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abstract

A Class of Univalent Convolutions of Harmonic Mappings

Matthew Daniel Romney
Department of Mathematics, BYU

Masters of Science

A planar harmonic mapping is a complex-valued function f : D→ C of the form f(x+ iy) =
u(x, y) + iv(x, y), where u and v are both real harmonic. Such a function can be written as
f = h+g, where h and g are both analytic; the function ω = g′/h′ is called the dilatation of f .
This thesis considers the convolution or Hadamard product of planar harmonic mappings that
are the vertical shears of the canonical half-plane mapping ϕ(z) = z/(1− z) with respective
dilatations eiθz and eiρz, θ, ρ ∈ R. We prove that any such convolution is univalent. We also
derive a convolution identity that extends this result to shears of ϕ(z) = z/(1− z) in other
directions.

Keywords: harmonic mapping, shearing, convolution, univalent, dilatation
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Chapter 1. Introduction

The main result of this thesis is the solution to an open problem about the convolution of

planar harmonic mappings. We will prove that a particular class of convolutions of harmonic

mappings is univalent, or one-to-one. The convolutions are formed from vertical shears of

the canonical half-plane map. This result is contained in Chapter 4. In addition, Chapter

5 contains another interesting result that generalizes this and other univalence theorems for

other directions of shearing. Chapter 6 contains some of the author’s research on harmonic

mappings with singular inner function dilatations; this is not directly related to the results

of Chapters 4 and 5.

The thesis begins with an introduction to the subject in Chapters 2 and 3. It is meant to

be as self-contained as possible, requiring only familiarity with basic complex analysis. The

material in Chapter 2 is more general to the subject, whereas Chapter 3 focuses on some

of the current research in the field that is relevant to this thesis. A more complete general

survey may be found in the monograph Harmonic Mappings in the Plane by Peter Duren

[7]. The chapter “Anamorphosis, Mapping Problems, and Harmonic Univalent Functions,”

in Explorations in Complex Analysis, by Michael Dorff [6], contains an accessible introduction

to the subject at the undergraduate level, with an emphasis on research. In particular, it

includes a section on convolutions of harmonic mappings.

Naturally, the majority of the material in Chapters 2 and 3 is already well-established.

An exception to this is the set of examples we have included, which is worked out in much

more generality than has previously been done. In addition to being useful for the results

of the later chapters, these computations will also allow us to generate many computer

images of the various functions considered. This provides a better geometric picture of the

convolution of harmonic mappings than has previously been available.

As a matter of notation, we will throughout let C be the complex numbers, D any

simply connected domain in C, and D the unit disk {z : |z| < 1}. The terms “function”

and “mapping” will also be used interchangeably, the latter term emphasizing the geometric

1



point of view.

Chapter 2. Background

2.1 Univalent Functions

We say that a function f : D → C is univalent if it is analytic and one-to-one. By the

Riemann Mapping Theorem, any simply connected domain that is not the entire complex

plane is conformally equivalent to D. Hence it makes sense to restrict ourselves to mappings

of the unit disk. We may further impose the normalization requirement that f(0) = 0 and

f ′(0) = 1. The collection of all normalized univalent functions f : D → C is denoted by S,

from the German schlicht (meaning simple or plain). The study of the class S forms the bulk

of the classical branch of mathematics known as univalent functions or geometric function

theory. This branch of mathematics found its origins in 1914 with Gronwall’s proof of the

Area Theorem (see [12], pp. 58-59); the Bieberbach Conjecture, made in 1916, formed the

cornerstone of the subject until its final resolution in the affirmative in 1984 by de Branges.

The study of univalent functions is also concerned with various subclasses of S. We shall

make mention of just one of these in this thesis. We say that a function f ∈ S is convex if

f(D) is a convex domain. The subclass of convex functions is denoted by K.

2.2 Univalent Harmonic Mappings

The study of univalent harmonic mappings is a more recent outgrowth of the study of

univalent (analytic) functions. Here, the condition that f be analytic is replaced by the

weaker condition that f be harmonic. This means that if f(x + iy) = u(x, y) + iv(x, y),

then u and v satisfy Laplace’s equation. That is, uxx + uyy = 0 and vxx + vyy = 0. We will

sometimes refer to such a function as planar harmonic to distinguish it from other uses of

the term harmonic. It is a basic fact that any analytic function satisfies Laplace’s equation;

2



hence the set of analytic functions on D is a subset of the planar harmonic mappings on D.

A complex-valued function f : D → C is said to be univalent harmonic if it is one-to-one

and harmonic.

One basic fact is that any planar harmonic mapping defined on a simply connected domain

can be written in the form f(z) = h(z) + g(z), where h and g are both analytic functions.

We can easily verify this fact as follows. Let f(x+ iy) = u(x, y) + iv(x, y) satisfy Laplace’s

Equation. Let K be the analytic function having u as its real part, and let L be the analytic

function having v as its imaginary part. It is a fact of complex analysis that such a function

exists when u and v are defined on a simply connected domain (see for instance [3], p. 202).

Letting h =
K + L

2
and g =

K − L
2

, we obtain h+g =
K +K

2
+
L− L

2
= Re K+iIm L = f ,

as desired. We refer to h as the analytic part and g as the coanalytic part of f . This

representation is important because it provides a link between planar harmonic mappings

and the theory of analytic functions. Moreover, it gives us a series representation for f in

terms of its analytic and coanalytic parts, f(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
n.

In analogy to the class S of normalized (analytic) univalent mappings, we may consider

the class SH of univalent harmonic mappings f = h+g : D→ C subject to the normalization

h(0) = 0, h′(0) = 1, and g(0) = 0. This was first studied by Clunie and Sheil-Small in 1984

[2]. We may also define the subclass S0
H of functions that also satisfy the requirement

g′(0) = 0. Note that S ⊂ S0
H ⊂ SH . The above series representation now takes the form

f(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n for f ∈ SH and f(z) = z +

∞∑
n=2

anz
n +

∞∑
n=2

bnz
n for f ∈ S0

H .

Also, as expected, KH and K0
H denote the respective subclasses of functions that are also

convex.

3



The Jacobian of a harmonic mapping f(x+ iy) = h(x+ iy) + g(x+ iy) is given by

Jf (z) =

∣∣∣∣∣∣∣
(Re f)x (Re f)y

(Im f)x (Im f)y

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(Re h)x + (Re g)x (Re h)y + (Re g)y

(Im h)x − (Im g)x (Im h)y − (Im g)y

∣∣∣∣∣∣∣
By applying the Cauchy-Riemann equations, we obtain

Jf (z) =

∣∣∣∣∣∣∣
(Re h)x + (Re g)x −(Im h)x − (Im g)x

(Im h)x − (Im g)x (Re h)x − (Re g)x

∣∣∣∣∣∣∣
= (Re h)2x − (Re g)2x + (Im h)2x − (Im g)2x

= |h′|2 − |g′|2.

It is a fact from complex analysis that an analytic function is locally univalent if and only

if its Jacobian is nonvanishing for all points in its domain ([1], p. 74). Lewy proved in 1936

that this result is also true for planar harmonic mappings (see [7], pp. 2, 20). Motivated by

this, we say that a harmonic mapping is sense-preserving if Jf (z) > 0 and sense-reversing if

Jf (z) < 0 for all z in some domain D. Geometrically, the image of a circle oriented clockwise

will have a clockwise orientation under a sense-preserving mapping, and a counter-clockwise

orientation under a sense-reversing mapping.

In connection with this, the dilatation of a planar harmonic mapping f = h+g is defined

to be ω = g′/h′. Lewy’s Theorem then may be expressed as follows.

Theorem A. Let f = h+g be defined on the simply connected domain G. Then f is locally

univalent and sense-preserving if and only if |ω(z)| < 1 for all z ∈ G.

The dilatation may be interpreted geometrically to represent the “stretching” or “dis-

tortion” of f . More precisely, f will map an infinitesimal circle around the point z to an

4



infinitesimal ellipse, with
1 + |ω(z)|
1− |ω(z)|

giving the ratio of the major axis to the minor axis of

the ellipse. Hence a dilatation of 0 at a point corresponds to f being analytic there.

We will typically consider dilatations that are inner functions. An inner function is

defined as an analytic function ω : D → D such that for almost all u ∈ ∂D, lim
z→u

ω(z) exists

and
∣∣∣lim
z→u

ω(z)
∣∣∣ = 1. This is because these are the largest possible dilatations for a univalent,

sense-preserving function. Moreover, the study of smaller dilatations more properly belongs

to the field of quasiconformal mappings.1 The dilatations that we commonly use are also

finite Blaschke products, meaning they are of the form eiθ
n∏
j=1

z − aj
1− ajz

, where θ ∈ R and each

|aj| < 1.

