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abstract

Nonlocally Maximal Hyperbolic Sets for Flows

Taylor Michael Petty
Department of Mathematics, BYU

Master of Science

In 2004, Fisher constructed a map on a 2-disc that admitted a hyperbolic set not contained
in any locally maximal hyperbolic set. Furthermore, it was shown that this was an open
property, and that it was embeddable into any smooth manifold of dimension greater than
one. In the present work we show that analogous results hold for flows. Specifically, on any
smooth manifold with dimension greater than or equal to three there exists an open set of
flows such that each flow in the open set contains a hyperbolic set that is not contained in
a locally maximal one.
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Chapter 1. Introduction

A dynamical system is a way of describing the evolution of a system through time accord-

ing to a fixed evolution rule. Such systems are ubiquitous in applied mathematics, from

weather to fluids, electricity to populations. The main difference in dynamical systems from

the study of differential equations is that dynamics concerns itself more with asymptotic

tendencies of solutions instead of exactness of solutions. The theory for solvable systems

became well-developed and rich, although limited in actual applications. By the end of the

19th century, Poincaré suggested using methods from topology and ergodic theory to find

qualitative behavior of solutions instead of the actual solutions themselves [7, p. viii]. Pre-

cision is lost but it becomes possible to discuss behaviors of systems previously inaccessible

to the classical methods of differential equations. Another equally important question is

how resistant the behaviors are to small perturbations made in the evolution law. Because

mathematical models are only approximations of reality, stability of the evolution law under

small perturbations is an extremely important issue to address whenever one is creating a

mathematical model.

By the 1930s, Birkhoff was specifically interested in hyperbolic dynamics. He was curi-

ous about the behavior of transverse homoclinic points, a phenomenon first discovered by

Poincaré when working on the n-body problem. Poincaré recognized these points as having

dynamical complexity, but Birkhoff made this more precise by proving that any transverse

homoclinic orbit is accumulated by periodic points [7, p. viii]. When Smale introduced the

horseshoe in the early 1960s [19], deeper understanding unfolded. The horseshoe as well as

other maps constructed soon after were categorized by Smale’s definition of uniformly hy-

perbolic sets [19, p. 776]: subsets of the phase space invariant under the evolution law such

that the tangent space at each point splits into two subspaces – one uniformly contracted

under forward iterations, and a complementary one uniformly contracted under backwards

iterations.
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Uniform hyperbolicity made strides in characterizing structurally stable systems – that

is, systems that remained homeomorphic under sufficiently small perturbation. Andronov

and Pontryagin introduced the concept in the 1930s of an orbit structure that remained

the same even after the evolution law is slightly modified [2]. Uniform hyperbolicity was

shown to be important in these systems, combined with a specific transversality condition,

as conjectured by Palis and Smale. The broad theory of uniformly hyperbolic dynamical

systems was developed mostly from the 1960s until the mid-1980s. It changed the way

we look at determinism and randomness, and led to the conclusion that chaos can come

from repeated applications of simple rules. While uniform hyperbolicity and structural

stability were realized to be not as broadly applicable as originally hoped, and dynamics has

gone beyond hyperbolicity by weakening various hypotheses, hyperbolicity still proves to be

important in modern dynamics. (Much of the history above is taken from [15, p. 7-11] and

[7, p. vii-ix].)

Although the evolution laws are often simple, the behavior of these systems can get

extremely complicated. Those who study dynamical systems are often interested in this

chaotic behavior. One way to get chaotic behavior is via the relatively simple recipe of

hyperbolicity – i.e., iterated stretching and folding. In the map case, hyperbolic sets are

compact sets, invariant under the discrete function, with a tangent space that at each point

splits into invariant contracting and expanding directions. Uniform hyperbolicity guarantees

that the contraction and expansion are globally bounded over the set, thus avoiding rates of

either contraction or expansion going to zero as time increases. When dealing with flows, a

compact invariant set is called hyperbolic if at each point along the trajectory the tangent

space splits into invariant expanding, contracting, and flow (or center) directions. Again,

uniform hyperbolicity is when the pointwise expansion and contraction in the tangent space

are both globally bounded throughout the tangent bundle by a single constant.

In studying hyperbolic sets, mathematicians discovered that all known examples of hy-

perbolic sets were included in ones that had a property called local maximality. For M a
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compact manifold and φt a flow, Γ ⊂M is said to be locally maximal if there exists an open

neighborhood N ⊂ M of Γ such that Γ =
⋂
t∈R φt(N). Locally maximal sets have many

useful properties, such as local product structure and Markov partitions (see chapter 2 for

definitions). At this point, they are well-understood phenomena in the study of dynamics.

Because they are so well-understood, a common assumption in the statement of a result

was that a hyperbolic set was contained in a locally maximal hyperbolic set in some small

neighborhood of the original set. Then properties of locally maximal sets can be used to

prove results about the original hyperbolic set. In [17, p. 272], Hasselblatt and Katok ask if

given a hyperbolic set Λ and an open neighborhood U of Λ, if there is necessarily a locally

maximal hyperbolic set Λ̃ such that Λ ⊂ Λ̃ ⊂ U . This question was originally asked by

Alekseev [1] and Anosov [3].

In the 1980s, Fathi constructed a counterexample to the question which remained un-

published [4, p. 937]. The same example was eventually published in 2001, when Crovisier

[9] constructed a diffeomorphism of the 4-torus with a hyperbolic set contained in no locally

maximal hyperbolic set. However, this example was not proved to be persistent under per-

turbation. In 2004, Fisher [13] showed that, given any smooth manifold M of dimension

greater than 2, there exists a diffeomorphism f : M → M with the desired property – and

furthermore, this property is open in the function space (i.e., the property is persistent under

perturbation).

In this paper we extend the result to flows.

Theorem 1.1. Let M be a smooth compact manifold of dimension greater than or equal to

three. Then there exists an open set U in the class of C1 flows such that for each Φ ∈ U , there

exists a hyperbolic set Λ for Φ such that Λ is not contained in a locally maximal hyperbolic

set.

Anosov closely followed these developments as they were published. Once it became

known that one could find counterexamples of every positive dimension, Anosov set out

to answer the same question for zero-dimensional hyperbolic sets. Consider M a smooth
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manifold, f : M → M a diffeomorphism, and Λ a zero-dimensional hyperbolic set for f.

Anosov proved in [4, p. 938] that in any neighborhood of Λ there is a locally maximal

invariant set Λ1 containing Λ. If Λ1 cannot be equal to Λ, he calls Λ locally premaximal. If

Λ1 can be made equal to Λ, then Λ is of course locally maximal. Anosov used shadowing to

prove in a subsequent paper a necessary and sufficient condition for a hyperbolic set to be

locally maximal [5, p. 23].

