
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2014-05-01

Algebraic and Combinatorial Properties of Schur
Rings over Cyclic Groups
Andrew F. Misseldine
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mathematics Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Misseldine, Andrew F., "Algebraic and Combinatorial Properties of Schur Rings over Cyclic Groups" (2014). All Theses and
Dissertations. 5259.
https://scholarsarchive.byu.edu/etd/5259

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5259?utm_source=scholarsarchive.byu.edu%2Fetd%2F5259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Algebraic and Combinatorial Properties of Schur Rings over Cyclic Groups

Andrew Frank Misseldine

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Stephen Humphries, Chair
Darrin Doud
Tyler Jarvis

William Lang
Pace Nielsen

Department of Mathematics

Brigham Young University

May 2014

Copyright c© 2014 Andrew Frank Misseldine

All Rights Reserved



ABSTRACT

Algebraic and Combinatorial Properties of Schur Rings over Cyclic Groups

Andrew Frank Misseldine
Department of Mathematics, BYU

Doctor of Philosophy

In this dissertation, we explore the nature of Schur rings over finite cyclic groups, both
algebraically and combinatorially. We provide a survey of many fundamental properties and
constructions of Schur rings over arbitrary finite groups. After specializing to the case of
cyclic groups, we provide an extensive treatment of the idempotents of Schur rings and a
description for the complete set of primitive idempotents. We also use Galois theory to
provide a classification theorem of Schur rings over cyclic groups similar to a theorem of
Leung and Man and use this classification to provide a formula for the number of Schur
rings over cyclic p-groups.

Keywords: Schur ring, cyclic group, group ring, primitive idempotent, cyclotomic field,
Wedderburn decomposition, representation theory, Galois theory, combinatorics
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Chapter 1. Introduction

In Finite Group Representation Theory, the group algebra provides a valuable tool, as well

as many of its subalgebras. The group algebra is a special example of a class of algebras

called Schur rings, as well as many other subalgebras such as the center of the group algebra

or double coset subalgebras. In many ways, Schur rings generalize the idea of group algebras

and capture many of the critical subalgebras. Loosely speaking, a Schur ring is a subalgebra

of the group algebra which is spanned by a partition of the finite group and satisfies other

properties (see Definition 2.10). Schur rings were originally developed by Schur and Wielandt

in the first half of the 20th century and were used to study permutation groups. In particular,

certain properties of a Schur ring can determine properties of a related permutation group,

such as 2-transitivity or primitivity. In later decades applications of Schur rings have emerged

in combinatorics, graph theory, and design theory [12, 19], such as the study of association

schemes. Both Wieldant’s and Scott’s monographs [35, Chapter 4 ], [29, Chapter 13] provide

an introduction to the subject of Schur rings. Muzychuk and Ponomarenko also offer a recent

survey of Schur rings in [22].

Schur rings over cyclic groups have been extremely useful in the study of circulant graphs.

For this reason, Schur rings over cyclic groups have been well studied and a surge of papers

emerged in the 1980’s and 1990’s, many of which are included in the bibliography, seeking a

complete structure theorem of Schur rings over cyclic groups. This was eventually obtained

by Leung and Man around the mid-1990’s (Theorem 2.66). The purpose of this dissertation is

to provide even more understanding about Schur rings over cyclic groups. When possible, we

will try to make the arguments general, but ultimately the focus will be on Schur rings over

cyclic groups. There are two main questions about these Schur rings which this dissertation

will answer, one algebraic and one combinatorial. First, what are the primitive idempotents

of Schur rings over cyclic groups? Second, how many Schur rings over cyclic groups are

there?

In Chapter 2, we begin with the basics of Schur rings and their generalizations. This

chapter surveys many of the elementary properties of Schur rings with proofs and references
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to the original papers in the literature. Here many detailed constructions of Schur rings with

examples are included, including new constructions introduced by the author. Chapter 2

provides the fundamental prerequisites for the rest of the dissertation.

In Chapter 3, we introduce a method to construct a complete system of orthogonal cen-

tral idempotents in Schur rings. This method generalizes methods used by others to build

primitive central idempotents in rational group algebras which avoids the use of charac-

ters. When the group is cyclic, we will prove that these central idempotents are necessarily

primitive (Theorem 3.32). This provides an answer to the algebraic question. Prior to the

completion of this dissertation, the contents of this chapter were published in [20].

In Chapter 4, we construct a representation of Schur rings over cyclic groups inside

a cyclotomic field. This allows us to use Galois theory to study these Schur rings. One

consequence of this work is that we have provided another (simpler) proof of the Leung-

Man Classification Theorem of Schur rings over cyclic groups, at least when the order of the

group is a power of a prime (Theorem 4.36). A second consequence of this representation

is that we provide a Wedderburn decomposition for Schur rings over cyclic groups with

rational coefficients (Theorem 4.17). A final consequence is given in Chapter 5, where we

give formulas to count the number of Schur rings over specific cyclic groups (Theorem 5.11

and Theorem 5.19). This provides an answer to the combinatorial question.

A few appendices are included for the convenience of the reader. Appendix A provides a

basic introduction, including proofs, to semisimple rings and their idempotents. Appendix B

includes a quick treatment of subalgebras fixed under groups of automorphisms. These type

of subalgebras arise often in Galois theory and with Schur rings, so we have included a few

general results. Appendix C contains a description of the lattice of subfields of cyclotomic

fields. The shape of these lattices will be useful in Chapter 4 and especially in Chapter 5.

Finally, Appendix D includes the author’s MAGMA code used for the calculations made in

Chapter 5.

All computations made in preparation of this dissertation were accomplished using the

computer softwares Maple and Magma [1].

Before closing this introduction, we will declare some common notation used throughout

the paper. Unless otherwise specified, G will denote a finite group and F a field with

2



characteristic zero. Let Zn = 〈zn〉 denote the cyclic group of order n. Since each subgroup

of Zn is necessarily cyclic and is uniquely determined by its order, for each d | n, we will

denote the unique subgroup of Zn of order d as Zd.

Throughout, let ζn = e2πi/n ∈ C and let Kn = Q(ζn). Let Ln denote the lattice of

subfields of Kn. Let Gn denote the Galois group G(Kn/Q). When the context is clear,

subscripts may be omitted.

All algebras are associative with unity. Subalgebras will have the same unity as the over

algebra. If A is an F -algebra, let Z(A) denote the center of A.

Other commonly used notation and vocabulary will be introduced with boldface font. A

list of notation can be found in the index.
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Chapter 2. Schur Rings

In this chapter we begin our study of Schur rings, which are subalgebras of a group algebra

afforded by certain partitions of the group. The fact that they are subalgebras of group

algebras implies that Schur rings inherit many properties from the group algebra and in many

ways behave like group algebras. In fact, every group algebra has a Schur ring structure,

and hence the theory of Schur rings may be seen as a generalization of the theory of group

algebras or of groups themselves.

The purpose of this chapter will be to introduce and familiarize the reader with the

fundamental definitions, properties, and examples of Schur rings and to prepare the reader

for the more difficult theory which fills the remainder of this dissertation. Section 2.1 begins

with group rings themselves and provides definitions and properties of group rings which

are pertinent for Schur rings. Section 2.2 will introduce the definition of Schur rings and

will present many examples of Schur rings over finite groups. It will also present general

constructions of Schur rings, including orbit and dot product Schur rings. This section

also contains a collection of elementary properties of Schur rings which are fundamental for

calculations in such rings. Most of these elementary properties were known and proven by

Wielandt [35]. Section 2.3 focuses on Cayley maps, these being maps on group algebras

which are induced from group homomorphisms. It also provides criteria for when the Cayley

image of a Schur ring is also a Schur ring. Section 2.4 will generalize the notion of Schur

rings in two ways: immersed Schur rings and pre-Schur rings. Both types of rings naturally

arise while studying Schur rings and deserve proper attention. Also many properties of Schur

rings naturally extend to immersed Schur rings and pre-Schur rings. Certain examples are

also included here, including inflated Schur rings. From here we develop the construction of

wedge products and their generalizations. Wedge products provide a method of extending

Schur rings of normal subgroups by Schur rings of quotient groups. A result by Leung and

Man (Theorem 2.66) states that every nontrivial Schur ring over a finite cyclic group is

constructible using the methods mentioned in this chapter.

Unless otherwise specified, G will denote a finite group and F a field with characteristic
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zero. Let Zn = 〈zn〉 denote the cyclic group of order n.

2.1 Group Rings

Let F [G] denote the group algebra of G with coefficients from F . For α ∈ F [G], we will

often denote the coefficient of the group element g in α by αg, that is, α =
∑

g∈G αgg with

αg ∈ F .

Definition 2.1. For any α ∈ F [G] with α =
∑
g∈G

αgg, we define

α∗ =
∑
g∈G

αgg
−1.

Similarly, if C ⊆ G, then

C∗ = {g−1 | g ∈ C}.

Proposition 2.2. Let α, β ∈ F [G] and let a, b ∈ F . Then

(a) α∗∗ = α,

(b) (aα + bβ)∗ = aα∗ + bβ∗,

(c) (αβ)∗ = β∗α∗,

Any function ∗ : A → A on an F -algebra A satisfying Proposition 2.2 is called an

involution and an algebra equipped with an involution is called a ∗-algebra. Thus, every

group ring is a ∗-algebra.

Definition 2.3. Let C ⊆ G. We define

C =
∑
g∈C

g ∈ F [G].

An element α ∈ F [G] is a simple quantity if α = C for some C ⊆ G. If C = ∅, then

C = 0.

Proposition 2.4. Let D ⊆ C ⊆ G be subsets and let H,K ≤ G be subgroups.

5



(a) (C)∗ = C∗,

(b) C rD = C −D,

(c) H ·K = |H ∩K|HK.

Let δ : F [G]→ F , called the augmentation map, be the linear map given as
∑

g∈G αgg 7→∑
g∈G αg.

Proposition 2.5. Let G be a finite group and let F be a field. Then G ∈ Z(F [G]) and for

any α =
∑
g∈G

αgg ∈ F [G], we have that αG = Gα = δ(α)G.

Proof. Let h ∈ G. We claim first that hG = Gh = G, which follows from the straightforward

computation

hG = h
∑
g∈G

g =
∑
g∈G

hg =
∑

h−1g∈G

g = G.

The last equality holds because if g ranges over all the elements of the group then h−1g also

ranges over all the elements. A similar computation shows that Gh = G, which proves the

claim. This shows also that G ∈ Z(F [G]). To finish the proof, let α ∈ F [G] and we compute

αG =

(∑
g∈G

αgg

)
G =

∑
g∈G

(αggG)

=
∑
g∈G

(αgG) =

(∑
g∈G

αg

)
G = δ(α)G. �

Definition 2.6. Define a binary operation ◦ : F [G]×F [G]→ F [G] as follows: if α, β ∈ F [G]

with α =
∑
g∈G

αgg and β =
∑
g∈G

βgg, then

α ◦ β =
∑
g∈G

(αg · βg)g.

The operation ◦ is referred to as the Hadamard product or the circle product on F [G].

Proposition 2.7. Let α, β, γ ∈ F [G], let r ∈ F , h ∈ G, and C,D ⊆ G. Then

6



(a) α ◦ (β ◦ γ) = (α ◦ β) ◦ γ,

(b) α ◦ (β + γ) = α ◦ β + α ◦ γ and

(α + β) ◦ γ = α ◦ γ + β ◦ γ,

(c) G ◦ α = α ◦G = α,

(d) α ◦ β = β ◦ α,

(e) (rα) ◦ β = α ◦ (rβ) = r(α ◦ β),

(f) C ◦D = C ∩D.

(g) C ◦ C = C,

(h) C ◦D = 0 if and only if C ∩D = ∅,

(i) (α ◦ β) · h = (α · h) ◦ (β · h),

(j) (α ◦ β)∗ = α∗ ◦ β∗.

Proof. Let α =
∑
g∈G

αgg, β =
∑
g∈G

βgg, and γ =
∑
g∈G

γgg. So,

α ◦ (β ◦ γ) = α ◦

(∑
g∈G

(βg · γg)g

)
=
∑
g∈G

[αg · (βg · γg)]g

=
∑
g∈G

[(αg · βg) · γg]g =

(∑
g∈G

(αg · βg)g

)
◦ γ = (α ◦ β) ◦ γ.

In summary, ◦ is associative because the multiplication of F is associative. This proves (a).

A similar argument holds also for (b), (d), and (e).

Next, G ◦α =
∑
g∈G

(1 ·αg)g =
∑
g∈G

αgg = α. Similarly, α ◦G = α, which gives (c). Suppose

that α = C and β = D. Thus, αg = 1 if g ∈ C and αg = 0 if g /∈ C. Similarly, βg = 1 if

g ∈ D and βg = 0 if g /∈ D. Thus, αgβg = 1 if and only if g ∈ C ∩D and αgβg = 0 if and

only if g /∈ C ∩D. Therefore, (f) holds. Properties (g) and (h) are immediate consequences

of (f).

Next,

(α · h) ◦ (β · h) =

(∑
g∈G

αggh

)
◦

(∑
g∈G

βggh

)
=
∑
g∈G

(αgβg)gh = (α ◦ β) · h,

which prove (i).

Lastly,

(α ◦ β)∗ =

(∑
g∈G

(αgβg)g

)∗
=
∑
g∈G

(αgβg)g
−1 =

∑
g∈G

αgg
−1 ◦

∑
g∈G

βgg
−1 = α∗ ◦ β∗,

7



which proves (j). �

Note that the previous proposition shows that (F [G],+, ◦) is always a commutative F -

algebra with unity G. In fact, it is easy to check that (F [G],+, ◦) is isomorphic to the

|G|-fold direct product of F . Furthermore, we have shown that (F [G],+, ◦) is a product of

fields. Hence, (F [G],+, ◦) is semisimple. The proposition also shows that (F [G],+, ◦, ∗) is

a ∗-algebra.

We say that two simple quantities C and D are disjoint if C ◦ D = 0. In light of

Proposition 2.7, C and D are disjoint if and only if C and D are disjoint.

Definition 2.8. Let α ∈ F [G], such that α =
∑

g αgg. Let supp(α) = {g ∈ G | αg 6= 0},

which is called the support of α.

For a simple quantity, supp(C) = C.

We end the section by proving a result due to Wielandt, which shows that all ∗-subalgebras

of Q[G] are semisimple. In particular, Schur rings will be semisimple.

Theorem 2.9 (Wielandt [34]). Every subalgebra of Q[G] which is closed under ∗ is semisim-

ple.

Proof. Suppose that S is a ∗-subalgebra of Q[G] but not semisimple. Let J (S) denote the

Jacobson radical of S. By Theorem A.12, J (S) 6= 0 and contains a simple left ideal Sα,

since S is artinian. But α ∈ J (S). So α(Sα) = 0, and hence αα∗α = 0. Then

αα∗αα∗ = (αα∗)(αα∗)∗ = 0.

We now claim that the only solution β ∈ Q[G] to the equation ββ∗ = 0 is 0 itself.

Suppose β =
∑

g βgg. Then the coefficient of 1 in ββ∗ is
∑

g β
2
g . Now, a sum of squares is 0

in Q if and only if βg = 0 for all g ∈ G. Thus, ββ∗ = 0 implies that β = 0.

By the above claim, it must be that αα∗ = 0. Again using the claim, we conclude that

α = 0, which contradicts J (S) 6= 0. Therefore, S is semisimple. �

Theorem 2.9 is also true for all fields F ⊆ R with the same proof. The result is also true for

F = C with the same proof, although we must redefine the involution as α∗ =
∑

g∈G αgg
−1,

where αg denotes the complex conjugate of αg.

8



2.2 Schur Rings

Definition 2.10 (Schur Ring). Let {C1, C2, . . . , Cr} be a partition of a finite group G and

let S be the subspace of F [G] spanned by C1, C2, . . . , Cr. We say that S is a Schur Ring

over G if

(i) C1 = {1};

(ii) for each i, there is a j such that C∗i = Cj;

(iii) for each i and j, we have Ci · Cj =
r∑

k=1

λi,j,kCk, for constants λijk ∈ F .

In the above equation, the λi,j,k are referred to as the structure constants of S.

For a Schur ring S over G, let D(S) = {C1, C2, . . . , Cr} denote the partition correspond-

ing to S. We will refer to the sets C1, . . . , Cr as the S-classes or the primitive sets of S.

We also say that S is the Schur ring afforded by the partition D(S). Finally, the simple

quantities C1, C2, . . . , Cr in S will be referred to as the class sums of S.

In summary of Definition 2.10, a subalgebra S ⊆ F [G] is a Schur ring if it spanned by a

basis of disjoint simple quantities, contains 1 and G, and is closed under ∗.

Notice that 2.10 (iii) implies that if a partition of G affords a Schur ring, then the product

of any two primitive sets is a union of primitive sets.

With respect to the Hadamard product, the class sums of a Schur ring S form an orthogo-

nal basis of primitive central idempotents and G acts as unity. These properties characterize

Schur rings.

Theorem 2.11 ([24] Lemma 1.3). Suppose that S is a subalgebra of F [G]. Then S is a

Schur ring if and only if S is closed under both ∗ and ◦ and contains both 1 and G.

Proof. Suppose first that S is a Schur ring with partition D(S) = {C1, C2, . . . , Cr}. By

definition, S is closed under ∗ and 1, G ∈ S. So we need only show that S is closed under ◦.

To see this we compute, using Proposition 2.7,

α ◦ β =

(
r∑
i=1

αiCi

)
◦

(
r∑
i=1

βiCi

)
=

r∑
i=1

αiβi(Ci ◦ Ci) =
r∑
i=1

αiβiCi ∈ S,

9



which proves the first direction.

Next, suppose that S is closed under ∗ and ◦. Now, consider the ring structure S◦ =

(S,+, ◦). Then S◦ is a subalgebra of F [G]◦ = (F [G],+, ◦). Clearly, F [G] is isomorphic

to a |G|-fold product of F . Thus, F [G]◦ is commutative and semisimple. Since F [G]◦

is commutative, every subalgebra of F [G]◦ is commutative and semisimple, including S◦.

Therefore, there exists pairwise-orthogonal primitive idempotents τi ∈ S◦ such that

S◦ = (S◦ ◦ τ1)⊕ (S◦ ◦ τ2)⊕ . . .⊕ (S◦ ◦ τr). (2.1)

Since τi◦τi = τi, it must be that τi is a simple quantity, that is, there exist some Ci ⊆ G such

that τi = Ci. Since τi ◦ τj = 0 for i 6= j, we have Ci ∩ Cj = ∅. The primitivity of τi requires

that S ◦ τi is a field extension of F contained in
∏

g∈Ci(F [G]◦ ◦ g). Since F [G]◦ ◦ g ∼= F

for each g ∈ G, it must be that S◦ ◦ τi ∼= F for each i. Equation (2.1) then shows that

{C1, C2, . . . , Cr} is a F -basis for S◦. Next, since S is closed under ∗, the involution ∗ is a

ring automorphism S◦ → S◦ satisfying (α ◦ β)∗ = α∗ ◦ β∗ by Proposition 2.7. Thus, (Ci)
∗ is

also a primitive idempotent. Since {C1, C2, . . . , Cr} contains all the primitive idempotents

of S◦, (Ci)
∗ = Cj for some j.

If additionally G ∈ S, then {C1, C2, . . . , Cr} must also form a partition of G. Lastly, if

1 ∈ S, then S is a Schur ring over G. �

Lemma 2.12. Let S be a Schur ring over G. Let g ∈ G such that {g} ∈ D(S). Then

gC,Cg ∈ D(S) for all C ∈ D(S).

Proof. Let D(S) = {C1, C2, . . . , Cr}. Then gCi =
∑

k λkCk for S-classes Ck. Now, g−1 =

g∗ ∈ S. Thus, Ci =
∑

k λkg
−1Ck. Since Ck ∩Cj = ∅ implies that g−1Ck ∩ g−1Cj = ∅, we see

that Ci = g−1Ck for some k. Therefore, gCi = Ck. �

Proposition 2.13. Let S be a Schur ring over G. Let H = {h | {h} ∈ D(S)}. Then

H ≤ G.

Proof. Clearly, 1 ∈ H. Also, if {h} ∈ D(S), then {h−1} = {h}∗ ∈ D(S). So, H is closed

under inverses. Lastly, if {g}, {h} ∈ D(S), then {gh} ∈ D(S) by the previous lemma. So,

H is closed under multiplication and hence is a subgroup of G. �

10



We next provide a few examples of Schur rings.

Example 2.14. Every finite group algebra F [G] is a Schur ring, where each class of D(F [G])

consists of only a single element. For this reason, Schur rings may be thought of as a

generalization of group rings. Naturally, F [G] is the largest possible Schur ring over G, that

is, it is the unique Schur ring which contains all other Schur rings of G. �

Example 2.15. At the other extreme, consider the partition G = {1} ∪ (G r {1}) and

let S be the subring of F [G] generated by these two class sums. Certainly, 1∗ = 1 and

(G−1)∗ = G−1. Also, (G−1)2 = G
2−2G+1 = (|G|−2)G+1 = (|G|−2)(G−1)+(|G|−1).

Therefore, S is a Schur ring, which we refer to as the trivial Schur ring. The trivial Schur

ring is always contained in the center of F [G] and hence is a commutative ring, even if G

is nonabelian. The trivial Schur ring will be denoted as F [G]0. A complete multiplication

table of F [G]0 can be found in Table 2.1.

Table 2.1: Multiplication Table for F [G]0

τ1 = 1 τ2 = G− 1

τ1 τ1 τ2

τ2 τ2 (|G| − 1)τ1 + (|G| − 2)τ2

The trivial Schur ring F [G]0 is the unique Schur ring of F [G] of smallest dimension, that

is, F [G]0 is the unique Schur ring contained in all Schur rings over G. When G 6= 1, F [G]0

is the unique Schur ring of dimension 2. �

Example 2.16. Let G = S3, the symmetric group on 3 elements. Let

D = {{1}, {(12)}, {(123), (321)}, {(13), (23)}}.

This partition of G affords a Schur ring as shown in Table 2.2. �

Example 2.17. Let G = Z7 = 〈z〉, the cyclic group of order 7. Let

D = {{1}, {z, z2, z4}, {z3, z5, z6}}.

11



Table 2.2: Multiplication Table for the Schur Ring in Example 2.16

τ1 = 1 τ2 = (12) τ3 = (123) + (321) τ4 = (13) + (23)

τ1 τ1 τ2 τ3 τ4

τ2 τ2 τ1 τ4 τ3

τ3 τ3 τ4 2τ1 + τ3 2τ2 + τ4

τ4 τ4 τ3 2τ2 + τ4 2τ1 + τ3

This partition of G generates a Schur ring as shown in Table 2.3. �

Table 2.3: Multiplication Table for the Schur Ring in Example 2.17

τ1 = 1 τ2 = z + z2 + z4 τ3 = z3 + z5 + z6

τ1 τ1 τ2 τ3

τ2 τ2 τ2 + 2τ3 3τ1 + τ2 + τ3

τ3 τ3 3τ1 + τ2 + τ3 2τ2 + τ3

Example 2.18. Let H ≤ G and let S be the subspace of F [G] afforded by the partition

D(S) = {{1}, Hr{1}, GrH}. In particular, S = SpanF 〈1, H−1, G−H〉 = SpanF 〈1, H,G〉.

Notice that H · H = |H| · H, H · G = G · H = |H| · G, and G
2

= |G| · G. Also, H
∗

= H.

Theorem 2.11 then shows that S is a Schur ring.

This kind of Schur ring is our first example of a wedge product of Schur rings and is the

simplest kind of wedge product. Wedge products are defined later in Example 2.58. �

Example 2.19 (Lattice Schur Rings). Let G be a finite group and L be a sublattice of the

lattice of normal subgroups of G. Then we define

S(L) = SpanF{H | H ∈ L}.

12



Since H ◦ K = H ∩K and H · K = |H ∩ K|HK for H,K ≤ G, S(L) is a Schur ring, by

Theorem 2.11. For this reason, S(L) will be called a lattice Schur ring. It should be

mentioned that D(S) 6= {H : H ∈ L}.

For any finite group G, the trivial Schur ring is a lattice Schur ring, corresponding to

the lattice {1, G}. The Schur ring from Example 2.18 (in the case that H E G) is another

example of a lattice Schur ring, using the lattice {1, H,G}. �

Example 2.20 (Orbit Schur Rings). Let H ≤ Aut(G). Let

F [G]H = {α ∈ F [G] | σ(α) = α, for all σ ∈ H},

that is, it is the largest subring of F [G] which is fixed by the automorphism group H.

We claim that F [G]H is a Schur ring of G. By Theorem B.3, F [G]H is an F -subalgebra

of F [G] with unity that is generated by the periods of the elements of G with respect to

H. In particular, F [G]H has a basis of disjoint simple quantities whose sum is G. Since

σ(g−1) = σ(g)−1, we have that C∗ ∈ D(F [G]H) for all primitive sets C. Therefore, F [G]H is

a Schur ring, as claimed, whose partition of G is the H-orbits of G. The Schur ring F [G]H

is called an orbit Schur ring.

The group ring F [G] is an orbit Schur ring with respect to H when H = 1 ≤ Aut(G),

that is, F [G] = F [G]Id. �

Example 2.21 (Rational Schur Rings). LetR(F [G]) = F [G]Aut(G), that is, the Schur ring

whose partition is the automorphism classes of G. Any Schur ring contained in R(F [G]) is

called a rational Schur ring since it is fixed by all group automorphisms. Rational Schur

rings have been well studied in the literature, especially in the case of cyclic groups. It

was observed by Muzychuk in [23] that for cyclic groups the lattice Schur rings correspond

exactly with the rational Schur rings. Understanding the rational Schur rings is useful in

developing structure theorems of Schur rings over cyclic groups [15, 23]. �

Example 2.22 (Central Schur Rings). Let G be any finite group and consider

S = F [G]Inn(G), where Inn(G) is the group of inner automorphisms of G. So, S is a Schur

ring whose partition D(S) is the collection of conjugacy classes. In fact, S = Z(F [G]), since

an element α ∈ Z(F [G]) if and only if gα = αg for all g ∈ G if and only if g−1αg = α
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for all g ∈ G if and only if α ∈ F [G]Inn(G). Therefore, the center of a group ring is always

a Schur ring. Any Schur ring contained in Z(F [G]) is called a central Schur ring. The

importance of the structure of the group ring F [G] and its center Z(F [G]) is readily seen in

representation theory. �

Example 2.23 (Symmetric Schur Rings). Let G be a finite group. Now, ∗ ∈ Aut(G) if

and only if G is abelian. Thus, if G is abelian, the subalgebra F [G]〈∗〉 is a Schur ring of G

whose classes are of the form Cg = {g, g−1}. We will denote this Schur ring by S(F [G]).

We say an element α of F [G] is symmetric if α∗ = α. Thus, S(F [G]) is the collection of all

symmetric elements of F [G]. Any Schur ring contained in S(F [G]) is called a symmetric

Schur ring. For example, lattice Schur rings are always symmetric. �

Example 2.24. When G is a nonabelian group, there is no guarantee that the collection

of symmetric elements forms a subring of F [G]. For example, let G = S3 and consider the

symmetric elements of Q[G]. Since transpositions have order 2, each transposition in S3 is

its own inverse. Thus, S(Q[G]) contains all transpositions of G. But the product (12) · (23)

is a 3-cycle and not contained in S(Q[G]), since 3-cycles have order 3. So, S(Q[G]) is not a

ring and hence not a Schur ring.

On the other hand, let G = Q8, the quaternion group of 8 elements. For Q8, the inverse

classes of G are the same as the conjugacy classes of G. Thus, S(Q[G]) is the center of Q[G],

which is always a Schur ring. In particular, if Cx denotes the conjugacy class of x ∈ G, then

D(S) = {C1, C-1, Ci, Cj, Ck} and the multiplication table for the Schur ring is given in Table

2.4. �

Proposition 2.25. Let S and T be Schur rings over G. Then S ∩ T is a Schur ring over

G.

Proof. Certainly, 1, G ∈ S ∩ T . If α ∈ S, then α∗ ∈ S. Likewise, if α ∈ T , then α∗ ∈ T . So,

α∗ ∈ S∩T whenever α ∈ S∩T . Lastly, suppose α, β ∈ S∩T , then α◦β ∈ S, T by Theorem

2.11. This implies that α ◦ β ∈ S ∩ T . Therefore, S ∩ T is a Schur ring, again by Theorem

2.11. �

The set of all partitions of a finite group G forms a lattice, defined with ∧ and ∨ given

as follows: if P and Q are partitions of G, then P ∧Q is the largest partition of G contained

14



Table 2.4: Multiplication Table of Z(Q[Q8])

τ1 = C1 τ-1 = C-1 τi = Ci τj = Cj τk = Ck

τ1 τ1 τ-1 τi τj τk

τ-1 τ-1 τ1 τi τj τk

τi τi τi 2τ1 + 2τ-1 2τk 2τj

τj τj τj 2τk 2τ1 + 2τ-1 2τi

τk τk τk 2τj 2τi 2τ1 + 2τ-1

both in P and Q and P ∨ Q is the smallest partition of G which contains both P and Q.

Proposition 2.25 then says that D(S ∩ T ) = D(S)∧D(T ). On the other hand, D(S)∨D(T )

does not afford a Schur ring in general.

Example 2.26 (Dot Products). Let S and T be Schur rings over G and H, respectively.

We naturally can view G and H as subgroups of G×H. Let

D = {CD | C ∈ D(S), D ∈ D(T )}, (2.2)

that is, D is the partition of G × H generated by all the possible products of S- and T -

classes. Let

S · T = SpanF{CD | C ∈ D(S), D ∈ D(T )} = SpanF{C ·D | C ∈ D(S), D ∈ D(T )},

the subspace of F [G × H] afforded by D. Since both D(S) and D(T ) contain the identity

class {1}, S · T contains an isomorphic copy of S and T and they centralize each other in

S · T . Furthermore, 1 ∈ S · T and G×H = G ·H ∈ S · T . For any S- and T -classes C and

D, respectively, (C ·D)∗ = D
∗ · C∗ = C

∗ ·D∗ ∈ S · T . Thus, S · T is closed under ∗. Lastly,

if C1, C2 ∈ D(S) and D1, D2 ∈ D(T ), then C1 · C2 ∈ S, D1 ·D2 ∈ T and

(C1 ·D1)(C2 ·D2) = (C1 · C2)(D1 ·D2) ∈ S · T.
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Therefore, S · T is a Schur ring over G×H. We refer to S · T as the dot product Schur

ring of S and T or the direct product Schur ring. By some authors, S · T is denoted as

S × T .

It is a fact that F [G×H] ∼= F [G]⊗F F [H], as F -algebras. Using similar reasoning, it is

true that S · T ∼= S ⊗F T , as F -algebras. Because of this isomorphism, S · T is sometimes

referred to as the tensor product Schur ring of S and T and denoted as S ⊗ T .

The Schur ring S · T also has the property that it is the smallest Schur ring of G × H

which contains the subalgebras S and T and hence is the composite or join of the two Schur

rings. �

Lemma 2.27. Let G1, G2 be finite groups and Hi ≤ Aut(Gi). Then

Q[G1 ×G2]
H1×H2 = Q[G1]

H1 ·Q[G2]
H2 .

Proof. Let C be the automorphism class of (g1, g2) with respect to H1 ×H2. Let Ci be the

automorphism class of gi with respect to Hi, i = 1, 2. Then (g1, g2) is automorphic to (g′1, g
′
2)

under H1 ×H2 if and only if g1 is automorphic to g′1 under H1 and g2 is automorphic to g′2

under H2 if and only if C = C1 × C2. The result then follows. �

We present now two more constructions of Schur rings which generalize the method of

dot products from Example 2.26.

Example 2.28 (Central Products). Let G be a finite group. Let H,K ≤ G such that

G = HK and H and K centralize each other, that is, [H,K] = 1. Then G = H ∗Z K is

the central product of H and K. As a consequence, H,K E G. Let L = H ∩K. Certainly,

L ≤ Z(G).

Let S and T be Schur rings over H and K, respectively, such that F [L] ⊆ S ∩ T , that is,

the restriction of S and T to the subgroup L is the whole group ring on L. Let

S ∗Z T = Span{CD | C ∈ D(S), D ∈ D(T )}.

We claim that S ∗Z T is a Schur ring over G.
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Let

D = {CD | C ∈ D(S), D ∈ D(T )}. (2.3)

So, S ∗Z T = SpanF{B | B ∈ D}. We first show that D forms a partition of G. Let

g ∈ G. Since G = HK, there exists h ∈ H, k ∈ K such that g = hk. Now, there exists

some C ∈ D(S) and D ∈ D(T ) such that h ∈ C and k ∈ D. Thus, g ∈ CD. Suppose

next that there exists sets C1, C2 ∈ D(S) and D1, D2 ∈ D(T ) such that g ∈ C1D1 ∩ C2D2.

In particular, there exists elements hi ∈ Ci, ki ∈ Di such that g = h1k1 = h2k2. Then

h−12 h1 = k2k
−1
1 ∈ H ∩ K = L. Since h−12 h1 ∈ L, C2(h

−1
2 h1) ∈ D(S). This implies that

C2(h
−1
2 h1) = C1. Likewise, (k2k

−1
1 )−1D2 = D1. Therefore,

C2D2 = C2(h
−1
2 h1)(k2k

−1
1 )−1D2 = C1D1.

