
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-06-01

Evaluation and Refinement of Generalized B-
splines
Ian Daniel Henriksen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Henriksen, Ian Daniel, "Evaluation and Refinement of Generalized B-splines" (2015). All Theses and Dissertations. 5887.
https://scholarsarchive.byu.edu/etd/5887

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5887?utm_source=scholarsarchive.byu.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Evaluation and Refinement of Generalized B-Splines

Ian Daniel Henriksen

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Emily J. Evans, Chair
Jeffrey Humpherys

Kevin Tew

Department of Mathematics

Brigham Young University

June 2015

Copyright © 2015 Ian Daniel Henriksen

All Rights Reserved

abstract

Evaluation and Refinement of Generalized B-Splines

Ian Daniel Henriksen
Department of Mathematics, BYU

Master of Science

In this thesis a method for direct evaluation of Generalized B-splines (GB-splines) via the
representation of these curves as piecewise functions is presented. A local structure is intro-
duced that makes the GB-spline curves more amenable to the integration used in construct-
ing bases of higher degree. This basis is used to perform direct computation of piecewise
representation of GB-spline bases and curves. Algorithms for refinement using these local
structures are also developed.

Keywords: GB-splines, Trigonometric splines, Hyperbolic splines, Exponential splines, Curve
Refinement, Knot Insertion, Degree Elevation

Contents

Contents iii

List of Tables iv

List of Figures v

1 Introduction 1

1.1 Notation . 3

2 Background 3

2.1 Bernstein Polynomials . 4

2.2 Bézier Curves . 16

2.3 B-splines . 20

3 Definition of GB-splines 27

4 Evaluation of GB-splines 35

5 Refinement operations on GB-splines 54

5.1 Algorithms For Refinement . 57

6 Stability of Evaluation 78

7 Future Directions 82

Appendices 85

A Conventions and Notation for Algorithms 86

B Code for Computation of Basis Coefficients 89

Bibliography 100

iii

List of Tables

1.1 Notational conventions. 3

A.1 Notational conventions used in algorithms. 87

iv

List of Figures

2.1 The Bernstein basis polynomials of degrees 2, 3, 4, and 5. 5

2.2 Polynomials in Bernstein form of degrees 2, 3, 4, and 5 (green) shown with

their Bernstein coefficients (blue). 6

2.3 An illustration of the De Casteljau algorithm (Algorithm 1) for evaluating

polynomials in Bernstein form. Here, parameter values 1
3

and 2
3

are used. . . 7

2.4 Bézier curves of degrees 3 and 4. 17

2.5 The De Casteljau algorithm (Algorithm 1) applied to a Bézier curve at pa-

rameter values 1
3

and 2
3
. 18

2.6 B-spline bases of degrees 1, 2, 3, and 4. 21

2.7 A degree 4 B-spline curve. 22

2.8 B-spline bases of degrees 1, 2, 3, and 4. 23

2.9 The geometric representation of the De Boor recurrence (given in Definition

2.33) shown here at parameter values 0.2, 0.8, 1.2, 1.8, 2.2, and 5.8. 25

3.1 Bernstein-like GB-spline basis functions formed by using cos
(
π
2

(t− ti)
)

and

sin
(
π
2

(t− ti)
)

as the knot functions. 29

3.2 B-spline-like GB-spline bases of degree 2 and 3 formed by using cos
(
π
2

(t− ti)
)

and sin
(
π
2

(t− ti)
)

as the knot functions. 30

3.3 A GB-spline curve equal to different circles on different parts of its domain. . 31

3.4 A GB-spline curve over a uniform knot vector that exactly represents a circle. 32

4.1 The local polynomial representation for a uniform B-spline basis function

of degree 3 compared with the local representation for a uniform GB-spline

function of degree 3 defined using trigonometric knot functions. 36

4.2 The local polynomial representation for a uniform B-spline basis function

of degree 4 compared with the local representation for a uniform GB-spline

function of degree 4 defined using trigonometric knot functions. 37

v

4.3 The local polynomial representation for a uniform B-spline basis function

of degree 5 compared with the local representation for a uniform GB-spline

function of degree 5 defined using trigonometric knot functions. 38

5.1 Various levels of degree elevation on a degree 2 GB-spline basis function from

a Bernstein-like basis formed using the trigonometric functions cos
(
π
2
t
)

and

sin
(
π
2
t
)

on the interval [0, 1]. The smooth curve is the spline, and the polyg-

onal curves are control meshes of sucessively higher degrees. 56

5.2 Successive degree elevations of each basis function in a Bernstein-like basis of

degree 3 spanning trigonometric functions. 57

5.3 Various levels of degree elevation on a degree 4 GB-spline basis function from

a Bernstein-like basis spanning trigonometric functions. 58

5.4 Various levels of degree elevation on a circle first represented as a degree 2

GB-spline. Again, trigonometric knot functions are used, and the polygonal

curves show the control meshes of successively higher degrees. While the

previous curves had the parameter domain along the horizontal axis, this

shows a 2-dimensional spline curve. 59

5.5 Various levels of degree elevation on a degree 4 2-dimensional GB-spline curve

defined for a Bernstein-like basis spanning trigonometric functions. 60

5.6 A circle represented with respect to GB-spline bases with trigonometric knot

functions and different end conditions. 61

5.7 A 2-dimensional GB-spline curve represented with respect to GB-spline bases

with different end conditions. 62

5.8 Degree elevations of a one dimensional GB-spline curve of degree 3 formed by a

basis spanning trigonometric functions over the knot vector [0, 0, 0, 0, .5, 1, 1, 1, 1]. 63

5.9 Degree elevations of a two dimensional GB-spline curve of degree 2 formed by a

basis spanning trigonometric functions over the knot vector [0, 0, 0, 0, .5, 1, 1, 1, 1]. 64

vi

5.10 Knot insertion at .25 and .75 on a degree 4 GB-spline curve defined over

[0, 0, 0, 0, 0, .5, 1, 1, 1, 1, 1]. 65

5.11 Knot insertion at .25 and .75 on a degree 2 GB-spline curve defined over

[0, 0, 0, 0, 0, .5, 1, 1, 1, 1, 1]. 66

5.12 Insertion of 3 knots at .5 and then 3 knots at .25 and again at .75 on a

degree 3 GB-spline curve defined using a Bernstein-like basis that spans the

trigonometric functions cos
(
π
2
t
)

and sin
(
π
2
t
)
. 67

5.13 Insertion of 5 knots at .5 and then 5 knots at .25 and again at .75 on a

degree 5 GB-spline curve defined using a Bernstein-like basis that spans the

trigonometric functions cos
(
π
2
t
)

and sin
(
π
2
t
)
. 68

5.14 Insertion of 2 knots at .5 and then 2 knots at .25 and again at .75 on a degree 2

GB-spline curve that exactly represents a quarter circle and is defined using a

Bernstein-like basis that spans the trigonometric functions cos
(
π
2
t
)

and sin
(
π
2
t
)
. 69

5.15 Insertion of 5 knots at .5 and then 5 knots at .25 and again at .75 on a

degree 5 GB-spline curve defined using a Bernstein-like basis that spans the

trigonometric functions cos
(
π
2
t
)

and sin
(
π
2
t
)
. 70

5.16 Insertion of 4 knots at .5 and then 4 knots at .25 and again at .75 on a

degree 4 GB-spline curve defined using a Bernstein-like basis that spans the

trigonometric functions cos
(
π
2
t
)

and sin
(
π
2
t
)
. 71

6.1 The sizes of the transcendental terms and polynomial terms for the generalized

Bernstein basis of degrees 12 and 13 with u = cos
(
π
2
t
)

and v = sin
(
π
2
t
)
. The

transcendental parts are shown in blue and the polynomial parts are shown

in red. 81

6.2 Breakdown in computation of trigonometric basis functions for p = 16. . . . 81

6.3 Generalized Bernstein bases of degree 26 with u = cos
(
π
2
t
)

and v = sin
(
π
2
t
)

computed using the tails of the Taylor series for sin and cos. 82

vii

Chapter 1. Introduction

Generalized B-splines (GB-splines) are a class of splines that have received greater attention

in research in recent years. In 1999 Ksasov and Sattayatham [1] demonstrated a variety of the

properties of GB-splines. In 2005 Costantini et al. [2] studied generalized Bernstein bases of

this form in greater detail. In 2008, Wang et al. [3] introduced unified extended splines (UE-

splines), a subclass of GB-splines and demonstrated that this new class of splines contains

several other classes of generalized splines. In 2011, Manni et al. [4] proposed that GB-

splines be used for isogeometric analysis. In [5], Romani successfully applied the techniques

from [6] to form subdivision methods allow for the approximation of UE-splines via a limit

of control meshes successively refined by a non-stationary subdivision scheme. Our purpose

here is to provide direct methods for the evaluation and refinement of GB-splines.

In the latter part of the twentieth century B-splines have seen widespread use in Computer

Aided Design (CAD). GB-splines are a promising generalization of B-splines that provide

workarounds for some of the fundamental problems that arise in CAD when using surfaces

defined by polynomial and rational functions. Rather than spanning the spaces of piecewise

polynomials spanned by traditional B-spline curves, on each interval [ti, ti+1) in the given

knot vector T , they span the spaces
{

1, t, . . . , tp−2, u
[p−1]
i , v

[p−1]
i

}
where u

[p−1]
i and v

[p−1]
i are

p− 1’th integrals of arbitrary functions forming a Chebyshev space over [ti, ti+1]. Because of

their ability to span more general classes of functions, GB-splines provide a way to exactly

model geometric shapes like circles using control point representations that are intuitive and

natural to designers. They are, however, defined in terms of a recursive integral process that

makes them more difficult to use in computation. The primary purpose of this thesis is to

present algorithms that make computation and design with GB-splines significantly easier

in practice.

Section 1.1 will provide a basic introduction to the mathematical notation used in this

thesis. Appendix A will provide the precise notation used in the algorithms in greater detail.

Chapter 2 is intended to be a concise and rigorous introduction to Bernstein polynomials.

1

Simple algorithms for a variety of common operations on Bezier curves are presented. B-

splines are also introduced and several of their properties are presented. De Boor [7], Farin

[8], Piegl and Tiller [9], and Schumaker [10] all provide a more lengthy introduction to these

topics. A good short survey is also provided by Farouki [11].

Chapter 3 is dedicated primarily to the definition of GB-splines, and a discussion of

their properties. Some relevant proofs are also presented. Here, the local structures used to

perform evaluation and refinement will also be introduced.

Chapter 4 presents general algorithms to construct piecewise representations for a GB-

spline basis. The primary driving algorithm there is Algorithm 9 which constructs the

piecewise representation for a GB-spline basis. The central purpose of this chapter is to

provide detailed descriptions of practical and efficient algorithms that can be used for the

evaluation of GB-spline bases.

Chapter 5 presents a general algorithm for representing a given spline curve in terms of

a GB-spline basis that contains the given curve in its span. Algorithm 17 provides a method

that can be used for both degree elevation, knot insertion, and the modification of end

conditions for a given spline curve. This algorithm is effective for both polynomial splines

and for more general GB-spline curves. The approach in Chapter 5 of projecting to and

from local representations of spline curves can be used to perform more general projections

between spline bases. This technique is demonstrated for B-spline curves in [12].

Chapter 6 discusses various numerical concerns and discusses how instabilities can be

safely avoided. The generality of the algorithms presented earlier on requires a discussion of

when the computation of GB-spline bases may be ill conditioned. Workarounds are suggested

for cases in which the algorithms presented here may be less accurate.

Chapter 7 provides a short discussion of future research that can build off of the ap-

proaches used here.

Appendix B provides Python routines that perform the algorithms documented in Chap-

ters 4 and 5 as well as some useful auxiliary routines.

2

1.1 Notation

Throughout this document the following notation will be used.

u(n) The n’th derivative of the function u
u[n] The n’th indefinite integral of the function u (where u[n] (0) = · · · = u[1] (0) = 0)
u{n} The Taylor series of u[n]

χA The indicator function of the set A

Table 1.1: Notational conventions.

The notation for algorithms is outlined more particularly in Appendix A. Roughly speak-

ing, the notation follows the conventions used in NumPy. Numpy-style array slicing notation

will be used (see Appendix A). All arithmetic operations on arrays should be considered el-

ementwise unless otherwise noted. Matrix multiplication will be written by simply writing

the variables next to one another. 0-based indexing for arrays is assumed throughout.

Broadcasting semantics for applying operations along various axes of different arrays are

used extensively in the algorithms in this thesis. They are described in greater detail in

Appendix A. Broadcasting of operations on arrays is particularly important to the material

here because it provides a simple and concise way to express operations along different axes

of an array without obscuring the primary meaning of an expression with lengthy subscripts

and many nested loops.

Much of the syntax for the algorithms outlined in the appendix is borrowed from Python.

In the face of any doubts, the reader is invited to consult the exact code for each algorithm

provided in Appendix B.

Chapter 2. Background

The Bernstein polynomials were first introduced by Bernstein in [13] as a method for ap-

proximation by polynomials. They were used as an alternative method of proof for the

Weierstrass Approximation Theorem, but saw little use otherwise. In the late 1950’s and

early 1960’s, De Casteljau and Bezier both began work on using Bernstein polynomials for

3

computer aided design. De Casteljau and Bézier were both mathematicians working for car

companies. Bézier worked at Renault and De Casteljau worked at Citroën. De Casteljau’s

work preceded that of Bézier, but, due to Citroën’s more restrictive policies about publica-

tion of original research, his work was not widely known until several years later. Because

of this, curves for CAD formed using Bernstein polynomials are called Bézier curves. The

primary algorithm used to evaluate Bézier curves, however, is still known as De Casteljau’s

algorithm. A more complete discussion of the origins of Bernstein polynomials and Bézier

curves is given in [11] as well as the first chapter of [8].

B-splines also have a long history. They were first introduced by Schoenberg for smooth-

ing data in 1946 [14]. A brief discussion of the origins of B-splines can be found in the

introduction of the chapter on B-splines in Farin’s book on splines [8].

The purpose of this chapter is to provide a concise introduction to the properties of

Bernstein polynomials and B-splines. Many of the properties here extend to GB-splines as

well. This chapter also serves as a stand-alone reference showing many of the basic proofs

and algorithms for working with Bernstein polynomials.

2.1 Bernstein Polynomials

Definition 2.1. For any degree p and for i = 0, 1, . . . , p, Bp
i , the i’th Bernstein basis

polynomial of degree p, is defined as

(
p

i

)
(1− t)p−i ti

A polynomial is said to be in Bernstein form if it is represented as a linear combination of

Bernstein polynomials of a given degree. The coefficients for Bernstein basis function used

in this linear combination are called the Bernstein coefficients.

Definition 2.2. We will refer to the usual polynomial basis 1, x, . . . , xp as the power basis.

4

Figure 2.1: The Bernstein basis polynomials of degrees 2, 3, 4, and 5.

Though the definition of the Bernstein polynomials already provides a simple means for

evaluation of polynomials in Bernstein form, they are seldom computed using the original

definition. It is faster and more numerically stable to compute them using a system of suc-

cessive averages of the Bernstein coefficients. This averaging process is shown in Algorithm

1. It is commonly known as the De Casteljau algorithm. The De Casteljau algorithm is

illustrated for polynomials in Bernstein form in Figure 2.3.

Algorithm 1 The De Casteljau algorithm for evaluating polynomials in Bernstein form

procedure Decasteljau(a, t)
. Evaluate polynomial with coefficients a at parameter value t.
p = deg (a)
for i = 0, i < p do

a = (1− t) ∗ a [: p− i− 1] + t ∗ a [1 :]
end for
return a [0]

end procedure

5

Figure 2.2: Polynomials in Bernstein form of degrees 2, 3, 4, and 5 (green) shown with their
Bernstein coefficients (blue).

Theorem 2.3. The De Casteljau algorithm for evaluating polynomials in Bernstein form is

correct.

Proof. Notice that (
p

i

)
=

(
p− 1

i− 1

)
+

(
p− 1

i

)
.

Applying this to the definition of the Bernstein polynomials, we see that

Bp
i (t) =

(
p

i

)
ti (1− t)p−i

=

((
p− 1

i− 1

)
+

(
p− 1

i

))
ti (1− t)p−i

= t

(
p− 1

i− 1

)
(1− t)p−1−(i−1) ti−1 + (1− t)

(
p− 1

i

)
(1− t)p−1−i ti−1

= tBp−1
i−1 (t) + (1− t)Bp−1

i (t)

Consider some parameter value t. For a given Bernstein polynomial a with coefficients ai,

6

Figure 2.3: An illustration of the De Casteljau algorithm (Algorithm 1) for evaluating poly-
nomials in Bernstein form. Here, parameter values 1

3
and 2

3
are used.

define bpi = ai for i = 0, . . . , p, and bq−1i = (1− t) bqi + tbqi+1 for 0 ≤ q < p and 0 ≤ i ≤ p− q.

Notice that, in Algorithm 1, bqi is the i’th entry of the array a after p − q steps of the for

loop. For brevity in notation, we assume all other bqi are 0 and Bq
i = 0 whenever i < 0 or

i > q. Now notice that

a (t) =

p∑
i=0

bpiB
p
i (t)

=

p∑
i=0

(
tbpiB

p−1
i−1 (t) + (1− t) bpiB

p−1
i (t)

)
=

p−1∑
i=0

(
(1− t) bpi + tbpi+1

)
Bp−1
i (t)

=

p−1∑
i=0

bp−1i Bp−1
i (t)

...

= b00B
0
0 (t)

= b00.

Remark 2.4. The Bernstein basis is symmetric across the line x = 1
2
. In other words,

Bp
i (1− t) = Bp

p−i (t). This implies that a polynomial in Bernstein form can be reflected

7

across the line x = 1
2

by reversing its coefficients.

Definition 2.5. A finite set of continuous functions over an interval is said to be a partition

of unity if, at any point in that interval, the functions all sum to 1.

Theorem 2.6. The Bernstein polynomials of a given degree form a partition of unity.

Proof. Consider any degree p ≥ 0. Note that, by the binomial theorem

1 = 1p = (t+ (1− t))p =

p∑
i=0

(
p

i

)
(1− t)p−i ti =

p∑
i=0

Bp
i (t) .

Remark 2.7. Each Bernstein basis polynomial takes values in (0, 1) on (0, 1). This implies

that each basis function is nonnegative.

Remark 2.8. For any p ≥ 0 and 0 < i < p, Bp
0 (0) = Bp

p (1) = 1 and Bp
0 (1) = Bp

i (0) =

Bp
i (1) = Bp

p (0) = 0.

Identities also exist for differentiation and integration of Bernstein polynomials

Theorem 2.9. The derivative of Bp
i is p

(
Bp−1
i−1 −B

p−1
i

)
with Bp

−1 = Bp
p+1 understood as 0.

Proof. Assuming i /∈ {0, p},

(Bp
i)
′ (t) =

p!

i!(p− i)!
i (1− t)p−i ti−1 − p!

i! (p− i)!
(p− i) (1− t)p−i−1 ti

=
(p− 1)

(i− 1)! (p− 1− (i− 1))!
p (1− t)p−1−(i−1) ti−1 − (p− 1)!

(i)! (p− 1− i)!
p (1− t)p−1−i ti

= p

((
p− 1

i− 1

)
(1− t)p−1−(i−1) ti−1 −

(
p− 1

i

)
(1− t)p−1−i ti

)
= p

(
Bp−1
i−1 (t)−Bp

i−1 (t)
)
.

For the case that i ∈ {0, p}, the proof is the same, but with the zero terms omitted.