In chapter two we introduce the background necessary for the proof of the theorem. In

chapter three we outline two critical constructions from the early-mid 2000s. In chapter four

we show how those two constructions give important ideas that can be combined to prove

our main theorem.
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Chapter 2. Background

Here we give some basic definitions and facts regarding Riemannian geometry, dynamical

systems, hyperbolic sets, and locally maximal hyperbolic sets.

2.1 Topology and Geometry

A topological manifold is a second-countable, locally Euclidean Hausdorff space. By def-

inition of locally Euclidean, every point of a topological manifold M has a neighborhood

homeomorphic to a subset of Rn. For any Euclidean neighborhood U there exists a home-

omorphism ϕ : U → ϕ(U) ⊂ Rn, called a coordinate chart on U . A set of Euclidean

neighborhoods covering M , together with their respective homeomorphisms, is called an

atlas. Given two charts ϕ1 and ϕ2 with overlapping neighborhoods U and V , there is a

transition function ϕ2 ◦ϕ−1
1 : ϕ1(U ∩V )→ ϕ2(U ∩V ). By necessity each transition function

is a homeomorphism between open subsets in Rn. For 1 ≤ k ≤ ∞ a Ck (differentiable)

manifold is a topological manifold with an atlas whose transition maps are all Ck functions.

For M a Ck manifold where k ≥ 1, consider x ∈ M. Pick any chart ϕ : U → Rn where

U ⊂M is open and contains x. Suppose two curves γ1 : (−1, 1)→M and γ2 : (−1, 1)→M

with γ1(0) = γ2(0) = x are given such that ϕ ◦ γ1 and ϕ ◦ γ2 are both differentiable at 0.

Then γ1 and γ2 are said to be equivalent at 0 if the derivatives of ϕ ◦ γ1 and ϕ ◦ γ2 are

identical at 0. This defines an equivalence relation on the set of curves through x, and the

equivalence classes are defined to be the tangent vectors of M at x. The tangent space of M

at x, denoted TxM, is defined to be the set of all tangent vectors. Note that TxM does not

depend on the choice of the chart ϕ. The tangent bundle of M, denoted TM, is defined to be

equal to
⋃
x∈M TxM. An element of TM can be thought of as an ordered pair (x, v) where x

is a point in M and v is an element of TxM. A vector field is a mapping F : M → TM so

that π ◦F is the identity mapping, where π : TM →M is the natural projection (x, v)→ x.

A Riemannian manifold is a Ck manifold equipped with an inner product gp on the tangent
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space TpM such that for X and Y vector fields on M , p 7→ gp(X(p), Y (p)) is a Ck function).

A Riemannian metric on a Ck Riemannian manifold M is a family of positive definite inner

products gp : TpM × TpM → R, p ∈ M such that, for all differentiable vector fields X, Y on

M, p 7→ gp(X(p), Y (p)) defines a Ck function M → R. For Riemannian manifolds M and N,

a function f : M → N is differentiable at a point p if it is differentiable with respect to some

coordinate charts defined around p and f(p).

Definition 2.1. Let f be a differentiable function between differentiable manifolds M and

N .

(a) If Dfp : TpM → Tf(p)N is an injective function for every p ∈ M , then f is an

immersion. Equivalently, f is an immersion if rank Dfp = dim M.

(b) If Dfp : TpM → Tf(p)N is a surjective function for every p ∈ M , then f is a

submersion. Equivalently, f is a submersion if rank Dfp = dim N.

(c) An embedding is defined to be an injective immersion which is a homeomorphism onto

its image.

With these definitions in mind, we can define the following.

Definition 2.2. For M a differentiable manifold, an immersed submanifold is a subset S of

M such that the identity map i : S →M is an immersion. If i is an embedding, then S is a

(regular) submanifold.

Note that throughout the rest of the paper, whenever a manifold is mentioned it will be

assumed to be compact, connected, and Riemannian, unless specifically stated otherwise.

2.2 Fundamental Dynamics

Definition 2.3. A dynamical system is a tuple (T,M,Φ) where T is an additive monoid,

M is a set (called the phase space), and Φ is a function Φ : U ⊂ (T ×M)→M where

Φ(0, x) = x,
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I(x) = {t ∈ T : (t, x) ∈ U},

Φ(t2,Φ(t1, x)) = Φ(t1 + t2, x) for t1, t2, t1 + t2 ∈ I(x).

Notationally, for any x ∈ M , we write Φt(x) to be the function holding x constant and

we call it the flow through x and its graph the trajectory through x.

A subset P of M is called Φ-invariant if for all x ∈ P and all t ∈ T the statement

Φ(t, x) ∈ P holds. Thus, we require the flow through x to be defined for all time for every

element in P.

A flow is a dynamical system matching the definition above with T an open interval in

R, M a manifold locally diffeomorphic to a Banach space, and Φ a continuous function. If

T = R the system is called global. If M is locally diffeomorphic to Rn the system is finite-

dimensional ; otherwise, the dynamical system is infinite-dimensional. We will only work

with global, finite-dimensional systems here. Note that we will use the convention φ for a

flow. Additionally note that throughout this paper, we will only use flows defined throughout

all of R×M. Given a flow φ : R×M →M, we will use the notation φ(t,m) := φt(m), and

unless stated otherwise, t remains a variable.

A map is a dynamical system with T = Z and M a manifold locally diffeomorphic to a

Banach space. Consider a flow φ : R×M →M, and fix some t0 ∈ R. Then φt0 : M →M is

now a map, and φt0 is called the time-t0 map for the flow φ. For fixed t, then, φt is a map,

but usually we will work with φt as a flow with variable t.

For a flow φ : R×M →M we define the orbit of x as follows:

O(x) := {φt(x) : t ∈ R}.

We also define the forward orbit of x to be O+(x) := {φt(x) : t ∈ R≥0}.

For f : X → X a continuous function on a metric space, define the ω-limit set of x ∈ X
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to be

ω(x, f) := {y ∈ X : ∃ strictly increasing (nk) ⊂ N s.t. fnk(x)→ y as k →∞.}

For a homeomorphism f, the α-limit set α(x, f) is defined as ω(x, f−1).

Definition 2.4. A flow φ is C1 if φ : R×M →M is continuously differentiable.

In this paper we are working with vector fields. It is important to note that a C1 flow

generates (at the least) a C0 vector field, and a locally Lipschitz vector field generates a flow,

but a C0 vector field doesn’t necessarily generate a flow (although a C1 vector field does).