Therefore, D forms a partition on G.

Since {1} ∈ D(S)∩D(T ), {1} ∈ D. Next, if CD ∈ D, then (CD)∗ = D∗C∗ = C∗D∗ ∈ D

since C∗ ∈ D(S) and D∗ ∈ D(T ). To show that S ∗Z T is a Schur ring, it remains to prove

that S ∗Z T is a ring. For this purpose, we will first show that C · D = µCD, for some

positive integer µ.

To prove this claim, consider

H ·K =

 ∑
C∈D(S)

C

 ∑
D∈D(T )

D

 =
∑
C,D

C ·D (2.4)

= |H ∩K|HK = |L|
∑
B∈D

B. (2.5)

Clearly, supp
(
C ·D

)
⊆ CD, and, by construction, every B ∈ D is of the form B = CD for

some C ∈ D(S) and D ∈ D(T ). By comparing coefficients in (2.4) and (2.5), we get

|L|B =
∑
CD=B

C ·D.

Suppose that C1D1 = B = C2D2. Then there exists some ` ∈ L such that C1 = C2` and

D1 = `−1D2, by the work done above. Thus, C2 ·D2 = (C2`)·(`−1D2) = C2`·`−1D2 = C1 ·D1.
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Therefore, if n is the number of terms in the sum
∑

CD=B C ·D, then

|L|CD = n(C ·D).

Then the previous equation implies that

C ·D =
|L|
n
CD = µCD.

Since the coefficients of each group element in C · D necessarily are positive integers, this

proves the claim.

Since S and T are Schur rings, there exists structure constants λijk and κrst such that

Ci · Cj =
∑
k

λijkCk and Dr ·Ds =
∑
t

κrstDt.

Then

(
Ci ·Dr

)
·
(
Cj ·Ds

)
=

(
Ci · Cj

)
·
(
Dr ·Ds

)
=

(∑
k

λijkCk

)
·

(∑
t

κrstDt

)
=

∑
k,t

(λijkκrst)Ck ·Dt =
∑
k,t

(λijkκrstµkt)CkDt ∈ S ∗Z T.

Therefore, S ∗Z T is a Schur ring, which we refer to as the central product Schur ring of

S and T . By comparing equations (2.2) and (2.3) and recognizing that H ∗Z K = H ×K

when L = 1, we note that S ∗Z T generalizes the construction in Example 2.26. Thus, we

may also denote S ∗Z T as S · T . �

Example 2.29 (Semi-direct Products). Let G be a finite group. Let H E G, K ≤ G such

that G = HK and H ∩K = 1. Then G = H oK is the semi-direct product of H and K.

As a consequence, conjugation of K on H induces a homomorphism ϕ : K → Aut(H).

Let S and T be Schur rings over H and K, respectively, such that S ∩ F [H]ϕ(K) = S,

that is, S is ϕ(K)-rational. Let

S o T = Span{CD | C ∈ D(S), D ∈ D(T )}.
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We claim that S o T is a Schur ring over G.

Let D = {CD | C ∈ D(S), D ∈ D(T )}. Since H ∩ K = 1, we see D is a partition of

G. Since S is ϕ(K)-rational, the classes of S commute with the classes of T in F [G]. So,

as in the case of direct and central products, 1, G, (CD)∗ ∈ S o T for all C ∈ D(S) and

D ∈ D(T ). Thus, it remains to prove that S o T is a ring. But as in the case of direct

products, CD = C · D = D · C. Thus, S o T is closed under multiplication. Therefore,

S o T is a Schur ring, which we refer to as the semi-direct product Schur ring of S and

T . Like the last example, S o T also generalizes the construction in Example 2.26. Thus,

we may also denote S o T as S · T . �

We now will end this section by proving some elementary propositions about Schur rings

that will be useful in future proofs. All of these results are due to Wielandt [35] and will be

built upon a fundamental lemma of Schur rings, Lemma 2.31. This lemma is preceded by a

definition.

Definition 2.30. Let S be a Schur ring over G and let C ⊆ G. We say that C is an S-set

of G if C ∈ S. If C is an S-set and a subgroup of G, then we say that C is an S-subgroup

of G.

The following is clear.

Lemma 2.31. Let G be a finite group and let S be a Schur ring over G. Let α ∈ S such

that α =
∑

g∈G αgg. Then {g ∈ G | αg = c} is an S-set for each c ∈ F . �

We now begin with the first of the propositions.

Proposition 2.32. Let S be a Schur ring over G and let α =
∑

g∈G αgg ∈ S. Then supp(α)

is an S-set.

Proof. Let Kc = {g ∈ G | αg = c} for c ∈ F . By Lemma 2.31, Kc ∈ S for all c ∈ F . Then

supp(α) =
⋃

g∈supp(α)

Kαg =
∑

αg :g∈supp(α)

Kαg ∈ S.

Therefore, supp(α) is an S-set. �
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Proposition 2.33. Let S be a Schur ring over G, let α ∈ S, and let H = 〈supp(α)〉. Then

H ∈ S. In particular, if C ∈ D(S), then 〈C〉 is an S-subgroup.

Proof. Let L = supp(α). Since H = 〈L〉 is finite, there exists some integer n sufficiently

large such that H =
⋃n
i=1 L

i. Since charF = 0, H = supp
(∑n

i=1 L
i
)

, which is an S-set by

Proposition 2.32. �

Proposition 2.34. Let S be a Schur ring over G, let α =
∑

g∈G αgg ∈ S, and let

f : F → F be any function. Then f [α] =
∑

g∈G f(αg)g ∈ S.

Proof. Let Kc = {g ∈ G | αg = c}. Then Kc ∈ S for each c ∈ F . Now, if α =
∑
cKc, then

f [α] =
∑
f(c)Kc ∈ S. �

Proposition 2.35. Let S be a Schur ring over G. Let α ∈ S and Stab(α) = {g ∈ G | αg =

α}. Then Stab(α) is an S-subgroup of G.

Proof. Let α =
∑

g∈G αgg ∈ S, let Kc = {g ∈ G | αg = c} for c ∈ F , and let Mc = {g ∈

G | Kcg = Kc}, that is, Mc is the subset of G which permutes Kc. Let g ∈ Mc. Then

there exists |Kc| many solutions (h, k) ∈ Kc×Kc to the equation hg = k. But each solution

is also a solution to the equation g = kh−1. Thus, the coefficient of g in Kc · Kc
∗

is |Kc|.

Conversely, if the coefficient of g in Kc · Kc
∗

is |Kc|, then there are |Kc| distinct solutions

(h, k) ∈ Kc × Kc to g = kh−1, i.e. hg = k. Thus, Kcg = Kc and g ∈ Mc. Then applying

Lemma 2.31 to Kc ·Kc
∗

and the coefficient |Kc|, we conclude that Mc ∈ S. Now,

Stab(α) =
⋂

g∈supp(α)

Mαg = ©
g∈supp(α)

Mαg ∈ S. �

Proposition 2.36. Let G be an abelian group, let S be a Schur ring over G, and let α =∑
g αgg ∈ S. Define α(m) =

∑
g αgg

m for m ∈ Z. Then α(m) ∈ S for every integer m

coprime to |G|. Furthermore, define C(m) = {gm | g ∈ C} for each C ⊆ G and m ∈ Z. Then

if C ∈ D(S), then C(m) ∈ D(S) for every integer m coprime to |G|.

Proof. Clearly, the map (m) : F [G]→ F [G] is linear, so it suffices to prove the statement for

a simple quantity α. Also, we note that α(−1) = α∗ and α(mm′) = (α(m))(m
′). Thus, it suffices

to prove the statement for m = p, a prime number not dividing |G|.
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Since α is simple, there exists some subset C ⊆ G such that α = C. Since G is abelian,

F [G] is a commutative ring and the polynomial congruence

(∑
g∈C

g

)p

≡
∑
g∈C

gp (mod p)

holds. Let fp : F → F be the function defined as

fp(n) =

n mod p, n ∈ Z

0, otherwise.

Thus, fp[α
(p)] = fp[α

p] ∈ S by Proposition 2.34. Now, when p - |G|, the map g 7→ gp is a

group automorphism. So, α(p) is a simple quantity and α(p) = fp[α
(p)] ∈ S.

Let C be a primitive set of S. By the above, we see that C(m) is an S-set. If C(m) is not

primitive, then let D be one of the primitive subsets of C(m). In particular, |D| < |C(m)| =

|C|. Let 1 = am + b|G| for some integers a, b. Then D(a) is an S-set, but D(a) ( C, which

contradicts C being primitive. Therefore, C(m) must also be primitive. �

Proposition 2.37. Let G be a cyclic group and let S be a Schur ring over G. Let σ ∈ Aut(G)

and α ∈ S. Then σ(α) ∈ S. In particular, if C ∈ D(S), then σ(C) ∈ D(S).

Proof. Since every automorphism σ is of the form g 7→ gm for some integer m relatively

prime to |G|, the result follows immediately from the previous proposition. �

Definition 2.38. A Schur ring S over a finite group G is primitive if the only S-subgroups

are 1 and G.

For primitive Schur rings, every non-trivial primitive set necessarily generates the whole

group. The trivial Schur ring is a typical example of a primitive Schur ring. As Wielandt

has shown, for many abelian groups, this is the only example.

Theorem 2.39 (Wielandt). If G is a finite abelian group not of prime order with a non-

trivial, cyclic Sylow subgroup, then the only primitive Schur ring over G is the trivial Schur

ring.
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Proof. Its proof can be found in [35] or in [29, Theorem 13.9.1]. �

Example 2.40. Let G = Z3 × Z3 = 〈a, b〉 and let

S = SpanQ{1, a+ a2 + b+ b2, ab+ a2b2 + ab2 + a2b}.

Then S is an orbit Schur ring afforded by the automorphism subgroup generated by the

automorphism σ : a 7→ b, b 7→ a2. Now, the set of S-subgroups is simply {1, G}, that is, S is

primitive. Of course, G has no nontrivial, cyclic Sylow subgroup. The multiplication table

of S is shown in Table 2.5. �

Table 2.5: Multiplication Table for the Schur Ring in Example 2.40

τ1 = 1 τ2 = a+ a2 + b+ b2 τ3 = ab+ a2b2 + ab2 + a2b

τ1 τ1 τ2 τ3

τ2 τ2 4τ1 + τ2 + 2τ3 2τ2 + 2τ3

τ3 τ3 2τ2 + 2τ3 4τ1 + 2τ2 + τ3

When G = Zp, for some prime p, every Schur ring is necessarily primitive. These Schur

rings will be considered in Theorem 4.21.

2.3 Cayley Maps

Now that we have developed many of the elementary properties of Schur rings, it is natural

next to compare Schur rings via homomorphisms. Seeing that Schur rings are subalgebras

of F [G], it is natural to relate them via ring or algebra homomorphisms. An algebra homo-

morphism is a map which preserves the ring and linear structure of the Schur ring. More

specifically, let S and T be Schur rings over G and H, respectively, and let ϕ : S → T be an

algebra homomorphism. Let α, β ∈ S and let c ∈ F . Then

ϕ(α + β) = ϕ(α) + ϕ(β),
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ϕ(cα) = cϕ(α),

ϕ(α · β) = ϕ(α) · ϕ(β).

Thus, ϕ(S) is a subalgebra of T . Unfortunately, algebra homomorphisms are not sufficient to

study Schur rings. For example, for any two finite groups G and H, we have F [G]0 ∼= F [H]0

as F -algebras. To see this, note that F [G]0 = (G) ⊕
(

1− 1
|G|G

)
as simple ideals. Now,

(G) ∼=
(

1− 1
|G|G

)
∼= F , as F -algebras, independent of the group G. For another example,

consider the group algebras C[Z4] and C[Z2×Z2]. As C-algebras, C[Z4] ∼= C[Z2×Z2] ∼= C4.

Thus, the appropriate homomorphisms of Schur rings need to be stronger than mere algebra

homomorphisms.

Although ϕ(S) is an algebra, by Theorem 2.11, ϕ(S) needs to also be closed under ∗

and ◦ in order to be a Schur ring. An arbitrary algebra homomorphism need not preserve

these two additional operations, as illustrated above. Thus it is natural to define a Schur

homomorphism to be a linear map ϕ : S → T between Schur rings S and T such that:

ϕ(α · β) = ϕ(α) · ϕ(β),

ϕ(α ◦ β) = ϕ(α) ◦ ϕ(β),

ϕ(α∗) = ϕ(α)∗,

for all α, β ∈ S. If ϕ : S → T is also bijective, then ϕ is a Schur Isomorphism.

An immediate consequence of this type of homomorphism is that the image ϕ(S) is a

Schur ring over some T -subgroup, specifically supp(ϕ(G)). Schur homomorphisms were stud-

ied by Muzychuk in [24], in which it was proven that Schur rings over a cyclic group are Schur

isomorphic if and only if they coincide. Tamaschke also considered Schur homomorphisms2.1

in his attempt to define a category of Schur rings in [31]. These are only a few examples

from the literature.

Suppose S is a Schur ring over G. Considering the ring structure S◦ = (S,+, ◦), S◦ ∼= Qn,

where n = dimS, and hence S◦ is semisimple. Thus, any homomorphism ϕ : S◦ → T◦ is

simply a function from the S-classes into the T -classes. Thus, if ϕ is a Schur isomorphism,

2.1Tamaschke’s original definition of a homomorphism of Schur algebras differs from our presentation,
although the two definitions are equivalent.

23



then ϕ induces a bijection between the primitive sets of S with the primitive sets of T .

From a categorical sense, this class of morphisms is appropriate; that is, Schur maps

are exactly the homomorphisms which preserve the operations of Schur rings. On the other

hand, Schur rings were originally used to study groups and much of the algebraic structure

of Schur rings depends on the group, so it would be useful for the homomorphisms of Schur

rings to also relate to the group. It is possible for nonisomorphic groups to have Schur

isomorphic Schur rings, e.g. Z8 and D4, the dihedral group of order 8, both have isomorphic

Schur rings of dimension three. Instead of Schur homomorphisms, we will study maps which

preserve the group structure of Schur rings. These maps will be algebra homomorphisms

but will not necessarily preserve Hadamard multiplication. Under certain circumstances, the

image of a Schur ring will be a Schur ring. Thus, these maps will sometimes provide a class

of more useful homomorphism of Schur rings. We introduce now the notion of a Cayley map.

Definition 2.41. Let G and H be groups, let A and B be subalgebras of F [G] and F [H],

respectively, and let f : A → B be an F -algebra homomorphism. If there exists an F -

algebra homomorphism ϕ : F [G] → F [H] such that ϕ|A = f and ϕ|G : G → H is a group

homomorphism, then we say that f is a Cayley homomorphism. A bijective Cayley

homomorphism is a Cayley isomorphism.

For example, let G be a group, let H be a subgroup of G, and let σ ∈ Aut(G). Then the

group algebras F [H] and F [σ(H)] are Cayley isomorphic in F [G]. If S is a Schur ring over

G, then S and σ(S) are Cayley isomorphic.

Let ϕ : G → H be a group homomorphism. Let ϕ also denote its linear extension

ϕ : F [G]→ F [H]. Let g ∈ G. Then

ϕ(g∗) = ϕ(g−1) = ϕ(g)−1 = ϕ(g)∗.

By linearity, ϕ(α∗) = ϕ(α)∗ for all α ∈ F [G]. In particular, a Cayley map is a ∗-algebra

homomorphism, that is, Cayley maps always preserve the involution structure of F [G]. Like-

wise, Cayley maps preserve the involution structure of any ∗-subalgebra of F [G], including

Schur rings.

Let δ : F [G] → F be the augmentation map, which is a Cayley map induced from the
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trivial map δ : G→ 1, and let α ∈ F [G], with α =
∑

g αgg. Then

δ(α ◦ α) = δ

(∑
g∈G

α2
gg

)
=
∑
g∈G

α2
g

and

δ(α) ◦ δ(α) =

(∑
g∈G

αg

)
◦

(∑
g∈G

αg

)
=

(∑
g∈G

αg

)2

.

This shows that δ does not preserve Hadamard products in general and that Cayley maps

are typically not Schur homomorphisms. The next proposition determines a necessary and

sufficient condition for when a Cayley map is a Schur map.

Proposition 2.42. Let ϕ : F [G]→ F [H] be a Cayley map. Then ϕ is injective if and only

if ϕ(α ◦ β) = ϕ(α) ◦ ϕ(β) for all α, β ∈ F [G].

Proof. Suppose that ϕ is injective. Let α =
∑

g∈G αgg and β =
∑

g∈G βgg. Then

ϕ(α ◦ β) = ϕ

(∑
g∈G

αgβgg

)
=
∑
g∈G

αgβgϕ(g)

=

(∑
g∈G

αgϕ(g)

)
◦

(∑
g∈G

βgϕ(g)

)
, since ϕ(g) occurs only once in the above sum,

= ϕ

(∑
g∈G

αgg

)
◦ ϕ

(∑
g∈G

βgg

)
= ϕ(α) ◦ ϕ(β).

Conversely, suppose that ϕ is not injective. Let K = ker(ϕ|G) 6= 1. Then

ϕ(G ◦G) = ϕ(G) = |K|ϕ(G)

6= |K|2ϕ(G) = |K|2(ϕ(G) ◦ ϕ(G)) = (|K|ϕ(G)) ◦ (|K|ϕ(G))

= ϕ(G) ◦ ϕ(G),

which proves the remaining direction. �

Corollary 2.43. Every Cayley isomorphism is a Schur isomorphism. �

Cayley isomorphic is a strictly stronger condition than Schur isomorphic. For example,
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consider the partition

{1}, {z4}, {z, z2, z3, z5, z6, z7}

over Z8 = 〈z〉. This partition affords a Schur ring over Z8, which we denote as S. This Schur

ring is Schur isomorphic to the Schur ring T over D4 associated to the partition

{1}, {s}, {r, r2, r3, rs, r2s, r3s}.

Here D4 is the dihedral group of order 8, D4 = 〈r, s | r4, s2, s−1rs = r−1〉. Now, if S is

Cayley isomorphic to T , then there exists some group homomorphism ϕ : Z8 → D4 such

that ϕ(S) = T . Since ϕ(S) contains D4, ϕ must be surjective. Considering the orders

of the groups, ϕ must also be injective, that is, ϕ : Z8 → D4 is a group isomorphism,

which is absurd. Therefore, S and T are Schur isomorphic but not Cayley isomorphic.

In particular, Schur isomorphic Schur rings associated to nonisomorphic groups cannot be

Cayley isomorphic by this same argument.

The following formula was proven in [24].

Proposition 2.44. Let ϕ : G → H be a group homomorphism with kerϕ = K. Let α, β ∈

F [G]. Then

ϕ(α) ◦ ϕ(β) =
1

|K|
ϕ((α ·K) ◦ (β ·K)).

Proof. Suppose that α =
∑

g αgg and β =
∑

g βgg. Then, the left hand side is

ϕ(α) ◦ ϕ(β) = ϕ

(∑
g∈G

αgg

)
◦ ϕ

(∑
g∈G

βgg

)

=

 ∑
h∈ϕ(G)

 ∑
ϕ(g)=h

αg

h

 ◦
 ∑
h∈ϕ(G)

 ∑
ϕ(g)=h

βg

h


=

∑
h∈ϕ(G)

 ∑
ϕ(g)=h

αg

 ∑
ϕ(g)=h

βg

h.
The right hand side is

1

|K|
ϕ((α ·K) ◦ (β ·K)) =

1

|K|
ϕ

[(∑
g′∈G

(∑
g∈g′K

αg

)
g′

)
◦

(∑
g′∈G

(∑
g∈g′K

βg

)
g′

)]
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=
1

|K|
ϕ

[∑
g′∈G

(∑
g∈g′K

αg

)(∑
g∈g′K

βg

)
g′

]

=
|K|
|K|

∑
h∈ϕ(G)

 ∑
ϕ(g)=h

αg

 ∑
ϕ(g)=h

βg

h. �

Corollary 2.45. Let ϕ : G → H be a group homomorphism with kerϕ = K. Let S be

a Schur ring over G such that K ∈ S. Then ϕ(S) is a Schur ring over a subgroup of H.

Furthermore, if ϕ is surjective, then ϕ(S) is a Schur ring over H.

Proof. It is always the case that ϕ(S) is a ∗-subalgebra of F [H] for any Schur ring over G

without further assumption. By Proposition 2.44, ϕ(S) is closed under ◦. Thus, ϕ(S) is a

Schur ring over ϕ(G) by Theorem 2.11. �

Corollary 2.45 was originally proved by Leung and Ma [15] using a different proof.

As an example, if G = H1 × H2, π1 : G → H1 and π2 : G → H2 are the canonical

projections, and S1 and S2 are Schur rings over H1 and H2, respectively, then πi(S1 ·S2) = Si

for i = 1, 2.

As stated earlier in Example 2.19, for any lattice L of normal subgroups of a finite

group G, S(L) is a Schur ring over G spanned by the elements of L. Let N E G and let

ϕ : G→ G/N be the quotient map. Suppose that L is a distributive lattice, that is,

A ∩ (BC) = (A ∩B)(A ∩ C) and A(B ∩ C) = (AB) ∩ (AC),

for all A,B,C ∈ L. Then we claim that ϕ(S(L)) is a Schur ring over G/N , even if N /∈ L.

As in the proof of Corollary 2.45, it suffices to show that ϕ(S(L)) is closed under ◦. If

K1, K2 ∈ L, then

K1N ◦K2N = K1N ∩K2N = (K1 ∩K2)N =
1

|(K1 ∩K2) ∩N |
K1 ∩K2 ·N

=
1

|K1 ∩K2 ∩N |
(K1 ◦K2) ·N,
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where the second equality holds by the distributivity of the lattice. Then

ϕ(K1) ◦ ϕ(K2) =
1

|N |
ϕ((K1 ·N) ◦ (K2 ·N)), by Proposition 2.44,

=
|K1 ∩N ||K2 ∩N |

|N |
ϕ(K1N ◦K2N)

=
|K1 ∩N ||K2 ∩N |
|N ||K1 ∩K2 ∩N |

ϕ((K1 ◦K2) ·N)

= |(K1 ∩N)(K2 ∩N)|ϕ(K1 ◦K2) ∈ ϕ(S(L)).

Therefore, ϕ(S(L)) is closed under ◦, which proves the claim. This fact is reported in the

next proposition.

Proposition 2.46. Let G be a finite group and let L be a distributive lattice of normal

subgroups of G. Let ϕ : G→ H be a group homomorphism. Then ϕ(S(L)) is a lattice Schur

ring over a subgroup of H. �

Let G be a finite cyclic group. Then the lattice of subgroups of G is distributive, and

hence any sublattice is also distributive. Thus, ϕ(S(L)) is a Schur ring for any group

homomorphism ϕ and any lattice L of subgroups of G. Theorem 2.68 will generalize this

for any Schur ring over a cyclic group. On the other hand, the Cayley image of a Schur ring

need not be a Schur ring. In fact, it is false even for Schur rings over abelian groups, as

illustrated in the following example.

Example 2.47. Let G = Z2 × Z6 = 〈a, b〉 and let

S = SpanQ{1, b3, b2 + b4, b+ b5, a+ ab3, ab+ ab2, ab4 + ab5}.

Then S is an orbit Schur ring afforded by the subgroup generated by the automorphism

σ : a 7→ ab3, b 7→ b−1. Let ϕ : G → Z6 be the projection homomorphism onto the subgroup

〈b〉, that is, π : a 7→ 1, b 7→ b. Then

ϕ(S) = SpanQ{1, b3, b2 + b4, b+ b5, 1 + b3, b+ b2, b4 + b5}

= SpanQ{1, b3, b2 + b4, b+ b5, b+ b2}.
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If ϕ(S) were a Schur ring, then (b + b5) ◦ (b + b2) = b ∈ ϕ(S). Since b ∈ ϕ(S), this implies

that ϕ(S) = Q[Z6], which is six-dimensional. But dimϕ(S) ≤ 5, which proves that ϕ(S) is

not a Schur ring. �

2.4 Pre-Schur Rings

This section deals with certain generalizations of Schur rings. According to Theorem 2.11,

Schur rings are subalgebras of F [G] which are closed under ◦ and ∗ and which contain G

and 1. We will discuss two generalizations of Schur rings which are defined by removing the

elements G and 1, respectively.

Definition 2.48. Let S be a subalgebra of F [G] which is closed under ◦ and ∗ and 1 ∈ S.

Then S is an immersed Schur ring over G. We say that S is a properly immersed

Schur ring if G /∈ S.

Notice that many results about Schur rings, such as Theorem 2.11, or Corollary 2.45,

have natural adaptations to immersed Schur rings.

Certainly, every Schur ring is immersed, but more general immersed Schur rings arise.

For example, if H ≤ G, then the group ring F [H] is an immersed Schur ring in F [G] as well

as the trivial S-ring F [H]0. In particular, every Schur ring over H is an immersed Schur ring

over G. The next proposition shows that the converse is also true.

Proposition 2.49. Let S be an immersed Schur ring over G. Then there exists a subgroup

H ≤ G such that S is a Schur ring over H.

Proof. By the proof of Theorem 2.11, we know that (S,+, ◦) is a semisimple algebra with

a basis of disjoint simple quantities. So, the sum of all these disjoint simple quantities is

also a simple quantity corresponding to a subset of G. Call this subset H. Since 1 ∈ S, we

have that 1 ∈ H. Also, since H∗ = H, we have that H is closed under inverses. Lastly, let

g, h ∈ H. Then there exists primitive sets C,D ∈ D(S) such that g ∈ C and h ∈ D. So,

gh ∈ CD. But the product CD is a union of primitive sets. Thus, gh ∈ CD ⊆ H. This

proves that H ≤ G. Since H is a union of the primitive sets of S, we conclude that D(S) is

a partition of H and S is a Schur ring over H. �
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Example 2.50. Using a similar argument as Proposition 2.25, we see that the intersection

of two immersed Schur rings is also an immersed Schur ring. In particular, let S be a Schur

ring over G and let H ≤ G. Then S ∩F [H] is an immersed Schur ring of G. In fact, it is the

largest immersed Schur ring over H contained in S. If H is an S-subgroup, then S ∩ F [H]

is a Schur ring over H. Let SH = S ∩ F [H]. �

We now turn to the second generalization of Schur rings.

Definition 2.51. Let S be a subalgebra of F [G] which is closed under ◦ and ∗ and G ∈ S.

Then S is a pre-Schur ring over G.

Many results about Schur rings, such as Theorem 2.11, or Corollary 2.45, have natural

adaptations to pre-Schur rings.

Example 2.52. For any group G, the ideal (G) ⊂ F [G] is a pre-Schur ring. More generally,

if H ≤ G, then SpanF{H,GrH} = SpanF{H,G} is a pre-Schur ring. �

If S is a pre-Schur ring, then let the class containing 1 in D(S) be referred to as the unit

class. For a Schur ring, the unit class is always the singleton containing the identity, that is,

the unit class is always the trivial subgroup. For general pre-Schur rings a similar statement

holds.

Proposition 2.53. Let S be a pre-Schur ring over G and classes {C1, C2, . . . , Cr}. Let C1

be the unit class of S. Then C1 ≤ G.

Proof. Certainly, 1 ∈ C1. Also, C∗1 = Cj for some j. Since 1 ∈ C1 and 1−1 = 1, 1 ∈ Cj. But

C1 ∩ Cj = ∅ if j 6= 1. Thus, C∗1 = C1, which implies that if g ∈ C1, then g−1 ∈ C1.

Suppose |C1| = n. Then C1
2

=
∑

k λ1,1,kCk and
∑

k λ1,1,k|Ck| = n2. For all g ∈ C1, we

have g−1 ∈ C1 and thus gg−1 = 1 ∈ C1. So, λ1,1,1 ≥ n. But n|C1| accounts for n2 many

elements. Thus, C1
2

= nC1 = |C1|C1, and C2
1 = C1. Therefore, for all g, h ∈ C1, we have

that gh ∈ C2
1 = C1, which finishes the proof. �

Proposition 2.54. Let S be a pre-Schur ring of F [G], and let C1 be the unit class of S.

Then
1

|C1|
C1 is the identity of S. Furthermore, C1 ·D = D ·C1 = |C1|D, for all D ∈ D(S).
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Proof. The last statement follows immediately from the fact that
1

|C1|
C1 is the identity of the

ring. By Theorem 2.9, S is semisimple and hence has an identity element, 1S. In particular,

1S · C1 = C1. But C1 is a subgroup of G. Thus, if there exists g ∈ supp(1S) r C1, then

gC1 6⊂ C1, which contradicts 1S being the identity of S. So, supp(1S) ⊆ C1. Since C1 is

a primitive set, it must be that supp(1S) = C1. Then 1S = aC1, for some a ∈ F . Since

C1
2

= |C1|C1, we may solve for a and get that 1S =
1

|C1|
C1. �

Corollary 2.55. Let H ≤ G and let S be a pre-Schur ring over G such that the unit class

of S is H. Then all the primitive sets of S are unions of double cosets of H.

Proof. Let D be a primitive set of S. By Proposition 2.54, HDH = D. On the other hand,

HDH = H
(⋃

g∈D g
)
H =

⋃
g∈DHgH. �

Let S be a pre-Schur ring with unit class H. When H E G, there is essentially only one

possible construction for S.

Example 2.56 (Inflated S-rings). Let H E G and let S be a Schur ring over G/H. Let

π : G→ G/H be the natural quotient map. Consider the partition of G given by

D = {π−1(C) | C ∈ D(S)},

that is, if C = {g1H, g2H, . . . , gkH} ∈ D(S), then π−1(C) =
⋃k
i=1 giH ∈ D. Let π−1(S) be

the subspace of F [G] afforded by D. We claim that π−1(S) is a pre-Schur ring over G. First,

(π−1(C))∗ =

(
k⋃
i=1

giH

)∗
=

k⋃
i=1

g−1i H = π−1(C∗).

So, π−1(S) is closed under ∗. Next, we note that

π
(
π−1(C)

)
= |H|C.

Therefore, if in S we have

Ci · Cj =
∑
k

λijkCk,
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then in π−1(S) we have

π−1(Ci) · π−1(Cj) =
∑
k

|H|λijkπ−1(Ck).

Therefore, π−1(S) is a pre-Schur ring over G, referred to as the inflated Schur ring of S

over G. Furthermore, the restriction π : π−1(S)→ S is an isomorphism of F -algebras. �

Theorem 2.57. Let P be a pre-Schur ring over G with unit class H. If H E G, then P is

an inflated Schur ring.

Proof. Let π : G → G/H be the quotient map. We have by Corollary 2.55 that all the

primitive sets of P are unions of cosets of H. Then Corollary 2.45 applies, and we have that

π(P ) is a pre-Schur ring over π(G) = G/H. Also, π(H) = 1, which implies that π(P ) is

actually a Schur ring over G/H. Clearly, π : P → π(P ) is surjective. It is also true that this

restriction π : P → π(P ) is injective, since kerπ = H. Therefore, P ∼= π(P ), as F -algebras.

In particular, if S = π(P ), then P = π−1(S). �

Example 2.58 (Wedge Products). Let P be a pre-Schur ring over G. Then let S be the

smallest subalgebra of F [G] which contains P and 1. Then S is a Schur ring by Theorem

2.11 and dimS = dimP + 1. In particular, S is afforded by the same partition of P except

the unit class C1 has been split into two sets: {1} and C1 r {1}. Notice that SC1 = F [C1]
0,

that is, the restricted Schur ring of S onto C1 is the trivial Schur ring.

This method of constructing a Schur ring from a pre-Schur ring can easily be generalized.

Let P be a pre-Schur ring over G with normal unit class H and let N be a Schur ring over H.

Now, D(P ) provides a partition of G which contains the primitive set H. Likewise, D(N)

provides a partition of H which contains {1}. Let D be the partition of G taken from D(P )

except H has been replaced by D(N), that is,

D = (D(P )r {H}) ∪ D(N).

Let S be the subspace of F [G] afforded by D. Clearly, S contains 1 and is closed under ∗,

by construction. Also, since each primitive set outside of H is a union of cosets of H, it is
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also clear that S is a subalgebra of F [G]. Therefore, S is a Schur ring. This construction is

known as the wedge product of N and P and is denoted by N ∧ P . �

Since every pre-Schur ring with normal unit class is an inflated Schur ring, we can con-

struct the wedge product of two Schur rings.

Definition 2.59. Let H E G, and let S and T be Schur rings over H and G/H, respectively.

Let P = π−1(T ) be the inflated Schur ring of T over G. Then

S ∧ T = S ∧ P = S + π−1(T )

and is called the wedge product of S and T .

We note that the wedge product operation on Schur rings is associative and has identity

F , that is, F ∧ S = S ∧ F = S. On the other hand, the operation of taking wedge products

is not necessarily commutative as illustrated in the next example.

Example 2.60. Let G = Z9 and pick H = Z3. So, G/H ∼= Z3. Then F [Z3]
0 ∧ F [Z3] has a

basis given by

F [Z3]
0 ∧ F [Z3] = Span{1, z3 + z6, z + z4 + z7, z2 + z5 + z8}.