8

Corollary 2.10. Given a polynomial a with Bernstein coefficients ai (where . . . , a−2, a−1,

and ap+1, ap+2, . . . are all considered to be 0). The n’th derivative of a is:

a(n) =
p!

(p− n)!

p−n∑
i=0

(
n∑
j=0

(
n

j

)
(−1)n−j ai−j

)
Bp−n
i .

In particular

a′ = p

p−1∑
i=0

(ai−1 − ai)Bp−1
i .

Theorem 2.11. Each Bp
i has a unique local maximum of ii(p−i)p−i

pp

(
p
i

)
on the interval [0, 1]

at i
n

.

Proof. The derivative of Bp
i is p

(
Bp−1
i−1 −B

p−1
i

)
. Evaluating this expression directly at i

n
we

see

(Bp
i)
′
(
i

n

)
= p

(
(p− 1)!

(p− i)! (i− 1)!

(
p− i
p

)p−i(
i

p

)i−1
− (p− 1)!

(p− i− 1)!i!

(
p− i
p

)p−i−1(
i

p

)i−1)

= 0.

Furthermore, Bp−1
i−1 and Bp−1

i must have another p − 2 factors that are either t or 1 − t, so

the only possible maximum or minimum on [0, 1] is at i
n
. By Remarks 2.7 and 2.8, this point

is a maximum on [0, 1], so it is the unique maximum. Direct evaluation gives the desired

value.

Theorem 2.12. The integral of Bp
i is

1

p+ 1

p+1∑
j=i+1

Bp+1
j

and consequently, ∫ 1

0

Bp
i =

1

p+ 1
.

9

Proof. Note that (
1

p+ 1

p+1∑
j=i+1

Bp+1
j

)′
=

p+1∑
j=i+1

(
Bp
j−1 −B

p
j

)
= Bp

i .

This means that this is a valid indefinite integral for the given Bernstein basis function.

Since this expression is 0 at 0, this is exactly equal to the indefinite integral when it is taken

with respect to the power basis. Now for the definite integral, note that, given the values of

each basis function at 0 and 1,

∫ 1

0

Bp
i (t) dt =

1

p+ 1

p+1∑
j=i+1

Bp+1
j (1)− 1

p+ 1

p+1∑
j=i+1

Bp+1
j (0) =

1

p+ 1
.

Corollary 2.13. For a polynomial a with Bernstein coefficients ai,

∫
a (t) dt =

1

p+ 1

p+1∑
i=1

ai

p+1∑
j=i+1

Bp+1
j (t)

=

p+1∑
i=1

(
1

p+ 1

i−1∑
j=0

aj

)
Bp+1
i (t) .

Multiplication of polynomials in Bernstein form can be performed by transforming to the

basis (1− t)p−i ti, expanding in terms of (1− t) and t, and then transforming back to the

Bernstein basis of the appropriate degree (see [15]). This process is shown in Algorithm 2.

Algorithm 2 Multiplication of two polynomials in Bernstein form

procedure BernsteinMultiply(a, b)
. a and b are arrays containing the Bernstein coefficients for two polynomials.
c = (a ∗ bin (deg a)) ~ (b ∗ bin (deg b))
return c/bin (deg a+ deg b)

end procedure

Using a similar process as for multiplication, the following is also clear:

Remark 2.14. A Bernstein polynomial of order p is divisible by t if the first term in

its Bernstein representation is 0 and divisible by 1 − t if the last term in its Bernstein

10

representation is 0. This motivates Algorithm 4 for dividing a polynomial by t or 1− t.

Algorithm 3 Factor out a root at the left or right endpoint of a Bernstein polynomial.

procedure FactorLeft(a)
. a is an array containing the coefficients of a given Bernstein polynomial.
p = deg a
return (a ∗ bin (p)) [1 :] /bin (p− 1)

end procedure
procedure FactorRight(a)

. a is an array containing the coefficients of a given Bernstein polynomial.
p = deg a
return (a ∗ bin (p)) [: p− 1] /bin (p− 1)

end procedure

For polynomials of relatively small degree, the following algorithm can be used to perform

polynomial division in the Bernstein basis. This algorithm works the same way as the

Algorithm 4 Factor out a root at the left or right endpoint of a Bernstein polynomial.

procedure BernsteinDivide(a, b)
. Perform polynomial division of a by b.
q, r = dcv (a ∗ bin (len (a)− 1) , b ∗ bin (len (b)− 1))
q /= bin (len (q)− 1)
r /= bin (len (a)− 1)
return q, r

end procedure

multiplication algorithm. It changes the polynomial to a scaled version of the basis, performs

polynomial division, then scales back to the Bernstein basis. One key difference between this

algorithm and standard polynomial division is that the remainder r has the same degree as

a. All but the last len (b) − 1 entries of r should always be close to 0. In practice, this

algorithm is not always numerically stable. A more robust approach for a root between

0 and 1 is to subdivide the curve at the computed root. The process for subdividing a

Bernstein polynomial into two separate Bernstein polynomials defined on the subintervals

that lie on either side of the point of subdivision is shown in Algorithm 8. That approach

has been applied successfully to develop root finding algorithms for Bernstein polynomials

11

in [16]. More stable methods for Bernstein polynomial division have also been developed

([17], [18], [19]).

Bernstein polynomials can also be represented as Bernstein polynomials of higher degree.

Theorem 2.15. A polynomial in Bernstein form can be represented as a Bernstein polyno-

mial of higher degree, in particular,

p∑
i=0

aiB
p
i =

p+1∑
i=0

(
i

p+ 1
+
p+ 1− i
p+ 1

)
aiB

p+1
i

with a−1 = ap+1 = 0.

Proof. Note that (
p
i−1

)(
p+1
i

) =
i

p+ 1
,

and (
p
i

)(
p+1
i

) =
p+ 1− i
p+ 1

.

So, letting a−1 and ap+1 take arbitrary finite values, we have

p∑
i=0

aiB
p
i (t) = ((1− t) + t)

p∑
i=0

ai

(
p

i

)
(1− t)p−i ti

=

p∑
i=0

ai

(
p

i

)(
(1− t)p+1−i ti + (1− t)p+1−(i+1) ti+1

)
=

p+1∑
i=1

ai−1

(
p
i−1

)(
p+1
i

)Bp+1
i (t) +

p∑
i=0

ai

(
p
i

)(
p+1
i

)Bp+1
i (t)

=

p+1∑
i=0

(
i

p+ 1
ai−1 +

p+ 1− i
p+ 1

ai

)
Bp+1
i (t) .

Algorithm 5 shows one way to implement Theorem 2.15. The process of representing a

Bernstein polynomial (or any sort of spline curve) as a Bernstein polynomial (or spline) of

higher degree is known as degree elevation.

12

Algorithm 5 Degree elevation of a Bernstein polynomial

procedure DegreeElevate(a)
. a is an array containing the Bernstein coefficients for a polynomial in Bernstein form.
p = deg (a)
b = an empty array of length p+ 1
b (0) = 1
for i = 1, i < p do

b [i] = 1
p+1

a [i− 1] + p+1−i
p+1

a [i]
end for
b [p] = a [p− 1]

end procedure

Remark 2.16. Addition and subtraction of Bernstein polynomials of different degree can

be performed by degree elevating the polynomial of lower degree until both polynomials have

the same degree and then adding (or subtracting elementwise).

Algorithm 6 shows how to convert a polynomial from Bernstein form to power basis form.

Algorithm 6 Conversion of a polynomial in power basis form to Bernstein form.

procedure BernsteinToPowerBasis(a)
. Overwrite a with the polynomial coefficients in ascending order.
p = deg (a)
for i = 1, i < p do

a[i :] −= a[i− 1 : p− 1]
end for
a ∗= bin (p)

end procedure

Theorem 2.17. Algorithm 6 is a valid algorithm for converting from Bernstein form to

power form.

Proof. Consider a polynomial a in Bernstein form with coefficients ai. Since the terms can

be expanded, this polynomial can be represented in terms of the power basis with coefficients

bi. Since these two expressions are equal, their derivatives at 0 must be equal. Taking the

i’th derivative of the power basis representation at 0, we see the i’th derivative is equal to

i!bi. Theorem 2.9 shows that the i’th derivative at 0 is just the i’th entry of the array a of

Bernstein coefficients at the i’th step in the for-loop in Algorithm 6 times p, p−1, . . . , p−i+1.

13

Since each term is left in the i’th entry of the array a, once the loop has finished,

a(i) =
p!

(p− i)!
a [i] = i!bi.

This implies that

bi =

(
p

i

)
a [i] .

Algorithm 7 shows how to convert a polynomial to Bernstein form.

Algorithm 7 Conversion of a polynomial from power basis form to Bernstein form

procedure PowerBasisToBernstein(a)
. a is an array of the polynomial coefficients in ascending order.
. Overwrite a with the coefficients for the Bernstein form.
p = deg (a)
a /= bin (p)
for i = 1, i < p do

a[i :] += a[i− 1 : p− 1]
end for

end procedure

Theorem 2.18. Algorithm 7 is a valid algorithm for converting from power form to Bern-

stein form.

Proof. This amounts to showing that the two algorithms are inverses of one another. The

power basis coefficients are multiplied by the binomial coefficients at the end of Algorithm

6 and divided by them at the beginning of Algorithm 7, so it is sufficient to prove that the

loops in the algorithms are the inverses of one another. Given an array a of the Bernstein

coefficients define aij to be the j’th entry of the array a after i iterations of the loop in

Algorithm 6. In this form the input values in a are a00, a
0
1, . . . , a

0
p and the resulting values can

be found in a00, a
1
1, . . . a

p
p. It is also true that for i ≤ j, i > 0, aij = ai−1j − ai−1j−1. This equality

certainly also implies that ai−1j = aij + ai−1j−1. This recursion has the form of the main loop in

14

Algorithm 7, so, given an initial array b containing a00, . . . , a
p
p, after the loop is finished, the

resulting array contains a00, . . . , a
p
p, as desired.

Remark 2.19. By Theorem 2.18, Algorithm 7 is correct for any polynomial represented

in the power basis. Since the power basis is a linearly independent set of functions and

basis conversion is a linear operator with an inverse (since Algorithm 6 is also correct), the

Bernstein basis functions are all linearly independent.

Arithmetic operations with Bernstein polynomials are well studied. See [15] and [11] for

more details.

Remark 2.20. Evaluation of Bernstein polynomials inside the domain [0, 1] is known to be

a very stable operation ([20], [21]). The algorithms for conversion to and from the power

basis (Algorithms 6 and 7) are not numerically well-behaved ([22]), nor is the short algorithm

for polynomial division (Algorithm 4).

Remark 2.21. Bernstein polynomials can be represented over intervals other than [0, 1].

The parameter values are just scaled linearly so that the new interval is mapped to [0, 1]

before the De Casteljau algorithm is applied. In finite element analysis, the convention of

representing Bernstein polynomials over the interval [−1, 1] is common.

The fact that the Bernstein basis is linearly independent implies that, at any given

parameter value t (even outside [0, 1]) we may subdivide a polynomial a into two separate

polynomials a1 and a2 such that if a1 is represented in the Bernstein basis from 0 to t and

a2 is represented in the Bernstein basis from t to 1, then a(t) = a1(t) whenever t is between

0 and t and a(t) = a2(t) whenever t is between t and 1. Algorithm 8 shows how to compute

the new control points the new curves a1 and a2. Theorem 2.22 shows the correctness of

Algorithm 8.

Theorem 2.22. Algorithm 8 is a valid algorithm for subdividing a polynomial in Bernstein

form.

15

Algorithm 8 Subdivision of a Bernstein polynomial

procedure Subdivide(a, t)
. a is an array with the Bernstein representation of a polynomial.
. t is the parameter value where the subdivision should take place.
p = deg (a)
a1 = empty array of same shape and type as a
a2 = empty array of same shape and type as a
a = (1− t) ∗ a [: p− 1] + t ∗ a [1 :]
a1 [0] = a [0]
a2 [p− 1] = a [p− 1]
for i = 1, i < p do

a = (1− t) ∗ a [: p− 1] + t ∗ a [1 :]
a1 [i] = a [i]
a3 [p− i− 1] = a [p− i− 1]

end for
return a1, a2

end procedure

Proof. This algorithm can be viewed as a way of storing intermediate values in the De

Casteljau algorithm. It is discussed in greater detail in [8]. It is also shown in a different

context as a method for representing Bézier curves as subdivision surfaces in [6].

2.2 Bézier Curves

Definition 2.23. Given a set of points a0, . . . , ap in Rn, the Bézier curve defined by those

points is

a(t) =

p∑
i=0

aiB
p
i (t)

The points a0, . . . ap are called the control points of a.

Remark 2.24. Though a Bézier curve defines a curve for all parameter values, generally

its domain is restricted to [0, 1]. Only some of the properties of Bézier curves extend to

parameter values outside their primary interval of definition. For example, outside the

interval [0, 1], basis functions need not take values in [0, 1] or even be positive. Algorithms

for things like evaluation and subdivision will be correct, but their stability may degrade

outside the primary interval of interest.

16

Figure 2.4: Bézier curves of degrees 3 and 4.

Remark 2.25. Many different types of curves can be represented in terms of basis functions

and control points as in Definition 2.23. Bézier curves are defined to use the Bernstein

basis, but other types of curves can be defined using different bases with similar properties.

Functions used to represent a curve in this way are called blending functions. When referring

to a curve, we will assume it is represented in terms of control points and blending functions

from a given basis.

Definition 2.26. The control polygon of a Bézier curve is defined to be the piecewise linear

interpolant of the control points.

Definition 2.27. A curve is variation diminishing if any line intersecting the curve intersects

the curve’s control polygon at least as many times as it intersects the curve.

Definition 2.28. A curve is said to have the convex hull property if it only takes values

that lie in the convex hull of its control points (i.e., each point on the curve is a convex

combination of the control points).

Definition 2.29. A set of basis functions is affine invariant or coordinate system independent

if, for an affine transformation T and any set of control points ai,

T

(
n∑
i=0

aiB
p
i (t)

)
=

n∑
i=0

T (ai)B
p
i (t) .

17

Figure 2.5: The De Casteljau algorithm (Algorithm 1) applied to a Bézier curve at parameter
values 1

3
and 2

3
.

In other words, a curve is coordinate system independent if linear transformations and trans-

lations of the curve can be performed on the entire curve by applying the given transformation

to the curve’s control points.

Theorem 2.30. A curve is coordinate system independent if and only if its blending func-

tions form a partition of unity.

Proof. Here we follow the proof in [23]. Let T be an affine transformation with corresponding

matrix representation T (x) = Ax+b. Then, for a curve with control points ai in the domain

of T defined in terms of a given set of basis functions, the following is true if and only if the

basis functions form a partition of unity

T

(
n∑
i=0

aiB
p
i (t)

)
=

n∑
i=0

Bp
i (t)Aai + b

=
n∑
i=0

Bp
i (t)Aai +

n∑
i=0

Bp
i (t) b

=
n∑
i=0

T (ai)B
p
i (t)

Theorem 2.31. Any Bézier curve a(t) of degree p with control points a0, . . . , ap has the

following properties:

18

(i) a(t) interpolates its endpoints, i.e. a(0) = a0 and a(1) = ap,

(ii) a(t) is variation diminishing,

(iii) a(t) lies entirely within the convex hull of its control points,

(iv) a(t) is coordinate system independent,

(v) a′(t) and
∫
a(t)dt can be obtained the same way as for Bernstein polynomials except

that arithmetic involving control points is understood to be elementwise,

(vi) a(t) can be evaluated by applying the De Casteljau Algorithm (Algorithm 1) to its control

points,

(vii) a(t) can be subdivided at any given parameter value by applying Algorithm 8 to its

control points elementwise,

(viii) a(t) can be represented as a Bezier curve of higher degree with the new control polygon

computed the same way the coefficients for degree elevation were computed for Bernstein

polynomials,

(ix) Algorithms 6 and 7 can be used to convert between the Bézier representation of a curve

and a polynomial parameterization of each coordinate of the curve,

(x) Reversing the control points of a gives a backwards parameterization of a,

Proof. (i) is an immediate consequence of the end-values of the Bernstein basis functions.

(ii) is a special case of Theorem 3.10.

(iii) follows since, by Theorem 2.6, every point on a Bézier curve is a convex combination

of its control points.

(iv) is an immediate consequence of Theorem 2.30.

(v) - (x) are direct analogues of some of the properties of Bernstein polynomials and are

a result of elementwise arithmetic.

19

2.3 B-splines

B-splines are an important generalization of Bézier curves. B-splines have many of the same

properties as Bézier curves, but they also address some key shortcomings. B-spline theory

allows the creation of curves where each control point only has an effect on a small portion

of the curve. It allows greater control of the parameter domain and of differing degrees of

continuity at different parameter values. It also separates the number of control points from

the degree of the curve to allow the definition of lower degree curves that have many control

points.

In these definitions, we use the recursion introduced in [24] and [25] as the primary

definition for B-splines. There was an earlier definition of these curves in terms of divided

differences, but, for both simplicity and numerical stability, we will omit it here.

Definition 2.32. A knot vector is a nondecreasing vector of real numbers. Knot vectors are

used to define the parameter domain for a B-spline. Each value in the knot vector is called

a knot.

Definition 2.33. Given a specific knot vector T = (t0, . . . , tm) of length m, denote the i’th

B-spline basis function Bp
i . (The difference between a B-spline basis function and a Bernstein

basis function should always be clear from the context). Define (for 0 < i < m− 1)

B0
i (t) = χ[ti,ti+1) (t)

and for 0 ≤ i < m− 1− p with 0 < p < m− 1,

Bp
i (t) =

t− ti
ti+p − ti

Bp−1
i (t)− t− ti+1

ti+p+1 − ti+1

Bp−1
i+1 (t)

p is called the degree of the B-spline. If either of the fractions in this definition have a 0

in the numerator, they should evaluate to 0, regardless of whether or not the denominator

is 0. In addition, if tm−p−1 = · · · = tm−1 and tm−p−2 6= tm−p−1 (i.e., if the last p knots are

20

Figure 2.6: B-spline bases of degrees 1, 2, 3, and 4.

repeated, and the last basis function is nonzero), define Bp
m−p−2 (tm−1) = 1.

Definition 2.34. Given a spline degree p, the active region of a given knot vector T is the

interval [tp, tm−p−1].

Definition 2.35. Given a knot vector T of length m, a degree p, and m − p − 1 control

points ai, define the corresponding B-spline curve a(t) as

a (t) =

m−p−2∑
i=0

aiB
p
i (t)

for t ∈ [tp, tm−p−1]. a(t) is not defined outside the active region of T . The knots t0, . . . , tp−1

and tm−p, . . . , tm−1 (those that can possibly lie outside the active region) are called end

21

Figure 2.7: A degree 4 B-spline curve.

condition knots.

Remark 2.36. We will refer to the recursion in Definition 2.33 as the De Boor recursion.

Definition 2.37. Given a degree p, a knot vector T is said to be open if the first p + 1

knots are equal and the last p+ 1 knots are equal. This is equivalent to saying that the knot

vector’s span is equal to its active region.

Remark 2.38. In practice, it is common to say that a B-spline of degree p has order p+ 1.

Throughout this thesis, degrees will be used.

Remark 2.39. The degree 0 basis functions are defined, loosely speaking as the indicator

functions of the intervals between the knots in the knot vector, so for any given knot vector,

22

Figure 2.8: B-spline bases of degrees 1, 2, 3, and 4.

the maximum number of degree 0 basis functions have been defined. Furthermore, the basis

functions Bp
i have been defined for all i and p for which Bp−1

i and Bp−1
i+1 are also defined. In

general, for a knot vector of length n, there are n− p− 1 B-spline basis functions of degree

p.