We will look at C1 flows here.

Definition 2.5. Let M be a smooth manifold, with φ : R×M →M a C1 flow and Γ ⊂M

a compact φt-invariant set. The set Γ is said to be a (uniformly) hyperbolic set for the flow

φt if there exists a µ ∈ (0, 1) and a C > 0 such that for all x ∈ Γ there is a decomposition

TxM = Es(x)⊕ Eu(x)⊕ Ec(x) satisfying all of the following:

• d
dt
|t=0 φt(x) ∈ Ec(x) \ {0}

• dim Ec(x) = 1

• Dφt|t=0Eα(x) = Eα(φt(x)) for α ∈ {s, u}

• For t > 0 and v ∈ Es(x) we have ‖Dφt(x)v‖ ≤ Cµt‖v‖

• For t > 0 and w ∈ Eu(x) we have ‖Dφ−t(x)w‖ ≤ Cµt‖w‖.

For the above definition it is important to note the following:

• The dimensions of Es(x),Eu(x), and Ec(x) are locally constant.

• The definition is independent of the choice of the Riemannian metric on M . Further-

more, there always exists some Riemannian metric allowing C = 1.

8



• The splitting of TxM is continuously dependent on x.

It is also possible to define hyperbolicity for maps instead of flows. We will use this

definition later.

Definition 2.6. For M a manifold and f : M →M a diffeomorphism, we say an f -invariant

set Λ is (uniformly) hyperbolic if there exist constants C > 0 and λ ∈ (0, 1) such that for all

x ∈ Λ there is a splitting of the tangent space TxM = Es(x) ⊕ Eu(x) such that for every

n ∈ N one has

‖Dfn(v)‖ ≤ Cλn‖v‖ for v ∈ Es(x),

‖Df−n(v)‖ ≤ Cλn‖v‖ for v ∈ Eu(x).

Definition 2.7. Let X be a metric space and φt a continuous flow on X. Then for x ∈ X,

we define the stable set

W s(x) := {y ∈ X : lim
t→∞

d(φt(x), φt(y)) = 0}.

Further define, for ε > 0,

W s
ε (x) := {y ∈ W s(x) : d(φt(x), φt(y)) ≤ ε for all t ≥ 0}.

Note that the unstable sets W u(x) and W u
ε (x) are defined identically under the flow φ−t.

Furthermore, we define the center-stable set

W cs(x) := φt(W
s(x))|t∈R =

⋃
y∈φt(x)
t∈R

W s(y).

The center-unstable set of x is defined to be the center-stable set of x under φ−t. We will

also use the notation W s
loc to mean W s

ε for sufficiently small ε (dependent on context). We

use W u
loc to mean a similar thing for W u

ε .

9



In the case where X is a manifold and φt a Cr flow, the stable set is a Cr submanifold

of X. This is due to the proof of the Stable Manifold Theorem found in [17, p. 266-268].

Using the time-one map for the flow (φk for k ∈ Z) and adapting Hasselblatt and Katok’s

intentionally-general proof, we can generalize it to the flow case. Also note that the stable

manifold is an embedded copy of Rk where k = dim Es(x). The same applies for the

unstable sets, center-stable sets, and center-unstable sets. Also note that the stable and

unstable manifolds vary continuously both on each other and on the relevant point.

2.3 Properties of Hyperbolic Sets

Definition 2.8. For a metric space X and a flow φ, a set Γ ⊂ X is said to have a local

product structure if for all ε > 0 there exists a δ > 0 such that given x, y ∈ Γ with d(x, y) < δ

we have, for some real |t| < ε, a unique point S(x, y) := b ∈ W u
ε (φt(x)) ∩W s

ε (y).

A local product structure is critical for this paper although it is most often stated for

maps instead of flows.

Definition 2.9. A hyperbolic set Γ has a local product structure if there exists δ > 0 and

ε > 0 such that for any points x, y ∈ Γ where d(x, y) < δ the set W s
ε (x) ∩W u

ε (y) consists of

exactly one point contained in Γ.

The following lemma is also critical to the paper. Note that this lemma is almost always

stated and proved for maps, but is in fact true for flows as well (see [8, p. 1862] and [18,

p. 131]).

Lemma 2.10. A hyperbolic set Γ has a local product structure if and only if it is locally

maximal.

In the case that Γ is locally maximal and hyperbolic, then x, y ∈ Γ implies S(x, y) ⊂ Γ.

Definition 2.11. For (φt, X) a dynamical system, a subset A of X is called an attractor if

it satisfies the following three conditions.

10



(i) A is forward-invariant under φt; i.e., x ∈ A implies φt(x) ∈ A for all t > 0.

(ii) There exists a neighborhood of A, called the basin of attraction of A and denoted B(A),

which consists of all points that tend towards A under φt as t → ∞. In other words,

B(A) = {x : for any open neighborhood N of A, ∃ T > 0 3 φt(x) ∈ N ∀t > T}.

(iii) No proper subset of A satisfies conditions (i) and (ii).

When an attractor Λ is (uniformly) hyperbolic, it will exhibit additional properties [14]:

• Periodic points are dense in Λ.

• For x ∈ Λ,W cu(x) ⊂ Λ.

• For x a periodic point in Λ,
⋃

y∈O(x)

W cs(y) is dense in B(Λ).

We will need the following technical result, known in the literature as the Inclination

Lemma, or λ-lemma. The statement can be found in [6]. Note that the statement for

hyperbolic periodic points would be similar. Their statement is for 3-manifolds, but the

statement is identical for higher-dimensional manifolds.

Lemma 2.12 (Inclination Lemma). Let p ∈ M be a hyperbolic fixed point for a Cr flow Φ,

for r ≥ 1, with local stable and unstable manifolds W s
loc(p) and W u

loc(p), respectively. Fix an

embedded disk B in W u
loc(p) which is a neighborhood of p in W u

loc(p), and fix a neighborhood V

of this disk in M. Let D be a transverse disk to W s
loc(p) at a point z such that D and B have

the same dimension. Write Dt for the connected component of Φt(D) ∩ V which contains

Φt(z), for t ≥ 0.

Then, given ε > 0 there exists T > 0 such that for all t > T the disk Dt is ε-close to B

in the Cr-topology.

