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abstract

A Classification Tool for Predictive Data Analysis in Healthcare

Mason Victors
Department of Mathematics, BYU

Master of Science

Hidden Markov Models (HMMs) have seen widespread use in a variety of applications
ranging from speech recognition to gene prediction. While developed over forty years ago,
they remain a standard tool for sequential data analysis. More recently, Latent Dirichlet
Allocation (LDA) was developed and soon gained widespread popularity as a powerful topic
analysis tool for text corpora. We thoroughly develop LDA and a generalization of HMMs
and demonstrate the conjunctive use of both methods in predictive data analysis for health
care problems.

While these two tools (LDA and HMM) have been used in conjunction previously, we
use LDA in a new way to reduce the dimensionality involved in the training of HMMs. With
both LDA and our extension of HMM, we train classifiers to predict development of Chronic
Kidney Disease (CKD) in the near future.

Keywords: predictive data analysis, Hidden Markov Models, Latent Dirichlet Allocation,
health care, convex analysis, Markov chains, Expectation Maximization, Gibbs sampling,
classification tree, random forest
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Chapter 1. Introduction

As researchers and scientists throughout the world gather and generate more and more data

in their academic and industrial pursuits, analysis of that data is becoming increasingly

more difficult in scope and yet in greater demand than ever. Whether it be for medical

purposes in improving gene prediction in DNA sequences or the timely analysis of email

correspondence of potential terrorists acquired by the U.S. Intelligence Community, pattern

recognition is in constant demand by professionals and policymakers everywhere, and thus

research to develop additional methods and improve existing ones should be a priority of the

entire scientific community.

In particular, the realm of health care has been designated as ripe for breakthroughs in

data analysis, yielding upwards of $300 billion in value each year [1]. The ability to accurately

predict near-future development of a chronic disease such as Chronic Kidney Disease (CKD)

would lead to a much higher quality of life for tens of thousands of Americans each year, and

provide immense savings in health care spending as well. With this motivation, we developed

new techniques to build a classifier for early disease diagnosis. While the methods used are

standard tools in data analysis, their conjunctive use and application is somewhat unique.

In Chapter 2 we provide a thorough introduction to Markov chains and convex analysis.

In Chapter 3 we show the details of two landmark statistical algorithms: Gibbs sampling and

Expectation-Maximization. We also include sections on classification trees, random forests,

and how to measure the success of a binary classifier, as these will ultimately be used in our

analysis in Chapter 6. In Chapters 4 and5 we use these algorithms to thoroughly develop

the inference procedures of LDA and our generalization of HMMs. In Chapter 6 we present

the use of these two tools in a classifier to predict the development of CKD, and we conclude

this work in Chapter 7.

To keep this work as self-contained as possible, we provide numerous proofs of well-

established (but nontrivial) mathematical results, while still citing outside sources for furthur

reading and understanding. We omit more extensive proofs and provide references to the
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appropriate material. We hope this will make this work more approachable by those with

little background in the processes used.

Chapter 2. Background

In this chapter we start with a thorough development of key aspects of Markov chains and

then delve into convex analysis.

2.1 Markov Chains

Many mathematical and statistical methods involve a Bayesian sampling procedure. These

procedures are collectively referred to as Markov Chain Monte Carlo (MCMC) methods, and

they hinge on the theory of Markov chains. The theory justifying these sampling procedures

is worth learning well, so as to ensure that any MCMC method is used appropriately. We

include the necessary pieces of this theory for completion. These theorems and proofs, as

well as a more thorough discussion of Markov chains, can be found in [2]. We must begin

with several definitions.

Definition 2.1. A sequence of random variables X = {x1,x2, · · · } assuming values from

some state space Q is called a Markov chain if it satisfies the following condition:

P(xt+1 = s|x1 = s1,x2 = s2, · · · ,xt = st) = P(xt+1 = s|xt = st). (2.1)

In other words, as the random process transitions from its current state to the next, this

transition is dependent only on the current state, in other words, given the current state, it

is independent of all prior states.

