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abstract

A Topics Analysis Model for Health Insurance Claims

Jared Webb
Department of Mathematics, BYU

Master of Science

Mathematical probability has a rich theory and powerful applications. Of particular
note is the Markov chain Monte Carlo (MCMC) method for sampling from high dimensional
distributions that may not admit a naive analysis. We develop the theory of the MCMC
method from first principles and prove its relevance. We also define a Bayesian hierarchical
model for generating data. By understanding how data are generated we may infer hidden
structure about these models. We use a specific MCMC method called a Gibbs’ sampler
to discover topic distributions in a hierarchical Bayesian model called Topics Over Time.
We propose an innovative use of this model to discover disease and treatment topics in a
corpus of health insurance claims data. By representing individuals as mixtures of topics,
we are able to consider their future costs on an individual level rather than as part of a large
collective.

Keywords: Probability, Bayesian Data Analysis, Machine Learning, Markov Chains, Markov
Chains, Markov Chain Monte Carlo, Bayesian Network, Latent Dirichlet Allocation, Topics
Over Time
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Chapter 1. Introduction

One doesn’t have to listen very hard to hear the constant noise being generated in the media

and culture about health care. There is hardly an issue in the public sphere that is able to

stir up so much opinion and acrimony in the United States. Precisely what role government,

community, actuarial fairness, and personal responsibility play is the subject of newspaper

editorials, policy debates, and water cooler conversations across the country.

Despite the constant political bickering, firms with large numbers of employees partic-

ipate in a relatively stable marketplace. The law of large numbers and the central limit

theorem allow actuaries to effectively price insurance for these groups using standard mod-

els. However, about half of the employees in the United States are employed by small firms

[4]. This market is highly volatile (see, for example, [16] for a comparison of large and small

firms). Indeed, without aggregating very large numbers of employees, it is more difficult to

predict the cost of health care for a population over time. Consider the definition of sample

variance that we learn in an introductory statistics class:

σ2 =
1

N − 1

N∑
i=1

(yi − ȳ)2

Here N is the size of our population and ȳ is our sample mean. Suppose an actuary wishes

to model costs for a population as a random variable, and he or she has some amount of

data about the population’s past consumption. Given large N , his or her random variable

will have low variance — even approaching 0 as N goes to ∞. However, when N is small

variance will be larger, which means higher volatility in the output of the variable, which in

turn means more risk.

In this thesis we propose a new technique for modeling health care costs at an individual

rather than collective level. This requires more sophisticated techniques than those used on

large populations. Beginning with elementary probability theory, we will develop a rigorous

framework for the Markov chain Monte Carlo method. Furthermore, we will develop a
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Bayesian model for how health insurance claims are generated from some fixed number of

“topic” distributions. Using a specific Markov chain Monte Carlo method called the Gibbs’

sampler, we will infer what sorts of claims are produced by each topic distribution. We

propose that these distributions, combined with cost data, can be used to make effective

predictions about individual and small group health consumption.

1.1 History of Health Insurance in the United States

Historically, health care in the United States has been an unreliable, even dangerous, con-

sumer good. Only in the twentieth century did it become relatively safe to consult a physician

and hospitals transformed from a place to die into a place to be healed (See [14]).

Federal entanglement in health care is also a twentieth century invention, though the issue

had been brought up in the previous century. In 1854 the Senate sent a bill to President

Franklin Pierce calling for land grants to the states for the “indigent insane.” The bill was

met with veto from the President, who declared that:

“It can not be questioned that if Congress has power to make provision for the indigent

insane...it has the same power to provide hospitals and other local establishments for the

care and cure of every species of human infirmity...The whole field of public beneficence is

thrown open to the care and culture of the Federal Government.” [29]

These strong non-interventionist sentiments began to transform during the transition

into the twentieth century. This new century saw existential changes to health care and the

birth of the industry as we know it. In 1910 the Carnegie Foundation published the report

of Robert Flexner, which harshly criticized the quantity of doctors being trained and the

quality of education they were receiving. The report called for fewer, more skilled doctors

rather than the current glut of ill-trained physicians [15]. In the coming years, dozens of

medical schools were closed. With more resources dedicated to fewer doctors, there was a

marked increase in the quality of care. This rise in quality came with a price, as the increase

in the quality of care increased demand while at the same time the supply of providers
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decreased [12].

The rise of a more professional cohort of physicians paralleled the development of new

technologies that similarly increased the quality and cost of health care. X-rays and the

development of the germ theory were beginning to transform the theory of medicine from

superstition into a real science. New understanding of bacteria and sanitation now made

surgery common and safe, while shifting care from homes to hospitals. All in all, a new

generation of Americans were beginning to have access to a system of reliable, precise, and

clean medical care [35].

These dramatic shifts led to increased demand, rising prices, and the beginnings of the

health insurance industry in the United States. Prior to the spike in demand for health care,

insurance companies viewed usage of health care as an uninsurable event. Insurers exposed

themselves to the moral hazard of adverse risk selection, insurees that were difficult to track,

and costs that were hard to quantify. Modern actuarial data, preventative care, and health

diagnostics were simply unavailable. A rapidly urbanizing and suburbanizing population

and improvements in communications technologies developed in parallel with the advances

in care began to mitigate and quantify these risks [35].

The first health insurance policies offered in the United States were offered to cover lost

wages due to illness or injury on the job similar to modern workers compensation funds.

These insurance plans, however, were only offered in certain industries. This changed, how-

ever, in 1929 when Baylor University Hospital agreed to contract with several teachers in

the Dallas area. The teachers agreed to pay $6.00 per year in exchange for a maximum of

21 days of hospitalization [13]. This agreement, the first of the “Blue Cross” plans, was the

first modern health insurance plan offered in the United States. Fittingly, it was strictly tied

to employment.

Tying health insurance to employment solved several of the problems that were facing

potential insurers. By contracting with groups that existed for reasons other than buying

health insurance, they could mitigate some of their adverse selection risk. Also, the pre-
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payment plans offered services rather than cash rewards, thus helping to defray the moral

hazard that had prevented development earlier. People were much less likely to commit

fraud in order to go to the hospital than if they were offered a cash reward [13]. State

governments also saw an opportunity to improve public health through these pre-payment

plans, and allowed for more lax regulations and favorable tax breaks so long as the plans

remained “non-profit.[35]” This was the silver bullet, and in the ensuing decades Blue Shield

plans became available throughout most of the country.

Though health insurance was beginning to become more common, it was still not widely

purchased nor expected employment benefit until World War II. Throughout the 1930’s,

the popularity of Blue Cross plans continued to grow, enough that it caught the attention

of the American Medical Association. Worried about hospitals’ growing influence over the

market, the AMA began to actively lobby and maneuver to regulate how the new health

plans could control the choices of patients. However, a government policy during World War

II led to dramatically more people being insured while enshrining employment based health

insurance in American culture. After the United States entered the war, strict rationing and

price control policies were put into place in order to best direct resources to the war effort.

These controls included wage controls on industries not deemed crucial to the war effort in

order to prevent those industries from incentivizing workers away from the crucial industries

[35]. In order to compete for the best workers on an unequal playing field, firms began to

offer more lavish benefits. The IRS decided that health benefits did not qualify as “wages,”

and generous health insurance plans soon became a primary means by which firms attracted

workers [22].

The last half of the twentieth century, as well as the beginning of the twenty-first, has

seen the increase of federal involvement in the health care market. The Johnson administra-

tion marked the first major intervention with the passage of Medicare and Medicaid as part

of the “Great Society” legislation. These programs gradually expanded in their cost and

scope, but despite several attempts never guaranteed health care for all citizens. Beginning
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in the 1990’s, reform of these programs became an important topic, and the Clinton admin-

istration attempted to rework them from the ground up. These efforts died in legislation,

however. The Bush administration greatly expanded the drug benefits enjoyed by senior

citizens. Finally, the Obama administration passed the Affordable Care Act in 2009. This

featured a mandate that almost all Americans purchase health insurance while at the same

time greatly expanding the government’s role in regulating how health insurance may be

provided. Medical underwriting, except in categories determined by the federal government,

will become illegal in 2014. It is estimated that tens of millions of uninsured Americans will

become covered; see [9] for a detailed outline of these interventions.

It is in this volatile, uncertain market that we wish to make predictions. We begin with

the basics of probability theory.

Chapter 2. Basic Probability

“If you want to make apple pie from scratch, first you must create the universe.”

–Carl Sagan

2.1 Determinism vs. Random

The purpose of probability is to model uncertainty. In this chapter we will develop the tools

to turn this notion into a formal theory. These tools will be used repeatedly throughout the

thesis, so it is crucial that they are consistent and codified.

Mathematics provides the tools for science to model our universe. In building a model, we

often make a distinction between a deterministic event and a random one. A deterministic

event is one in which we can “see the end from the beginning.” In other words, its outcome

can be determined a priori. A random event is the complement of this idea - an event whose

outcome is not completely determined by prior events. There is a subtlety worth noting here

- the decision to label an event as deterministic or random often depends on the granularity
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of the information available to an observer. For example, most people would call a coin flip

a random event. This is because most people are not willing to look at the event with a

finer eye. Certainly, the coin flip is determined by the way the flipper flips it, and so to a

very careful observer this could be called deterministic. Though many things (perhaps all?)

are deterministic, it is often the case that information about a process is difficult, costly, or

impossible to obtain. Probability gives us the tools to still create meaning out of this often

incomplete information.

2.2 Measures

In its full glory, probability theory is an application of measure theory. Though it may

initially feel totally out of place with our notions of probability, we will soon see that there

is no better place to start. Measure theory is a rich topic in itself (see [33]), but we will only

develop it sufficient for our needs here. Let us begin by defining a σ-algebra. If A is a set,

then 2A denotes the power set of A, or the set of all subsets.

Definition 2.1 (σ-Algebra). If Ω is a set and A ⊂ 2Ω, then we say that A is a σ-algebra if

it meets the following criteria:

(i) Ω ∈ A

(ii) A is closed under complements

(iii) A is closed under countable unions

An easy consequence of this definition is that if A is a σ-algebra, then ∅ ∈ A. We also

clearly have that 2Ω is a σ-algebra.

Definition 2.2 (Generated σ-algebra). If A is a set or a collection of sets, then σ(A) is the

smallest σ-algebra that contains A, called the σ-algebra generated by A.

Definition 2.3 (Borel σ-algebra). Let Ω be a topological space. Then we say that

B(Ω) = σ(A ⊂ Ω : A open in Ω)
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is the Borel-σ algebra on Ω

We define a set function, and introduce the concepts of measure and measurable spaces:

Definition 2.4 (Set function). Let A ⊂ 2Ω. A set function is a map µ : A 7→ [0,∞].

Definition 2.5 (σ-additivity). A set function is σ-additive if

µ(∪∞i=1Ai) =
∞∑
i=1

µ(Ai)

for any countable collection of pairwise disjoint sets Ai ∈ A, whose union is in A.

Definition 2.6 (Measure). A set function is a measure if A is a σ-algebra, µ(∅) = 0, and µ

is σ-additive.

Definition 2.7 (Probability Measure). We say a measure is a probability measure if µ(Ω) =

1.