We will also need a proof from Hasselblatt and Katok regarding openness of hyperbolic-

ity in function spaces [17, p. 571]. It is first necessary to address what the authors call the
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Shadowing Theorem, which is a generalization of a common result known as the Shadowing

Lemma. In layman’s terms, the Shadowing Lemma says that although a numerically com-

puted chaotic trajectory diverges from the true trajectory with the same initial conditions,

there exists a true trajectory with slightly perturbed initial conditions that stays uniformly

close to the numerically computed one. We use Katok and Hasselblatt’s statement of the

generalization of that lemma here [17, p. 566-7]. We include the theorem here because it is

used to show that hyperbolicity is an open condition. Both the shadowing theorem and the

openness of hyperbolicity are stated for maps, but the result is similar (albeit more technical

and less enlightening) for flows.

Theorem 2.13 (Shadowing Theorem). Let M be a Riemannian manifold, d the natural

distance function, U ⊂ M open, f : U → M a diffeomorphism, and Λ ⊂ U a compact

hyperbolic set for f . Then there exists a neighborhood U(Λ) ⊃ Λ and ε0, δ0 > 0 such that for

all δ > 0 there is an ε > 0 with the following property:

If f ′ : U(Λ)→M is a diffeomorphism ε0-close to f in the C1 topology, Y is a topological

space, g : Y → Y a homeomorphism, α ∈ C0(Y, U(Λ)), and

dC0(αg, f ′α) := sup
y∈Y

d(αg(y), f ′α(y)) < ε

then there is a β ∈ C0(Y, U(Λ)) such that βg = f ′β and dC0(α, β) < δ.

Furthermore, β is locally unique: If βg = f ′β and dC0(α, β) < δ0, then β = β.

Remark. To get the more common Shadowing Lemma take Y = (Z, discrete topology), f ′ =

f, ε0 = 0, and g(n) = n + 1 and replace α ∈ C0(Y, U(Λ)) by {xn}n∈Z ⊂ U(Λ) and “β ∈

C0(Y, U(Λ)) such that βg = f ′β” by {fn(x)}n∈Z ⊂ U(Λ). Then d(xn, f
n(x)) < δ for all

n ∈ Z.

With that in mind, we prove openness of hyperbolicity in the function space [17, p. 571].

Lemma 2.14. Let Λ ⊂ M be a hyperbolic set of the diffeomorphism f : U → M . Then

for any open neighborhood V ⊂ U of Λ and every δ > 0 there exists ε > 0 such that if

12



f ′ : U → M and dC1(f |V , f ′) < ε there is a hyperbolic set Λ′ = f ′(Λ′) ⊂ V for f ′ and a

homeomorphism h : Λ′ → Λ with dC0(Id, h) + dC0(Id, h−1) < δ such that h ◦ f ′|Λ′ = f |Λ ◦ h.

Moreover, h is unique when δ is sufficiently small.

Proof. In this proof we apply the Shadowing Theorem thrice. First take δ0 < δ as in that

theorem and apply the theorem with ε < δ0/2, y = Λ, α = id |Λ the inclusion, and g = f to

obtain a unique β : Λ → U(Λ) such that β ◦ f = f ′ ◦ β. By a basic proposition from [17,

p. 265], Λ′ := β(Λ) is hyperbolic.

Apply the Shadowing Theorem again to get injectivity of β by taking ε as above, y = Λ′,

α′ = id |Λ′ the inclusion, and g = f ′ to obtain a map h such that h ◦ f ′ = f ◦ h. Note that

we can use f ′ instead of f if ε is small enough. We claim h ◦ β = id and hence h = β−1 is a

homeomorphism.

Apply the uniqueness part of the Shadowing Theorem in the f = f ′ case, when α ◦ f =

f ◦ α and β ◦ f = f ◦ β, where β := h ◦ β.

Since dC0(α, β) = dC0(id, h◦β) ≤ dC0(id, id ◦β)+dC0(id ◦β, h◦β) = dC0(id, β)+d(id, h) <

δ0, the uniqueness part of the Shadowing Theorem implies β = α = id |Λ, as was claimed.

For embedding into higher dimensions, we need to mention normal hyperbolicity. A

normally hyperbolic invariant manifold (NHIM) is a generalization of a hyperbolic fixed

point and a hyperbolic set. A manifold M is normally hyperbolic if the dynamics on M are

essentially neutral relative to the dynamics around M. They were introduced by Neil Fenichel

in 1972, and were shown to possess stable and unstable manifolds [10]. Furthermore, NHIMs

and their stable and unstable manifolds are persistent under perturbation [11], [12]. We

define NHIMs for maps, but the definition for flows is similar (and more technical).

Definition 2.15. Let M be a compact smooth manifold and f : M →M a diffeomorphism.

Then an f -invariant submanifold Λ of M is said to be a normally hyperbolic invariant man-

ifold if there exist constants 0 < µ−1 < λ < 1 and c > 0 such that

• TΛM = TΛ⊕ Es ⊕ Eu
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• (Df)xEs(x) = Es(f(x)) and (Df)xEu(x) = Eu(f(x)) for all x ∈ Λ

• ‖Dfnv‖ ≤ cλn‖v‖ for all v ∈ Es and n > 0,

• ‖Df−nv‖ ≤ cλn‖v‖ for all v ∈ Eu and n > 0, and

• ‖Dfnv‖ ≤ cµ|n|‖v‖ for all v ∈ TΛ and n ∈ Z.

Adapting the above for flows gives us an important result ([10, p. 215]) which says that

if a Cr vector field Y in some C1 neighborhood of our original vector field X (equated with

a flow φt, under which M is invariant) there is a Cr manifold MY invariant under Y and Cr

diffeomorphic to M. An immediate consequence of this is that the dynamics on MY under

the vector field Y are a perturbation of the dynamics of M under X.

Lastly, for a map on a manifold M, define the stable distribution of Es to be
⋃
x∈M Es(x).
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Chapter 3. Preliminary Constructions

The foundation of our counterexample is the classic Plykin map. Fisher used this map with

some modifications to prove the counterexample in the map case. We then elaborate on

Hunt’s PhD dissertation, in which he extends the Plykin map to a flow [16]. Using that flow,

we apply Fisher’s extension of Plykin’s map to Hunt’s flow and address the technicalities

thereof. Each step is described in detail below.

3.1 Plykin Attractor

Theorem 1.1 uses an extension of an attracting set for the Plykin map. In order to understand

the result in this paper it is vital to understand this hyperbolic attractor. The Plykin map

follows the usual recipes of hyperbolicity – iterated stretching and folding – but a more

detailed view is warranted. The construction below relies heavily on Hasselblatt and Katok’s

construction of the Plykin attractor, [17, p. 537-41].