Such a process is called homogeneous if for each fixed q, r ∈ Q we have

P(xt+1 = q|xt = r) = P(x2 = q|x1 = r) for all t ∈ N. (2.2)
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In this case, we may then fix pxy = P(xt+1 = x|xt = y), as the value of this probability

is time-independent. If Q = {s1, · · · , sN} is a finite state space, these transitions can be

modeled by a single N ×N column-stochastic matrix A = (aij), where

aij = P(xt+1 = j|xt = i), (2.3)

where throughout we identify si with i. Thus aij is the probability of transitioning to state

j, given that the current state is i, and we refer to A throughout as the transition probability

matrix. We let Ai denote the ith row of A. Throughout we also assume that all Markov chains

are homogeneous with finite state space Q. A Markov chain can be graphically represented

by the following diagram:

x1 // x2 // . . . // xt−1 // xt // xt+1 // . . .

Throughout we also write aij(t) = P(xt = j|x0 = i). This is called the tth step transition

probability, and there is a convenient way to compute this via matrix multiplication.

Theorem 2.2. Let Q be a state space with size N and A the transition matrix for a Markov

chain. Then A(t) = At, that is, aij(t) = (At)ij for each 1 ≤ i, j ≤ N .

3



Proof. Note that A(1) = A = A1. Now suppose that for some t we have A(t) = At. Then

aij(t+ 1) = P(xt+1 = j|x0 = i)

=
N∑
k=1

P(xt+1 = j,xt = k|x0 = i)

=
N∑
k=1

P(xt+1 = j|xt = k,x0 = i)P(xt = k|x0 = i)

=
N∑
k=1

aik(t)akj

=
N∑
k=1

(At)ikakj

= (AtA)ij

= (At+1)ij

We require a way to distinguish between different classes of states: those which will

probabilistically recur, and those which will not.

Definition 2.3. A state i ∈ Q is called recurrent if

P(xt = i for some t ≥ 1|x0 = i) = 1.

Otherwise it is called transient. We also define

fij(t) = P(x1 6= j, · · · ,xt−1 6= j,xt = j|x0 = i), fij =
∞∑
t=1

fij(t).

Note that fij ≤ 1 for each pair i, j. For each pair of states i, j, we can define generating

functions

Pij(s) =
∞∑
t=0

staij(t), Fij(s) =
∞∑
t=0

stfij(t).

4



Here we define fij(0) = 0 for all i, j ∈ Q and always assume |s| < 1 so that Pij(s) and Fij(s)

converge.

Lemma 2.4. A state i ∈ Q is recurrent if and only if fii = 1.

Proof. This follows immediately from the definition of fii(t).

The following theorem makes a claim that seems intuitive: given any starting state,

the probability of being at a specific transient state at time t approaches 0 as t gets large.

That is, as time passes it becomes less and less likely that the chain is in a transient state.

Theorem 2.5. If j is transient, then limt→∞ aij(t) = 0 for all i ∈ Q.

Proof. Fix i, j ∈ Q, j transient and let Bn = {x1 6= j, · · · ,xn−1 6= j,xn = j}. Note that

P(xt = j|x0 = i) =
t∑

n=1

P(xt = j, Bn|x0 = i)

since the events Bn partitition the event {xt = j} as n ranges from 1 to t. But

P(xt = j, Bn|x0 = i) = P(xt = j|x0 = i, Bn)P(Bn|x0 = i)

= P(xt = j|xn = j)P(Bn|x0 = i)

= aij(t− n)fij(n).

Thus aij(t) =
∑t

n=0 aij(t− n)fij(n) since fij(0) = 0 for any i, j ∈ Q. But then

Pij(s)− 1[i=j] =
∞∑
t=1

staij(t)

=
∞∑
t=0

st
t∑

n=0

aij(t− n)fij(n)

=
∞∑
n=0

snfij(n)
∞∑
t=n

st−naij(t− n)

= Fij(s)Pij(s)

5



where |s| < 1. For such s, we have Pjj(s) = 1
1−Fjj(s)

. We have by Abel’s Theorem [2],

lim
s↑1

Pjj(s) =
∞∑
t=0

ajj(t), lim
s↑1

Fjj(s) =
∞∑
t=0

fjj(t) = fjj.