Example 2.8. Let Ω be a non-empty finite set and let A be the power set of Ω. Then the

set function µ : A 7→ R given by

µ(A) =
|A|
|Ω|

is a probability measure.

Proof. Clearly, µ(Ω) = 1 and µ(∅) = 0. It remains to show σ-additivity. Let {Ai} be a

countable collection of disjoint sets. Then

µ(∪i=1Ai) =
| ∪i=1 Ai|
|Ω|

=
∑
i=1

|Ai|
|Ω|

=
∑
i=1

µ(Ai).

Thus µ is a probability measure.

Definition 2.9 (Measurable Space). We say that a pair (Ω,A) where Ω is nonempty and

A ⊂ 2Ω is a σ-algebra is a measurable space. The sets A ∈ A are called measurable. If in
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addition we have chosen a measure, then we say that the triple (Ω,A, µ) is a measure space.

Finally, if µ is a probability measure, then we re-label µ as P and call (Ω,A,P) a probability

space. In this case we call A ∈ A events.

It is frequently difficult to connect rigorous definitions to applications. We will go through

a simple example to help us stay grounded.

Example 2.10. Suppose that we wished to model a dice roll. Given a six sided die, we

choose our events to be sets of possible outcomes of the die roll. Thus, we have

Ω = { , , , , , }.

We let A = 2Ω. Finally, let µ be the probability measure from Example 2.8.

Consider the event { }, or rather the event where we roll the die and we get a 1. The

probability of this event is given by:

µ({ }) =
|{ }|
|Ω|

=
1

6
,

which is what we expect. Similarly, we could look at the probability of the event { , , },

which is the probability of rolling an even number, which in this case would be 1
2
.

2.3 Measurable Maps and Random Variables

We now introduce the definition of a measurable map. This is a map that preserves a

measure structure. An interesting analogue is that of a continuous map, where open sets in

the codomain have open preimages in the domain.

Definition 2.11 (Measurable map). Given Ω and Ω′, and σ-algebras A ⊂ 2Ω and A′ ⊂ 2Ω′
,

we say that X : Ω 7→ Ω′ is measurable if

X−1(A′) ∈ A

8



for any A′ ∈ A′. In other words, the preimage of measurable sets are measurable.

Definition 2.12 (Image Measure). Let (Ω,A) and (Ω′,A′) be measurable spaces, µ be a

measure on A, and let X : Ω 7→ Ω′ be measurable. The image measure of µ under X is given

by

µ(X−1) : A′ 7→ [0,∞]

where

A′ 7→ µ(X−1(A′))

where A′ ⊂ Ω′.

We now define a random variable and the distribution of a random variable. A random

variable gives us a tool to encode observations in a probability space for analysis. Frequently

we have observations from an experiment without access to the event itself. For example,

consider a physicist using an electron detector in an experiment. Obviously, the physicist

does not observe the actual event she is studying. She does, however, have the observations

from her detector. She then uses the observations in her analysis of the experiment.

Definition 2.13 (Random Variable). Let (Ω,A) and (Ω′,A′) be measurable spaces, and

let X : Ω 7→ Ω′ be measurable. Then X is a random variable with values in (Ω′,A′), and

we say that X is A − A′ measurable, or just A measurable. If Ω′ = R, then X is a real

random variable. Finally, if X is a real random variable, say that {X = x} = X−1(x) and

{X < x} = X−1([−∞, x)).

Definition 2.14 (Generated σ-Algebra). Let X be a A−A′ measurable random variable.

Then

σ(X) = σ({X−1(A′) : A′ ∈ A′ }).

We say that σ(X) is the σ-algebra generated by X.

Definition 2.15 (Distribution, Density). Let X be a random variable and P the image

measure under X. This is a probability measure and called the distribution of X. We say
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that the function

F (x) = P[X ≤ x] = P[X−1([−∞, x))]

is the distribution function of X. If we can write the distribution function as

F (x) = P[X ≤ x] =

∫ x

−∞
f(t)dt,

then we say that f is the density function.

Definition 2.16 (Joint Distribution, Joint Density). We extend the definition of a distribu-

tion and a density function to more than one variable. Let X1, ..., Xn be random variables.

Then

F (x1, ..., xn) = P[X1 < x1, ..., Xn < xn] = P[∩ni=1X
−1
i ([−∞, xi))]

is called the joint distribution. If we can write the joint distribution as

F (x1, ..., xn) =

∫ x1

−∞
...

∫ xn

−∞
f(t1, ..., tn)dt1...dtn,

then we say that f is the joint density function.

Definition 2.17 (Marginal Density Function). If X1, ..., Xn are continuous random variables

with joint density function f(x1, ..., xn), then we say that

fXi
(xi) =

∫
f(x1, ..., xn)dx1...dxi−1 dxi+1...dxn

is the marginal density function for Xi.

The concept of distribution, and specific distributions, will factor largely in developments

in later chapters. We now describe some of the distributions of random variables that will

be used in this thesis. Often in working on applications of probability theory we avoid

explicitly constructing probability spaces and focus instead on random variables and their

distributions.
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Example 2.18 (Bernoulli Distribution). Let p ∈ [0, 1], P[X = 1] = p, and P[X = 0] = 1−p.

Then PX is called the Bernoulli Distribution with parameter p

Example 2.19 (Categorical Distribution). We can generalize the idea of the Bernoulli dis-

tribution by allowing for a countable number of points in Ω′, rather than just 0 and 1. Let

k > 0 and p1, ..., pk ∈ [0, 1] such that
∑

i pi = 1. Then p = [p1, ..., pk] is called a probabil-

ity vector. Let P[X = i] = pi. Then we say that PX is the categorical distribution with

parameter p.

Example 2.20 (Normal Distribution). Let µ ∈ R and σ2 > 0, and let X be a real random

variable with

P[X ≤ x] =
1√

2πσ2

∫ x

−∞
exp

(
−(t− µ)2

2σ2

)
dt.

We call PX a Gaussian or normal distribution with the parameters µ and σ2. If µ = 0 and

σ2 = 1, then we say that PX is the standard normal distribution.

Example 2.21 (Dirichlet Distribution). Finally, we discuss a more challenging distribution.

Let α be a vector in Rk with αi > 0 for all i. Then for any vector x ∈ Rk such that xi > 0

and
∑

i xi = 1, we have

P[X = x] =
1

B(α)
∏k

i=1 x
αi−1
i

where

B(α) =

∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)
.

What does a graph of this probability density function look like? We provide some

examples where k = 3 in Figure 2.1.

Note that Ω′ for Dirichlet distributed random variables is the space of categorical distri-

butions with k categories. Certain distributions have higher probabilities of occurring given

our parameter vector α.
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Figure 2.1: Above are four Dirichlet distributions on three dimensions, each with different
parameter vector α. Note how changing this vector changes the graph. The graph on the
top left has α = (6, 2, 2), bottom left has α = (2, 3, 4), bottom right has α = (6, 2, 6) and
finally the top right has α = (3, 7, 5). Source: Wikipedia [3]

2.4 Independence

It is often useful to consider events and random variables that are independent from each

other. In fact, Shiryaev states that independence of events is “precisely the concept that

distinguishes probability from the general theory of measure spaces.” [34]

We say that two events A,B ∈ A are independent if:

P[A ∩B] = P[A]P[B].

Example 2.22. Let’s build an example of independence to again connect our intuition to

our formal theory. We would assume that a coin flip and a die roll would be events that

have little do with each other, and thus are independent. Let’s check to make sure that our

theory matches with our intuition. First, we construct our probability space. To model a

coin flip followed by a die roll, we have the following:

Ω = {H,T} × { , , , , , }

12



and

A = 2Ω.

We will assume that the coin and die are fair, and so our probability distribution will be

uniform (see Example 2.10). Now consider two events — getting a heads on our coin flip

followed by rolling an even number with our die.

A = {H} × { , , , , , }

B = {H,T} × { , , }

A is the event of the coin flip followed by any outcome in our die roll. B is an even roll

preceded by any outcome from the coin flip. Note that |Ω| = 12. Thus, we have

P[A ∩B] = P[{H} × { , , , , , } ∩ {H,T} × { , , }]

= P[{H} × { , , }]

=
|{H} × { , , }|

|Ω|
=

3

12

=
1

4
.

Which is what we expect. Now note

P[A]P[B] = P[{H} × { , , , , , }] P[{H,T} × { , , }]

=
|{H} × { , , , , , }|

12
· |{H,T} × { , , }|

12

=
6

12
· 6

12
=

1

2
· 1

2

=
1

4
.

Thus we see that P[A ∩B] = P[A]P[B], and the events are independent.

We can generalize this definition of independence to an arbitrary collection of events.
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Definition 2.23 (Independence). Let I be an index set and let (Ai)i∈I be a family of events

indexed by I. This family is called independent if given any finite J ⊂ I we have:

P[∩j∈JAj] = Πj∈JP[Aj].

This generalization gives us considerable power to make statements about the nature

of probability. An example of an independent family of events is an indefinitely repeated

experiment. See [24] Chapter 2 for a treatment of this. In addition to concrete examples,

independence is crucial in the general analysis of probability. The Borel-Cantelli Lemma

and the Kolmogorov 0-1 Law, for example, are important theorems that rely exclusively on

the notion of independence; see [23].

The definition of independence can be further extended to σ-algebras and random vari-

ables:

Definition 2.24 (Independent σ-Algebras). Let (Ω,A,P) be a probability space and let

F ,F ′ be sub σ-algebras of A. We say that F and F ′ are independent if given arbitrary

F ∈ F and F ′ ∈ F ′, we have

P[F ∩ F ′] = P[F ]P[F ′].

Definition 2.25 (Independent Random Variables). Let (Ω,A,P) be a probability space. Let

(Xi)i∈I be a family of A-measurable random variables. We say that the family is independent

if the family (σ(Xi))i∈I of generated σ-algebras is independent.

We finish our introduction on probability with a brief description of expectations. A

thorough treatment of the subject can be found in [33]. We only use them briefly for a few

definitions and results in this thesis, and as such we simply state the definition, without

rigorously defining the integral operator.

Definition 2.26 (Expectation). The expectation of a random variable, denoted as E[X], is

E[X] =

∫
Ω

XdP.
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Here dP indicates that we are integrating with respect to the probability measure.

Chapter 3. Conditional Probabilities and Bayes Theorem

3.1 Introductory Intuition

To begin our Bayesian adventure, let us consider a very simple example. Suppose that we

want to flip a coin. We hypothesize that the coin is a fair coin, i.e., that after repeated

flippings the ratio of heads to tails will be around 1:1. We now test our hypothesis by

flipping the coin. Our data will be the outcome of the flips, or experiments.

Let us suppose that we have flipped the coin twenty times, and each time the result has

been heads. Would a reasonable person conclude that this coin is fair? While it is still

possible that the coin is fair, with each flip we are becoming less and less convinced. We

feel as though it is very unlikely that the coin is a fair coin after so many heads in a row. If

we were playing a game of chance, we would begin to suspect that foul play was involved to

skew the outcome.

Bayes’ Theorem takes this “feeling” and turns it into something more formal, and rigor-

ously analyzable. To develop these ideas further, we make a definition.

3.2 Formalizing a Feeling

Let us define the conditional probability of an event.