2.3 The Shearing Technique

Clunie and Sheil-Small introduced the so-called shearing technique for creating examples

of planar harmonic functions with a prescribed dilatation [2]. First, we need some more

terminology. For some α ∈ R, we say that f is convex in the α-direction if {z + teiα : t ∈

R}∩ f(D) is connected for all z ∈ C. We use the terms convex in the horizontal and vertical

directions in the cases that α = 0 and α = π/2, respectively. The shearing technique is

based on the following theorem by Clunie and Sheil-Small. Their original theorem was stated

for functions that are convex in the horizontal direction. However, it is often convenient to

consider other directions when using the shearing technique, so we state it in more generality.

Theorem B (Shearing theorem). Let h and g be analytic functions on the unit disk D

such that f = h + g is locally univalent. Then f is univalent and convex in the α-direction

if and only if the analytic function ϕ = h− e2iαg has these two properties.

In the horizontal case, we see that f and ϕ satisfy the relationship f = ϕ + 2Re g.

Hence f and ϕ differ from each other by the addition of a real-valued function. This can

1More precisely, a quasiconformal mapping can be defined as a harmonic mapping for which (1 +
|ω(z)|)/(1− |ω(z)|) is bounded by some constant K. This in an extensively researched field of mathematics
that largely preceded the modern interest in planar harmonic mappings.

5



be visualized geometrically by ϕ being chopped into horizontal slices, each of which is then

translated or scaled continuously to obtain f . This explains the use of the word “shear” in

the name of the theorem.

We will often use Theorem B as follows. Suppose we are given some α ∈ R, a univalent

analytic function ϕ that is convex in the α-direction, and an analytic function ω satisfying

|ω| < 1. We may then find functions h and g that solve the pair of equations ϕ = h− e2iαg

and ω = g′/h′. Then f = h + g is a harmonic mapping with ω as its dilatation to which

Theorem B applies. We will refer to this corresponding function f as the shear of ϕ in

the α direction with dilatation ω. We illustrate this process with an example that will be

important to our later results.

Example 1. Let ϕ(z) =
z

1− z
. Notice that ϕ is a Möbius transformation mapping the

unit disk onto the right half-plane {z : Re(z) > −1/2}. We call ϕ the canonical half-plane

mapping. It is clear that ϕ(D) is convex, and hence convex in every direction. In this case, we

will shear it in the vertical direction (that is, α = π/2), with dilatation ω(z) = g′(z)/h′(z) =

eiθzn. Theorem B guarantees that the functions we obtain here are univalent and convex in

the vertical direction.

Then h and g satisfy h(z) + g(z) =
z

1− z
. Taking derivatives gives

1

(1− z)2
= h′(z) +

g′(z) = h′(z)(1 + ω(z)) = h′(z)(1 + eiθzn). We see that

h(z) =

∫ z

0

ds

(1− s)2(1 + ω(s))
=

∫ z

0

ds

(1− s)2(1 + eiθsn)
.

Once we obtain h(z), we can readily find g(z) using the relation g(z) = ϕ(z)− h(z).

The first case to consider is n = 1 and θ = π. Then

h(z) =

∫ z

0

ds

(1− s)3
=
z − 1

2
z2

(1− z)2

g(z) =
z

1− z
−
z − 1

2
z2

(1− z)2
=
−1

2
z2

(1− z)2
.

6



Next, suppose that n = 1 and θ 6= π. Then

h(z) =

∫ z

0

ds

(1− s)2(1 + eiθs)
=

1

1 + eiθ

(
z

1− z

)
+

eiθ

(1 + eiθ)2
log

(
1 + eiθz

1− z

)
(2.1)

g(z) =
eiθ

1 + eiθ

(
z

1− z

)
− eiθ

(1 + eiθ)2
log

(
1 + eiθz

1− z

)
. (2.2)

More generally, we will derive a formula valid for all n. We assume here that θ 6= π. We first

express h′ in terms of its partial fraction decomposition.

h′(z) =
1

(1− z)2(1 + eiθzn)
=

1

(1− z)2
∏n

j=1

(
1− eiπ+θ+2πj

n z
)

=
n∑
j=1

Aj

1− eiπ+θ+2πj
n z

+
An+1

1− z
+

An+2

(1− z)2
,

where

An+1 =
neiθ

(1 + eiθ)2
An+2 =

1

1 + eiθ

Aj =
−eiπ−θ+2πj

n

(1− eiπ−θ+2πj
n )2

∏n−1
k=1(1− e 2πik

n )
(1 ≤ j ≤ n)

=
−eiπ−θ+2πj

n

(1− eiπ−θ+2πj
n )2(n)

=
1

4n
csc2

(
π − θ + 2πj

2n

)
.

7



(a) ω = 0 (b) ω = −z

(c) ω = e3πi/4z (d) ω = iz

(e) ω = eπi/4z (f) ω = z

Figure 2.1: Images of D under the vertical shears of ϕ(z) = z/(1− z) with dilatation ω, part
(i).
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(a) ω = −z2 (b) ω = e3πi/4z2

(c) ω = iz2 (d) ω = eπi/4z2

(e) ω = z2 (f) ω = z3

Figure 2.2: Images of D under the vertical shears of ϕ(z) = z/(1− z) with dilatation ω, part
(ii).
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We see from this that f = h+ g can be written as

h(z) =
1

1 + eiθ

(
z

1− z

)
− eiθn

(1 + eiθ)2
log(1− z)

+
1

4n

n∑
j=1

csc2
(
π − θ + 2πj

2n

)(
log(1− z) + log

(
1− e−

i(π−θ+2πj)
n z

1− z

))

g(z) =
eiθ

1 + eiθ

(
z

1− z

)
+

eiθn

(1 + eiθ)2
log(1− z)

− 1

4n

n∑
j=1

csc2
(
π − θ + 2πj

2n

)(
log(1− z) + log

(
1− e−

i(π−θ+2πj)
n z

1− z

))
.

Note that we have written the logarithms in such a way that each has a branch cut along

the negative real axis. This consistency among the logarithm terms is necessary for creating

correct computer images.

In the case that θ = π, then there is now a pole of order 3 at 1, and we must adjust our

formulas correctly. We now have

h′(z) =
1

(1− z)2(1 + eiθzn)
=

1

(1− z)3
∏n−1

j=1

(
1− ei 2πjn z

)
=

n−1∑
j=1

Aj

1− ei 2πjn z
+

An
1− z

+
An+1

(1− z)2
+

An+2

(1− z)3
,

where

An = −n
2 − 1

12n
An+1 =

n− 1

2n
An+2 =

1

n

Aj =
−ei 2πjn

(1− ei 2πjn )2
∏n−1

k=1(1− e 2πik
n )

(1 ≤ j ≤ n− 1)

=
1

4n
csc2

(
πj

n

)
.

10



This gives

h(z) =
(n+ 1)z − nz2

2n(1− z)2
− n2 − 1

12n
log(1− z)

+
1

4n

n−1∑
j=1

csc2
(
πj

n

)(
log(1− z) + log

(
1− e−

i(2πj)
n z

1− z

))

g(z) =
(n− 1)z − nz2

2n(1− z)2
+
n2 − 1

12n
log(1− z)

− 1

4n

n−1∑
j=1

csc2
(
πj

n

)(
log(1− z) + log

(
1− e−

i(2πj)
n z

1− z

))
.

Images of a few of these shears are in Figure 2.1 and Figure 2.2. Notice that the choice

of θ corresponds to the angle of the slant of the image, which is an angle of θ/2 downwards

from the real axis. The other observation is that the boundary collapses to a finite number

of points. If θ 6= π, then there are n + 1 such points in C. If θ = π, then there are n such

points in C, as well as the point at infinity. This boundary behavior occurs for any convex

harmonic mapping with inner function dilatation (see [6], p. 221). Note that this boundary

behavior is not possible for analytic functions.

In light of the previous example, we will let let SH(R), S0
H(R), KH(R), and K0

H(R) denote

the respective subclasses of harmonic mappings f = h+ g that satisfy h(z) + g(z) =
z

1− z
.

Chapter 3. Introduction to Research Question

3.1 Harmonic Convolutions

A number of research papers in recent years have examined the convolution or Hadamard

product of planar harmonic mappings. Like the entire area of study itself, this has its origins

in the classical field of univalent functions. Given analytic functions f(z) =
∞∑
n=1

anz
n, F (z) =

∞∑
n=1

Anz
n, the convolution of f and F , denoted by f ∗ F , is defined to be (f ∗ F )(z) =

11



∞∑
n=1

anAnz
n.1 A natural question is, given two univalent functions f, F , under what circum-

stance is their convolution f ∗ F also univalent? There are a number of nice results for this

question. For instance, if f, F ∈ K, then it is also the case f ∗ F ∈ K and is thus univalent

([8], p. 130)).

