed, connected Riemannian manifold is a Busemann G-space.

Proof. Let M be a closed, connected manifold with a Riemannian metric which gives

rise to a distance metric d(·, ·). A closed manifold is compact, so any metric imposed upon it

must be complete. The Hopf-Rinow theorem states that any two points in a complete and connected

Riemannian manifold are joined by at least one geodesic path. With this in mind, we may confirm

each of the axioms for a Busemann G-space.

1. Since a closed Riemannian manifold is a compact metric space, it is also sequentially com-

pact. Therefore, it has the Bolzano-Weierstrass property. Specifically, every sequence therein

has a convergent subsequence. Every infinite set, therefore, contains a sequence of distinct

points which in turn has a convergent subsequence which converges to a limit point of that

set.

2. Choose x,z ∈M to be distinct points. They are joined by a geodesic path

γ : [0,d(x,z)]→M.

Let y = γ(d(x,z)/2). Since γ is an isometry, we have

d(x,y)+d(y,z) =
(

1
2

d(x,z)−0
)
+

(
d(x,z)− 1

2
d(x,z)

)
= d(x,z).
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3. Let p ∈M. Since M is compact, it has a positive injectivity radius ε . Let x,y ∈ Bε/2(p). We

know there is a geodesic path from x to y, γ : [0,d(x,y)]→ M. Again, by the Hopf-Rinow

theorem, a manifold which is a complete metric space is also geodesically complete. This

means that if v = γ ′(0), then the geodesic expx(tv) is an extension of γ and is defined for

all t ∈ R. Choose t0 ∈ (d(x,y),ε), and let z = exp(t0v). Then d(x,z) = t0 < ε , so there is a

unique geodesic path λ : [0, t0]→M joining x and z. Let w = λ ′(0). Then z = expx(t0w). We

conclude that since d(x,y) is less than the injectivity radius ε that w = v. This means that

λ |[0,d(x,y)] = γ , and so the geodesic segment joining x and z contains y. Thus,

d(x,y)+d(y,z) = d(x,z).

4. Again, since M is compact, it has a positive injectivity radius ε . Suppose that x,y,z1,z2 ∈M

such that d(x,y)+ d(y,zi) = d(x,zi) for i = 1,2 and that d(y,z1) = d(y,z2). First, we will

show that if there is a unique geodesic path from x to y, then z1 = z2. A geodesic in a

Riemannian manifold is given by the solution to a second-order differential equation (the so-

called geodesic equation). The uniqueness of solutions to differential equations guarantees

that γ extends to a unique geodesic γ̂ . Since d(x,y) + d(y,zi) = d(x,zi), we know that y

lies on the geodesic path γi from x to zi. Since the geodesic path from x to y is unique, we

conclude that γi is an extension of γ , and since γ̂ is also the unique extension of γ to all of R,

we conclude that γi also extends to γ̂ . Thus, zi = γ̂(d(x,zi)). Finally, since d(x,z1) = d(x,z2),

we conclude that z1 = z2.

Case (a) First, suppose that x,y,z1, and z2 are all contained in a neighborhood of diameter ε/2.

Because d(x,y)< ε , there is a unique geodesic path γ from x to y, so we are done.

Case (b) Now suppose that y,z1, and z2 are all contained in a neighborhood U of diameter ε/2.

If there is a unique geodesic path joining x and y, we can apply the same argument as

above to show that z1 = z2. So we suppose, by way of contradiction, that there are two
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x

z1
w2

y

w1

z2

Figure 2.1 The points considered in case 4b in the proof of Theorem 2.1.2

distinct geodesic paths joining x and y. Let γi : [0,d(x,y)] be a geodesic path from x to

y which extends to a geodesic through zi. Let δ > 0 such that Bδ (y)⊂U . If γ1 and γ2

agree on all of (d(x,y)−δ ,d(x,y)], we would conclude that γ1 = γ2 by the uniqueness

of solutions to differential equations. Otherwise, there is a t ∈ (d(x,y)−δ ,d(x,y)] such

that γ1(t) 6= γ2(t). Let wi = γi(t) for i = 1,2. See Figure 2.1 for a diagram. Observe

that

d(x,z1)= d(x,y)+d(y,z1)= d(x,wi)+d(wi,y)+d(y,z1)≥ d(x,wi)+d(wi,z1)≥ d(x,z1).

We conclude that all of the above inequalities are equalities and subtracting d(x,wi),

we see that d(wi,y)+d(y,z1) = d(wi,z1) for i = 1,2. Finally, d(wi,y) = d(x,y)− t for

i = 1,2. By case (a), we conclude that w1 = w2, a contradiction. Thus, there is a unique

geodesic from x to y, and so we are done.

Case (c) For the final case, we place no restrictions on the given points. Let

γi : [0,d(x,zi)]→M
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x

v1
y

v2
z1

z2

Figure 2.2 The points considered in case 4c in the proof of Theorem 2.1.2

be a geodesic path passing through from x to zi passing through y for i = 1,2. Sup-

pose, to the contrary, that γ1 6= γ2. Then the two do not agree somewhere on the in-

terval [d(x,y),d(x,y)+ ε/2) (again, so as to abide by the uniqueness of solutions to

differential equations). We may therefore choose t ∈ [d(x,y),d(x,y)+ ε/2) such that

γ1(t) 6= γ2(t). Let vi = γi(t) for i = 1,2. See Figure 2.2 for a diagram. Observe that

d(x,y)+ d(y,vi) = d(x,vi) and d(y,vi) = t − d(x,y) < ε/2 for i = 1,2. We therefore

use case (b) to conclude that v1 = v2, a contradiction, and so there is a unique geodesic

from x to y.

Thus we see that the Riemannian metric placed on M makes M a Busemann G-space.

Corollary 2.1.3. All connected, closed, smooth manifolds admit a metric consistent with a Buse-

mann G-space.

Proof. Since every smooth manifold admits a Riemannian metric, this fact is proved.
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2.2 The Cone

At this point we must ask ourselves, what metric might we place on a manifold so that it is not a

Busemann G-space? Consider the cone. Specifically, consider the set of points

C = {(x,y,z) ∈ R3 : z =
√

3(x2 + y2)},

metric given for points x,y ∈C,

d(x,y) = inf
{
`(γ) : γ a path in C from x to y with length measured in R3} .

Recall that this is the inner metric on C. This metric cannot be induced by a Riemannian metric

because such a metric could not be smooth at the cone point. And indeed, it is at the cone point

that we will find problems with the properties of a Busemann G-space.

Let ε > 0, and y = (0,0,0) and choose x = (a1,b1,c1) ∈ Bε(y). Let z = (a2,b2,c2) ∈ C. Let

us estimate the distance from x to z. Figure 2.3 shows these points on the cone. Without loss of

generality, suppose that z is closer to y than x. There is a path from x to z which follows a radial

segment of the cone toward point until its last coordinate is c2, and then follows the arc of a circle

around the cone to z. This arc of a circle need not be any larger than a semicircle. Call the length

of the radial segment L. The length of the circular arc is bounded by π

√
a2

2 +b2
2. Therefore,

d(x,z)≤ L+π

√
a2

2 +b2
2.