Definition 3.1 (Conditional Probability). Let (Ω,A,P) be a probability space, and A ∈ A.

We define the conditional probability given A for any B ∈ A by

P[B|A] =


P[A∩B]
P[A]

if P[A] > 0

0 if P[A] = 0.
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We have a similar definition for density functions.

Definition 3.2 (Conditional Probability For Density Functions). If X and Y are random

variables, then we have

f
(
y|X = x

)
=
fX,Y (x, y)

fX(x)
,

when fX(x) > 0.

There are a few obvious implications that follow from our definition that are worth noting,

if only because they jive well with our intuition about probability and give us confidence

that our theory of probability is still good for something. First:

Theorem 3.3. If P[A] > 0, then P[·|A] is a probability measure.

Proof. First, note that

P[Ω ∩ A]

P[A]
=

P[A]

P[A]
= 1.

Similarly, P[∅ ∩ A] = 0. Now we show σ-additivity. Given disjoint {Bi}, we have

P[∪Bi|A] =
P[∪(Bi ∩ A)]

P[A]
=
∑

P[Bi|A].

Our second result concerns independence.

Theorem 3.4. If A, B ∈ A and P[A], P[B] > 0, then the following are equivalent:

(i) A,B independent

(ii) P[B|A] = P[B]

(iii) P[A|B] = P[A].

Proof. This follows directly from the definition of independence and conditional probability.
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One very powerful idea that, here, seems obvious and simple, concerns independence and

conditional probability. The consequences of the following provide an important analytic

technique that we will make use of later.

Theorem 3.5. If A and B are independent, then given some event C we have

P[A ∩B|C] = P[A|B]P[B|C].

Proof. This trivially follows from the definition of independence with the probability measure

P[·|C]

One more direct consequence of the definition of conditional probability is the summation

formula.

Theorem 3.6 (Summation Formula). Let I be a countable set and let (Bi)i∈I be pairwise

disjoint sets such that P[∪i∈IBi] = 1. Then, given any A ∈ A we have

P[A] =
∑
i∈I

P[A|Bi]P[Bi].

Proof. This again follows from the definition of conditional probability and the σ-additivity

of measures:

P[A] = P[∪i∈I(A ∩Bi)] =
∑
i∈I

P[A ∩Bi] =
∑
i∈I

P[A|Bi]P[Bi].

3.3 Bayes’ Theorem

We saw in the last section that when we condition on data we get a new probability distri-

bution. Also, given two independent events A and B, conditioning on B does not change the

probability of A and vice versa. Thus, if we wish to further understand the probability of
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an event, we must seek condition on meaningful events, or in other words, seek meaningful

data. This sets the stage for Bayes’ Theorem:

Theorem 3.7 (Bayes’ Theorem—Discrete Version). Let I be countable and (Bi)i∈i be pair-

wise disjoint subsets of Ω such that P[∪Bi] = 1. Then for any A ∈ A where P[A] > 0 and

k ∈ I we have

P[Bk|A] =
P[A|Bk]P[Bk]∑
i∈I P[A|Bi]P[Bi]

.

Proof. This follows directly from the definition of conditional probability and the summation

formula. From the definition of conditional probability, we have

P[Bk|A] =
P[Bk ∩ A]

P[A]

=
P[A|Bk]P[Bk]

P[A]
.

From our previous theorem, we have P[A] =
∑

i∈I P[A|Bi]P[Bi], and so we have

P[Bk|A] =
P[A|Bk]P[Bk]∑
i∈I P[A|Bi]P[Bi]

.

Despite the simplicity of the mathematics of this theorem, the consequences are profound

and far reaching. Suppose we have some hypothesis about the probability of some event Bi

happening. Bayes’ theorem allows us to update our belief about the probability of Bi given

some data A. We are in essence building a new probability measure on Ω that is normalized

by A. In other words, we are re-aligning our probability space to reflect some new information

we may have discovered. Thus A becomes, in a sense, the new universal set; any event that

does not allow for the event A now has probability 0.

In Bayesian data analysis, the probability measure prior to conditioning in Bayes’ theorem

is called the prior distribution. When building a model, a prior distribution may be chosen for

the model based on prior understanding and expert opinion, before any data is collected. The
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distribution that results from applying Bayes’ theorem is called the posterior distribution.

Unfortunately, this formulation of Bayes’ theorem is insufficient as it stands for some

important kinds of analysis. We illustrate this with another example. Suppose we wish to

use Bayes’ Theorem to update our belief about a person’s gender given their hair length.

While gender is a discrete event, hair length is usually modeled using a continuous random

variable. Herein lies our dilemma—the probability that a persons hair length is exactly

12.0341 inches long is 0. Yet, if we know that the length of a person’s hair is 12.0341 inches

long, we would be inclined to say that it is more likely that this person is a woman.

Rigorously developing the mathematics to handle this case, unfortunately, requires a good

deal of formalism. Rather than explore the technical details that do little to advance our

intuition or understanding, we refer the reader to [34] Chapter 2.7 for a discussion on regular

conditional distribution, which is the tool needed to rigorously develop the continuous case

of Bayes’ theorem.

Finally, we also present Bayes’ theorem for density functions.

Theorem 3.8 (Bayes’ Theorem for Density Functions). If X and Y are random variables,

then we have

fX
(
x | Y = y

)
=
fY
(
y | X = x

)
fX(x)

fY (y)
.

Chapter 4. Markov Chains

4.1 Introduction

The Markov Chain Monte Carlo method is widely considered to be one of the most important

algorithms of the 20th century. Its discovery, along with the rise of computation, helped

transform Bayesian statistics from a fringe theory to an important and practical methodology

for data analysis. The algorithm itself depends on a beautiful mathematical theory that we
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will discuss in the following chapters.

In this chapter we will build and justify the essential tools that will make understanding

the model possible. We will first develop a bare-bones theory of stochastic processes, and

use it to define a special process called a Markov chain. In the following chapter we will

develop the Markov chain Monte Carlo method.

4.2 Stochastic Process

A stochastic process gives us a way to model the evolution of random events over time. For

example, one may wish to model a stock or consumer good price, growth of human males

over their life span, or the parameters of a distribution given some data.

Definition 4.1 (Stochastic Process). Let I ⊂ R. Then a family of random variables X =

(Xt : t ∈ I) with values in (R, B(R)) is called a stochastic process.

Thus, in a stochastic process we have a real random variable associated with every time

t ∈ I.

4.3 Filtrations

We now define a filtration and what it means for a stochastic process to be adapted to a

filtration.

Definition 4.2 (Filtration). Let F = (Ft, t ∈ I) be a family of σ-algebras with Ft ⊂ F for

all t ∈ I. F is called a filtration if Fs ⊂ Ft for all s ≤ t

Definition 4.3. A stochastic process X = (Xt : t ∈ I) is adapted to the filtration F if Xt is

Ft-measurable for all t ∈ I. If Ft = σ(Xs, s ≤ t) for all t ∈ I, then we denote F = σ(X), the

filtration generated by X.

Intuitively, we understand the filtration to signify what “can happen” as our stochastic

process evolves. As this may be difficult to connect to the practical, we provide a simple

example to illustrate.
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Example 4.4. Consider a random walk of 3 steps. Our stochastic process isX = (X0, X1, X2, X3),

where P[Xi = 1] = P[Xi = 0] = 1
2
. We can explicitly construct a filtration that is adapted

to this process. We define our event space as the eight possible ordered outputs from the

process:

Ω = {(1, 1, 1), (1, 1, 0), (1, 0, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), (0, 0, 0)}.

At the zeroth step of our process, before anything has happened, any sequence of ones

and zeros is possible. To reflect this, the corresponding σ-algebra F1 contains only two

elements:

F0 = {∅,Ω}.

After the first step, we have seen either a zero or one. Our next σ-algebra reflects this by

adding events—one for the possible outcomes after seeing a one first, and the other for the

possible outcomes after seeing a zero first:

F1 = {∅,Ω, {(1, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}, {(0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1)}}.

At t = 2, we have our second step in our random walk and we drill down even further and

our σ-algebra becomes

F2 ={∅,Ω, {(1, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}, {(0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1)},

{(1, 1, 0), (1, 1, 1)}, {(1, 0, 1), (1, 0, 0)}, {(0, 1, 1), (0, 1, 0)}, {(0, 0, 1), (0, 0, 0)}}.

We omit F3 for the sake of not being tedious. The interested reader may construct it

easily enough.
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To see that X is Fi measurable for each i ∈ I, note that at t = 1 we have

X−1
1 (1, ∗, ∗) = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)},

X−1
1 (0, ∗, ∗) = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}.

At t = 2 we have

X−1
2 (1, 1, ∗) = {(1, 1, 1), (1, 1, 0)},

X−1
2 (1, 0, ∗) = {(1, 0, 1), (1, 0, 0)},

X−1
2 (0, 0, ∗) = {(0, 0, 1), (0, 0, 0)},

X−1
2 (0, 1, ∗) = {(0, 1, 0), (0, 1, 1)}.

The t = 3 case is similar.

4.4 The Markov Property and Markov Chains

The statement of the Markov property is easily made; however, its applications are far

reaching. Applications of Markov chains are found in social and hard sciences; see [17] for

a short list. The literature that studies them as mathematical objects is also extensive.

In this section we will begin with the statement of the Markov property, define Markov

chains, and then investigate several interesting properties that have important consequences

in applications. This will set the stage for the next chapter where we will discuss Markov

chain Monte-Carlo methods.

In this chapter, X = (Xt)t∈I is a stochastic process on a probability space (Ω,A,P)

that is adapted to the filtration generated by the process, or F = (Ft)t∈I = σ(X). In full

generality, we require only that the process takes values in a Polish space (see [24]). In this

thesis, however, we will only concern ourselves with real valued processes. In the following

E represents values that our process can take, which we call the state space. Now, we begin
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with a definition.

Definition 4.5 (Stochastic Kernel). Let (Ω1,A1), (Ω2,A2) be measurable spaces. Let κ :

Ω1 ×A2 → [0,∞]. We call κ a stochastic kernel if

(i) ω 7→ κ(ω,A) is A1 measurable for all A ∈ A2,

(ii) A 7→ κ(ω,A) is a σ finite measure on (Ω2,A2) for any ω ∈ Ω1,

(iii) κ(ω,Ω2) = 1 for all ω ∈ Ω1. In other words, κ(ω, ·) is a probability measure on (Ω2,A2)

for any choice of ω ∈ Ω1.

We now define the Markov property.

Definition 4.6 (Markov Property). X has the Markov Property if for every A ∈ B(E) and

all s, t ∈ I with s ≤ t,

P[Xt ∈ A|Fs] = P[Xt ∈ A|Xs].

The notation Xt ∈ A means X−1
t (A). Also, note that P[·|Xs] = P[·|σ(Xs)].

Intuitively, the Markov property states that our future outcomes only depend on our

current situation. Indeed, if we take our I = N0, we have

P[Xt = it|X0 = i0, X1 = i1, ..., Xt−1 = it−1] = P[Xt = i|Xt−1 = it−1]

In other words, the conditional probability measure at time t depends on the value the

process takes at time t− 1; see [24] Chapter 17 for a more general treatment.