Thus
∞∑
t=0

ajj(t) =∞⇔ fjj = 1⇔ j is recurrent.

Suppose j is transient. Then fjj < 1, so
∑∞

t=0 ajj(t) < ∞. Also, if i 6= j, then we have

Pij(s) = Fij(s)Pjj(s), so

∞∑
t=0

aij(t) = fij

∞∑
t=0

ajj(t)

≤
∞∑
t=0

ajj(t)

<∞

But then this series converges, so limt→∞ aij(t) = 0 for any i, j ∈ Q with j transient.

Definition 2.6. Let Ti = min{t ≥ 1 : xt = i,x0 = i}. Then the mean recurrence time µi is

defined as

µi = E(Ti).

While interesting itself, the mean recurrence time for a state plays a significant role in

the Gibbs sampling process, as we will soon see.

Definition 2.7. A recurrent state i is called non-null recurrent if µi <∞ but is called null

recurrent if µi =∞. Note that if s is transient, then we always have µi =∞.

Definition 2.8. A Markov chain X over a state space Q is irreducible if for each i, j ∈ Q

we have that

aij(m) > 0

for some m > 0. In this case we say i communicates with j.

6



Lemma 2.9. Let i, j ∈ Q and suppose i and j communicate with each other. Then i is

transient if and only if j is transient.

Proof. Since i and j communicate with each other, then there exist m,n ∈ N such that

aij(m) > 0 and aji(n) > 0, and let α = aij(m)aji(n) > 0. Let

T = {X|x0 = i,xm+n+r = i, r ≥ 0},

the set of all possible Markov chains starting at i and ending at i after m+n+ r transitions.

If a chain starts at i and transitions to j after m iterations, then returns to j after another

r iterations, and finally back to i after n more transitions, then this chain is in T . Thus

aii(m+ r + n) ≥ aij(m)ajj(r)aji(n) = αajj(r)

where r ≥ 0. By this work and that of Theorem 2.5, we have the following chain of implica-

tions:

i is transient⇒
∞∑
r=0

aii(r) <∞⇒
∞∑
r=0

ajj(r) <∞⇒ j is transient.

The converse follows from renaming i and j.

We are now ready to discuss the meat of elementary Markov chain theory. The follow-

ing theorems can alternatively be developed by consideration of the spectrum of the tran-

sition matrix (its eigenvalues and eigenvectors), ultimately hinging on the Perron-Frobenius

Theorem.

Definition 2.10. A distribution π over the state space Q is an invariant distribution if

πT = πTA. (2.4)

which means that πj =
∑N

i=1 πiaij for all j. Note that π is a vector such that πi ≥ 0 for all

i and
∑

i πi = 1.

7



Lemma 2.11. Let π be an invariant distribution for a Markov chain with state space Q and

transition matrix A. Then πT = πTAt for all t ≥ 0.

Proof. This follows immediately from the definition of an invariant distribution and a simple

inductive argument on t.

Theorem 2.12. If X is an irreducible Markov chain with an invariant distribution π, then

this invariant distribution is unique.

Proof. Suppose some state j ∈ Q is transient. Then since X is irreducible, j communicates

with all other states, so every state is transient. But then limt→∞ aij(t) = 0 for all i, j ∈ Q

by Theorem 2.5. Since π is invariant, we have

πj =
N∑
i=1

πiaij(t)

for any j and t. But then

πj = lim
t→∞

N∑
i=1

πiaij(t)

=
N∑
i=1

πi lim
t→∞

aij(t) = 0

for all j ∈ Q, in which case π is not a distribution, a contradiction. Thus all states are

recurrent.