Conversely, F [Z3] ∧ F [Z3]
0 has a basis given by

F [Z3] ∧ F [Z3]
0 = Span{1, z3, z6, z + z2 + z4 + z5 + z7 + z8}.

Therefore, the operation of taking wedge products of Schur rings is not necessarily commu-

tative. On the other hand, it can be shown that S ∧ T ∼= T ∧ S, as F -algebras. �

Let H E G and let π : G → G/H be the quotient map. Let S and T be Schur rings

over H and G/H respectively. Then (S ∧ T )H = S and π(S ∧ T ) = T . Thus, the wedge

product provides a way of extending two Schur rings, that is, we may build a Schur ring

over G with predetermined quotient and restriction. Leung and Man [17, 16] discovered a

method to generalize this construction.
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Definition 2.61. Let G be a finite group and let S be a Schur ring over G. Then we say that

S is wedge-decomposable if there exists S-subgroups 1 < K ≤ H < G such that K E G

and for all C ∈ D(S), either C ⊆ H or C =
⋃
g∈X gK, for some subset X ⊆ GrH. If S is

not wedge-decomposable, then S is wedge-indecomposable. For a wedge-decomposable

Schur ring S, we say that 1 < K ≤ H < G is a wedge decomposition of S over G.

For example, the Schur ring S ∧ T is wedge-decomposable if S and T are both over

non-trivial groups. In this case, H = K. In fact, a Schur ring with wedge-decomposition

1 < K ≤ H < G is necessarily a wedge product of Schur rings if H = K.

Definition 2.62. Let 1 < K ≤ H < G be a sequence of finite groups such that K E G. Let

S be a Schur ring over H and T a Schur ring over G/K. Let π : G→ G/K be the quotient

map. Also, assume that H/K is a T -subgroup, K is an S-subgroup, and π(S) = TH/K . Let

S4K T = S + π−1(T ) denote the semi-wedge product of S and T .

Proposition 2.63. Let 1 < K ≤ H < G be a sequence of finite groups with K E G. Let S

and T be Schur rings over H and G/K, respectively. Let π : G→ G/K be the quotient map.

Suppose that H/K is a T -subgroup, K is an S-subgroup, and π(S) = TH/K. Then S4K T

is a Schur ring over G.

Proof. Certainly, we have that 1, G ∈ S4K T and S4K T is closed under ∗ since S and

π−1(T ) are also closed. Next, since H/K is a T -subgroup, TH/K is a Schur ring over H/K.

Let K̂ =
1

|K|
K. Then π(K̂) = 1, which implies that π(S · K̂) = π(S) = TH/K . Also, for all

α ∈ F [G], αK̂ = 0 if and only if π(α) = 0. This implies that the restriction π : S ·K̂ → TH/K

is an isomorphism. Thus, π−1(TH/K) = S · K̂ ⊆ S, which implies that

D = (D(π−1(T )rD(π−1(TH/K))) ∪ D(S)

is a partition of G. In fact, S4K T is the subspace afforded by D. Lastly, we must show

that S4K T is a subring of F [G]. Certainly, S and π−1(T ) are closed under multiplication.

So it suffices to argue that the product of an element from S and π−1(T ) is in S4K T . Let

α ∈ S and β ∈ π−1(T ). Since all the classes of D(π−1(T )) are unions of K-cosets, K̂ acts as
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the identity on π−1(T ). Therefore,

αβ = α(K̂β) = (αK̂)β ∈ (S · K̂)π−1(T ) = π−1(TH/K)π−1(T ) ⊆ π−1(T ).

A similar argument shows that βα = βK̂α = β(αK̂) ∈ π−1(T ), since K̂ is central in F [G].

Thus, S4K T is a ring and π−1(T ) is an ideal of S4K T . This proves that S4K T is a

Schur ring over G. �

It is important to observe that for a semi-wedge product S4K T , we have that (S4K T )H =

S and π(S4K T ) = T . Furthermore, every semi-wedge product naturally has a wedge-

decomposition. The converse is also true.

Theorem 2.64. Let S be a Schur ring over G with wedge-decomposition 1 < K ≤ H < G.

Then S is a semi-wedge product of Schur rings over H and G/K.

Proof. Let N = SpanF{C | C ∈ D(S), C ⊆ H}. Since N = S ∩ F [H], N is an immersed

Schur ring. Since H is an S-subgroup, N is a Schur ring over H. Next, let π : G→ G/K be

the quotient map and let T = π(S). Since K is an S-subgroup, T is a Schur ring over G/K.

Finally, we claim that S = N 4K T . Note that N 4K T = N + π−1(T ) = N + π−1(π(S)).

Since N contains all S-classes contained in H, we must argue that π−1(T ) contains all the

S-classes not contained in H. But each class has the form C =
⋃
g∈X gK. So, π(C) =

{gK | g ∈ X} and π−1(π(C)) =
⋃
g∈X gK = C. Therefore, π−1(T ) contains the remaining

primitive sets, which implies that S = N 4K T . �

Therefore, every semi-wedge product of Schur rings has a wedge-decomposition and every

wedge-decomposable Schur ring can be constructed as a semi-wedge product of Schur rings.

Similar to Lemma 2.27, we see when a dot product of Schur rings is wedge-decomposable.

Proposition 2.65. Let S and T be Schur rings over G and H, respectively. If S is wedge-

decomposable, then S · T is wedge decomposable.

Proof. Since S is wedge-decomposable, there exists a wedge-decomposition 1 < K ≤ L < G

of S. Let N = SL. Naturally, N · T is a Schur ring over L × H and properly immersed in

S ·T . Let C ∈ D(S)rD(N) and D ∈ D(T ). Since C is a union of cosets of K, CD is likewise
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a union of cosets of K × 1 E G×H. Since all primitive sets outside of N · T have the form

CD for C ∈ D(S)rD(N) and D ∈ D(T ), we have that S · T has the wedge-decomposition

1 < K × 1 ≤ L×H < G×H. �

Using only the constructions mentioned in this chapter, Leung and Man [17, 16] have

provided a complete classification of Schur rings over cyclic groups.

Theorem 2.66 (Classification of Schur Rings over Finite Cyclic Groups). Let F be a field

of characteristic zero and let G be a finite cyclic group. Let S be a Schur ring over G. Then

one of the following holds:

(a) S is trivial, that is, S = F [G]0.

(b) S is an orbit Schur ring, that is, there exists a subgroup H ≤ Aut(G) such that S =

F [G]H.

(c) S is a dot product of Schur rings, that is, there exist nontrivial subgroups H,K ≤ G such

that G = H ×K and there exists Schur rings SH and SK over H and K, respectively,

such that S = SH · SK.

(d) S is a semi-wedge product of Schur rings, that is, there exist nontrivial, proper subgroups

1 < K ≤ H < G such that K E G and there exist Schur rings SH and SG/K over H and

G/K, respectively, such that S = SH4K SG/K.

Example 2.67. It turns out that lattice Schur rings provide another way to construct Schur

rings beyond the three methods used in the Leung and Man classification theorem for non-

cyclic groups. For example, let G = Z5 × Z5 = 〈a, b〉, let L = {1, 〈a〉, 〈b〉, 〈ab〉, G}, and

let S = S(L). Let C = G r (〈a〉 ∪ 〈b〉 ∪ 〈ab〉), so that |C| = 12. Hence, C is one of the

S-classes. Since C 6= G r 1, S is not trivial. Likewise, S cannot be a dot product of Schur

rings since C is not a product of two S-classes contained in proper subgroups of G. Also, S

cannot be a wedge product since C is not a union of cosets for any nontrivial subgroup. If

S is an orbit Schur ring, it is generated by automorphisms such that 〈a〉, 〈b〉, and 〈ab〉 are

invariant subgroups. But there are only three automorphism subgroups with this property,

which are all cyclic and are generated by the identity map, by the inversion map, and by the
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squaring map. The partitions of G corresponding to these automorphism groups are distinct

from S, which implies that S is not an orbit Schur ring. This example then shows that the

Leung-Man classification theorem for cyclic groups cannot be extended to arbitrary abelian

groups.

A consequence of this classification theorem is the following theorem.

Theorem 2.68. Let G be a finite cyclic group and S be a Schur ring over G. If ϕ : G→ L

is a group homomorphism, then ϕ(S) is a Schur ring over a subgroup of L.

Proof. Let S be a Schur ring over G = Zn. We proceed by induction on |G|. If |G| = p,

a prime, then the only normal subgroups are 1 and G, which are necessarily S-subgroups.

Thus, the property holds for |G| = p, by Corollary 2.45.

Suppose now the property holds for all proper divisors of the integer n and let S be a

Schur ring over G = Zn. By Theorem 2.66, S is a trivial, orbit, dot product, or semi-wedge

product Schur ring. If S is trivial, then it is a lattice Schur ring. So, ϕ(S) is a Schur ring by

Proposition 2.46.

If S is an orbit Schur ring, then every subgroup of G is an S-subgroup since every

subgroup is characteristic. Thus, ϕ(S) is a Schur ring by Corollary 2.45.

If S = R · T for Schur rings R and T over subgroups H and K, respectively, such that

G = H ×K, then ϕ(S) = ϕ(R · T ) = ϕ(R) · ϕ(T ). Since ϕ(R) and ϕ(T ) are Schur rings by

induction, ϕ(S) is the dot product of Schur rings and hence a Schur ring itself.

Lastly, let S = R4K T for Schur rings R and T over subgroup H and quotient group

G/K, respectively. Let π : G→ G/K be the quotient map. Then S = R4K T = R+π−1(T ).

Without the loss of generality, we may assume that ϕ is the quotient map ϕ : G → G/N .

We likewise define π∗ : G/N → G/KN and ϕ∗ : G/K → G/KN to be quotient maps. Then

ϕ(π−1(T )) = (π∗)−1(ϕ∗(T )). By induction, ϕ(R) and ϕ∗(T ) are Schur rings. Therefore,

ϕ(S) = ϕ(R4K T ) = ϕ(R) + ϕ(π−1(T )) = ϕ(R) + (π∗)−1(ϕ∗(T )) = ϕ(R)4ϕ(K) ϕ
∗(T ),

which is a Schur ring. This then proves the result for arbitrary n. �
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Chapter 3. Primitive Idempotents of Schur Rings over Cyclic

Groups

In representation theory, central idempotents have been a useful tool in the decomposition

of associative algebras. In group algebras, for each lattice of normal subgroups of a finite

group, there corresponds a family of central idempotents. These lattices of normal subgroups

naturally give rise to Schur rings, that is, lattice Schur rings. Furthermore, these systems

of idempotents can often capture the primitive idempotents of related Schur rings. This

chapter will study the central idempotents of group algebras and of Schur rings. In the case

of cyclic groups, it will be shown that the set of central, primitive idempotents of a Schur

ring corresponds to the lattice of S-subgroups.

As this chapter deals extensively with properties of idempotents and semisimple rings,

the author will remind the reader about some of the important, elementary properties of

these objects.

An element ε of a ring R is idempotent if ε2 = ε and is central in R if ε ∈ Z(R). In

a semisimple ring such as Q[G], all two-sided ideals are generated by a central idempotent.

We say that a central idempotent is primitive if it cannot be expressed as a sum of two

nonzero orthogonal central idempotents. A semisimple ring may be expressed as a direct sum

of indecomposable two-sided ideals, called a Wedderburn decomposition, each of which

is principal and generated by a primitive central idempotent. In this situation products of

distinct indecomposable ideals are trivial, and hence the primitive central idempotents are

pairwise orthogonal. Each central idempotent is a sum of primitive central idempotents.

Thus, the primitive central idempotents are the atomic building blocks associated to the

ideal structure of Q[G].

If the sum of a set of orthogonal idempotents is 1, we say that the set of idempotents is

complete. In particular, the set of all primitive central idempotents is always complete in

a semisimple ring. Furthermore, every central idempotent of a semisimple ring is a sum of

primitive central idempotents, and the primitive central idempotents involved in this sum

are precisely the ones whose product with the idempotent is nonzero.
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A detailed treatment of semisimple rings can be found in Appendix A.

In the case of complex group algebras, it is well known that the central primitive idem-

potents can be computed using the irreducible characters of the group. Averaging the Galois

conjugates of each primitive central idempotent in C[G], the idempotents of the group al-

gebra F [G] can be computed for any subfield F ⊆ C. In particular, the primitive central

idempotents of Q[G] can be computed in this way. Although this is possible using the char-

acters, it is often computationally laborious to compute the central idempotents of Q[G]

by this method. Instead, character-free methods have been developed to compute these

idempotents using the subgroups of G.

Character-free formulas for the primitive central idempotents of a finite abelian group

algebra with rational coefficients are outlined in Chapter VII of [7], which we reproduce

below in Corollary 3.19. These formulas were later simplified and extended by Jespers, Leal,

and Paques [8] to finite nilpotent groups and by Olivieri, del Ŕıo, and Simón [26] to finite

abelian-by-supersolvable groups. Other recent papers on the primitive central idempotents

of Q[G] include Olivieri and del Ŕıo [25], Broche and del Ŕıo [2], Ferraz and Polcino Milies

[5], Van Gelder and Olteanu [33], Jespers, Olteanu, and del Ŕıo [9], and Jespers, Olteanu,

and Van Gelder [10].

Section 3.1 discusses the topic of semilattices and algebras induced from semilattices.

Given any semilattice, a complete set of orthogonal primitive idempotents is constructed

for a related algebra, called the semilattice algebra. This process of constructing systems of

idempotents will be a template for idempotent constructions in subsequent sections.

In Section 3.2 lattices of normal subgroups of finite groups will be used to construct

complete systems of orthogonal central idempotents in the group algebra. For abelian groups,

a criterion for when these idempotents are primitive is presented. Similarly, in Section 3.3,

lattices of normal S-subgroups are used to build complete systems of orthogonal idempotents

in Schur rings. They are shown to be primitive idempotents when the group is cyclic.

3.1 Primitive Idempotents of Semilattice Algebras

Throughout this section only, let F be a field of arbitrary characteristic.
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Definition 3.1. Let T be a set and let · : T × T → T be a binary operation. Then (T, ·) is

called a semilattice if it satisfies the following axioms:

(a) (Associativity Axiom) : For all r, s, t ∈ T , r · (s · t) = (r · s) · t,

(b) (Commutativity Axiom) : For all s, t ∈ T , s · t = t · s,

(c) (Idempotency Axiom) : For all t ∈ T , t · t = t

(d) (Identity Axiom) : There exists an element 1 ∈ T , such that for all t ∈ T , 1·t = t·1 = t.

In particular, a semilattice is a commutative monoid for which every element is idempo-

tent.

Let T be a semilattice and let s, t ∈ T . We say s ≤ t if s · t = t. In particular, 1 ≤ t for all

t ∈ T . Now we show that ≤ is a partial ordering on T . If t ∈ T , then t · t = t, which implies

that t ≤ t. If s ≤ t and t ≤ s, then s · t = t and t · s = s. But s = t · s = s · t = t. Lastly, if

r ≤ s and s ≤ t, then r · s = s and s · t = t. Thus, r · t = r · (s · t) = (r · s) · t = s · t = t, that

is, r ≤ t. So, as claimed, ≤ is a partial ordering on T .

Lemma 3.2. Let T be a semilattice and let r, s ∈ T . If s · t = r for some t ∈ T , then s ≤ r.

In particular, if s · t = 1, then s = t = 1.

Proof. Suppose s · t = r. Then s · r = s · (s · t) = (s · s) · t = s · t = r. Thus, s ≤ r, which

proves the first statement. If s · t = 1, then s ≤ 1. But 1 ≤ s, which proves the second

statement. �

In particular, the identity of a semilattice T is the unique minimal element of T . If T is

finite, then T contains a unique maximal element
∏

s∈T s.

Definition 3.3. Let T be a semilattice and let s ∈ T . Then let

dse = {t ∈ T | s ≤ t}

be the principal up-set generated by s. It is routine to check that dse is itself a semilattice

with identity s.
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Definition 3.4. Let T be a semilattice. For s, t ∈ T , we say that t covers s if s ≤ t and

for all r ∈ T such that s ≤ r ≤ t, either r = s or r = t. LetM(T, s) denote the set of all

covers of s in T .

For a finite semilattice, M(T, s) is nonempty for all s ∈ T except the maximal element

of T .

Definition 3.5. Let F be a field and let T be a monoid. Then F [T ] denotes the monoid

algebra of T with F -coefficients. If T is also a semilattice, then F [T ] is a semilattice

algebra.

In a semilattice algebra, we will denote the operation of a semilattice by juxtaposition.

Let T be a finite semilattice and F a field. Since T is commutative, the semilattice algebra

F [T ] is a commutative ring. Hence, all idempotents are central. Now, each semilattice

algebra has a basis of central idempotents, the elements of T . We will orthogonalize this

basis to construct the primitive idempotents. But first, we show that each semilattice algebra

is semisimple.

Theorem 3.6. Let T be a finite semilattice and let F be a field. Then F [T ] is a semisimple

algebra.

Proof. Since T is finite, F [T ] is a finite dimensional algebra, which implies that F [T ] is

artinian . Since J (F [T ]) is a nilpotent ideal, J (F [T ]) = 0 if F [T ] contains no nonzero

nilpotent elements. To this end, let α =
∑

t∈T αtt ∈ F [T ] such that αn = 0. First, consider

the coefficient of 1 in αn. By Lemma 3.2, the only possible product in αn which produces

1 is 1n. So, the coefficient of 1 in αn is αn1 . Since αn = 0, it must be that αn1 = 0, which

implies that α1 = 0.

Next, let s ∈ T be a cover of 1 and we consider the coefficient of s in αn. By Lemma

3.2, in the expansion of αn the only products which produce s must have factors less than

or equal to s. Hence, each factor is 1 or s, which implies that the coefficient of s in αn

is
∑n

i=1

(
n
i

)
αn−i1 αis. But α1 = 0. So,

∑n
i=1

(
n
i

)
αn−i1 αis = αns = 0, since αn = 0. As above,

this implies that αs = 0. Generalizing this argument, if t ∈ T and αs = 0 for all s < t,

then αt = 0. Thus, by induction, αt = 0 for all t ∈ T , so that α = 0. Therefore, F [T ] is

semisimple, by Theorem A.12. �
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Definition 3.7. For a finite semilattice T and s ∈ T , let

ε(T, s) =
∏

m∈M(T,s)

(s−m) ∈ F [T ].

If M(T, s) = ∅, let ε(T, s) = s.

Lemma 3.8. Let T be a finite semilattice with s, t ∈ T . Then

tε(T, s) =

ε(T, s), t ≤ s

0, otherwise.

Proof. Suppose that t ≤ s. For any m ∈ M(T, s), t ≤ s < m. (If M(T, s) = ∅, let m = 0).

Thus, ts = s and tm = m, which implies that t(s−m) = (s−m). So, tε(T, s) = ε(T, s).

Suppose s < t. Then there exists some cover m of s in T such that s < m ≤ t. Hence

t(s−m) = ts− tm = t− t = 0. This implies that tε(T, s) = 0.

Lastly, suppose that t 6≤ s. Then tε(T, s) = t(sε(T, s)) = (ts)ε(T, s) = 0, where the first

equality follows by the first case and the third equality follows by the second case, since t 6≤ s

if and only if ts 6= t. �

Proposition 3.9. Let T be a finite semilattice and s, t ∈ T . Then ε(T, s)2 = ε(T, s) and

ε(T, s)ε(T, t) = 0 if s 6= t.

Proof. First, sε(T, s) = ε(T, s) and mε(T, s) = 0, for all m ∈M(T, s), by Lemma 3.8. Thus,

(s−m)ε(T, s) = ε(T, s), which implies that ε(T, s)2 = ε(T, s).

Suppose next that s 6= t. Then either t < s or t 6≤ s. If t < s, then s 6≤ t. So we may

assume without loss that t 6≤ s. Then m 6≤ s for all m ∈ M(T, t). Thus, ε(T, s)(t −m) =

0− 0 = 0, which implies that ε(T, s)ε(T, t) = 0. �

In particular, {ε(T, s) | s ∈ T} is a set of orthogonal idempotents in F [T ]. Clearly,

SpanF{ε(T, s) | s ∈ T} ⊆ SpanF{s | s ∈ T} = F [T ]. In fact, we have equality.

Theorem 3.10. Let T be a finite semilattice and F a field. Then SpanF{ε(T, s) | s ∈ T} =

F [T ].
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Proof. The proof will follow by induction on |T |. When |T | = 1, we have that T = {1} and

ε(T, 1) = 1. Suppose the statement holds for any semilattice with order less than |T |. Let

V = SpanF{ε(T, s) | s ∈ T} and let s ∈ T . If s 6= 1, then S = dse is a semilattice of strictly

smaller order than T and SpanF{ε(S, t) | t ∈ S} = F [S]. By Lemma 3.2, the elements of T

with nonzero coefficients in ε(T, s) are contained in S. Thus, ε(T, t) = ε(S, t) for all t ∈ S.

Therefore, SpanF{ε(T, t) | s ≤ t} = SpanF{t ∈ T | s ≤ t}, by induction. In particular,

s ∈ SpanF{ε(T, t) | t ∈ T} for all s 6= 1. Again by Lemma 3.2, ε(T, 1) = 1 + α, where

α ∈ SpanF{s ∈ T | s 6= 1}. Since ε(T, 1), α ∈ SpanF{ε(T, s) | s ∈ T}, we conclude that

1 ∈ SpanF{ε(T, s) | s ∈ T}. Therefore, SpanF{ε(T, s) | s ∈ T} = F [T ]. �

Corollary 3.11. Let T be a finite semilattice and F a field. Then ε(T, s) 6= 0 and ε(T, s) is

a primitive central idempotent of F [T ] for each s ∈ T .

Proof. Let |T | = n. Then dimF F [T ] = n. If ε(T, s) = 0 for some s ∈ T , then SpanF{ε(T, t) |

t ∈ T, t 6= s} = SpanF{ε(T, t) | t ∈ T} = F [T ], by Theorem 3.10. But

dimF [T ] ≤ |{ε(T, t) | t ∈ T, t 6= s}| ≤ n− 1 < n = dimF [T ],

a contradiction. Therefore, each idempotent of the form ε(T, s) is nonzero.

Next, consider the ideal (ε(T, s)) ≤ F [T ]. We have that
∑

s∈T (ε(T, s)) = F [T ] and

(ε(T, s)) ∩ (ε(T, t)) = 0 when s 6= t, by Proposition 3.9. Thus,

F [T ] =
⊕
s∈T

(ε(T, s)).

Since no ideal in this sum is zero, by degree considerations, dim(ε(T, s)) = 1 for all s ∈ T .

Thus, ε(T, s) is necessarily primitive. �

Corollary 3.12. Let T be a finite semilattice and F a field. Then, for s ∈ T , we have

∑
s≤t

ε(T, t) = s.

Proof. If s ∈ T , then s is the identity element of dse. Thus, it suffices to prove the claim for
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s = 1. As in the previous proof,

F [T ] =
⊕
s∈T

(ε(T, s)).

Thus,
∑

t∈T ε(T, t) is the identity element of F [T ]. �

In particular, we have shown that for any finite semilattice, the collection {ε(T, s) | s ∈ T}

is a complete set of primitive central idempotents for F [T ], where F is any field.

Let T be a finite semilattice and let S be a subsemilattice of T , not necessarily with the

same identity. Then ε(S, s) is a central idempotent of F [T ] for all s ∈ S, and ε(S, s) can be

expressed as a sum of the form
∑
ε(T, t). Let s ∈ S, let m ∈ M(S, s), and let t ∈ T . If

s ≤ t and m 6≤ t, then

ε(T, t)(s−m) = ε(T, t)− 0 = ε(T, t).

If s ≤ t and m ≤ t, then

ε(T, t)(s−m) = ε(T, t)− ε(T, t) = 0.

And lastly, if s 6≤ t, then m 6≤ t and

ε(T, t)(s−m) = 0− 0 = 0.

Therefore, ε(T, t) is involved in the decomposition of ε(S, s) if and only if s ≤ t and m 6≤ t

for all m ∈M(S, s). We have proven the following result.

Theorem 3.13. Let T be a finite semilattice, S a subsemilattice of T , and s ∈ S. Then

ε(S, s) =
∑
t

ε(T, t)

where the sum ranges over all t ∈ T such that s ≤ t and m 6≤ t for all m ∈M(S, s). �

Applications of semilattice algebras will be found in the following sections.
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3.2 Primitive Idempotents of Group Algebras

Let G be a finite group and H ≤ G. Then for all h ∈ H, hH = Hh = H. Let

Ĥ =
1

|H|
H ∈ F [G].

Then Ĥ is an idempotent in F [G]. If H E G, then Ĥ is a central idempotent. Note, (Ĝ) is

a one-dimensional ideal in F [G], which implies that Ĝ is always primitive in F [G]. On the

other hand, if H � G, then Ĥ is not primitive in F [G] since Ĥ = Ĝ+ (Ĥ − Ĝ).

Given any subgroups H and K of G, we have

ĤK̂ =
1

|H||K|
H ·K =

|H ∩K|
|H||K|

HK = ĤK.

If H is normal, then HK ≤ G and ĤK is an idempotent of F [G]. If H,K E G, then HK

is also normal in G. So, ĤK is central in F [G], and the collection of all normal subgroups

of G forms a semilattice.

Let G be a finite group and let L be a subsemilattice of the semilattice of all normal

subgroups of G, which we will simply refer to as a semilattice of normal subgroups of G. Since

L must be finite, it contains a maximum element,
∏

H∈LH. By shrinking the ambient group

G if necessary, we may assume that the maximum element of L is G. Likewise, L contains

a minimum element, 1L = K. By correspondence, the natural quotient map π : G → G/K

maps L onto an isomorphic semilattice π(L) of normal subgroups of G/K. In particular,

π(K) = 1. Thus we may assume the minimum element of L is 1.

Let H ∈ L and letML(G,H) =M(L, H), the set of all covers of H in the semilattice

L. When L is the whole semilattice of normal subgroups of G, writeM(G,H) =ML(G,H).

For every semilattice of normal subgroups of G, there is an associated system of idem-

potents in F [G] as follows: let

εL(G,H) =
∏

M∈ML(G,H)

(Ĥ − M̂) ∈ F [G].

Since each subgroup M is normal, M̂ is central in F [G] and hence the order of the product
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is irrelevant and εL(G,H) is central in F [G]. When L is the whole semilattice of normal

subgroups, we let ε(G,H) = εL(G,H). This agrees with the idempotents introduced in [8].

We can naturally extend Example 2.19 to allow L to be any semilattice of normal sub-

groups. Then S(L) is a subalgebra of F [G] and is a Schur ring if and only if L is a lattice.

There is a natural algebra homomorphism Ψ : F [L] → S(L) from the semilattice algebra

generated by L onto S(L). In particular, Ψ(H) = Ĥ. Thus, S(L) is the homomorphic image

of a semilattice algebra. We utilize this fact below.

Lemma 3.14. Let L be a semilattice of normal subgroups of G with H,K ∈ L. Then

K̂εL(G,H) =

εL(G,H), K ≤ H

0, otherwise.

Proof. For each H ∈ L, the homomorphism Ψ maps H onto Ĥ ∈ F [G]. Likewise, ε(L, H) ∈

F [L] maps onto εL(G,H) ∈ S(L). The results then follow from Lemma 3.8. �

Proposition 3.15. Let L be a semilattice of normal subgroups of G and let H,K ∈ L. Then

εL(G,H)2 = εL(G,H) and εL(G,H)εL(G,K) = 0 if H 6= K. Furthermore,

1 =
∑
H∈L

εL(G,H).

Proof. The result follows from Proposition 3.9 and Corollary 3.12. �

In particular, {εL(G,H) | H ∈ L} is a complete set of orthogonal idempotents in F [G].

We note however that εL(G,H) is not necessarily primitive. In fact, εL(G,H) may be zero.

For example, let G = Z2 × Z2 = 〈a, b〉, let F = Q, and let L be the complete lattice of

subgroups of G. Then εL(G, 1) = 1
8
(1− a)(1− b)(1− ab) = 0.

On the other hand, when G is cyclic, εL(G,H) 6= 0 for all H ∈ L, as we now show.

Lemma 3.16. Let G be a finite cyclic group and let L be a semilattice of subgroups of G.

Then εL(G,H) 6= 0 for all H ∈ L.

Proof. For a cyclic group G, S(L) has for a basis the set {H | H ∈ L}. This can be seen

by examining the generators of each subgroup in L. Thus, dimF S(L) = |L|. Therefore,
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the map Ψ : F [L] → S(L) is an isomorphism. Thus, εL(G,H) = Ψ(ε(L, H)) 6= 0, since

ε(L, H) 6= 0. �

Lemma 3.17. Let G be an abelian group and let L be a semilattice of subgroups of G. For

all H ∈ L such that G/H is cyclic, then εL(G,H) 6= 0.

Proof. Let π : G → G/H be the natural quotient map and let π(L) = {π(K) | K ∈ L}

denote the quotient semilattice. In fact, dHe = {HK | K ∈ L}, and, by the Correspondence

Theorem, dHe ∼= π(L) as semilattices.

Next, let K ∈ L such that H ≤ K. Then

π(K̂) =
1

|K|
∑
g∈K

gH =
|H|
|K|

∑
gH∈K/H

gH = K̂/H,

and

π(εL(G,H)) = π(εdHe(G,H)) = επ(L)(G/H,H/H) 6= 0,

by Lemma 3.16. Thus, εL(G,H) 6⊆ kerπ, which implies that εL(G,H) 6= 0. �

Let ζd denote a primitive dth root of unity in C.

Theorem 3.18 (Perlis-Walker [27]). Let G be a finite abelian group of order n. Then

Q[G] ∼=
⊕
d|n

adQ(ζd),

where ad is the number of cyclic subgroups (or cyclic quotients) of G of order d. In particular,

if G = Zn is a cyclic group of order n, then

Q[Zn] ∼=
⊕
d|n

Q(ζd).

Proof. A complete proof of this result may be found in [28] on page 147. �

Corollary 3.19 (Jespers-Leal-Paques [8]). The set {ε(G,H) | H ≤ G,G/H is cyclic} is a

complete set of primitive central idempotents in Q[G] when G is abelian.
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Proof. Let S = {ε(G,H) | H ≤ G, G/H is cyclic}. By Lemma 3.17, each element in S is

nonzero and they are pairwise orthogonal idempotents by Proposition 3.15. Let a denote

the number of cyclic quotients of G. Then S contains a distinct idempotents. By Theorem

3.18, Q[G] has exactly a primitive idempotents, and since Q[G] is semisimple, the only set

of pairwise orthogonal, nonzero, central idempotents in Q[G] of size a is the complete set of

primitive central idempotents. Therefore, S is this set. �

Corollary 3.20. The set {ε(G,H) | H ≤ G} is a complete set of primitive central idempo-

tents in Q[G] when G is cyclic. �

Corollary 3.21. Let ε ∈ Q[G] be an idempotent, with G abelian. Then

ε ∈ SpanQ{H | H ≤ G}. �

Let G be an abelian group. Suppose that H ≤ G but G/H is not cyclic. By Corollary

3.19, ε(G,H) is not a primitive idempotent, but ε(G,H)ε(G,K) = 0 for all G/K cyclic by

Proposition 3.15. Thus, ε(G,H) = 0. Hence, if G is abelian, ε(G,H) 6= 0 if and only if

ε(G,H) is primitive, if and only if G/H is cyclic.

On the other hand, let G = Z2×Z2 = 〈a, b〉 and let L = {1, 〈a〉, G}. Although G/1 is not

cyclic, εL(G, 1) = 1 − 〈̂a〉 = 1
2
(1 − a) 6= 0. Thus, for general semilattices of abelian groups,

nonzero idempotents do not necessarily correspond to cyclic quotients. Of course, εL(G, 1)

is imprimitive in F [G] since εL(G, 1) = ε(G, 〈b〉) + ε(G, 〈ab〉).

When G is a cyclic group of prime power order, the primitive idempotents of Q[G] can

be greatly simplified.

Corollary 3.22. Let G = Zpn, for a prime p. For each 0 ≤ k ≤ n, let Zpk denote the

unique subgroup of G of order pk. Then the primitive idempotents of Q[G] are of the form

Ĝ or Ẑpk − Ẑpk+1, for 0 ≤ k < n. �

A direct consequence of Theorem 3.13 is the following.

Theorem 3.23. For any semilattice L of subgroups of an abelian group G and any H ∈ L,

εL(G,H) =
∑
K

ε(G,K)
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where the sum ranges over all subgroups K of G such that H ≤ K and M 6≤ K for all

M ∈ ML(G,H). Removing zero idempotents if necessary, this gives a decomposition of

εL(G,H) into primitive idempotents in Q[G].

Let L be a semilattice of normal subgroups of a finite group G. For any H ∈ L, set

NL(G,H) = {K E G | H ≤ K and M 6≤ K, for all M ∈ML(G,H)}.

So, NL(G,H) is the set of all normal subgroups between H and an L-cover of H. If G is

abelian,

εL(G,H) =
∑

K∈NL(G,H)

ε(G,K),

by Theorem 3.23. Generalizing the above set, for any N ∈ NL(G,H), put

NL(G,H,N) = {K ∈ NL(G,H) | K ≥ N}.

Also, NL(G,H) is closed under intersections and hence is a semilattice (without identity)

with respect to ∩-products. The set NL(G,H,N) is then a subsemilattice.