We now define a Markov chain.

Definition 4.7 (Markov Chain). Let I = N0. A stochastic process X = (Xt)t∈I is called a

Markov chain with distributions (Px)x∈E on the space (Ω,A) if

(i) For every x ∈ E, X is a stochastic process on (Ω,A,Px) with Px[X0 = x] = 1,

(ii) The map κ : E × B(E)×I → [0, 1], where (x,B) 7→ Px[X ∈ B] is a stochastic kernel,
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(iii) For every A ∈ B(E), x ∈ E, and s, t ∈ I, we have

Px[Xt+s ∈ A|Fs] = κt(Xs, A),

where for every t ∈ I, κt : E ×B(E)→ [0, 1] is the stochastic kernel defined for x ∈ E

and A ∈ B(E), defined as:

κt(x,A) = Px[Xt ∈ A].

What does all this mean? We comment on each item of the definition.

(i) Given any state x ∈ E, we have an associated probability measure Px such that X is

a stochastic process on (Ω,A,Px). Intuitively, this measure is the probability of any

given event in the state space given that we are in state x.

(ii) This condition says we have a stochastic kernel associated with each state x. This is

essential bookkeeping in the case that we don’t have a countable state space or we wish

to condition on sets of measure zero.

(iii) At any time, and given any specific state, we have a transition kernel that allows us to

calculate the probability of an event A given that we are in state x.

Markov chains with a countable state space can be expressed succinctly with a matrix of

transition probabilities.

Definition 4.8 (Transition Matrix). A matrix p is called a transition matrix if

p(x,y) = P[Xn = y|Xn−1 = x].

In other words, the matrix is the transition kernel for the Markov chain. Since the state

space is countable, we can express the probability of moving from a fixed state x to any

other state as an ordered categorical distribution. We call each entry (x, y) the transition

probability of moving from state x to state y.
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Figure 4.1: A Markov chain with 5 states. Each node represents a state and the edges
represent the probability of moving from one state to another.

Theorem 4.9. The transition matrix for a Markov chain is a stochastic kernel.

Proof. We need to show two properties hold, namely

p(x, ·) = κ(x, ·)

is a probability measure and

p(·, A) = κ(·, A)

is measurable.

To show the first property, we note that

p(x, ·) = P[·|Xn−1 = x] = κ(x, ·)

which is a probability measure. Since p(·, y) = κ(·, y) is a countable function, it is clearly

measurable. Thus the transition matrix for a Markov chain is a stochastic kernel.

These definitions are perhaps further illuminated when we describe Markov chains graph-

ically. We do this by representing states as nodes and edges to represent transition proba-

bilities from one state to another. For example, see Figure 4.1.
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The transition matrix for the Markov chain in Figure 4.1 is



1
2

1
2

0 0 0

0 0 2
3

1
3

0

0 3
4

0 0 1
4

0 0 1 0 0

0 0 0 0 1


.

4.5 Properties of Markov Chains

There are properties of Markov chains that are desirable in applications. In this section,

we will define conditions on a Markov chain that will eventually allow us to describe its

long term behavior. In the remainder of this thesis, we will consider Markov chains with

countable state space E and transition matrix p.

Definition 4.10 (Entrance Time). For any x ∈ E, let τx := inf{n > 0 : Xn = x}. Then the

random variable τx is the entrance time of X for x, or in other words, the time when the

Markov chain X enters state x.

We now define a function F : E × E → [0, 1] by

F (x, y) = Px[τy <∞] = Px[Xn = y for some n <∞].

In other words, F is the probability that we will ever arrive at state y from state x.

We now build define properties that states of a Markov chain may have. These will be

used in subsequent sections for proofs about the long term behavior of Markov chains.

Definition 4.11 (Properties of states). A state x ∈ E is

(i) recurrent if F (x, x) = 1,

(ii) positive recurrent if E[τx] <∞,
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(iii) transient if F (x, x) < 1,

(iv) absorbing if p(x, x) = 1.

A Markov chain where every state is recurrent is called recurrent. If every recurrent state is

absorbing, then we say that the Markov chain is transient.

These properties figure prominently in Section 4.6 where we analyze the long term be-

havior of Markov chains.

Definition 4.12 (Irreducible). We say a Markov chain is irreducible if F (x, y) > 0 for all

x, y ∈ E.

Example 4.13 (Recurrent Markov chain). See Figure 4.2.

1

2 3

0.5 0.5

0.5

0.5

0.5
0.5

Figure 4.2: A recurrent Markov chain. With probability one, each state will be visited an
infinite number of times.

Example 4.14 (Transient Markov chain). See Figure 4.3.

Example 4.15 (A reducible Markov Chain). See Figure 4.4.

We now define a function that will be of great use to us in analyzing some of these

properties.

Definition 4.16 (Green function). We let Ex be the expectation with respect to the prob-

ability measure at state x. Let 1(·) be the characteristic function. Let N(y) =
∑∞

n=0 1Xn=y,

or the total number of times the chain visits state y. Thus,

G(x, y) = Ex[N(y)] =
∞∑
n=0

pn(x, y).
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Figure 4.3: A transient Markov chain. When the process enters state 4, it will never visit
another state. State 4 is the only recurrent state, and so the process is transient.

1 2

3 4

Figure 4.4: A reducible Markov chain. If we remove state 1 then the Markov chain is
irreducible.

We call G(x, y) the Green function of X.

Clearly, a state x is recurrent if G(x, x) =∞ and vice versa.

The Green function gives us the expected number of times we will arrive at state y from

state x. We will use this function as a tool to rigorously prove some intuitive results about

Markov chains. This function is actually the discrete case of a more general continuous case

that can be used to study Markov processes with uncountable state space; see [23]. It is

also interesting to note that this function is left inverse of the Laplace operator; see [10]. In

other words, this function is far from a contrived tool to prove the results that follow.
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Theorem 4.17. If x is recurrent and F (x, y) > 0, then y is also a recurrent state and

F (x, y) = F (y, x) = 1.

Proof. Let F (x, y) > 0. Then there is a chain of states from x to y with positive probability,

i.e. x, x1, ..., xk = y such that

Px[Xi = xi for all i = 1, .., k] > 0.

Note that we have pk(x, y) > 0 (recall that p is the transition matrix). Now, from the

definition of F we have

1− F (x, x) = Px[τx =∞].

Or in other words, 1− F (x, x) is the probability that we will never return to x. Recall that

x is recurrent, and so F (x, x) = 1. Now we have

Px[τx =∞]

≥ Px[X1 = x1, X2 = x2, ...Xk = xk, τx =∞] (Monotonicity of Probability)

= Px[X1 = x1, ..., Xk = xk]Px[τx =∞|X1 = x1, ..., Xk = xk] (Conditional Probability)

= Px[X1 = x1, ..., Xk = xk]Px[τx =∞|Xk = xk] (Markov Property)

= Px[X1 = x1, ..., Xk = xk]Py[τx =∞] (Definition of Py)

= Px[X1 = x1, ..., Xk = xk](1− F (y, x)).

Now, since Px[X1 = x1, ..., Xk = xk] > 0, we have that 1 − F (y, x) = 0 and so F (y, x) = 1.

Thus, there is a l ∈ N with pl(y, x) > 0 and

pl+n+k(y, y) ≥ pl(y, x)pn(x, x)pk(x, y).

This implies

G(y, y) ≥
∞∑
n=0

pl+n+k(y, y) ≥ pl(y, x)pk(x, x)G(x, x) =∞,
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since G(x, x) =∞. Therefore, G(y, y) =∞ and y is recurrent.

We have the following useful corollary of this theorem:

Theorem 4.18. An irreducible discrete Markov chain is either recurrent or transient. The

only irreducible Markov chain with an absorbing state is the trivial one.

Proof. This follows immediately from the previous theorem.

We end this section by defining one more special property a Markov chain may have,

namely reversibility.

Definition 4.19 (Reversibility). Let π be a measure. We say that X = (Xi)i∈I is reversible

with respect to π if

π({x})p(x, y) = π({y})p(y, x)

for all x, y ∈ E. We say that X is reversible if it is reversible with respect to some measure

π.

Reversibility, combined with some of the properties in Definition 4.11, is a very strong

property that allows us to guarantee certain kinds of long term behavior. These properties

are the building blocks of the Markov Chain Monte-Carlo method.

4.6 Invariant Distributions

A common question we ask about Markov chains is given a starting distribution or a starting

state, what is the long term behavior of the chain? Does starting at one state lead to different

behavior than starting at another? Under what conditions can we guarantee that the long

term behavior of the Markov chain is the same regardless of its initial state?

Definition 4.20. If µ is a measure, then we write:

µp({x}) =
∑
y∈E

µ({y})p(y, x)
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if the sum converges.

Definition 4.21 (Invariant measure). A σ-finite measure µ on E is called an invariant

measure if

µp = µ.

A probability measure that is an invariant measure is called an invariant distribution.

Theorem 4.22. If every state of X is transient, then it has no invariant distribution.

Proof. Since G(x, y) < ∞ for all x, y ∈ E, we have pn(x, y) → 0 as n → ∞. Thus, for any

probability measure on E we have µpn({x})→ 0. So, µp does not converge to µ and X has

no invariant distribution.

We note that Theorem 4.22 only makes a statement regarding invariant distributions,

not invariant measures in general.

Theorem 4.23. If X is irreducible, then X has at most one invariant distribution.

Proof. This proof is not difficult, but requires either a significant amount of space to develop

some mathematics that would serve no other purpose, or even more space using definitions

that we have already developed. Instead of taking up the space, we refer the reader to [8,

Chapter 3.2].

Theorem 4.24. If X is reversible with respect to π, then π is an invariant measure for X.

Proof.

πp({x}) =
∑
y∈E

π({y})p(y, x)

=
∑
y∈E

π({x})p(x, y)

= π({x}).
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If a Markov chain meets certain criteria, then given a starting distribution the Markov

chain will converge to a unique invariant distribution eventually. Convergence of Markov

chains requires more theory than we have developed here as well as a careful implementation.

It is not a trivial exercise. We refer the interested reader to [24, Chapter 18.1–2].

Invariant distributions will play a critical role in the coming chapter. Suppose we wish

to sample from a distribution that does not have a closed form expression. Given certain

conditions, we will show that we are able to construct a Markov chain that has the same

invariant distribution as the distribution from which we want to sample. While it may be

impossible or difficult to sample from the original distribution, we will be able to sample

from the invariant distribution of the Markov chain.

Chapter 5. Markov Chain Monte Carlo

5.1 Introduction

One of the most important applications of Markov chains are Markov chain Monte Carlo

(MCMC) methods. These techniques are widely used in applications ranging from the social

sciences to theoretical physics. The technique was first discovered by Metropolis et. al. [27] in

1953, followed by improvements by Hastings [21] in 1970. It has been listed as one of the ten

most important algorithms of the twentieth century [11] and the papers by Metropolis and

Hastings have both been cited several thousands of times. In this chapter, we will discuss an

MCMC method called the Gibbs’ sampler, explicitly build its corresponding Markov chain,

and then briefly connect it to its MCMC algorithm for computer simulation.