Suppose now that πj = 0 for some j ∈ Q. Then we have

0 = πj =
N∑
i=1

πiaij(t) ≥ πiaij(t)

for any i ∈ Q and t. But then since i and j communicate, there is some t such that aij(t) > 0.

But then πi = 0 for all i, a contradiction to the stochasticity of π. Thus πj > 0 for all

j ∈ Q.

8



Let’s suppose now that x0 has π as its distribution, and fix j ∈ Q. Then

πjµj = πjE(Tj)

= P(x0 = j)
∞∑
t=1

tP(Tj = t|x0 = j)

=
∞∑
t=1

P(Tj ≥ t|x0 = j)P(x0 = j)

=
∞∑
t=1

P(Tj ≥ t,x0 = j)

= P(Tj ≥ 1,x0 = j) +
∞∑
t=2

P(Tj ≥ t,x0 = j)

= P(x0 = j) +
∞∑
t=2

P(x0 = j,x1 6= j, · · · ,xt−1 6= j)

= P(x0 = j) +
∞∑
t=2

P(x1 6= j, · · · ,xt−1 6= j)− P(x0 6= j, · · · ,xt−1 6= j)

= P(x0 = j) +
∞∑
t=2

P(x0 6= j, · · · ,xt−2 6= j)− P(x0 6= j, · · · ,xt−1 6= j)

= P(x0 = j) + lim
n→∞

n∑
t=2

P(x0 6= j, · · · ,xt−2 6= j)− P(x0 6= j, · · · ,xt−1 6= j)

= P(x0 = j) + lim
t→∞

P(x0 6= j)− P(x0 6= j, · · · ,xt−1 6= j)

= P(x0 = j) + P(x0 6= j)− lim
t→∞

P(x0 6= j, · · · ,xt−1 6= j)

= 1− lim
t→∞

P(x0 6= j, · · · ,xt−1 6= j)

= 1

since j is recurrent. Since πj > 0 for all j ∈ Q, we have that µj = 1
πj

< ∞, so πj = 1
µj

,

which is unique.

Definition 2.13. A Markov chain X is called aperiodic if gcd{t : aii(t) > 0} = 1 for all

i ∈ Q.

Theorem 2.14. If X is an irreducible, aperiodic Markov chain with an invariant distribution

π, then limt→∞ aij(t) = πj for all j ∈ Q.

9



Proof. The proof of this theorem is beyond the scope of this work. See [2].

The above theorem is a major result in the theory of Markov chains. It shows for a

certain class of Markov chains, the state space distribution at time t approaches a unique

invariant distribution π as t gets large, no matter the initial distribution over the state

space. This is one factor which ultimately enables Gibbs sampling (and subsequently our

implementation of Latent Dirichlet Allocation) to work.

Definition 2.15. A homogeneous Markov chain X is called reversible if there exists a

probability distribution π over the state space Q such that

πiaij = πjaji (2.5)

for all i, j ∈ Q, where πi is the value of the probability density function of π at i ∈ Q and

aij is as explained above.

The following Lemma will be of great use in the development of Gibbs sampling:

Lemma 2.16. If a homogeneous Markov chain X over a finite state space is reversible, then

the given probability distribution π with respect to which X is reversible, is also an invariant

distribution of X.

Proof. We show that
∑n

i=1 aijπi = πj for arbitrary j ∈ Q. By reversibility,

πiaij = πjaji.

Summing over i, we have

N∑
i=1

πiaij =
N∑
i=1

πjaji (2.6)

= πj

N∑
i=1

aji (2.7)

= πj (2.8)

10



where the final step follows from the fact that A is row stochastic.

2.2 Convex Analysis

Convex analysis provides the theory behind many optimization problems. Considering that

Expectation-Maximization is an optimization problem itself (hence the name), it is fitting

that we provide an introduction to convex analysis to understand why EM works as it

does. Similar and more intensive approaches to convex analysis may be found in [3] and [4],

respectively.