Remark 2.40. If ti < ti+1 < ti+2, the B-spline basis function B1
i is the unique piecewise

linear function that is linear everywhere except at ti, ti+1, and ti+2, takes a values of 0 at ti,

1 at ti+1, and 0 at ti+2, and is 0 outside the interval (ti, ti+2). These are the same as the hat

functions commonly used in finite element analysis.

Theorem 2.41. Bézier curves are a special case of B-splines.

23

Proof. Consider the Bernstein basis of degree p. We desire to show that this is a B-spline

basis for a given degree. Consider the knot vector that consists of 0 repeated p times and

then 1 repeated p+ 1 times. Then, the De Boor recursion can be rewritten as

Bp
i (t) = tBp−1

i (t) + (1− t)Bp−1
i+1 (t) .

This is the same recurrence as was used in the De Casteljau algorithm. Now noting Remark

2.40 the nonzero basis functions for this knot vector exactly coincide with the Bernstein

basis polynomials of degree 1, so all nonzero basis functions are the same. Since the nonzero

basis functions are the same for each degree up to and including p, the bases of degree p are

certainly the same as well.

Theorem 2.42. B-splines have all of the following properties (where a(t) is any given B-

spline of degree p with knot vector T and control polygon a comprised of n control points):

(i) a(t) interpolates its endpoints if T is open.

(ii) A B-spline basis of degree p over a knot vector T of length m forms a partition of unity

over its active region.

(iii) a(t) lies entirely within the convex hull of its control points.

(iv) a(t) is variation diminishing.

(v) a(t) is coordinate system independent.

(vi) a(t) can be represented as a B-spline curve of higher degree over a new knot vector with

the knots in T and one additional knot less than or equal to the first knot of T and one

additional knot greater than or equal to the last knot of T .

(vii) Each B-spline basis function is supported on the interval [T [i] , T [i+ p+ 1]]. This

means that each control point controls only a portion of the curve.

24

Figure 2.9: The geometric representation of the De Boor recurrence (given in Definition
2.33) shown here at parameter values 0.2, 0.8, 1.2, 1.8, 2.2, and 5.8.

25

(viii) a(t) is infinitely differentiable everywhere except at its knots, where it is Cp−j where j

is the number of times the knot is present in the knot vector (with negative degrees of

continuity taken to mean that no continuity is implied).

(ix) The i’th basis function of degree p is 0 everywhere if and only if T [i] = · · · = T [i+ p+ 1].

(x) Each B-spline basis function is positive on the interior of its support.

(xi) All nonzero B-spline basis functions are linearly independent.

(xii) a(t) can be represented as a degree p B-spline over a knot vector T ′ with the same active

region where T ′ contains all the knots in T , in particular, a(t) can be represented as a

B-spline over a knot vector T ′ where T ′ is T with one additional knot (or one additional

repetition of an existing knot) inside its active region. This operation is linear.

(xiii) The derivative of a(t) is

a′(t) =
n∑
i=0

p
ai+1 − ai
ti+p − ti

Bp−1
i (t)

where the basis functions Bp−1
i are over the knot vector formed by removing the first

and last knot of T .

(xiv) The indefinite integral of Bp
i from ti to a given value in the corresponding active region

of a knot vector T is given in terms of the basis functions of degree p+ 1 defined on a

knot vector T ′ formed by adding an end condition knot to each end of T . It is

∫
Bp
i (s) ds =

ti+p+1 − ti
p+ 1

n+1∑
j=i

Bp+1
j (t)

(xv) The definite integral of Bp
i over its support is

ti+p+1−ti
p+1

.

26

Proof. Many of these facts will be established as special cases of more general theorems in

Chapter 3. (i) is a consequence of Theorem (3.11). (ii) and (v) follow from Theorems 3.9 and

2.30. (iii) and (iv) follow immediately form Theorem 3.10. (vi) and (xii) are a consequence

of the algorithm presented in Chapter 5. (xi) also follows from Theorem 3.10. (vii) is a

consequence of Theorem 3.8. (xiii) and (xiv) are given in [7]. (xv) follows immediately from

(xiv) by adding knots to the ends of the knot vector T so that the support of Bp
i lies entirely

in the active region and then applying (vii), (ii), and (xiv).

Chapter 3. Definition of GB-splines

Generalized B-splines (GB-splines) were introduced in [3]. They are a more general class of

spline designed to retain most of the desirable properties of B-splines while also spanning

spaces of the form {1, t, . . . , tp−2, u (t) , v (t)} for more general types of functions u and v over

each interval in a knot vector. They were introduced to unify theories of a variety of other

generalized spline curves that have been introduced in recent years.

Definition 3.1. A set of p linearly independent functions are said to form a Chebyshev

space over an interval I if any nonzero function in their span has at most p− 1 roots in that

interval.

Remark 3.2. Any two functions each with p − 1 zeros in a Chebyshev space whose zeros

coincide must be scalar multiples of one another.

Theorem 3.3 provides some intuition into what kinds of functions can be used to form a

Chebyshev space.

Theorem 3.3. Two monotonic functions on an interval [a, b], one strictly increasing and

the other strictly decreasing that are either both nonpositive or both nonnegative form a

Chebyshev space over [a, b].

27

Proof. Without loss of generality say that u is decreasing and v is increasing. Taking

ũ (t) = v (b)u (t)− u (b) v (t)

ṽ (t) = u (a) v (t)− v (a)u (t)

and then scaling both by a constant so both are nonnegative we may also, without loss of

generality say that u (b) = v (a) = 0 and u (a) = v (b) = 1.

Consider a linear combination (with at least one nonzero coefficient) of u and v that is

equal to 0 somewhere in [a, b]. If the zero lies at an endpoint, one of the coefficients must

be 0, so by strict monotonicity, the zero is unique. If the zero lies in the interior of [a, b],

then, since u and v are both positive on (a, b), the coefficients in the linear combination must

have different signs, so the resulting linear combination is strictly monotonic, so the zero is

unique.

Definition 3.4. Given a knot vector T , and functions ui and vi forming a Chebyshev space

on each [ti, ti+1] of nonzero length such that u (0) = v (1) = 1 and v (0) = u (1) = 0, we will

refer to the sets of functions ui and vi as the knot functions over T .

Definition 3.5. Let T be a knot vector with corresponding knot functions ui and vi and a

degree p. Define the i’th GB-spline basis function of degree p (Np
i) as follows:

N1
i (t) =


ui(t) t ∈ [ti, ti+1)

vi+1(t) t ∈ [ti+1, ti+2]

0 otherwise

,

δpi =

∫ ti+p+1

ti

Np
i (s) ds,

28

Figure 3.1: Bernstein-like GB-spline basis functions formed by using cos
(
π
2

(t− ti)
)

and
sin
(
π
2

(t− ti)
)

as the knot functions.

and if δpi = 0 let

Φp
i (t) =


0 t < ti+p+1

1 t ≥ ti+p+1

and if δpi 6= 0

Φp
i (t) =

∫ t
ti
Np
i (s) ds

δpi
.

Now, for p > 1, define

Np
i (t) = Φp−1

i (t)− Φp−1
i+1 (t) .

In addition, if tm−p−1 = · · · = tm−1 and tm−p−2 6= tm−p−1 (i.e. if the last p knots are

repeated, and the last basis function is nonzero), define Bp
m−p−2 (tm−1) = 1.

29

Figure 3.2: B-spline-like GB-spline bases of degree 2 and 3 formed by using cos
(
π
2

(t− ti)
)

and sin
(
π
2

(t− ti)
)

as the knot functions.

Definition 3.6. Given a knot vector T of length m with a corresponding set of knot func-

tions, a degree p > 1, and m − p − 1 control points ai, define the corresponding GB-spline

curve a(t) as

a (t) =

m−p−2∑
i=0

aiN
p
i (t)

for t ∈ [tp, tm−p−1]. a(t) is not defined outside the active region of T .

Definition 3.7. Given a knot vector T with corresponding sets of knot functions ui and vi,

define

V p
i = span

{
1, (t− ti) , . . . , (t− ti)p−2 , u[p−1] (t) , v[p−1] (t)

}
Where u[p−1], and v[p−1] are the (p− 1)’th indefinite integrals of u and v respectively.

Theorem 3.8. Φp
i takes values of 0 for t < ti and 1 for t ≥ ti+p+1. Furthermore, Np

i is zero

outside the interval [ti, ti+p+1].

Proof. By definition, N1
i is 0 outside the interval [ti, ti+2]. If Φ1

i is a step function, it also

satisfies the desired constraints. If Φ1
i is not a step function, then, because N1

i is 0 outside

the interval [ti, ti+2], Φ1
i (t) = 0 for t < ti and Φ1

i (t) =
δ1i
δ1i

= 1 for t ≥ ti+p+1. Now suppose

for induction that Φp
i takes values of 0 for t < ti and 1 for t ≥ ti+p+1 and that Np

i is zero

30

Figure 3.3: A GB-spline curve equal to different circles on different parts of its domain.

outside the interval [ti, ti+p+1]. This implies that, since Np+1
i = Φp

i − Φp
i+1, it is 0 outside

the set [ti, ti+p+1] ∪ [ti+1, ti+p+2] = [ti, ti+p+2]. Again, if Φp
i is a step function, it satisfies the

given constraints. If it is not, then, by the same argument as before, Φp+1
i = 0 for t < ti and

Φp+1
i = 1 for t ≥ ti+p+2.

Theorem 3.9. The GB-spline basis sums to 1 inside the active region of a given knot vector.

Proof. Let T be a knot vector. Consider a GB-spline basis of degree p > 1 over T with basis

functions Np
0 , . . . , N

p
n. Then

n∑
i=0

Np
i (t) =

n∑
i=0

Φp−1
i (t)− Φp−1

i+1 (t) = Φp−1
0 (t)− Φp−1

n+1 (t)

31

Figure 3.4: A GB-spline curve over a uniform knot vector that exactly represents a circle.

Now, by Theorem 3.8 Φp−1
0 is 1 on the active region for degree p and Φp−1

n+1 is 0, on the active

region for degree p, this establishes the desired result.

Theorem 3.10. The nonzero GB-spline basis functions are linearly independent and positive

on the interior of their supports. They span the space V p
i on each interval inside the active

region. GB-spline curves are also variation diminishing.

Proof. These properties are demonstrated in [1] (see also [4]). In [1], GB-spline bases are

defined for monotone knot functions, but the proofs there are also valid when the knot

functions form a Chebyshev space.

The primary advantages of GB-spline curves over traditional B-splines is that they allow

for the exact representation of certain geometric curves and surfaces, like circles, hyperbolas,

32

spheres, and hyperboloids,that cannot be well-represented by polynomial splines. Figures

3.3 and 3.4 demonstrate this. See [3] for more examples.

Theorem 3.11. A GB-spline over an open knot vector T with no degenerate basis functions

in the corresponding spline basis interpolates its endpoints; in particular, if the spline is a (t),

the active region is the interval [b, c], and the control points are a0, . . . , an, then a (b) = a0

and a (c) = an.

Proof. This is true by definition for p = 1, so say p > 1. Note that, since T is open with

respect to the degree p of a, t0 = · · · = tp, so Φp−1
0 is an indicator function. Since Np

0 is

not degenerate, this means that Φp−1
1 is an integral term so it takes a value of 0 at b. Since

Np
0 = Φp−1

0 − Φp−1
1 , Np

0 (b) = 1. Since the basis functions are nonnegative and sum to 1 on

the active region, all the other basis functions are 0, so a (b) = a0.

It has already been defined that a (c) = an, but we desire to show that the curve is

continuous

Theorem 3.12. Given a GB-spline curve a of degree p over a knot vector T with knot

functions ui and vi, all of the following are true:

1. The GB-spline basis restricted to each interval lies in V p
i .

2. Each GB-spline is Cp−k at each of the knots in the knot interval where k is the number

of times a knot is repeated.

3. Each GB-spline is at least Cp+r−1 for each point t not in its knot vector, where r is

the minimum continuity of the knot functions over the interval in the knot vector that

contains t.

Proof. For any f ∈ V p−1
i , note that for

g(t) =

∫ t

ti

f (s) ds

33

g must lie in V p
i . Since each new basis function is a linear combination of functions of the

same form as f , it must also lie in V p
i , so the span of the basis functions lies in V p

i . This

completes the proof of 1.

3 is an immediate consequence of 1.

2 for the degree 1 basis functions follows from their definition.

We will first prove that a basis function Np
i is discontinuous at a knot point t if and only

if t = ti = · · · = ti+p or t = ti+1 = · · · = ti+p+1 but not both.

If ti = · · · = ti+p+1, both Np−1
i and Np−1

i+1 are identically 0, so ti = · · · = ti+p+1, so Np
i is

also degenerate, so it is continuous. If neither equality holds, Np−1
i nor Np−1

i+1 is identically

0, so Np
i consists of two integral terms as in Definition 3.5, so it is continuous. This means

that if Np
i is discontinuous, either t = ti = · · · = ti+p or t = ti+1 = · · · = ti+p+1 but not both.

Conversely, say that t = ti = · · · = ti+p or ti+1 = . . . ti+p+1 but not both. Then exactly

one of Np−1
i and Np−1

i+1 is degenerate. This means that Np
i consists of exactly one integral

term as in Definition 3.5 and one step function, so it is discontinuous. In particular, it is

discontinuous at the knot that is repeated p− 1 times.

Since Np
i is discontinuous at a knot point tj if and only if tj = ti = · · · = ti+p or

tj = ti+1 = · · · = ti+p+1 but not both, Np
i is discontinuous at a knot point if and only if it

is repeated p + 1 times in the knots that define the support of Np
i . Since each set of basis

functions is defined in terms of integrals and step functions formed from the set of basis

functions of next lowest degree, the degree of continuity increases by one at each knot point

where no step function is defined. This means that, if a knot t is repeated n times, splines

defined over the knot vector T of degree n will be C0, splines of degree n+ 1 will be C1, etc.,

as desired.

Theorem 3.13. Where it exists, the derivative of a GB-spline basis function is given by

(Np
i)′ (t) =

Np−1
i (t)

δp−1i

−
Np−1
i+1 (t)

δp−1i+1

.

Where it exists, the derivative of a GB-spline curve a with control points a0, . . . , an is given

34

by
n+1∑
i=0

ai
Np−1
i (t)

δp−1i

− ai+1

Np−1
i+1 (t)

δp−1i+1

with a−1 and an+1 defined to be 0.

Proof. This follows immediately from the fundamental theorem of calculus applied to Defi-

nition 3.5.

Theorem 3.14. B-splines are GB-splines.

Proof. This is shown in [3] for UE-splines, which are a subset of GB-splines defined by the

same recurrence.

Chapter 4. Evaluation of GB-splines

Though Definition 3.5 makes it easy to see why many of the properties of spline curves are

true, it does not provide for a simple means of evaluation. As the definition stands, the

only effective means of evaluation are either recursive numeric integration, and symbolic

computation of indefinite integrals. Recursive numeric integration becomes very costly for

all but the lowest degrees of splines. Symbolic computation is effective, though it can be

unwieldy for numeric computation. In order to address this deficiency, we present a more

direct method of computing values on these spline curves.

Given that each basis function lies in the space V p
i , we may introduce a local repre-

sentation of each basis function in terms of functions spanning the space V p
i . Given that

the recursive integrals must be computed, it would be ideal for these local representations

to be more amenable to integration. This introduces a few possible choices for the local

representations of the splines:

1. u
[p−1]
i , v

[p−1]
i , and an additional polynomial term of degree p− 2

2. The remainder terms for the Taylor series centered at ti of u
[p−1]
i , and v

[p−1]
i with an

additional polynomial term of degree p− 2

35

Figure 4.1: The local polynomial representation for a uniform B-spline basis function of
degree 3 compared with the local representation for a uniform GB-spline function of degree
3 defined using trigonometric knot functions.

3. The remainder term for the Taylor series centered at ti for vi, the remainder term for

the Taylor series centered at ti+1 for ui and an additional polynomial term of degree

p− 2

By virtue of the linear independence of u
[p−1]
i and v

[p−1]
i from all other polynomial terms,

each of these is a valid choice for a basis. Other combinations of the knot functions and the

remainder terms for their Taylor series centered at either side of the interval [ti, ti+1] will

also provide usable bases, but we will confine our discussion here to the examples above. We

will first consider the case without remainder terms for Taylor polynomials. Terms formed

using Taylor series remainder terms will be discussed briefly in Chapter 6.

Local Representations: Knot Functions and Polynomials.

Definition 4.1. Since each basis function lies in the space V p
i , we may say that the i’th

basis function of degree p can be represented on the j’th interval in T as:

Np
i (t) = P p

i,j(t) + api,ju
[p−1]
j (t) + bpi,jv

[p−1]
j (t)

where P p
i,j is a polynomial term and api,j and bpi,j are constants. This means that the recurrence

36

Figure 4.2: The local polynomial representation for a uniform B-spline basis function of
degree 4 compared with the local representation for a uniform GB-spline function of degree
4 defined using trigonometric knot functions.

stated in Definition 3.5 can be written as

api,j =
ap−1i,j

δp−1i

−
ap−1i+1,j

δp−1i+1

bpi,j =
bp−1i,j

δp−1i

−
bp−1i+1,j

δp−1i+1

P p
i,j(t) = Np

i (tj)

+
1

δp−1i

(∫ t

tj

P p−1
i,j (s)ds− ap−1i,j u

[p−1]
j (tj)− bp−1i,j v

[p−1]
j (tj)

)

− 1

δp−1i+1

(∫ t

tj

P p−1
i+1,j(s)ds− a

p−1
i+1,ju

[p−1]
j (tj)− bp−1i+1,jv

[p−1]
j (tj)

)

With the additional stipulation that ifNp−1
i is identically zero, and the interval [ti+p, ti+p+1)

is empty, that P p−1
i,j have an additional 1 added to it to account for the modified treatment

of basis functions that are identically 0 in Definition 3.5. As before, we also require that, if

the last basis function is discontinuous at the end of the active region, that it must take a

value of 1 at the last point in the active region.

The recurrence relation outlined in Definition 4.1 is not as easy to implement as De Boor’s

37

Figure 4.3: The local polynomial representation for a uniform B-spline basis function of
degree 5 compared with the local representation for a uniform GB-spline function of degree
5 defined using trigonometric knot functions.

recurrence (see Definition 2.33), however it does make it so that the evaluation of GB-spline

curves is no longer tied to symbolic integrals or recursive quadrature. It makes it clear that

the values of Np
i on the interval [tj, tj+1) depend only on Np

i (tj), the values of u
[p−1]
j and

v
[p−1]
j at t and tj, and the full set of coefficients for Np−1

i and Np−1
i+1 . These dependencies can

be stated more explicitly. To evaluate Np
i at time t ∈ [tj, tj+1), it is necessary to know the

values of the following function values:

• u
[p−1]
j and v

[p−1]
j at t

• the values of all the different uj, u
[1]
j , . . . , u

[p−2]
j and vj, v

[1]
j , . . . , v

[p−2]
j at tj and tj + 1 for

each index j corresponding to an interval in the support of Np
i

• The values of u
[p−1]
j and v

[p−1]
j if j is an index corresponding to an interval in the

support of Np
i at tj if tj < t and at tj+1 when tj+1 < t

To construct a direct algorithm for the evaluation of arbitrary GB-spline curves, we must

first determine how to best to trace through the dependencies between the intervals. Given

that the representation of Np
i on [tj, tj+1) depends on the representations of Np−1

i and Np−1
i+1

over their supports and the representations of Np
i over the intervals of its support that lie

38

to the left of [tj, tj+1), it is natural to construct the set of basis functions of each degree

using the set of basis functions of the degree one less than the one being computed. The

computation most naturally runs from left to right along each basis function. Given this

structure, the algorithm should operate roughly as follows:

• Initialize a list of basis functions using the known values for the degree 1 case.