Theorem 3.24. Let L be a semilattice of normal subgroups of a finite group G and let

H ∈ L. Let N ∈ NL(G,H) and let π : G → G/N be the natural quotient map. Then π

induces a bijection π : NL(G,H,N)→ Nπ(L)(G/N,N/N).

Proof. First, let K ∈ NL(G,H,N). So, π(K) is normal in G/N and clearly N/N ≤ π(K).

Suppose M ′ ∈ π(L) such that N/N ≤ M ′ ≤ π(K). Then there exists some M ∈ L such

that π(M) = M ′. Since MH ∈ L and π(MH) = M ′, we may assume that H ≤M . Next,

H ≤M ≤MN ≤ KN ≤ K.

Since K ∈ NL(G,H,N), the only normal subgroup between K and H contained in L is H.

Thus, M = H, which implies

M ′ = π(M) = π(H) = N/N.
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Since there are no subgroups in π(L) between N/N and π(K) other than N/N itself, π(K) ∈

Nπ(L)(G/N,N/N). Hence, π(NL(G,H,N)) ⊆ Nπ(L)(G/N,N/N).

Second, suppose π(K1) = π(K2), for K1, K2 ∈ NL(G,H,N). Since N ≤ K1 ∩ K2,

K1 = K2, by correspondence. Therefore, π : NL(G,H,N)→ Nπ(L)(G/N,N/N) is injective.

Lastly, let K ′ ∈ Nπ(L)(G/N,N/N). Then there exists a unique normal subgroup K

of G such that π(K) = K ′ and N ≤ K. Let L ∈ L such that H ≤ L ≤ K. Then

N/N ≤ π(L) ≤ K ′. Since π(L) ∈ π(L), it must be that π(L) = N/N , which implies that

L ≤ N . But N ∈ NL(G,H). Thus, L = H, which proves that K ∈ NL(G,H,N), also. This

shows that π : NL(G,H,N)→ Nπ(L)(G/N,N/N) is surjective. �

Corollary 3.25. Let G be a finite abelian group with semilattice of subgroups L. Let

H ∈ L and N ∈ NL(G,H). If π : G → G/N is the quotient map, then π(εL(G,H)) =

επ(L)(G/N,N/N).

Proof. By Theorem 3.23,

εL(G,H) =
∑

K∈NL(G,H,N)

ε(G,K) +
∑

L∈NL(G,H)rNL(G,H,N)

ε(G,L).

For each L 6≥ N , π(ε(G,L)) = 0, and for each K ≥ N , we have π(ε(G,K)) = ε(G/N,K/N).

Thus,

π(εL(G,H)) =
∑

K∈NL(G,H,N)

ε(G/N,K/N) =
∑

K/N∈Nπ(L)(G/N,N/N)

ε(G/N,K/N)

= επ(L)(G/N,N/N),

where the second equality follows by Theorem 3.24 and the third follows by Theorem 3.23. �

3.3 Primitive Idempotents of Schur Rings

Let S be a Schur ring over G, for some finite group G, not necessarily abelian. Let H,K

be normal S-subgroups of G. Then H · K = |H ∩ K|HK ∈ S and H ◦ K = H ∩K ∈ S.

Thus, the collection of all normal S-subgroups L forms a lattice of normal subgroups of G.

As shown above, associated to this lattice is a complete set of central idempotents in F [G].
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Definition 3.26. Let S be a Schur ring over G. Let ε(S,H) = ε(L, H), where L is the

lattice of normal S-subgroups.

Since L is a lattice, S(L) is a lattice Schur ring contained in S and is maximal with

respect to being the largest lattice subring in S. Furthermore, S(L) = SpanF{ε(S,H) |

H E G and H ∈ S}, and hence contains many of the central idempotents of S. Under some

conditions, S(L) contains all the central idempotents of S, for example when S = S(L).

Theorem 3.27. Let G be a finite group and let F be a field with characteristic 0. Let L be

a semilattice of normal subgroups of G. Then {ε(L, H) 6= 0 | H ∈ L} is a complete set of

primitive central idempotents of S(L) and S(L) ∼=
⊕

n F , where n = |{ε(L, H) 6= 0 | H ∈

L}|.

Proof. Let S = S(L). By Theorem 3.10, we have S = Span{ε(L, H) | H ∈ L} and

{ε(L, H) 6= 0 | H ∈ L} is a basis of S. Thus, this basis must be a complete set of idem-

potents and the ideal of each idempotent must have dimension 1. Thus, each idempotent is

primitive. �

Corollary 3.28. Let S be a lattice Schur ring over G and let ε ∈ S be an idempotent. Then

ε ∈ SpanF{H | H E G and H ∈ S}.

We now switch our attention to primitive central idempotents of Schur rings over G = Zn.

Let n be a positive integer with prime factorization given as

n =
r∏
i=1

paii ,

where the pi are distinct primes. Set λ(n) = (−1)
∑r
i=1 ai . It is elementary to check that λ and

Id, the identity function, are multiplicative functions3.3. Let β be the Dirichlet convolution

of λ and Id, that is,

β(n) = (λ ] Id)(n) =
∑
d|n

λ(d)(n/d).

The function β is the alternating-sum-of-divisors function. Since the convolution of mul-

tiplicative functions is multiplicative, we have that β is also a multiplicative function. A

detailed treatment of β can be found in [32].

3.3A function f : Z+ → R is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever gcd(m,n) = 1.
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Definition 3.29. Let G = Zn be a cyclic group of order n. For each divisor d | n, let Ld be

the set of elements of order d in G. We call Ld the dth layer of G.

Since G has a unique subgroup of order d, which is necessarily cyclic, we will abuse

notation and refer to this subgroup as Zd. Thus, Ld is the set of generators of Zd.

Consider the expansion

ε(G, 1) =
r∏
i=1

(1− Ẑpi)

= 1−
∑
i≤r

Ẑpi +
∑
i<j≤r

Ẑpipj −
∑

i<j<k≤r

Ẑpipjpk + . . .± Ẑm, (3.1)

=
∑
d|m

cdLd, (3.2)

where m =
∏r

i=1 pi and cd ∈ Q. Let a be a divisor of m. By comparing coefficients in (3.1)

and (3.2), we have

ca =
∑
a|d|m

λ(d)

d
= λ(a)

∑
a|d|m

λ(d/a)

d

=
λ(a)

m

∑
a|d|m

λ(d/a)(m/d) =
λ(a)

m

∑
d′|(m/a)

λ(d′)((m/a)/d′)

=
λ(a)β(m/a)

m
. (3.3)

Also ca = 0 for any a - m.

Next, let H E G. Then for all h ∈ H, hε(G,H) = ε(G,H). Thus, the coefficients of

ε(G,H) are constant over cosets of H. Let π : G → G/H be the natural quotient map.

Then, as seen above, ϕ(ε(G,H)) = ε(G/H,H/H). Let a | n and let g ∈ G be an element of

order a. Then ϕ(g) ∈ G/H is an element of order a′ =
a

gcd(a, |H|)
. Finally, let ca be the

coefficient of g in ε(G,H), let c′a be the coefficient of ϕ(g) in ε(G/H,H/H), and let m′ be

the product of the distinct prime divisors of n/|H|. Thus, by (3.3),

ca =
1

|H|
c′a =

1

|H|

(
λ(a′)β(m′/a′)

m′

)
(3.4)

Thus, combining the above formula with Theorem 3.23, it is possible to compute the
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coefficients of ε(L, H) for any lattice of subgroups of G = Zn.

Now, in a Schur ring, Lemma 2.31 applies, and by examining coefficients of ε(G, 1) certain

S-subgroups can be identified.

Lemma 3.30. Let S be a Schur ring over G where G is a finite cyclic group. If ε(G, 1) ∈ S,

then Zp ∈ S for all p
∣∣ |G|.

Proof. Suppose that |G| = n =
∏r

i=1 p
ai
i is a prime factorization. Let m =

∏r
i=1 pi. By

Proposition 2.33, if Lp ∈ S then Zp ∈ S. So it suffices to show that Lp ∈ S for each p | n.

As noted in (3.3), the coefficient of Lp in ε(G, 1) is
λ(p)β(m/p)

m
, for each p | m. Suppose

that for some other divisor d | m,

λ(p)β(m/p)

m
=
λ(d)β(m/d)

m
. (3.5)

Then β(m/p) = β(m/d), since β(k) > 0 for all positive k. Since m is square-free and β is

multiplicative, this implies that β(p) = β(d).

Suppose d =
∏s

i=1 qi, where each qi is a prime divisor of m. Then β(p) = p− 1 and

β(d) = β

(
s∏
i=1

qi

)
=

s∏
i=1

(qi − 1).

Now, if p | d, then qk = p for some 1 ≤ k ≤ s and
∏s

i=1(qi − 1) = qk − 1 shows that

(q1 − 1) . . . ̂(qk − 1) . . . (qs − 1) = 1, where here ̂ denotes an omitted factor. This implies

that d = p or d = 2p. But if d = 2p, then λ(d) = 1, while λ(p) = −1, which contradicts (3.5).

Therefore, we may assume that gcd(p, d) = 1. Furthermore, since
∏s

i=1(qi − 1) = p− 1, we

know that qi − 1 < p− 1 and so qi < p for all primes dividing d.

First, let p be the smallest prime dividing m. Let K be the subset of G consisting of

those elements whose coefficient in ε(G, 1) is equal to λ(p)β(m/p)/m. As above, Lp ⊆ K.

On the other hand, if any other layer Ld ⊆ K, then this implies that β(d) = β(p), but by the

previous paragraph all the prime divisors of d are smaller than p, which is a contradiction.

Therefore, K = Lp, which implies that Lp ∈ S. For induction, suppose that if p is a prime

divisor of m which is smaller than k then Lp ∈ S. Let p be the smallest prime divisor of

m which is greater than or equal to k. Again, let K be the subset of G whose coefficient
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in ε(G, 1) is equal to λ(p)β(m/p)/m. Clearly, Lp ⊆ K. If Ld ⊆ K for some other divisor

d of m, then d =
∏s

i=1 qi, where qi is a prime divisor of m strictly smaller than p. By our

induction hypothesis, Lqi ∈ S for all divisors of d. Furthermore, Zqi ∈ S for all i and hence

Zd′ ∈ S for all d′ | d. Taking differences, this implies that Ld ∈ S. So instead, we may set K

to be the subset of G whose coefficient in ε(G, 1) − λ(p)β(m/p)
m

Ld is equal to λ(p)β(m/p)/m.

Repeating this process finitely many times if necessary, eventually we will have that K = Lp,

which implies that Lp ∈ S. Therefore, by induction, Lp ∈ S for all p
∣∣ |G|. This implies that

Zp = 〈Lp〉 is an S-subgroup. �

Lemma 3.31. Let S be a Schur ring over G where G is a cyclic group. Let H E G. If

ε(G,H) ∈ S, then M ∈ S for all M ∈M(G,H).

Proof. Now, Stab(ε(G,H)) = H, which implies H ∈ S, by Proposition 2.35. Therefore, the

result follows from Corollary 2.45, Corollary 3.25, and Lemma 3.30. �

Theorem 3.32. Let G be a finite cyclic group and let S be a Schur ring over G. Then

ε(S,H) is primitive for all H ∈ S. In particular, {ε(S,H) | H ∈ S} is a complete set of

primitive idempotents in S.

Proof. The proof is by induction on |G|. If |G| = p, a prime, then the lattice of S-subgroups

is {1, G}, the entire lattice of subgroups. Thus, ε(S, 1) = ε(G, 1) and ε(S,G) = Ĝ, which are

primitive by Corollary 3.20. Next, suppose that the result holds for all cyclic groups with

order less than n. Let G = Zn and let H ∈ S. Then consider ε(S,H). By Theorem 3.23 and

Theorem 3.24, if π : G→ G/H is the quotient map, then ε(S,H) is primitive if and only if

ε(π(S), H/H) is primitive, where the latter is primitive by our induction hypothesis unless

H = 1. Thus, it suffices to prove the case for ε(S, 1).

Suppose that

ε(S, 1) = ε1 + ε2 (3.6)

decomposes as a sum of nonzero, orthogonal, central idempotents. By Theorem 3.23, ε(S, 1)

is a sum of primitive idempotents of the form ε(G,H), where H does not contain a minimal

S-subgroup. So, (3.6) partitions this collection of primitive idempotents. We may assume

that ε(G, 1) is involved in ε1. Suppose that ε1 = ε(G, 1) ∈ S. Then by Lemma 3.30, S
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contains all the minimal subgroups of G. In particular, ε(S, 1) = ε(G, 1), by Theorem 3.23,

and is primitive by Corollary 3.20. So, we may assume that ε1 involves some other primitive

idempotent ε(G,H), with H 6= 1.

Next, suppose that ε(G,K) is involved in ε2 and suppose that H ∩K 6= 1. Let π : G→

G/(H∩K) be the quotient map. Now, H,K ∈ N (S, 1), which implies that H∩K ∈ N (S, 1).

Then both π(ε(G,H)) 6= 0 and π(ε(G,K)) 6= 0, by Corollary 3.25 and Lemma 3.16. This

means that π(ε(S, 1)) is an imprimitive idempotent of π(S). But π(S) is a Schur ring by

Theorem 2.68 and π(ε(S, 1)) = ε(π(S), 1) by Corollary 3.25. Thus, π(ε(S, 1)) is primitive

by our induction hypothesis, a contradiction. Hence, H ∩K = 1 for all ε(G,K) involved in

ε2. By this consideration, for all subgroups 1 < L ≤ K, ε(G,L) must be involved in ε2 and

for all subgroups 1 < L ≤ H, ε(G,L) must be involved in ε1. In particular, we may assume

that H and K have distinct prime order.

Next, ε(G,HK) cannot be involved in ε1 since HK ∩K 6= 1 nor ε2 since HK ∩H 6= 1.

Thus, ε(G,HK) is not involved in ε(S, 1), which implies that HK contains a minimal S-

subgroup. But the only nontrivial subgroups of HK are H, K, and HK, since H and K

have prime order for distinct primes. Thus, HK must be a minimal S-subgroup, that is,

HK ∈ S.

If K = {Kα | ε(G,Kα) is involved in ε2} and
⋂
K = K 6= 1, then Stab(ε2) = K, which

implies that K ∈ S. This contradicts Theorem 3.23, since K ∈ N (S, 1). So, ε2 must involve

at least two distinct primitive idempotents ε(G,K1) and ε(G,K2) and we may assume that

both K1 and K2 have prime orders. Using the previous argument, HK1, HK2 ∈ S. But

then HK1 ◦HK2 = H ∈ S, by the distributivity of the lattice of subgroups of G. But this

contradicts Theorem 3.23. Therefore, ε(S, 1) is primitive in S. �

Corollary 3.33. Let S be a Schur ring over G and let ε ∈ S be an idempotent, with G

cyclic. Then ε ∈ SpanQ{H | H E G and H ∈ S}.

We now will compute a few examples to illustrate Theorem 3.32.

Example 3.34. Let G = Z12 = 〈z〉. Then the six normal subgroups of G are Z1 = 1,

Z2 = 〈z6〉, Z3 = 〈z4〉, Z4 = 〈z3〉, Z6 = 〈z2〉, and Z12 = G, and the six primitive idempotents
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of Q[Z12] are

ε(G, 1) =
1

3
− 1

3
z6 − 1

6
(z4 + z8) +

1

6
(z2 + z10)

ε(G,Z2) =
1

6
(1 + z6)− 1

6
(z3 + z9)− 1

12
(z2 + z4 + z8 + z10) +

1

12
(z + z5 + z7 + z11)

ε(G,Z3) =
1

6
(1 + z4 + z8)− 1

6
(z2 + z6 + z10)

ε(G,Z4) =
1

6
(1 + z3 + z6 + z9)− 1

12
(z + z2 + z4 + z5 + z7 + z8 + z10 + z11)

ε(G,Z6) =
1

12
(1 + z2 + z4 + z6 + z8 + z10)− 1

12
(z + z3 + z5 + z7 + z9 + z11)

ε(G,G) =
1

12
(1 + z + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11)

As noted before, every subgroup of a cyclic group is characteristic, which implies that

every subgroup is an S-subgroup of every orbit Schur ring. Thus, the primitive idempotents

of any orbit Schur ring are exactly the primitive idempotents of Q[G]. Consider

S = SpanQ{1, z6, z4 + z8, z2 + z10, z + z5 + z9, z3 + z7 + z11},

which is not an orbit ring. Then S is a Schur ring over G = Z12 and its S-subgroups are 1,

Z2, Z3, Z6, and Z12. Therefore, the primitive idempotents of S are

ε(S, 1) = ε(G, 1)

ε(S,Z2) = ε(G,Z2) + ε(G,Z4) =
1

3
(1 + z6)− 1

6
(z2 + z4 + z8 + z10)

ε(S,Z3) = ε(G,Z3)

ε(S,Z6) = ε(G,Z6)

ε(S,G) = ε(G,G).

We have used Theorem 3.23 to decompose each idempotent into a sum of primitive idempo-

tents over G. We note that ε(G,Z2) /∈ S since the coefficients of z9 and z differ. Likewise,

ε(G,Z4) /∈ S. Thus, ε(S,Z2) is primitive in S. �
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Example 3.35. For another example, consider the Schur ring T :

T = SpanQ{1, z6, z4 + z10, z2 + z8, z + z3 + z5 + z7 + z9 + z11}.

Then the T -subgroups are 1, Z2, Z6, and Z12 and the primitive idempotents are

ε(T, 1) = ε(G, 1) + ε(G,Z3) =
1

2
− 1

2
z6

ε(T, Z2) = ε(G,Z2) + ε(G,Z4)

ε(T, Z6) = ε(G,Z6)

ε(T,G) = ε(G,G).

Since ε(G, 1), ε(G,Z3), ε(G,Z2), ε(G,Z4) /∈ T , ε(T, Z1) and ε(T, Z2) are primitive in T . �

Example 3.36. We present one last example for Z12. Consider the Schur ring U :

U = SpanQ{1, z4, z8, z2 + z6 + z10, z + z5 + z9, z3 + z7 + z11}.

Then the U -subgroups are 1, Z3, Z6, and Z12 and the primitive idempotents are

ε(U, 1) = ε(G, 1) + ε(G,Z2) + ε(G,Z4)

=
2

3
− 1

3
(z4 + z8)

ε(U,Z3) = ε(G,Z3)

ε(U,Z6) = ε(G,Z6)

ε(U,G) = ε(G,G).

Clearly, ε(G, 1), ε(G, 2), and ε(G,Z4) /∈ U . Therefore, ε(U, 1) is primitive in U . �

Example 3.37. Let G = Z3 × Z3 = 〈a, b〉 and let

S = SpanQ{1, a+ a2 + b+ b2, ab+ a2b2 + ab2 + a2b},

which is the Schur ring mentioned in Example 2.40. Since S is primitive, the lattice of
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S-subgroups is {1, G}. Thus, ε(S, 1) = 1− Ĝ and ε(S,G) = Ĝ. By Theorem 3.23,

ε(S, 1) = [ε(G, 〈a〉) + ε(G, 〈b〉)] + [ε(G, 〈ab〉) + ε(G, 〈ab2〉)].

But

ε(G, 〈a〉) + ε(G, 〈b〉) =
1

3
(1 + a+ a2) +

1

3
(1 + b+ b2)− 2

9
G

=
2

3
+

1

3
(a+ a2 + b+ b2)− 2

9
G ∈ S.

Similarly, ε(G, 〈ab〉) + ε(G, ab2) ∈ S. Hence, ε(S, 1) is imprimitive and decomposes as a

sum of two nonzero, central idempotents in S. Therefore, Theorem 3.32 may fail when G is

non-cyclic. �
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Chapter 4. Classification of Schur Rings over Cyclic Groups

Any Schur ring is uniquely determined by a partition of the elements of the group, although

not every partition determines a Schur ring. An open question in the study of Schur rings is

determining which partitions of the group induce a Schur ring and which ones do not. The

answer to this question would determine all the possible constructions for Schur rings given

a group. Much work has be done to answer this question and some important results have

been found. In the case that our group G is cyclic, a complete classification has been found;

see Theorem 2.66. In particular, the study of Schur rings over cyclic groups is a very active

field with several recent papers being published on this topic: [15], [23], [24], [21], [17], [16],

and [13].

A complete classification of Schur Rings over Zn has already been given in Theorem 2.66

by Leung and Man, which states that all nontrivial Schur rings are of at least one of three

constructible types: (1) automorphism orbits, (2) dot products, (3) wedge decompositions.

The goal of this chapter will be to provide a new proof for the classification of Schur Rings

over cyclic p-groups. This is a weaker result than that of Leung and Man due to the restriction

that |G| is a prime power, but the methods used here will be useful in the following chapter.

The first section of this chapter will set the stage by outlining exactly how the Schur rings

of a cyclic group relate to the subfields of a cyclotomic field, a correspondence which is the

essential ingredient in our classification theorem. This approach is fundamentally different

from that of Leung and Man. In the second section of this chapter, we will also address

Wedderburn decompositions of Schur rings over cyclic groups, which continues the work of

the last chapter on idempotents. Even though our goal will be to classify Schur rings over

cyclic p-groups, these sections will handle Schur rings over arbitrary cyclic groups. The last

section will then be used to classify Schur rings over cyclic p-groups, first in the special case

that the cyclic group has prime order and second in the general case of arbitrary prime power

order.

Throughout, let ζn = e2πi/n ∈ C and let Kn = Q(ζn). When the context is clear,

subscripts may be omitted.
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4.1 A Correspondence Between Schur Rings and Cyclotomic

Fields

Every automorphism of Zn is determined by z 7→ zm, and every automorphism on Kn is

similarly determined by ζ 7→ ζm, where m is unique modulo n and gcd(n,m) = 1. Identifying

these congruence classes provides an isomorphism between Aut(Zn) and the Galois group

G(Kn/Q).

Lemma 4.1. The automorphism groups of Kn and Zn are isomorphic, that is,

G(Kn/Q) ∼= Aut(Zn). In particular, for m ∈ Z such that gcd(m,n) = 1, the map ζ 7→ ζm is

a field automorphism and z 7→ zm is a group automorphism and this correspondence defines

an isomorphism of the automorphism groups.

Proof. This is a standard result whose proof can be found in many graduate texts, including

[4, p. 135 and p. 546]. �

By Lemma 4.1, we may identify G(Kn/Q) with Aut(Zn) and will denote this group as

Gn. For each integer m relatively prime to n, let σm denote the common automorphism of

Aut(Zn) and G(Kn/Q) which is determined by m. In fact, we may identity Gn with a set of

positive integers. Again, subscripts will be omitted when the context is clear.

Definition 4.2. Let ωn : Q[Zn] → Q(ζn) be the Q-algebra map uniquely defined by the

relation ωn(z) = ζn.

Leung and Man also used this map in their classification of the Schur rings over cyclic

groups in [16, Prop 2.7, Cor 2.8, Prop 2.10].

Our current goal will be to prove the Lattice Isomorphism Theorem (Theorem 4.8), which

states that there is a lattice-preserving isomorphism between the subfields of the cyclotomic

fields and the orbit Schur rings of G. We prove now the necessary prerequisites.

Proposition 4.3. If A is any subalgebra of Q[Zn], then ωn(A) is a subfield of Kn.

Proof. It follows from the definition of ω that ω(Q[Zn]) = Kn and that Q is fixed by ω.

Consequently, ω(Q) = Q. For any subalgebra A such that Q ⊆ A ⊆ Q[G], it is clear that

Q ⊆ ω(A) ⊆ K. Certainly, ω(A) is a Q-subalgebra of K. Let α ∈ ω(A). Since K/Q is an
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algebraic extension, α is algebraic as well. Thus, there exists a monic irreducible polynomial

f(x) = xm + am−1x
m−1 + . . . + a0 such that f(α) = 0. Since f is irreducible, we have that

a0 6= 0. But f(α) = 0 gives

1 = α

(
1

−a0
αm−1 +

am−1
−a0

αm−2 + . . .+
a1
−a0

)
.

Therefore, α has an inverse in ω(A), which implies that ω(A) is a subfield of K. �

In particular, the proof of Proposition 4.3 actually shows that for any algebraic extension

K/F , if A is a ring such that F ⊆ A ⊆ K, then A is a field.

Corollary 4.4. If S is a Schur ring of Q[Zn], then ωn(S) is a subfield of Q(ζn). �

The previous corollary then shows that ω maps the Schur rings ofG into the subfields ofK.

From Galois Theory, we know that the Galois group of the Galois extension K/Q determines

the structure of the lattice of subfields of K. Likewise, Aut(G) determines the lattice of orbit

Schur rings of Q[G]. Our correspondence exists because these two automorphism groups are

essentially the same, as was shown in Lemma 4.1.

Lemma 4.5. Let σ ∈ Gn. Then σ ◦ ωn = ωn ◦ σ.

Proof. Let Zn = 〈z〉 and σ ∈ G. Then there exists an m ∈ Z such that gcd(m,n) = 1 and

σ(z) = zm. Under the identification of Lemma 4.1, we have that σ(ζ) = ζm. Therefore,

σ(ω(z)) = σ(ζ) = ζm = ω(z)m = ω(zm) = ω(σ(z)). �

Note that the periods and orbit algebras of a group action are defined in Appendix B.

Lemma 4.6. Let H ≤ Gn. Then ω respects the periods of H, that is,

ωn(ηzk) = ηζk

for every k ∈ Z.

Proof. Let Hzk denote the stabilizer of zk in H. By the correspondence of Lemma 4.1,

Hzk = Hζk , the stabilizer of ζk. Let Tzk denote a transversal of the cosets of Hzk in H. Then
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Tzk also denotes a transversal of Hζk . Therefore, the following equation is a consequence of

Lemma 4.5:

ω

∑
σ∈T

zk

σ(zk)

 =
∑
σ∈T

zk

ωσ(zk) =
∑
σ∈T

zk

σω(zk) =
∑
σ∈T

zk

σ(ζk) = ηζk . �

Proposition 4.7. For each H ≤ Gn, we have ωn(Q[Zn]H) = KHn .

Proof. We mention that it is a standard result from Galois theory that the subfields of K are

all of the form KH for some H ≤ G. Furthermore, Corollary B.4 shows that KH is spanned

as a Q-algebra by the periods {ηζk | 0 ≤ k < n}. Similarly, Q[G]H = Span{ηzk | 0 ≤ k < n}

by Theorem B.3 and Example 2.20. Then

ω(Q[G]H) = ω (Span{ηzk | 0 ≤ k < n})

= Span{ω(ηzk) | 0 ≤ k < n}

= Span{ηζk | 0 ≤ k < n}, by Lemma 4.6,

= KH,

which finishes the proof. �

Proposition 4.7 can also be seen as a consequence of Theorem B.6 after we have deter-

mined kerωn.

Theorem 4.8 (The Lattice Isomorphism Theorem). Let G = Zn = 〈z〉 and let K = Q(ζn).

Then the lattice of orbit Schur rings over G is lattice-isomorphic via ωn to the lattice of

subfields of K.

We will denote the lattice of subfields of Kn as Ln.

Proof. Corollary 4.4 shows that ω actually maps the orbit Schur ring lattice into the lattice

of subfields of K. Thus, it suffices to show that ω is a bijection between these two lattices.

Let KH be the subfield of K corresponding to H ≤ Gn. By Proposition 4.7, ω(Q[G]H) =

KH , which implies that ω is surjective between lattices. Suppose next that ω(Q[G]H) =

ω(Q[G]K) for H,K ≤ G. Then KH = KK , but the Fundamental Theorem of Galois Theory
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implies that H = K. Therefore, Q[G]H = Q[G]K . This proves that, in fact, ω induces an

isomorphism between these two lattices. �

Corollary 4.9. Let H,K ≤ Gn. Then Q[Zn]H = Q[Zn]K if and only if H = K.

Proof. Only one direction needs to be proven. If H and K are distinct subgroups, then

ω(Q[G]H) and ω(Q[G]K) are distinct, which implies that Q[G]H and Q[G]K are distinct. �

Example 4.10. Corollary 4.9 is not true for arbitrary groups. For example, let

G = Z4 × Z2 = 〈a, b〉

and let

S = SpanQ{1, a2, b+ a2b, a+ a3 + ab+ ab3} ∼= QZ2 ∧QZ2 ∧QZ2.

In fact, S = R(Q[G]). Furthermore, the automorphism group Aut(G) = G is given by

G =
〈
σ :

a7→a

b7→a2b
, τ :

a7→a3b

b 7→a2b

〉
∼= D4.

Let H = 〈τ〉 � G. It is an exercise to check that Q[G]H = R(Q[G]) = Q[G]G, although

H 6= G. �

At this point, we change our focus toward understanding the kernel of ω. From Galois

theory, if Φn(x) ∈ Z[x] denotes the nth cyclotomic polynomial, then Q(ζn) ∼= Q[x]/(Φn(x)).

Since Φn(x)
∣∣ (xn − 1) and Q[Zn] ∼= Q[x]/(xn − 1), the quotient map Q[x] → Q(ζn) factors

as the composition Q[x] → Q[Zn]
ωn−−→ Q(ζn). In particular, kerωn = (Φn(z)) ⊆ Q[Zn] and,

by semisimplicity,

Q[Zn] ∼= kerωn ⊕ ωn(Q[Zn]) = (Φn(z))⊕Q(ζn).

Continuing with this idea, for a Schur ring S over Zn, we note that

kerω|S = (kerω) ∩ S.
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By Theorem 2.9, S is semisimple and

S ∼= kerω|S ⊕ ω(S) = [(Φn(z)) ∩ S]⊕ ω(S). (4.1)

More can actually be said about the kernel of ω; it contains all cosets of nontrivial

subgroups of Zn.

Lemma 4.11. For each prime p dividing n, let Zp denote the subgroup of Zn of order p.

Then kerωn = (Zp : p | n and p is prime). In particular, a simple quantity of Q[Zn] is a

kernel element if and only if it is a sum of unions of cosets of some non-trivial subgroups of

G.

Proof. Let d | n, and let fd(x) =
∑d

k=1 x
n−kn/d. Then, for every prime divisor p | n,

xn − 1 = (xn/p − 1)fp(x).

Furthermore, since the roots of xn/p − 1 consist entirely of n/pth roots of unity, it must

be that Φn(x) | fp(x), for all p | n. Thus, Φn(x) is a common divisor of {fp(x) : p | n}.

Let g(x) = gcd{fp(x) : p | n}, and we may assume that g is monic. So, Φn(x) | g(x).

Certainly, each root of g is an nth root of unity. On the other hand, since g(x) | fp(x) and

xn − 1 = (xn/p − 1)fp(x), no root of g is a n/pth root of unity for any prime divisor of n.

Thus, the roots of g are primitive nth roots of unity. So, g(x) | Φn(x), which implies that

Φn(x) = gcd{fp(x) : p | n}.

Therefore, the ideal generated by the fp(x) is the principal ideal generated by Φn(x). In

particular,

kerωn = (Φn(z)) = (fp(z) : p | n) = (Zp : p | n). �

Theorem 4.12. Let S be a Schur ring over Zn. Then kerω|S is generated as an ideal by

the nontrivial S-subgroups, that is, kerω|S = (H | H ∈ S,H 6= 1).

Proof. Let G = Zn. By Lemma 4.11, (H | H ∈ S,H 6= 1) ⊆ kerω ∩ S. Recalling the

notation introduced in Section 3.2 and Section 3.3, for 1 < K ≤ G, we have that ε(G,K) ∈
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(H | 1 < H ≤ G) ⊆ kerω. Thus, ω(ε(G,K)) = 0 for all K ≤ G except K = 1, in which case

ω(ε(G, 1)) = 1. By Corollary 3.20,

ω(Q[G]) ∼= Q[G]ε(G, 1) and kerω = Q[G](1− ε(G, 1)).

By Theorem 3.23 and Theorem 3.32,

ω(S) ∼= Sε(S, 1) and kerω|S = S(1− ε(S, 1)) = (H | H ∈ S,H 6= 1). �

As a consequence of Theorem 4.12,

S = Sε(S, 1)⊕ kerω|S. (4.2)

Of course, Sε(S, 1) ∼= ω(S), given by the map αε(S, 1) 7→ ω(α).

We now will collect the various structure properties of Schur rings over cyclic groups

which are derived from their interactions with ωn : Q[G]→ K. For example, Proposition 4.7

states that for each H ≤ Gn,

ωn(Q[Zn]H) = KHn . (4.3)

Proposition 4.13. We have ωn(Q[Zn]0) = Q.

Proof. Since, Q ⊆ Q[Zn]0 ⊆ R(Q[Zn]), Proposition 4.7 implies that

Q = ω(Q) ⊆ ω(Q[Zn]0) ⊆ ω(R(Q[Zn])) = Q. �

Proposition 4.13 also shows that every lattice Schur ring maps onto Q.

Proposition 4.14. Let G = Za×Zb with gcd(a, b) = 1. If S is a Schur ring over Za and T

is a Schur ring over Zb, then ωab(S · T ) = ωa(S) ∨ ωb(T ), the composite of the two fields.