The notion of convolution can be extended to planar harmonic mappings as follows. For

f = h + g =
∞∑
n=1

anz
n +

∞∑
n=1

bnzn and F = H + G =
∞∑
n=1

Anz
n +

∞∑
n=1

Bnzn, their harmonic

convolution is given by (f ∗ F )(z) = (h ∗H)(z) + (g ∗G)(z) =
∞∑
n=1

anAnz
n +

∞∑
n=1

bnBnzn.

Example 2. This is a continuation of Example 1 above. We will determine the convolution

of some combinations of the functions obtained there. This set of examples was proved to

be univalent by Dorff, Nowak, and Woloszkiewicz [5], as we shall see in the next section.

We first do some preliminary work to simplify the computations. Let f0 = h0 + g0 be

the vertical shear of z/(1 − z) with dilatation ω0 = −z, and let F (z) =
∑∞

n=1 anz
n be any

analytic function with F (0) = 0. In Example 1, we showed that f0 is given explicitly by

h(z) =
z − 1

2
z2

(1− z)2
=

1

2

z

1− z
+

1

2

z

(1− z)2

g(z) =
−1

2
z2

(1− z)2
=

1

2

z

1− z
− 1

2

z

1− z
.

Since
z

1− z
= z + z2 + z3 + · · · and

z

(1− z)2
= z + 2z2 + 3z3 + · · · , we obtain

z

1− z
∗ F (z) = F (z)

z

(1− z)2
∗ F (z) =

∞∑
n=1

nanz
n = z

(
∞∑
n=1

nanz
n−1

)
= zF ′(z)

1This definition is related to the better-known notion of convolution used in Fourier analysis. For functions

f̃ , F̃ : [0, 2π)→ C, their convolution is defined as (f̃ ∗ F̃ )(t) = 1
2π

∫ 2π

0
f̃(τ)F̃ (t− τ)dτ . Regarding f(eit) and

F (eit) above as functions of the real variable t, i.e. taking f̃(t) = f(eit) and F̃ (t) = F (eit), it can be shown
that these two definitions are equivalent.

12



Hence f0 ∗ F is given explicitly by

(h0 ∗ F )(z) =
F (z) + zF ′(z)

2
(3.1)

(g0 ∗ F )(z) =
F (z)− zF ′(z)

2
. (3.2)

Now, let f = h+ g be the vertical shear of z/(1− z) with dilatation ω = eiθz, where θ 6= π.

Recall from Equations 2.1 and 2.2 in Example 1 that

h(z) =
1

1 + eiθ

(
z

1− z

)
+

eiθ

(1 + eiθ)2
log

(
1 + eiθz

1− z

)
g(z) =

eiθ

1 + eiθ

(
z

1− z

)
− eiθ

(1 + eiθ)2
log

(
1 + eiθz

1− z

)
.

Then by Equations 3.1 and 3.2, f0 ∗ f is given by

(h0 ∗ h)(z) =
(2 + eiθ)z − (1− eiθ)z2 − eiθz3

2(1 + eiθ)(1− z)2(1 + eiθz)
+

eiθ

2 (1 + eiθ)2
log

(
1 + eiθz

1− z

)
(g0 ∗ g)(z) =

eiθ
(
z − 2z2 − eiθz3

)
2(1 + eiθ)(1− z)2(1 + eiθz)

− eiθ

2 (1 + eiθ)2
log

(
1 + eiθz

1− z

)

In the case that θ = π, then we have the convolution f0 ∗ f0. This is given by

(h0 ∗ h0)(z) =
−z(z2 − 3z + 4)

4(z − 1)3

(g0 ∗ g0)(z) =
z2

4
+
−z3(z2 − 3z + 4)

4(z − 1)3

Next, we will let f = h+g be the vertical shear of z/(1−z) with dilatation ω = eiθz2, where

13



again θ 6= π. We have

(h0 ∗ h)(z) =
1

16

(
8z

(z − 1)2 (1 + z2eiθ)
− 8z

(z − 1) (1 + eiθ)
− 16eiθ log(1− z)

(1 + eiθ)2

+ sec2
(

1

4
(θ − 3π)

)(
log(1− z) + log

(
1 + ize

iθ
2

1− z

))

+ sec2
(
θ − π

4

)(
log(1− z) + log

(
−1 + ize

iθ
2

z − 1

)))

(g0 ∗ g)(z) =
1

16

8eiθ

z
(

1−z
1+eiθ

− z2

1+z2eiθ

)
(z − 1)2

+
2 log(1− z)

(1 + eiθ)2


+ sec2

(
1

4
(θ − 3π)

)(
−

(
log(1− z) + log

(
1 + ize

iθ
2

1− z

)))

− sec2
(
θ − π

4

)(
log(1− z) + log

(
−1 + ize

iθ
2

z − 1

)))

The final case is when f = h+ g is the vertical shear of z/(1− z) with dilatation ω = −z2.

The convolution f0 ∗ f is then given by

(h0 ∗ h) =
z(2z3 − 3z2 − 2z + 7)

8(1− z)3(1 + z)
+

1

16
log

(
1 + z

1− z

)
(g0 ∗ g) =

z(2z3 + 3z2 − 2z + 1)

8(1− z)3(1 + z)
− 1

16
log

(
1 + z

1− z

)

Some images of these are given in Figure 3.1 and Figure 3.2. As in Example 1, we can

see that the boundary collapses down to a finite number of points. This is again indicative

of the dilatation being an inner function. A proof that this fact is implicit in the proof of

Theorem C.

3.2 Current Research

As in the case of analytic convolutions, a major broad research problem is determining how

well univalence is preserved by the harmonic convolution. Both the difficulty and interest

14



(a) θ = 0 (b) θ = π/3

(c) θ = π/2 (d) θ = 2π/3

(e) θ = 5π/6 (f) θ = π

Figure 3.1: Images of D under f0 ∗ f , where f = h+ g is the vertical shear of z/(1− z) with
dilatation ω = eiθz.
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(a) θ = 0 (b) θ = π/6

(c) θ = π/3 (d) θ = π/2

(e) θ = 2π/3 (f) θ = π

Figure 3.2: Images of D under f0 ∗ f , where f = h+ g is the vertical shear of z/(1− z) with
dilatation ω = eiθz2.

16



in this problem stem from the fact that most of the nice results regarding the analytic

convolution are no longer true in the case of harmonic convolutions. In the absence of these,

much of the research is devoted to finding more specific cases in which univalence is preserved.

A summary of this research in the case of vertical shears of the canonical half-plane map,

including the results of this thesis, is given in Table 7.1 in the conclusion.

One of these is the following theorem of Dorff, Nowak, and Woloszkiewicz [5].

Theorem C. Let f0 = h0 + g0 ∈ S0
H(R) with ω0(z) = −z, and let f = h+ g ∈ S0

H(R) with

ω(z) = eiθzn (n ∈ N and θ ∈ R). If n = 1, 2, then f0 ∗ f ∈ S0
H (i.e., is univalent) and is

convex in the horizontal direction.

The fact that the convolution is convex in the horizontal direction suggests invoking the

shearing theorem of Clunie and Sheil-Small in its proof. A proof along these lines would have

two parts: first, one must show that ω̃, the dilatation of the convolution, satisfies |ω̃| < 1.

Next, one would “unshear” the convolution back to an analytic function and justify why

this unsheared function is univalent and convex in the horizontal direction. This would be

reasonably straightforward, given the abundance of nice theorems for analytic functions.

However, an earlier result by Dorff [4] states that we can bypass this second step altogether

and need only show that |ω̃(z)| < 1.

Theorem D. Let f1, f2 ∈ KH(R). If f1 ∗ f2 is locally univalent and sense-preserving, then

f1 ∗ f2 ∈ SH and is convex in the horizontal direction.

The proof of Theorem C is an elaborate argument that the inequality |ω̃(z)| < 1 holds

for the given convolution. Their argument makes use of the following result on the roots of

complex polynomials ([15], p. 375).

Theorem E. (Cohn’s Rule) Given a polynomial f(z) = a0 + a1z + · · · + anz
n of degree n,

let f ∗(z) = znf(1/z) = an + an−1z + · · · a0zn. Let p be the number of zeros of f in D and

let s be the number of zeros of f on ∂D. If |a0| < |an|, then f1(z) =
anf(z)− a0f ∗(z)

z
is of

degree n− 1, with p− 1 zeros in D and s zeros in ∂D.
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We include here the original proof of Theorem C in [5].