3.1.1 DA map. Let F be the Anosov diffeomorphism of T2 given by L =
(

2 1
1 1

)
. The

matrix L has eigenvalues λu = (1+3
√

(5))/2 and λs = (1−3
√

(5))/2. Let vu and vs, respec-

tively, be the corresponding normalized eigenvectors, and let eu and es be the unstable and

stable vector fields of vu and vs obtained by parallel translation. Then Eu(p) = span{eu(p)}

and Es(p) = span{es(p)} and DFpe
u(p) = λue

u(F (p)) and DFpe
s(p) = λse

u(F (p)) for all

p ∈ T2.

On a disk U centered at 0 introduce coordinates (x1, x2) s.t. (x1, 0) ∈ Eu(0) and (x2, 0) ∈

Es(0), so F (x1, x2) = (λux1, λsx2). We now define a nonlinear diffeomorphism f on T2. First

let φ : R → [0, 1] be a C∞ function where φ(t) = φ(−t) for all t ∈ R, φ(t) = 1 if |t| ≤ 1/8,

φ(t) = 0 if |t| ≥ 1/4, and φ′(t) < 0 if 1/8 < t < 1/4. Take k ∈ R sufficiently large – exactly
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how large will be explained later – and define f : T2 → T2 by f ≡ F on T2 \ U and

f(x1, x2) = F (x1, x2) + (0, (2− λs)φ(x1)φ(kx2)x2)

on U .

There are no fixed points of f outside U , and on U the problem reduces to

x1 = λux1,

x2 = λsx2 + (2− λs)φ(x1)φ(kx2)x2.

This implies x1 = 0 and then the second equation reduces to

0 = x2

(
1− 2− λs

1− λs
φ(kx2)

)
.

Then we have solutions x2 = 0, x,−x where x is such that φ(kx) =
1− λu
2− λu

. To see what

type of fixed points these are, note that Df(x1,x2) is equal to

 λu 0

(2− λs)φ′(x1)φ(kx2)x2 h(x1, kx2)


where h(x1, kx2) := λs + (2 − λs)φ(x1)(φ′(kx2)kx2 + φ(kx2)). In particular, Df0 =

(
λu 0
0 2

)
with 0 a repelling fixed point. By further calculation, (0, x) and (0,−x) are hyperbolic fixed

points.

Note also that f preserves W s(0) and that Df preserves the stable distribution of Es for

F although it may not contract vectors in Es everywhere, and in fact permutes the stable

manifolds for F in the same way as F does. Consider now the set W = W u(0) = {p ∈ T2 :

α(p) = {0}} =
⋃
n∈N f

n(U0) for a sufficiently smaller neighborhood U0 of 0. It is open and

we will show later that it is dense. It is an attractor by definition.
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Hasselblatt and Katok go on to prove that for sufficiently large k, Λ := T2 \ W is a

hyperbolic set.

We now show that W = T2\Λ is dense in T2. Consider p ∈ Λ and any open neighborhood

Up of p. Then there is a point q ∈ Up that is periodic for F for some period n. The stable

manifold H of q (under F ) is thus fn-invariant and dense. Density of W follows if we can

find N ∈ N s.t. f−Nn(L1) ∩ W 6= ∅, where H1 = H ∩ Up. This is necessarily the case,

however, since otherwise Hf :=
⋃
n∈N f

−Nn(H1) ⊂ Λ and by hyperbolicity f−n expands Hf

so Hf = H. But H is dense in T2 so we would have Λ = T2, a contradiction. Thus Λ is the

complement of an open dense set.

3.1.2 Plykin attractor. To get a hyperbolic attractor on S2 let J : T2 → T2, J(x) = −x

(mod 1) and note that construction of the DA map is J-invariant – i.e., f◦J = J◦f . Also note

that (1/2,1/2) is a periodic point for f since f(1/2, 1/2) = F (1/2, 1/2) = (1/2, 0), f(1/2, 0) =

(0, 1/2), and f(0, 1/2) = (1/2, 1/2). Now we replace F by F 3 and note that F 3 fixes these four

fixed points of J and perform the construction described in the above section simultaneously

around the four fixed points of F 3. Thus we have a map f : T2 → T2 which commutes with

J , has four fixed points as repelling fixed points, and has a hyperbolic attractor Λ.

Note that on T2 we have

−
(

1

2
,
1

2

)
=

(
1

2
,
1

2

)
,−
(

1

2
, 0

)
=

(
1

2
, 0

)
,−
(

0,
1

2

)
=

(
0,

1

2

)
.

Thus if Vi, i = 1, ..., 4, are disks around (0, 0), (1/2, 1/2), (1/2, 0), (0, 1/2), respectively,

contained in T2 \Λ, then M = (T2 \
⋃4
i=1 Vi)/(x ∼ −x) is a smooth manifold. It is not hard

to see that M is a 2-sphere with four holes. Since f(−x) = −f(x) we obtained an induced

map f ′ : M → M which is smooth and injective. Filling S2 \M with four repellers (one

fixed and one period-3 cycle) gives a diffeomorphism f̃ : S2 → S2 with a hyperbolic attractor

(obtained by projecting Λ onto M). This is the Plykin attractor, shown in Figure 3.1.
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Figure 3.1: The Plykin map.

3.2 Hunt’s Flow

The Poincare-Bendixson Theorem implies that neither diffeomorphisms of a one-manifold

nor flows on a two-manifold can display chaotic behavior. Additionally, Plykin proved that

if a diffeomorphism of a compact surface has a uniformly hyperbolic attractor, then the

attractor must have at least four “holes” containing repelling sets. The Plykin attractor,

constructed above, has four repelling sets, so it is one of the simplest examples of a uniformly

hyperbolic attractor for maps. Hunt starts the Plykin attractor construction over from the

beginning in the flow case. By discussion in the preceding paragraph, it follows that Hunt’s

Plykin attractor in a solid 2-torus is one of the simplest examples of a uniformly hyperbolic

attractor in the flow case. The construction is outlined below, but the overarching idea is to

view each iterate of the map as a cross-section of a solid 2-torus and connecting each point

x to its image f(x) via a continuous path around the torus. See Figure 3.2.

We now include a brief summary of Hunt’s construction of the flow [16, p. 53-67]. The

first and most important step is building the right coordinate system. He takes a square in

R2 and changes the right half into a semicircle while keeping the left half the same. The

semicircle piece isn’t in polar coordinates because the construction needs to be C1 at the

least. Using regular polar coordinates, xθ would be discontinuous on the y-axis. However,

by forcing the coordinate change to map [−π/2, π/2] to itself diffeomorphically, making it

an odd function, and forcing the derivative values to be continuous, this complication is
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Figure 3.2: Extending a general map to a flow.
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addressed. Now, using this altered-coordinate piece as a building block, he glues three of

these pieces together to get the basic shape – the left-hand side of 3.1. Region 1 is the

left-side building block, region 3 is the top right (the lightest shade in 3.1), and region 2 is

the lower right (the darkest shade). Gluing these regions together correctly places natural

constraints on the centering and size of the three regions, which constraints will be used

later.