Proof. Since S, T ⊆ S · T , we have that ω(S), ω(T ) ⊆ ω(S · T ), which implies that ω(S) ∨

ω(T ) ⊆ ω(S · T ). On the other hand, if x ∈ ω(S · T ), then there exists si ∈ S and ti ∈ T

such that

x = ω

(∑
i

siti

)
=
∑
i

ω(si)ω(ti) ∈ ω(S) ∨ ω(T ).
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Therefore, ω(S · T ) = ω(S) ∨ ω(T ). �

In terms of tensor products, Proposition 4.14 says that ω(S ⊗Q T ) = ω(S)⊗Q ω(T ).

Proposition 4.15. Let S be a wedge-decomposable Schur ring of Q[Zn] with wedge decom-

position 1 < Zr ≤ Zm < G. Then ωn(S) = ωm(SZm).

Proof. Let N = S ∩ Q[Zm]. Since Q[Zm] ⊆ Q[Zn], we have that ωn|Q[Zm] = ωm. So,

ωm(N) = ωn(N), where we view N as a subalgebra of Q[Zm] and Q[Zn], respectively. Since

N ⊆ S ⊆ Q[Zn], we have that ω(N) ⊆ ω(S). Conversely, for any C ∈ D(S)rD(N), we see

that C is a union of cosets of Zr and so ω(C) = 0, by Lemma 4.11. Therefore, ω(S) ⊆ ω(N),

which finishes the proof. �

4.2 Wedderburn Decompositions of Schur Rings over Cyclic

Groups

In Theorem 3.27, we determined the Wedderburn decomposition of any lattice Schur ring.

For cyclic groups, this decomposition characterizes lattice Schur rings.

Proposition 4.16. Let G be a finite cyclic group and let S be a Schur ring over G. Then

S ∼=
⊕
Q if and only if S = S(L) for some lattice L of subgroups of G.

Proof. If S = S(L), then S ∼=
⊕
Q by Theorem 3.27. Suppose that S ∼=

⊕
Q. Then the

complete set of primitive idempotents of S forms a basis. But this set is {ε(S,H) | H ∈ S}

by Theorem 3.32, and Span{ε(S,H) | H ∈ S} is a lattice Schur ring by Theorem 3.10. �

The next result of this section generalizes the decomposition of Perlis and Walker (The-

orem 3.18) to all orbit Schur rings.

Theorem 4.17. Let G = Zn, a cyclic group of order n, and let H ≤ Aut(G). Then

Q[G]H ∼=
⊕
d|n

Q(ζd)
H.

Note that we are using H to denote a subgroup of Gn and its restriction in Gd for each

divisor d of n. This notation is used and explained in the paragraph prior to Corollary B.5.
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Proof. Let S = Q[G]H. Since all subgroups of G are characteristic, the primitive idempotents

of S are exactly the primitive idempotents of Q[G], by Corollary 3.20. By Theorem 3.18, each

idempotent corresponds to a cyclotomic field and hence to a divisor of n. Let εd = ε(G,Zn/d).

Hence, Q[G]εd ∼= Kd. Let ω(d) : Q[G] → Kd be the representation afforded by ω(d)(z) = ζd

for each d | n. For each element x ∈ Kd, there exists some α ∈ Q[G] such that ω(d)(α) = x.

Define ϕd : Kd → Q[G]εd by ϕd(x) = αεd. It is routine to check that ϕd is an isomorphism.

Then

S =
⊕
d|n

Sεd.

Let πd : G → G/Zn/d be the natural quotient map. Then ω(d) = ωd ◦ πd. Now, the map

ϕd ◦ ω(d) is multiplication by εd and hence is the natural projection map Q[G] → Q[G]εd.

Thus, the restriction ϕd ◦ ω(d) : S → Sεd is the projection map. Finally,

Sεd = ϕd ◦ ω(d)(S) = ϕd ◦ ωd ◦ πd(S) = ϕd ◦ ωd(Q[Zd]
H), by Theorem B.6,

= ϕd(KHd ), by Proposition 4.7.

But ϕd|KHd is injective, since KHd is a field. Therefore, Sεd ∼= KHd , which finishes the proof. �

In more generality, let S be a Schur ring over a cyclic group. If Zn/d ∈ S, then

ω(d)(ε(S,Zn/d)) = ωd ◦ πd(ε(S,Zn/d)) = ωd(ε(πd(S), 1)) = 1 ∈ Kd.

In particular, Schur rings over cyclic groups decompose as sums of subfields of cyclotomic

fields, where the degree of each cyclotomic field corresponds to the index of an S-subgroup.

To illustrate this procedure, we provide a few examples over G = Z12.

Example 4.18. Let S be defined as in Example 3.34. Now, S has five primitive idempotents

corresponding to the subgroups G, Z6, Z3, Z2, and 1. Thus, S has representations in Q,

K2, K4, K6, and K12. Since dimQ = dimK2 = 1, Sε(S,G) ∼= Sε(S,Z6) ∼= Q, as Q-

algebras. Since dimω(4)(S) = dimK4 = 2, we have Sε(S,Z3) ∼= K4 = Q(i). Also, we

have dimω(6)(S) = 1, which implies that Sε(S,Z2) ∼= Q. This accounts for five of the six
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dimensions of S. Hence, Sε(S, 1) = Q. Therefore,

S ∼= Q4 ⊕Q(i). �

Example 4.19. Let T be defined as in Example 3.35. So, T has four primitive idempotents

corresponding to the subgroups G, Z6, Z2, and 1, which gives representations in Q, K2, K6,

and K12, respectively. Like before, Tε(T,G) ∼= Tε(T, Z6) ∼= Q. Since ω(6)(T ) = 2, it must

be that Tε(T, Z2) ∼= K6
∼= Q(ζ3). Since dimT = 5, it follows that Tε(T, 1) ∼= Q. Therefore,

T ∼= Q3 ⊕Q(ζ3). �

Example 4.20. Let U be defined as in Example 3.36. So, U has four primitive idempotents

corresponding to G, Z6, Z3, and Z1. Thus, Uε(U,G) ∼= Uε(U,Z6) ∼= Q. Since ω(12)(z4) = ζ3,

we have that K3 ⊆ ω(12)(Uε(U, 1)). But dimUε(U, 1) = 2, which implies that Uε(U, 1) ∼=

K3. By dimension considerations, it must be that dimUε(U,Z3) = 2. This implies that

Uε(U,Z3) ∼= K4. Therefore,

U ∼= Q2 ⊕Q(i)⊕Q(ζ3). �

4.3 Schur Rings over Cyclic Groups of Prime Power Order

We switch our attention now to the case when Zn is a p-group, that is, G = Zpn for some

prime p. Our goal for this section will be to prove the general structure theorem of Schur

rings over cyclic p-groups. The structure theorem is given in Theorem 4.36, and it states

that over a cyclic p-group, all Schur rings are orbit algebras, trivial, or wedge-decomposable.

As described in Appendix C, the lattice of subfields of Kpn is naturally layered by the

powers of the prime. Let G = Zpn and let Lpn be the lattice of subfields of Kpn . For k = 0,

we let the 0th layer4.1 of Lpn be Lp0 = L1 = {Q}. For k ≥ 1, the kth layer of Lpn is

Lpk rLpk−1 . The top layer of Lpn is the nth layer. In particular, the layers form a partition

on Lpn .

4.1We mention that this layering differs slightly from the layering used in Appendix C. In the Appendix,
the first layer is Lp but in this Chapter, the first layer is Lp r {Q}. This is because we will need to treat Q
differently than other fields in Lp.
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We begin by proving the structure theorem in the special case when G = Zp. This

result states that all Schur rings over Zp are orbit algebras. It is essentially a consequence

of Theorem 4.8.

Theorem 4.21 (The Structure Theorem of Schur Rings over a Simple Cyclic Group). Every

Schur ring over Zp is an orbit algebra for some subgroup of automorphisms of Zp.

Proof. Let S and T be Schur rings over G for G = Zp. Suppose also that ω(S) = ω(T ).

Then S + kerω = T + kerω. But kerω = (G) ≤ S, T , which implies that S = T .

Next, let ω(S) = KH for some H ≤ G. Then ω(S) = ω(Q[G]H), by Proposition 4.7.

Therefore, S = Q[G]H by above. �

We now examine the case of Zpn .

Proposition 4.22. Let G = Zpn for some prime p and let R(Q[G]) = Q[G]G. Then

R(Q[G]) =
∧n
k=1Q[Zp]

0.

Proof. By the definition of the layers of G, R(Q[G]) = SpanQ{Ld : d | pn} = SpanQ{Lpk :

1 ≤ k ≤ n}. For n = 1, then R(G) = Q[G]0. Assume that the result holds for each k < n.

For each layer,

Lpk =
⋃

g∈L
pk

gZpk−1 ,

that is, Lpk is the union of all nontrivial cosets of Zpk−1 in Zpk . Let π : Zpk → Zpk/Zpk−1 be

the natural map. Thus, Span{Zpn−1 , Lpn} = π−1(Q[Zp]
0). Therefore, R(Q[G]) = Span{Lpk |

0 ≤ k ≤ n− 1} ∧Q[Zp]
0. But Span{Lpk | 0 ≤ k ≤ n− 1} = R(Q[Zpn−1 ]). So by induction,

R(G) =

(
n−1∧
i=0

Q[Zp]
0

)
∧Q[Zp]

0 =
n∧
k=1

Q[Zp]
0. �

We next address the exceptional case: p = 2 and n = 3.

Proposition 4.23. For p = 2, L3 r L2 contains 3 fields: Q(ζ8), Q(
√

2), and Q(
√
−2), and

the only Schur ring over Z8 which map onto these fields are their respective orbit Schur ring

correspondents.
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Proof. The statement about subfields of Q(ζ8) is settled by Proposition C.12, so we will

prove that there are only three Schur rings over Z8 which map to these fields.

Let G = Z8. Let S be a Schur ring over G which maps into the top layer of L8. Suppose

there exists an S-class C ∈ D(S) such that C ∩ L8 6= ∅ and C ∩ L2 6= ∅. Now, L2 = {z4},

which implies that z4 ∈ C. Since every automorphism of G must map z4 to itself, we

conclude that σ(C) = C for all σ ∈ G by Proposition 2.37. Thus, L8 ⊆ C, but ω(L8) = 0 by

Lemma 4.11. So, ω(S) ∈ L4, a contradiction. Thus, no class of S can intersect both L2 and

L8 nontrivially. Furthermore, suppose that C ∩L8 6= ∅ and C ∩L4 6= ∅. If L4 ⊆ C, then the

previous argument leads to contradiction. So we may assume that C contains either z2 or x6

but not both. In either case, C must contain exactly two elements from L8 by Proposition

2.37. Now, L4 is fixed by the automorphism σ5. Thus, σ5(C) = C by Proposition 2.37. On

the other hand, no element of L8 is fixed by σ5. Thus, C must consist of a single element

from L4 and a single orbit of σ5 from L8, which contains two elements of L8. Now, these

σ5-orbits are exactly the cosets of Z2 in L8. Thus, ω(S) ∈ L4. Therefore, we may assume

that Z4 is an S-subgroup and that each S-class containing an element of L8 is contained in

L8.

By Proposition 2.13, if any of the L8-primitive sets of S are a singleton, then S =

Q[G]. On the other hand, if L8 is partitioned as {{z, z3, z5, z7}} or {{z, z5}, {z3, z7}}, then

ω(S) ∈ L4, which cannot happen. The remaining possibilities are {{z, z3}, {z5, z7}} and

{{z, z7}, {z3, z5}}. Notice that (z + z3)(z + z3) = (z + z7)(z3 + z5) = 2z4 + (z2 + z6). So in

either of the remaining two cases, {z4} ∈ D(S). Lastly, if L4 = {z2, z6} is split in S, then it

must be that z2(z + z3) = z3 + z5 and z + z3 are in S or z2(z + z7) = z + z3 and z + z7 are

in S. So, we conclude that L4 ∈ D(S). Thus, the only three partitions of G which result as

top layer Schur rings are:

1, z4, z2, z6, z, z3, z5, z7,

1, z4, z2 + z6, z + z3, z5 + z7,

1, z4, z2 + z6, z + z7, z3 + z5,

which correspond to Q[Z8],Q[Z8]
〈σ3〉, and S(Z8), respectively. �

In the case that n is a power of a prime, kerω is a pre-Schur ring.
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Lemma 4.24. The kernel of ωpn : Q[Zpn ]→ Kpn is generated by Zp, that is, kerωpn = (Zp).

In particular, kerωpn is a pre-Schur ring. Furthermore, a simple quantity of Q[Zpn ] is a

kernel element if and only if it is a union of cosets of Zp.

Proof. This follows immediately from Lemma 4.11. �

Of course, kerω|S = kerω ∩ S is also a pre-Schur ring for any Schur ring S.

Corollary 4.25. Let S be a Schur ring over Zpn and let C ∈ D(S). If C ∈ kerω|S, then C

is a union of cosets for some nontrivial S-subgroup of Zpn.

Proof. Let G = Zpn . By Lemma 4.24, C =
∑k

i=1 giHi, where gi ∈ G, 1 < Hi ≤ G, and

giHi∩gjHj = ∅ for i 6= j. Let H ′ =
⋂k
i=1Hi. Then gjHj is a union of H ′ cosets for all i. Now

H ′ 6= 1, since Zp ≤ Hi for all i. Thus, C is a union of cosets of H ′. Let H = Stab(C), which

is an S-subgroup by Proposition 2.35. Now, H ′ ≤ H, which shows that H 6= 1. Finally, C

is a union of cosets of H since H = Stab(C). �

Corollary 4.26. Suppose S is a Schur ring over Zpn and H is a proper S-subgroup of G

such that for all C ∈ D(S), either C ⊆ H or C is a union of cosets of an S-subgroup (not

necessarily the same subgroup) contained in H. Then S is wedge-decomposable.

Proof. Let C be an S-class not contained in H. By Corollary 4.25, there is an S-subgroup

KC such that C is a union of KC cosets. Let K be the intersection of all subgroups KC ,

where C ranges over the S-classes outside of H. Then K is an S-subgroup, each class C

outside of H is a union of K-cosets, and K 6= 1 since Zp ≤ KC for each C. Therefore,

1 < K ≤ H < G is a wedge decomposition of S. �

Lemma 4.27. Let G = Zpn and let K = Q(ζpn). Let S be a Schur ring over G such that

ω(S) = KH for some H ≤ G. Suppose that S 6⊆ Q[G]H. Then S is wedge-decomposable.

Proof. Let C ∈ D(S) such that σ(C) 6= C for some σ ∈ H. Then by Proposition 2.37 it

follows that σ(C) = D for some D ∈ D(S). Also,

ω(D) = ω(σ(C)) = σ(ω(C)) = ω(C),
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where the second equality follows from Lemma 4.5 and the third equality holds since

ω(C) ∈ KH. Thus, 0 6= C − D ∈ kerω. Since C ∩ D = ∅ and kerω is a pre-Schur

ring, C ∈ kerω by Lemma 2.31. In particular, every S-class which is not fixed by H must

be in kerω.

Let H be an S-subgroup maximal with the property that

S ∩Q[H] ⊆ Q[G]H.

By above, for all C ∈ D(S) such that S 6⊆ H, we have C ∈ kerω. By assumption, H 6= G.

If H = 1, then all S-classes are in the kernel of ω except the unit class. Likewise, G ∈ kerω.

Taking the difference, we have that 1 ∈ kerω, a contradiction. Therefore, H is a proper,

nontrivial subgroup and S is wedge-decomposable by Corollary 4.25 and Corollary 4.26. �

In the case of prime powers, Theorem 3.32 can be proven without Theorem 2.68.

Theorem 4.28. Let G = Zpn and let S be a Schur ring over G with minimal S-subgroup

H. Then ε(S, 1) = 1− Ĥ is a primitive idempotent of S.

Proof. Let H = Zph . By Theorem 3.23,

1− Ĥ =
∑
K�H

ε(G,K).

By Corollary 3.22,

ε(S, 1) =
h−1∑
k=0

(Ẑpk − Ẑpk+1).

If ε(S, 1) is imprimitive in S, then there exists orthogonal, nonzero idempotents ε1 and ε2

such that

ε(S, 1) = ε1 + ε2.

Suppose ε(G, 1) is involved in ε1. If ε(G,Zpk) is involved in ε1, then either ε(G,Zpk+1) is also

involved in ε1 or Lpk+1 ∈ S by Lemma 2.31. In the latter case, Zpk+1 ∈ S by Proposition

2.33. By the minimality of H, ε(G,Zpk) is involved in ε1 for all 0 ≤ k < h. Then ε1 = ε(S, 1)

and ε2 = 0, a contradiction. �
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Lemma 4.29. Let S be a Schur ring over Zpn and suppose ω(S) 6= Q. Then Zp ∈ S. In

particular, ε(S, 1) = ε(Zpn , 1) = 1− Ẑp.

Proof. We will work by contrapositive. Let G = Zpn , let ω(S) = KHpn , and let H = Zph be

the minimal S-subgroup. If Zp is not an S-subgroup, then h > 1. By assumption, SH is a

primitive Schur ring, which implies that SH = Q[H]0, by Theorem 2.39.

Let

η′ =
∑

ζmp :m∈H

ζmp ∈ KHp ,

that is, η′ is the H-period consisting of primitive pth roots of unity. So, η′ ∈ ω(S). Let

zpk = zp
n−k

, let

η =
∑

zmp :m∈H

zmp ∈ Q[Zp],

and let T be a transversal of the cosets of Zp in G. Then there exists some α ∈ S such that

α =
∑
g∈G

αgg = η +
∑
t∈T

cttZp,

for ct ∈ Q. Let O be the H-orbit containing zp. If g ∈ O, then αg = 1 + c1. If g ∈ Zp rO,

then αg = c1. Since SH = Q[H]0, every element of Zp r 1 must have the same coefficient in

α. Thus, O = Zpr1. In particular, this implies that ω(S)∩Kp = Q. By a similar argument,

if g ∈ Zpk r Zpk−1 for k ≤ h and O is the H-orbit containing g, then O is a union of cosets

of Zp. If η is the corresponding H-period, then ω(η) = 0. By induction, ω(S)∩Kpk = Q for

all k ≤ h. By assumption, h ≥ 2. If p is an odd prime, ω(S) = Q as shown in Appendix C.

If p = 2 and h ≥ 3, then we must have ω(S) = Q.

If p = 2 and h = 2, then H = Z4. Of course, if n = 2, then S = Q[Z4]
0 and ω(S) = Q.

So, we may suppose that n ≥ 3. Let C ∈ D(S) be the primitive set containing z8. Since Z4

is an S-subgroup, Z4 ∩ C = ∅. Let

H′ = {σm ∈ G2n | m ≡ 1 (mod 8)}.

ThenH′ ≤ G and σ(C) = C for all σ ∈ H′ by Proposition 2.37. Suppose now that g ∈ GrZ8

and g ∈ C. Since C is fixed by all elements of H′, the set C must contain the entire H′-orbit
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of g, which is necessarily a union of cosets of Zp. Let A = C∩Z8, which again by Proposition

2.37 must be one of the five following orbits:

{z8}, {z8, z38}, {z8, z78}, {z8, z58}, {z8, z38 , z58 , z78}. (4.4)

Then ω(C) = ω(A). In the case A is either of the last two orbits from (4.4), it must be

that ω(A) = 0. Using Proposition 2.37, we conclude that every class containing an element

of order 8 vanishes. We conclude that ω(S) ∩ K8 = Q. Like above, this implies that

ω(S) = Q. So, we may assume A is one of the first three orbits from (4.4). In this case, let

B = C ∩ (G r Z8), that is, C = A + B. The set B contains only elements of order strictly

greater than 8. Thus, the product of any element of A and B has order strictly greater than

8. Since B is fixed by H′, the product between any two elements of B has order greater

than or equal to 8. Therefore, the coefficients of 1, z2, and z4 in C
2

are the same as their

coefficients in A
2
. In all three cases, the coefficients of z2 and z4 differ in A

2
, a contradiction

since SH is trivial. Therefore, in all cases either ω(S) = Q or a contradiction occurred. This

finishes the proof. �

Lemma 4.30. Let S and T be immersed Schur rings of Q[Zpn ]. If ωn(S) = ωn(T ) and

ε(S, 1) = ε(T, 1), then Sε(S, 1) = Tε(T, 1).

Proof. Let G = Zpn and let ε = ε(S, 1) = ε(T, 1). If ω(S) = ω(T ) = Q, then both Sε = Tε =

SpanQ{ε}. Otherwise, ε = ε(G, 1) by Lemma 4.29. Since Q[G](1−ε) = ker(ω : Q[G]→ Kpn),

the map ω : Q[G]ε → Kpn given by αε 7→ ω(α) is an isomorphism. Let α ∈ Sε ⊆ Q[G]ε.

Thus, α = αε. Since α ∈ S and ω(S) = ω(T ), there exists some β ∈ T such that ω(α) =

ω(β). Now, βε ∈ Tε ⊆ Q[G]ε and ω(βε) = ω(αε). Therefore, α = αε = βε ∈ Tε. Thus,

Sε ⊆ Tε. A symmetric argument provides the other containment. �

Theorem 4.31. Let S and T be immersed Schur rings of Q[Zpn ]. Then

ω(S) ∩ ω(T ) = ω(S ∩ T ).

Proof. Let G = Zpn and let ε = ε(G, 1) = 1 − Ẑp. It is always the case that ω(A ∩ B) ⊆
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ω(A) ∩ ω(B) for any subsets A,B ⊆ Q[G]. Suppose that ω(S) = Q. Then

Q ⊆ ω(S ∩ T ) ⊆ ω(S) ∩ ω(T ) = Q ∩ ω(T ) = Q.

So, ω(S ∩ T ) = ω(S) ∩ ω(T ). Similarly, ω(S ∩ T ) = ω(S) ∩ ω(T ) if ω(T ) = Q.

If ω(S), ω(T ) 6= Q, then ε(S, 1) = ε(T, 1) = ε, by Lemma 4.29. Let x ∈ ω(S) ∩ ω(T ).

Then there exists some α ∈ S such that x = ω(α). In fact, x = ω(αε). Clearly, αε ∈ S.

Likewise, there exists some β ∈ T such that x = ω(βε) and βε ∈ T . As in the previous proof,

αε, βε ∈ Q[G]ε and αε = βε since ω(αε) = ω(βε). Therefore, αε ∈ S ∩ T and x ∈ ω(S ∩ T ),

which implies that ω(S) ∩ ω(T ) ⊆ ω(S ∩ T ). �

Corollary 4.32. Let S be a Schur ring over Zpn. If H = Zd is an S-subgroup, then

ω(S) ∩Q(ζd) = ω(SH).

Proof. By Theorem 4.31, ω(S) ∩Q(ζd) = ω(S) ∩ ω(Q[H]) = ω(S ∩Q[H]) = ω(SH). �

The structure theorem will be separated into three parts, based upon the image of ω(S).

The first case will be ω(S) = Q, which we will see by Theorem 4.33 implies that S is a

wedge product or trivial. The second case will be ω(S) ∈ Lpn−1r{Q}, that is, ω(S) is in the

middle of the lattice. We will see that Schur rings in this category are wedge-decomposable.

Lastly, the third case addresses ω(S) ∈ Lpn r Lpn−1 , that is, ω(S) is in the top layer. We

will see that S will necessarily be an orbit algebra and hence will be the unique Schur ring

which maps to that particular field. The total of these three parts will prove the structure

theorem for cyclic p-groups.

Theorem 4.33. Let G = Zpn and let S be a Schur ring over G such that ωn(S) = Q. Then

there exists a subgroup K ≤ G and a Schur ring over G/K such that S = Q[K]0 ∧ T .

Proof. We proceed by induction. It is certainly true for Zp by Theorem 4.21, where S =

Q[Zp]
0 ∧ T and T is the group algebra over the trivial group.

Suppose S 6⊆ R(Q[G]). Then S is wedge-decomposable by Lemma 4.27. Let 1 < K ≤

H < G be a wedge decomposition of S and let N = SH . Since ω(S) = ω(N) = Q, induction

gives that N = Q[L]0 ∧ T for some Schur ring T over G/L. Since L ≤ H, each coset of
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H is a union of cosets of L. Then S contains an immersed trivial Schur ring over L and

all S-classes outside of L are unions of cosets of L. Therefore, S is a wedge product of the

desired form.

Let us now assume that S ⊆ R(Q[G]) =
∧n
k=1Q[Zp]

0. We notice that all R(Q[G])-classes

outside of the first Q[Zp]
0 are unions of cosets of Zp. If Lp is not fused to a larger class in

S, then S is wedge-decomposable and S = Q[Zp]
0 ∧ T . Otherwise, let C be the S-class

containing Lp and let H = 〈C〉. Then H ∈ S by Proposition 2.33. In particular, every class

outside of H is a union of cosets of H. So if N = SH , then S = N ∧ T as before. Now, N is

a Schur ring over H � G. By induction, N = Q[K]0 ∧ T1, for K ≤ H and some Schur ring

T1. Therefore,

S = N ∧ T = (Q[K]0 ∧ T1) ∧ T = Q[K]0 ∧ (T1 ∧ T ).

Therefore, S is a wedge product of the desired form. �

Theorem 4.34. Let S be a Schur ring over Zpn and ω(S) ∈ Lpn−1 r {Q}. Then S is

wedge-decomposable.

Proof. Suppose ω(S) ∈ Lpm r Lpm−1 . Then there exists an orbit Schur ring T over Zm such

that ω(T ) = ω(S). Let N = S ∩ T . By Theorem 4.31, ω(N) = ω(S) ∩ ω(T ) = ω(S).

Furthermore, ω(N) 6= Q, which implies that N is not a trivial Schur ring. In particular, N

is a Schur ring over a nontrivial subgroup H ≤ G. Of course, Zp ≤ H.

Let ε = ε(S, 1). Since the minimal subgroup of S must also be the minimal subgroup of

N , we have ε = ε(N, 1). By (4.2), we have the decompositions

S = Sε⊕ kerω|S

and

N = Nε⊕ kerω|N .

By Lemma 4.30, Sε = Nε. Now, kerω|S = (Zp) ∩ S is a pre-Schur ring over G and

kerω|N = (Zp) ∩N is an immersed pre-Schur ring contained in it. Therefore, there exists a

◦-ideal V such that

(Zp) ∩ S = [(Zp) ∩N ]⊕ V.
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Then

S = Sε⊕ [(Zp) ∩ S] = Sε⊕ [(Zp) ∩N ]⊕ V = Nε⊕ [(Zp) ∩N ]⊕ V = N ⊕ V.

Then D(S) = D(N) ∪ D(V ). Since V ⊆ (Zp), D(V ) contains only unions of cosets of Zp.

Therefore, S is wedge-decomposable. �

Theorem 4.35. Let S be a Schur ring over Zpn such that ω(S) is in the top layer of Lpn.

Then S is an orbit Schur ring, and hence S is the unique Schur ring over Zpn which maps

to ω(S).

Proof. We will proceed by induction. The result is true for n = 1 by Theorem 4.21. Also,

if p = 2 and n = 3, then the result follows from Proposition 4.23. So we may assume that

n ≥ 2 and if p = 2, then n 6= 3.

Let ω(S) = F = KH ∈ Lpn r Lpn−1 , for some H ≤ G. If S 6⊆ Q[G]H, then S is wedge-

decomposable by Lemma 4.27. But that contradicts ω(S) ∈ Lpn r Lpn−1 . So, S ⊆ Q[G]H.

Let K = F ∩ Kpn−1 . As long as p 6= 2 or n 6= 3, K is in the top layer of Lpn−1 . By

induction, there exists a unique Schur ring T over Zpn−1 , which is necessarily an orbit ring,

such that ω(T ) = K. It must be that T = Q[Zpn−1 ]H = Q[G]H ∩Q[Zpn−1 ]. Then

ω(S ∩ T ) = ω(S) ∩ ω(T ) = F ∩K = K,

by Theorem 4.31. By uniqueness, S∩T = T . Thus, S contains an immersed Schur ring over

Zpn−1 which is identical to Q[Zpn−1 ]H. Thus, the classes of S in the lower layers are exactly

the same classes of Q[G]H on the lower layers. In particular, Zp ∈ S.

Suppose that S 6= Q[G]H. Then the top layer classes of Q[G]H are fused together in some

manner to form S. In particular, let C,D ∈ D(Q[G]H) be top layer classes such that there

exists some A ∈ D(S) and C,D ⊆ A. Since C and D are in the same layer, there exists

some σ ∈ G such that σ maps an element of C to an element of D. By Proposition 2.37,

σ(C) = D. Again by Proposition 2.37, we conclude that σ(A) = A. Since both C and D

are automorphism classes with respect to H, it must be that σ ∈ G rH. Since σ(A) = A,

it must also be that σ(D) ⊆ A. Continuing in this fashion recursively, we conclude that
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A contains the entire 〈σ〉-orbit of C. In particular, if H1 = 〈H, σ〉, then A is a union of

H1-orbits. Again by Proposition 2.37, if B ∈ D(S) is another top layer class of S, then there

exists an automorphism τ ∈ G such that τ(A) = B, and furthermore,

σ(B) = στ(A) = τσ(A) = τ(A) = B,

since G is abelian. Therefore, all the top layer classes of S are unions of H1-classes and

H < H1.

Let ε = ε(G, 1). Since Zp ∈ S, we have ε(S, 1) = ε. Furthermore, for any top layer

H-period η ∈ Q[G], we have that ηε ∈ Q[G]Hε = Sε ⊆ S, by Lemma 4.30. Now, since

LpnZp ⊆ Lpn , we know that supp(ηε) ⊆ Lpn , which implies that ηε is a linear combination

of H1-periods. In particular, ηε = σ(ηε) = σ(η)ε. Thus, ω(η) = ω(σ(η)) = σ(ω(η)). Since

ω(η) is an H-period in K and fixed under σ, it must be that ω(η) is an H1-period in K. But

the orbit corresponding to this period contains a primitive pnth root of unity. Hence, every

orbit in the lower layers is also H1-invariant. In particular, the H-orbits and H1-orbits are

identical. By Galois correspondence, it follows that H = H1, a contradiction since σ /∈ H.

Therefore, S = Q[G]H, which finishes the proof. �

Theorem 4.36 (The General Structure Theorem of Schur Rings over a Cyclic p-group). Let

G = Zpn, where p is a prime number. Then every Schur ring over Zpn is an orbit algebra,

trivial, or wedge-decomposable.

Proof. The result follows from Theorem 4.33, Theorem 4.34, and Theorem 4.35. �

Corollary 4.37. Let G = Zpn. Then for any wedge-decomposable Schur ring S over G,

there exists a wedge-decomposition 1 < K ≤ H < G such that SH is an indecomposable orbit

algebra or trivial Schur ring over H. In particular, ω(SH) = ω(S). �
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Chapter 5. Counting Schur Rings over Cyclic Groups

In this chapter we consider the problem of counting the number of Schur rings over Zn.

Although a structure theorem is available for Schur rings over cyclic groups, this still proves

to be a difficult problem. Specializations of this problem have been considered before. For

example, in [13] Kovács determines a formula to count the number of Schur rings over

Z2n which are wedge-product indecomposable, that is, those Schur rings which cannot be

properly factored as a wedge product of Schur rings. This differs from the notion of wedge-

indecomposable introduced above since some Schur rings may be decomposable as semi-

wedge products but not as wedge products, for example, Q[Z4]4Q[Z4] as a Schur ring over

Z8. Kovács formula involves the Catalan and Schröder numbers. We will see these again

when we consider Schur rings over cyclic 2-groups below. In [18], Liskovets and Pöschel

determine a formula for wedge-product indecomposable Schur rings over Zpn , where p is an

odd prime. This formula depends on the Catalan numbers and the number of divisors of

p− 1. Likewise, we will see these quantities again when we consider Schur rings over cyclic

p-groups below.

Using the Galois theoretic methods developed in the previous chapter, we will construct

a recursive formula and generating function for the integer sequence counting the number of

Schur rings over Zpn , for p a prime. Section 5.1 will address the case that p is an odd prime.

Section 5.2 will address the case that p = 2.

Throughout, let ζn = e2πi/n ∈ C and let Kn = Q(ζn). Let Ln be the lattice of subfields

of Kn. Also, let ωn : Q[Zn] → Kn be the homomorphism determined by z 7→ ζn. When the

context is clear, subscripts may be omitted.

This chapter will depend heavily on the shape of Lpn . A detailed treatment of this is

included in Appendix C for the interested reader.

5.1 Counting Schur Rings Over Cyclic p-groups, p odd

Throughout this section, let p be an odd prime.
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Definition 5.1. Let Ω(n) denote the number of Schur rings over Zpn and let Ω(n, k) denote

the number of Schur rings S over Zpn such that ωn(S) = Kpk .

We have that Ω(0) = 1 since there is exactly one Schur ring over Zp0 = 1, the group ring

itself. Also, if x denotes the number of divisors of p− 1, then Ω(1) = x by Theorem 4.21.