On the other hand, the shortest path between any point in C and y is a straight line, so we can use

the Pythagorean theorem to calculate

d(x,y) = L+
√

a2
2 +b2

2 + c2
2 = L+

√
a2

2 +b2
2 +3(a2

2 +b2
2) = L+2

√
a2

2 +b2
2,

and

d(y,z) =
√

a2
2 +b2

2 + c2
2 =

√
a2

2 +b2
2 +3(a2

2 +b2
2) = 2

√
a2

2 +b2
2.
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x=(a1,b1,c1)

z=(a2,b2,c2)

y=(0,0,0)

x=(a1,b1,c1)

z=(a2,b2,c2)

y=(0,0,0)

Figure 2.3 On the left, a path from x to y to z. On the right, a shorter path from x to z.

Thus we see that

d(x,z)≤ L+π

√
a2

2 +b2
2 < L+4

√
a2

2 +b2
2 = d(x,y)+d(y,z).

This violates local extension property of geodesics about y (Definition 1.2.1 (3)), so the set C with

the inner metric is not a Busemann G-space, and not all metric manifolds are Busemann G-spaces.



Chapter 3

Busemann G-Spaces with Bounded

Aleksandrov Curvature

In this chapter we will explore some properties of Busemann G-spaces which have bounded CAT

curvature. Note, for instance, that for a point x in a Busemann G-space and a geodesic path γ

with an image in that space, there is not always a unique closest point to x in the image of γ . For

example, the space may be a sphere, with γ realizing the equator, and x the north pole. Then every

point in the image of γ is equidistant from x. We will show that if a Busemann G-space is a CAT(k)

space, then there is a neighborhood U of γ in which every point does have a unique closest point

in the image of γ .

3.1 A Lemma on Spheres

The focus of this section will be a useful, if rather technical lemma. The lemma is an analogous

result in spherical geometry to a simple fact from Euclidean geometry. For a Euclidean isosceles

triangle, with its unequal side as the base, its altitude is shorter than the length of the equal sides.

Though the Euclidean result follows easily from Euclid’s postulates, the lemma we will prove here

25
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requires some knowledge of spherical geometry, so we start by presenting a few facts.

First, we will formalize the notion of angles on a sphere. Consider the standard unit sphere S in

R3 and distinct points x, y, and z in S, with each pair joined by a unique geodesic path. At the point

x, there is a unique geodesic path γy from x to y, and a unique geodesic path γz from x to z. The

derivatives γ ′y(0) and γ ′z(0) are elements of the tangent plane of the sphere based at x, so they are

vectors. As vectors, it is possible to define an angle between them using the standard dot product

and the inverse cosine. We call this angle ∠yxz, or equivalently ∠zxy.

Next, one will recall that the law of cosines from Euclidean geometry has an analog from

spherical geometry [11].

Theorem 3.1.1. (Law of Cosines for Spheres) Let S be the standard unit 2-sphere in R3. Consider

a triangle in S whose edges are great circles with lengths A, B, and C. Let α be the angle of the

triangle opposite the side of length A. Then we have that

cos(A) = cos(B)cos(C)+ sin(B)sin(C)cos(α).

Note that we are taking sines and cosines of side lengths here. But these sides are actually arcs

of circles of radius 1. Therefore, the side length is actually equal to the angle swept out by the arc.

The idea also extends to non-unit spheres. If we project a sphere S′ of radius 1/r radially onto the

unit sphere S, then an arc of length A in S′ projects to an arc of length A · r in S. All angles between

arcs are unchanged by the projection. Thus, we have the following corollary:

Corollary 3.1.2. Let S′ be the standard 2-sphere of radius 1/r in R3. Consider triangle a in S′

whose edges are great circles with lengths A, B, and C. Let α be the angle of the triangle opposite

the side of length A. Then we have that

cos(A · r) = cos(B · r)cos(C · r)+ sin(B · r)sin(C · r)cos(α).

We are now ready to state and prove the lemma for this section.
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Lemma 3.1.3. Let k > 0 and let X be the sphere X = {(x,y,z) ∈R3 : x2+y2+ z2 = 1/k} endowed

with the inner metric d(·, ·) inherited from R3. Let ∆abc be a geodesic triangle in X such that

d(b,c) = d(a,c). Let m be the midpoint of the geodesic segment joining a and b. If 0< d(b,c)
√

k <

π/2 and 0 < d(a,b)
√

k < π , then d(c,m)< d(b,c).

Proof. If d(c,m) = 0, the result follows trivially, so we will consider d(c,m)> 0. To simplify the

notation, we define the following:

d(a,b) =C, d(a,c) = B, d(b,c) = A, d(c,m) = D.

note that A = B, and that the hypotheses give us

0 < A
√

k <
π

2
,

and

0 <C
√

k < π.

Figure 3.1 shows a diagram of this geodesic triangle.

By the law of cosines for spheres,

cos(A
√

k) = cos(C
√

k/2)cos(D
√

k)+ sin(C
√

k/2)sin(D
√

k)cos(∠bmc)

and

cos(B
√

k) = cos(C
√

k/2)cos(D
√

k)+ sin(C
√

k/2)sin(D
√

k)cos(∠amc).

Of course, since A = B, cos(A
√

k) = cos(B
√

k). By construction, there is also the angle relation

∠bmc = π−∠amc, which implies cos(∠bmc) = −cos(∠amc). Thus, we can make these substi-

tutions to get

cos(A
√

k) = cos(C
√

k/2)cos(D
√

k)+ sin(C
√

k/2)sin(D
√

k)cos(∠bmc)

cos(A
√

k) = cos(C
√

k/2)cos(D
√

k)− sin(C
√

k/2)sin(D
√

k)cos(∠bmc).
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a

c

b

m

B
A

C

D

Figure 3.1 The endpoints geodesic triangle in the sphere considered in Lemma 3.1.3

We conclude that

sin(C
√

k/2)sin(D
√

k)cos(∠bmc) = 0,

and thus

cos(A
√

k) = cos(C
√

k/2)cos(D
√

k).

It follows from the hypothesis that 0< cos(C
√

k/2)< 1, so cos(D
√

k)> cos(A
√

k). By the triangle

inequality,

D
√

k ≤C
√

k/2+A
√

k <
π

2
+

π

2
= π.

Therefore, we have that both D
√

k and A
√

k lie in the interval (0,π). Since the cosine function is

strictly decreasing on the interval (0,π), it must be that D
√

k < A
√

k. It follows immediately that

D < A, or rather,

d(c,m)< d(b,c)

as desired.
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3.2 Projection to a Geodesic

The most important idea in this chapter is that in a CAT(k) Busemann G-space X , for every

geodesic segment Γ and for every point x sufficiently close to Γ, there is a unique closest point

in Γ to x. This paves the way for a natural closest-point projection of a small neighborhood of Γ

onto Γ.

Proposition 3.2.1. Let (X ,d) be a Busemann G-space which is also a CAT(k) space. Let Γ⊂ X be

a geodesic segment. Let x ∈ X with d(x,Γ) < Dk/2. Then there is a unique point y ∈ Γ such that

d(x,y) = d(x,Γ).

Recall that Dk is the diameter of the unique Riemannian 2-manifold with constant curvature k.

That is,

Dk =


∞ k ≤ 0

π√
k

k > 0
.

Proof. Define a function f : Γ→ R by f (z) = d(x,z). It is clear that f is continuous by the conti-

nuity of the metric. By the Extreme Value Theorem, there exists a point y ∈ Γ which minimizes f .

Thus,

d(x,y) = min{d(x,z) : z ∈ Γ}= d(x,Γ)< Dk/2.