• For each degree from 2 to the desired degree p, do the following:

– Integrate each polynomial term in the basis.

– Use the polynomial terms, the transcendental coefficients, and the values of the in-

definite integrals of the knot functions at the points in the knot vector to compute

the definite integral of each basis function over its support.

– Divide the indefinite integrals of the polynomial terms by the definite integral of

the basis function they represent.

– Divide the transcendental coefficients by the definite integral of the basis function

they represent.

– Compute the differences between the scaled transcendental coefficients for basis

functions whose indices differ by 1.

– Compute the differences between the scaled polynomials for basis functions whose

indices differ by 1, adding the constant terms from the transcendental part to the

polynomial.

– Use the values of these differences to add the value of each basis function over

each interval to its polynomial term over each interval.

– Store these differences between the polynomial and transcendental terms as the

new set of basis functions.

In practice, the functions that we desire to include in the span of the spline basis may

not always satisfy the constraints on the values of the knot functions at the endpoints of

39

each interval. This can be resolved by taking linear combinations of the original functions

on each interval so that the value constraints are satisfied. This can be taken care of as a

part of the algorithm for constructing a basis by taking the needed linear combinations of

the integral terms given as input and then, once the local representations of the spline basis

have been computed, changing the representations so that they are given with respect to

the original functions rather than the computed linear combinations. In order to ensure the

desired properties of a spline basis, the functions used to create the knot functions must still

form a Chebyshev space over each corresponding nondegenerate interval in the knot vector.

The matrix  ui (ti) vi (ti)

ui (ti+1) vi (ti+1)


must also be invertible (and sufficiently well-conditioned) so that the needed linear combi-

nations can be computed.

In addition, the spline basis constructed will span u[p−1] and v[p−1], not u and v. It is

often desirable to construct a basis that spans Cp−1 functions ũ and ṽ instead. To handle

that properly, we need only begin the iteration with the knot functions ũ(p−1) and ṽ(p−1),

noting that, after the corresponding numbers of integrals have all been taken, the spline

basis will span the desired functions. To use this approach, it is necessary that there exist

linear combinations of ũ(p−1) and ṽ(p−1) that satisfy the constraints that would normally be

imposed on u and v.

The algorithms here will be presented in a form that is independent of the polynomial

basis used. Power basis polynomials provide a simple base case, but known identities for

operations on other polynomial bases can be used to perform these same operations with re-

spect to different polynomial bases. Here, operations on polynomial terms will be performed

by auxiliary routines with specific and well documented purposes that can be implemented

in different ways for different polynomial representations.

For practical use it is also helpful to follow the convention that the knot functions and

40

polynomials corresponding to each interval are defined on the interval [0, ti+1 − ti] and that

t− ti is used as an argument rather than t itself. This makes it so that, for any given poly-

nomial representation requiring boundaries of definition (Bernstein polynomials, Chebyshev

polynomials, etc.), only the lengths of each interval must be passed to the polynomial inte-

gration and evaluation routines.

The recurrence outlined in Definition 4.1 is restated as an algorithm in Algorithm 9.

In the computation here, we will store each basis as two arrays, the first containing the

polynomial terms corresponding to each interval within the support of each basis function

and the second containing the corresponding transcendental terms. Given that the support

of each basis function is known, we only include the representation of each basis function on

an interval where it will be nonzero. This shifts the indices for the representation of each

basis function, but the structure of the iteration is essentially the same.

An important consequence of using the piecewise representations for these basis functions

is that, once a piecewise representation for a spline curve is created, the only remaining costs

of evaluating the function at any given point come from identifying which interval in the knot

vector contains the given parameter value, evaluating a polynomial term, and evaluating the

terms u
[p−1]
i and v

[p−1]
i . No further recursion or integration is needed.

The algorithms will be presented in vectorized form with a particular emphasis on clarity.

A variety of other small optimizations could be added to further remove redundant compu-

tations; however the presentation here is meant primarily to provide a clear explanation of

the algorithm. It presents a relatively efficient version of the algorithm, but, for simplicity,

redundant computations have not been completely removed.

For clarity within the algorithm and its helper routines, we will now introduce the many

variables used throughout this algorithm and its corresponding helper routines. Throughout

the code for this algorithm, the following variables will be used:

• T will be a 1-dimensional array containing the knot vector.

• Tlens will be the lengths of the intervals between the knots values in T .

41

• Tvals will be an array shaped like Tlens containing the lengths of each interval. Rather

than be indexed according to interval, Tvals will be indexed first by basis function,

then by interval within the support of a given basis function.

• p will be the degree of the desired basis, or of the spline to be evaluated.

• d will be a looping variable used in the loop that constructs the basis of each degree from

the basis of previous degree. Here d will be the degree of the basis being constructed.

dmin will be equal to d− 1.

• n will be the number of basis functions in a given basis.

• ints will be a 4-dimensional array of shape (p, len (t)− 1, 2, 2) containing the values of

the indefinite integrals of the knot functions at the endpoints of each interval. The

p’th integrals should be indexed in ascending order along the first axis. The different

intervals within the knot vector should be indexed along the second axis. The different

endpoints of each interval should be indexed along the third axis. The different knot

functions (u and v) will be indexed along the last axis with u first.

wints will be a 3-dimensional view into ints corresponding to the integral values of a

given degree, indexed first by basis function, then by interval within the support of

each basis function, then by endpoint, then by the different knot functions.

• polys will be an array containing the coefficients for the polynomial parts of the basis

functions in a given basis. Basis functions should be indexed along the first axis and

intervals within the support of each basis function should be indexed along the second

axis. Here we will assume that the polynomial term over the i’th interval is stored in

the form p (t− ti), i.e. that the polynomial terms are translated so that the first value

taken by the polynomial in each interval is the value of the polynomial at 0. This

algorithm does not depend on the representation used to store the polynomial terms,

but in most cases an array of shape (n, p+ 1, p− 1) containing only the necessary

coefficients should suffice.

42

• pints will be an array containing the integrals of all the polynomial terms in a given

array polys. All the axes will be indexed the same as the axes in polys. The shape will

be the same except that the last axis will be one index longer than the last axis of

polys.

• trans will be an array containing the coefficients for the transcendental terms of the

basis functions in a given basis. Basis functions should be indexed along the first axis,

intervals within the support of each basis function along the second axis, and the two

transcendental coefficients along the third (with u first, then v). This array will have

a shape of (n, p+ 1, 2).

• scal will be an array containing the necessary scaling matrices needed to scale ints

to represent the scaled versions of u and v that satisfy the value constraints at their

endpoints and also needed to scale the coefficients in trans so that they represent the

basis functions in terms of the original u and v.

• pos will be an array of boolean values. The i’th entry of pos will be true if δd−1i 6= 0.

• deltas will be an array containing the indefinite integrals of each basis function over

its support.

• consts will be an array containing the constant terms to be added to the polynomial

terms on each interval. It will be indexed first by basis function, then by interval within

the support of each basis function. In the recurrence in Definition 4.1, these are the

terms

−ad−2i,j u
[d−2]
j (tj)− bd−2i,j v

[d−2]
j (tj)

• vals will be a temporary array used to store outputs of various functions.

Algorithm 9 shows the primary routine used to compute the local representations of a

given basis function. It contains calls to a variety of auxiliary routines, all of which will

be explained here. Here we include the primary algorithm first so that the reader may

43

understand the general flow of the algorithm and the proper place for each auxiliary routine

before handling the many details that are taken care of in the auxiliary routines.

Algorithm 9 uses the following auxiliary routines:

• Wrap: A utility function used to convert between indexing by interval to indexing by

basis function, then by interval within the support of each basis function.

• MatMul : A utility function that performs matrix multiplication following certain

broadcasting semantics.

• MakeDegreeOne: A function that initializes the coefficient arrays for a basis of degree

1.

• ScaleKnotFuncs : A function that computes the scaled ints and the corresponding array

invs containing the scalings. This function is what changes all the basis functions to

be represented in terms of the linear combinations of the functions used to create invs

that satisfy the required constraints to be knot functions.

• ScaleTransCoefs : A function that modifies trans in-place to change the coefficients to

represent the basis functions in terms of the functions used to create invs.

• PolyInt : A function that, given an array of polynomial coefficients with the coefficients

indexed along the last axis and another array containing the lengths of the intervals

corresponding to each polynomial term, computes the indefinite integrals of all the

polynomials.

• PolyVal : A function that, given an array of polynomial coefficients with the coefficients

indexed along the last axis, and an array containing the lengths of the intervals cor-

responding to each polynomial term, evaluates each polynomial at the corresponding

term in an array vals. This function is used only within other auxiliary routines.

• IntegrateSupports : A function that computes the integral of each basis function over

its support

44

Algorithm 9 Computing the local coefficients for a GB-spline basis

1: procedure BasisCoefs(T, ints, tol = 10−8)
2: . Initialize p, Tlens, and Tvals and coefficient arrays for a basis of degree 1.
3: p = shape (ints) [0]
4: T lens = T [1 :]− T [: −1]
5: Tvals = Wrap (T lens, 2)
6: polys, trans = MakeDegreeOne (shape (T) [0]− 2)
7: . Take linear combinations of the functions with integrals in ints so that
8: . the resulting linear combinations satisfy constraints on knot functions.
9: ints, scal = ScaleKnotFuncs (ints, T lens, tol)
10: . Construct each successive set of local coefficients.
11: for d = 2, d ≤ p do
12: . Compute the indefinite integrals of all polynomial terms
13: pints = PolyInt (polys, Tvals)
14: . Construct wints by wrapping the first axis of ints into two new axes.
15: wints = Wrap (ints [d− 1] , d)
16: . Integrate the current set of basis functions over their supports.
17: deltas, consts = IntegrateSupports (Tvals, pints, trans, wints)
18: . Add constant terms from the transcendental integrals to the pints.
19: OffsetConstants (pints, consts)
20: . Compute the indices of the basis functions that are identically 0.
21: pos = (T [d :]− T [: −d]) > tol
22: . Take the deltas corresponding to positive basis functions.
23: . Also reshape the deltas for broadcasting with pints and trans.
24: deltas = deltas [pos,None,None]
25: . Divide the terms in pints and trans by their corresponding entries in deltas.
26: pints [pos] /= deltas
27: trans [pos] /= deltas
28: . Take the differences between neighboring terms in pints and trans.
29: polys, trans = OffsetDifferences (pints, trans)
30: . Add ones where needed to account for the integral terms of 0-valued
31: . basis functions after the knot value where their support would end.
32: AddOnes (polys, pos)
33: . Compute the set of Tvals for the next basis.
34: Tvals = Wrap (T lens, d+ 1)
35: . Add in the constant terms that come from evaluating each basis function
36: . at the end of each interval within the knot vector.
37: ConnectBoundaries (polys, trans, wints, Tvals)
38: end for
39: . Scale the coefficients in trans so that the basis functions are represented
40: . in terms of the transcendental terms originally represented in ints.
41: ScaleTransCoefs (Wrap (scal, p+ 1) , trans)
42: return polys, trans
43: end procedure

45

• TransInts : A helper function called within IntegrateSupports. It computes the portion

of the integral of each basis function that comes from the knot functions over each

interval in its support.

• OffsetConstants : A function that modifies pints in-place to add in the constant terms

that come from the transcendental integral. In the polynomial part of the recurrence

from Definition 4.1, this accounts for the terms

−ap−1i,j u
[p−1]
j (tj)− bp−1i,j v

[p−1]
j (tj)

and

ap−1i+1,ju
[p−1]
j (tj)− bp−1i+1,jv

[p−1]
j (tj)

• OffsetDifferences : A function that takes the pints and trans (after each term has been

divided by the corresponding δi terms) that correspond to a given basis and computes

the differences between consecutive terms. This returns the differences between both

the polynomial and transcendental terms. These terms account for all terms in the

recurrence from Definition 4.1 with the exception of Np
i (tj).

• AddOnes : A function that adds the one terms to polys that come from the handling of

the integral terms from basis functions that are identically 0 as defined in Definition

3.5.

• ConnectBoundaries : A function that computes the term Np
i (tj) for each interval where

it is needed and adds it in place to polys.

We will now discuss the implementations of these different functions in greater detail.

The helper routine Wrap is used to expand a given axis into two axes where each index

of the first of the two new axes provides a moving window of the given width along the

original axis that is being expanded. Within this algorithm, this function is used to convert

46

between data that is indexed by interval within the knot vector to data that is indexed by

basis function, then by interval within the support of each basis function.

The implementation for the routine Wrap will depend on the language used. A complete

discussion of its implementation is not crucial to the algorithm itself, but we will discuss it

briefly here to aid anyone who wishes to implement this algorithm. It can be implemented

easily by allocating a new array and looping through it, filling it with the appropriate values.

It can also be implemented to work without consuming any extra memory using NumPy’s

support for arbitrary strided arrays. In Python it is easy to perform this operation along any

given axis, but whenever this function is used here it will always be used to expand along

the first axis. In Python the function will look like this:

def Wrap(a, width, axis=0):
"""
Use stride tricks to make a new array that views 'axis' of 'a'
as two new axes where an entry of the first of the two new axes
is a rolling window of 'width' length of the entries indexed
along 'axis' of 'a'.
"""
axis = axis % a.ndim
Compute the shape of the desired output array.
shape = (a.shape[:axis] + (a.shape[axis]-width+1,width) + a.shape[axis+1:])
Make the stride of the new array the same along both expanded axes.
strides = a.strides[:axis] + (a.strides[axis],) + a.strides[axis:]
Return an array of the given shapes and strides viewing the original array.
return np.lib.stride_tricks.as_strided(a, shape, strides)

The implementation for the routine MatMul also depends heavily on the language used.

It can be understood most directly as a matrix multiplication routine following the same

array broadcasting semantics used for the other arithmetic operators. The only difference

is that matrix multiplication is, fundamentally, an operation between 2-dimensional arrays,

so the last two axes of the operand arrays must match as would be expected for matrix

multiplication. The broadcasting occurs along all other axes. The matrix multiplication is

done for each specific index for all the leading axes, operating on slices along both of the

last two axes of each array.

The function MatMul can be implemented in different ways depending on the language.

In Python this can be done like this:

47

def MatMul(a, b):
"""
Perform matrix multiplication between the arrays 'a' and 'b'
following normal gufunc broadcasting rules.
"""
return np.einsum('...ij,...jk', a, b)

The implementation for MakeDegreeOne should also be relatively simple. Recall that

each degree 1 basis function has the form


vi(t) x ∈ [ti, ti+1)

ui(t) t ∈ [ti+1, ti+2)

This means that this function should allocate polys as an empty array of shape (n, 2, 0) and

allocate trans as an array of 0’s of shape (n, 2, 2). Then it should fill trans with values such

that trans [i, j, k] is equal to 0 when j = k and 1 otherwise. It should then return polys and

trans. In Python, this can be done as follows:

def MakeDegreeOne(n):
"""
Generate the polynomial and transcendental terms
for a degree 1 basis with 'n' basis functions.
"""
trans = np.zeros((n, 2, 2))
trans.reshape((n, 4))[:,1:3] = 1
return np.empty((n, 2, 0)), trans

ScaleKnotFuncs allows derivatives from functions that do not necessarily satisfy the con-

straints ui (ti) = vi (ti+1) = 1 and ui (ti+1) = vi (ti) = 0 for the integral values stored in ints.

To do this, it must require that, for each nonempty interval [ti, ti+1), the matrix

Ai =

 ui (ti) vi (ti)

ui (ti+1) vi (ti+1)


be invertible and reasonably well-conditioned. It is still required that ui and vi form a

Chebyshev space.

Since the algorithm for constructing the basis coefficients relies on each ui and vi satis-

48

fying the constraints on its values at the endpoints of each interval in the knot vector, we

must compute the linear combinations of u and v that satisfy the value constraints at each

endpoint. Since matrix multiplication can be seen as using the columns of the matrix on the

right as coefficients for linear combinations of the columns of the matrix on the left, we see

that the matrix Bi with the desired coefficients for the linear combinations must satisfy the

equation AiBi = I, so Bi = A−1i . Since it is only necessary to invert matrices of size 2× 2,

for simplicity we will content ourselves with using a direct matrix inverse to compute the

new derivatives, though other methods could be used to compute the desired derivative and

integral values.

Now, given the matrices Bi, we must now use the coefficients for the desired linear

combinations stored as columns of Bi to compute the corresponding integral terms. Using

similar reasoning as before, taking the needed linear combinations of the integral terms

stored in ints corresponds to right-multiplication of each 2 × 2 matrix corresponding to a

given degree and interval by the matrix Bi corresponding to that interval. This routine must

return both the new scaled version of ints and the corresponding matrices Bi (these are the

i’th entry along the first axis of ints) because the matrices Bi must be used again later to

write the computed coefficients for the transcendental functions in terms of the original u

and v rather than their scaled linear combinations. The internal workings of this auxiliary

routine are outlined in Algorithm 10.

Once the main loop in Algorithm 9 is finished, the computed transcendental coefficients

must be changed to represent each basis function in terms of the original knot functions rather

than the chosen linear combinations of them. This is equivalent to left-multiplying the set

of coefficients for each interval by the matrix Bi (as in the explanation for ScaleKnotFuncs).

This process is shown in Algorithm 11.

The auxiliary routine PolyInt is dependent on the polynomial representation used. The

array Tvals is used as an argument because the polynomial basis used could be defined over

some given interval (as are the Bernstein, Chebyshev, and Legendre polynomials). For the

49

Algorithm 10 Take linear combinations of the input knot functions such that the desired
linear combinations will satisfy the constraints ui (ti) = vi (ti+1) = 1 and ui (ti+1) = vi (ti) =
0. Return the corresponding integral terms of these linear combinations and the coefficients
for the linear combinations over each interval.

1: procedure ScaleKnotFuncs(ints, T lens, tol = 1E − 8)
2: . Copy ints so it can be modified in-place without modifying the input array.
3: ints = copy (ints)
4: . Get a boolean array showing where the the lengths of the intervals are nonzero.
5: pos = T lens > tol
6: . Compute the coefficients of the needed linear combinations.
7: invs = array of 0’s of shape shape (ints) [1 :]
8: invs [pos] = inv (ints [0, pos])
9: . Perform matrix multiplication of each set of coefficients for each interval and degree
10: . by the corresponding scaling matrix for each interval.
11: ints [:] = MatMul (ints, invs)
12: return ints, invs
13: end procedure

Algorithm 11 Perform a change of basis on the transcendental coefficients so that the
transcendental coefficients used to represent the basis correspond to the functions originally
used to form the array ints of integral values.

1: procedure ScaleTransCoefs(invs, trans)
2: return MatMul (invs, trans [. . . , None]) [. . . , 0]
3: end procedure

50

power basis polynomials, that argument is not needed. As has already been mentioned, the

interval lengths are all that is necessary since the polynomial and transcendental terms are

all assumed to be shifted to be defined over an interval starting at 0.

The auxiliary routine PolyVal should be handled similarly as PolyInt. This routine is

also dependent on the polynomial representation and is easily defined as using Horner’s

algorithm, the De Casteljau algorithm, Clenshaw’s algorithm, or some other polynomial

evaluation algorithm.