Proof. Using Equations 3.1 and 3.2 and the fact that g′ = ωh′ and g′′(z) = ωh′′ + ω′h′, ω̃

can be expressed as follows.

ω̃(z) =
d
dz

(g(z)− zg′(z))
d
dz

(h(z) + zh′(z))
=

−zg′′(z)

2h′(z) + zh′′(z)
=
−zω′(z)h′(z)− zω(z)h′′(z)

2h′(z) + zh′′(z)

Recall from Example 1 that h′(z) =
1

(1 + ω(z))(1− z)2
, and thus

h′′(z) =
2(1 + ω(z))− ω′(z)(1− z)

(1 + ω(z))2(1− z)3
.

Substituting h′ and h′′ into the equation for ω̃ gives

ω̃(z) = −z
ω2(z) + ω(z)− 1

2
ω′(z)z + 1

2
ω′(z)

1 + ω(z)− 1
2
ω′(z)z + 1

2
ω′(z)z2

. (3.3)

Taking now ω(z) = eiθz, we obtain

ω̃(z) = −ze2iθ
z2 + 1

2
e−iθz + 1

2
e−iθ

1 + 1
2
eiθz + 1

2
eiθz2

= −ze2iθ p(z)

p∗(z)
,

where p∗(z) is as defined in Theorem E. Letting b1 and b2 denote the two roots of p(z), we

see that

ω̃(z) = −ze2iθ (z − b1)(z − b2)
(1− b1z)(1− b2z)

.

The polynomial p1(z) =
a2p(z)− a0p∗(z)

z
=

3

4
z+

1

2
e−iθ− 1

4
has one zero at z0 = 1

3
− 2

3
e−iθ.

If θ 6= π, then |z0| < 1, and so, by Theorem E, p(z) must have two zeros in D. Hence |b1| < 1

and |b2| < 1. This shows that ω̃(z) is an inner function, and thus satisfies |ω̃(z)| < 1. If

θ = π, then b1 = 1 and b2 = −1/2. Again, we see that |ω̃(z)| < 1. The proves the theorem

in the case that n = 1.
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In the case of n = 2, then Equation 3.3 now gives

|ω̃(z)| = |z2|
∣∣∣∣z3 + e−iθ

1 + eiθz3

∣∣∣∣ = |z|2 < 1.

This proves the theorem in the case that n = 2.

A natural course of further investigation is to replace ω0 and ω in Theorem C with

other, more general dilatations, and likewise show that the resulting convolution is univalent.

Another paper has done this, relying once again on Cohn’s Rule to provide the punch line in

the proof [10]. However, this argument depends on the nice representation for convolutions

of h0 and g0 given in Equations 3.1 and 3.2, which allows ω̃ to be expressed as a rational

function in z. This is no longer the case when f0 = h0 + g0 is replaced with other harmonic

mappings. Instead, new techniques are needed.

The main result of this thesis is such a problem. Specifically, we will derive a similar

theorem for the dilatations ω(z) = eiθz and ω1(z) = eiρz, using a different approach to

show that |ω̃| < 1. The basic approach originated in an untitled draft by M. Nowak and

M. Woloszkiewicz [14], in which they proved this in the case when θ = ρ. Their argument

generalizes, albeit with some difficulty, to the full result that we obtained.

3.3 A First Result

First, however, we will take a minor detour. It is of mention that Theorem C is no longer

true when n ≥ 3. The authors remark on this in [5], content with showing that the result is

false in the case that θ = π. As it turns out, however, even more is true—for all θ ∈ R, f0 ∗f

will fail to be univalent. The proof of this is only slightly longer than that of the specific

case θ = π, and follows very naturally from the proof of Theorem C above.

Theorem 1. Let f0 be the shear of ϕ(z) = z/(1− z) with dilatation ω0 = −z. Let f be the

shear of ϕ(z) = z/(1− z) with dilatation ω = eiθzn, θ ∈ R. Suppose that n ≥ 3. Then f0 ∗ f

is not univalent.
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Proof. Let ω̃ denote the dilatation of the convolution f0 ∗ f . Our goal is to show that

|ω̃(z)| ≥ 1 for some z. We begin from Equation (3.3) above.

ω̃(z) = −z
ω2(z) + ω(z)− 1

2
ω′(z)z + 1

2
ω′(z)

1 + ω(z)− 1
2
ω′(z)z + 1

2
ω′(z)z2

= −z
e2iθz2n + eiθzn − n

2
eiθzn + n

2
eiθzn−1

1 + eiθzn − n
2
eiθzn + n

2
eiθzn+1

= −zne2iθ
zn+1 + e−iθ(1− n

2
)z + n

2
e−iθ

1 + eiθ(1− n
2
)zn + n

2
eiθzn+1

Let p(z) be the numerator and q(z) be the denominator of the previous equation. Note that

q(z) = zn+1p(1/z); hence a is a root of p(z) if and only if 1/a is a root of q(z). So ω̃ can be

rewritten as

ω̃(z) = −zne2iθ p(z)

q(z)
= −zne2iθ (z − a1)(z − a2) · · · (z − an+1)

(1− a1z)(1− a2z) · · · (1− an+1z)
,

where a1, a2, . . . , an+1 denote the zeros of p(z). Note that ω̃ has a pole at 1/ai, unless it

happens that aj = 1/ai for some j. Suppose now that |ω̃| < 1; in particular, ω̃ has no

poles in D. Hence, if |ai| > 1 for some i, there must exist some j unique to that i such

that aj = 1/ai. Since |aiaj| = |ai/ai| = 1, this implies immediately that |a1a2 . . . an+1| ≤ 1.

However, we also have from our equation for ω̃ that |a1a2 . . . an+1| = |ne−iθ/2| = n/2, which

is impossible whenever n ≥ 3. We conclude that, if n ≥ 3, then ω̃ must have a pole in D.

This gives the result.

One point of interest in the preceding proof is that the dilatation ω̃ of the convolution

is meromorphic and not analytic. This shows that the convolution of two locally univalent

harmonic mappings might not be locally univalent. (Note that any locally univalent harmonic

mapping has an analytic dilatation.)
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Chapter 4. A Class of Univalent Convolutions

This section will be devoted to proving the following theorem.

Theorem 2. Let f1 = h1 + g1 ∈ S0
H(R) with dilatation ω1 = eiθz, θ ∈ R, and let f2 =

h2 + g2 ∈ S0
H(R) with dilatation ω2 = eiρz, ρ ∈ R. Then f1 ∗ f2 ∈ S0

H and is convex in the

horizontal direction.

4.1 Preliminary Results

In this section, we collect a number of preliminary results needed for the proof of Theorem

2. We begin with the Maximum Modulus Theorem, a standard theorem of complex analysis.

It can be stated as follows ([3], p. 128).

Theorem F. (Maximum Modulus Theorem) Let G be a bounded open set in C and suppose

f is a continuous function on G which is analytic in G. Then max {|f(z)| : z ∈ G} =

max {|f(z)| : z ∈ ∂G}. Moreover, if f attains its maximum at some point z ∈ G, then f is

constant.

We will employ this theorem in the following modified form.

Lemma 3. Let f : D → C be nonconstant and analytic, where f(D) omits some point

w ∈ {z : Re z < 0}. Suppose that f̂(eit) = lim
z→eit

f(z) exists for all t ∈ R (where possibly

f̂(eit) = ∞). If Re(f̂(eit)) ≥ 0 for all t such that f̂(eit) is finite, then Re(f(z)) > 0 for all

z ∈ D.

Proof. It can be shown that for any point w, where Re w < 0, there exists some t1, t2 ∈ R,

with 0 < t1 < t2 < 2π, such that w = −i
(
eit1 − eit2
eit1 − 1

)
. Let t1, t2 be such values, and let

ϕ(z) = −i
(
eit1 − eit2
eit1 − 1

)(
z − 1

z − eit2

)
. Then ϕ(1) = 0, ϕ(eit1) = −i, and ϕ(eit2) = ∞. This

shows that ϕ(D) = {z : Re z > 0} and ϕ(∂D) = iR ∪ {∞}. Further note that ϕ(∞) = w.