Suppose, by way of contradiction, that there exists a point w 6= y such that d(x,w) = d(x,y). Then

we may construct an isosceles geodesic triangle ∆xyw which has perimeter

P = d(x,y)+d(y,w)+d(w,x)≤ d(x,y)+d(y,x)+d(x,w)+d(w,x)< 4(Dk/2) = 2Dk.

Since (X ,d) is a CAT(k) space, this triangle satisfies the CAT(k) inequality, so there exists an

expanding map h : ∆xyw→Mk which restricts to an isometry on each of the edges of ∆xyw, and

whose image is another geodesic triangle ∆x′y′w′⊂Mk. We consider the midpoint z of the geodesic

segment from y to w. Note that Γ is a geodesic segment containing both y and w, and that d(y,w)≤
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d(y,x)+ d(x,w) < 2(Dk/2) = Dk. By Proposition 1.3.8 (2), there is a unique geodesic segment

joining y and w, so in fact, z must lie in Γ. We know that

d(z,x)≥ d(x,y)

because y realizes the minimum distance from x to Γ. Also,

d(z,x)≤ dk(z′,x′)

by the expanding nature of the map h, which takes x to x′ and z to z′.

Case 1: Suppose k > 0. In this case, Mk is the 2-sphere of radius 1/
√

k. Since d(y,x) =

d(w,x)< Dk/2 and ` < Dk, we may apply Lemma 3.1.3 to see that

dk(z′,x′)< dk(y′,x′).

Since

dk(y′,x′) = d(y,x),

we conclude that

d(z,x)≤ dk(z′,x′)< dk(y′,x′) = d(y,x).

Therefore,

d(z,x)< d(y,x).

Case 2: If k ≤ 0, by Proposition 1.3.8 (1), we know that (X ,d) is also a CAT(k̂) space for all

k̂ ≥ k. Choose k̂ to be a positive number sufficiently small that d(y,x) = d(w,x) < Dk̂/2. Then

(X ,d) is a CAT(k′) space, and we can reduce to Case 1.

In both cases we arrive at the contradiction that d(z,x)< d(y,x), so we must conclude that y is

the unique point satisfying

d(x,y) = d(x,Γ).
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Let (X ,d) be a CAT(k) Busemann G-space, and let Γ⊂ X be a geodesic segment. With Propo-

sition 3.2.1 in hand, we recognize the significance of the neighborhood

BDk/2(Γ) = {x ∈ X : d(x,Γ)< Dk/2}.

For we can define a function p : BDk/2(Γ)→ Γ by p(x) as the unique closest point in Γ to x. As the

following proposition demonstrates, this function is a closest-point projection.

Proposition 3.2.2. Let (X ,d) be a CAT(k) Busemann G-space, and let Γ ⊂ X be a geodesic seg-

ment. The function p : BDk/2(Γ)→ Γ which takes each point in BDk/2(Γ) to the nearest point in Γ

is a projection in the sense that

(i) It is continuous, and

(ii) p◦ p = p.

Proof. (i) Suppose that p is not continuous. Then there exists a point x∈ BDk/2(Γ) with a sequence

(xn)⊂U converging to x but (p(xn)) does not converge to p(x). Since (p(xn)) does not converge

to p(x), there are an infinite number of terms of (p(xn)) lying outside of some open neighborhood

G of p(x). These terms constitute a subsequence (p(xnm)). Since the sequence (p(xnm)) lies in the

compact set Γ \G, there exists a convergent subsequence which we will also call (p(xnm)) which

converges to some point y ∈ Γ\G. By the triangle inequality,

d(x,y)≤ d(x,xnm)+d(xnm,y)≤ d(x,xnm)+d(xnm, p(xnm))+d(p(xnm),y).

By the fact that d(xnm, p(xnm)) is the minimal distance from xnm to any point in Γ, we may also

write

d(x,y)≤ d(x,xnm)+d(xnm, p(x))+d(p(xnm),y).

Since this is true for any point xnm , we may take a limit as m→ ∞ to see that

d(x,y)≤ 0+d(x, p(x))+0 = d(x, p(x)).
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But p(x) is the unique point realizing the shortest distance from x to any point in Γ, so this is a

contradiction. Thus, (p(xn)) converges to p(x) and p is a continuous function.

(ii) For points x ∈ Γ, x itself realizes the distance from x to Γ (as that distance is zero), thus,

p(x) = x. For any point y ∈ BDk/2(Γ), p(y) ∈ Γ, so p(p(y)) = p(y). Thus, p◦ p = p.

Recall the definition of a retract:

Definition 3.2.3. Let X be a topological space. A subset A of X is a retract of X if there is a

continuous map f : X → A such that f restricted to A is the identity. Such a function f is called a

retraction of X onto A.

Finally, this projection gives way to an interesting result regarding retracts and retractions.

Corollary 3.2.4. Let (X ,d) be a CAT(k) Busemann G-space, and let Γ⊂ X be a geodesic segment.

Then Γ is a retract of BDk/2(Γ). In particular, if k ≤ 0, Γ is a retract of X.

Proof. The shortest-point projection p : BDk/2(Γ) → Γ realizes the retraction. If k ≤ 0, then

BDk/2(Γ) = X , so we are done.



Chapter 4

Busemann G-Spaces and the Disjoint

(0,n)-Cells Property

In Chapter two, we proved that every Riemannian manifold is a Busemann G-space. By Proposi-

tion 1.4.2, a manifold of dimension n+1 also has the disjoint (0,n)-cells property. Therefore, for

each n∈N, we have examples of Busemann G-spaces which have the the disjoint (0,n)-cells prop-

erty. What about a Busemann G-space which has the disjoint (0,n)-cells property for all n ∈ N?

There are no known examples of such a Busemann G-space, and we conjecture that no such space

exists. In this chapter, we will determine what properties must be possessed of Busemann G-spaces

with the disjoint (0,n)-cells property for all values of n, if any such spaces exist.

4.1 Local Properties of Balls and Spheres

We begin this chapter by examining some structure which exists locally in every Busemann G-

space.

Let (X ,d) be a Busemann G-space. Let c ∈ X . We have already seen the importance of small

closed neighborhoods of c in which, for instance, any two points are joined by a unique geodesic.

33
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In this chapter, we will examine neighborhoods of the form

Bc = Bεc/4(c) = {x ∈ X : d(x,c)≤ εc/4},

and their boundaries which we will denote

Sc = Sεc/4(c) = {x ∈ X : d(x,c) = εc/4}.

The first local property we will consider involves cone structures.

Definition 4.1.1. Let X be a topological space. Let P = X ×{0} ⊂ X × [0,1]. The cone over X ,

denoted CX is

CX = X× [0,1]/P.

Elements in the cone CX are denoted [x, t] where x ∈ X and t ∈ [0,1]. Note that [x,0] = [y,0]

for all x,y ∈ X . This definition leads us to a theorem of Thurston [2].

Theorem 4.1.2. (Thurston) Let (X ,d) be a Busemann G-space, and let c ∈ X. The following hold:

1. For every point x of Bc \ {c}, there is a unique point s ∈Sc so that x lies on the geodesic

segment from c to s.

2. Bc is homeormorphic to CSc.

3. Let s ∈Sc, and x be the point in Bc which lies on the geodesic segment joining c with s. The

homeomorphism h : Bc→CSc can be realized by h(x) = [s,d(c,x)/d(s,x)].