TrigInts is a function to compute the transcendental integrals

∫ ti+1

ti

(
ad−2i,j u

[d−2]
i,j (s) + bd−2i,j v

[d−2]
i,j (s)

)
ds

with the corresponding constant terms

−ad−2i,j u
[d−2]
j (tj)− bd−2i,j v

[d−2]
j (tj)

from the left endpoint of the integral. It is dependent on the representation used for the

knot functions (we’ve only introduced using the knot functions themselves thus far). In the

case that the knot functions themselves are used, Algorithm 12 shows how this can be done.

Algorithm 12 Integrate the transcendental part of each basis function over each interval
in the support of that basis function.

1: procedure TransInt(trans, wints)
2: consts = −sum (trans ∗ wints [:, :, 0] , axis = −1)
3: vals = sum (trans ∗ wints [:, :, 1] , axis = −1) + consts
4: return vals, consts
5: end procedure

IntegrateSupports is a function that evaluates the integrals of each basis function over

its corresponding support. It should return both the desired indefinite integrals and the

constant terms (stored in variable consts) that come from the left bounds of each integral.

This function is outlined in Algorithm 13.

51

Algorithm 13 Compute the definite integrals of each basis function over its support.

1: procedure IntegrateSupports(Tvals, pints, trans, wints)
2: . wints and Tvals line the integral terms and the interval lengths up
3: . with their corresponding interval in each basis function.
4: vals, consts = TransInt (trans, wints)
5: vals+ = PolyVal (pints, Tvals, Tvals)
6: return sum (vals, axis = −1) , consts
7: end procedure

OffsetConstants is another helper routine that interfaces with the polynomials and is

dependent on how the polynomials are represented. It adds the terms stored in consts to the

corresponding terms in pints. In the case of the power basis, Chebyshev basis, or Legendre

basis, this can be done by adding each constant term to the term in the polynomial repre-

sentation that represents constants. In the case of the Bernstein polynomials, since all the

coefficients sum to 1, adding a constant is the same as adding a constant to each coefficient,

so this operation can be performed by adding the constant term for each polynomial to all

the coefficients for that polynomial.

OffsetDifferences is an auxiliary routine that takes care of differencing between the inte-

grated terms from the previous basis function to form the differences over each interval that

are needed to form the new basis. Once this function has been applied, the terms account

for everything included in the recurrence in Definition 4.1 with the exception of the constant

term for each interval that comes from evaluating each basis function on the right endpoint

of the interval to the left of the current interval. This function also does not account for

adding the ones to handle basis functions that are identically 0. The pseudocode for this

algorithm is outlined in Algorithm 14.

AddOnes, as has already been mentioned, is used to add the ones that come from the

integral terms from Definition 3.5 that correspond to basis functions that are identically 0.

We have separated it as an auxiliary routine because it both depends on the polynomial

basis used and because this allows a more focused description of the operation itself. The

1’s must be added only to the last interval of basis functions for which the first term of the

52

Algorithm 14 Take the differences between the integral terms for the previous set of basis
functions to start forming the new set of basis functions.

1: procedure OffsetDifferences(pints, trans)
2: n = shape (pints) [0]
3: nints = shape (pints) [1]
4: . Allocate the arrays needed to store the coefficients for the new basis.
5: npolys = new array of 0’s of shape (n− 1, nints+ 1, dmin)
6: ntrans = new array of 0’s of shape (n− 1, nints+ 1, 2)
7: . Take the needed differences between the corresponding terms.
8: npolys [:, : −1] += pints [: −1]
9: npolys [:, 1 :] −= pints [1 :]
10: ntrans [:, : −1] += trans [: −1]
11: ntrans [:, 1 :] −= trans [1 :]
12: return npolys, ntrans
13: end procedure

recurrence from Definition 3.5 corresponds to a basis function that is identically 0. This is

because, when constructing the basis functions of the next highest degree, the integral term

corresponding to a basis function with index i appears only in the expressions for the basis

functions at index i− 1 and i. Of those two basis functions, only the basis function at index

i takes nonzero values on an interval that lies to the right of the support of the basis function

that is identically 0. Once understood, this operation is very simple to perform, as can be

seen in Algorithm 15, which shows how this auxiliary routine would be implemented for

polynomials represented in the power basis. Though this routine depends on the polynomial

representation used, it is not necessary to pass Tvals since a constant terms is the same for

a polynomial represented over any interval.

Algorithm 15 Add ones where needed to account for the integral terms in Definition 3.5
that correspond to basis functions that are identically 0.

1: procedure AddOnes(polys, pos)
2: . Where the integral of the basis function of previous degree at the same
3: . index was 0, add 1 to the constant term of the last polynomial term.
4: polys [∼ pos [: −1] ,−1,−1] += 1
5: end procedure

ConnectBoundaries is the last auxiliary routine needed to construct the new basis func-

tions from the previous ones. In the recurrence in Definition 4.1, this function adds in the

53

terms Np
i (tj). This function effectively starts at the leftmost interval in the support of each

basis function, computes the value of the basis function at the end of that interval, adds

that constant term to the polynomial term of the basis function on the next interval, and

continues until it has added the needed constant terms to every interval in the support of

that basis function. This is done in a vectorized manner in Algorithm 16.

Algorithm 16 For each basis funciton, add in the constant terms Np
i (tj) to each interval

where they are needed.

1: procedure ConnectBoundaries(polys, trans, wints, Tvals)
2: . For each basis function, evaluate all but the leftmost polynomial term at the end
3: . of the interval where it is defined.
4: vals = PolyVal (polys [:, : −1] , T vals, Tvals [:, : −1])
5: . Add in the corresponding values of the transcendental functions.
6: vals += sum (trans [:, : −1] ∗ wints [: −1, :, 1] , axis = −1)
7: . Add the needed constants to their corresponding polynomial terms.
8: OffsetConstants (polys [:, 1 :] , cumsum (vals, axis = 1))
9: end procedure

Chapter 5. Refinement operations on GB-splines

In design, it is often desirable to represent a spline curve of degree p over a given knot vector

T0 as a different spline curve of degree q ≥ p over a different knot vector T1 where the active

regions for T0 and T1 coincide and the spline basis B0 over T0 is contained in the span of the

spline basis B1 on T1. This process is called refinement. The introduction of the local bases

V p
i makes it so that any refinement operation of this form can be performed by computing

the local representation for a spline over T0 and then projecting it onto the desired basis

functions over T1. For B-splines, refinement algorithms are well-studied. Here we provide an

algorithm for the refinement of GB-splines.

In practice, knot insertion and degree elevation are the most common types of refinement

operations. In the case of knot insertion, T1 is the same as T0 except that an additional knot

has been inserted in the interior of the active region of T0. In the case of degree elevation,

T1 is formed from T0 by inserting knots at each knot from T0 that lies on the interior of the

54

active region of T0, adding an additional end condition knot on each side of the active region,

and increasing the degree of the spline functions by 1. The active regions are maintained

from T0 to T1 by the addition of an end condition knot at either end of the knot vector. The

knots in the interior of the active region are repeated so that the continuity at the points in

the knot vector is maintained in spite of the increase in the degree of the spline. Refinement

by projecting to and from local representations also provides a natural way to represent a

spline over T0 in terms of a knot vector T1 with different end condition knots. This is shown

in Figures 5.6 and 5.7. Projecting in this way also makes it so that any combination of these

operations can be performed simultaneously.

There are a variety of existing algorithms for performing refinement of B-splines. Knot

insertion is well-discussed in most standard texts on B-splines. See [26] for an efficient

degree elevation algorithm for B-spline curves and references to other existing algorithms.

The algorithm outlined here can be used for both knot insertion and degree elevation and

follows a technique similar to the one used in [12].

In the case of GB-splines, a method for knot insertion using recursive integrals is provided

in [3]. As with the evaluation of GB-splines, the local piecewise representation of GB-splines

can be used to avoid computing these recursive integrals. In the case of refinement, projection

to and from the local bases can also be used to perform degree elevation and change the

placement of end condition knots. The existence of a local basis also makes it so that

coarsening operations like those performed on B-splines via Bézier projection in [12] can be

naturally extended to GB-splines. For simplicity, here we will focus primarily on refinement

operations.

When refining GB-splines, we must also be certain that the integrals of the knot functions

that are present in the space V p
i are spanned by the basis functions over the target knot

vector. For example, when performing degree elevation by a single degree, the knot functions

ũ and ṽ chosen over an interval I1 in T1 must be equal to a linear combination of the

derivatives of the knot functions u and v over the interval I0 in T0 that contains I1. In

55

Figure 5.1: Various levels of degree elevation on a degree 2 GB-spline basis function from
a Bernstein-like basis formed using the trigonometric functions cos

(
π
2
t
)

and sin
(
π
2
t
)

on the
interval [0, 1]. The smooth curve is the spline, and the polygonal curves are control meshes
of sucessively higher degrees.

general, it is sufficient for the knot functions ũ and ṽ for an interval I1 in T1 used to form the

target basis of degree q over T1 to be linear combinations of the (q − p)’th derivatives of the

knot functions u and v over the interval I0 in T0 containing I1. These derivatives may not

form a Chebyshev space over I1, but this is sufficient. For example, in the case of polynomial

terms, any additional derivatives of the original u and v are no longer linearly independent

of one another, and construction of the new basis fails. On the other hand, as can be seen

in [12], in the polynomial case, the polynomial terms over each basis provide a local basis

that works perfectly well for refinement anyway. Examples of when successive derivatives do

yield a Chebyshev space include trigonometric and exponential splines.

56

Figure 5.2: Successive degree elevations of each basis function in a Bernstein-like basis of
degree 3 spanning trigonometric functions.

When the derivatives of the knot functions cease to form a Chebyshev space, refinement

is still possible as long as the span of B0 is contained in the span of B1. All that is needed is a

method for representing the integrals of the knot functions used in the local representations

of B0 in terms of the local bases used for B1.

5.1 Algorithms For Refinement

Here we will present an algorithm that can be used to project a piecewise function in the span

of a given spline basis B0 defined on the active region of the knot vector T0 corresponding to

B0 onto a different spline basis B1, containing B0, that is defined over a different knot vector

57

Figure 5.3: Various levels of degree elevation on a degree 4 GB-spline basis function from a
Bernstein-like basis spanning trigonometric functions.

T1. An additional routine will be provided to compute a piecewise representation from a set

of control points and a set of local representations for a corresponding basis.

The main refinement routine can be outlined as follows:

• Write the piecewise function in terms of the local basis used to construct the basis B1.

– Subdivide the polynomial terms that correspond to intervals that have been di-

vided into new intervals.

– Degree-elevate the polynomial terms as many times as is necessary so that they

are the same degree as the polynomial terms used for the target basis.

58

Figure 5.4: Various levels of degree elevation on a circle first represented as a degree 2 GB-
spline. Again, trigonometric knot functions are used, and the polygonal curves show the
control meshes of successively higher degrees. While the previous curves had the parameter
domain along the horizontal axis, this shows a 2-dimensional spline curve.

– Use the known values of the successive integrals of the knot functions to represent

the knot functions over T1 in terms of the local bases used for T2.

– Add the polynomial terms from the transcendental terms into the values for the

degree-elevated polynomials.

• Solve the linear systems corresponding to nondegenerate intervals to compute the co-

efficients for each basis function

– Here, for simplicity, aggregate the different computed coefficients for a given basis

function by averaging them, raising an error if any value for an interval of non-

59

Figure 5.5: Various levels of degree elevation on a degree 4 2-dimensional GB-spline curve
defined for a Bernstein-like basis spanning trigonometric functions.

negligible length is significantly different from the computed average.

This process is shown in greater detail in Algorithm 17

The end condition knots are only needed for computing the local representations of

either set of basis functions. In addition, in order to compute the representation of the knot

functions over T0 in terms of the local bases for the intervals in T1, the derivatives of the

knot functions for T0 and T1 must be known and given at the endpoints of all the intervals

in the active region of T1.

Though they are not used directly in the algorithm, for the sake of explanation, we will

let p be the degree of the spline given in piecewise form and q will be the degree of the target

60

Figure 5.6: A circle represented with respect to GB-spline bases with trigonometric knot
functions and different end conditions.

basis.

Throughout the descriptions of these algorithms the following variable naming conven-

tions will be used

• polys0 will be the polynomial terms for the piecewise function in the span of the first

spline basis. It will be indexed first by interval within the active region of T0, then by

polynomial coefficient. In this algorithm it will be modified to contain the polynomial

terms from the piecewise function represented over T1.

• polys1 will be the polynomial terms for the basis functions in target basis. It will be

indexed the same as the variable polys is in the Algorithm 9.

61

Figure 5.7: A 2-dimensional GB-spline curve represented with respect to GB-spline bases
with different end conditions.

• trans0 will be the coefficients for the integral terms of the knot functions corresponding

to T0. It will be indexed first by interval within the active region of T0, then by the

different integral terms. The term for u will be indexed at 0 and the term for v will

be indexed at 1. This will be modified so that it will the same integral terms in the

piecewise function in terms of the knot functions used to form the target basis.

• trans1 will be the coefficients for the integral terms of the knot functions over T1 in

the piecewise representation of the target basis. It will be indexed the same as the

variable trans is in Algorithm 9.

• reg0 will be the knots that lie inside active region of T0. Regardless of whether or not

62

Figure 5.8: Degree elevations of a one dimensional GB-spline curve of degree 3 formed by a
basis spanning trigonometric functions over the knot vector [0, 0, 0, 0, .5, 1, 1, 1, 1].

the endpoints of the knot vector are repeated, if the piecewise term is a spline of degree

p, this should be an array equivalent to T0 [p : −p].

• reg1 will be the knots that lie in the active region of T1, with indexing and handling

of knot repetition, except that T1 and the corresponding degree are used.

• rints0 will be the 0 through (q − 1)th integral terms for the (q − p)’th derivatives of

the knot functions over T0 evaluated at the intervals in reg1. Notice that the number

of integrals and the choice of integrals is all from the basis over the second knot vector,

but the knot functions are still chosen from the first knot vector. This variable is

indexed in the same manner as the variable ints in Algorithm 9.

63

Figure 5.9: Degree elevations of a two dimensional GB-spline curve of degree 2 formed by a
basis spanning trigonometric functions over the knot vector [0, 0, 0, 0, .5, 1, 1, 1, 1].

• rints1 will be the 0 through (q − 1)th integral terms for the knot functions over T1

evaluated at the intervals in reg1. If ints is the array of integral terms used to compute

the local representations for the target basis, this is equivalent to ints [:, q : −q].

• npolys will be a temporary array used to restructure trans1.

• ntrans will be a temporary array used to restructure trans0.

• reg1lens is the widths of the intervals in reg1.

• pos a boolean array where each entry is true if the corresponding entry in reg1lens is

above a given tolerance.

64

Figure 5.10: Knot insertion at .25 and .75 on a degree 4 GB-spline curve defined over
[0, 0, 0, 0, 0, .5, 1, 1, 1, 1, 1].

• offset is a temporary array of polynomial terms of the same shape as polys0 once it is

represented over the intervals in regs1.

• offset1 and offset2 will be arrays the same shape as offset that are used to compute

offset.

• ivals and nints will be temporary arrays shaped like rints0. diffs will be a temporary

array with one less entry along the first axis.

• lbases is an array containing the local representations of the spline basis functions

in the target basis for each interval in the active region of T1. It is indexed first by

interval in the active region, then by basis function index (indexing from 0 to q only

65

Figure 5.11: Knot insertion at .25 and .75 on a degree 2 GB-spline curve defined over
[0, 0, 0, 0, 0, .5, 1, 1, 1, 1, 1].

along the basis functions in that are nonzero over that interval), then by term in the

local representation. The terms are ordered first by the polynomial terms with the

last two entries corresponding to the coefficients for the integral terms from the knot

functions.

• lfunc is an array containing the local representation of the piecewise function that

we are representing as a spline with respect to the given basis. It is indexed first by

basis function, then by term within the local representation with the terms in the local

representation ordered the same way they are for lbases.

• coefs is an array containing the computed coefficients for the spline basis functions as

66

Figure 5.12: Insertion of 3 knots at .5 and then 3 knots at .25 and again at .75 on a degree 3
GB-spline curve defined using a Bernstein-like basis that spans the trigonometric functions
cos
(
π
2
t
)

and sin
(
π
2
t
)
.

they are computed over each interval. Rows in coefs corresponding to near 0 length

intervals in reg1 are set to NaN .

• tol will be a tolerance used to determine when intervals in a knot vector are short

enough to be considered to have length 0. It will also be used to ensure the computed

basis function coefficients do not differ significantly for the same basis function over

different intervals.

• i and j will be indices use to loop through reg0 and reg1 respectively.

• jidxs will be a list of indices for reg1 corresponding to the left endpoints of intervals of

67

Figure 5.13: Insertion of 5 knots at .5 and then 5 knots at .25 and again at .75 on a degree 5
GB-spline curve defined using a Bernstein-like basis that spans the trigonometric functions
cos
(
π
2
t
)

and sin
(
π
2
t
)
.

nonzero length that all lie within a given interval in reg0.

• endpts will be a list of entries from reg1 corresponding to all endpoints of the intervals

that have an interval indexed by an entry in jidxs. Shared endpoints between intervals

are not repeated here.

In addition, when performing refinement, the following routines will be used:

• RefineLocal : a routine that subdivides the polynomial terms in polys0 so that they

are represented over the intervals of reg1. It also modifies trans1 so that it contains

the coefficients for the integrals of the knot functions indexed by the intervals in reg1.

The coefficients in trans1 are not refined by this routine, they are only copied into

68

Figure 5.14: Insertion of 2 knots at .5 and then 2 knots at .25 and again at .75 on a degree 2
GB-spline curve that exactly represents a quarter circle and is defined using a Bernstein-like
basis that spans the trigonometric functions cos

(
π
2
t
)

and sin
(
π
2
t
)
.

a new array that is indexed by the intervals of reg1 rather than by the intervals of

reg0. The coefficients corresponding to an interval in reg1 are simple the coefficients

corresponding to the interval in reg0 that contains it.

• RestrictPoly : a routine that restricts a polynomial over a given interval to a set of

intervals and returns the new set of coefficients as an array.

• ElevatePolys : a routine to degree elevate an array of polynomial terms so they have a

given degree.

• LeftTaylorSeries : a routine that computes the Taylor polynomial at the left endpoint

69

Figure 5.15: Insertion of 5 knots at .5 and then 5 knots at .25 and again at .75 on a degree 5
GB-spline curve defined using a Bernstein-like basis that spans the trigonometric functions
cos
(
π
2
t
)

and sin
(
π
2
t
)
.

of a given interval satisfying a given set of derivative values at that point.

• RightTaylorSeries : a routine that computes the Taylor polynomial at the right end-

point of a given interval satisfying a given set of derivative values at that point.

• RepresentKnotFuncs : a routine to change the coefficients in trans0 so that they repre-

sent the terms from the knot functions in the given piecewise function in terms of the

knot functions over reg1 rather than the knot functions over reg0. This function also

returns an array of polynomial terms to be added to polys1 to compensate for different

allowable choices for integral values for the given functions.

70

Figure 5.16: Insertion of 4 knots at .5 and then 4 knots at .25 and again at .75 on a degree 4
GB-spline curve defined using a Bernstein-like basis that spans the trigonometric functions
cos
(
π
2
t
)

and sin
(
π
2
t
)
.