Proposition 5.2. The number of Schur rings over Zpn, for n ≥ 1, mapping onto Q with

respect to ω is equal to the sum of the number of Schur rings over Zpk for 0 ≤ k ≤ n − 1,

that is,

Ω(n, 0) =
n−1∑
k=0

Ω(k). (5.1)

Proof. Let G = Zpn . By Theorem 4.33, if ω(S) = Q then S = Q[Zpk ]
0 ∧ T for some Schur

ring T over G/Zpk . If we consider the trivial Schur ring on G as a trivial wedge product,

that is, Q[G]0 = Q[G]0 ∧Q[1], then every Schur ring descending to Q has the form

S = Q[Zpk ]
0 ∧ T,

where 1 ≤ k ≤ n and T ranges over all the Schur rings of G/Zpk ∼= Zpn−k . Since every Schur

ring over G of this form maps to Q, the proof is finished. �

Proposition 5.3. The number of Schur rings over Zpn mapping to Q(ζp) with respect to ω

is equal to the number of Schur rings over Zpn−1, that is,

Ω(n, 1) = Ω(n− 1). (5.2)

Proof. Let G = Zpn . If n = 1, then Ω(n − 1) = Ω(0) = 1. By Theorem 4.21, there is only

one Schur ring which maps to Q(ζp). So the result follows.

Suppose that n ≥ 2. Let S be the orbit Schur ring over G = Zpn which maps onto

Q(ζp). By Theorem 4.34, S is wedge-decomposable. By Corollary 4.37, there is a wedge

decomposition of S, 1 < K ≤ H < Zpn , such that SH is trivial or an indecomposable orbit

Schur ring. By Proposition 4.15, ω(S) = ω(SH). If SH is trivial, then ω(SH) = Q, by

Proposition 4.13. Thus, SH is an indecomposable orbit Schur ring. Now, if Zp 6= H, then

SH is wedge-decomposable by Theorem 4.34. Therefore, H = Zp, which forces K = H. In
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fact, SH = Q[Zp]. This shows that S = Q[Zp] ∧ T , where T is some Schur ring over G/Zp.

Since every Schur ring over G of this form maps to Q(ζp), the proof is finished. �

Proposition 5.4. The number of Schur rings over Zpn mapping to Q(ζpn) with respect to ω

is one, that is,

Ω(n, n) = 1. (5.3)

Proof. Since Q(ζpn) is a field in the top layer, this formula follows immediately from Theorem

4.35. �

Proposition 5.5. For n ≥ 2, the number of Schur rings over Zpn mapping to Q(ζpk) for

1 < k ≤ n with respect to ω is equal to the sum of the number of Schur rings over Zpn−1

mapping onto Q(ζpj) where j ranges between k − 1 and n− 1, that is,

Ω(n, k) =
n−1∑
j=k−1

Ω(n− 1, j). (5.4)

Proof. Let G = Zpn . If k = n, then Ω(n, n) = 1 = Ω(n−1, n−1), by (5.3). If 1 < k < n, then

each Schur ring mapping onto Kpn is wedge-decomposable, by Theorem 4.34. In particular,

if S is a Schur ring over Zpn such that ω(S) = Kpk , then there exists a wedge-decomposition

such that 1 < K ≤ H = Zpk < G and SH = Q[H]. Put another way, S = Q[H]4K T , where

T is a Schur ring over G/K. Clearly, K ∈ Q[H] for any choice of K. If π : G → G/K is

the quotient map, then π(Q[H]) = Q[H/K]. Therefore, the semi-wedge product Q[H]4K T

is possible if and only if H/K is a T -subgroup and TH/K = Q[H/K]. Without the loss of

generality, we may assume that K = Zp, since any coset of K is necessarily a coset of Zp.

If we identify π with the map π : Zpn → Zpn−1 , then π(H) = Zpk−1 and we must determine

which Schur rings T have the property that TH/K = Q[Zpk−1 ]. Now, ω(TH/K) = Q(ζpk−1),

but by Corollary 4.32, we have ω(TH/K) = ω(T ) ∩ Q(ζpk−1). Corollary B.5 then gives that

ω(T ) = Q(ζpj) for some k−1 ≤ j ≤ n−1. Since every Schur ring of this type can be wedged

to Q[H], the equality is proven. �

Proposition 5.6. Let E,F ∈ Lpk rLpk−1. Then the number of Schur rings over Zpn which

map onto E with respect to ω is equal to the number of Schur rings over Zpn which map onto
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F with respect to ω. In particular, the number of Schur rings mapping onto E is equal to

Ω(n, k).

Remember that Q ∈ Lp0 and is contained in the 0th layer of Lpn , not the first layer

Lp r L1.

Proof. Let Ω(n,E) be the number of Schur rings over Zpn which map onto E. If k = 0, then

the only fields in this layer is Q. So, E = Q. If k = 1, we can mimic the proof of (5.2) to

get Ω(n,E) = Ω(n− 1) = Ω(n, 1). So, we may suppose that k ≥ 2.

We will now induct on n. Let n = 2. Then the only k to consider is k = 2, which

represents the top layer. Mimicking the proof of Proposition 5.4, we get Ω(n,E) = 1 =

Ω(n, k). Suppose now that the result holds for all integers less than n. Mimicking the the

proof of Proposition 5.5 (using here also Proposition C.6), we have

Ω(n,E) =
n−1∑
j=k−1

Ω(n− 1, E ∩ Kpj).

By induction, Ω(n−1, E∩Kpj) = Ω(n−1, j) for each j, which proves Ω(n,E) = Ω(n, k). �

Theorem 5.7. The number of Schur rings over Zpn, where p is an odd prime and n ≥ 2, is

given by the following equation:

Ω(n) = Ω(n, 0) + (x− 1)Ω(n, 1) + x
n∑
k=2

Ω(n, k), (5.5)

where x denotes the number of divisors of p− 1.

Proof. There is exactly one field in the 0th layer, (x− 1) fields in the first layer, and x fields

in all remaining layers of Lpn . The equation then follows from Proposition 5.6. �

Equation (5.5) provides for us a formula which can calculate the number of Schur rings

over Zpn using Ω(n, k) for k ≤ n. This then begs the question, “How does one compute

Ω(n, k)?” Equations (5.1), (5.2), and (5.3) provides answers to this question when k = 0, 1,

and n. For example, we can use (5.5) to compute Ω(2):

Ω(2) = Ω(2, 0) + (x− 1)Ω(2, 1) + xΩ(2, 2)
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= (Ω(0) + Ω(1)) + (x− 1)Ω(1) + x

= (1 + x) + (x− 1)x+ x

= x2 + x+ 1.

Using (5.4), we can compute all remaining values of Ω(n, k) recursively. We provide a few

examples below.

Corollary 5.8. For n ≥ 2,

Ω(n, n− 1) = x+ (n− 2). (5.6)

Proof. We proceed by induction on n. For n = 2, we have Ω(2, 1) = Ω(1) = x = x+ (2− 2).

For n > 2, we have

Ω(n, n− 1) = Ω(n− 1, n− 2) + Ω(n− 1, n− 1) by (5.4),

= Ω(n− 1, (n− 1)− 1) + 1 by (5.3),

= x+ (n− 3) + 1 by induction,

= x+ (n− 2). �

Corollary 5.9. For n ≥ 3,

Ω(n, n− 2) = x2 + (n− 2)x+

(
n− 1

2

)
. (5.7)

Proof. We proceed by induction on n. For n = 3, we have Ω(3, 1) = Ω(2) = x2 + x + 1 =

x2 + (3− 2)x+

(
3− 1

2

)
. For n > 3, we have

Ω(n, n− 2) = Ω(n− 1, n− 3) + Ω(n− 1, n− 2) + Ω(n− 1, n− 1)

= Ω(n− 1, (n− 1)− 2) + Ω(n− 1, (n− 1)− 1) + 1

=

(
x2 + (n− 3)x+

(n− 3)(n− 2)

2

)
+ (x+ (n− 3)) + 1

= x2 + (n− 2)x+

(
n− 1

2

)
. �
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By a similar induction argument, we can also prove the identity

Ω(n, n− 3) = x3 + (n− 2)x2 +

((
n− 1

2

)
+ 1

)
x+

((
n

3

)
− 3

)
(5.8)

for n ≥ 4. As in the previous proofs, the base case of the induction argument uses the

calculation of Ω(3), which can be computed using Ω(3, 3), Ω(3, 2), Ω(3, 1) and Ω(3, 0). Thus,

Ω(n) can be computed using Ω(n, k), which can be computed using Ω(j) for j < n. Therefore,

there is a recursive procedure to compute Ω(n) from Ω(j) for j < n. We now will work to

unearth this recursive formula.

Using (5.1) and (5.2), we can rewrite (5.5) as

Ω(n) = xΩ(n− 1) +
n−2∑
k=0

Ω(k) + x
n∑
k=2

Ω(n, k). (5.9)

Thus, we need to expand
∑n

k=2 Ω(n, k) using (5.4). This will produce an equation of the

following form:
n∑
i=2

Ω(n, i) =
n−1∑
i=1

ciΩ(n− i, 1) =
n∑
i=2

ci−1Ω(n− i) (5.10)

for some positive integers ci. In particular, the jth iteration of (5.4) will produce an equation

of the form
n∑
k=2

Ω(n, k) =

j−1∑
i=1

ciΩ(n− i, 1) +
n∑

k=j+1

cjkΩ(n− j, k − j) (5.11)

for some positive integers cjk. We note that ci(i+1) = ci and c0k = 1 for all k. Furthermore,

cjk =
k∑
`=j

c(j−1)` (5.12)

by Proposition 5.5. When 0 < j < k − 1, (5.12) can be rewritten recursively to give

cjk = c(j−1)k +
k−1∑
`=j

c(j−1)` = c(j−1)k + cj(k−1). (5.13)

From (5.13), we can create a triangular array of integers, depicted in Table 5.2, where k

indexes the rows (k ≥ 1) and j indexes the columns (0 ≤ j < k). The diagonal entries of
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Table 5.1: The first several values of Ω(n, k)

n / k 1 2 3 4 5 6

1 1

2 x 1

3 x2 + x+ 1 x+ 1 1

4 x3 + 2x2 + 4x+ 1 x2 + 2x+ 3 x+ 2 1

5 x4 + 3x3 + 8x2 + 9x+ 2 x3 + 3x2 + 7x+ 7 x2 + 3x+ 6 x+ 3 1

6 x5 + 4x4 + 13x3 + 23x2 + 25x+ 3 x4 + 4x3 + 12x2 + 20x+ 9 x3 + 4x2 + 11x+ 17 x2 + 4x+ 10 x+ 4 1
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the triangle give the values of ci.

Table 5.2: The Triangular Array of cjk Coefficients

1

1 2

1 3 5

1 4 9 14

1 5 14 28 42

1 6 20 48 90 132

1 7 27 75 165 297 429

1 8 35 110 275 572 1001 1430

Lemma 5.10. Let ci be the coefficients given in Equation (5.10). Then ci =
1

i+ 1

(
2i

i

)
,

that is, ci is the ith Catalan number.

Proof. For convenience, we define c00 = 1 and cjj = c(j−1)j for j > 0. This extended

triangular array is known as Catalan’s Triangle5.1. One property of Catalan’s Triangle is

that the sequence of diagonal entries is the sequence of Catalan numbers [30]. �

Theorem 5.11. The number of Schur rings over Zpn, where p is an odd prime and n ≥ 1,

is given by the following recursive equation:

Ω(n) = xΩ(n− 1) +
n∑
k=2

(ck−1x+ 1)Ω(n− k), (5.14)

where Ω(0) = 1, Ω(1) = x denotes the number of divisors of p− 1, and ck =
1

k + 1

(
2k

k

)
is

the kth Catalan number.

For n = 1, we are considering the sum in (5.14) to be empty.

5.1Catalan’s Triangle is provided in Table 5.3.
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Table 5.3: Catalan’s Triangle

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14

1 5 14 28 42 42

1 6 20 48 90 132 132

1 7 27 75 165 297 429 429

1 8 35 110 275 572 1001 1430 1430

1 9 44 154 429 1001 2002 3432 4862 4862

1 10 54 208 637 1638 3640 7072 11934 16796 16796

1 11 65 273 910 2548 6188 13260 25194 41990 58786 58786

1 12 77 350 1260 3808 9996 23256 48450 90440 149226 208012 208012

1 13 90 440 1700 5508 15504 38760 87210 177650 326876 534888 742900 742900

1 14 104 544 2244 7752 23256 62016 149226 326876 653752 1188640 1931540 2674440 2674440

1 15 119 663 2907 10659 33915 95931 245157 572033 1225785 2414425 4345965 7020405 9694845 9694845
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Proof. The statements Ω(0) = 1 and Ω(1) = x have already been proven. For n ≥ 2,

Ω(n) = xΩ(n− 1) +
n−2∑
k=0

Ω(k) + x
n∑
k=2

Ω(n, k), by (5.9),

= xΩ(n− 1) +
n−2∑
k=0

Ω(k) + x
n∑
k=2

ck−1Ω(n− k), by (5.10),

= xΩ(n− 1) +
n∑
k=2

(ck−1x+ 1)Ω(n− k).

Finally, the formula follows from Lemma 5.10. �

By (5.14), Ω(n) can be computed recursively without reference to Ω(n, k) and makes for

a much more efficient recurrence. The first several values of Ω(n) are listed in Table 5.4.

Now, Ω(n) is a polynomial of x. Thus, the number of Schur rings over Zpn is computed by

evaluating this polynomial for a specific value of x which depends on the prime p. Table 5.5

lists the number of Schur rings over Zpn up to the tenth power for the first seven odd primes.

Table 5.4: The first several Ω-polynomials

Ω(1) = x

Ω(2) = x2 + x+ 1

Ω(3) = x3 + 2x2 + 4x+ 1

Ω(4) = x4 + 3x3 + 8x2 + 9x+ 2

Ω(5) = x5 + 4x4 + 13x3 + 23x2 + 25x+ 3

Ω(6) = x6 + 5x5 + 19x4 + 44x3 + 72x2 + 69x+ 5

Ω(7) = x7 + 6x6 + 26x5 + 73x4 + 152x3 + 222x2 + 203x+ 8

Ω(8) = x8 + 7x7 + 34x6 + 111x5 + 275x4 + 511x3 + 703x2 + 623x+ 13

Ω(9) = x9 + 8x8 + 43x7 + 159x6 + 452x5 + 997x4 + 1725x3 + 2272x2 + 1990x+ 21

Ω(10) = x10 + 9x9 + 53x8 + 218x7 + 695x6 + 1754x5 + 3572x4 + 5854x3 + 7510x2

+6559x+ 34

Examining Table 5.4, one can recognize a few patterns with these polynomials. First,

Ω(n) is always a monic degree n polynomial. Next, the coefficient of xn−1 is always n − 1.

Both of these statements can be easily proven by induction. Other statements about the

88



Table 5.5: Number of Schur Rings over Zpk

k\p 3 5 7 11 13 17 19

1 2 3 4 4 6 5 6

2 7 13 21 21 43 31 43

3 25 58 113 113 313 196 313

4 92 263 614 614 2,288 1,247 2,288

5 345 1,203 3,351 3,351 16,749 7,953 16,749

6 1,311 5,531 18,329 18,329 122,675 50,775 122,675

7 5,030 25,511 100,372 100,372 898,706 324,323 898,706

8 19,439 117,910 550,009 550,009 6,584,443 2,072,078 6,584,443

9 75,545 545,730 3,015,021 3,015,021 48,243,393 13,239,896 48,243,393

10 294,888 2,528,263 16,531,326 16,531,326 353,479,684 84,603,579 353,479,684
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coefficients of Ω(n) can also be stated and proven. Perhaps the most surprising sequence of

coefficients is the sequence of constant terms.

Corollary 5.12. Let p be an odd prime. Then let fn(x) = Ω(n) ∈ Z[x]. Then fn(0) = Fn−1,

where Fn is the nth term of the Fibonacci sequence.

Proof. First, we claim that Fn = 1 +
∑n−2

k=0 Fk for n ≥ 2. For n = 2, we get F2 = 1 + F0 =

1 + 0 = 1. For n > 2, we get Fn = Fn−1 + Fn−2 =
(
1 +

∑n−3
k=0 Fk

)
+ Fn−2 = 1 +

∑n−2
k=0 Fk,

which proves the claim.

It is easy enough to see that f1(0) = 0 = F0 and f2(0) = 1 = F1. Suppose that

fk(0) = Fk−1 for all k < n. By (5.14),

fn(0) =
n∑
k=2

fn−k(0) =
n−2∑
k=0

fk(0) = 1 +
n−2∑
k=1

fk(0) = 1 +
n−2∑
k=1

Fk−1 = 1 +
n−3∑
k=0

Fk = Fn−1. �

Let F(z) =
∑∞

n=0 Ω(n)zn be the generating function of Ω. Let C(z) =
∑∞

n=0 cnz
n =

1−
√

1− 4z

2z
be the generating function for the Catalan numbers. Then by (5.14),

F(z) = Ω(0) + Ω(1)z +
∞∑
n=2

(
xΩ(n− 1) +

n∑
k=2

(ck−1x+ 1)Ω(n− k)

)
zn

= 1 + xz +
∞∑
n=2

xΩ(n− 1)zn +
∞∑
n=2

n∑
k=2

(ck−1x+ 1)Ω(n− k)zn

= 1 + xz + xz
∞∑
n=2

Ω(n− 1)zn−1 +
∞∑
k=2

∞∑
n=k

(ck−1x+ 1)Ω(n− k)zn

= 1 + xz + xz

∞∑
n=1

Ω(n)zn +
∞∑
k=2

∞∑
n=0

(ck−1x+ 1)Ω(n)zn+k

= 1 + xz

(
1 +

∞∑
n=1

Ω(n)zn

)
+
∞∑
k=2

(ck−1x+ 1)zk
∞∑
n=0

Ω(n)zn

= 1 + xzF (z) + F (z)
∞∑
k=2

(ck−1x+ 1)zk

= 1 + xzF(z) + F(z)

(
xz

∞∑
k=1

ckz
k + z2

∞∑
k=0

zk

)

= 1 + xzF(z) + F(z)

(
xz

(
1−
√

1− 4z

2z
− 1

)
+

z2

1− z

)
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= 1 + F(z)

(
x− x

√
1− 4z

2
+

z2

1− z

)
= 1 + F(z)

(
2z2 − xz + x− x(1− z)

√
1− 4z

2(1− z)

)

Solving the above equation for F(z) then gives the generating function for Ω(n):

F(z) =
2(1− z)

−2z2 + (x− 2)z − (x− 2) + x(1− z)
√

1− 4z
(5.15)

Now, one can continue working with the generating function of Ω(n) using the typical com-

binatorial methods to produce a non-recursive formula for Ω(n). Unfortunately, the formula

is too complicated to be included in this paper. For example, after rationalizing the denom-

inator of F(z), one would need to compute the partial fraction decomposition of

1

4(z4 + (x2 − x+ 2)z3 − (x2 + 1)z2 + (x2 + 2x− 2)z − (x− 1))
,

which involves computing the roots of the denominator. Now, the four roots of this polyno-

mial, if written exactly, would take approximately 50 pages to display! For the sake of the

dissertation committee, the non-recursive formula of Ω(n) has been omitted.

5.2 Counting Schur Rings Over Cyclic p-groups, p even

As is common practice, the case p = 2 must be treated separately from all other primes as

it is the only exceptional5.2 case. This section is dedicated to the treatment of Schur rings

over Z2n .

As in the odd case, the lattice of subfields of K2n is naturally layered by the powers of

2. We define these layers as in the previous section. Likewise, we mention that the notation

introduced in Definition 5.1 applies for p = 2 also. There are two critical differences between

L2n and Lpn , for p odd, that should be mentioned. First, there is no first layer on L2n since

L2 = L1 = {Q}. This will cause our recurrence relation on Ω(n) to have “extra” initial

5.2One might even say that 2 is the oddest prime!
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conditions, that is, the recursion does not stabilize until the fourth stage, as opposed to the

second stage for odd primes. Second, the Galois group of K2n is not cyclic for n ≥ 3. This

gives the lattice L2n a different shape than the other lattices we have seen, which translates

to different recurrence relations on Ω(n, k), which we will see below.

Despite these differences, there are still some important similarities between the even

and odd cases. For example, it still holds that Ω(0) = 1. Another similarity is the fact that

Ω(1) = 1, which is the number of divisors of 2 − 1 = 1. It also holds that Proposition 5.2,

Proposition 5.4, and Proposition 5.5 (for all n ≥ 3 and 2 < k ≤ n) remain true if p = 2 by

the same proofs as before. From these, we can compute

Ω(2) = Ω(2, 0) + Ω(2, 2) = (Ω(0) + Ω(1)) + 1 = 3.

Now, Proposition 5.3 no longer applies since there is no first layer. Instead, we will treat

k = 2 as the base case in the recurrence relation on Ω(n, k).

Proposition 5.13. For n ≥ 3, the number of Schur rings over Z2n mapping to Q(i) with

respect to ω is equal to the difference between number of Schur rings over Z2n−1 and the

number of Schur rings over Z2n−2 mapping onto Q, that is,

Ω(n, 2) = Ω(n− 1)− Ω(n− 2, 0). (5.16)

When n = 2, we have Ω(2, 2) = 1 by (5.3).

Proof. Let S be a Schur ring over Z2n such that ω(S) = Q(i). Since n ≥ 3, it must be that

S is wedge-decomposable of the form S = Q[Z4]4T for some Schur ring T over Z2n−1 such

that T ∩ Q[Z2] = Q[Z2], by the same reasoning used in Proposition 5.5. Now, every Schur

ring over Z2n−1 has this property except those of the form T = Q[Z2k ]
0∧T ′ for 1 < k ≤ n−1.

Now, there are exactly Ω(n− 2, 0) such Schur rings by Proposition 5.2. Therefore, the result

follows. �

The major consequence of G2n not being cyclic is that Proposition 5.6 fails for some

of the layers of L2n . For example, the number of Schur rings over Z16 which map onto

Q(ζ8) = Q(i,
√

2) is three but the number of Schur rings mapping onto Q(
√

2) = Q(ζ8) ∩ R
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is four. By Appendix C, for k ≥ 3, the kth layer of L2n contains three fields: Q(ζ2k),

Q(2 cos(π/2k−1)), and Q(2i cos(π/2k−1)). Let ΩS(n, k) be the number of Schur rings over

Z2n which map onto Q(2 cos(π/2k−1)) via ω. It holds that S(Z2n) is the unique Schur ring

over Z2n which maps onto Q(2 cos(π/2k−1)), by Theorem 4.35. This gives the following

formula:

ΩS(n, n) = 1. (5.17)

Likewise, Q[Z2n ]〈σ2n−1−1〉 is the unique Schur ring over Z2n which maps ontoQ(2i cos(π/2k−1)).

So for the top layer, the number of Schur rings mapping onto a given field is constant. This

fact allows use to compute Ω(3):

Ω(3) = Ω(3, 0) + Ω(3, 2) + 3Ω(3, 3) = (Ω(0) + Ω(1) + Ω(2)) + (Ω(2)− Ω(0)) + 3 = 10.

Although Proposition 5.6 is false in general for p = 2, it is still “mostly” true, as explained

in the next proposition.

Proposition 5.14. The number of Schur rings over Z2n mapping onto Q(2i cos(π/2k−1))

via ω is the same as the number of Schur rings mapping onto Q(2 cos(π/2k−1)).

Proof. If Q(2 cos(π/2k−1)) and Q(2i cos(π/2k−1)) are in the top layer, then there is exactly

one Schur ring mapping onto each field by (5.17). Otherwise, each Schur ring mapping onto

these fields must be wedge-decomposable. Let π : Z2n → Z2n−1 be the natural quotient map.

Then π(S(Z2k)) = π(Q[Z2k ]
〈σ

2k−1
〉) = S(Z2k−1) = π(Q[Z2k ]

〈σ
2k−1−1

〉). Since the images are

the same, the number of possible semi-wedge products which map on Q(2i cos(π/2k−1)) is the

same as the number of possible semi-wedge products which map onto Q(2 cos(π/2k−1)). �

Theorem 5.15. The number of Schur rings over Z2n, where n ≥ 3, is given by the following

equation:

Ω(n) = Ω(n, 0) + Ω(n, 2) +
n∑
k=3

(Ω(n, k) + 2ΩS(n, k)). (5.18)

Proof. There is exactly one field in the 0th layer and the second layer of L2n . Each other

layer of L2n contains three fields: Q(ζ2n), Q(2 cos(π/2n−1)), and Q(2i cos(π/2n−1)). The

equation then follows from Proposition 5.14. �
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A direct consequence of (5.18) and Lemma 5.10 is the following:

Ω(n) = Ω(n, 0) +
n−2∑
k=0

ckΩ(n− k, 2) + 2
n∑
k=3

ΩS(n, k) (5.19)

Therefore, we seek to express 2
∑n

k=3 ΩS(n, k) in terms of the Ω(n, k).

Proposition 5.16. For k > 3,

ΩS(n, k) = ΩS(n− 1, k − 1) + 2
n−1∑
j=k

ΩS(n− 1, j) (5.20)

Proof. Following the same reasoning as (5.4), we see (5.20) is true for k = n by (5.17) and for

k < n, it suffices to count the number of Schur rings T over Z2n−1 for which T ∩Q[Z2k−1 ] =

S(Z2k−1). This is exactly the number of Schur rings over Z2n−1 which map ontoQ(2 cos(π/2j))

for k− 1 ≤ j ≤ n− 1 or onto Q(2i cos(π/2j)) for k− 1 < j ≤ n− 1. The result then follows

from Proposition 5.14. �

Proposition 5.17. For n > 3,

ΩS(n, 3) = Ω(n− 1, 2) + 2
n−1∑
j=3

ΩS(n− 1, j) (5.21)

Proof. Following the same reasoning as (5.4), it suffices to count the number of Schur rings

T over Z2n−1 for which T ∩Q[Z4] = Q[Z2] ∧Q[Z2]. This includes the Schur rings over Z2n−1

which map onto Q(2 cos(π/2j)) for 3 ≤ j ≤ n− 1 or onto Q(2i cos(π/2j)) for 3 ≤ j ≤ n− 1.

On the other hand, no Schur ring which maps onto Q(ζ2j) has this property for j > 1. It

remains to examine which Schur rings that map onto Q have this property. By Theorem

4.33, any Schur ring over Z2n−1 mapping onto Q has the form T = Q[Z2]∧T ′ for some Schur

ring T ′ over Z2n−2 such that T ′ ∩ Q[Z2] = Q[Z2], since T ∩ Q[Z4] = Q[Z2] ∧ Q[Z2]. As was

seen in the proof of Proposition 5.13, the number of choices for T ′ is Ω(n− 1, 2). The result

then follows from Proposition 5.14. �

Next, we need to expand 2
∑n

k=3 ΩS(n, k) using (5.20) and (5.21). This will produce an
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equation of the following form:

2
n∑
k=3

ΩS(n, k) =
n−2∑
i=1

siΩ(n− i, 2) (5.22)

for some positive integers si. In particular, the jth iteration of (5.20) and (5.21) will produce

an equation of the form

2
n∑
k=3

ΩS(n, k) =

j−1∑
i=1

siΩ(n− i, 2) +
n∑

k=j+1

sjkΩS(n− j, k − j) (5.23)

for some positive integers sjk. We note that si(i+1) = si and s0k = 1 for all k. Furthermore,

sjk = s(j−1)k + 2
k−1∑
`=j

s(j−1)` (5.24)

by (5.20). When 0 < j < k − 1, (5.24) can be rewritten recursively to give

sjk = s(j−1)k + sj(k−1) + s(j−1)(k−1). (5.25)

From (5.25), we can create a triangular array of integers, depicted in Table 5.6, where k

indexes the rows (k ≥ 1) and j indexes the columns (0 ≤ j < k). The diagonal entries of

the triangle give the values of si.

Lemma 5.18. Let si be the coefficients given in Equation (5.22). Then si =
∑i

j=0
1
j+1

(
2j
2

)(
i+j
2j

)
,

that is, si is the ith Schröder number.

Proof. Like in Lemma 5.18, we define s00 = 1 and sjj = s(j−1)j for j > 0. Now, this new

triangular array is known as the Super-Catalan Triangle5.3. One property of this triangle is

that the sequence of diagonal entries is the sequence of super-Catalan numbers, also known

as the little Schröder numbers [6]. Multiplying the little Schröder numbers by two and

reindexing gives the Schröder numbers. �

5.3Catalan’s Triangle is provided in Table 5.3.
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Table 5.6: The Triangular Array of sjk Coefficients

1

1 3

1 5 11

1 7 23 45

1 9 39 107 197

1 11 59 205 509 903

1 13 83 347 1061 2473 4279

1 15 111 541 1949 5483 12235 20793

Theorem 5.19. The number of Schur rings over Z2n, where n ≥ 2, is given by the following

recursive equation:

Ω(n) =
3∑

k=1

2kΩ(n− k)− (cn−1 + sn−1) +
n∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
Ω(n− k) (5.26)

where Ω(0) = 1, Ω(1) = 1, Ω(2) = 3, Ω(3) = 10, ck =
1

k + 1

(
2k

k

)
is the kth Catalan

number, and sk =
∑k

j=0
1
j+1

(
2j
2

)(
k+j
2j

)
is the kth Schröder number.

For n < 4, we consider the second sum in (5.26) to be empty. Also, we define Ω(−1) = 0,

which appear in (5.26) for n = 2.

Proof. By (5.19),

Ω(n) = Ω(n, 0) +
n−2∑
k=0

ckΩ(n− k, 2) + 2
n∑
k=3

ΩS(n, k),

which by Lemma 5.18, can be rewritten as

Ω(n) = Ω(n, 0) +
n−2∑
k=0

ckΩ(n− k, 2) +
n−2∑
k=1

Ω(n− k, 2)
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Table 5.7: Super-Catalan’s Triangle

1

1 1

1 3 3

1 5 11 11

1 7 23 45 45

1 9 39 107 197 197

1 11 59 205 509 903 903

1 13 83 347 1061 2473 4279 4279

1 15 111 541 1949 5483 12235 20793 20793

1 17 143 795 3285 10717 28435 61463 103049 103049

1 19 179 1117 5197 19199 58351 148249 312761 518859 518859

1 21 219 1515 7829 32225 109775 316375 777385 1609005 2646723 2646723

1 23 263 1997 11341 51395 193395 619545 1713305 4099695 8355423 13648869 13648869

1 25 311 2571 15909 78645 323435 1136375 3469225 9282225 21737343 43741635 71039373 71039373
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= Ω(n, 0) + Ω(n, 2) +
n−2∑
k=1

(ck + sk)Ω(n− k, 2)

= Ω(n, 0) + Ω(n, 2) + (cn−2 + sn−2) +
n−3∑
k=1

(ck + sk)Ω(n− k, 2).

We next can apply Proposition 5.13 to the above equation:

Ω(n) = Ω(n, 0) + [Ω(n− 1)− Ω(n− 2, 0)] + (cn−2 + sn−2)

+
n−3∑
k=1

(ck + sk)[Ω(n− k − 1)− Ω(n− k − 2, 0)]

= Ω(n− 1) +
n−3∑
k=1

(ck + sk)Ω(n− k − 1) + (cn−2 + sn−2) + Ω(n, 0)

−Ω(n− 2, 0)−
n−3∑
k=1

(ck + sk)Ω(n− k − 2, 0)

= Ω(n− 1) +
n−2∑
k=2

(ck−1 + sk−1)Ω(n− k) + (cn−2 + sn−2) + Ω(n, 0)

−Ω(n− 2, 0)−
n−1∑
k=3

(ck−2 + sk−2)Ω(n− k, 0)

= Ω(n− 1) +
n−1∑
k=2

(ck−1 + sk−1)Ω(n− k) + Ω(n, 0)− Ω(n− 2, 0)

−
n−1∑
k=3

(ck−2 + sk−2)Ω(n− k, 0).

Next we apply Proposition 5.2 to the above equation:

Ω(n) = 2Ω(n− 1) + Ω(n− 2) +
n−1∑
k=2

(ck−1 + sk−1)Ω(n− k)−
n−1∑
k=3

(ck−2 + sk−2)
n−k−1∑
j=0

Ω(j).

We note that

n−1∑
k=3

(ck−2 + sk−2)
n−k−1∑
j=0

Ω(j) =
n−1∑
k=3

n−k−1∑
j=0

(ck−2 + sk−2)Ω(j) =
n−4∑
j=0

n−j−1∑
k=3

(ck−2 + sk−2)Ω(j)

=
n−4∑
k=0

n−k−1∑
j=3

(cj−2 + sj−2)Ω(k) =
n∑
k=4

k−1∑
j=3

(cj−2 + sj−2)Ω(n− k).
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Therefore,

Ω(n) = 2Ω(n− 1) + Ω(n− 2) +
n−1∑
k=2

(ck−1 + sk−1)Ω(n− k)−
n∑
k=4

k−1∑
j=3

(cj−2 + sj−2)Ω(n− k)

= 2Ω(n− 1) + 4Ω(n− 2) + 8Ω(n− 3)− (cn−1 + sn−1)

+
n−1∑
k=2

(
ck−1 + sk−1 −

k−1∑
j=3

(cj−2 + sj−2)

)
Ω(n− k)

=
3∑

k=1

2kΩ(n− k)− (cn−1 + sn−1) +
n∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
Ω(n− k). �

Table 5.8 lists the number of Schur rings over Z2n up to the tenth power.