As a brief historical note, it is perhaps unfortunate that we use Metropolis’s name so

frequently in probability. Oral histories indicate that he had little or nothing to do with the

development of the algorithm except providing computer time (see [5], [19]).
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5.2 Motivation

The Gibbs’ sampler has been called “...the workhorse of the MCMC world” [32]. A common

problem in applications of probability is determining the set of parameters that best fit

some model. For example, we may have some model that depends on parameters θ1 and θ2.

Though we know that the model follows the behavior of certain distributions that depend on

θ1 and θ2, we do not necessarily know what values of θ1 and θ2 produce the optimal model

given some data. The Gibbs’ sampler will provide a strategy for solving this problem.

5.3 The Gibbs Sampler

We now present the Gibbs’ sampler in terms of our rigorous probability theory. Suppose

that we have chosen a model for some data, and we wish to choose the optimal parameters to

match the model to the data. In short, we wish to know the Bayesian posterior distribution,

P[θ|data], where θ is the vector of parameters. In order to do this we are going to carefully

construct a Markov chain that has the same invariant distribution as this posterior distribu-

tion. We will do this by way of the Metropolis algorithm, of which the Gibbs’ sampler is a

special case.

Let q be the transition matrix of an arbitrary irreducible Markov chain with some state

space E that has mostly zeros or low probabilities. This speeds up convergence, but it is

not actually necessary; see Hastings’ paper [21]. Using this matrix, we will define a new

stochastic matrix called the Metropolis matrix.

Definition 5.1. Let π be the posterior distribution that we wish to sample from. Define a

matrix p on E by

p(x, y) =


q(x, y) min

(
1, π(y)q(y,x)

π(x)q(x,y)

)
, if x 6= y, q(x, y) > 0

0, if x 6= y, q(x, y) = 0

1−
∑

z 6=x p(x, z), if x = y.
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We call p the Metropolis matrix and q the proposal matrix. The entry (i, j) of p is called

the acceptance probability for moving from state i to state j.

Theorem 5.2. The Metropolis matrix is the transition matrix for a reversible Markov chain.

Proof. This is a simple proof that follows directly from the definition. In the case where

x 6= y and q(x, y) > 0, we have

π(x)p(x, y) = π(x)q(x, y)
π(y)q(y, x)

π(x)q(x, y)

= π(y)q(y, x).

In the case when x = y,

π(x)p(x, y) = π(x)p(x, x) = π(x)(1−
∑
z 6=x

p(x, z))

= π(y)(1−
∑
z 6=y

p(y, z))

= π(y)p(y, y) = π(y)p(y, x).

So long as the irreducibility condition holds, we may choose our matrix q arbitrarily.

One typical method is to use a multivariate normal distribution centered at x that gives a

probability of moving to any other state. Since p(x, y) is irreducible and is reversible with

respect to π it follows that π is the unique invariant distribution of p by Theorem 4.24

Once we have chosen the matrix q, we may proceed with the description of the Metropolis

algorithm.

Algorithm 5.3 (Metropolis Algorithm).
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input: arbitrary starting point, proposal matrix q

output: samples from posterior distribution

current_state = starting point

for each iteration

propose new_state from q(current_state, *)

generate acceptance probability a = p(current_state, new_state)

current_state = new_state with probability a

store current_state

This algorithm simulates the Markov chain in Definition 5.1, and it converges to the

posterior distribution π. While we used π in the construction of the Metropolis matrix p, we

only calculated ratios of π evaluated at two states. In practice, it is often possible to derive

these ratios without calculating the posterior distribution directly.

5.4 The Gibbs’ Sampler Algorithm

We will now describe the algorithm for the Gibbs’ sampler and provide an example with two

parameters. Following this description, we will explain how this algorithm is connected to a

special case of the Metropolis algorithm.

Algorithm 5.4 (Gibbs’ Sampler).

input: prior distributions p_i, list of parameters x_i, data

output: samples from posterior distribution

for each parameter x_i:

draw x_i0 from p_i
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for j = 1 to N:

for each parameter x_i:

draw x_ij from p(x_i | x_1, x_2, ..., x_i-1, x_i+1,...x_k)

\\These are draws from the conditional distribution

store (x_1j, x_2j, ..., x_kj) as X_j

return X

Since our first state depends solely on our prior distributions, and since these are not the

correct distribution in general, we have to wait several iterations for the algorithm to wander

towards areas of high probability. This period is colloquially known as “burn-in.”

It is curious that the Gibbs’ sampler allows us to learn about a joint distribution by

only examining its conditionals. However, work by Hammersley and Clifford [20] and Besag

[6] has shown that any joint distribution is uniquely determined by its conditionals. This

theorem, appropriately called the Hammersley-Clifford theorem, proved important in the

development of MCMC methods, but was never published. See [31] for an excellent historic

sketch of the development of MCMC methods, including the influence of this theorem.

Example 5.5 (Gibbs Sampler for two Parameters). Suppose that we have some data drawn

from a normal distribution. We wish to estimate the mean and standard variation of the

distribution given the data. We are able to solve this problem analytically in this case, but in

general this is impossible. We will use this example in order to compare the MCMC solution

to the analytic solution.

A normal distribution has two parameters µ and σ2. To make our analysis simpler, we

will use τ = 1
σ
. We assume that our parameters µ and τ have prior distributions, namely µ

distributed as N (α, β) and τ distributed as Gamma(a, b).

We will draw µ0, τ0 from our prior distributions. This draw corresponds to the initial

state of our Markov chain. Now, we calculate the conditional distribution of µ given τ and
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Figure 5.1: The left plot has choices for µ on the x-axis and choices for τ on the y-axis. The
contour lines show the log probability of the analytic solution for the posterior probability,
i.e. P[µ, τ |data]. The different colors represent different runs of the sampler starting from
different initial states. On the right hand side we see the last points drawn from the Gibbs’
sampler for one chain. The contour lines give us level sets of the function P[µ, τ |data]. The
Gibbs’ sampler samples area of high probability most since the Markov chain it simulates
has the same the posterior distribution for its invariant distribution.

τ given µ for the Gibbs’ sampler. We have

P[τ |µ] ∝ Γ
[
α +

n

2
, β +

1

2

∑
x∈data

(x− µ)2
]

and

P[µ|τ ] ∝ N
(
nτx̄+ τ0µ0

nτ + τ0

,

√
1

nτ + τ0

)
,

where n is the number of data points that we have and x̄ is the mean of the data. Figure

5.1 shows several points saved from a Gibbs’ sampler using these conditional distributions.

How is this algorithm a special case of the Metropolis algorithm? How are we proposing
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transitions? Which do we reject? In fact, the Gibbs’ sampler leverages a carefully chosen

proposal matrix so that we accept every proposition. First we choose an arbitrary ordering

of the parameters from the distribution that we wish to sample. Then for each choice of

parameter in order, let x− be the other parameters. Now we choose the matrix q such that

q(x, y) ∝ π(y|x−, data))

where x and y represent states, or some choice of parameters. The state y will be the same

as the state x except for the new parameter being chosen. Thus, when we calculate the

Metropolis matrix p using Definition 5.1, we have

p(x, y) = q(x, y)
π(y)π(x|x−, data)

π(x)π(y|x−, data)
.

The entry q(x, y) represents a proposed transition from state x to state y, and so π(·) is

conditioned on x− as well. This gives us an acceptance probability of

π(y|x−, data)π(x|x−, data)

π(x|x−, data)π(y|x−, data)
,

which evaluates to 1. Thus the Gibbs’ sampler is a Metropolis algorithm where every pro-

posed transition is accepted. The Markov chain we have built must converge for the same

reasons it converges for the general Metropolis case (see above discussion about reversibil-

ity). We have not delved deeply into some of the details regarding the Hammersley-Clifford

theorem and the Gibbs’-Markov equivalence. The theory necessary to be fully rigorous is

admittedly difficult. The best treatment we have seen so far is in Chapter 9 and 10 of Casella

and Roberts [32], but even they skip several details.

38



Chapter 6. Bayesian Networks

6.1 Introduction and Motivation

A Bayesian network is a directed acyclic graph that connects parameters by their probabilistic

dependencies. For example, if some parameter x has a prior distribution with parameters y

and z, then y and z are dependencies of x. Specifically, nodes represent random variables

and edges represent probabilistic dependencies. These objects do have a rigorous definition

(see [25, Chapter 2]), but for our purposes they are best understood intuitively. We begin

with a simple example of a Bayesian network. Then we will continue with an explanation

of a minor tweak on Bayesian networks called Bayesian plate notation. We will also provide

an example using Bayesian plate notation.

6.2 Definition

Though these objects are best understood intuitively for our purposes, we offer here a partial

definition to help our intuition.

Definition 6.1 (Bayesian Network). We say a directed, acyclic graph is a Bayesian network

if the following hold:

(i) Each node has an associated random variable Xi,

(ii) Each node with no parents has an associated probability distribution that is the dis-

tribution of the random variable, P[Xi],

(iii) Each node with a non-empty parent set PaXi
= {X1, .., Xd} has an associated proba-

bility distribution P[Xi|X1, ..., Xd].

Thus, the joint distribution of the network can be written as:

∏
i

P[Xi|PaXi
],
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W

S R

Figure 6.1: A simple Bayesian network that can be used to determine the probability that
the grass is wet given information about sprinklers and rain. Node R is the random variable
telling us if it has rained or not, S tells us if the sprinklers have been turned on, and W tells
us if the grass is wet.

where P[Xi|PaXi
] = P[Xi] when PaXi

is empty.

Why do we build Bayesian networks? A network carries within it all the information

required to construct a joint probability distribution. However, if we were to examine just

the joint distribution, we would not immediately see the dependency structure that is imme-

diately communicated via the graph structure. It is easier for a human to understand nodes

and edges than a high dimensional function.

6.3 Some Examples

We begin with a trivial example to clarify the intuitive notions we developed in the intro-

duction.

Example 6.2 (Is the grass wet?). Let us consider a classic example from probability—is

the grass wet or isn’t it? Suppose for a moment that the only way that grass could get

wet is from a sprinkler or from rain. Further suppose that there is a probability of rain, a

probability of using sprinklers given that it has rained, and a probability of using sprinklers

given that it hasn’t rained. We may encode all of this information in a Bayesian network;

see Figure 6.1.

We may use this network to answer questions about the random variables associated with

the nodes. For example, what is the probability that it has rained given that the grass is

wet?
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Figure 6.2: A more complicated example of a Bayesian network. This gives a model for some
of the most common chronic conditions in the United States based on lifestyle choices. We
see that the dependencies are more complicated than in the previous example, but we are
still able to succinctly communicate some of the behavior of the model. Should we choose
distributions for the random variables, we would also be able to answer questions about the
probability of a person getting sick given their lifestyle choices.

P[R = T |W = T ] =
P[R = T,W = T ]

P[W = T ]
=

∑
S={T,F} P[R = T, S,W = T ]∑
S,R={T,F} P[S,W = T,R]

.

If we were to choose distributions for each random variable, we could calculate a number

for this probability; see [2] for a complete example with this same network.