• FullReverseDiagonals : a routine that takes a given array and, along the first two axes,

forms a new array whose rows consist of the entries of all the reverse diagonals of full

width. Here it will always be called on arrays that have more rows than columns,

so each row of the output array will have the same shape as a row of the original

array. This functions effectively as a method of translating between the piecewise

representations of the basis functions and the variable lbases.

• ReverseDiagonalAverages : a routine that takes the averages along all reverse diagonals

of a given 2 dimensional array, ignoring NaN entries.

The refinement algorithm is outlined in further detail in Algorithm 17.

71

Algorithm 17 Computing the control point representation for a given spline curve repre-
sented in piecewise form.

1: procedure RefineCurve(polys0, trans0, treg0, rints0, polys1, trans1, reg1, rints1, tol)
2: . Change the indexing of polys0 and trans0 to be indexed by the intervals in regs1.
3: . Subdivide the polynomial terms so they are represented over the intervals in regs1.
4: polys0, trans0 = RefineLocal (polys0, trans0, reg0, reg1, tol)
5: . Degree elevate the polynomials in polys0 so that
6: . they are the same degree as the polynomials in polys1.
7: polys0 = ElevatePolys (polys0, shape (poys1) [−1]− 1)
8: . Compute the lengths of the intervals in regs1.
9: reg1lens = reg1 [1 :]− reg1 [: −1]
10: . Find the intervals in reg1 that have positive length
11: pos = (reg1lens > tol)
12: . Represent the terms in trans0 in terms of the local basis on reg1.
13: trans0, offset = RepresentKnotFuncs (trans0, rints0, rints1, reg1lens, pos, tol)
14: . Add the polynomial part from the terms in trans0 to polys0.
15: . This makes it so that the function represented by polys0 and trans0 is now
16: . completely rewritten in terms of the local bases used in polys1 and trans1.
17: polys0 += offset
18: . Construct the local representations of the positive basis functions
19: . for each interval in reg1.
20: lbases = FullReverseDiagonals (concat (polys1, trans1,−1))
21: . Combine the local representations in polys0 and trans0 into a single array.
22: lfunc = concat (polys0, trans0,−1)
23: . Allocate coefs.
24: coefs = empty array of NaN ’s of the same shape as lfunc
25: . Find the coefficients that represent each piece of the piecewise function
26: . as a linear combination of the basis functions in the target basis.
27: coefs [pos] = solve (reindex (lbases [pos] , (0, 2, 1)) , lfunc [pos, . . . , None]) [. . . , 0]
28: . Combine the local results for each interval to compute the desired basis coefficents.
29: . Return the result.
30: return ReverseDiagonalAverages (coefs , tol)
31: end procedure

72

The auxiliary routine RefineLocal begins the translation of the local representations over

reg0 into local representations over reg1. It represents the polynomial terms over the new

intervals. It also restructures the coefficients in trans0 so that each row in trans0 corresponds

to an interval in reg1. The coefficients stored in the row corresponding to a given interval

I1 are the coefficients that were originally stored for the interval I0 in reg0 that contains I1.

RefineLocal performs these operations by iterating through the points in reg0 and reg1 and

constructing the new arrays npolys and ntrans that are going to replace polys0 and trans0.

This auxiliary routine is shown in greater detail in Algorithm 18.

The auxiliary routine RestrictPoly is dependent on the polynomial representation used.

It accepts a polynomial term, the endpoints for the interval over which it is currently defined,

and the endpoints for the intervals to subdivide the polynomial term onto. It returns an array

of polynomial terms containing the coefficients for the polynomial represented over each of

the new intervals. If the polynomial basis used is the Bernstein basis, this corresponds to

subdividing a Bernstein polynomial. If the polynomial basis used is the power basis shifted

so that the starting point of each interval corresponds to 0 in the polynomial term, this

operation corresponds to a left shift operation.

The routine ElevatePolys is also dependent on the polynomial representation used. For

the case of polynomials in Bernstein form, a simple algorithm follows easily from Theorem

2.15. For power basis polynomials, this corresponds to appending 0’s to the left of each set

of coefficients.

The routine RepresentKnotFuncs provides a way to transition between different choices

that could possibly be made for the knot functions and their corresponding integral values.

First, since indefinite integrals are only well defined up to constant shifts, a method is

needed to account for different choices for the integral terms. Polynomial terms can be

used to account for these differences in integral values. In addition, if the i’th set of knot

functions are cos
(
π
2
t
)

and sin
(
π
2
t
)

over the interval [0, 1] and the target intervals are
[
0, 1

2

]
and

[
1
2
, 1
]

with knot functions cos
(
π
2
t
)

and sin
(
π
2
t
)
, and cos

(
π
2

(
t− 1

2

))
and sin

(
π
2

(
t− 1

2

))

73

Algorithm 18 Restructuring polys0 and trans0 so they are indexed by interval in reg1.
Subdivide the polynomial terms to represent them over the new intervals.

1: procedure RefineLocal(polys0, trans0, reg0, reg1)
2: npolys = array of zeros of shape (shape (reg1) [0]− 1, shape (polys) [1])
3: ntrans = array of zeros of shape (shape (reg1) [0]− 1, 2)
4: i = 0
5: j = 0
6: . Iterate through the intervals in reg0 and reg1.
7: while i < shape (reg0) [0] do
8: . Skip the empty intervals in reg0.
9: while reg0 [i]− reg1 [i− 1] < tol do
10: i += 1
11: end while
12: . Stop if iteration has already reached the end of reg0.
13: if i = shape (reg0) [0] then
14: break
15: end if
16: jidxs = empty list
17: endpts = empty list
18: . Iterate through the intervals in reg1 that lie in the current interval in reg0.
19: . Add the corresponding indices and endpoints to jidxs and endpts
20: . if the interval has positive length.
21: while reg0 [i]− reg0 [i− 1] < tol do
22: if reg1 [j + 1]− reg1 [j] > tol then
23: append j to jidxs
24: append reg1 [j] to endpts
25: end if
26: j += 1
27: end while
28: append reg1 [j] to endpts
29: . Subdivide the polynomial term on the current interval onto the corresponding
30: . intervals in reg1.
31: npolys [jidxs] = RestrictPoly (polys0 [i− 1] , reg0 [i− 1 : i+ 1] , endpts)
32: . Copy the coefficients from trans0 into all corresponding rows of ntrans.
33: ntrans [jidxs] = trans0 [i− 1]
34: i += 1
35: end while
36: return npolys, ntrans
37: end procedure

74

respectively (taking linear combinations to satisfy the needed endpoint values), on
[
1
2
, 1
]
,

the knot functions over [0, 1] are only equal to linear combinations of the knot functions on

the interval
[
1
2
, 1
]
.

On the other hand, since the polynomial terms used in the representation of a spline of

degree q have only degree q − 2, any function in the span of B1 is uniquely determined by

its 0 through (q − 1)’th derivatives at each knot in the active region. To see this, observe

that, over a given interval I1 with endpoints in reg1 and corresponding knot functions ũ and

ṽ, any function f on I1 within the span of the basis functions can be represented uniquely

in the form aũ[q−1] (t) + bṽ[q−1] (t) + P (t). Since the polynomial term P (t) has at most a

degree of q − 1, f (q−1) = aũ + bṽ. Since ũ and ṽ form a Chebyshev space over I1, they are

linearly independent, so the coefficients a and b are uniquely determined. Now observe that

P (t) = f (t)− aũ (t)− bṽ (t), so the 0 through (q − 1)’th derivatives of f at the endpoints of

I1 uniquely determine the 0 through (q − 1)’th derivatives of P . Since 0 through (p− 2)’th

derivatives at any given point uniquely determine a polynomial of degree p−2, P is uniquely

determined by its derivatives at either endpoint of I1, so it is certainly uniquely determined

by the 0 through (q − 1)’th derivatives at both endpoints.

The observation that the derivatives of a function at the endpoints of each interval

uniquely define the local representation of the function also suggests a method for com-

puting the needed representations of the integral terms in the local representations of the

original piecewise function. Here, let ui and vi be the knot functions corresponding to the

interval I0 from reg0 that contains I1. Let ũj and ṽj be the knot functions on I1. Also let fj

be the restriction of the piecewise function being represented as a spline curve to the interval

I1. It is already known that fj = gj + Pj where Pj is a polynomial term of degree p− 2 and

gj is a linear combination of u
[p−1]
i and v

[p−1]
i .

• Compute the 0 through (q − 1)’th derivatives of gj at the endpoints of each interval

with endpoints reg1.

• Represent g
(q−1)
j as g

(q−1)
j = ajũj + bj ṽj.

75

• Compute the 0 through (q − 2)’th derivatives of the integral terms ajũ
[q−1]
j + bj ṽ

[q−1]
j

at the endpoints of each interval in reg1.

• Use the computed derivative terms to find the 0 through (q − 2)’th derivatives of

gj − ajũ[q−1]j − bj ṽ[q−1]j .

• Use the computed derivatives for the difference term to compute the polynomial part

in the representation of gj in terms of the local bases used for B1.

This process is shown in Algorithm 19.

Algorithm 19 Restructuring polys0 and trans0 so they are indexed by interval in reg1.
Subdivide the polynomial terms to represent them over the new intervals.

1: procedure RepresentKnotFuncs(trans0, rints0, rints1, reg1lens, pos, tol)
2: . Find the values of the 0 through (q − 1)’th derivatives of each gj.
3: ivals = MatMul (rints0, trans0 [. . . , None])
4: . Compute the representations of the (q − 1)’th derivatives of gj
5: . in terms of the knot functions on the intervals in reg1.
6: ntrans = an array of zeros the same shape as trans0 [. . . , None]
7: ntrans [pos] = solve (rints1 [0, pos] , ivals [0, pos])
8: . Compute the 0 through p− 1’th derivatives of the integral terms
9: . ajũ

[q−1]
j + bj ṽ

[q−1]
j .

10: nints = MatMul (rints [1 :] , ntrans) [. . . , 0]
11: . Take the difference between corresponding derivative terms.
12: diffs = ivals [1 :, . . . , 0]− nints
13: . Compute the polynomial term that satisfies the given derivative constraints.
14: . Average the Taylor series at both endpoints to combine the results nicely.
15: offset0 = LeftTaylorSeries (reindex (diffs [:: −1, :, 0] , (1, 0)) , reg1lens)
16: offset1 = RightTaylorSeries (reindex (diffs [:: −1, :, 1] , (1, 0)) , reg1lens)
17: offset = .5 ∗ (offset0 + offset1)
18: return ntrans [. . . , 0] , offset
19: end procedure

The routines LeftTaylorSeries and RightTaylorSeries both accept an array of derivative

values, indexed first by interval, then by derivative degree from 0 to q − 2 and return a

polynomial with the desired derivative values at the left and right endpoints of an interval

of the given length with left endpoint at 0.

The routine ReverseDiagonalAverages is used to aggregate the results from the local

computations over each interval in reg1. It takes a 2D array and computes the sum along

76

each reverse diagonal ignoring entries of NaN . Since it should be aggregating terms that

will be fairly close together, it can also be used to raise an error if any real entry differs

from the average by more than a negligible amount. When it is called in Algorithm 17, it is

passed a tolerance for that purpose.

The helper routine FullReverseDiagonals depends on the array library used. Here it is

only called on arrays with at least as many rows as columns, so it is sufficient to consider

the cases where the length of a given reverse diagonal is equal to the length of a row of the

original array. This function will also only operate on the first two axes of a given input

array. In Python, it can be implemented easily using NumPy.

def FullReverseDiagonals(a):
"""
Get a view of all reverse diagonals that have the same number
of entries as a row from the array 'a'.
This routine preserves the order of entries row by row and reverses
the order of the columns.
"""
strides = (a.strides[0], a.strides[0]-a.strides[1]) + a.strides[2:]
shape = (a.shape[0]-(a.shape[1]-1), a.shape[1]) + a.shape[2:]
return np.lib.stride_tricks.as_strided(a[0,-1:], shape, strides)

To see how this indexing transformation works, let

a =



a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

a3,0 a3,1 a3,2

a4,0 a4,1 a4,2

a5,0 a5,1 a5,2


so

FullReverseDiagonals (A) =



a0,2 a1,1 a2,0

a1,2 a2,1 a3,0

a2,2 a3,1 a4,0

a3,2 a4,1 a5,0



77

For higher dimensional arrays, this indexing transformation is performed along the first two

axes. Conceptually, this can be thought of the same as the operation on a, except that

the entries shown above are subarrays resulting from fixing two indices rather than single

entries of a two dimensional array. This indexing operation is used to transition between

indexing local representations of basis functions first by basis function, then by interval

within the support of each basis function, then by term in the representation, and indexing

local representations first by interval in the active region of a spline, then by positive basis

functions over that interval, then by term in the representation.

An additional benefit of the refinement algorithm presented here is that it provides a

method for computing the Greville abscissae associated with a given spline basis. The

Greville abscissae are the coefficients for the linear combination of the spline basis functions

that correspond to the linear function y = x. These points are used to accurately represent

1-dimensional spline curves as 2-dimensional splines that are linear in one dimension. This

representation is commonly used to choose the x-axis values at which to plot the control

points of a given 1-dimensional spline curve. In the case of p = 2, these coefficients may not

exist; however, if the spline basis spans degree 1 polynomial terms, Algorithm 17 provides a

method to compute them.

When performing degree elevation and knot insertion, it may also be necessary to rewrite

a curve in piecewise form before passing it to the routine defined in Algorithm 17. This

can be done very easily using the routine FullReverseDiagonals, since it is essentially a

transformation from indexing by basis function to indexing by interval. The version presented

here does involve some redundant computation, but, for the sake of simplicity, we will not

optimize it further. The process of forming a piecewise representation is shown in Algorithm

20.

78

Algorithm 20 Construct the piecewise representation of a spline curve given a set of control
points and the corresponding set of basis functions.

1: procedure FormPiecewise(cpts, oplys, trans)
2: . Construct the coefficients by multiplying the coefficients for each basis function by
3: . the corresponding control points, reindexing so the coefficients are accessed by
4: . interval, then summing the coefficients from the different basis functions.
5: npolys = sum (FullReverseDiagonals (polys ∗ cpts [:, None,None]) , 1)
6: ntrans = sum (FullReverseDiagonals (trans ∗ cpts [:, None,None]) , 1)
7: return npolys, ntrans
8: end procedure

Chapter 6. Stability of Evaluation

In Chapter 4 we introduced a local representation for GB-splines. In Chapter 5 we demon-

strated how this local representation can be used to perform various refinement operations

on GB-splines. Here we will address corresponding numerical concerns. The primary idea

regarding the stability of the algorithms presented earlier is that they are least stable pre-

cisely in the cases where they are least useful. GB-splines are used to model functions that

are not easily approximated by the usual polynomial basis used for spline curves. Generally,

if a spline of high degree is needed, polynomial terms are sufficient to closely approximate

additional functions that may need to be included in the basis.

The first important observation to be made is that the choices for the indefinite integrals

of the knot functions are only unique up to a constant shift. If large constants are added to

the integral terms, the information given by the values of the integral terms at the endpoints

is obscured by floating point inaccuracies. The recursion in Definition 3.5 can easily fall prey

to catastrophic cancellation.

Another important consideration is that, if the knot functions given as input to Algorithm

9 do not already satisfy the value constraints for every interval of nonnegligible length, the

matrix  ui (ti) vi (ti)

ui (ti+1) vi (ti+1)


must be relatively well-conditioned so that linear combinations of the knot functions that

79

satisfy the needed constraints can be computed.

Beyond these concerns, however is the fact that, for a spline basis of degree p on a

given interval of positive length, if either function u
[p−1]
i or v

[p−1]
i can be well-aproximated

by polynomials of degree p− 2, the problem of representing a function in terms of the local

basis
{

1, t, . . . , tp−2, u
[p−1]
i , v

[p−1]
i

}
is inherently poorly conditioned.

For example, Consider the basis functions of a given degree p formed by the open knot

vector formed by repeating 0 exactly p + 1 times and then 1 exactly p + 1 times. Then,

following the recurrence in Definition 3.5, on [0, 1],

Np
p =

∫ t
0
Np−1
p−1 (s) ds∫ 1

0
Np−1
p−1 (s) ds

Following this simpler recurrence for the last basis function, it is easily shown that

Np
p =

v[p−1] (t)−
∑p−2

r=0 v
[p−1−r] (0) tr

r!

v[p−1] (1)−
∑p−2

r=0 v
[p−1−r] (0) 1

r!

but this is precisely the Taylor series remainder term for the function v[p−1] taken at 0

normalized to take a value of 1 at 1. In the computation, as it has been presented here,

however, the remainder term and v[p−1] (t) are computed separately and then the difference

is taken between them. This can cause inaccuracies in floating point arithmetic if the size of

the remainder term for the Taylor series is very small relative to the value of v[p−1] (t). Since,

as the Taylor series comes closer to the values of v[p−1] (t), the value of the denominator

v[p−1] (1)−
p−2∑
r=0

v[p−1−r] (0)
1

r!

also becomes very small, this makes it so that the coefficients for the polynomial part of the

representation of Np
p and the coefficient corresponding to v[p−1] (t) become very large. This

effect on the values of the real and transcendental parts of is easily seen in practice and is

shown in Figure 6.1. The effects of catastrophic cancellation are shown in Figure 6.2

80

Figure 6.1: The sizes of the transcendental terms and polynomial terms for the generalized
Bernstein basis of degrees 12 and 13 with u = cos

(
π
2
t
)

and v = sin
(
π
2
t
)
. The transcendental

parts are shown in blue and the polynomial parts are shown in red.

Figure 6.2: Breakdown in computation of trigonometric basis functions for p = 16.

81

Figure 6.3: Generalized Bernstein bases of degree 26 with u = cos
(
π
2
t
)

and v = sin
(
π
2
t
)

computed using the tails of the Taylor series for sin and cos.

For the common cases of approximating transcendental functions, a more judicious choice

for values of the constants of integration can mitigate this effect. For example, the constants

of integration can be chosen such that v
[q]
i (ti) = u

[q]
i (ti+1) = 0 for every q > 0. If u and v

were chosen as the (p− 1)’th derivatives of specific functions, the terms u
[p−1]
i and v

[p−1]
i will

be the values of the Taylor series remainder term for the series of degree p − 2 centered at

ti+1 for u and the series of degree p − 2 centered at ti for p. If the original function can be

represented as a Taylor series, these remainder terms can be computed by estimating the tails

of an infinite series rather than having to subtract two floating point numbers that are very

close together. In practice, this approach does mitigate at least some of the inaccuracies of

the basis construction, as can be seen in figure 6.3 which shows higher degree bases computed

using Taylor series remainder terms for series that were both centered at 0.

The instabilities that arise from attempting to represent a function that is closely ap-

proximated by polynomial terms can also be seen when knots are very close together. In

that case, the knot functions over the given interval may be so close to linear that using a

linear knot functions to generate polynomial splines for that interval should be sufficient.

82

Chapter 7. Future Directions

Here we have presented algorithms for the evaluation and refinement of GB-spline curves

via their piecewise representation. These algorithms provide a much more direct way of

evaluating these spline curves than the recursive integral process given in the definition for

GB-splines. They make practical computation with these curves vastly simpler in practice.

They also make additional refinement operations easier to understand and practical to per-

form. In addition, these piecewise representations make it so that the cost of evaluating a

given spline curve is bound primarily by the costs of finding the portion of the knot vector

in which a given point lies and evaluating the functions spanned by the spline basis. Though

these piecewise representations may suffer from some instabilities for cases where the local

basis used is poorly conditioned, in general, the local bases introduced here offer a practical

means for computation with GB-splines that is accurate precisely when these splines are

needed to address the limitations of standard B-splines. These practical algorithms provide

a means for CAD systems to exactly represent simple geometric objects like circles, spheres,

hyperbolas, and hyperboloids in a way that can be further modified by designers.