He then breaks the construction into three stages. The first is the stretching stage, then

the first fold back over, then the second fold. The explicit 2π-periodic formula for the flow

performs these three stages in turn, with smooth transitions between them.

The first stage involves squashing and stretching, which is what gives the flow hyper-

bolicity. The squashing factor is µ =
3−
√

(5)

2
and the stretching factor is λ =

3+
√

(5)

2
. The

primary equation for producing the flow through this stage is (ṙ, θ̇) = (log(µ)r, log(λ)θ). The

solution to such an equation is (r, θ) = (c1µ
t, c2λ

t). Since after one time unit we want the

picture expanded, contracted, and folded as outlined above, c1 = c2 = 1. At this point it is

necessary to shift the picture to ensure the original set A flows back into itself. By forcing

the flow to satisfy φ1(A) ( A, there are, again, natural constraints placed on the center

coordinates of the region 1, region 2, and region 3 building blocks, since region 3 needs to

flow into the middle of the former region 2.

The second stage is to fold the stretched-out region 2 back into the desired location.

Again, this places constraints on the coordinates of the different regions. The third stage

is similar to the second, to fold the stretched-out region 1 back on top, placing further

constraints on the coordinates.

Even after a total of ten constraints have been placed on the region’s centers and horizon-

tal and vertical shifts, there are still two free variables. What this ends up being equivalent

to is that the total horizontal and vertical lengths of the attractor can be arbitrarily de-

cided. The only constraint is that the x-coordinate of region 2 needs to be bigger than

(1+
√

(5))π

4
= 2.54 . . . to ensure that the x-coordinates of the other two regions are positive.
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He sets this coordinate equal to 3.

The final issue to deal with is incompatible flows in different regions. The flow is well-

defined on the entirety of R2, but smoothness is not yet guaranteed. This boils down to using

a weighted average function. What is needed is a weight function w that is 1 in region 2, 0

in region 3, and smoothly varies between them. Then in rough terms the flow can be defined

as w × (region 2 flow) + (1 − w) × (region 3 flow). He then defines two distance functions,

dependent on two space variables and the flow (time) variable. One of these, called d2, is a

measure of the distance from the input point to region 2, and the other, called d3, a measure

of the distance from the input point to region 3. The weighting function, then, is defined to

be

w(d2, d3) = sin2

(
πd3

2(d2 + d3)

)
.

He then mentions this is similar to a result from the following exercise, often given in under-

graduate or beginning graduate analysis classes: “Given disjoint closed subsets A and B of a

metric space (X, d), construct a continuous function f : X → [0, 1] such that f−1({1}) = A

and f−1({0}) = B,” which answer is f(x) =
d(x,B)

d(x,A) + d(x,B)
. The difference between

Hunt’s function and this exercise is the sin2 modification to guarantee it is C1.
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Chapter 4. Original Results

Chapters 1-3 were focused on reviewing known results and establishing details regarding

necessary constructions. We now move to our new results. In Section 1 we combine Fisher’s

map construction with Hunt’s flow to use Fisher’s ideas in a flow setting. We establish

hyperbolicity of the relevant set in Section 2. In Section 3 we prove Theorem 1.1.

4.1 Modified Plykin Attractor

In this section we take Hunt’s Plykin flow on the solid 2-torus and modify it using Fisher’s

alterations of the Plykin map.

Hunt’s flow φt maps a closed set A (containing the Plykin attractor Λa) strictly into itself

– specifically, φt(A) ⊂ int(A) for all t > 0 [16, p. 64]. Embed this set A into a solid closed

2-torus, T, so A ⊂ int(T ). Extend the flow φt to contract in int(T \A) such that φt(x)→ A

as t→∞ for all x ∈ int(T \ A), and so that every x ∈ ∂T is period 1.

We now have a solid closed 2-torus T where Λa ( A ( T, where every point in int(T )

asymptotically approaches Λa in forward time, and every point in ∂T is period 1. To later

embed this system into a larger manifold while maintaining smoothness, we must enclose T

in a strictly larger solid closed 2-torus, T2. We need to extend φt so that every point on ∂T2

is fixed and the flow is still C2. For arbitrary r ∈ N, this extension is possible in a Cr fashion.

First set the boundary conditions: φt(x) = x for all x in a neighborhood of ∂T2, t ∈ R, and

φk(x) = x for all x ∈ ∂T, k ∈ N. In T2 \ T, in between the boundaries, smoothly vary from

fixed points on T2 to period-1 points on T. This maintains the smoothness we need while

gaining the properties we want.

Fix some p ∈ ∂T. Take an open neighborhood U of O(p), small enough to be disjoint

from ∂T2 and the attractor, and alter φt in the following way to make p a hyperbolic periodic

saddle point: alter φt on U ∩ ∂T such that x ∈ U ∩ ∂T implies φt(x)→ O(p) as t→∞ (in

the sense that for any ε > 0 there exists some τ such that t ≥ τ implies d(φt(x), y) < ε for
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Figure 4.1: View of a cross section at p.

some y ∈ O(p). Note that this works because p is periodic). Thus, W s(p) = U ∩ ∂T. Again

in a smooth way, change φt in U \ ∂T to give p an unstable manifold, as in Figure 4.1. Note

at this point it is clear to see that p satisfies all aspects of Definition 2.5, so it is a hyperbolic

point of period 1. The center manifold of p is isometric to S1 and each unstable manifold

along O(p) is diffeomorphic to a line segment. Thus we have that W cu
loc(p) is diffeomorphic to

a cylinder. Consider W cu(p) \O(p), which is now (locally) a disjoint union of two cylinders.

One of these two components is entirely inside the basin of attraction, and one is entirely

outside (reference Figure 4.1). Label as W ∗(p) the component of W cu(p) \ O(p) which lies

entirely inside the basin of attraction (equivalently, W ∗(p) = W cu(p) ∩ int(T )). Label as

W ∗
0 (p) the component of W u(p) which lies entirely inside the basin of attraction. Note that

for all x ∈ W ∗(p) we have O(x) ⊂ int(T ).