The theorem as stated above is stronger than the statement in Thurston’s thesis [2]; it has been

augmented with useful intermediate results from the proof of the theorem.

We will examine two functions on sets of the form Bc and Sc. The first generalizes the concept

of antipodal points on a sphere. For a standard n-sphere in Rn+1 containing the point x, we can

find its antipodal point by extending the line segment from x to the sphere’s center until it again
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intersects the sphere. The second point of intersection is the antipodal point to x. We will construct

the antipodal point to y ∈Sc in an analogous way.

Proposition 4.1.3. Let (X ,d) be a Busemann G-space with c ∈ X. If x ∈ Sc, there is a unique

geodesic path ψ : [0,εc/2]→Bc such that ψ(0) = x and ψ(εc/4) = c. Moreover, ψ(εc/2) ∈Sc.

Proof. We know there exists a unique geodesic path γ : [0,εc/4]→X from x to c, and that γ extends

uniquely to a geodesic γ̂ : R→ X . Define ψ = γ̂|[0,εc/2]. Since γ̂(εc/4) = c, we conclude that the

image of ψ must be contained in Bεc(c). By Theorem 1.2.2 (5), ψ is an isometry, so it is a geodesic

path, and z = ψ(εc/2) a distance εc/4 from c, so z ∈Sc. Moreover, x and z are the only two points

in the image of ψ in Sc because for all t ∈ (0,εc/2),

d(ψ(t),c) = |t− εc/4|< εc/4.

We know that d(x,z) = d(x,c)+d(c,z) because x, c, and z all lie on a geodesic segment. Sup-

pose that ψ ′ : [0,εc/2]→ X is another geodesic path with ψ ′(0) = x and ψ ′(εc/4) = c. Then

the uniqueness of extension axiom of Busemann G-spaces (Definition 1.2.1 (4)) tells us that

ψ ′(εc/2) = z. Since d(x,z)< εc, there is a unique geodesic path from x to z. Therefore, = ψ ′ = ψ

and ψ is the unique geodesic path whose domain is [0,εc/2] such that ψ(0) = x and ψ(εc/4) =

c.

With the result of the above proposition in mind, we can define an antipode in a set of the form

Sc.

Definition 4.1.4. Let (X ,d) be a Busemann G-space with c ∈ X . Let x ∈ Sc and let ψ : [0,εc/2] be

the unique geodesic path such that ψ(0) = x and ψ(εc/4) = c. The antipode of x with respect to c

is ψ(εc/2).

It is a simple exercise to show that the antipode of the antipode of x is x. We will commonly

denote the antipode of x by x′. Indeed, for each c in a Busemann G-space, there exists an antipode
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map α : Sc → Sc such that α(x) = x′. Indeed, the antipode map is continuous, which fact we

prove here:

Proposition 4.1.5. The antipode map α is continuous.

Proof. Choose x ∈Sc. Let (xn) ⊂Sc be a sequence converging to x. Let yn = α(xn). We claim

that (yn) converges to α(x). Suppose, by way of contradiction, that it does not. Then there is a

neighborhood U of α(x) whose complement in Sc contains an infinite number of terms of (yn),

which constitute a subsequence (ynk). Since the sequence (ynk) lies in the bounded subset Sc of a

Busemann G-space, it must have a convergent subsequence, which we will also call (ynk). We will

call its limit point y. For each k, we have

d(xnk ,c)+d(c,ynk) = d(xnk ,ynk).

In the limit as k→ ∞, we have d(x,c)+d(c,y) = d(x,y). By the uniqueness of extension property

of Busemann G-spaces (Definition 1.2.1 (4)), α(x) is the unique point in Sc with the property

that d(x,c)+d(c,α(x)) = d(x,α(x)). We conclude that y = α(x). This is a contradiction, so (yn)

converges to α(x). Therefore, α is a continuous function.

Another local function with which we will concern ourselves is the local spherical projection

map. For a Busemann G-space (X ,d) with c ∈ X , we define this local radial projection for points

x∈Bc \{c}. By Theorem 4.1.2, there is a unique point s∈Sc so that x lies on a geodesic segment

from c to s. The local radial projection on Bc is the map π : Bc \{c}→Sc defined by π(x) = s.

Proposition 4.1.6. The radial projection π(x) is continuous

Proof. Choose x ∈Bc \{c}. Let (xn)⊂Bc \{c} be a sequence converging to x. Let yn = π(xn).

We claim that (yn) converges to π(x). Suppose, by way of contradiction, that it does not. Then

there is a neighborhood U of π(x) whose complement in Sc contains an infinite number of terms

of (yn), which constitute a subsequence (ynk). Since the sequence (ynk) lies in the bounded subset
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Sc of a Busemann G-space, it must have a convergent subsequence, which we will also call (ynk).

We will call its limit point y. For each k, we have

d(c,xnk)+d(xnk ,ynk) = d(c,ynk).

In the limit as k→ ∞, we have d(c,x)+d(x,y) = d(c,y). By the uniqueness of extension property

of Busemann G-spaces (Definition 1.2.1 (4)), π(x) is the unique point in Sc with the property

that d(c,x)+d(x,π(x)) = d(c,π(x)). We conclude that y = π(x). This is a contradiction, so (yn)

converges to π(x). Therefore, π is a continuous function.

In fact, the projection can be extended to all of Bεc(c)\{c}, as we show here:

Proposition 4.1.7. Let (X ,d) be a Busemann G-space with c ∈ X. The function Π : Bεc(c)\{c}→

Sc which maps each point x to the point on the geodesic segment joining x and c which is a distance

εc/4 from c is continuous, and agrees with π on Bc \{c}.

Proof. Let

M = {x ∈ Bεc(c) : εc/4≤ d(x,c)}.

For each x∈M, let γx : [0,d(c,x)]→ X be the unique geodesic path from c to x. Define ψ : M→Sc

by ψ(x) = γx(εc/4). The map ψ is continuous by Propostion 1.2.3. Note that the domains of the

maps π and ψ intersect on exactly the set

Sc = {x ∈ X : d(x,c) = εc/4},

and that on this set, both π and ψ are equal to the identity. Therefore, the map Π : Bεc \{c}→Sc

defined by

Π(x) =


π(x) d(x,c)≤ εc/4

ψ(x) d(x,c)> εc/4

is contntinuous by the pasting lemma. By construction, Π extends π .
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The maps that we have defined allow us to examine local topological properties of Busemann

G-spaces.

Proposition 4.1.8. Let (X ,d) be a Busemann G-space with c ∈ X. If X has the disjoint (0,1)-cells

property, then Sc is path connected.

Proof. If Sc is empty, then we are done. Otherwise, choose two points x and y in Sc. There

is a scaled geodesic path γ : [0,1]→ X from x to y in X , which exists because any two points

in a Busemann G-space are joined by a geodesic segment. The length of the segment is at most

εc/2, so we know that the image of γ must be contained in Bεc(c). By Proposition 1.4.5, there

is a map γ̃ : [0,1]→ X such that the image of γ̃ does not contain c, d(γ(t), γ̃(t)) < εc/8 and if

d(c,γ(t))≥ εc/8, then γ(t) = γ̃(t). Thus, γ̃(0) = γ(0) = x and γ̃(1) = γ(1) = y and for any t ∈ [0,1],

we have either γ̃(t) = γ(t) or

d(γ̃(t),c)≤ d(γ̃(t),γ(t))+d(γ(t),c)< 2(εc/8) = εc/4,

so the image of γ̃ is in Bεc(c). Thus, π ◦ γ̃ is a path in Sc from x to y.