Definition 2.17. Let I = [a, b] ⊆ R and let f : I → R. We say f is convex on I if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for every x1, x2 ∈ I and λ ∈ [0, 1]. We say f is strictly convex on I if the inequality is strict

for all λ ∈ (0, 1).

Before we establish a powerful fact about convex functions, we need the following

Lemma.

Lemma 2.18. Let f be differentiable on I. If

f(x) + f ′(x)(y − x) ≤ f(y)

for all x, y ∈ I, then f is convex on I.

Proof. Suppose f(x) + f ′(x)(y − x) ≤ f(y) for all x, y ∈ I. Let u, v ∈ I and λ ∈ (0, 1). Let

w = λu+ (1− λ)v. Then w ∈ I and we have

v − w = −λ(u− v)

u− w = (1− λ)(u− v)

11



so

v − w = − λ

1− λ
(u− w).

Then by our hypothesis,

f(w) + f ′(w)(u− w) ≤f(u)

f(w)−
(

λ

1− λ

)
f ′(w)(u− w) ≤f(v).

Multiplying by λ and 1− λ appropriately and adding, this yields

f(w) ≤ λf(u) + (1− λ)f(v).

Since w = λu+ (1− λ)v, we have now shown that f is convex.

Recall the well established Taylor’s Theorem from calculus:

Theorem 2.19. Let I = [a, b] ⊆ R be an interval and let f be a twice differentiable function

on I. Let x, y ∈ I, not equal. Then there exists z ∈ [x, y] such that

f(x) = f(y) + f ′(y)(x− y) +
1

2
f ′′(z)(x− y)2.

We can now show a powerful connection between convexity and the second derivative

of a function f :

Theorem 2.20. If f is twice differentiable on an interval I = [a, b] and f ′′(x) ≥ 0 for all

x ∈ I, then f is convex on I.

Proof. Let x, y ∈ I. Then by Taylor’s Theorem, there is some z ∈ I such that

f(x) = f(y) + f ′(y)(x− y) +
1

2
f ′′(z)(x− y)2.

12



Since f ′′(z) ≥ 0 and (x− y)2 ≥ 0, then

f(x) ≥ f(y) + f ′(y)(x− y).

By our lemma, we conclude that f is convex on I.

This gives rise to the following Corollary:

Corollary 2.21. − ln(x) is convex on the interval (0,∞).

Proof. Let f(x) = − ln(x). Then f ′(x) = − 1
x

and f ′′(x) = 1
x2
≥ 0 for all x ∈ (0,∞). By the

Theorem, − ln(x) is convex.

We now give one of the most important inequalities of all of mathematics: Jensen’s

Inequality. Many important inequalities are simple cases of Jensen’s Inequality, including

Young’s, Holder’s, Minkowski’s, and the Arithmetic-Geometric Mean inequalities.

Theorem 2.22. Jensen’s Inequality Let f be a convex function defined on an interval I ⊆ R.

Let x1, · · · , xn ∈ I and λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi = 1. Then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

Proof. Let n = 1. Then we have f(x1) ≤ f(x1) trivially. If n = 2, then this is the definition

13



of a convex function. Suppose the inequality holds for some n. Then

f

(
n+1∑
i=1

λixi

)
= f

(
n∑
i=1

λixi + λn+1xn+1

)

= f

(
(1− λn+1)

1

1− λn+1

n∑
i=1

λixi + λn+1xn+1

)

≤ (1− λn+1)f

(
1

1− λn+1

n∑
i=1

λixi

)
+ λn+1f(xn+1)

= (1− λn+1)f

(
n∑
i=1

λi
1− λn+1

xi

)
+ λn+1f(xn+1)

≤ (1− λn+1)
n∑
i=1

λi
1− λn+1

f(xi) + λn+1f(xn+1)

=
n+1∑
i=1

λif(xi).

We follow this with another corollary:

Corollary 2.23. Let x1, · · · , xn > 0 and λ1, · · · , λn ≥ 0 such that
n∑
i=1

λi = 1. Then

ln

(
n∑
i=1

λixi

)
≥

n∑
i=1

λi lnxi.