We know that W cs(x) = W s(Λa) for all x ∈ Λa (section 2.3). By above we have that
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W ∗(p) ⊂ int(T ), and that int(T ) = W s(Λa). Consider some periodic q0 ∈ Λa. Then W ∗
0 (p) ⊂

W ∗(p) ⊂ W s(Λa) ⊂ W cs(q0). Given any point of W ∗
0 (p), then, there must exist some point

in W cs(q0) arbitrarily close to it. Consider some z ∈ W ∗
0 (p). Since q0 is period-R for some

R ∈ N there exists an R ∈ R such that for all ε > 0 there exists a t ∈ [0, R] such that

d(φt(q0), z) < ε. If z ∈ W cs(q0) then we’re done since then z ∈ W s(φt(q0)) for some t ∈ [0, R],

so we can assume z /∈ W cs(q0). Then z must be a limit point of W cs(q0), by the first line

in this paragraph. Perturb the flow in a neighborhood of z (analogously to what is done in

Figure 4.2) so that z ∈ W cs(q0).

If q is periodic with period R ∈ N, then parametrize time so that q is period-1. This

is possible since q will be period-1 under the flow φRt. Given z ∈ W u(p) ∩ W s(q) for

some period-1 q ∈ Λa, the manifolds W u(p) and W s(q) can have a transverse intersection,

after another perturbation, and we justify this as follows: by construction, we already know

that z ∈ W u(p) ∩ W s(q). In [13, p. 1508], a perturbation of the map is made in a small

neighborhood of f−1(z), which, since the map is continuously differentiable, ensures that

z ∈ W u(p) t W s(q) in the two-dimensional case. Now in the three-dimensional case, extend

this perturbation to the solid 2-torus by perturbing φ in a sufficiently small neighborhood of

φ−1(z) (analogously to what is done in Figure 4.2) so that W u(p) ∩W s(q) transversally at

some time t.

Here we will need two definitions (see [13, p. 1495]). A hyperbolic set Λ for a C1 flow

has a heteroclinic tangency if there exist x, y ∈ Λ such that W s(x)∩W u(y) contains a point

of tangency. A point of quadratic tangency for a C2 flow is defined as a point of heteroclinic

tangency where the curvature of the stable and unstable manifolds differs at the point of

tangency.

By transversality and continuity, as well as the fact that Hunt’s flow can be adapted to

be C2 as elucidated in [16, p. 67,70], there must exist a neighborhood J0 ⊂ W u
loc(q) of q and

a neighborhood I0 ⊂ W u(p) of z such that for each x ∈ I0 we have that x ∈ W s
loc(y) for

some y ∈ J0. Now at some z′ ∈ I0 \ {z}, deform the flow in a sufficiently small neighborhood
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Figure 4.2: Deforming to obtain w.

of φ−1(z′) to create a point of quadratic tangency, w ∈ I0, between W u(p) and W cs(k) for

some k ∈ J0 (see Figure 4.2). Let I be the segment of W u(p) from z to w, and let J be the

segment of W u(q) from q to k.

4.1.1 The (n ≥ 3)-dimensional Case. We have a flow on a solid torus that is the

identity on ∂T2, the solid 2-torus from the construction. To embed this system into any

smooth manifold of dimension 3, first embed T2 into a solid sphere S3, and set φt(x) = x

for all x ∈ S3 \ T2, t ∈ R. Scale S3 to be as small as necessary, set φt(x) = x for all

x ∈M \ S3, t ∈ R, and now the example extends to any smooth 3-manifold.

Using normal hyperbolicity (see Definition 2.15 and the remarks immediately following),

we can embed our example into any smooth manifold M of dimension greater than 3, as

follows: first take the solid sphere S3 from above, such that φt is the identity on ∂S3. For a
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manifold M of dimension n > 3, embed S3 into a solid n-sphere Sn. In int(Sn \ S3), extend

φt so that it contracts sufficiently strongly in all directions towards S3 to make S3 a normally

hyperbolic invariant manifold with respect to the flow φt. We need φt to fix every point in

∂Sn to ensure the system is easily embeddable into larger manifolds, but we simultaneously

need φt to contract sufficiently strongly to make S3 a normally hyperbolic invariant manifold.

Consider a small neighborhood N of ∂Sn. In N ∩ Sn, use a smooth bump function to let

φt smoothly vary from sufficiently strong contraction (towards S3, as previously mentioned)

in Sn \ N to fixing every point x ∈ ∂Sn Lastly, define φt to fix every point in M \ Sn. Our

example is now embeddable into M.

4.2 Establishing Hyperbolicity

Now that we have combined Hunt’s and Fisher’s constructions, we need to prove hyperbol-

icity of the relevant set.

We will show Λ = Λa ∪ O(p) ∪ O(z) is hyperbolic under φ. Certainly O(p), O(z), and

Λa are (at least forward-) invariant under φ, by definition. By construction, φt(z) converges

to O(q) as t → ∞ and converges to O(p) as t → −∞. Since these are both in Λ, and we

already know Λa is closed, we have that Λ is closed.

Let λp, λq ∈ (0, 1) be constants that guarantee hyperbolic behavior in O(p) and Λa,

respectively. Let y be an arbitrary element of O(p). We assume an adapted metric, so for

t > 0 and v ∈ Es(y), ‖Dφt(y)v‖ ≤ λtp‖v‖, and for t > 0 and r ∈ Eu(y), ‖Dφ−t(y)r‖ ≤

λtp‖r‖, and similarly for O(q). Let λmax = max(λp, λq). Then certainly the constant λmax

guarantees hyperbolicity over O(p) and Λa, using the above definitions. Now select any

λ ∈ (λmax, 1). Fix t > 0. By continuity and the Inclination Lemma (Lemma 2.12), there

exists an ε > 0 such that for all x where d(φt(x),O(p)) < ε, we have v ∈ Es(x) implying

‖Dφt(x)v‖ ≤ λt‖v‖ (similarly for Eu(x) as well as identical cases for O(q)). In other words,

φ is hyperbolic with constant λ for any point ε-close to either O(p) or O(q).
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Since lim
t→∞

φt(z) = O(q) and lim
t→∞

φ−t(z) = O(p), there exists a T > 0 such that φT (z)

is ε-close to O(q) and φ−T (z) is ε-close to O(p). By the previous paragraph, we can guar-

antee hyperbolicity in ε-neighborhoods of O(p) and O(q). Now we only need guarantee

hyperbolicity outside of those neighborhoods. Acting over the domains t ∈ [−T, T ] and

v ∈ {a ∈ R3 : ‖a‖ = 1}, the function ‖Dφt(z)v‖ is bounded because it is a continuous

function on a (union of) compact domain(s).