Proposition 4.1.9. Let (X ,d) be a Busemann G-space with c ∈ X. The set Bc is contractible.

Proof. It suffices to show that B deformation retracts in itself to c. For each x ∈Bc, let γx : I→ X

be the scaled geodesic path from x to c. Define Γ : Bc× I →Bc by Γ(x, t) = γx(t). Then Γ is

continuous as shown in Proposition 1.2.3. Since Γ(x,0) = x and Γ(x,1) = c, we conclude that B

admits a deformation retraction to c, so B is contractible.

4.2 The Symmetric Property

In this section, we consider a new property we may apply to Busemann G-spaces.

Definition 4.2.1. Let (X ,d) be a Busemann G-space. An open set U ⊂ X has the symmetric

property if the following properties hold:
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Figure 4.1 The figure on the left demonstrates property (1) of the symmetric property.
The figure on the right demonstrates property (2).

1. For every choice of five distinct points x, y, z1, z2, and z3 in U with d(z1,z2)+ d(z2,z3) =

d(z1,z3) such that d(x,zi) = d(y,zi) for two values of i∈ {1,2,3}, then d(x,zi) = d(y,zi) also

holds for the third value.

2. For each c ∈U such that Sc ⊂U , if x,y ∈Sc, then d(x,y) = d(x′,y′).

3. Sets of the form Bc contained in U are geodesically convex. That is, a geodesic segment

joining two points in Bc is itself contained in Bc.

See Figure 4.1 for diagrams.

Definition 4.2.2. A Busemann G-space is said to have the symmetric property near a point c if c

is contained in a symmetric neighborhood.

Definition 4.2.3. A Busemann G-space has the local symmetric property if it has the symmetric

property near every point.
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The symmetric property is a desirable property for a Busemann G-space because it allows us to

predict the behavior of a geodesic segment based on distance relations of just two of its points. For

example, if the endpoints of a geodesic segment in a symmetric neighborhood are both equidistant

from two points x and y, then every point on the geodesic segment must be the same distance from

x as it is from y.

The Busemann G-spaces Rn and Sn have the local symmetric property.

We have two preliminary results regarding the symmetric property.

Proposition 4.2.4. Let (X ,d) be a Busemann G-space which has a point c such that Sc is con-

tained in a neighborhood U with the symmetric property. If a point y ∈ Sc is equidistant from

points x and x′ in Sc, then y′ is also equidistant from x and x′

Proof. Since d(x,y) = d(x′,y), d(x,c) = d(x′,c) = 1 and d(x,c)+d(c,x′) = d(x,x′), the symmetric

property gives us d(x,y′) = d(x′,y′).

The next result concerns the following definition:

Definition 4.2.5. Let (X ,d) be a Busemann G-space with c ∈ X . If z1,z2 ∈Bc, span(z1,z2) is the

unique geodesic segment joining z1 and z2.

If z1, · · · ,zn ∈Bc, span(z1, · · · ,zn) is the union of all geodesic segments joining zn with points

in the span(z1, · · · ,zn−1).

It is important to note that if (zk1, · · · ,zkn) is some reordering of (z1, · · · ,zn) with n > 2, then

span(zk1 , · · · ,zkn) may not be equal to span(z1, · · · ,zn).

Proposition 4.2.6. Let (X ,d) be a Busemann G-space which has a point c contained in a neighbor-

hood U with the symmetric property. If x,y,z1, · · · ,zn are distinct points contained in Bc∩U with

d(x,zi) = d(y,zi) for each i= 1, · · · ,n, then any point z in span(z1, · · · ,zn) satisfies d(x,z) = d(y,z).
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Proof. We proceed by induction. If n = 2, then the result follows immediately from the symmetric

property. If the result holds for some integer m > n, then z lies on a geodesic segment joining xn

with some point z′ in span(z1, · · · ,zn−1). By inductive hypothesis, d(x,z′) = d(y,z′) and by the

Proposition’s hypothesis, d(x,zn) = d(y,zn). So by the symmetric property, d(x,z) = d(y,z).

4.3 The Orthoplex

The proof of this chapter’s major theorem involves a simple object from Euclidean geometry whose

name is nevertheless a bit obscure. The object is the n-orthoplex, which we define using the

following definitions:

Definition 4.3.1. Let A⊂Rn. The convex hull of A is the intersection of all convex sets containing

A.

The convex hull of a set A is the smallest convex set containing A.

Definition 4.3.2. The n-orthoplex is the convex hull of all 2n points which are given by permuta-

tions of the coordinates of the point (±1,0,0, · · · ,0) in Rn. The n-orthoplex is denoted Ωn.

Other terms for the n-orthoplex include the n-cross-polytope and the n-hyperoctahedron. The

1-orthoplex is the interval [−1,1] in R, the 2-orthoplex is a square region in R2 with vertices

{(−1,0),(0,−1),(1,0),(0,1)}. The 3-orthoplex is a regular octahedron in R3. In general the

vertices of an orthoplex are those points in Rn with one coordinate equal to ±1 and the rest equal

to 0. We will denote the vertex with the kth coordinate equal to 1 as pk, which has an opposing

vertex −pk where the kth coordinate is equal to −1.

A fact of which we shall make use later on is that if (t1, · · · , tn) lies in the n+1-orthoplex and

is not equal to±pn, it lies on the unique line segment which starts at the point±pn, passes through

(t1, · · · , tn), and then ends at the point

(t1/(1−|tn|), t2/(1−|tn|), · · · , tn−1/(1−|tn|),0).
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So as to not have to write this rather complicated form, we define the function τ : Ωn\{pn,−pn}→

Ωn by

τ(t1, · · · , tn) = (t1/(1−|tn|), t2/(1−|tn|), · · · , tn−1/(1−|tn|),0).

By deleting the last coordinate, we obtain a similar map τ̂ : Ωn \{pn,−pn}→Ωn−1 defined by

τ̂(t1, · · · , tn) = (t1/(1−|tn|), t2/(1−|tn|), · · · , tn−1/(1−|tn|)).

Clearly, τ and τ̂ are continuous.

4.4 Essential Families

There is a rich topic known as separation dimension from which we will need only a single result

[12, 13]. First, recall the definition of a separating set:

Definition 4.4.1. If X is a connected topological space containing nonempty closed sets C1 and

C2, the set Y ⊂ X is said to separate C1 and C2 if X \Y can be written as the union of two disjoint

open sets, one containing C1 and the other containing C2.

The result has to do with the n-dimensional cube In. The n dimensional cube has n pairs of

opposing faces which we will call Ak and Bk for k = 1, · · · ,n.

Theorem 4.4.2. If {Ck}n
k=1 is a family of closed subsets of In such that Ck separates Ak and Bk,

then
n⋂

k=1

Ck 6= /0.

In the language of separating dimension, the set of pairs {(Ak,Bk) : k = 1, · · · ,n} is an essential

family of In.
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4.5 Busemann G-Spaces with the Disjoint (0,n)-Cells Property

for Each n

The central theorem of this chapter is a step towards proving that Busemann G-spaces cannot have

the disjoint (0,n)-cells property for every value of n.