We can see that lim
z→eit

(ϕ−1 ◦ f)(z) exists (as a finite limit) for all t ∈ R. In particular, this

shows that (ϕ−1◦f) has a continuous extension ̂(ϕ−1 ◦ f) defined on D. From the hypothesis
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that Re(f̂(eit)) ≥ 0, we must have ̂(ϕ−1 ◦ f)(eit) ≤ 1 for all t ∈ R. Since f is nonconstant,

Theorem F implies that |(ϕ−1 ◦ f)(z)| < 1 for all z ∈ D. The result follows.

The following is another consequence of the Maximum Modulus Theorem.

Theorem G. (Schwarz’s Lemma) Let f : D→ D be analytic with f(0) = 0. Then |f(z)| ≤

|z| for all z ∈ D.

More specific to the subject of harmonic mappings is the following result of Clunie and

Sheil-Small [2].

Theorem H. If f = h+ g ∈ KH , then

∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣ < 1 for all z1, z2 ∈ D.

Our application of this theorem will depend on a result of Nowak and Woloszkiewicz [14].

As this has not yet been published, we include their proof here.

Theorem I. If f = h+ g ∈ S0
H(R), then f is convex.

Proof. By Theorem B, it suffices to show that the function h − e2iαg is convex in the α

direction for every α ∈ [0, π). This is true if and only if Fα = ie−iα(h − e2iαg) is convex in

the vertical direction.

We apply the following result of Royster and Ziegler [17].

Theorem J. Let ϕ be a conformal mapping that satisfies

Re (−ieiµ(1− 2 cos νe−iµz + e−2iµz2)ϕ′(z)) ≥ 0

for some µ, ν ∈ [0, π]. Then ϕ is univalent and convex in the vertical direction.

First assume that α ∈ [0, π/2]. Taking µ = ν = 0 in Theorem J, we get

Re (−iF ′α(z)(1− z)2) = Re (e−iα(h′(z)− e2iαg′(z))(1− z)2)

= Re ((e−iαh′(z)− eiαg′(z))(1− z)2)

= Re (((h′(z)− g′(z)) cosα− i(h′(z) + g′(z)) sinα)(1− z)2).
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Since h′(z) + g′(z) =
1

(1− z)2
, we get

Re (−iF ′α(z)(1− z)2) = Re

((
h′(z)− g′(z)

h′(z) + g′(z)

)
cosα− i sinα

)
= Re

((
h′(z)− g′(z)

h′(z) + g′(z)

)
cosα

)

Note that
h′(z)− g′(z)

h′(z) + g′(z)
=

h′(z)(1− ω(z))

h′(z)(1 + ω(z))
=

1− ω(z)

1 + ω(z)
. This has positive real part for

all z, since the Möbius transformation
1− z
1 + z

maps the unit disk onto the right half-plane

{z : Re (z) > 0}. We may thus conclude from Theorem J that Fα is convex in the vertical

direction. The same conclusion holds for α ∈ (π/2, π) by applying the same argument with

µ = ν = π.

We can see immediately from the formulas for f1 and f2 above that they are both in

S0
H(R). Hence their images are convex by the preceding theorem.

4.2 Proof of Theorem

We continue now with the proof of Theorem 2. The argument follows a draft by Nowak and

Woloszkiewicz in which they proved the special case of θ = ρ [14].

Proof. Theorem C proved this result in the case that θ = π or ρ = π. Hence we will assume

that θ 6= π and ρ 6= π.

Note that log

(
1 + eiθz

1− z

)
=

∞∑
n=1

1

n
(1 + (−1)n−1eiθn)zn. For an analytic function F (z) =∑∞

n=1 anz
n, we must have

log

(
1 + eiθz

1− z

)
∗ F (z) =

∞∑
n=1

an

n
zn −

∞∑
n=1

(−1)neiθnan
n

zn

=
∞∑
n=1

an

n
zn −

∞∑
n=1

an
n

(−eiθz)n

=

∫ z

0

F (u)

u
du−

∫ z

0

F (−eiθu)

u
du =

∫ z

0

F (u)− F (−eiθu)

u
du.
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Using Equations 2.1 and 2.2 for h1 and g1, we obtain

(h1 ∗ F )(z) =
1

1 + eiθ
F (z) +

eiθ

(1 + eiθ)2

∫ z

0

F (u)− F (−eiθu)

u
du

(g1 ∗ F )(z) =
eiθ

1 + eiθ
F (z)− eiθ

(1 + eiθ)2

∫ z

0

F (u)− F (−eiθu)

u
du.

The dilatation of f1 ∗ f2 is then

ω̃(z) =
d
dz

(g1 ∗ g2)(z)
d
dz

(h1 ∗ h2)(z)

=

d
dz

(
− eiθ

(1+eiθ)2

∫ z
0
g2(u)−g2(−eiθu)

u
du+ eiθ

1+eiθ
g2(z)

)
d
dz

(
eiθ

(1+eiθ)2

∫ z
0
h2(u)−h2(−eiθu)

u
du+ 1

1+eiθ
h2(z)

)
=
− eiθ

(1+eiθ)2

(
g2(z)−g2(−eiθz)

z

)
+ eiθ

1+eiθ
g′2(z)

eiθ

(1+eiθ)2

(
h2(z)−h2(−eiθz)

z

)
+ 1

1+eiθ
h′2(z)

= eiθ

(
−
(
g2(z)− g2(−eiθz)

)
+ (1 + eiθ)zg′2(z)

eiθ (h2(z)− h2(−eiθz)) + (1 + eiθ)zh′2(z)

)
.

By Theorem D, we can show that f1 ∗ f2 ∈ SH and is convex in the horizontal direction

and by showing that |ω̃| < 1. This is equivalent to

|(g2(−eiθz)− g2(z)) + (1 + eiθ)zg′2(z)|2 < |eiθ(h2(z)− h2(−eiθz)) + (1 + eiθ)zh′2(z)|2.

We rewrite this as

∣∣∣∣g2(−eiθz)− g2(z)

(1 + eiθ)zh′2(z)
+ ω2(z)

∣∣∣∣2 < ∣∣∣∣eiθ(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)
+ 1

∣∣∣∣2
∣∣∣∣g2(−eiθz)− g2(z)

(1 + eiθ)z2h′2(z)
+ eiρ

∣∣∣∣2 |z|2 < ∣∣∣∣(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)
+ e−iθ

∣∣∣∣2 .
Hence it suffices to show that

∣∣∣∣g2(−eiθz)− g2(z)

(1 + eiθ)z2h′2(z)
+ eiρ

∣∣∣∣2 < ∣∣∣∣(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)
+ e−iθ

∣∣∣∣2 .
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We can rewrite this as

∣∣∣∣g2(−eiθz)− g2(z)

(1 + eiθ)z2h′2(z)

∣∣∣∣2 + 2Re

(
e−iρ(g2(−eiθz)− g2(z))

(1 + eiθ)z2h′2(z)

)
+
∣∣eiρ∣∣2

<

∣∣∣∣(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)

∣∣∣∣2 + 2Re

(
eiθ(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)

)
+
∣∣e−iθ∣∣2 .

We approach this inequality by comparing each term on the left side with the respective

term on the right. For the last terms, we have |eiρ|2 = 1 =
∣∣e−iθ∣∣2. We consider now the first

terms; that is, we want to show that

∣∣∣∣g2(−eiθz)− g2(z)

(1 + eiθ)z2h′2(z)

∣∣∣∣2 < ∣∣∣∣(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)

∣∣∣∣2 . (4.1)

We know from Theorem H and Theorem I above that

∣∣∣∣ g2(−eiθz)− g2(z)

h2(z)− h2(−eiθz)

∣∣∣∣ < 1.

Also, since lim
z→0

g2(−eiθz)− g2(z)

h2(z)− h2(−eiθz)
= lim

z→0

−eiθg′2(−eiθz)− g′2(z)

h′2(z) + eiθh′2(−eiθz)
=

0− 0

1 + eiθ
= 0, we may apply

Schwarz’s Lemma to conclude that

∣∣∣∣ g2(−eiθz)− g2(z)

h2(z)− h2(−eiθz)

∣∣∣∣ < |z|. This gives us the inequality

in 4.1.

Next, we look at the difference of the second terms. Let

J(z) =
eiθ(h2(z)− h2(−eiθz))

(1 + eiθ)zh′2(z)
+
e−iρ(g2(z)− g2(−eiθz))

(1 + eiθ)z2h′2(z)
.

We want to show that Re J(z) > 0. Notice that h2(0) = 0, h′2(0) = 1, g2(0) = 0 and

g′2(0) = 0. Hence J(z) is analytic at z = 0. Moreover, h′2(z) 6= 0 for all z ∈ D. This shows

that J(z) is analytic on D.
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We can now simplify J(z) as follows.