There are a variety of ways in which the algorithms and structures here can be used

for further research. The local bases on each interval used to construct each spline curve

share some of the useful properties of the bases used in [27]. There, the process of inserting

knots to represent a given B-spline curve as a piecewise polynomial was used to develop a

local element structure that can, in turn, be used in Isogeometric Analysis (Finite Element

Analysis on spline curves and surfaces, introduced in [28]). The local representations here

can be used in a similar manner to provide element structures for Isogeometric Analysis.

Detailed analysis of the numerical stability of the algorithms presented here is also a

topic where further work has yet to be done. Here we have outlined some practical ways

to avoid instabilities that arise when working with a basis that is poorly conditioned. A

more thorough analysis of these methods may provide greater insight into the structure of

GB-spline curves and provide even more resilient versions of these algorithms.

83

The computational routines here can also be used to work toward developing more effi-

cient methods for the evaluation of specific classes of GB-spline curves. They provide working

examples that can be used to further study possible ways to provide better evaluation rou-

tines or subdivision methods for specific classes of GB-spline curves.

Methods for efficient evaluation for specific types of GB-spline curves may also be useful

in building better root finding algorithms for different classes of transcendental curves.

The local structures used in this thesis also provide insight into possible generalizations

of the approach used in [12] to local bases that are not generalized versions of the Bernstein

basis. Further generalizations of the approach used there would provide insights into possible

structures that could be used for adaptive refinement of finite element meshes that satisfy

given smoothness constraints on their boundaries.

In practice, GB-spline bases look increasingly similar to B-spline bases for successively

higher degrees of spline bases. A meaningful area for further work may come in explaining

how, when, and how quickly this convergence occurs. Providing meaningful bounds on this

convergence would also make it much easier to determine when polynomial basis functions

can be used as a replacement for GB-spline basis functions.

In practice, the assumption that the knot functions form a Chebyshev space can also be

loosened slightly. Higher degree splines may still satisfy many of the properties of GB-splines

even if the knot functions do not form a Chebyshev space. For example, the basis on the

knot vector [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,] formed using the knot functions cos
(
7π
2
t
)

and sin
(
7π
2
t
)

on [0, 1] appears to have many of the desirable properties needed for design for

a Bernstein-like basis of degree 7.

84

Appendices

85

Appendix A. Conventions and Notation for Algorithms

Throughout the algorithms presented in this thesis, the following conventions and notation

is used:

0-based indexing for arrays is assumed throughout.

Overwriting of function arguments is also allowed. If a variable is assigned to in a

function, it is assumed that the original variable is only overwritten within the scope of

the function. Array slices (exact slicing semantics are discussed later in this section) will

be used for in-place assignment of values within arrays. In-place operators are also still

assumed to modify the original object. When performing assignment, the right hand side of

any expression is evaluated before assignment is performed. For example, a = 1
2

(a+ b) will

compute the expression on the right hand side, then change the variable a to reference the

result of the computation rather than it’s previous values.

Arithmetic operations are assumed to broadcast (the same as NumPy). For arrays of the

same shape, this is the same as performing the operations elementwise. Arrays are allowed

to broadcast if corresponding entries are either equal or one of the two corresponding entries

is 1. They are also allowed to broadcast if the shape of one array can be broadcast with

the shape of the other by prepending ones to it. Arithmetic that is broadcast along an axis

operates with the axis being broadcast taking constant values for all the indices along that

axis. For example, arrays of shapes (1, 3) and (3, 1) would broadcast together to form an

array of shape (3, 3) containing the result of the arithmetic operation between every entry

of the first array and every entry of the second array.

Broadcasting for solving linear systems will function in a similar fashion, operating on the

last two axes of both arrays given. Solving the set of systems Ax = b for x will be written as

solve (A, b). Matrix inversion will operate on the last two axes of a given array and broadcast

along all other axes. Routines following proper broadcasting rules are available in NumPy as

of version 1.8. A routine performing broadcasting matrix multiplication via numpy’s einsum

will be provided.

86

+, −, ∗, /, ˆ Elementwise arithmetic operators for scalars or arrays
<, >, ≤, ≥, ==, ! = Elementwise comparison operators on scalars or arrays
+=, −=, ∗=, /=, ˆ= In-place arithmetic operators for scalars or arrays
len A function that returns the length of an array or list
deg Function that takes the degree of a polynomial or spline
shape Function returning the shape of a given array
concat Concatenate two arrays along a given axis
sum Sum an array along a given axis
solve Solve a given linear system
inv Compute a matrix inverse
reindex Reorder the axes of a given array
bin Function for the binomial coefficients of a given order
⊗ Outer product of two vectors
〈·, ·〉 Inner product of two vectors
~ Discrete convolution of two vectors
dcv Discrete deconvolution of two vectors

Table A.1: Notational conventions used in algorithms.

Numpy-style array slicing notation will be used. Shapes, axes, and indices for multi-

dimensional arrays will always be written row-first. This format is, for an array a with

n dimensions, a [start1 : stop1 : step1, start2 : stop2 : step2, . . . , startn : stopn : stepn]. This

format means, along the i’th axis, take every stepi elements starting from starti up to (but

not including) stopi. Along each axis, the notations a[:], a[start], a[start : stop], a[start :],

a[: stop], a[start :: step], a[: stop : step], and a[:: step] are also allowed. When a value is

excluded in this manner, start is assumed to take a value of 0, stop is assumed to take the

value of an index one after the length of the axis of the array, and step is assumed to take

a value of 1. A single “:” applied to a given axis means to take the whole axis and is used

only as a placeholder between other axes. A single number means to take only elements of

the array that have that index on that axis (so, for a 2× 3 array, a[0, :] would take the 0’th

row). If there is a single number corresponding to every axis, a scalar is returned. Negative

values are taken to mean values counting back from the end of the axis (a[−1] means the

last element in the axis, a[−2] the second to the last, etc.).

The slice [:] serves only as a placeholder when performing assignment to indicate whether

the variable itself is being changed to reference a different array or the array is being modified

87

in place. For example a[:] = 0 writes 0 to all values of the given array while a = b makes it

so that the variable a references the same array originally referenced by b. If b is replaced by

some expression, the expression is evaluated, a new array is created by the expression and

the variable a is made to reference the new array.

In addition, indices for various axes may be omitted using the notations a[i], a[..., i]. All

sets of indices for axes starting from the left are assumed to be addressing the 0’th, first,

second, etc. axes. All sets of indices for axes following the ellipsis, starting from the right

are assumed to be addressing the last, second to the last, third to the last, etc. axes.

New axes of length 1 may be added via slicing by using None in the indexing notation.

This will add a new axis wherever the None appears in the indexing expression. For example,

a[None] will add a new axis of length 1 at the beginning of the shape of a. a[...,None] will

add a new axis of size 1 at the end of the shape of a.

Boolean arrays may be used as indices along all axes or along a single axis. If used along

all axes, the shape of the boolean array must be the same as the shape of the original array.

The resulting array will be a 1D array containing the values where the array is True. If used

along a single axis, the resulting array will be the array of slices along the given axis where

the boolean array is True. Inplace operators, when applied directly to these sorts of indexing

operators are assumed to operate on the entries of the array being indexed.

When an array is reindexed, the ordering of the axes is changed according to some given

permutation of the axes. For example, if a has three dimensions, reindex (a, (1, 2, 0)), would

return a new array where reindex (a, (1, 2, 0)) [j, k, i] = a [i, j, k] for valid indices i, j, and k.

In NumPy, reindexing is easily done via the transpose function.

Following Python’s convention, functions are allowed to return multiple values or arrays.

When a function returns multiple values, it will return them as a comma separated list. The

returned object is assumed to be a tuple containing all values. When retrieving both values

from a function, multiple assignment may be used, as in a, b = f(c, d). For brevity, multiple

assignment as in a, b = c, d may also be used. It is assumed that a, b = c, d is the same as

88

evaluating the expressions c and d, then assigning them to a and b respectively. For example,

a, b = b, a would swap the values of a and b.

The convention used here for convolutions is that entries are not wrapped around and

indices where the arrays only partially overlap are also included. This is the convention

followed by default in both NumPy and Matlab. For example, for arrays a and b of lengths m

and n respectively, the first entry of a~b is a [0]∗b [0], the second entry is a [0]∗b [1]+a [1]∗b [0],

etc. The resulting array has length m + n − 1. This operation is equivalent to performing

polynomial multiplication of polynomials with the coefficients from a and b and returning an

array containing the coefficients of the resulting polynomial. It is also equivalent to taking

the outer product of a and b, reversing the order of the rows, then taking the sum along each

diagonal.

The convention for deconvolutions is also the same as is followed by NumPy and Matlab.

The deconvolution of two arrays a and b is expected to return 2 arrays, q and r such that

b~ q + r = a. r is expected to be an array of the same size as a, however, the first len (a)−

len (b) + 1 entries of r are only in place to account for errors in floating point arithmetic.

They should, in fact, be very close to 0. This operation is equivalent to polynomial division.

Appendix B. Code for Computation of Basis Coefficients

All code included here will work with NumPy 1.10 on Python 2.7 or 3.4. Other versions may

work as well.

This code is intended primarily as a reference implementation of the new algorithms

discussed in this thesis. It is designed primarily to match the original algorithms well.

Error handling and argument checking has been mostly omitted, and the API consists only

of functions that implement specific algorithms. For simplicity, we have used power basis

polynomials in this section of the code, though it is relatively easy to use polynomials in

Bernstein form as well.

89

1 # Copyright (c) 2015, Ian Daniel Henriksen
All rights reserved.
#
Redistribution and use in source and binary forms, with or without

5 # modification, are permitted provided that the following conditions
are met:
#
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

10 #
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
#

15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

20 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

25 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import numpy as np
from scipy.misc import factorial

30 # Integral axes are: (degree, interval_index, endpoint, u or v).
Coefficient axes are: (basis_function, interval_index, u or v).
For coefficients and integrals, u is indexed before v.
Polynomial axes: (basis_function, interval_index, poly_coefs).
TDiffs axes: (basis_function, interval_index)

35 # the variable 'd' in the loop is the degree of the basis being formed,
not that of the previous basis.

Wrap an axis into two new axes where the rows are just shifted windows
of the original axis.

40 def Wrap(a, width, axis=0):
"""
Use stride tricks to make a new array that views 'axis' of 'a'
as two new axes where an entry of the first of the two new axes
is a rolling window of 'width' length of the entries indexed

45 along 'axis' of 'a'.
"""
if (axis < -a.ndim) or (a.ndim <= axis):

raise ValueError("'axis' entry out of bounds.")
Compute the shape of the desired output array.

50 axis = axis % a.ndim
shape = (a.shape[:axis] + (a.shape[axis]-width+1,width) + a.shape[axis+1:])
Make the strides of the new array the same along both expanded axes.
strides = a.strides[:axis] + (a.strides[axis],) + a.strides[axis:]
Return an array of the given shapes and strides

55 # viewing the memory of the original array.
return np.lib.stride_tricks.as_strided(a, shape, strides)

def MatMul(a, b):

90

"""
60 Perform matrix multiplication between the arrays 'a' and 'b'

following normal gufunc broadcasting rules.
"""
return np.einsum('...ij,...jk', a, b)

65 def MakeDegreeOne(n):
"""
Generate the polynomial and transcendental terms
for a degree 1 basis with 'n' basis functions.
"""

70 trans = np.zeros((n, 2, 2))
trans.reshape((n, 4))[:,1:3] = 1
return np.empty((n, 2, 0)), trans

def ScaleKnotFuncs(ints, Tlens, tol=1E-8):
75 """

Compute the linear combinations of the functions with
indefinite integrals given in 'ints' such that the
linear combinations satisfy the value constraints
for each knot function. Return the rescaled version

80 of 'ints' and the matrices corresponding to the change
of basis on each interval.
"""
ints = ints.copy()
pos = Tlens > tol

85 invs = np.zeros(ints.shape[1:])
invs[pos] = np.linalg.inv(ints[0,pos])
ints[:] = MatMul(ints, invs)
return ints, invs

90 def ScaleTransCoefs(invs, trans):
"""
Use the scaling matrices returned by 'ScaleKnotFuncs'
to scale the coefficients for a given basis so that they
are represented in terms of the original knot functions

95 rather than in terms of the scaled versions that satisfy
the constraints over each interval in the knot vector.
"""
trans[:] = MatMul(invs, trans[...,None])[...,0]

100 def PolyInt(polys, Tvals):
"""
Integrate an array of polynomials represented in the power basis.
The coefficients are assumed to be stored along the last axis.
The coefficients for the indefinite integrals of the polynomial

105 terms are returned.
Each polynomial is assumed to be defined on an integral of the length
stored at the corresponding index in 'Tvals'.
In the case of the power basis, the array 'Tvals' is not used.
"""

110 # Integrate a polynomial represented in the Power basis.
pints = np.empty(polys.shape[:-1] + (polys.shape[-1]+1,))
pints[...,:-1] = polys / np.arange(polys.shape[-1], 0, -1)
pints[...,-1] = 0.
return pints

115

def PolyVal(polys, Tvals, vals):
"""

91

Evaluate each polynomial with coefficients indexed along the last
axis of 'polys' defined over intervals of the lengths stored in

120 'Tvals' at each corresponding value stored in vals.
'Tvals' and 'vals' are expected to have a shape of 'polys.shape[:-1]'.
"""
Evaluate polys at vals, matching all the first dimensions
pvals = polys[...,0].copy()

125 for i in xrange(1, polys.shape[-1]):
pvals *= vals
pvals += polys[...,i]

return pvals

130 def TransInt(trans, wints):
"""
Given the transcendental coefficients from a given set of basis functions,
compute the indefinite integral of the transcendental terms.
Also return the constant terms that are computed from the left boundary

135 of each interval.
"""
consts = -(trans * wints[:,:,0]).sum(axis=-1)
vals = (trans * wints[:,:,1]).sum(axis=-1) + consts
return vals, consts

140

def IntegrateSupports(Tvals, pints, trans, wints):
"""
Integrate each basis function over its support.
Also return the constant terms from the left endpoints

145 of each transcendental integral so they can be used
when computing the polynomial terms for the new basis.
"""
vals, consts = TransInt(trans, wints)
Tvals lines values up with first two axes.

150 # Need to get the values from the polynomials along the last axis.
vals += PolyVal(pints, Tvals, Tvals)
Return the final sum, evaluated over all
the intervals for each basis function.
Line containing einsum equivalent to:

155 return vals.sum(axis=-1), consts

def OffsetDifferences(pints, trans):
"""
Given the integrated and normalized values

160 of the indefinite integrals of each basis function
over each interval, take the differences
between these intermediate terms to construct a
new basis. This function does not account for the
constant offsets in the polynomial term, nor does it

165 account for the constant terms that come from evaluating
the new basis function on each previous interval.
"""
n, nints, dmin = pints.shape
npolys = np.zeros((n-1, nints+1, dmin))

170 ntrans = np.zeros((n-1, nints+1, 2))
npolys[:,:-1] += pints[:-1]
npolys[:,1:] -= pints[1:]
ntrans[:,:-1] += trans[:-1]
ntrans[:,1:] -= trans[1:]

175 return npolys, ntrans

92

def OffsetConstants(polys, consts):
"""
Apply a constant offset inplace to the polynomials

180 stored in polys.
This depends on polynomial representation, but is
independent of the length of the interval used in
representing each polynomial.
"""

185 # This depends on polynomial representation.
Here, assume power basis representation with higher
degree terms at the beginning.
polys[...,-1] += consts

190 def AddOnes(polys, pos):
"""
This function adds ones to the last interval of some
of the basis functions to account for the case that
one of the basis functions used in the computation

195 of the new basis function is equal to 0.
"""
Add 1 to the polynomial part of each basis function
that has an index that corresponded to a degenerate
basis function for the previous degree.

200 # Only do this after the support of the degenerate
basis function should have ended, i.e. on the
last interval where the current basis function is nonzero.
In the Power polynomial case, this means just adding 1 to
the constant term of the polynomial part over that interval.

205 polys[~pos[:-1],-1,-1] += 1

def ConnectBoundaries(polys, trans, wints, Tvals):
"""
This function adds in the constant terms that come

210 from evaluating each basis function at the endpoint
of each interval.
"""
vals = PolyVal(polys[:,:-1], Tvals, Tvals[:,:-1])
vals += (trans[:,:-1] * wints[:-1,:,1]).sum(axis=-1)

215 OffsetConstants(polys[:,1:], vals.cumsum(axis=1))

def BasisCoefs(T, ints, tol=1E-8):
"""
Construct the local representation of a GB-spline

220 basis in terms of a polynomial term with two transcendental
terms on each interval.
"""
p = ints.shape[0]
Tlens = T[1:] - T[:-1]

225 Tvals = Wrap(Tlens, 2)
ints, scal = ScaleKnotFuncs(ints, Tlens, tol=tol)
polys, trans = MakeDegreeOne(T.size - 2)
for d in xrange(2, p+1):

pints = PolyInt(polys, Tvals)
230 wints = Wrap(ints[d-1], d)

deltas, consts = IntegrateSupports(Tvals, pints, trans, wints)
OffsetConstants(pints, consts)
pos = (T[d:] - T[:-d]) > tol
deltas = deltas[pos,None,None]

235 pints[pos] /= deltas

93

trans[pos] /= deltas
polys, trans = OffsetDifferences(pints, trans)
AddOnes(polys, pos)
Tvals = Wrap(Tlens, d+1)

240 ConnectBoundaries(polys, trans, wints, Tvals)
ScaleTransCoefs(Wrap(scal, p+1), trans)
return polys, trans

def expand_comp(a):
245 """

Expand a complex array into a floating point array
with an additional last axis used to index the real
and complex parts of the original array.
"""

250 assert a.dtype == np.complex128
return a.view(dtype='d').reshape(a.shape[:-1] + (-1,2))

def trig_ders(p, T, c=np.pi*.5, tol=1E-11):
"""

255 Compute the derivatives of the trigonometric
functions cos(c*t) and sin(c*t).
'T' is the knot vector over which to compute the derivatives.
'p' is the degree of the basis to be constructed.
'p' is also equal to one more than the number of derivatives needed.

260 Derivatives are returned the format expected to be used for
the variable 'ints' later in the basis construction algorithm;
i.e., the various derivatives should be indexed from highest
to lowest along the first axis, the different intervals in
the knot vector should be indexed algong the second axis,

265 the first and second endpoints of each interval along the third axis,
and the function being differentiated along the last axis
with cosine coming before sine.
These derivatives are represented in shifted form so that
the input values from each interval are assumed to begin at 0.

270 In other words, on the i'th interval in T, the knot functions u and v
are equal to cos(c * (t-t_i)) and sin(c * (t - t_i)) respectively.
"""
This computation computes the derivatives as various phase shifts
of the original sin and cos functions.

275 # The complex exponential function is used to compute both
the sine and cosine terms simultaneously.
First allocate the output array.
ders = np.empty((p, T.size-1, 2, 2))
Compute the lengths of the different intervals.