Example 6.3 (Modelling Sickness). Bayesian networks allow for much more complicated

systems than our previous example. We will consider a more complicated model for disease

occurrence. Suppose we wished to connect lifestyle decisions like diet (D), exercise (E),

and smoking (S) to major long term health problems—heart disease (H), cancer (C), and

obesity (O). Lifestyle decisions like smoking, diet, and exercise affect the likelihood of each

of these problems. Also, obesity occurring affects the probability of cancer and heart disease;

see Figure 6.2.

6.4 Bayesian Plate Notation

Bayesian plate notation is a Bayesian network that includes some shorthand for easier ex-

pression of more complicated models. Anything written with Bayesian plate notation can be

written as a Bayesian network. However, the new notation allows for much more compact
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Figure 6.3: Bayesian plate notation. Instead of drawing N distinct sprinkler nodes, we draw
a box around them and label it with an N .

expression without sacrificing information. The notation is especially useful for describing

models that generate some data.

Example 6.4. Bayesian plate notation uses boxes, or plates, to consolidate many random

variables into one. Let us expand on our previous grass example. Suppose that we need to

water grass over some extremely wide area, so wide that some parts of the lawn might get wet

in a rain storm and others not. Say that we need N sprinklers to cover this whole lawn. When

N is large, expressing the joint distribution on grass wetness becomes a tedious exercise, as

we would need to draw N nodes, each affected by R in different ways. It also defeats the

purpose of easily and succinctly describing a model. Using Bayesian plate notation, this

same model would be written as in Figure 6.3.

Chapter 7. Latent Dirichlet Allocation and Topics Over Time

7.1 Introduction

In this chapter, we develop models for generating corpora of documents. The models we

discuss admit several parameters that allow for different kinds of data to be generated. A

common task then is to discover the best choice of parameters for a model given data. These

parameters may then give us insight into the data.
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Parameter Meaning
N Number of documents
M Number of topics
V Number of unique words in corpus
Ni Number of words in document i
α Dirichlet prior on document topic distribution
β Dirichlet prior on topic word distribution
θi Topic distribution for document i
φk Word distribution for topic k
zij Topic for word j in document i
wij Word j in document i

Table 7.1: Parameters for Latent Dirichlet Allocation generative model. See Chapter 1 for
a refresher on how Dirichlet distributions work.

7.2 Latent Dirichlet Allocation

The Bayesian networks in the previous chapter were simple and illustrative. We now consider

a model called Latent Dirichlet Allocation (LDA) that has enjoyed a great deal of success

since its original publication [7]. LDA is a simplified explanation of how documents are

generated from a mixture of topics. When Blei et. al. first published the technique, it was

used to model the generation of corpora of documents based on topics that are determined

by word co-occurrence. This understanding of how data is being generated allows us to use

Gibbs’ sampling to discover hidden information. In the following example we will describe

how this may be done.

Example 7.1 (Latent Dirichlet Allocation). First we will describe the parameters of the

model, then give its plate notation, and finally describe the generative process. A corpus is

a collection of documents. Given that we wish to generate N documents from K topics, we

have the parameters in Table 7.1.

Using these parameters, we can express the generative model using a Bayesian plate

notation; see Figure 7.1.

How, then, are data generated by this model? The step by step process by which docu-

ments are generated is as follows:
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Figure 7.1: Bayesian network describing how LDA generates a corpus of data with dirichlet
priors α and β. See Chapter 1 for a description of Dirichlet distributions. See Algorithm
7.2.

Algorithm 7.2.

For each document i, choose a topic distribution theta_i from Dir(alpha)

For each topic k, choose a word distribution \phi_k from Dir(beta)

For each of the N_i words in document i:

Choose topic z_ij from theta_i

Choose word w_ij from phi_(z_ij)

Of particular interest to us is using the information available to us from the generative

process and our choices of prior distributions to determine the word distributions for each

topic. In other words, given a topic i, what are the words that are most likely to be sampled?

This is inferable from data and the model. The derivations are quite lengthy and technical,

and we will forgo the calculation here. See [7] for a long treatment and [18] for a much more

approachable, but wordier and lighter, derivation. We may use these derivations to infer the

posterior distributions for our topics, i.e.

P[z|θ, φ, α, β, data]
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parameter meaning
mdzi Number of words in document assigned to topic zi
nziw Number of times word w is assigned topic zi
nzi Total number of words assigned topic zi

Table 7.2: Parameters specific to LDA posterior calculation

where our data are the words in a corpus of documents. We are able to write this distribution

down in a general sense, but we are incapable of calculating it. (See again [18]). Fortunately,

we can use Bayes’ rule and Gibbs’ sampling to sample from the distribution. Though we

don’t know what the probability of a topic given a word is, we do know the probability of

a topic and what the topic of a word given a topic is (see Figure 7.1). We are thus able to

find conditional distributions:

P[zi = j|z−i, θ, φ, α, β, data],

where z−i represents the topic assignments to the other words in the data. The result of the

calculation of this conditional distribution gives us

P[zi = j|z−i, data] ∝ (mdzi + α)
nziw + β

nzi + V β
.

See Table 7.1 for an explanation of parameters.

Thus, we may follow the following procedure to calculate the topic distributions:

Algorithm 7.3 (Gibbs’ Sampler to Discover Topic Distributions).

For each word in each document, assign a random topic

For each iteration

For each document

For each word

draw new topic from conditional distribution

update parameters
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After burn in, we can iterate until we have sufficient samples to construct the word

distribution for each topic.

7.3 Topics Over Time

We now introduce a modification to the LDA model that incorporates time. This model

was first implemented by Wang and McCallum in 2006 [37]. This model is non-Markovian,

but still seeks to incorporate some sort temporal information to produce better topic distri-

butions. If, for example, we were to run LDA on a corpus of American State of the Union

speeches, we would expect to see topics relating to war, economic crises, and social policy.

Is there a way to further distinguish these topics so that wars in the nineteenth century are

put into different topics than twenty-first century conflicts? Wang and McCallum’s Topic

Over Time (TOT) model seeks to do just that.

We alter the LDA model slightly and attempt to infer topics based not just on which

words occur together, but also when they occur together. The TOT algorithm perhaps could

be improved by a modification that makes it Markovian. This could possibly improve the

description of the evolution of topics over time.

Again, we begin by naming parameters. Given that we wish to generate N documents

from K topics, we have the parameters in Table 7.3.

The plate notation for the model is seen in Figure 7.2.

The data is generated by TOT similarly to the way LDA generates data:

Algorithm 7.4 (Topics Over Time).

For each document i, choose a topic distribution theta_i from Dir(alpha)

For each topic k, choose a word distribution phi_k from Dir(beta)

For each of the N_i words in document i:

Choose topic z_ij from theta_i

Choose word w_ij from phi_i

Choose timestamp t_ij from psi_(z_ij)
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Parameter Meaning
N Number of documents
M Number of topics
V Number of unique words in corpus
α Dirichlet prior on document topic distribution
β Dirichlet prior on topic word distribution
θi Topic distribution for document i
φk Word distribution for topic k
zij Topic for word j in document i
wij Word j in document i
ψz Beta time distribution for topic z
tij Timestamp for word j in document i

Table 7.3: Parameters for the Topics Over Time generative model. These parameters are
exactly the same as those that we have in table 7.1, except with the addition of the temporal
parameters found in the last two entries.

Fortunately, adding temporal data does not dramatically alter the conditional probability

of a topic against other topics. We have

P[zi = j|z−i, data] ∝ (mdzi + α− 1)
nziw + β − 1

nz + V β − 1

(1− twi
)ψzi1

−1 t
ψzi2
−1

wi

B(ψzi1, ψzi1)
.

Parameter Meaning
mdzi Number of words in document assigned to topic zi
nziw Number of times word w is assigned topic zi
nzi Total number of words assigned topic zi
tw Timestamp of word w
ψzi1 First parameter for beta time distribution associated with topic zi
ψzi2 Second parameter for beta time distribution associated with topic zi

Table 7.4: Parameters for the Topics Over Time conditional probability calculation.

We reiterate that the derivation of this conditional distribution is quite tedious and space

consuming. Full derivation can be found in Wang and McCallum’s paper. See Table 7.4 for

an explanation of the parameters in the TOT conditional probability calculation. The Gibbs’

sampling algorithm for TOT then becomes:

Algorithm 7.5 (Gibbs’ Sampler for TOT).
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Figure 7.2: Bayesian network describing how TOT generates a corpus of data; see Algorithm
7.4.

For each word in each document, assign a random topic

For each iteration

For each document

For each word

draw new topic from conditional distribution

update parameters

For each topic:

update topic time distribution

We have not yet determined how we will update the topic time distribution. Wang and

McCallum suggest using a method of moments calculation to re-estimate the parameters after

each sweep of the sampler. This update will then alter how the conditional probabilities are

calculated in the next sweep, which will in turn alter the topic time distributions. While

this indeed appears to be a coupled Markov chain, there has been no work done thus far to

try to provide rigor for this heuristic. The method of moments technique updates the time

parameters as follows:

ψz1 = t̄z

(
t̄z(1− t̄z)

s2
z

− 1

)
,
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ψz2 = (1− t̄z)
(
t̄z(1− t̄z)

s2
z

− 1

)
.

7.4 Interpreting topics

Though the only guide for determining which terms are assigned which topics are given by

the data at hand, a human being must determine how to interpret a given topic distribution.

For example, after we have run a Gibbs’ sampler on the data from a corpus of political

speeches, we will have several topic distributions with different words being most likely in

each one. If there were a topic where words like ‘stimulus’, ‘confidence’, and ‘rates’ were very

likely, we would interpret that topic to be about the economy. Another topic might have

words like ‘terrorism’, ‘weapons’, and ‘threat’. We would interpret this topic to be relating

to terrorism and modern conflict.

Chapter 8. Methodology and Results

8.1 Overview

As mentioned in our introduction, health insurance companies have an interest in measuring

the riskiness of a small population. These markets represent the majority of workers with

employment based insurance. It is also more volatile than other health insurance markets.

Consider Figure 8.1, which shows the distribution of the monthly log-costs of health insurance

claims for individuals in a population of 60000 adult males in a metropolitan area of the

United States. While the mode of the data is on the order of 100 dollars, there is a fat-tail

of thousands of claims that cost more than 1000 dollars. Some claims reach into the 100000

dollar range.

If we wished to model the costs for a large population, we can expect to have enough

healthy individuals to subsidize care for the unhealthy who incur expensive treatment. These

populations are easier to price in part because the variance of a population tends to decrease
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Figure 8.1: This Figure shows the non-zero monthly costs of health care claims from individ-
uals in a sample population of 60000 adult males. The x-axis is the log-costs of claims, and
the y-axis is the number of claims at cost x. These are also called Per-Member Per-Month
(PMPM) costs. Note the fat tail and skew to the right. This distribution makes it particu-
larly difficult to predict future claims of small groups because of the relative high frequency
of very expensive individuals.

as the size of the population increases (see Introduction). Conversely, it is difficult to predict

costs for a small population due to its higher variance. It is also more difficult for the healthy

to subsidize the unhealthy in a small population.

In this chapter we will discuss implementing the mathematics developed in this thesis to

create a model for the financial risk of a small population of which we know relatively little.

8.2 The Data

We begin tackling our problem of predicting risk by describing the data at our disposal.