J(z) =
eiθ(1− z)2(1 + eiρz)

(1 + eiθ)z

(
z

(1 + eiρ)(1− z)
+

eiρ

(1 + eiρ)2
log

(
1 + eiρz

1− z

)
+

eiθz

(1 + eiρ)(1 + eiθz)
− eiρ

(1 + eiρ)2
log

(
1− ei(θ+ρ)z

1 + eiθz

))
+

(1− z)2(1 + eiρz)

(1 + eiθ)z2

(
z

(1− z)(1 + eiρ)
− 1

(1 + eiρ)2
log

(
1 + eiρz

1− z

)
+

eiθz

(1 + eiρ)(1 + eiθz)
+

1

(1 + eiρ)2
log

(
1− ei(θ+ρ)z

1 + eiθz

))
=

(1− z)2(1 + eiρz)

(1 + eiρ)(1 + eiθ)z

(
eiθz

1− z
+
ei(ρ+θ)

1 + eiρ
log

(
1 + eiρz

1− z

)
+

e2iθz

1 + eiθz
− ei(ρ+θ)

1 + eiρ
log

(
1− ei(θ+ρ)z

1 + eiθz

)
+

1

1− z

− 1

(1 + eiρ)z
log

(
1 + eiρz

1− z

)
+

eiθ

1 + eiθz
+

1

(1 + eiρ)z
log

(
1− ei(θ+ρ)z

1 + eiθz

))
=

(1− z)2(1 + eiρz)

(1 + eiρ)(1 + eiθ)z

(
1 + eiθz

1− z
+
eiθ + e2iθz

1 + eiθz

+

(
ei(ρ+θ)

1 + eiρ
− 1

(1 + eiρ)z

)(
log

(
1 + eiρz

1− z

)
− log

(
1− ei(θ+ρ)z

1 + eiθz

)))
=

(1− z)2(1 + eiρz)

(1 + eiρ)(1 + eiθ)z

(
1 + eiθ

1− z
− 1− ei(ρ+θ)z

(1 + eiρ)z

(
log

(
1 + eiρz

1− z

)
− log

(
1− ei(θ+ρ)z

1 + eiθz

)))
=

(1− z)(1 + eiρz)

(1 + eiρ)z

(
1− (1− z)(1− ei(ρ+θ)z)

(1 + eiθ)(1 + eiρ)z

(
log

(
1 + eiρz

1− z

)
− log

(
1− ei(θ+ρ)z

1 + eiθz

)))
.

In order to apply Lemma 3, we need to check that lim
z→eit

J(z) exists for all t ∈ R. This is

clearly the case for all t ∈ R \ {0, π− ρ, π− θ, 2π− ρ− θ}. For the remaining values of t, we

obtain the following limits.

lim
z→1

J(z) = 0

lim
z→ei(π−ρ)

J(z) = 0

lim
z→ei(2π−θ−ρ)

J(z) =
(1− e−i(θ+ρ)(1 + e−iθ)

(1 + eiρ)e−i(θ+ρ)
=

2i cos
(
θ
2

)
sin
(
θ+ρ
2

)
cos
(
ρ
2

)
lim

z→ei(π−θ)
J(z) =

 ∞ if θ 6= ρ

0 if θ = ρ

Hence it suffices to show that Re J(eit) ≥ 0 for all t ∈ R \ {0, π − ρ, π − θ, 2π − ρ − θ}.
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We have

J(eit) =
(1− eit)(1 + ei(ρ+t))

(1 + eiρ)eit

(
1− (1− eit)(1− ei(ρ+θ+t))

(1 + eiθ)(1 + eiρ)eit

(
log

(
1 + ei(ρ+t)

1− eit

)
− log

(
1− ei(θ+ρ+t)

1 + ei(θ+t)

)))

=
−2i sin

(
t
2

)
cos
(
ρ+t
2

)
cos
(
ρ
2

)
1 +

sin
(
t
2

)
sin
(
θ+ρ+t

2

)
cos
(
θ
2

)
cos
(
ρ
2

) (
log

(
1 + ei(ρ+t)

1− eit

)
− log

(
1− ei(θ+ρ+t)

1 + ei(θ+t)

)) .

Hence

Re J(eit) =
2 sin2

(
t
2

)
sin
(
θ+ρ+t

2

)
cos
(
ρ+t
2

)
cos2

(
ρ
2

)
cos
(
θ
2

) (
arg

(
1 + ei(ρ+t)

1− eit

)
− arg

(
1− ei(θ+ρ+t)

1 + ei(θ+t)

))
.

Let A = arg

(
1 + ei(ρ+t)

1− eit

)
and let B = arg

(
1− ei(θ+ρ+t)

1 + ei(θ+t)

)
. We restrict ourselves now

to when 0 ≤ θ, ρ < π. We have

A =

 (ρ+ π)/2 if t ∈ (0, π − ρ)

(ρ− π)/2 if t ∈ (π − ρ, 2π)

B =

 (ρ− π)/2 if t ∈ (0, π − θ) ∪ (2π − θ − ρ, 2π)

(ρ+ π)/2 if t ∈ (π − θ, 2π − θ − ρ)
.

Consider now the case that ρ ≤ θ. Then

A−B =


π if t ∈ (0, π − θ)

0 if t ∈ (π − θ, π − ρ) ∪ (2π − θ − ρ, 2π)

−π if t ∈ (π − ρ, 2π − θ − ρ)

.

If θ < ρ, then

A−B =


π if t ∈ (0, π − ρ)

0 if t ∈ (π − ρ, π − θ) ∪ (2π − θ − ρ, 2π)

−π if t ∈ (π − θ, 2π − θ − ρ)

.

27



Next, we consider
sin
(
θ+ρ+t

2

)
cos
(
ρ+t
2

)
cos
(
θ
2

) . This is positive when t ∈ (0, π − ρ) ∪ (2π − ρ−

θ, 2π), and negative when t ∈ (π− ρ, 2π− ρ− θ). A quick inspection shows that in all cases,

Re(J(eit)) ≥ 0.

This completes the proof in the case that θ, ρ ∈ [0, π). The general result, that is, for

all θ, ρ ∈ (−π, π), is similar. Its proof essentially amounts to relabeling the various intervals

used in the case above.

It is natural to ask whether the above result is true in the case that n > 1. Some

preliminary computations indicate that this is not the case. However, this has not yet been

formally shown, and we leave it for now as an problem open for further investigation. Note

that this is in contrast to Theorem C, which is true for both n = 1 and n = 2.

4.3 Formulas for the Convolutions

As in the case of Theorem C, we can compute the class of convolutions used in the previous

theorem. Unlike our earlier computations, however, this will not be possible in terms of

the usual elementary functions. The special function that will help us is the polylogarithm

function Lis(z). This is defined for all |z| < 1 using power series by

Lis(z) =
∞∑
k=1

zk

ks
.

For reference, we recall equations 2.1 and 2.1 in Example 1. For θ 6= π, the formula for

f1 = h1 + g1 is

h1(z) =
1

1 + eiθ

(
z

1− z

)
+

eiθ

(1 + eiθ)2
log

(
1 + eiθz

1− z

)
g1(z) =

eiθ

1 + eiθ

(
z

1− z

)
− eiθ

(1 + eiθ)2
log

(
1 + eiθz

1− z

)
.

The formula for f2 = h2 + g2, ρ 6= π, is obtained by replacing θ with ρ in the preceding
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formula. Note that
z

1− z
∗ F (z) = F (z) for any analytic function F such that F (0) = 0, as

already shown in Example 2.

Next, we look at the convolution of the logarithm terms. The series representation for

log

(
1 + eiθz

1− z

)
is

log

(
1 + eiθz

1− z

)
=
∞∑
n=1

1 + (−1)n−1eniθ

n
zn.

We have then

log

(
1 + eiθz

1− z

)
∗ log

(
1 + eiρz

1− z

)
=

∞∑
n=1

(1 + (−1)n−1eniθ)(1 + (−1)n−1eniρ)

n2
zn

=

∞∑
n=1

zn

n2
−
∞∑
n=1

(−eiθz)n

n2
−
∞∑
n=1

(−eiρz)n

n2
+

∞∑
n=1

(ei(θ+ρ)z)n

n2

= Li2(z)− Li2
(
−eiθz

)
− Li2

(
−eiρz

)
+ Li2

(
ei(θ+ρ)z

)
.