Theorem 4.5.1. A Busemann G-space which has the disjoint (0,n)-cells property for each n cannot

have the symmetric property near any point.

Proof. Let (X ,d) be a Busemann G-space with the (0,n)-cells property for each n. Suppose, by

way of contradiction, that X has the symmetric property near a point c, and that c is contained in

a symmetric neighborhood U . Without loss of generality, we may assume that εc is sufficiently

small that Bεc(c) ⊂U . For convenience, we rescale the metric so that B = Bc has radius 1. Let

S = Sc. We will construct a sequence (xn) with two properties:

(a) If n,m ∈ N with n 6= m, then d(xn,xm) = d(xn,x′m),

(b) If n,m ∈ N with n 6= m, then d(xn,xm)≥ 1.

The second property actually follows from the first, for if d(xn,xm) = d(xn,x′m), then

d(xn,xm) =
1
2
(d(xn,xm)+d(xn,x′m))≥

1
2

d(xm,x′m) = 1.

From property (b), we will conclude that (xn) is an infinite set with no accumulation point, a

contradiction to the finite compactness property of Busemann G-spaces (Definition 1.2.1).

Let x1 be any point in S. Let x′1 be the antipode of x1. We will construct the sequence induc-

tively.

Suppose that x1, · · · ,xn have been chosen. We will define a map γn : Ωn→ B, where Ωn is the

n-orthoplex, which will be helpful in choosing xn+1. The construction of γn is itself an inductive

process. This map will have four specific properties:
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1. γn is continuous,

2. γn(pk) = xk and γn(−pk) = x′k (Recall that pk is the vertex in Ωn with its kth coordinate equal

to 1.) ,

3. γn(t) = c if and only if t = (0, · · · ,0),

4. c is the only point in the image of γn that is equidistant from each of the pairs xi and x′i,

i = 1, · · · ,n,

5. the image of γn is contained in B4(c).

We define γ1 : Ω1 = [−1,1]→ X by the geodesic path from x′1 to x1. Clearly properties 1-4 are

satisfied for γ1.

Suppose, as the inductive hypothesis, that γn−1 has been defined, and that it possesses the

required properties. We will now define two families of maps, indexed by subscripts in Ωn−1. Let

g(t1,··· ,tn−1) : [0,1]→ B be the scaled geodesic path from xn to γn−1(t1, · · · , tn−1), and let g′(t1,··· ,tn−1)
:

[0,1]→ B be the scaled geodesic path from x′n to γn−1(t1, · · · , tn−1). Since γn−1 is continuous

(by the inductive hypothesis), and by Proposition 1.2.3, each of these maps are continuous, both

in their subscripts and in their input variable. Moreover, g(t1,··· ,tn−1)(1) = g′(t1,··· ,tn−1)
(1) for any

(t1, · · · , tn−1) ∈Ωn−1. Therefore, we can define γn : Ωn→ B by

γn(t1, · · · , tn) =



x′n tn =−1

g′
τ̂(t1,··· ,tn)(1+ tn) −1 < tn < 0

gτ̂(t1,··· ,tn)(1− tn) 0≤ tn < 1

xn tn = 1.

Recall that the map τ̂ : Ωn \{−pn, pn}→Ωn−1 is defined in section 4.3.

We will check that each of the four desired properties of γn are satisfied.
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1. By the pasting lemma, γn is continuous on

{(t1, · · · , tn :−1 < tn < 1}.

For the points (vertices) where tn = 1 or tn = −1, the argument for continuity is the same,

so without loss of generality, we will suppose that tn = 1. Therefore, we are considering

continuity at the point (0, · · · ,0,1). Let ε > 0 and let δ <min{ε/2,1}. Choose (s1, · · · ,sn)∈

Ωn such that

‖(s1, · · · ,sn−1,sn)− (0, · · · ,0,1)‖∞ < δ .

If (s1, · · · ,sn) = (0, · · · ,0,1), then

d(γn(s1, · · · ,sn),γn(0, · · · ,0,1)) = 0 < ε,

so we are done. Otherwise, γn(s1, · · · ,sn) lies on the image of a scaled geodesic path starting

at xn and ending at γn−1(τ̂(s1, · · · ,sn)), so we can calculate its exact distance from xn, which

is

d(γn(s1, · · · ,sn),xn) = d(xn,γn−1(τ̂(s1, · · · ,sn)))|sn−1|.

By inductive hypothesis, γn−1(τ̂(s1, · · · ,sn)) ∈Bc. No two points contained in Bc can be

separated by a distance of more than 2. Therefore,

d(xn,γn−1(τ̂(s1, · · · ,sn)))< 2.

Furthermore, since

‖(s1, · · · ,sn−1,sn−1)‖∞ < δ

, we have that |sn−1|< δ . Therefore,

d(γn(s1, · · · ,sn),xn) = d(γn(s1, · · · ,sn),γn(0, · · · ,0,1))< 2δ < ε.

Thus, γn is a continuous function.
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2. Observe that

γn(0, · · · ,0,1) = g(0,··· ,0)(0) = xn

and

γn(0, · · · ,0,−1) = g′(0,··· ,0)(0) = x′n.

Furthermore, if 1≤ k ≤ n−1, we denote the projection of pk into Ωn−1 by p̂k (Since k < n,

the projection is realized trivially by removing the last coordinate of pk, which is zero). Then

γn(pk) = gτ̂(pk)(1) = γn−1(p̂k) = xk

and

γn(−p̂k) = gτ̂(−pk)(1) = γn−1(−p′k) = x′k.

3. Suppose that γn(t1, · · · , tn)= c. Without loss of generality,−1≤ tn≤ 0. Let γn(t1, · · · , tn−1,0)=

y. Then we have that c lies on the geodesic joining x′n and y. By property (a) of the sequence

(xn), xn is equidistant from each of the pairs xi and x′i for i = 1, · · · ,n− 1. The point c has

the same property since d(xi,c) = d(x′i,c) = 1 for each i. By the symmetric property, y is

also equidistant from each of these pairs. But y is also contained in the image of γn−1 which

by property (4) implies that y = c. By property (3), this implies that t1, · · · , tn−1 = 0. By the

fact that γn(0, · · · ,0, tn) sweeps out a geodesic, it can only pass through c for one value of tn.

Since it does so for tn = 0, we conclude that (t1, · · · , tn) is the origin.

Conversely, if (t1, · · · , tn) = (0, · · · ,0) it is simple to observe that γn(t1, · · · , tn) = c.

4. Let y be in the image of γn where y= γn(t1, · · · , tn). Suppose that y is equidistant from each of

the pairs xi and x′i for i = 1, · · · ,n. Clearly, y 6∈ {xn,x′n}. We know that y lies on the geodesic

segment joining xn or x′n with γn−1(τ̂(t1, · · · , tn)). By property (a) of the sequence (xn), we

have that xn is equidistant from each of the pairs xi and x′i for i = 1, · · · ,n−1. By Proposition

4.2.4, x′n is also equidistant from each of the pairs xi and x′i for i = 1, · · · ,n− 1. By the
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symmetric property, γn−1(τ̂(t1, · · · , tn)) is also equidistant from each of the pairs xi and x′i for

i = 1, · · · ,n−1. By the inductive hypothesis, we conclude that γn−1(τ̂(t1, · · · , tn)) = c. Thus,

y lies on the geodesic segment joining xn or x′n with c, and is equidistant from both xn and

x′n. The only point satisfying this is c, so y = c.