Table 5.8: Number of Schur Rings over Z2n

n 1 2 3 4 5 6 7 8 9 10

Ω(n) 1 3 10 37 151 657 2,989 14,044 67,626 332,061

Let F(z) =
∑∞

n=0 Ω(n)zn be the generating function of Ω, for p = 2. Let

C(z) =
∞∑
n=0

cnz
n =

1−
√

1− 4z

2z

be the generating function for the Catalan numbers and let

S(z) =
∞∑
n=0

snz
n =

1− z −
√

1− 6z + z2

2z

be the generating function for the Schröder numbers. Then by (5.26),

F(z) = Ω(0) + Ω(1)z + Ω(2)z2 + Ω(3)z3 +
∞∑
n=4

(
2Ω(n− 1) + 4Ω(n− 2) + 8Ω(n− 3)

−(cn−1 + sn−1) +
n∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
Ω(n− k)

)
zn

= 1 + z + 3z2 + 10z3 + 2
∞∑
n=4

Ω(n− 1)zn + 4
∞∑
n=4

Ω(n− 2)zn + 8
∞∑
n=4

Ω(n− 3)zn
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−
∞∑
n=4

cn−1z
n −

∞∑
n=4

sn−1z
n +

∞∑
n=4

n∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
Ω(n− k)zn

= 1 + z + 3z2 + 10z3 + 2z
∞∑
n=3

Ω(n)zn + 4z2
∞∑
n=2

Ω(n)zn + 8z3
∞∑
n=1

Ω(n)zn

−z
∞∑
n=3

cnz
n − z

∞∑
n=3

snz
n +

∞∑
k=4

∞∑
n=k

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
Ω(n− k)zn

= 1 + z + 2z
∞∑
n=0

Ω(n)zn + 4z2
∞∑
n=0

Ω(n)zn + 8z3
∞∑
n=0

Ω(n)zn

−z
∞∑
n=0

cnz
n − z

∞∑
n=0

snz
n +

∞∑
k=4

∞∑
n=0

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
Ω(n)zn+k

= 1 + z + 2zF(z) + 4z2F(z) + 8z3F(z)− zC(z)− zS(z)

+
∞∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
zk

∞∑
n=0

Ω(n)zn

= 1 + z + (2z + 4z2 + 8z3)F(z)− z(C(z) + S(z))

+
∞∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
zk

∞∑
n=0

Ω(n)zn

= 1 + z + (2z + 4z2 + 8z3)F(z)− z(C(z) + S(z))

+F(z)
∞∑
k=4

(
ck−1 + sk−1 −

k−3∑
j=1

(cj + sj)

)
zk.

Next, we work to simplify T (z) =
∑∞

k=4

(
ck−1 + sk−1 −

∑k−3
j=1(cj + sj)

)
zk. Note that

T (z) =
∞∑
k=4

ck−1z
k +

∞∑
k=4

sk−1z
k −

∞∑
k=4

k−3∑
j=1

(cj + sj)z
k

= z

∞∑
k=3

ckz
k + z

∞∑
k=3

skz
k −

∞∑
j=1

∞∑
k=j+3

(cj + sj)z
k

= −(2z + 3z2 + 8z3) + zC(z) + zS(z)−
∞∑
j=1

(cj + sj)
∞∑

k=j+3

zk

= −(2z + 3z2 + 8z3) + zC(z) + zS(z)−
∞∑
j=1

(cj + sj)z
j+3

∞∑
k=0

zk

= −(2z + 3z2 + 8z3) + zC(z) + zS(z)− z3

1− z

∞∑
j=1

(cj + sj)z
j
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= −(2z + 3z2 + 8z3) + zC(z) + zS(z)− z3

1− z
(C(z) + S(z)− 2).

Therefore,

Ω(n) = 1 + z(1− C(z) + S(z)) + F(z)

(
((2z + 4z2 + 8z3)− (2z + 3z2 + 8z3)

+zC(z) + zS(z)− z3

1− z
(C(z) + S(z)− 2)

)
= 1 + z(1− C(z) + S(z)) + F(z)

(
z(C(z) + S(z)) + z2 − z3

1− z
(C(z) + S(z)− 2)

)

Solving the above equation for F(z) then gives the generating function for Ω(n):

F(z) =
(C(z) + S(z)− 1)z(1− z) + z − 1

z2(1− z) + (C(z) + S(z))z(1− z) + z − 1 + (2− C(z)− S(z))z3

=
(2− z −

√
1− 4z −

√
1− 6z + z2)(1− z) + 2(z2 − 1)

(2− z −
√

1− 4z −
√

1− 6z + z2)(1− z − z2) + 2(z3 + z2 + z − 1)
. (5.27)
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Appendix A. Semisimple Algebras

Definition A.1. Let R be a ring with unity. Let x ∈ R. We say that x is nilpotent if

there exists some positive integer n such that xn = 0. If I is a subset of R, we say that I is

nilpotent if there exists some positive integer n such that In = 0.

Definition A.2. Let R be a ring and let Z(R) = {x ∈ R | xr = rx for all r ∈ R}. Then

Z(R) is called the center of R. We say that x ∈ R is central if x ∈ Z(R).

It is clear that Z(R) is a subring of R.

Proposition A.3. Suppose that x is a central element in a ring R such that xn = 0 for

some positive integer n. Then Rx is a nilpotent 2-sided ideal of R with (Rx)n = 0.

Proof. Let si ∈ R for 1 ≤ i ≤ n. Then
∏n

i=1 six =
∏n

i=1 si ·
∏n

i=1 x = (
∏n

i=1 si)x
n = 0, where

the first equality holds since x is central. Therefore, (xR)n = 0. �

Corollary A.4. Suppose that R is a commutative ring. Then x is nilpotent if and only if

xR is nilpotent. �

Definition A.5. Let R be a ring and M be a left R-module. Then M 6= 0 is simple if it

has no nontrivial, proper submodules.

Definition A.6. Let R be a ring. We define the Jacobson Radical of R, denoted by

J (R), to be the intersection of all maximal left (equivalently, right) ideals of R.

Now, a simple left R-module M is of the form M ∼= R/I, where I is a maximal left ideal

of R. Thus, J (R) is the intersection of all the annihilators of simple left R-modules. In

particular, J (R) is a 2-sided ideal of R since the annihilators of left modules are 2-sided

ideals.

Lemma A.7 (Nakayama’s Lemma). Let V be a finitely generated, nonzero R-module. Then

J (R)V ( V.
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Proof. Let V ′ be a maximal submodule of V . The existence of such a maximal submodule

is guaranteed by the fact that V is a nonzero, finitely generated module and a typical Zorn’s

lemma argument. Thus, V/V ′ is a simple module. So, J (R)(V/V ′) = 0, which implies that

J (R)V ⊆ V ′ ( V . �

Proposition A.8. If I is a nilpotent left ideal of R, then I ⊆ J (R).

Proof. Since I is nilpotent, there exists some positive integer m such that Im = 0. Let U

be a simple left R-module. If IU 6= 0, then by the irreducibility of U , we have U = IU .

Repeating this process gives

U = IU = I2U = I3U = . . . = ImU = 0,

which contradicts U being simple. Thus, IU = 0. Since U was an arbitrary simple module,

I ⊆ J (R). �

Theorem A.9. Let A be a left artinian ring. Then J (A) is the maximal nilpotent left ideal

of A.

Proof. We will first prove that J (A) is a nilpotent left ideal of A. Let J = J (A). Consider

the descending chain of left ideals

J ⊇ J 2 ⊇ J 3 ⊇ . . .

Since A is artinian, there exists some n such that J n = J n+1 = J n+2 = . . .. But J (J n) =

J n+1 = J n. Since A is artinian, A is also noetherian. This implies that J (A) is finitely

generated. Then by Nakayama’s lemma, J n = 0. So, J is nilpotent. By Proposition A.8,

J is the maximal nilpotent left ideal. �

Definition A.10. Let R be a ring and M be a left R-module. Then we say M is semisimple

if it is a direct sum of simple left modules. A ring R is semisimple if it is semisimple as a

module over itself.

Theorem A.11. The following are equivalent for a left R-module M .

(a) M is semisimple.
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(b) M is a sum (not necessarily direct) of simple modules.

(c) Every submodule of M is a direct summand of M .

Proof. See [3, Theorem 15.3] or [14, Theorem 2.4]. �

Theorem A.12. Let A be a left (right) artinian ring. Then A is semisimple if and only if

J (A) = 0.

Proof. Suppose that A is semisimple. Then there exists a left ideal I of A such that A =

I ⊕ J (A). If J (A) 6= 0, then I is contained in a maximal left ideal M . But I,J (A) ⊆ M ,

which implies that M = R, a contradiction. Thus, J (A) = 0.

Suppose that J (A) = 0. Let L1 be a minimal left ideal of A. Since J (A) = 0, there

exists a maximal left ideal M1 6= 0 which does not contain L1. Thus, L1 + M1 = A, by the

maximality of M1. By the minimality of L1, we see L1 ∩M1 = 0. Therefore,

A = L1 ⊕M1.

Since M1 6= 0, it too contains a minimal left ideal L2. Again, there exists a maximal left

ideal M2 which does not contain L2 and

A = L1 ⊕ L2 ⊕ (M1 ∩M2).

Continuing in this fashion, we may define Lk and Mk recursively so long as
⋂k−1
j=1 Mj 6= 0. If⋂k−1

j=1 Mj 6= 0 for all k, then we have a descending chain of left ideals

M1 )M1 ∩M2 )M1 ∩M2 ∩M3 ) . . . ,

a contradiction. Therefore,

A = L1 ⊕ L2 ⊕ . . .⊕ Lk,

for some k, which proves that A is semisimple. �

Corollary A.13. Let A be a semisimple ring. Then there exists minimal 2-sided ideals Ui,

for 1 ≤ i ≤ r, such that

A = U1 ⊕ U2 ⊕ . . .⊕ Ur.
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Such a decomposition of a semisimple ring is called a Wedderburn decomposition.

Proof. Let A = L1⊕L2⊕ . . .⊕Lk be a decomposition of A into a direct sum of minimal left

ideals, as in the previous proof. Suppose that there are r isomorphism types amongst the

Li as left A-modules. Reindexing if necessary, we may assume that Li 6∼= Lj for 1 ≤ i, j ≤ r.

Let Uj =
∑

L∼=Lj L for 1 ≤ j ≤ r, that is, Uj is the sum of all left ideals of A isomorphic to

Lj. In particular, Uj =
⊕

Li∼=Lj Li. Thus, A = U1 ⊕ . . .⊕Ur and each Uj is a left ideal of A.

Now, if α ∈ A, then let ϕα : A → A be the left A-module homomorphism sending 1 7→ α,

that is, ϕα is the multiplication on the right by α. Thus, if L is a minimal left ideal of A,

then ϕα(L) = Lα is a left idea and it must be that Lα = 0 or Lα ∼= L. Thus, multiplication

on the right by α permutes the summands of Uj. In particular, Uj is a 2-sided ideal. Let

L ∼= L′ be minimal left ideals. Then there is a left A-module isomorphism ψ which maps

L onto L′. Let π : A → L be a projection, which exists by the semisimplicity of A. In

particular, π(L) = L. Let EndA(A) be the set of all left A-module homomorphisms on A.

Then the map A→ EndA(A) given by α 7→ ϕα is an isomorphism. Thus, ψπ = ϕα for some

α ∈ A and Lα = L′. In particular, if I is an ideal of A, it must contain a minimal left

ideal L. Since it is also a 2-sided ideal, it must contain Lα for all α ∈ A, which implies that

Uj ⊆ I for some j such that Lj ∼= L. Therefore, each Uj is a minimal 2-sided ideal. �

Corollary A.14. Let A be a semisimple algebra and let T be a finite-dimensional central

subalgebra of A. Then T is semisimple.

Proof. Suppose to the contrary that T is not semisimple. Since T is a finite-dimensional

algebra, T is artinian, and it must be that J (T ) 6= 0. Let x ∈ J (T ) be nonzero. Thus, x is

a nilpotent element of A. By Proposition A.3, Rx is a nonzero nilpotent ideal of A. Thus,

Rx ⊆ J (A) 6= 0, by Proposition A.8. This contradicts Theorem A.12. �

Definition A.15. An element ε of a ring R is idempotent if ε2 = ε. A pair of central

idempotents (δ, ε) is orthogonal if δε = 0. We say that a central idempotent is primitive

if it cannot be expressed as a sum of two nonzero orthogonal central idempotents. If the sum

of a set of orthogonal idempotents is 1, we say that the set of idempotents is complete.

Every central idempotent of a semisimple ring is necessarily expressed uniquely as a sum

of primitive central idempotents.
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Theorem A.16. Let A be a semisimple algebra with Wedderburn decomposition

A = U1 ⊕ U2 ⊕ . . .⊕ Ur.

If

1 = ε1 + ε2 + . . .+ εr

for εj ∈ Uj, then {εj | 1 ≤ j ≤ r} is a complete set of pairwise orthogonal, primitive, central

idempotents. Furthermore, Uj = Aεj for each j.

Proof. Let E = {εj | 1 ≤ j ≤ r}. Multiplying the above equation by εj, we have

εj = ε1εj + ε2εj + . . .+ εrεj.

Since εiεj ∈ Ui ∩Uj = 0, the previous equation simplifies to εj = ε2j for each j. Thus, E is a

complete set of pairwise orthogonal idempotents.

Let α ∈ A. Then

α = αε1 + αε2 + . . .+ αεr = ε1α + ε2α + . . .+ εrα,

where αεj, εjα ∈ Uj. Since α can be uniquely expressed as a sum of elements from the Uj’s,

it holds that αεj = εjα for all j, that is, εj is central. Since Uj is a minimal ideal for each

j, we must have that Uj = AεjA. Since εj is central, we get Uj = Aεj.

For primitivity, suppose that εj = ε+δ for two orthogonal central idempotents and ε 6= 0.

Since ε = ε(ε + δ) = ε(εj) ∈ Uj, it holds that Aε ⊆ Uj. Since ε 6= 0, the minimality of Uj

implies Aε = Uj. In particular, there exists some α ∈ A such that εj = αε. Hence,

ε = (ε+ δ)ε = εjε = αε2 = αε = εj.

In particular, δ = 0, which shows that εj is primitive for each j. �

In particular, each minimal ideal Uj in the Wedderburn decomposition of a semisimple

ring A is a simple, artinian ring with identity εj. Thus, Uj ∼= Mnj(Dj), where Dj is a division
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ring and Mnj(Dj) is the ring of nj × nj matrices over Dj. When A is commutative, A is

necessarily a finite direct product of fields.

Theorem A.17 (Maschke’s Theorem). Let G be a finite group and let F be any field. Then

the group algebra F [G] is semisimple if and only if charF - |G|.

Proof. Let p = charF . First, suppose that p
∣∣ |G|. Then, G

2
= |G| ·G = 0 (see Proposition

2.5). So, G is nilpotent. Since G is central, (G) is a nilpotent ideal by Proposition A.3.

Therefore, (G) ⊆ J (F [G]), which implies that J (F [G]) 6= 0. Thus, F [G] is not semisimple

by Theorem A.12.

Conversely, suppose F [G] is not semisimple, that is, J (F [G]) 6= 0 (since F [G] is necessar-

ily artinian). Then we may choose a nonzero element α ∈ J (F [G]) such that α1 = 1. Since

J (F [G]) is nilpotent by Theorem A.9, α is also nilpotent. Using the left regular representa-

tion of F [G], we may view α as an operator on F [G], that is, the operator which multiplies

on the left by α. Thus, α is a nilpotent operator, which implies that all the eigenvalues of

α are 0. Thus, Trα = 0. Alternatively, using the elements of G as a basis for F [G], we see

that all the diagonal entries of α are α1 = 1. Thus, Trα = |G|. Hence, |G| = 0 in F , which

implies that p
∣∣ |G|. �
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Appendix B. Orbit Algebras and Cyclotomic Fields

Let F be a field of characteristic zero. Let ζn = e2πi/n ∈ C and let Kn = Q(ζn) ⊆ C. Then,

of course, ζn is a primitive nth root of unity and a root of the polynomial xn − 1 ∈ Z[x].

When the context is clear, the subscripts may be omitted. From Galois theory, we know

there is a one-to-one correspondence between the subfields of the cyclotomic field Kn and

the subgroups of the Galois group G(Kn/Q). It is our first task to prove that each of these

subfields is generated by sums of roots of unity, called periods.

Definition B.1. Let A be an algebra over a field F and let H ≤ AutF (A) be finite, where

AutF (A) is the group of F -algebra automorphisms of A. Then

AH = {α ∈ A | σ(α) = α, for all σ ∈ H}.

Such a set is referred to as an orbit algebra.

Proposition B.2. Let A be an algebra over a field F and let H ≤ AutF (A). Then the orbit

algebra AH is the largest subalgebra of A that is fixed by all elements of H.

Proof. Let α, β ∈ AH and r, s ∈ F . Then σ(rα + sβ) = rσ(α) + sσ(β) = rα + sβ and

σ(αβ) = σ(α)σ(β) = αβ for each σ ∈ H. Thus, AH is a subalgebra of A. Since AH contains

every H-fixed element of A, it must contain all H-fixed subalgebras. �

Theorem B.3. Let A be an algebra over a field F and let B be a basis (or spanning set) for

A. Let H ≤ AutF (A) be a finite subgroup. For each α ∈ A, let Oα = {σ(α) | σ ∈ H} ⊆ A

denote the orbit of α with respect to H and let

ηα =
∑
β∈Oα

β

denote the period of α with respect to H. Then AH = SpanF{ηα | α ∈ B}, that is, AH is

spanned by the periods of a basis of A.

This theorem is the reason orbit algebras have their name.
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Proof. Certainly, for any σ ∈ H,

σ(ηα) =
∑
β∈Oα

σ(β) =
∑
β∈Oα

β = ηα,

since σ permutes the elements of Oα. Thus, ηα ∈ AH and SpanF{ηα | α ∈ B} ⊆ AH.

Let η′α =
∑

σ∈H σ(α) for each α ∈ A. If Hα = {σ ∈ H | σ(α) = α} is the stabilizer of α

in H, then η′α = |Hα|ηα.

Suppose γ ∈ AH and γ =
∑

β∈B γββ, where γβ ∈ F . So γ = σ(γ) for all σ ∈ H. Then

γ =
1

|H|
∑
σ∈H

σ(γ) =
1

|H|
∑
σ∈H

σ

(∑
β∈B

γββ

)

=
1

|H|
∑
σ∈H

∑
β∈B

γβσ(β) =
1

|H|
∑
β∈B

∑
σ∈H

γβσ(β)

=
1

|H|
∑
β∈B

γβ

(∑
σ∈H

σ(β)

)
=

1

|H|
∑
β∈B

γβη
′
β

=
1

|H|
∑
β∈B

γβ|Hβ|ηβ ∈ SpanF{ηα | α ∈ B}.

Therefore, AH ⊆ SpanF{ηα | α ∈ B}. �

Let Gn denote the Galois group of Q(ζn) over Q.

Corollary B.4. Let H ≤ Gn. Then Q(ζn)H = Q(ηζin | 0 ≤ i < n). Furthermore, by Galois

correspondence, every subfield of the cyclotomic field is of this form. �

We make no claim here that the periods form a basis for the orbit algebra. In fact, this

is not true in general. In some circumstances, a period may be 0, as is often the case with

cyclotomic fields. In the case of group rings, the periods of the group elements always form

a basis for the orbit subalgebra.

For each divisor d of n, there is a natural quotient map Gn → Gd given by restriction,

that is, each automorphism σKn → Kn maps to its restriction σ|Kd : Kd → Kd. Thus, each

subgroup H ≤ Gn induces a unique subgroup of Gd. By abuse of notation, we will denote
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this quotient group also as H. Since H can be identified as a set of integers modulo n, we

may also identify H with this same set of integers but now modulo d.

Corollary B.5. Let H ≤ Gn and let d | n. Then

KHn ∩ Kd = KHd .

Furthermore, KHd is the maximal subfield of Kd contained in KHn .

Proof. By Corollary B.4, both fields are spanned by periods of ζd with respect to H. So,

they must be equal. �

Let A and B be F -algebras and let π : A → B be a surjective F -homomorphism. Let

σ : A → A be an automorphism of A for which ker π is an invariant ideal. Then σ induces

an automorphism of B. More specifically, if β ∈ B, then there exists some α ∈ A such

that π(α) = β. Then it is easy to check that β 7→ π(σ(α)) is an automorphism of B. We

will denote this induced automorphism by σ∗. Thus, σ∗(π(α)) = π(σ(α)). Of course, all

the automorphisms for which ker π is invariant form a subgroup of AutF (A). Furthermore,

if kerπ is invariant for all automorphisms in H ≤ AutF (G), then H∗ = {σ∗ | σ ∈ H} ≤

AutF (B).

Theorem B.6. Let A and B be F -algebras and π : A → B be a surjective F -algebra

homomorphism. Suppose that H ≤ AutF (A) is a finite subgroup and kerπ is invariant

under H. Then π(AH) = BH∗.

Proof. Suppose that β, β′ ∈ B represent the sameH∗-orbit, that is, there exists some σ∗ ∈ H∗
such that σ∗(β) = β′. Now, there exists some α ∈ A such that π(α) = β. Let σ(α) = α′,

which represents the same H-orbit in A. Now,

π(α′) = π(σ(α)) = σ∗(π(α))

= σ∗(β) = β′.

Next, suppose that α, α′ ∈ A represent the same H-orbit, that is, there exists some σ ∈ H

such that σ(α) = α′. Then

σ∗(π(α)) = π(σ(α)) = π(α′).
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Thus, π(α) and π(α′) represent that same H∗-orbit in B. This proves that the image of an

H-orbit under π is a H∗-orbit.

Let O be an H-orbit in A and let α ∈ O, whose image under π is β. Next, we will

set c = |{σ ∈ H : π(σ(α)) = β}|, that is, c is the number of solutions to the equation

π(σ(α)) = β, where σ is allowed to vary. Let α′ ∈ O, whose image under π is β′. Let ρ ∈ H

such that ρ(α) = α′. Now, suppose π(σ(α)) = β for some σ ∈ H. Then

π(ρσ(α)) = π ◦ ρ(σ(α)) = ρ∗ ◦ π(σ(α))

= ρ∗(β) = ρ∗(π(α))

= π(ρ(α)) = π(α′) = β′.

Thus, every solution to π(σ(α)) = β corresponds to a solution to π(σ(α′)) = β′. In particular,

c = |{σ ∈ H : π(σ(α)) = β}| = |{σ ∈ H : π(σ(α)) = β′}|.

If we combine this result with the result from above, π(O) is an H∗-orbit and each element

of π(O) has exactly c pre-images in O. Hence,

π

(∑
σ∈H

σ(α)

)
=

∑
σ∈H

π(σ(α)) =
∑
σ∈H

σ∗(π(α))

= c
∑
τ∈H∗

τ(β).

Now,
∑

σ σ(α) and
∑

τ τ(β) generate AH and BH∗ , respectively, by Theorem B.3, which

proves π(AH) = BH∗ . �

Let ϕ : G→ H be a surjective homomorphism between two finite groups such that kerϕ

is characteristic in G. Then ϕ : Q[G]→ Q[H] satisfies the assumptions of Theorem B.6 and

maps the orbit subalgebras of Q[G] onto the orbit subalgebras of Q[H].
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Appendix C. Lattices of Cyclotomic Fields

The purpose of this section is to determine the shape of the lattice of subfields of Kn := Q(ζn).

We know from Galois theory that this is determined by the Galois group G(Kn/Q), that is,

the lattice of subfields is lattice anti-isomorphic to the lattice of subgroups of G(Kn/Q).

By Lemma 4.1, we may identify G(Kn/Q) with Aut(Zn) and will denote their common

isomorphism type as Gn. For each integer m relatively prime to n, let σm denote the common

automorphism of Aut(Zn) and G(Kn/Q) which is determined by m. Again, subscripts will

be omitted when the context is clear.

By Lemma 4.1, we can calculate Gn by studying the cyclic group Zn. The next result clas-

sifies the automorphism group of a cyclic group and hence the Galois group of a cyclotomic

field.

Proposition C.1.

(a) Aut(Z2k) ∼= Z2 × Z2k−2, for all k ≥ 2. In the case that k = 1, Aut(Z2) = 1.

(b) Aut(Zpk) ∼= Zpk−1(p−1), for k ≥ 1 and p is an odd prime.

(c) Let n ≥ 2 be an integer with prime factorization n = pk11 p
k2
2 · · · pkrr and each pi is a

distinct prime. Then Aut(Zn) ∼= Aut(Z
p
k1
1

)× Aut(Z
p
k2
2

)× . . .× Aut(Zpkrr ).

Proof. See [4, p. 314]. �

Of special interest to our discussion will be the case when n is a power of a prime. In this

case, the lattice of subfields is naturally layered by the powers of the prime. Let G = Zpn

and let Lpn be the lattice of subfields of Kpn . For k = 1, we let the first layer of Lpn be Lp.

For k > 1, the kth layer of Lpn is Lpk r Lpk−1 . The top layer of Lpn is the nth layer. In

particular, the layers form a partition of Lpn .

By Proposition C.1, the Galois groups of powers of 2 behave differently from the Galois

groups of powers of an odd prime. Thus, we must consider the two cases separately. We will

address the odd prime case first, followed by 2n.
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Let us assume that p is an odd prime. Then, by Proposition C.1, Gpn is a cyclic group.

Galois theory tells us that the subfields of Kpn correspond to subgroups of G and group

theory tells us that the subgroups of a cyclic group correspond to the divisors of |G|. Now,

|G| = pn− pn−1 = pn−1(p− 1). Let x denote the number of divisors of p− 1. Then G has nx

subgroups. In particular, when n = 1, Kp has x subfields, or in other words, |Lp| = x. This

last statement can be generalized, as follows:

Proposition C.2. Let Kpn be a cyclotomic field and p an odd prime. Then the kth layer of

Lpn contains x subfields, for all 1 ≤ k ≤ n.

Proof. By the discussion before this proposition, we know that |Lp| = x. Suppose for

induction that |Lpk r Lpk−1| = x for all k < `. Thus,

|Lp` | =

∣∣∣∣∣⋃̀
k=1

(Lpk r Lpk−1)

∣∣∣∣∣ =
∑̀
k=1

|Lpk r Lpk−1|

= |Lp` r Lp`−1|+
`−1∑
k=1

|Lpk r Lpk−1|

= |Lp` r Lp`−1|+ (`− 1)x,

where the last equality follows by induction. Now, |Lp` | = `x. So solving for |Lp` rLp`−1| in

the above equation, we see that the `th layer of Lp` contains x subfields. �

Now that we know each layer contains the same number of fields, we prove that each

layer is lattice-isomorphic to Lp. Even more, if we make each layer of Lpn into a weighted

lattice via degrees of extensions, then we show that each layer is weighted-lattice-isomorphic

to Lp.

Lemma C.3. Let p be a prime (even or odd) and n > 1. Then [Kpn : Kpn−1 ] = p.

Proof. Since [Kpn : Q] = pn−1(p− 1), we conclude that

pn−1(p− 1) = [Kpn : Q] = [Kpn : Kpn−1 ][Kpn−1 : Q] = pn−2(p− 1)[Kpn : Kpn−1 ].

Therefore, [Kpn : Kpn−1 ] = p. �
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Of course, if n = 1, then [Kp1 : Kp1−1 ] = [Kp : Q] = p− 1.

Proposition C.4. Let p be an odd prime and let F be a field in the nth layer. Then

p - [Kpn : F ].

Proof. Let [Kpn : F ] = a. We will first consider the case n = 1. Since F ∈ Lp, we have that

F ⊆ Kp and [Kp : Q] = p− 1. Since [Kp : Q] = [Kp : F ][F : Q] = a[F : Q], it must be that a

divides p− 1. Since p - (p− 1), we conclude that p - a.

Next, let us suppose that n > 1. Now, there exists a subgroup H ≤ Gpn such that

F = KHpn . Furthermore, |H| = a. Suppose that p | a. Then H would contain a subgroup of

order p, call it P . Let E = KPpn . Then F ⊆ E and [Kpn : E] = p. But Gpn is cyclic and has

a unique subgroup of order p. By the Galois correspondence, Kpn has a unique subfield E

such that [Kpn : E] = p. But [Kpn : Kpn−1 ] = p. Therefore, E = Kpn−1 , which implies that

F ∈ Lpn−1 , a contradiction. Therefore, p - a. �

Proposition C.5. Let p be an odd prime and F be a field in the kth layer. Then for all

n ≥ k, we have [Kpn : F ] = pn−ka for some a | (p − 1) determined by F . In particular, if

F = KH
pk

, for H ≤ Gpk , then a = |H|.

Proof. Let k = n. Then [Kpk : F ] = |H| = pk−k|H| and |H|
∣∣ (p − 1), by Proposition C.4.

Suppose for induction that the statement holds for all k < `. Then

[Kp` : F ] = [Kp` : Kp`−1 ][Kp`−1 : F ] = p[Kp`−1 : F ] = p(p(`−1)−k|H|) = p`−k|H|. �

Let gcd(m,n) = 1, so σm : Kn → Kn is a field automorphism. Now, the restriction of σm

to Kd, for d | n, is an automorphism of Kd → Kd. Thus, any subgroup H ≤ Gn also denotes

a subgroup H ≤ Kd for each divisor d | n.

Proposition C.6. Let p be an odd prime, let H ≤ Gpn, and let KHpn be in the nth layer.

Then
[
Kpn : KHpn

]
=
[
Kpk : KH

pk

]
for all 1 ≤ k ≤ n.

Proof. Let E = KHpn and F = KH
pk

. Then F ⊆ E. By Proposition C.5, there exists a, b | (p−1)

such that [Kpn : E] = a and [Kpn : F ] = pn−kb. Also,

pn−kb = [Kpn : F ] = [Kpn : E][E : F ] = a[E : F ].
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Since a | pn−kb and gcd(a, p) = 1, we conclude that a | b. But a is the order of H as a

subgroup of Gpn and b is the order of H as a subgroup of Gpk , also by Proposition C.5. Thus,

b | a, which implies equality. Therefore,

[Kpn : E] = a = b = [Kpk : F ]. �

By Corollary B.5, KH
pk

= KHpn ∩ Kpk .

Proposition C.7. Let p be odd and n > 1. If F is a field in the nth layer, then there exists

a unique subfield K in the (n − 1)th layer such that |F : K| = p. Furthermore, K is the

largest field in its layer which is contained in F .

Proof. Let H denote the subgroup of Gpn which corresponds to F . So, F = KHpn . Let

K = F ∩ Kpn−1 . If |H| = a, then we have that

a[F : K] = [Kpn : F ][F : K] = [Kpn : K] = pa,

where the first and last equality follow from Proposition C.5 and Proposition C.6. Thus,

|F : K| = p. By Corollary B.5, K is the maximal subfield in Lpn−1 contained in F . Since

[Kpn : K] = pa, it must be that K ∈ Lpn−1 r Lpn−2 , otherwise Proposition C.5 would be

contradicted. �

Proposition C.8. Suppose p is an odd prime, n > 1, and E and F are fields in the nth

layer such that E ⊆ F . Let E ′ and F ′ be the maximal subfields of E and F , respectively,

contained in the (n− 1)th layer, as determined by Proposition C.7. Then E ′ ⊆ F ′.

Proof. Let F = KHpn . The field E is fixed by H, since E ⊆ F , which implies that E ′ is fixed

by H. Thus, E ′ ⊆ KHpn−1 . But by Proposition C.7, the fields KHpn−1 and F ′ are equal, which

finishes the proof. �

In summary, Proposition C.7 determines a map between the top two layers of Lpn , which

is a one-to-one correspondence by Proposition C.2. Next, Proposition C.8 shows that this

correspondence preserves containment of fields and is a lattice-isomorphism. By induction,

every layer of Lpn is lattice isomorphic to Lp. Furthermore, each layer sits on top of the one
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before by a degree p extension for each field in the layer. This synopsis gives a complete

method to build the lattice of subfields for Kpn . We now will illustrate a few primes below.

Example C.9. Let us begin with p = 3. Since p−1 = 2, we have that x = 2, which implies

that each layer of L3n contains exactly 2 fields. The two fields contained in L3 are obvious:

Q and Q(ζ3). For higher layers, the two fields must be Q(ζ3n) and Q(ζ3n)∩R = Q(ζ3n +ζ−13n ).

The complete lattice of subfields of Q(ζ81) is given in Figure C.1.

Figure C.1: The Lattice of Subfields of Q(ζ81).

Q

Q(ζ3)

Q(ζ9 + ζ−19 )

Q(ζ9)

Q(ζ27 + ζ−127 )

Q(ζ27)

Q(ζ81 + ζ−181 )

Q(ζ81)

Now, x = 2 if and only if p − 1 is prime. Since 2 and 3 are the only consecutive prime

numbers, p = 3 is the only case for which each layer contains exactly 2 fields. �

Example C.10. In this example, we will consider p = 5. Since p − 1 = 4, we have

x = 3 and thus each layer contains 3 fields. For the first layer, Lp contains Q and Q(ζ5)

obviously. The remaining field is Q(
√

5) = Q(ζ5 + ζ−15 ). For higher layers, Q(ζ5n) and

Q(ζ5n) ∩ R = Q(ζ5n + ζ−15n ) are always contained. The third field represents the maximal

p-extension of Q contained in Q(ζ5n). Let ηn,a be the period of ζn with respect to 〈σa〉. With

this notion, the complete lattice of subfields of Q(ζ625) is given in Figure C.2 on page 117.