Putting everything together, we obtain

(h1 ∗ h2)(z) =
1

16
sec2

(
θ

2

)
sec2

(ρ
2

)(
Li2

(
ei(θ+ρ)z

)
− Li2

(
−eiθz

)
− Li2

(
−eiρz

)
+ Li2(z)

)
+

z

(1 + eiθ) (1 + eiρ) (1− z)
+

sec2
(
θ
2

)
4 (1 + eiρ)

log

(
1 + eiθz

1− z

)
+

sec2
(
ρ
2

)
4 (1 + eiθ)

log

(
1 + eiρz

1− z

)
(g1 ∗ g2)(z) =

1

16
sec2

(
θ

2

)
sec2

(ρ
2

)(
Li2

(
ei(θ+ρ)z

)
− Li2

(
−eiθz

)
− Li2

(
−eiρz

)
+ Li2(z)

)
+

ei(θ+ρ)z

(1 + eiθ) (1 + eiρ) (1− z)
−
eiρ sec2

(
θ
2

)
4 (1 + eiρ)

log

(
1 + eiθz

1− z

)
−
eiθ sec2

(
ρ
2

)
4 (1 + eiθ)

log

(
1 + eiρz

1− z

)
.

Note that we have made these formulas slightly more compact using the fact that
eiθ

(1 + eiθ)2
=

sec2
(
θ

2

)
and

eiρ

(1 + eiρ)2
= sec2

(ρ
2

)
.

Images of the unit disk under some of these convolutions are in Figure 4.1 and in Figure

4.2. There is one point of contrast in the geometry of these compared to the previous

examples, in that the boundary does not collapse to finitely many points. This implies that

the dilatation of the convolution is no longer an inner function. This is reflected in the fact

that Re J(eit) is not identically zero in the proof of Theorem 2.
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(a) θ = 0, ρ = 0 (b) θ = 0, ρ = π/6

(c) θ = 0, ρ = π/3 (d) θ = 0, ρ = π/2

(e) θ = 0, ρ = 2π/3 (f) θ = 0, ρ = 5π/6

Figure 4.1: Images of D under f1∗f2, where f1 is the vertical shear of z/(1−z) with dilatation
ω1 = eiθz, and f2 is the vertical shear of z/(1− z) with dilatation ω2 = eiρz, part (i).
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(a) θ = π/2, ρ = 0 (b) θ = π/2, ρ = π/6

(c) θ = π/2, ρ = π/3 (d) θ = π/2, ρ = π/2

(e) θ = π/2, ρ = 2π/3 (f) θ = π/2, ρ = 5π/6

Figure 4.2: Images of D under f1∗f2, where f1 is the vertical shear of z/(1−z) with dilatation
ω1 = eiθz, and f2 is the vertical shear of z/(1− z) with dilatation ω2 = eiρz, part (ii).
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Chapter 5. Convolutions of Non-vertical Shears

Up to this point, we have considered only shears in the vertical direction. Another possible

path to generalize Theorem C is to consider different directions of shearing. In this section

we consider this problem briefly. Unfortunately, as it turns out, convolutions obtained in

this manner will usually not be univalent. Even when they are, they are usually not convex

in the horizontal direction, and so the techniques from above no longer apply.

The best we can do is establish the following convolution identity. While the identity

applies to arbitrary directions of shearing, its real significance is the case of horizontal shears.

It will establish an equivalence between convolutions of vertical shears and convolutions of

horizontal shears. This will allow any result concerning vertical shearing to be immediately

translated into a corresponding theorem for horizontal shears, and vice versa.

To state the identity, we must first establish some more convenient notation. We will use

fα,ω to denote the shear of ϕ(z) =
z

1− z
in the α direction with dilatation e−2iαω. That is,

fα,ω = hα,ω + gα,ω, where hα,ω − e2iαgα,ω =
z

1− z
and g′/h′ = e−2iαω.

Lemma 4. Let α, β ∈ R, and let ω be analytic on D with |ω| < 1. Then hα,ω = hβ,ω and

gα,ω = e2i(α−β)gβ,ω.

Proof. We examine the steps of the shearing technique, keeping track of the relationship

between the two shears. Differentiating the equation ϕ = hα,ω − e2iαgα,ω gives

ϕ′ = h′α,ω − e2iαg′α,ω

= h′α,ω(1− e2iα(e−2iαω))

= h′α,ω(1− ω).

Hence h′α,ω = ϕ′/(1− ω). Likewise, we have h′β,ω = ϕ′/(1− ω). This shows that hα,ω = hβ,ω.

This gives immediately gα,ω = e−2iα(hα,ω − ϕ) and likewise gβ,ω = e−2iβ(hβ,ω − ϕ). We

conclude that gα,ω = e2i(α−β)gβ,ω.
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Theorem 5. Let α, β ∈ R, and let ω1, ω2 be analytic on D with |ω1| < 1 and |ω2| < 1. Then

fα,ω1 ∗ f−α,ω2 = fβ,ω1 ∗ f−β,ω2 .

Proof. This is a direct computation. We can express the various functions as follows.

fα,ω1(z) = hα,ω1(z) + gα,ω1(z) =
∞∑
n=1

anz
n +

∞∑
n=1

bnz
n

f−α,ω2(z) = h−α,ω2(z) + g−α,ω2(z) =
∞∑
n=1

Anz
n +

∞∑
n=1

Bnz
n

fβ,ω1(z) = hβ,ω1(z) + gβ,ω1(z) =
∞∑
n=1

cnz
n +

∞∑
n=1

dnz
n

f−β,ω2(z) = h−β,ω2(z) + g−β,ω2(z) =
∞∑
n=1

Cnz
n +

∞∑
n=1

Dnz
n

We then have

(fα,ω1 ∗ f−α,ω2)(z) =
∞∑
n=1

anAnz
n +

∞∑
n=1

bnBnz
n

(fβ,ω1 ∗ f−β,ω2)(z) =
∞∑
n=1

cnCnz
n +

∞∑
n=1

dnDnz
n

From the Lemma we have an = cn, bn = e2i(α−β)dn, An = Cn, and Bn = e2i(−α+β)Dn for all

n. Hence

(fβ,ω1 ∗ f−β,ω2)(z) =
∞∑
n=1

anAnz
n +

∞∑
n=1

e2i(α−β)dne2i(−α+β)Dnz
n

=
∞∑
n=1

anAnz
n +

∞∑
n=1

dnDnz
n

= (fα,ω1 ∗ f−α,ω2)(z).

This theorem has the aesthetically displeasing aspect that the two functions being con-

volved are shears in different directions. The exceptions to this are the vertical and horizontal
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(a) ω = z (b) ω = eπi/6z

(c) ω = eπi/3z (d) ω = iz

(e) ω = eπ2i/3z (f) ω = −z

Figure 5.1: Images of D under the horizontal shears of ϕ(z) = z/(1− z) with dilatation ω.
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directions, which is where this theorem seems most useful. We demonstrate this with the

following alternate versions of Theorem D and Theorem 2.

Corollary 6. Let f1 = h1 + g1 ∈ S0
H with h1− g1 = z/(1− z) and dilatation ω1(z) = z. Let

f ∈ h + g ∈ S0
H with h − g = z/(1 − z) and dilatation ω(z) = eiθzn (n ∈ N and θ ∈ R). If

n = 1, 2, then f1 ∗ f ∈ S0
H and is convex in the horizontal direction.

Proof. In the notation of Theorem 5, we have f1 ∗ f = f0,z ∗ f0,eiθzn . This is equal to

fπ/2,z ∗ fπ/2,eiθzn . But fπ/2,z is just f0 in the statement of Theorem C. The result follows by

that theorem.

Corollary 7. Let f1 = h1 + g1 ∈ S0
H with h1 − g1 = z/(1 − z) and dilatation ω1 = eiθz,

θ ∈ R. Let f2 = h2 + g2 ∈ S0
H with h2 − g2 = z/(1 − z) and dilatation ω2 = eiρz, ρ ∈ R.

Then f1 ∗ f2 ∈ S0
H and is convex in the horizontal direction.

Proof. This is similar to the first corollary. In the notation of Theorem 5, we have f1 ∗ f2 =

f0,ω1 ∗ f0,ω2 . This is equal to fπ/2,ω1 ∗ fπ/2,ω2 , and the result follows by Theorem 2.

Example 3. We end this section by computing some horizontal shears of ϕ(z) = z/(1− z).

The convolution of any two of these functions is univalent by Corollary 7.

In slight contrast to Example 1, h and g now satisfy h(z)− g(z) =
z

1− z
. From here we

get 1
(1−z)2 = h′(z)− g′(z) = h′(z)(1− ω(z)) = h′(z)(1− eiθzn). So

h(z) =

∫ z

0

ds

(1− s)2(1− ω(s))
=

∫ z

0

ds

(1− s)2(1− eiθsn)
.