5. This follows simply from the symmetric property, which includes as part of the definition

that neighborhoods of the form Bc contained in symmetric neighborhoods are geodesically

convex, meaning that a geodesic segment joining two points in Bc is itself contained in Bc.

Each point in the image of γn is contained in a geodesic segment joining xn or x′n to a point

in the image of γn−1. Since the image of γn−1 is in Bc by inductive hypothesis, and since xn

and x′n are in Bc, the result follows.

Thus, γn exists and is a continuous map with the desired properties.

The image of γn is a singular n-cell in B4(c), on which the projection map π may extend (recall

that since we have rescaled the metric, εc = 4). Since B4(c) has the disjoint (0,n)-cells property,

there is a map γ̃n whose image misses c, and which agrees with γn outside of some neighborhood

of γ−1
n (c) = (0, · · · ,0). Since γ̃n misses c, it can be composed with the projection π to create a map

π ◦ γ̃n : Ωn→ S.

The remainder of this proof will focus on identifying a point in the image of π ◦ γ̃n which is

equidistant from xk and x′k for each k = 1, · · · ,n. To do this, we will examine properties of points

in the orthoplex Ωn which map to points in Sc under π ◦ γ̃n which are equidistant from xk and x′k

for some particular value of k. To this end, we define another map, and prove a lemma.

Define the maps rk : B→ R by rk(x) = d(x′k,x)− d(xk,x) for k = 1, · · · ,n. We will prove the

following lemma:

Lemma 4.5.2. Fix k ∈ {1, · · · ,n}, and let (t1, · · · , tn) be a point in the boundary of Ωn. Then

rk ◦π ◦ γ̃n(t1, · · · , tn) = 0 if and only if tk = 0.
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Proof. First, it will be useful to note that since (t1, · · · , tn) is on the boundary of Ωn, and since

γn and γ̃n agree off of a small neighborhood of c, we can assume that the neighborhood we have

chosen is sufficiently small that γn(t1, · · · , tn) = γ̃n(t1, · · · , tn). Furthermore, rk◦π ◦γn(t1, · · · , tn) = 0

if and only if π ◦ γn(t1, · · · , tn) is equidistant from xk and x′k. Finally, since γn(t1, · · · , tn) lies on the

geodesic joining c with π ◦ γn(t1, · · · , tn), we know that π ◦ γn(t1, · · · , tn) is equidistant from xk and

x′k if and only if γn(t1, · · · , tn) is equidistant from xk and x′k. Therefore, we need only show that

γn(t1, · · · , tn) is equidistant from xk and x′k if and only if tk = 0.

For the forward direction, suppose that γn(t1, · · · , tn) is equidistant from xk and x′k. Without loss

of generality, ti ≥ 0 for i = 1, · · · ,n. We will proceed by induction on n, where k ∈ {1, · · · ,n}.

The result holds in the case n = 1 because the points on the boundary of Ω1 map to x1 and x′1,

neither of which is equidistant from x1 to x′1.

Now suppose that the result is true for γn−1. We will consider two cases: k 6= n and k = n.

Case 1: If k 6= n, then either γn(t1, · · · , tn) = xn, and the result holds, or γn(t1, · · · , tn) lies

on the geodesic segment joining xn with γn(τ(t1, · · · , tn)) = γn−1(τ̂(t1, · · · , tn)). Since xn is also

equidistant from xk and x′k by inductive hypothesis, γn−1(τ̂(t1, · · · , tn)) is equidistant from xk and

x′k by the symmetric property. This means that rk ◦π ◦ γn−1(τ(t1, · · · , tn−1)) = 0. By the inductive

hypothesis, we conclude that tk = 0.

Case 2: Now suppose that k = n. If tn = 1, we have that γn(t1, · · · , tn) = xn, which is not

equidistant from xn and x′n. Therefore, 0≤ tn < 1. We know that γn(t1, · · · , tn) lies on the geodesic

segment joining xn with γn(τ(t1, · · · , tn)). We have assumed that ti ≥ 0 for all i = 1, · · · ,n, so we

conclude that γn(τ(t1, · · · , tn)) is in span(c,x1, · · · ,xn−1). Since d(xi,xn) = d(xi,x′n) for each i =

1, · · · ,n−1, and referring to Proposition 4.2.6, we have that both γn(t1, · · · , tn) and γn(τ(t1, · · · , tn))

are equidistant from xn and x′n. We know that xn cannot be equidistant from xn and x′n, so we must

have that γn(t1, · · · , tn) = γn(τ(t1, · · · , tn)). The points (t1, · · · , tn) and τ(t1, · · · , tn) both lie on a line

segment in Ωn from the point (0, · · · ,0,1) to τ(t1, · · · , tn). This line segment gets mapped as a
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scaled geodesic path to the geodesic segment from xn to γn(τ(t1, · · · , tn)). The scaled geodesic path

must be injective, so we conclude that

(t1, · · · , tn) = τ(t1, · · · , tn) =
(

t1
1−|tn|

, · · · , tn−1

1−|tn|
,0
)
,

so tn = 0.

Now, for the reverse direction, suppose that tk = 0. Once again, we proceed by induction on n.

If n = 1, there is no point on the boundary of Ω1 with t1 = 0, so the result holds.

Now suppose that the result holds for γn−1. We have two cases: k 6= n and k = n.

Case 1: If k 6= n, then either γn(t1, · · · , tn) = xn, and the result holds, or γn(t1, · · · , tn) lies

on the geodesic joining xn with γn(τ(t1, · · · , tn)) = γn−1(τ̂(t1, · · · , tn)). By the inductive hypothe-

sis, γn−1(τ̂(t1, · · · , tn)) is equidistant from xk and x′k, as is xn, Hence, by the symmetric property,

γn(t1, · · · , tn) is equidistant from xk and x′k.

Case 2: Finally, suppose k = n. We know that γn(t1, · · · , tn−1,0) lies on span(c,x1, · · · ,xn−1),

that x1, · · · ,xn−1 are each individually equidistant from xn and x′n. Therefore, by Proposition 4.2.6,

we have that γn(t1, · · · , tn−1,0) is equidistant from xn and x′n.

Therefore, we may conclude that rk ◦π ◦ γ̃n(t1, · · · , tn) = 0 if and only if tk = 0.

We have now classified those points in the boundary of Ωn which map under π ◦ γ̃n to points in

Sc equidistant from xk and x′k for some value of k. But we need a point in Ωn for which maps to

a point equidistant from xk and x′k for all values k = 1, · · · ,n. In this last step in our proof, we will

identify such a point. To begin the last step in our proof, we will define a homeomorphism from

the cube [−1,1]n to the orthoplex Ωn. The definition is quite simple:

h(x) =


x‖x‖∞

‖x‖1
x 6= (0, · · · ,0)

(0, · · · ,0) x = (0, · · · ,0).