In partnership with a firm in the health care industry, we have obtained the anonymized
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health records of several hundred thousand people from a major metropolitan area of the

United States. We will use these data to hypothesize the underlying rules of how people

consume healthcare. Combining this with known outcomes we build a model for assessing

the riskiness of an individual or group.

Health records are complex. A simple doctors visit may entail pages of forms documenting

procedures that occurred, prescriptions prescribed, assessments of a patients health, etc.

Insurance companies require documentation from doctors with whom they do business. The

data available to us are the coded information on these forms. There are several types of data

that can be extracted from these forms. Of interest for our purposes will be the diagnosis

and procedure codes attached to billable medical events. Insurance companies negotiate with

providers what they will pay for a given service, and they use diagnosis and procedure codes

as the key by which they calculate their payments. In other words, the insurance companies

agree to pay a certain amount for each code, and they will only pay for diagnoses that are

recorded by health care providers. We thus have reason to hope that these data are a good

way to learn about how people consume health care.

The diagnosis and procedure codes come from the International Classification of Diseases

(ICD). Since 1948, the World Health Organization has maintained this index of medical

conditions and procedures. Originally created to measure causes of death across nations,

this classification system is also used by hospitals and insurance companies to contract how

much care will cost. These codes are quite extensive and can be used to precisely describe

an injury, sickness, medical procedure, etc. In the version of the ICD that we will be using,

called the ICD-9, these codes are five digits. The first three digits are a prefix designating

a specific etiology, or causation. The remaining digits, separated by a decimal point, are

used to specify the specific part of the anatomy being affected. For example, all codes with

prefixes 800-999 are used to code injuries and poisoning. 820-829 describe fractures of lower

limbs, and 820 describes the fracture of the neck or femur. Finally, 820.22 codes a closed

fracture of subtrochanteric section of neck or femur. There are around 13000 dignosis codes
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total in the ICD-9. Procedure codes are similarly specific, but follow a different scheme.

We are not overly concerned with the exact mechanics of how these codes are produced.

For our purposes, we treat the process that generates them as a measurable map, or rather

a random variable, mapping medical events to codes. We will add another layer of encoding

by creating a bijection from the codes to a subset of the positive integers for convenience.

In summary, we are defining a random variable X to model a medical event:

X : Medical Events → Diagnosis Codes.

Given the information available, we will define a member of a health insurance plan as

a collection of random variables, one for each health event. Our task is to use our past

experience, or in other words, our data, to predict which members will have particularly

costly health event. Given the large volume of treatment codes, however, a model attempt-

ing to explain costs based on the occurrence of any single diagnosis code would be at the

same time noisy, sparse, and computationally prohibitive to implement. To mitigate these

daunting obstacles, we first discover structure within the treatment codes and exploit this

to build a simplified, yet useful model.

8.3 The Model

We wish to reduce the complexity of determining which individuals in a group are the most

costly. We will do this by implementing the topics over time model described in chapter

7. Rather than describing an individual as a collection of various diagnosis codes, we will

assign a topic to each diagnosis code that is assigned to the individual and thus describe

an individual as a collection of topics. Also associated with each individual claim is the age

of the patient when the claim was made. This is not so easy as going through the data

and assigning a single topic to each diagnosis code. While the ICD-9 is quite extensive

and precise, there are factors that we wish to take into account that are orthogonal to its
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descriptive power. For example, a young person being diagnosed with pneumonia presents

a different risk to an insurer than a senior citizen who has a weakened immune system.

Topic analysis models such as TOT are a relatively recent technique for data analysis.

Since LDA was first published in 2003 [37] as a technique for determining topics in text

based data, several novel applications have been proposed for taming large amounts of data.

See for example [38] and [36]. We propose using TOT as the generative model for health

insurance claims. However, instead of considering when the claim was made, we consider

how old the patient is when the claim was made. We call this adjustment Topics Over Age

(TOA) rather than Topics Over Time.

Recall from Chapter 7 the topics over time model. Rather than using the process to

generate documents, we generate health insurance claims data.

(i) For each Person i, choose a health topic distribution θi from Dir(α)

(ii) For each health topic k, choose a diagnosis code distribution φk from Dir(β)

(iii) For each of the Ni claims for person i:

(a) Choose health topic zij from θi

(b) Choose claim code wij from φi

(c) Choose age of person tij from ψzij

In other words, rather than having a distribution for each topic in a corpus of documents,

we have a distribution for each health topic over a population. Where TOA for a corpus

of political speeches would have topics like war and economics with their associated words,

a corpus of health insurance claims data will have distributions for topics like routine care,

diabetes, cancer, etc. with their associated claims codes. We are able to infer the parameters

of these distributions using a Gibbs’ sampler via the same routine we described in Chapter

7. Thus, we may find out what insurance claims codes are likely to be produced given that

we are sampling from a specific topic.
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After using a Gibb’s sampler to estimate the parameters in the model, we have for each

topic in our model a distribution of diagnosis codes. For each topic we have a probability

of each code showing up. For example, in a chronic kidney disease topic we will have codes

for dialysis, kidney failure, and muscle weakness with high probability while a code for acne

will have quite a low probability. On the other hand, a topic dealing with adolescent health

will have a high probability of an acne code and a low probability of a kidney failure code.

8.4 Topic Results

As mentioned in Chapter 7, though our learning is unsupervised, we require a human to

examine the resulting topics and recognize the topics for what they are. See for example

Figure 8.2, where we have three plots of topic distributions related to some of the most

common health issues in the United States. These particular distributions were generated

on a training set of 75000 adult males from our data. In each graph the x-axis represents age

and the y-axis represents the number of times that a term on our training set was assigned

that topic after burn in. Below each graph we have the most likely ICD-9 codes in the topic

distribution as well as their description. They are arranged in order of probability.

We see that routine, common treatments are detected and grouped appropriately in this

model. Along with these common topics, there are also topics that are less prevalent in the

population whose distributions are much less smooth. It is possible, for example, for a small

handful of people of varying ages to have a rare disease with a rigorous treatment regime.

This would produce strong co-occurrences between diagnosis codes that are then detected

by the Gibb’s sampler. For example, from the same population as the topic distributions

from Figure 8.2, we have the topic distribution in Figure 8.3.

The most likely terms in a topic distribution also give us results about the co-morbidity,

or co-occurrence, of diagnoses in specific topics. For some topics the most likely diagnosis

codes seemed to be unrelated. However, consulting the medical literature revealed that these

seemingly unrelated diagnoses are actually connected. See Figure 8.4 for two examples of
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Figure 8.2: Term distributions for 4 topics. By observing these distributions, we see that the
first topic relates primarily to hypertension, or high blood pressure, as well as other maladies
associated with aging. The second topic, on the other hand, deals primarily with codes
relating to routine medical care. Note that the y-axis for the second topic goes significantly
higher than in the first topic, indicating its more common occurrence. The third topic deals
with diabetes, and the fourth deals with heart disease.
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Figure 8.3: This term distribution represents more uncommon ICD-9 codes. Note the spike
on the right of the graph. This represents a small number of older men producing codes
that are assigned this topic. This topic treats unspecified back pain and cervicobrachial
syndrome. This syndrome is a vague diagnosis that has fallen out of use and is only rarely
employed by doctors, who now prefer diagnosis codes dealing with shoulder and neck pain;
see [1].
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Figure 8.4: Two topic distributions from the same population. On the left, note that ob-
structive sleep apnea is seemingly connected to several diagnoses related to heart problems,
notably atrial fibrillation. Our first inclination was to dismiss this connection. However, a
review of the medical literature revealed [30], an article published in 2012 calling for more
research to investigate the connection between the two diagnoses. Similarly, on the right, we
see a connection between atherosclerosis of the heart, a heart condition, and calculus of the
kidney, or buildup of calcium deposits in the kidney. This connection also seemed unlikely,
but [26] recently detected a possible connection.

co-morbidities discovered by the Gibbs’ sampler that have only recently been discovered by

medical researchers. These results were unexpected and lent even more credibility to the

topic distributions found by the Gibbs’ sampler.

After we have used a Gibbs’ sampler to determine the parameters on our topic distribu-

tions, we say that we have trained our model. We can now confidently use a new random

variable in our model, mapping health events into a handful of topics rather than hundreds

of thousands of ICD-9 codes:

X : Medical Events → Topic Number.

Each member of the health insurance plan may be thought of as one such random variable

57



with a categorical distribution with unique parameters determined by their past claims and

the claims of others in their sample population. Because we are interested in assessing the

riskiness of individuals or small groups of individuals, we also seek to create a measure of risk

over the topics. The next step will be to do this by connecting a topic to a price distribution.

8.5 Pricing The Topics

Given that an individual’s medical events are being assigned a certain topic, what can we

understand about their riskiness? We use the monetary cost to the insurance company as

our measure of risk and establish a price distribution for each topic. In other words, we have

a random variable Pt for each topic t such that

Pt : Medical Event → Prices.

We assume that prices are distributed log-normally for each topic. We now create distri-

butions for each topic based on our data. When we discussed the nature and structure of the

data, we noted that each medical event is given a diagnosis code and an allowable amount

representing what the insurance company is willing to pay for that medical event/diagnosis

code. Since each diagnosis in our training set is assigned a topic number, and since each

diagnosis code has an allowable amount linked to it, for each topic we have data points

p1, p2, p3, ..., pnt where nt is the number of medical events assigned topic t after the model

has been trained. We use the maximum likelihood estimator for a log-normal distribution

to determine the best parameters for modeling the price of a given topic:

µt =

∑
k lnxk
nt

σ2
t =

∑
k(lnxk − µt)2

nt
.

Thus for each topic t we have parameters µt, σ
2
t that optimally fit the distribution to the
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Figure 8.5: Price histograms of terms assigned a specific topic. The topic associated with the
histogram on the left has a high probability of diagnosis codes dealing with minor respiratory
problems and knee sprains and pains. Medical events that are assigned this topic generally
cost the insurance company less than 100 dollars. On the other hand, the topic on the
right has a high probability of diagnosis codes dealing with hyperlipidemia, or very high fat
content in the blood. Medical events coded with this topic typically cost more than 100
dollars.

data; see Figure 8.5.

Chapter 9. Prediction and Classification

9.1 Classification

In the previous chapter we discussed discovering topic distributions for health insurance

claims codes from a large population. We will call this process training and we call the

data we used the training set. Armed with these topic distributions, we may classify smaller

populations with a small amount of claims data by ‘picking up where we left off.’ For example,

previously we learned topic distributions for the insurance claims codes in a population of

75000 men. Now suppose that we have a small population of men of which we have 3 months

of claims data. Taking those claims, we can use the same procedure we used to learn the

topic distributions to assign topics to these new claims:

Algorithm 9.1 (Classification of Claims).

For each code associated with each person, assign a random topic
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For each iteration

For each person

For each code

draw new topic from conditional distribution

update parameters

For each topic:

update topic time distribution

Assuming that these new people are from a similar population, we expect the topics to

have the same parameters that we learned from the training set. Thus, after a quick burn-in,

we will have assigned topics to each of the diagnosis codes for each person.

9.2 A Cost Model For Future Claims

We wish to predict how expensive an individual may be given topics present in their claims

history. We present a simple model to demonstrate one way that this may be done. The

model will have strict limitations that relegate this example to an illustrative case. We will

discuss some of these limitations when we conclude this section.