We can then find g by using the relationship g(z) = h(z)− ϕ(z).

In the case that n = 1 and θ = 0, we have

h(z) =

∫ z

0

ds

(1− s)3
=
z − 1

2
z2

(1− z)2

g(z) =
1
2
z2

(1− z)2
.
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Next, in the case that n = 1 and θ 6= 0, we have

h(z) =

∫ z

0

ds

(1− s)2(1− eiθs)
=

1

1− eiθ

(
z

1− z

)
− eiθ

(1− eiθ)2
log

(
1− eiθz
1− z

)
g(z) =

eiθ

1− eiθ

(
z

1− z

)
− eiθ

(1− eiθ)2
log

(
1− eiθz
1− z

)
.

Note the similarities between these functions and those in Example 1, the exact relationship

being given by Lemma 4. Some graphs of these are in Figure 5.1.

Chapter 6. Singular Inner Function Dilatation

This chapter is devoted to a research problem of a different nature from the previous two

chapters. Up to this point, we have dealt almost entirely with harmonic mappings whose

dilatation is an inner function. Recall that an inner function is an analytic function ω : D→

D such that for almost all u ∈ ∂D, lim
z→u

ω(z) exists and
∣∣∣lim
z→u

ω(z)
∣∣∣ = 1. An example of an

inner function is a Blashcke product, meaning a function B(z) = eiθ
∞∏
j=1

(
z − aj
1− ajz

)
, where

θ ∈ R and each |aj| < 1. Recall further that all the shears we have considered up this point

have used a finite Blashcke product. Any inner function ω can be written as

ω(z) = eiαB(z) exp

(
−
∫

eiθ + z

eiθ − z
dµ(eiθ)

)
, (6.1)

where α, θ ∈ R, B(z) is a Blashcke product, and µ is a singular positive measure on ∂D [9].

An inner function is singular if it has no zeros. We can see from Equation 6.1 that

a singular inner function may be expressed as eiα exp

(
−
∫

eiθ + z

eiθ − z
dµ(eiθ)

)
, where again

α, θ ∈ R and µ is a singular positive measure on ∂D. Taking µ to be the unit mass measure

concentrated at 1, we get a basic example of a singular inner function, f(z) = e
z+1
z−1 .

One major difficulty in the study of harmonic mappings with singular inner function

dilatation is the lack of examples. While such harmonic mappings must clearly exist, even
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as late as 1995 there were no known explicit examples [11]. In the following years, Weitsman

gave two examples in an unpublished manuscript [18]. These, along with a small handful of

other examples, can be found in [6].

In this section, we show how clever use of the shearing technique can be used to create an

infinite family of harmonic mappings with singular inner function dilatation. The author’s

Honors Thesis [16] pursues this topic in greater detail, along with applications to minimal

surfaces.

The example we will give here is based on a result of Royster and Ziegler [17]. This result

has already been stated in this thesis as Theorem J in Section 4.1, but we give it again here

in a slightly modified form.

Theorem K. Let ϕ be a conformal mapping that satisfies

Re(−eiµ(1− 2 cos νe−iµz + e−2iµz2)ϕ′(z)) ≥ 0

for some µ, ν ∈ [0, π]. Then ϕ is univalent and convex in the horizontal direction.

Example 4. In contrast to the previous examples, this one will be a horizontal shear. We

will use as our dilatation ω = eγ(
z+1
z−1), where γ > 0. We will determine the analytic function

ϕ = h− g by setting

h′(z) =
1

−eiµ(1− 2 cos νe−iµz + e−2iµz2)
and g′(z) = h′eγ(

z+1
z−1).

Using this choice of ϕ, the equation in Theorem K now takes the form

Re
(

1− eγ(
z+1
z−1)

)
≥ 0,

which is easily seen to be true. Thus ϕ, and the corresponding shear f = h+g, are univalent

and convex in the horizontal direction.

An explicit solution for f is not possible with the usual elementary functions. To remedy
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(a) ν = 0 (b) ν = π/4

(c) ν = π/2 (d) ν = 3π/4

(e) ν = π

Figure 6.1: Harmonic mappings given by h′(z) =
1

−eiµ(1− 2 cos νe−iµz + e−2iµz2)
and

ω(z) = eγ(
z+1
z−1), where µ = 0 and γ = 2.
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(a) γ = 1 (b) γ = 2

(c) γ = 4 (d) γ = 8

(e) γ = 14 (f) γ = 100

Figure 6.2: Harmonic mappings given by h′(z) =
1

−eiµ(1− 2 cos νe−iµz + e−2iµz2)
and

ω(z) = eγ(
z+1
z−1), where µ = 0 and ν = π/2.
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this situation, we use the exponential integral function En(z), defined for all z ∈ {z : Re (z) >

0} by

En(z) =

∫ ∞
1

e−zζ

ζn
dζ.

We simplify things here by taking µ = 0; the general solution is similar but too large for

inclusion here. We have then

h(z) =

∫ z

0

1

−(1− 2 cos νζ + ζ2)
dζ =

1√
αβ

arctan

(
−z + cos ν√

αβ

)
g(z) =

∫ z

0

eγ(
z+1
z−1)

−(1− 2 cos νζ + ζ2)
dζ

=
1

2
√
−αβ

(
e−γ
√
−α/βE1

(
−γu− γ

√
−α/β

)
− eγ
√
−α/βE1

(
−γu+ γ

√
−α/β

))
,

where α = 1 + cos ν, β = 1− cos ν, and u =
z + 1

z − 1
.

The interesting aspect of this example is that there are three separate parameters µ, ν,

and γ, which may be varied to find a wide variety of new examples. In fact, several of the

examples from [6] are special cases of Example 4. Figures 6.1 and 6.2 contain images of some

of these. Notice that the boundary consists of infinitely many concave arcs, which seems

typical for harmonic mappings with singular inner function dilatation.

Chapter 7. Conclusion

Here, we summarize our results on convolutions in the context of other results on univalent

convolutions. This provides a more complete picture of the body of research on harmonic

convolutions, as well as a list of open problems for future research. These results in the case

of convolutions of vertical shears of the canonical half plane are listed in Figure 7.1.

The general Blaschke product of degree one is of the form eiθ
a− z
1− az

. It is of note that all

the dilatations in the left column of Figure 7.1 are of this type, either taking θ = 0, θ = π,

or a = 0. However, the various results in the table seem quite disjoint, without any obvious
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Table 7.1: Convolutions of Vertical Shears of ϕ(z) =
z

1− z

Dilatation Dilatation Status of f1 ∗ f2
of f1 of f2
−z eiρzn, n = 1, 2 Univalent for all ρ ∈ R [5].
−z eiρzn, n ≥ 3 Non-univalent for all ρ ∈ R, shown here.
eiθz eiρz Univalent for all θ, ρ ∈ R, shown here.
a− z
1− az

eiθzn If a ∈ R, then univalent precisely when

a ∈ [(n− 2)/(n+ 2), 1) [10]. Unknown for a /∈ R.

−z z − a
1− az

Univalent precisely when (Re a)2 + 9 (Im a)2 ≤ 1

and Re a 6= ±1. [13]
a− z
1− az

b− z
1− bz

If a, b ∈ R, univalent when b ≥ −1 + 3a

3 + a
. [10]

connections. The major question for further research, then, would be to generalize these into

a single result for all degree one Blaschke products. Given the delicate nature of preserving

univalence, it is not clear even what such a generalization would be.

Presumably, Blaschke products of higher degree will result in non-univalent convolutions.

Still, this is another direction that has not been explored fully. In particular, is there an

efficient argument that would apply to a wide class of functions? Ideally, such a result would

provide us with a complete characterization of convolutions of half-plane shears.

Another route for further research would be to derive analogous results for shears of

other domains besides the canonical half plane. This was done by Dorff, M. Nowak, and

M. Woloszkiewicz in [5] in the case of Theorem C. The techniques used in their proof were

similar to those used to prove Theorem C, which suggests that Theorem 2 could be extended

in a similar manner.

We summarize the preceding discussion with the following list of open problems.

1. Find conditions on f for f1∗f to be univalent, where f1 is the vertical shear of z/(1−z)

with dilatation eiθ
a− z
1− az

.

2. Determine when f1 ∗ f2 is univalent, where f1 is the vertical shear of z/(1 − z) with

dilatation eiθz, θ 6= π, and f2 is the vertical shear of z/(1 − z) with dilatation eiφzn,
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φ 6= π and n ≥ 2.

3. Derive a result analogous to Theorem 2 for shears of other domains, such as the vertical

strip given by ϕ(z) =
1

2i
log

(
1 + iz

1− iz

)
.
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