Therefore there exists a C ≥ 1 such that, for any x ∈ Λ and t > 0, we have ‖Dφt(x)v‖ ≤

Cλt‖v‖ for all v ∈ Es(x), and ‖Dφ−t(x)w‖ ≤ Cλt‖w‖ for all w ∈ Eu(x). By definition, Λ is

hyperbolic.

4.3 Proof of Main Theorem

Now that we have shown the system satisfies the relevant properties, we prove Theorem 1.1.

As previously mentioned, our flow φt and Fisher’s map f coincide at integer values of time,

due to the constant roof function. In other words, φn(x) = fn(x) for all n ∈ Z, x ∈M where

M is the manifold. Figure 4.3 is helpful to keep in mind throughout the argument.

We have a hyperbolic set Λ as a subset of a three-dimensional manifold. Since the original

diffeomorphism acts on the unit disk, this three-dimensional flow lies in the solid 2-torus.

Now suppose Λ ⊂ Λ′, where Λ′ is a locally maximal hyperbolic set. It is sufficient to show

that some point in O(w) ⊂ Λ′ fails to exhibit continuous splitting of the tangent space,

since the quadratic tangency persists in time. Now fix δ and ε to satisfy the local product

structure.

Define I to be the closed interval from z to w along W u(p). By construction, every point

in I is in the stable manifold of exactly one point in W u(q). Pick r ∈ Z such that t ≥ r

implies d(a, b) < δ/2 for all a ∈ φt(I), b ∈ W cu(q). Let J ⊂ W u(q) be the set of all points

x ∈ W u(q) such that x ∈ W s(γ) for some γ ∈ φr(I). The stable manifolds connecting I to J

depend continuously on points in I, by hyperbolicity. Since φ is the continuous suspension

of a diffeomorphism there exists a homeomorphism β : [0, 1]→ φr(I). By above, there exists
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a homeomorphism σ : φr(I)→ J . Therefore σ ◦β : [0, 1]→ J is a homeomorphism. In other

words, since φr(I) is a path-connected interval, J is also a path-connected interval.

Certainly φr(z) ∈ φr(I) ∩ Λ′ since z ∈ I and O(z) ⊂ Λ ⊂ Λ′. Consider some α ∈ J such

that d(α, q) < δ/2 (guaranteed to exist since J is path-connected). Since d(φr(z), q) < δ/2,

then d(φr(z), α) < δ by the triangle inequality. By the local product structure, there exists

exactly one point S(φr(z), α) ∈ W u
ε (φr(z))∩W s

ε (α) ⊂ Λ′. Since we’re adapting Fisher’s flow

to the solid 2-torus T with a constant roof function – φn(x) = fn(x) for all n ∈ Z, x ∈ T –

there need be no ε time shift as in the definition of local product structure. In this case, then,

our definition for local product structure for flows can be taken to be that for all ε > 0 there

is a δ > 0 such that given x, y ∈ Γ with d(x, y) < δ then S(x, y) = W u(x)∩W s(y) = {b} ⊂ Γ.

(Compare with Definition 2.8.) Note that in the perturbed case, the ε time shift in the flow

definition of local product structure is indeed necessary but the argument still works since

the unstable and stable manifolds depend continuously on each other, by hyperbolicity.

Take any point e along the interval lying in J from q to α. Thus d(e, q) < d(α, q) < δ/2

so similarly we get a unique S(φr(z), e) ∈ φr(I) ∩ Λ′. Since e was arbitrary, we now have a

closed interval of points from φr(z) to S(φr(z), α) along φr(I) ∩ Λ′.

Thus z′ := S(φr(z), α) ∈ φr(I) ∩ Λ′. Inductively repeat the above process along J to see

that φr(I) ⊂ Λ′. Thus we see that the endpoint φr(w) of the interval φr(I) is also a point

in O(w) where the hyperbolic splitting of the tangent space fails to continuously extend

(see the notes immediately following Definition 2.5). We thus have found that Λ cannot be

contained in a locally maximal hyperbolic set, which proves the theorem.

4.4 Robust Under Perturbation

We will see that every aspect of the system is robust under perturbation, so the entire

system is as well. For the perturbed system we will use p̃ to denote the continuation of

p, and we will similarly denote the continuations of the other aspects of the construction.

We will first prove openness for 3-manifolds, and then for the n-dimensional case. Since
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transversality is trivially open, and hyperbolicity is open by Lemma 2.14, it is sufficient

to show that there remains a point w̃ ∈ W u(p̃) ∩ W s(ũ) for some ũ ∈ W cu
loc(q̃). Under a

small perturbation, Figure 4.2 remains identical in effect. The reasoning that gave us the

quadratic tangency originally will still hold for a small C1 perturbation of the system, as

follows: by construction, the stable manifolds for all the x ∈ W cu
loc(q̃) locally foliate the

region, so there must exist a point ũ ∈ W cu
loc(q̃) and a point w̃ ∈ W cs(ũ) ∩W u(p̃) such that

the one-dimensional path W u(p̃) remains tangent to the two-dimensional plane W cs(ũ) at w̃

– specifically, Tw̃W
u(p̃) ( Tw̃W

cs(ũ).

Since every other part of the system is known to be open, and we have just shown that the

curve through w must remain tangent to some center-stable manifold even after perturbation,

we have that the entire flow is open in the function space for 3-manifolds. Once there is a

perturbation made in the time direction, the roof function is no longer constant so using the

local product structure to show w̃ ∈ Λ̃′ requires use of the time-shift. The time-shift must be

bounded by the ε from the local product structure, but for a sufficiently small perturbation

this isn’t an issue. The argument then works similarly: pick α̃ ∈ W u(q̃) to be δ-close to

φr(z̃) for r sufficiently large. For some t where |t| < ε we will get S(φr(z̃), α̃) ∈ Λ′. Continue

along φr(Ĩ) as before, using possibly different time-shifts at every iteration, to see w̃ ∈ Λ̃′.

For the n-dimensional case the only change made in the argument is with regards to the

dynamics in Sn, the solid n-sphere from the construction in which the invariant set S3 ⊃ T2

was embedded. Using [10, p. 205], make the contraction in Sn \ S3 sufficiently strong so

that for a C1 perturbation made to our flow φt, there remains some invariant manifold

S̃3 diffeomorphic to S3. This means that there is a normally hyperbolic invariant manifold

diffeomorphic to the previous one, so the flow φ̃t restricted to S̃3 is a small perturbation of

φt restricted to S3.
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