Given a large number of people we may train a topics model to determine what sorts of

patterns diseases follow in the population. Suppose then that we wish to predict future costs

for an individual that matches the demographics of the group that we have trained on. As

this individual makes claims, we assign them topics using the Algorithm 9.1.

We now wish to represent the individual as a mixture of topics. Recall that along with

the term distributions for each topic we are also able to find a price distribution (See Figure

8.5). We model the individuals future cost by sampling from these topic price distributions

proportionally to the frequency that each topic appears in his or her history. Thus we build

an individuals price distribution with the following algorithm:

Algorithm 9.2.
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Figure 9.1: Price distributions created for two individuals based on their past claims history
using Algorithm 9.2 with 1000 samples. The x-axis represents log costs and the y-axis
represents the number of samples. The topics most present in the individual on the left
are Type I Diabetes and Routine/General Health Examination. Both of these topics have
manageable, predictable costs. On the other hand, the individual to the right typically has
claims in topics dealing with Kidney Transplantation and Cystic Fibrosis. These topics are
more expensive and we see that reflected in the individual price distribution which skews
towards higher costs. We would expect the next claims from the individual on the right to
be more expensive than the individual on the left.

w_0 = 0

For each topic i:

Divide number of occurences of topic in claims history by total number of claims

Save result as w_i

For 1 to number_of_samples:

Draw x from a uniform distribution on [0,1]

For i = 0 to number of topics:

If w_i < x < w_i+1

Draw a sample from price distribution of topic i+1

This process will sample from the price distribution of the individuals next claim accord-

ing to the assumption of our model. See Figure 9.1 for some examples for individual price

distributions using this model.

There are several limitations to this model. One important consideration that is not
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modelled is how frequently individuals seek care. For example, an individual may have a

relatively inexpensive condition that requires frequent visits to the doctor. This individual

may become, over time, more expensive than someone that has fewer and more serious

claims. In other words, in addition to modeling what sorts of claims will appear next in

an individual’s history, we must also model how topics affect the frequency with which

individuals make claims. Modelling this correctly will be crucial to building a more robust

model. We also fail to consider the way that the topics being assigned to an individual’s

claims may be evolving over time.

Chapter 10. Conclusion

In this thesis we proposed the Topics Over Age model for describing the process that gener-

ates health insurance claims data. This describes each person’s claims history as a mixture

of topic distributions. Using the Gibbs’ sampler, we were able to infer distributions that

predict which topic produces which diagnoses over a population.

Future work in this direction must decide how robust this model is for predicting future

costs and assessing the risk of an individual or a small group of employees. There are a few

directions that can be taken to do this that we are currently investigating. First, we propose

describing individuals as a mixture of topics. In other words, given the topics discovered by

the Gibbs’ sampler, we examine an individual’s initial claim history and try to predict their

future costs based on topic price distributions.

Another direction we are investigating is using machine learning algorithms to train on

a population’s topic assignments against its health care consumption. Once trained, we

attempt to predict a new population’s future consumption based on a small initial history,

say three to six months. We are currently using the scikit-learn[28] open source library

for python to investigate this avenue, with some promising initial results. There are hurdles

that need to be overcome still—insurance costs have been climbing drastically in the years
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we have available in our data, and so we tend to under-predict future costs.

Both of these techniques must also consider the frequency with which individuals make

claims. Understanding which topics may be chronic and requiring long term care is necessary

to correctly model costs. An individual that makes a 50 dollar claim every month is more

expensive in the long run than an individual that only makes one 200-dollar claim per year.

Since we do not consider these usage characteristics in our model, we would predict that the

individual that is making monthly claims is less of a risk than the person making the yearly

claim.

Finally, though we incorporated temporal information into our Topics Over Age model,

any analysis we have done on the topic distributions of individuals does not consider the

temporal evolution of topics. For example, we may look at the topics of all their claims in

the past year, but we do not attempt to analyze how the topics assigned to their claims

evolve over time. Perhaps trying to examine a Markov structure on the claims history could

provide insight into individual cost distributions.

63



Bibliography

[1] Cervicobrachial syndrome. http://www.mdguidelines.com/

cervicobrachial-syndrome, 2012.

[2] Bayesian network. http://en.wikipedia.org/wiki/Bayesian_network, 2013.

[3] Dirichlet distribution. http://en.wikipedia.org/wiki/Dirichlet_distribution,
2013.

[4] U.S. Small Business Administration. Frequently asked questions. http://www.sba.

gov/sites/default/files/FAQ_Sept_2012.pdf, 2013.

[5] Kai-Henrik Barth. Oral history transcript - dr. marshall rosenbluth. http://www.aip.
org/history/ohilist/28636_1.html, 2003.

[6] Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society. Series B (Methodological), pages 192–236, 1974.

[7] David M. Blei, Andrew Y. Yng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 2003.

[8] Pierre Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Springer, 1999.

[9] Thomas C Buchmueller and Alan C Monheit. Employer-sponsored health insurance and
the promise of health insurance reform. Inquiry, 46(2):187–202, 2009.

[10] Kai Lai Chung and John B. Walsh. Markov processes, Brownian motion, and time sym-
metry, volume 249 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer, New York, second edition, 2005.

[11] Barry A Cipra. The best of the 20th century: Editors name top 10 algorithms. SIAM
news, 33(4):1–2, 2000.

[12] Malcolm Cox, David M Irby, Molly Cooke, David M Irby, William Sullivan, and Ken-
neth M Ludmerer. American medical education 100 years after the Flexner report. New
England journal of medicine, 355(13):1339–1344, 2006.

[13] David M Cutler and Sarah J Reber. Paying for health insurance: the trade-off between
competition and adverse selection. The Quarterly Journal of Economics, 113(2):433–
466, 1998.

[14] John Duffy. From Humors to Medical Science: A History of American Medicine. Uni-
versity of Illinois Press, 1993.

[15] Abraham Flexner. Medical education in the United States and Canada bulletin number
four (the flexner report). New York (NY): The Carnegie Foundation for the Advance-
ment of Teaching, 1910.

64

http://www.mdguidelines.com/cervicobrachial-syndrome
http://www.mdguidelines.com/cervicobrachial-syndrome
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://www.sba.gov/sites/default/files/FAQ_Sept_2012.pdf
http://www.sba.gov/sites/default/files/FAQ_Sept_2012.pdf
http://www.aip.org/history/ohilist/28636_1.html
http://www.aip.org/history/ohilist/28636_1.html


[16] Kaiser Family Foundation, Health Research, and Educational Trust.
Employer health benefits. http://kff.org/health-costs/report/

employer-health-benefits-annual-survey-archives/, 2013.

[17] Walter R Gilks, Sylvia Richardson, and David J Spiegelhalter. Markov chain Monte
Carlo in practice, volume 2. Chapman & Hall/CRC, 1996.

[18] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences, 2004.

[19] JE Gubernatis. Marshall rosenbluth and the metropolis algorithm. Physics of plasmas,
12:057303, 2005.

[20] J Hammersley and P Clifford. Markov fields on finite graphs and lattices. Unpublished
manuscript, 1971.

[21] W. K. Hastings. Monte carlo sampling methods using markov chains and their appli-
cations. Biometrika, 1970.

[22] Robert B Helms. Tax policy and the history of the health insurance industry. Using
taxes to reform health insurance. Washington (DC): Brookings Institution, pages 13–35,
2008.

[23] Olav Kallenberg. Foundations of Modern Probability. Springer, 2002.

[24] Achim Klenke. Probability Theory: A Comprehensive Course. Springer, 2008.

[25] Timo Koski and John M. Noble. Bayesian Networks An Introduction. Wiley, 2009.

[26] Kuanrong Li, Rudolf Kaaks, Jakob Linseisen, and Sabine Rohrmann. Associations of
dietary calcium intake and calcium supplementation with myocardial infarction and
stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the euro-
pean prospective investigation into cancer and nutrition study (epic-heidelberg). Heart,
98(12):920–925, 2012.

[27] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The
journal of chemical physics, 21:1087, 1953.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[29] Franklin Pierce. Veto message. http://www.presidency.ucsb.edu/ws/?pid=67850,
1854.

[30] Susan Redline and Stuart F Quan. Sleep apnea: A common mechanism for the deadly
triadcardiovascular disease, diabetes, and cancer? American journal of respiratory and
critical care medicine, 186(2):123–124, 2012.

65

http://kff.org/health-costs/report/employer-health-benefits-annual-survey-archives/
http://kff.org/health-costs/report/employer-health-benefits-annual-survey-archives/
http://www.presidency.ucsb.edu/ws/?pid=67850


[31] Christian Robert and George Casella. A short history of markov chain monte carlo:
subjective recollections from incomplete data. Statistical Science, 26(1):102–115, 2011.

[32] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer,
2004.

[33] Walter Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, 2006.

[34] A.N. Shiryaev. Probability. Springer, 1989.

[35] Melissa A Thomasson. From sickness to health: the twentieth-century development of
us health insurance. Explorations in Economic History, 39(3):233–253, 2002.

[36] Xiaogang Wang and Eric Grimson. Spatial latent dirichlet allocation. Advances in
neural information processing systems, 20:1577–1584, 2007.

[37] Xuerui Wang and Andrew McCallum. Topics over time: a non-markov continuous-
time model of topical trends. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 424–433. ACM, 2006.

[38] Yi Wang, Hongjie Bai, Matt Stanton, Wen-Yen Chen, and Edward Y Chang. Plda:
Parallel latent dirichlet allocation for large-scale applications. In Algorithmic Aspects
in Information and Management, pages 301–314. Springer, 2009.

66


	Brigham Young University
	BYU ScholarsArchive
	2013-10-18

	A Topics Analysis Model for Health Insurance Claims
	Jared Anthony Webb
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 History of Health Insurance in the United States

	2 Basic Probability
	2.1 Determinism vs. Random
	2.2 Measures
	2.3 Measurable Maps and Random Variables
	2.4 Independence

	3 Conditional Probabilities and Bayes Theorem
	3.1 Introductory Intuition
	3.2 Formalizing a Feeling
	3.3 Bayes' Theorem

	4 Markov Chains
	4.1 Introduction
	4.2 Stochastic Process
	4.3 Filtrations
	4.4 The Markov Property and Markov Chains
	4.5 Properties of Markov Chains
	4.6 Invariant Distributions

	5 Markov Chain Monte Carlo
	5.1 Introduction
	5.2 Motivation
	5.3 The Gibbs Sampler
	5.4 The Gibbs' Sampler Algorithm

	6 Bayesian Networks
	6.1 Introduction and Motivation
	6.2 Definition
	6.3 Some Examples
	6.4 Bayesian Plate Notation

	7 Latent Dirichlet Allocation and Topics Over Time
	7.1 Introduction
	7.2 Latent Dirichlet Allocation
	7.3 Topics Over Time
	7.4 Interpreting topics

	8 Methodology and Results
	8.1 Overview
	8.2 The Data
	8.3 The Model
	8.4 Topic Results
	8.5 Pricing The Topics

	9 Prediction and Classification
	9.1 Classification
	9.2 A Cost Model For Future Claims

	10 Conclusion
	Bibliography