Since Ωn is precisely those points x in Rn such that ‖x‖1 ≤ 1, it is easy to see that this map has

codomain Ωn. We will prove that this map is a homeomorphism.
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First, we will show that it is injective. Suppose that h(x) = h(y). If h(x) = h(y) = (0, · · · ,0),

then it is clear that x = y = (0, · · · ,0). Otherwise, we see that

‖h(x)‖1 =

∥∥∥∥x
‖x‖∞

‖x‖1

∥∥∥∥
=
‖x‖∞

‖x‖1
‖x‖1

= ‖x‖∞,

and similarly ‖h(y)‖1 = ‖y‖∞. Therefore, ‖x‖∞ = ‖y‖∞. Hence, noting that h(x) = h(y), we have

x
‖x‖∞

‖x‖1
= y
‖y‖∞

‖y‖1
,

or, in other words,

x = y
‖y‖∞

‖y‖1

‖x‖1

‖x‖∞

.

Thus, x is a positive multiple of y, and the two have the same norm. We conclude that x = y.

Next, we will show that h is surjective. Suppose that y ∈ Ωn. If y = (0, · · · ,0), observe that

h(0, · · · ,0) = y. Otherwise, let

x = y
‖y‖1

‖y‖∞

.

Since

‖x‖∞ =

∥∥∥∥y
‖y‖1

‖y‖∞

∥∥∥∥
∞

= ‖y‖1 ≤ 1,

we see that x ∈ [−1,1]n. Evaluating h at x we get

h(x) = h
(

y
‖y‖1

‖y‖∞

)
= y
‖y‖1

‖y‖∞

∥∥∥y ‖y‖1
‖y‖∞

∥∥∥
∞∥∥∥y ‖y‖1

‖y‖∞

∥∥∥
1

= y
‖y‖1

‖y‖∞

‖y‖
∞

‖y‖1
= y

Last, we will show that h is continuous. It is clearly continuous away from zero, so we will

only test continuity at the origin. Let ε > 0, and let δ < ε . Then if ‖x‖∞ < δ , we have that

‖h(x)−h(0, · · · ,0)‖1 = ‖h(x)‖1 = ‖x‖∞ < δ < ε.
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By the topological equivalence of the norms ‖ · ‖1 and ‖ · ‖∞ on Rn, we conclude that h is continu-

ous. Since h is a continuous bijection on a compact set, its inverse is also continuous. Therefore, h

is a homeomorphism.

We now have a method for mapping the cube into Sc via the orthoplex Ωn. The mapping is

continuous, and we claim that the image of the map contains a point xn+1 such that d(xk,xn+1) =

d(x′k,xn+1) and d(xk,xn+1) = d(xk,x′n+1) for all k = 1, · · · ,n. In order to find such a point, we will

use the property of the cube stated in Theorem 4.4.2.

Let An,k = {(t1, · · · , tn) ∈ [−1,1]n : tk = 1} and Bn,k = {(t1, · · · , tn) ∈ [−1,1]n : tk =−1}. Theo-

rem 4.4.2 states that the set {(An,k,Bn,k) : 1≤ k≤ n} is an essential family of [−1,1]n. This means

that if Γn,k separates An,k and Bn,k, then

n⋂
k=1

Γn,k 6= /0.

Figure 4.2 illustrates our strategy from this point. We will identify subsets of the cube repre-

sented by the blue surface in Figure 4.2 which map under π ◦ γ̃ ◦h to points which are equidistant

from xk and x′k for each k = 1, · · · ,n. We will demonstrate that these surfaces separate the faces of

the cube containing pk and p′k, which are respectively Ak and Bk. Therefore, the intersection over

all k of each of these surfaces contains a point which is equidistant from xk and x′k for each value

of k.

Define ξn,k : [−1,1]n→ R by ξn,k = rk ◦π ◦ γ̃ ◦h. Let Γn,k = ξ
−1
n,k (0). Let pk ∈ Rn be the point

which is zero in each coordinate except 1 in the kth coordinate. Since pk and −pk are fixed by

h, we have that ξn,k(pk) = 2 and ξn,k(−pk) =−2. Therefore, [−1,1]n \Γn,k can be written as two

disjoint sets, one containing pk and one containing −pk, or in other words, Γn,k separates pk ∈ Ak

and −pk ∈ Bk. Furthermore, if (t1, · · · , tn) ∈ Γn,k lies in the boundary of [−1,1]n, then h(t1, · · · , tn)

lies in the boundary of Ωn (since homeomorphisms preserve boundary), and has the property that

γn ◦ h(t1, · · · , tn) is equidistant from xk and x′k. This means that the kth coordinate of h(t1, · · · , tn)

is zero. But observe that h preserves the nonzero coordinates. Therefore, tk = 0, and thus Γn,k
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Figure 4.2 The blue surface maps under π ◦ γ̃ ◦h to a set of points which are all equidistant
from xk and x′k. Notice that the blue surface intersects the boundary of the cube only in
the faces which do not contain pk and −pk. This is important in establishing that the blue
surface separates the face containing pk and the face containing −pk.



4.5 Busemann G-Spaces with the Disjoint (0,n)-Cells Property for Each n 53

intersects the boundary of [−1,1]n only at points where the kth coordinate is zero. The sets An,k

and Bn,k both consist entirely of boundary points where the kth coordinate is not 0. Therefore, Γn,k

must separate An,k, and Bn,k, and the intersection

n⋂
k=1

Γn,k

contains a point (s1, · · · ,sn), and that ξn,k(s1, · · · ,sn) = 0 for each k = 1, · · · ,n. Therefore, we let

xn+1 = π ◦ γ̃n ◦h(s1, · · · ,sn). Then xn+1 satisfies

d(xn+1,xi) = d(xn+1,x′i)

for each i = 1, · · · ,n. By the symmetric property, we also have d(xn+1,xi) = d(x′n+1,x
′
i), and

d(xn+1,x′i) = d(x′n+1,xi) therefore,

d(xi,xn+1) = d(xi,x′n+1).

Now that we have constructed our sequence (xn), where for each n,m where n 6= m, the point

xn is equidistant from xm and x′m, we can observe that

d(xn,xm) =
1
2
(d(xn,xm)+d(xn,xm)) =

1
2
(d(xn,xm)+d(xn,x′m))≥

1
2

d(xm,x′m) = 1.

This means that there is not limit point for the set of the terms of this sequence, and yet this se-

quence is infinite. Therefore, X contains an infinite bounded set with no limit point, a contradiction

to the finite compactness property of Busemann G-spaces.



Chapter 5

Conclusion

In this thesis, we focused on three major problems involving Busemann G-spaces. Each problem

helped us develop a deeper understanding of the properties and behaviors of Busemann G-spaces.

First, we proved that closed Riemannian manifolds are Busemann G-spaces. This is an im-

portant fact to establish because it shows that the class of Busemann G-spaces includes interest-

ing examples. It also supports the idea that there is a connection between Busemann G-spaces

and manifolds. What exactly this connection might be is made more precise by the Busemann

conjecture–that all Busemann G-spaces are in fact manifolds.

Next, we explored the properties of Busemann G-spaces that also have CAT(k) curvature. We

showed that this is a useful property for Busemann G-spaces to have as it results in neighborhoods

of geodesic segments on which we may define a closest-point projection.

Finally, we considered how the disjoint (0,n)-cells property plays a role in the structure of

Busemann G-spaces. First, by laying out several local properties of Busemann G-spaces, and then

by showing how those properties together with the (0,n)-cells property for each value of n lead to

a contradiction. Because the (0,n)-cells property is related to dimension, this adds support to the

conjecture that there are no infinite dimensional Busemann G-spaces.
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Busemann’s conjecture that all Busemann G-spaces are manifolds remains open, but we now

have a greater knowledge of the properties and behavior of Busemann G-spaces.
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