Now, x = 3 if and only if p − 1 = q2 for some prime number q. Thus, p = q2 + 1. For

p = 5, clearly q = 2. If q is an odd prime, then q2 + 1 is even and not a prime number.

Therefore, p = 5 is the only case for which each layer contains exactly 3 fields. �
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Figure C.2: The Lattice of Subfields of Q(ζ54).

Q

Q(ζ5 + ζ−15 )

Q(ζ5)Q(η25,7)

Q(ζ25 + ζ−125 )

Q(ζ25)Q(η25,57)

Q(ζ125 + ζ−1125)

Q(ζ125)Q(η625,182)

Q(ζ625 + ζ−1625)

Q(ζ625)

Example C.11. In this last example, we will consider p = 7. Since p − 1 = 6, we have

x = 4 and thus each layer contains four fields. The complete lattice of subfields of Q(ζ343) is

given in Figure C.3 on page 118. Now, for many primes it is true that x = 4. For example,

p = 11, 23, 47, 59, and 83 also satisfy x = 4. All of their respective lattices of fields will be

isomorphic. �

Next, we will switch our attention to the case when p = 2. As seen in Proposition C.1,

G2n ∼= Z2 × Z2n−2 for n ≥ 2 and G2 = 1. In particular, G4 ∼= Z2, and hence Q(ζ4) = Q(i)

contains two subfields: Q(i) and Q.

For Q(ζ8), we have that G8 ∼= Z2 × Z2, the Klein 4-group. Thus, Q(ζ8) has 5 subfields:

Q,Q(i),Q(ζ8),Q(ζ8+ζ−18 ),Q(ζ8+ζ38 ). It is also simple to show that Q(ζ8+ζ−18 ) = Q(ζ8)∩R =

Q(
√

2), Q(ζ8+ζ38 ) = Q(i
√

2), and Q(ζ8) = Q(i,
√

2). Thus, L8 can be calculated as in Figure

C.4 on page 118.

For the fourth layer of the lattice, we notice that G16 ∼= Z2×Z4 contains a copy of Z2×Z2

and hence contains three additional subgroups: two subgroups of order 4 and a subgroup of

order 8. Thus, L16 contains three additional fields outside of L8 by Galois correspondence.

These fields are in fact Q(ζ16) = Q
(
i,
√

2 +
√

2
)
, Q(ζ16 + ζ−116 ) = Q

(√
2 +
√

2
)

, and

Q(ζ16 + ζ716) = Q
(
i
√

2 +
√

2
)

. The complete lattice L16 is depicted in Figure C.5 on page

119.
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Figure C.3: The Lattice of Subfields of Q(ζ74).

Q
Q(ζ7 + ζ27 + ζ47 )

Q(ζ7 + ζ−17 )

Q(ζ7)

Q(η49,19)
Q(η49,18)

Q(ζ49 + ζ−149 )

Q(ζ49)

Q(η343,19)
Q(η343,18)

Q(ζ343 + ζ−1343)

Q(ζ343)

Q(η2401,1048)
Q(η2401,1047)

Q(ζ2401 + ζ−12401)

Q(ζ2401)

Figure C.4: The Lattice of Subfields of Q(ζ8).

Q

Q(i)Q(
√

2) Q(i
√

2)

Q(ζ8)
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Figure C.5: The Lattice of Subfields of Q(ζ16).

Q

Q(i)Q(
√

2) Q(i
√

2)

Q(ζ8)Q
(√

2 +
√

2
)

Q
(
i
√

2 +
√

2
)

Q(ζ16)

In general, it is true that Z2×Z2n−2 has three more subgroups than Z2×Z2n−3 , and hence

L2n has three more fields than L2n−1 for n ≥ 3. One of the fields is certainly Q(ζ2n). Since

G2n is a 2-group, the remaining two fields must correspond to subgroups of G2n of order 2.

The group Z2×Z2n−2 has three elements of order 2. In particular, σ2n−1, σ2n−1−1, and σ2n−1+1

have order 2 in G2n . But ζ2
n−1

= −1. So ζ + ζ2
n−1+1 = ζ − ζ = 0. Hence, Q(ζ2n)〈σ2n−1+1〉 ⊆

Q(ζ2n−1), which implies that Q(ζ2n)〈σ2n−1+1〉 = Q(ζ2n−1) by degree considerations. Therefore,

the additional two fields are Q(ζ + ζ−1) and Q(ζ − ζ−1).

Next, we notice thatQ(ζ2n)〈σ2n−1〉∩Q(ζ2n−1) = Q(ζ2n)〈σ2n−1−1〉∩Q(ζ2n−1) = Q(ζ2n−1)〈σ2n−1−1〉

= Q(ζ2n−1+ζ−12n−1), by induction. Also, the automorphisms σ2n−1 and σ2n−1−1 are contained in

exactly one subgroup of order 4 in G2n , which corresponds to Q(ζ2n−1 + ζ−12n−1). Furthermore,

since

(ζ2n + ζ−12n )2 = ζ22n + 2 + ζ−22n = 2 + (ζ2n−1 + ζ−12n−1),

by induction we may conclude that

ζ2n + ζ−12n =

√
2 +

√
2 +

√
· · ·+

√
2 (n− 2) times
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for n ≥ 3. By a similar argument,

ζ2n − ζ−12n =

√
−2 +

√
2 +

√
· · ·+

√
2 (n− 2) times

for n ≥ 3. In particular, Q(ζ − ζ−1) = Q(ζ2
n−2

(ζ − ζ−1)) = Q(i(ζ + ζ−1)). Furthermore, by

the half-angle formula for cosine,

cos(θ/2) = ±
√

1 + cos(θ)

2
,

we can write

ζ2n + ζ−12n = 2 cos(π/2n−1)

for n ≥ 3. We summarize these statements about Q(ζ2n) in the following Proposition.

Proposition C.12. Let n ≥ 3. Then the lattice L2n of subfields of Q(ζ2n) is built induc-

tively from L2n−1 by adding three fields: Q(2 cos(π/2n−1)), Q(2i cos(π/2n−1)), and Q(ζ2n) =

Q(i, 2 cos(π/2n−1)). Furthermore, Q(ζ2n) is immediately above the other two fields and

Q(ζ2n−1), and the other two fields are only immediately above Q(2 cos(π/2n−2)).

To illustrate Proposition C.12, we construct L64 in Figure C.6 on page 121.

120



Figure C.6: The Lattice of Subfields of Q(ζ64).
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Appendix D. Magma Code

Many of the examples and counterexamples included in this dissertation were computed

using the programing language Magma, as well as many examples not included here. We

will now include much of the relevant Magma code that was used in the development of

this dissertation. Several collections of code are given below, each prefaced with a short

explanation of its purpose.

This first collection of code was written to compute all the Schur rings over the cyclic

group Zpn , where p is any prime. Brent Kerby [11] also has written a Magma program which

accomplishes this same task for arbitrary cyclic groups. His code utilizes Leung-Man’s

classification of Schur rings over cyclic groups. His code was well written and calculated the

correct number of Schur rings over Z36 in 467.810 seconds. Using the techniques of Chapter

4 and Chapter 5, the author was able to write a faster program in the special case of cyclic

p-groups.

Following suit from Kerby’s code, each Schur ring is denoted in the program by its

corresponding partition of Zpn , instead of the subalgebra itself. The author’s first attempt

at computing all Schur partitions involved representing each partition as a set of sets of group

elements from CyclicGroup(GrpPC, p^n). This approach proved to be faster than Kerby’s

code, computing the Schur rings over Z36 in 78.89 seconds, but it was more clumsy than it

needed to be. First of all, the cyclic group calculations need not take place in the Magma

group object; instead these calculations could be done solely with integers. This modification

improved the calculation on Z36 to 5.200 seconds. The next improvement to the code was the

change from sets of sets to arrays of arrays. The set object in Magma uses more memory and

is slower to work with than the array object. With this second modification, the program

was able to compute the Schur rings over Z36 in 3.660. This represents the final version of the

program. SRings(p, n) computes the set of all Schur rings over Zpn . SRingsMemory is an

alternative version of SRings which takes an additional parameter, the set of all Schur rings

over smaller cyclic groups. This speeds up the program by avoiding unnecessary recursion

by using data that has already been computed.
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/////////Set Operations Defined on Arrays/////////

ArrayIsSub := function(A, B);

// Given two arrays,

// returns true if everything in A is also contained in B.

return &and [A[i] in B : i in [1..#A]];

end function;

ArrayDiff := function(A, B);

// Given two arrays A and B without repetition,

// returns the subarray of A which excludes all entries from B.

for i := 1 to #B do

Exclude(~A, B[i]);

end for;

return A;

end function;

ArrayAppend := procedure(~A, x);

// Given an array and element,

// returns the appended array with element attached

if not x in A

then Append(~A, x);

end if;

end procedure;

ArrayMeet := function(A, B);

// Given two arrays A and B without repetitions,

// returns the intersection of the two arrays.

AB := [];

for i := 1 to #A do

if A[i] in B
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then Append(~AB, A[i]);

end if;

end for;

return AB;

end function;

ArrayJoin := function(A, B);

// Given two arrays A and B without repetitions,

// returns the union of the two arrays.

A := ArrayDiff(A, B);

return A cat B;

end function;

ArrayMultiJoin := function(arrays);

// Iterates ArrayJoin.

union := [];

for i := 1 to #arrays do

union := ArrayJoin(union, arrays[i]);

end for;

return union;

end function;

///////Internal Operations for Building and Modifying Schur Rings////////

IncludeSRing := function(sring, p, k, n)

// Given a Schur ring over Z_(p^k) and an integer n larger than k,

// returns sring as an immersed Schur ring of Z_(p^n).

S := [];

for i := 1 to #sring do

S[i] := [a*p^(n-k) : a in sring[i]];

end for;
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return S;

end function;

Layer := function(p, k, n);

// Given a cyclic of order p^n and a positive integer k less than n,

// returns the unique subgroup of order p^k.

return [x*p^(n-k) : x in [0..p^k-1]];

end function;

ImmersedSRing := function(sring, p, n, k);

// Given a Schur ring over a cyclic group of order p^n and a subgroup K of

// order p^k,

// returns the partition of G containing only classes which intersect K.

K := Layer(p, k, n);

return [C : C in sring | ArrayMeet(K,C) ne [] ];

end function;

RemoveSubgroup := function(sring, p, n, k);

// Given a Schur ring over a cyclic group G of order p^n and a subgroup K of

// order p^k,

// returns the partition of G for which every class containing an element of

// K is removed.

return ArrayDiff(sring, ImmersedSRing(sring, p, n, k));

end function;

InflatedSRing := function(sring, p, n);

// Given a Schur ring over Z_(p^n),

// returns the inflated S-ring over Z_(p^(n+1)).

H := Layer(p, 1, n+1);

return [ &cat[ [x+h : x in C] : h in H] : C in sring];
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end function;

MultiInflatedSRing := function(sring, p, n, r);

// Iterates InflatedSRing r-times.

for i := 1 to r do

sring := InflatedSRing(sring, p, n+i-1);

end for;

return sring;

end function;

forward SRing0;

DeflatedSRing := function(sring, p, n);

// Given an immersed Schur ring over Z_(p^n),

// returns the deflated Schur ring over Z_(p^(n-1)).

if #sring eq 2

then return SRing0(p, n-1);

else

S := { {x mod p^(n-1) : x in C} : C in sring};

return [ Sort(Setseq(C)) : C in S];

end if;

end function;

AutoClassCyc := function(x, r, n);

// Given an integer x, a modulus, n, and an integer r,

// returns the automorphism class of x with respect to the automorphism

// group <r> in the ambient cyclic group Z_n.

C := [x];

b := (r*x) mod n;

while b ne x do

Append(~C, b);
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b := (r*b) mod n;

end while;

return Sort(C);

end function;

/////////////Boolean Operators on Schur Rings/////////////////////

AreSRingsEqual := function(S, T);

// Given two Schur rings,

// returns true if they are the same.

if #S ne #T

then return false;

else

bool := true;

for i := 1 to #S do

bool and:= S[i] in T;

end for;

return bool;

end if;

end function;

IsSset := function(H, sring);

// Given a Schur ring over a group G and a sorted subset H of G,

// returns if true if the sum of H is an element of sring.

S := &cat [C : C in sring | #ArrayMeet(C,H) ne 0];

return Sort(S) eq H;

end function;

InverseClass := function(C, p, n);

// Given a subset C of a cyclic group of order p^n,

// returns the inverse class of C.
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order := p^n;

return Sort([ (-x) mod order : x in C]);

end function;

ClassProduct := function(C, D, p, n);

// Given two subsets of a cyclic group of order p^n,

// returns the product of sets in the group.

order := p^n;

return Sort(ArrayMultiJoin([ [(c + d) mod order : d in D] : c in C]));

end function;

IsSRing := function(sring, p, n);

// Given a partition of a cyclic group of order p^n,

// returns true if the partition affords a Schur ring.

order := p^n;

first := [0] in sring;

second := &and [ InverseClass(C,p,n) in sring : C in sring];

third := true;

for C in sring do

for D in sring do

S := ClassProduct(C,D,p,n);

third and:= IsSset(S,sring);

end for;

end for;

return first and second and third;

end function;
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IsCoset := function(C, p, n);

// Given a (sorted) subset of a cyclic group of order p^n,

// returns true if the subset is a coset of the group.

if (#C) mod p eq 0 then

order := p^n;

H := Layer(p,1,n);

bool := true;

for x in C do

bool and:= ArrayIsSub(Sort([(x + h) mod order : h in H]), C);

end for;

return bool;

else

return false;

end if;

end function;

IsWedgePossible := function(p, nucleus, h, cloud, k, g);

// Given a Schur ring nucleus over H=Z_(p^h) and a Schur ring cloud

// over K=Z_(p^k),

// returns true if the semi-wedge product is possible over G = Z_(p^n).

// 1 < L < H < G, with K = G/L.

DN := IncludeSRing(DeflatedSRing(nucleus, p, h),p, h-1, k);

IC := ImmersedSRing(cloud, p, k, h-1);

return AreSRingsEqual(IC, DN);

end function;

/////////////Constructing Schur Rings//////////////////////////

AutoSRingCyc := function(p, k, r);

// Given a finite cyclic group Z_{p^k} and an integer r,
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// returns the partition of G corresponding to the orbit

// Schur ring induced by <r> < Aut(G).

n := p^k;

Sring := [[0]];

g := [1..n-1];

while not IsEmpty(g) do

C := AutoClassCyc(g[1], r, n);

Append(~Sring,C);

for x in C do

Exclude(~g,x);

end for;

end while;

return Sring;

end function;

SRing0 := function(p, n);

// Given a cyclic group G of order p^n

// returns the trivial Schur ring over G.

if n eq 0

then return [ [0] ];

else

return [[0], [x : x in [1..p^n-1]] ];

end if;

end function;

SymmetricSRing := function(p, n);

// Given a cyclic group G of order p^n

// returns the Symmetric S-ring over G.

order := p^n;

130



if p eq 2 then

S := [ [0] ] cat [ [x, (-x) mod order] : x in [1..order div 2] ];

return Prune(S) cat [ [order div 2]];

else

return [ [0] ] cat [ [x, (-x) mod order] : x in [1..(order div 2)] ];

end if;

end function;

TopRationalSRings := function(p, n);

// Given a finite cyclic group G of order p^n,

// returns all the partitions of G which correspond to orbit Schur rings

// which are wedge-indecomposable.

SRings := [];

order := p^n;

if p eq 2 then

Z := Integers();

SRings cat:= [ [ [x] : x in [0..order-1]] ];

if n gt 2 then

SRings cat:= [SymmetricSRing(p, n)];

SRings cat:= [AutoSRingCyc(p, n, (p^(n-1)-1) mod order)];

end if;

return SRings;

else

q := p^(n-1);

f := order - q; // EulerPhi(p^n);

a := PrimitiveRoot(p^n); // a generates Aut(G)

for d in Divisors(p-1) do

SRings cat:= [AutoSRingCyc(p, n, a^(q*d) mod order)];

end for;

return SRings;
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end if;

end function;

WedgeProduct := function(p, nucleus, h, cloud, k);

// Given two Schur rings, nucleus and cloud, over cyclic groups,

// Z_(p^h) and Z_(p^k), respectively,

// returns the wedge product (S wedge T) and the cyclic group Z_(p^(h+k)).

g := h+k;

nucleus := IncludeSRing(nucleus, p, h, g);

R := MultiInflatedSRing(cloud, p, k, h);

cloud := Remove(R, 1);

return nucleus cat cloud;

end function;

TrivialWedgeProducts := function(p, h, srings, k);

// Given a cyclic group H=Z_(p^h) and a set of Schur rings over some cyclic

// group K=Z_(p^k),

// returns all wedge products over G=Z_(p^(h+k)) with nucleus the trivial

// Schur ring over H and clouds from srings.

trivial := SRing0(p, h);

return [WedgeProduct(p, trivial, h, cloud, k) : cloud in srings];

end function;

SemiWedgeProduct := function(p, nucleus, h, cloud, k, g);

// Given cyclic subgroups 1 < L < H < G, each cyclic p-groups and K = G/L,

// and given Schur rings nucleus and cloud over H and K, respectively,

// and H, K, and G have orders p^h, p^k, and p^g, respectively,

// returns the semi-wedge product (S wedge T).

nucleus := IncludeSRing(nucleus, p, h, g);

R := MultiInflatedSRing(cloud, p, k, g-k);
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cloud := RemoveSubgroup(R, p, g, h);

return nucleus cat cloud;

end function;

SemiWedgeProducts := function(p, sring, h, srings, k, g);

// Given cyclic subgroups 1 < L < H < G, each cyclic p-groups and K = G/L,

// and given a Schur ring over H and a set of Schur rings over K,

// and H, K, and G have orders p^h, p^k, and p^g, respectively,

// returns all semiwedge products over G with nucleus sring and clouds

// from srings.

SR := [];

for i := 1 to #srings do

if IsWedgePossible(p, sring, h, srings[i], k, g) then

SR cat:= [SemiWedgeProduct(p, sring, h, srings[i], k, g)];

end if;

end for;

return SR;

end function;

forward SRings;

SRings := function(p,n);

// Given a cyclic group G of prime power order p^n,

// returns the set of all Schur ring over G.

if n eq 1

then return TopRationalSRings(p, 1);

else

srings := [SRing0(p, n)];

srings cat:= TopRationalSRings(p,n);

sr := [];
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for i := 1 to n-1 do

sr[i] := SRings(p, i);

end for;

srQ := sr[n-1]; //cloud

for i := 1 to n-1 do

srN := TopRationalSRings(p,i); //nucleus

for s in srN do

srings cat:= SemiWedgeProducts(p,s, i, srQ, n-1, n);

end for;

if i gt 1 then

srH := sr[n-i];

srings cat:= TrivialWedgeProducts(p, i, srH, n-i);

end if;

end for;

return srings;

end if;

end function;

SRingsMemory := function(p, n, SmallerSRings);

// Given a cyclic group G of prime power order p^n, and the set of all

// Schur rings over cyclic p-groups of smaller order,

// returns the set of all Schur ring over G.

if n eq 1

then return TopRationalSRings(p, 1);

else

srings := [SRing0(p, n)];

srings cat:= TopRationalSRings(p, n);
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srQ := SmallerSRings[n-1]; //cloud

for i := 1 to n-1 do

srN := TopRationalSRings(p, i); //nucleus

for s in srN do

srings cat:= SemiWedgeProducts(p, s, i, srQ, n-1, n);

end for;

if i gt 1 then

srH := SmallerSRings[n-i];

srings cat:= TrivialWedgeProducts(p, i, srH, n-i);

end if;

end for;

return srings;

end if;

end function;

The next collection of code computes the same information as the previous code ex-

cept it does so much more efficiently. This new efficiency is obtained by representing each

Schur ring as a sequence of wedge-indecomposable Schur rings and integers and hence pro-

vides an encoded version of the Schur partition. The trivial Schur ring over Zpn is encoded

as [p, n, 0]. Indecomposable orbit Schur rings over Zpn are afforded by certain cyclic

subgroups of Aut(G). Each cyclic subgroup is generated by an integer r. Hence, the inde-

composable orbit ring is encoded as [p, n, r]. Since gcd(r, p) = 1, we know that r 6= 0.

Also, we choose r to be the minimal integer which affords the Schur ring. Like in the

above code, the functions SRing0Code creates the trivial Schur ring and AutoSRingCycCode

creates the orbit Schur ring corresponding to r. In both case, the output is of the form

[ [p, n, r], [n] ]. The extra [n] is included for the interpretation/decryption process.

Given two Schur ring codes S and T , WedgeProductCode and SemiWedgeProductCode

create the wedge product and semi-wedge product of S and T , respectively. In either case,

the encoded wedge product Schur ring S ∧ T will be an array of wedge-indecomposable
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factors intermingled with singletons of integers. The singletons [k] document the exponent

of the order of K = Zpk in the corresponding wedge decomposition 1 < K ≤ H < G and act

as a postfix binary operator. A few examples are included for clarity.

Example D.1. Let p = 3.

(a) The Schur ring Q[Z3] ∧Q[Z3]
0 has order 32 = 9 and is encoded as

[ [3, 1, 1], [3, 1, 0], [2] ].

(b) The Schur ring Q[Z3] ∧Q[Z3]
0 ∧ S(Z9) has order 34 = 81 and is encoded as

[ [3, 1, 1], [3, 1, 0], [2], [3, 2, 8], [4] ].

(c) The Schur ring Q[Z3] ∧Q[Z3]
0 ∧ S(Z9) ∧Q[Z3]

0 has order 35 = 243 and is encoded as

[ [3, 1, 1], [3, 1, 0], [2], [3, 2, 8], [4], [3, 1, 0], [5] ].

(d) The Schur ring S(Z9)4Z3
S(Z9) has order 33 = 27 is encoded as

[ [3, 2, 8], [3, 2, 8], [3] ].

(e) Finally, the Schur ring (S(Z9)4Z3
S(Z9)) ∧ (Q[Z9]4Z3

Q[Z9]) has order 36 = 729 is

encoded as

[ [3, 2, 8], [3, 2, 8], [3], [3, 2, 1], [3, 2, 1], [3], [6] ]. �

All the procedures and functions are used and called as the previous collection of code,

using the same parameters, except now the additional suffix Code is appended to each func-

tion call. By comparison, the method of encoded Schur rings was able to compute all the

Schur rings over Z36 in 0.25 seconds. To further emphasis the improvement, SRings com-

puted the Schur rings over Z38 in 717.380 seconds, while SRingsCode computed the same
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problem in 61.030 seconds. For practical purposes, SRingDecrypt was included to translate

the encoded Schur rings into partitions of Zpn .

AutoSRingCycCode := function(p, n, r);

// Given a finite cyclic group Z_{p^n} and an integer r,

// returns the partition of G corresponding to the orbit Schur ring induced

// by <r> < Aut(G).

return [ [p, n, r], [n] ];

end function;

SRing0Code := function(p, n);

// Given a cyclic group G of order p^n

// returns the trivial Schur ring over G.

return [ [p, n, 0], [n] ];

end function;

TopRationalSRingsCode := function(p, n);

// Given a finite cyclic group G of order p^n,

// returns all the partitions of G which correspond to orbit Schur rings

// which are wedge-indecomposable.

SRings := [];

order := p^n;

if p eq 2 then

SRings cat:= [ AutoSRingCycCode(p, n, 1) ];

if n gt 2 then

SRings cat:= [AutoSRingCycCode(p, n, order-1)];

SRings cat:= [AutoSRingCycCode(p, n, (p^(n-1)-1) mod order)];

end if;

return SRings;

else

q := p^(n-1);
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f := order - q; // EulerPhi(p^n);

a := PrimitiveRoot(p^n); // a generates Aut(G)

for d in Divisors(p-1) do

SRings cat:= [AutoSRingCycCode(p, n, a^(q*d) mod order)];

end for;

return SRings;

end if;

end function;

WedgeProductCode := function(p, nucleus, h, cloud, k);

// Given two Schur rings, nucleus and cloud, over cyclic groups, Z_(p^h)

// and Z_(p^k), respectively,

// returns the wedge product (S wedge T) and the cyclic group Z_(p^(h+k)).

wedge := [];

if #nucleus eq 2

then

wedge := [nucleus[1]];

else

wedge cat:= nucleus;

end if;

if #cloud eq 2

then

wedge cat:= [cloud[1]];

else

wedge cat:= cloud;

end if;

wedge cat:= [ [h+k] ];

return wedge;

end function;
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IsWedgePossibleCode := function(p, nucleus, h, cloud, k, g);

// Given a Schur ring nucleus over H=Z_(p^h) and a Schur ring cloud

// over K=Z_(p^k),

// returns true if the semi-wedge product is possible over G = Z_(p^n).

// 1 < L < H < G, with L = G/K.

nu := [p, h-1, (nucleus[1,3]) mod p^(h-1)];

cl := cloud[1];

if (p eq 2) and (h eq 3) and (nu[3] eq 3) and (#cloud gt 2)

then

return ((nu[2] le cl[2]) and ( nu[3] eq ( cl[3] mod p^nu[2]) ))

or ( (cl eq [2,1,1]) and (cloud[2,3] ne 0) );

else

return (nu[2] le cl[2]) and (nu[3] eq (cl[3] mod p^nu[2]));

end if;

end function;

TrivialWedgeProductsCode := function(p, h, srings, k);

// Given a cyclic group H=Z_(p^h) and a set of Schur rings over some

// cyclic group K=Z_(p^k),

// returns all wedge products over G=Z_(p^(h+k)) with nucleus the

// trivial Schur ring over H and clouds from srings.

trivial := SRing0Code(p, h);

return [WedgeProductCode(p, trivial, h, cloud, k) : cloud in srings];

end function;

SemiWedgeProductCode := function(p, nucleus, h, cloud, k, g);

// Given cyclic subgroups 1 < L < H < G, each cyclic p-groups and K = G/L,

// and given Schur rings nucleus and cloud over H and K, respectively,

// and H, K, and G have orders p^h, p^k, and p^g, respectively,

// returns the semi-wedge product (S wedge T).
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wedge := [];

if #nucleus eq 2

then

wedge := [nucleus[1]];

else

wedge cat:= nucleus;

end if;

if #cloud eq 2

then

wedge cat:= [cloud[1]];

else

wedge cat:= cloud;

end if;

wedge cat:= [ [g] ];

return wedge;

end function;

SemiWedgeProductsCode := function(p, sring, h, srings, k, g);

// Given cyclic subgroups 1 < L < H < G, each cyclic p-groups and K = G/L,

// and given a Schur ring over H and a set of Schur rings over K,

// and H, K, and G have orders p^h, p^k, and p^g, respectively,

// returns all semiwedge products over G with nucleus sring and clouds

// from srings.

SR := [];

for i := 1 to #srings do

if IsWedgePossibleCode(p, sring, h, srings[i], k, g) then

SR cat:= [SemiWedgeProductCode(p, sring, h, srings[i], k, g)];

end if;

end for;

return SR;
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end function;

forward SRingsCode;

SRingsCode := function(p, n);

// Given a cyclic group G of prime power order p^n,

// returns the set of all Schur rings over G.

if n eq 1

then return TopRationalSRingsCode(p, 1);

else

srings := [SRing0Code(p, n)];

srings cat:= TopRationalSRingsCode(p, n);

sr := [];

for i := 1 to n-1 do

sr[i] := SRingsCode(p, i);

end for;

srQ := sr[n-1]; //cloud

for i := 1 to n-1 do

srN := TopRationalSRingsCode(p, i); //nucleus

for s in srN do

srings cat:= SemiWedgeProductsCode(p, s, i, srQ, n-1, n);

end for;

if i gt 1 then

srH := sr[n-i];

srings cat:= TrivialWedgeProductsCode(p, i, srH, n-i);

end if;

end for;
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return srings;

end if;

end function;

SRingsMemoryCode := function(p, n, SmallerSRings);

// Given a cyclic group G of prime power order p^n, and the set of all

// Schur rings over cyclic p-groups of smaller order,

// returns the set of all Schur ring over G.

if n eq 1

then return TopRationalSRingsCode(p, 1);

else

srings := [SRing0Code(p, n)];

srings cat:= TopRationalSRingsCode(p, n);

srQ := SmallerSRings[n-1]; //cloud

for i := 1 to n-1 do

srN := TopRationalSRingsCode(p, i); //nucleus

for s in srN do

srings cat:= SemiWedgeProductsCode(p, s, i, srQ, n-1, n);

end for;

if i gt 1 then

srH := SmallerSRings[n-i];

srings cat:= TrivialWedgeProductsCode(p, i, srH, n-i);

end if;

end for;
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return srings;

end if;

end function;

AtomicSRingDecrypt := function(sring);

// Given a coded indecomposable Schur ring [p,k,r] sring,

// returns the partition of Z_{p^k}.

if sring[3] eq 0

then return SRing0(sring[1], sring[2]);

else

return AutoSRingCyc(sring[3], sring[1], sring[2]);

end if;

end function;

SRingDecrypt := function(sring);

// Given a coded Schur ring sring,

// return the partition for the sring.

if #sring eq 2

then return AtomicSRingDecrypt(sring[1]);

else

n := Ceiling(#sring/2);

p := sring[1,1];

T := AtomicSRingDecrypt(sring[n]);

k := sring[n,2];

for i := 1 to (#sring-1) div 2 do

S := AtomicSRingDecrypt(sring[n-i]);

T := SemiWedgeProduct(p, S, sring[n-i,2], T, k, sring[n+i,1]);

k := sring[n+i,1];

end for;

return T;
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end if;

end function;

The remainder of the code is a collection of functions and procedures to compute the

polynomials Ω(n) and Ω(n, k), which appeared in Chapter 5 and hence the number of Schur

rings over cyclic p-groups. The value Ω(n) is computed by the recursive function Omega

when p is an odd prime and by the recursive function Omega2 when p = 2. The value Ω(n, k)

is computed by the recursive function omega when p is an odd prime and by the recursive

function omega2 when p = 2. Omega and omega output polynomials in the variable x, where

x is the number of divisors of p− 1. On the other hand, Omega2 and omega2 output integers

since there is no variability on the number of divisors of p − 1 when p = 2. In addition to

Omega2 and omega2, omegaS is a recursive function which counts the number of Schur rings

which map onto the maximal real subfield of the cyclotomic field K2n .

forward Omega;

Omega := function(n);

// Given a nonnegative integer n,

// returns the nth Omega-polynomial, that is, the polynomial associated

// with the number of Schur rings over Z_{p^n}.

P<x> := PolynomialRing(Integers());

case n:

when 0: return 1;

when 1: return x;

else return (x*Omega(n-1)

+ &+[(Catalan(k-1)*x + 1)*Omega(n-k) : k in [2..n]]);

end case;

end function;

forward omega;

omega := function(n, k);

// Given a nonnegative integer n and a nonnegative integer k <= n,

// returns the polynomial associated with the number of Schur rings over
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// Z_{p^n} which map onto Q(z_{p^k}).

P<x> := PolynomialRing(Integers());

case k:

when n : return 1;

when 0:

if n eq 0 then return 1;

else return &+[Omega(j) : j in [0..n-1]];

end if;

when 1 : return Omega(n-1);

else return &+[omega(n-1, j): j in [k-1..n-1]];

end case;

end function;

Schroder := function(n);

// Given a nonnegative integer n,

// returns the nth Schroder number.

return &+[Catalan(k)*Binomial(n+k,2*k) : k in [0..n]];

end function;

forward Omega2;

Omega2 := function(n);

// Given a nonnegative integer n,

// returns the number of S-rings over Z_{2^n}.

case n:

when 0: return 1;

when 1: return 1;

when 2 : return 3;

when 3 : return 10;

else return 2*Omega2(n-1)+4*Omega2(n-2) + 8*Omega2(n-3) //

- (Catalan(n-1) + Schroder(n-1)) + &+[(Catalan(k-1) //
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+ Schroder(k-1) - &+[ Catalan(j) + Schroder(j) //

: j in [1..k-3]])*Omega2(n-k) : k in [4..n]];

end case;

end function;

forward omega2;

omega2 := function(n,k);

// Given a nonnegative integer n and a nonnegative integer k <= n,

// returns the the number of Schur rings over Z_{2^n} which map

// onto Q(z_{2^k}).

if k gt n then

return 0;

else

case k:

when n : return 1;

when 0 :

if n eq 0 then return 1;

else return &+[Omega2(j) : j in [0..n-1]];

end if;

when 1 : return omega2(n,0);

when 2 : return Omega2(n-1) - omega2(n-2,0);

else return &+ [omega2(n-1,j) : j in [k-1..n-1]];

end case;

end if;

end function;

forward omegaS;

omegaS := function(n,k);

// Given a nonnegative integer n and a nonnegative integer k <= n,

// returns the the number of Schur rings over Z_{2^n} which map
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// onto Q(z_{2^k})\cap \R.

if k gt n then

return 0;

else

case k:

when 0, 1, 2 : return omega2(n,0);

when n : return 1;

when 3 : return omega2(n-1,2) + 2*&+[omegaS(n-1,j) //

: j in [3..n-1]];

else return omegaS(n-1,k-1) + 2*&+[omegaS(n-1,j) //

: j in [k..n-1]];

end case;

end if;

end function;
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