280 Tlens = T[1:] - T[:-1]
The phase shifts used to get the different derivatives.
angles = np.arange(p-1, -1, -1)
The constant coefficients that come from c.
coefs = (c)**(angles)

285 ders[...,0,:] = expand_comp(coefs*np.exp(.5j*np.pi*angles))[:,None]
ders[...,1,:] = expand_comp(coefs[:,None]*np.exp(c*1.0j*Tlens[None]+

.5j*np.pi*angles[:,None]))
ders[np.absolute(ders)<tol] = 0
return ders

290

def trig_ders_plain(p, T, c=np.pi*.5):
"""
Compute the derivatives of up to degree p-1 at the points in T
and return them sorted first by degree, then by point in T, then by

94

295 function (cosine first, then sine).
"""
The phase shifts used to get the different derivatives.
angles = np.arange(p-1, -1, -1)
The constant coefficients that come from c.

300 coefs = (c)**(angles)
return expand_comp(coefs[:,None]*np.exp(c*1.0j*T[None]+

.5j*np.pi*angles[:,None]))

def ReverseDiagonalView(a, i):
305 """

Take the 'i'th reverse diagonal.
This function is useful when evaluating basis functions
based on the knot vectors.
"""

310 # This may return a copy, read-only view,
or a view, depending on the version of numpy,
but, as far as the correctness of this algorithm
is concerned, The distinction does not matter
in this case.

315 # A view is preferable only because no copy occurs.
return np.rollaxis(a[:,::-1].diagonal(a.shape[1] - i - 1), -1)

def eval_basis(polys, trans, T, knot_funcs, t_vals):
"""

320 Evaluate a basis given the polynomial terms 'polys', the
transcendental terms 'trans', the knot vector 'T',
and the knot functions 'knot_funcs' at the parameter
values 't_vals'.
"""

325 assert polys.shape[0] == trans.shape[0]
p = polys.shape[-1] + 1
assert len(T) - p - 1 == polys.shape[0]
assert len(T) == len(knot_funcs) - 1
bins = np.digitize(t_vals, T) - 1

330 out = np.zeros((polys.shape[0], t_vals.size), order='F')
for j, (i, t) in enumerate(zip(bins, t_vals)):

if i == -1:
continue

if i == len(T) - 1:
335 if T[-1] == T[-p-1]:

out[-1,j] = 1
continue

loc_polys = ReverseDiagonalView(polys, i)
loc_trans = ReverseDiagonalView(trans, i)

340 f, l = max(0, i+1-trans.shape[1]), min(trans.shape[0], i)
out[f:l+1,j] = PolyVal(loc_polys, None, t - T[i])
out[f:l+1,j] += knot_funcs[i][0](t-T[i]) * loc_trans[:,0]
out[f:l+1,j] += knot_funcs[i][1](t-T[i]) * loc_trans[:,1]

return out
345

def eval_trig_basis(polys, trans, T, t_vals, c=.5*np.pi):
"""
Evaluate a basis given the polynomial terms 'polys', the
transcendental terms 'trans', and the knot vector 'T',

350 at the parameter values 't_vals' using 'cos(c*t)' and
'sin(c*t)' as the knot functions over each interval.
"""
assert polys.shape[0] == trans.shape[0]

95

p = polys.shape[-1] + 1
355 assert len(T) - p - 1 == polys.shape[0]

bins = np.digitize(t_vals, T) - 1
out = np.zeros((polys.shape[0], t_vals.size), order='F')
for j, (i, t) in enumerate(zip(bins, t_vals)):

if i == -1:
360 continue

if i == len(T) - 1:
if T[-1] == T[-p-1]:

out[-1,j] = 1
continue

365 loc_polys = ReverseDiagonalView(polys, i)
loc_trans = ReverseDiagonalView(trans, i)
f, l = max(0, i+1-trans.shape[1]), min(trans.shape[0], i)
out[f:l+1,j] = PolyVal(loc_polys, None, t - T[i])
out[f:l+1,j] += np.cos(c*(t-T[i])) * loc_trans[:,0]

370 out[f:l+1,j] += np.sin(c*(t-T[i])) * loc_trans[:,1]
return out

def eval_trig_spline(cpts, t_vals, polys, trans, T, c=.5*np.pi):
"""

375 Convenience function for evaluating trigonometric spline.
"""
basis = eval_trig_basis(polys, trans, T, t_vals, c=c)
return MatMul(cpts.T[...,None,:], basis)[...,0,:].T

380 def FullReverseDiagonals(a):
"""
Get a view of all reverse diagonals that have the same number
of entries as a row from the array 'a'.
This routine preserves the order of entries row by row and reverses

385 the order of the columns.
"""
assert a.shape[0] >= a.shape[1]
strides = (a.strides[0], a.strides[0]-a.strides[1]) + a.strides[2:]
shape = (a.shape[0]-(a.shape[1]-1), a.shape[1]) + a.shape[2:]

390 return np.lib.stride_tricks.as_strided(a[0,-1:], shape, strides)

def ReverseDiagonalAverages(a, tol=1E-8):
"""
Take the average along the reverse diagonals of the given array.

395 Ignore NaN values.
"""
n = a.shape[0]+a.shape[1]-1
avgs = np.empty(n)
for i in xrange(n):

400 coefs = ReverseDiagonalView(a, i)
coefs = coefs[~np.isnan(coefs)]
assert coefs.size > 0
avgs[i] = coefs.mean()
assert (np.absolute(coefs - avgs[i]) < tol).all()

405 return avgs

def ShiftPolynomials(polys, consts):
"""
Shift the polynomial terms in polys to the left by

410 the corresponding constants in consts.
"""
npolys = np.zeros_like(polys)

96

npolys[...,-1] = polys[...,-1]
pws = (consts[...,None])**np.arange(polys.shape[-1])

415 bins = np.zeros(polys.shape[-1])
bins[0] = 1
for i in xrange(1, polys.shape[-1]):

bins[1:i+1] += bins[:i].copy()
npolys[...,-i-1:] += polys[...,-i-1,None] * (pws[:,:i+1] * bins[:i+1])

420 return npolys

def LeftTaylorSeries(ders, lens):
return (ders / factorial(np.arange(ders.shape[-1])))[::-1]

425 def RightTaylorSeries(ders, lens):
return ShiftPolynomials(LeftTaylorSeries(ders, lens), lens)

def Repeat(a, n, axis=0):
"""

430 Use stride tricks to repeat an array along a given axis of a new array.
"""
shape = a.shape[:axis] + (n,) + a.shape[axis:]
strides = a.strides[:axis] + (0,) + a.strides[axis:]
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)

435

def RestrictPoly(poly, int_, oints):
"""
Restrict the domain of a given polynomial to a given set of intervals.
"""

440 oints = np.array(oints)
poly = Repeat(poly, len(oints)-1)
return ShiftPolynomials(poly, oints[:-1] - oints[:1])

def RefineLocal(polys0, trans0, reg0, reg1, tol=1E-8):
445 """

Represent the piecewise polynomial over the intervals
in the active region reg0 with the piecewise polynomial
terms stored as rows in 'polys' as a piecewise polynomial
term over the refined (or identical) active region reg1.

450 """
Extending the polynomial outside the domain is not well-defined,
so this must be done only when the endpoints coincide.
assert abs(reg1[0] - reg0[0]) < tol
assert abs(reg1[-1] - reg0[-1]) < tol

455 npolys = np.zeros((len(reg1)-1, polys0.shape[1]))
ntrans = np.zeros((len(reg1)-1, 2))
Iterate through intervals in reg0 by right endpoint.
Iterate through intervals in reg1 by left endpoint.
Index within reg1 for loop over reg0.

460 j = 0
i = 1
while i < len(reg0):

while reg0[i] - reg0[i-1] < tol:
i += 1

465 if i == len(reg0):
break

jidxs = []
endpts = []
while reg0[i] - reg1[j] > tol:

470 if reg1[j+1] - reg1[j] > tol:
jidxs.append(j)

97

endpts.append(reg1[j])
j += 1

endpts.append(reg1[j])
475 assert len(jidxs) >= 1

npolys[jidxs] = RestrictPoly(polys0[i-1], reg0[i-1:i+1], endpts)
ntrans[jidxs] = trans0[i-1]
i += 1

return npolys, ntrans
480

def FormPiecewise(cpts, polys, trans):
"""
Compute the coefficients for the piecewise representation of a spline
curve given the control points and the piecewise representations of

485 the corresponding set of basis functions.
"""
cpts = cpts[:,None,None]
npolys = FullReverseDiagonals(polys * cpts).sum(axis=1)
ntrans = FullReverseDiagonals(trans * cpts).sum(axis=1)

490 return npolys, ntrans

def RepresentKnotFuncs(trans0, rints0, rints1, reg1lens, pos, tol=1E-8):
"""
Represent the knot functions from the piecewise function in

495 terms of the local bases used to construct the target basis.
This only works if the local bases for the target basis
contain the knot functions from the piecewise function in their span.
"""
ivals = MatMul(rints0, trans0[...,None])

500 ntrans = np.zeros_like(trans0[...,None])
ntrans[pos] = np.linalg.solve(rints1[0,pos], ivals[0,pos])
nints = MatMul(rints1[1:], ntrans)[...,0]
diffs = ivals[1:,...,0] - nints
offset0 = LeftTaylorSeries(diffs[::-1,:,0].T, reg1lens)

505 offset1 = RightTaylorSeries(diffs[::-1,:,1].T, reg1lens)
assert (np.absolute(offset0 - offset1) < tol).all()
offset = .5 * (offset0 + offset1)
return ntrans[...,0], offset

510 def ElevatePolys(polys, deg):
"""
Degree Elevate an array of polynomial coefficients.
"""
dif = deg + 1 - polys.shape[-1]

515 if dif:
return np.append(np.zeros(polys.shape[:-1]+(dif,)), polys, -1)

return polys

def RefineCurve(polys0, trans0, reg0, rints0,
520 polys1, trans1, reg1, rints1, tol=1E-6):

"""
Given a spline represented in piecewise form, compute its control
point representation with respect to a basis that spans it.
'polys0' and 'trans0' are the coefficients for the piecewise

525 parts of the piecewise function.
'reg0' is the portion of the knot vector corresponding to the active region
for the initial spline curve now represented as a piecewise function.
'polys1' and 'trans1' are the polynomial and integral terms for the
target basis.

530 'reg1' is the portion of the knot vector corresponding to the active

98

region for the target basis.
'rints1' contains the integral terms for the knot functions used to
form the target basis evaluated at the endpoints of each interval in
'reg1'.

535 'rints0' contains the integral terms for the knot functions used to form
the original spline curve evaluated at the endpoints of each interval in
'reg1'.
Both 'rints0' and 'rints1' must contain the 0 through (p-1)'th integral
terms where p is the degree of the target basis.

540 """
polys0, trans0 = RefineLocal(polys0, trans0, reg0, reg1, tol=1E-8)
Degree elevation is an operation that is independent of
the interval of definition for all standard polynomial bases,
so it isn't necessary to pass in the interval widths.

545 polys0 = ElevatePolys(polys0, polys1.shape[-1]-1)
It isn't always true that the transcendental terms carry
straight across between refined bases.
reg1lens = reg1[1:] - reg1[:-1]
pos = reg1lens > tol

550 trans0, offset = RepresentKnotFuncs(trans0, rints0, rints1, reg1lens,
pos, tol=tol)

polys0 += offset
A spline of degree p is only defined over the intervals where
p+1 basis functions are nonzero.

555 # This corresponds to the polynomial and transcendental terms
that lie in a reverse diagonal that has the same length as
a given row of coefficients.
Here we preserve the order of the basis functions.
lbases = FullReverseDiagonals(np.concatenate((polys1, trans1), -1))

560 lfunc = np.concatenate((polys0, trans0), -1)
The averaging process assumes that all the coefficients are relatively
close to one another. If the piecewise function given doesn't actually
lie in the space spanned by the splines, this is where the computation
will go awry.

565 coefs = np.empty_like(lfunc)
coefs[:] = np.nan
coefs[pos] = np.linalg.solve(np.transpose(lbases[pos], (0, 2, 1)),

lfunc[pos,...,None])[...,0]
Thros an error if there is a mismatch in the averages.

570 return ReverseDiagonalAverages(coefs, tol=tol)

99

Bibliography

[1] B. I. Ksasov, P. Sattayatham, GB-splines of arbitrary order, Journal of Computa-
tional and Applied Mathematics 104 (1) (1999) 63 – 88. doi:10.1016/S0377-0427(98)
00265-9.

[2] P. Costantini, T. Lyche, C. Manni, On a class of weak Tchebycheff systems, Numerische
Mathematik 101 (2) (2005) 333–354. doi:10.1007/s00211-005-0613-6.

[3] G. Wang, M. Fang, Unified and extended form of three types of splines, Journal of
Computational and Applied Mathematics 216 (2) (2008) 498 – 508. doi:10.1016/j.

cam.2007.05.031.

[4] C. Manni, F. Pelosi, M. L. Sampoli, Generalized B-splines as a tool in isogeometric
analysis, Computer Methods in Applied Mechanics and Engineering 200 (58) (2011)
867 – 881. doi:10.1016/j.cma.2010.10.010.

[5] L. Romani, From approximating subdivision schemes for exponential splines to high-
performance interpolating algorithms, Journal of Computational and Applied Mathe-
matics 224 (1) (2009) 383 – 396. doi:10.1016/j.cam.2008.05.013.

[6] J. Warren, H. Weimer, Subdivision Methods for Geometric Design: A Constructive
Approach, Morgan Kaufmann series in computer graphics and geometric modeling,
Morgan Kaufmann, 2002.

[7] C. de Boor, A Practical Guide to Splines, Applied Mathematical Sciences, Springer New
York, 2001.

[8] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, Computer Graphics and
Geometric Modeling, Morgan Kaufmann, 2002.

[9] L. Piegl, W. Tiller, The NURBS Book, Monographs in Visual Communication, U.S.
Government Printing Office, 1997.

[10] L. Schumaker, Spline Functions: Basic Theory, Cambridge Mathematical Library, Cam-
bridge University Press, 2007.

[11] R. T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Computer
Aided Geometric Design 29 (6) (2012) 379 – 419. doi:10.1016/j.cagd.2012.03.001.

[12] D. Thomas, M. Scott, J. Evans, K. Tew, E. Evans, Bézier projection: A unified ap-
proach for local projection and quadrature-free refinement and coarsening of NURBS
and t-splines with particular application to isogeometric design and analysis, Computer
Methods in Applied Mechanics and Engineering 284 (0) (2015) 55 – 105, isogeometric
Analysis Special Issue. doi:http://dx.doi.org/10.1016/j.cma.2014.07.014.

[13] S. N. Bernstein, Démonstration du théorème de weierstrass fondeé sur le calcul des
probabilités, Communiactions de la Société Mathématique de Kharkov 2.

100

http://dx.doi.org/10.1016/S0377-0427(98)00265-9
http://dx.doi.org/10.1016/S0377-0427(98)00265-9
http://dx.doi.org/10.1007/s00211-005-0613-6
http://dx.doi.org/10.1016/j.cam.2007.05.031
http://dx.doi.org/10.1016/j.cam.2007.05.031
http://dx.doi.org/10.1016/j.cma.2010.10.010
http://dx.doi.org/10.1016/j.cam.2008.05.013
http://dx.doi.org/10.1016/j.cagd.2012.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2014.07.014

[14] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by
analytic functions, Part A: On the problem of smoothing of graduation, a first class of
analytic approximation, Quarterly of Applied Mathematics 4 (1946) 45–88.

[15] J. Sánchez-Reyes, Algebraic manipulation in the Bernstein form made simple via
convolutions, Computer-Aided Design 35 (10) (2003) 959 – 967. doi:10.1016/

S0010-4485(03)00021-6.

[16] M. R. Spencer, Polynomial real root finding in Bernstein form, Ph.D. thesis, Brigham
Young University, Provo, UT, USA, uMI Order No. GAX94-23360 (1994).

[17] N. Yang, Structured matrix methods for computations on Bernstein basis polynomials,
Ph.D. thesis, Sheffield University (2013).

[18] L. Busé, R. Goldman, Division algorithms for Bernstein polynomials, Computer Aided
Geometric Design 25 (9) (2008) 850 – 865, Classical Techniques for Applied Geometry.
doi:10.1016/j.cagd.2007.10.003.

[19] M. Minimair, Basis-independent polynomial division algorithm applied to division in
lagrange and Bernstein basis, in: Computer Mathematics, Vol. 5081 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2008, pp. 72–86. doi:10.1007/

978-3-540-87827-8_6.

[20] R. Farouki, V. Rajan, On the numerical condition of polynomials in Bernstein
form, Computer Aided Geometric Design 4 (3) (1987) 191 – 216. doi:10.1016/

0167-8396(87)90012-4.

[21] E. Mainar, J. Peña, Error analysis of corner cutting algorithms, Numerical Algorithms
22 (1) (1999) 41–52. doi:10.1023/A:1019190220312.

[22] R. Farouki, On the stability of transformations between power and Bernstein polyno-
mial forms, Computer Aided Geometric Design 8 (1) (1991) 29 – 36. doi:10.1016/

0167-8396(91)90047-F.

[23] A. Hardy, W. Steeb, Mathematical Tools in Computer Graphics with C# Implementa-
tions, World Scientific, 2008.

[24] C. de Boor, On calculating with B-splines, Journal of Approximation Theory 6 (1)
(1972) 50 – 62. doi:10.1016/0021-9045(72)90080-9.

[25] M. G. Cox, The numerical evaluation of B-splines, IMA Journal of Applied Mathematics
10 (2) (1972) 134–149. doi:10.1093/imamat/10.2.134.

[26] Q.-X. Huang, S.-M. Hu, R. R. Martin, Fast degree elevation and knot insertion for
b-spline curves, Computer Aided Geometric Design 22 (2) (2005) 183 – 197. doi:

10.1016/j.cagd.2004.11.001.

[27] M. J. Borden, M. A. Scott, J. A. Evans, T. J. R. Hughes, Isogeometric finite element data
structures based on Bézier extraction of NURBS, International Journal for Numerical
Methods in Engineering 87 (1-5) (2011) 15–47. doi:10.1002/nme.2968.

101

http://dx.doi.org/10.1016/S0010-4485(03)00021-6
http://dx.doi.org/10.1016/S0010-4485(03)00021-6
http://dx.doi.org/10.1016/j.cagd.2007.10.003
http://dx.doi.org/10.1007/978-3-540-87827-8_6
http://dx.doi.org/10.1007/978-3-540-87827-8_6
http://dx.doi.org/10.1016/0167-8396(87)90012-4
http://dx.doi.org/10.1016/0167-8396(87)90012-4
http://dx.doi.org/10.1023/A:1019190220312
http://dx.doi.org/10.1016/0167-8396(91)90047-F
http://dx.doi.org/10.1016/0167-8396(91)90047-F
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1093/imamat/10.2.134
http://dx.doi.org/10.1016/j.cagd.2004.11.001
http://dx.doi.org/10.1016/j.cagd.2004.11.001
http://dx.doi.org/10.1002/nme.2968

[28] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite elements, NURBS,
exact geometry and mesh refinement, Computer Methods in Applied Mechanics and
Engineering 194 (3941) (2005) 4135 – 4195. doi:10.1016/j.cma.2004.10.008.

102

http://dx.doi.org/10.1016/j.cma.2004.10.008

	Brigham Young University
	BYU ScholarsArchive
	2015-06-01

	Evaluation and Refinement of Generalized B-splines
	Ian Daniel Henriksen
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Notation

	2 Background
	2.1 Bernstein Polynomials
	2.2 Bézier Curves
	2.3 B-splines

	3 Definition of GB-splines
	4 Evaluation of GB-splines
	5 Refinement operations on GB-splines
	5.1 Algorithms For Refinement

	6 Stability of Evaluation
	7 Future Directions
	Appendices
	A Conventions and Notation for Algorithms
	B Code for Computation of Basis Coefficients
	Bibliography