Proof. Since − lnx is a convex function, then by Jensen’s Inequality,

− ln

(
n∑
i=1

λixi

)
≤

n∑
i=1

λi(− lnxi).

Multiplying by −1, we get the desired inequality.

We conclude our section on convexity with one final theorem which will prove useful

later:

14



Theorem 2.24. a) If f1(x), · · · , fk(x) are convex functions over a convex set C ⊆ Rn, then

g(x) =
k∑
i=1

fi(x)

is also convex.

b) If f(x) is a convex function over a convex set C ⊆ Rn, and if c ∈ R is nonnegative, then

cf(x) is convex.

c) Linear functions are convex.

Proof. Throughout the proof let x,y ∈ C and let λ ∈ (0, 1).

a) From the convexity of each fi, we have

g(λx + (1− λ)y) =
k∑
i=1

f(λx + (1− λ)y)

≤
k∑
i=1

λf(x) + (1− λ)f(y)

= λ
k∑
i=1

f(x) + (1− λ)
k∑
i=1

f(y)

= λg(x) + (1− λ)g(y)

Thus g(x) is convex.

b) If c = 0, then this is trivial, since

cf(λx + (1− λ)y) = 0 = λ(0) + (1− λ)(0) = λ(cf(x)) + (1− λ)(cf(y)).

Suppose then that c > 0. Then since f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), multiplying

by a positive constant preserves the inequality, yielding

cf(λx + (1− λ)y) ≤ c(λf(x) + (1− λ)f(y))

= λcf(x) + (1− λ)cf(y)
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Thus cf(x) is convex.

c) A linear function in Rn must be of the following form: f(x) = cTx + b for some c ∈ Rn

and b ∈ R. Then

f(λx + (1− λ)y) = cT (λx + (1− λ)y) + b

= λcTx + (1− λ)cTy + b

= λ(cTx + b) + (1− λ)(cTy + b)

= λf(x) + (1− λ)f(y)

Thus f(x) is convex.

Chapter 3. Statistical Learning Algorithms

The main tools we use in this work depend heavily on two important statistical methods

developed in the 20th century. We have thus far striven to develop the mathematical under-

pinnings of these algorithms, and now we present them in their entirety for the reader’s ben-

efit. More comprehensive/alternative introductions can be found in [5], [6], and [3], but for

self-containment, we have provided all necessary mathematical details to satisfy the reader’s

desire to understand why they work. We also provide an introduction to two classification

tools and a method to measure the effectiveness of a binary classifier.

3.1 Gibbs Sampling

In statistics, Gibbs sampling is an (MCMC) method used for approximating samples from a

specified multivariate distribution π where direct sampling is infeasible, but where sampling

from conditional distributions is simple. These approximated samples can then be used to

estimate the joint distribution. Let S be a finite state space, and let V ∈ N. Then Θ = SV
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is also a finite state space. Let X be a random vector with range Θ, and let π be its joint

mass function, i.e.

π(s1, · · · , sV ) = P(x1 = s1, · · · , xV = sV ).

Suppose that it is difficult to sample from π, but that π(xi|x1, · · · , xi−1, xi+1, · · · , xV ) is

easy to sample from. Given values for an initial random vector X, Gibbs sampling procedes

as follows:

(i) Pick a random index 1 ≤ i ≤ V .

(ii) Draw x ∼ π(xi|x1, · · · , xi−1, xi+1, · · · , xV ).

(iii) Fix xi = x.

(iv) Repeat.

This procedure creates a reversible Markov chain over the finite state space Θ with

invariant distribution π.

Theorem 3.1. Let π(x1, · · · , xV ) be a distribution from which we wish to sample and let Θ

denote the sample space. Given an initial random vector X ∈ Θ, consider the method where

we repeat the following three steps:

(i) Pick a random index 1 ≤ i ≤ V .

(ii) Pick a new value x ∼ π(xi|x1, · · · , xi−1, xi+1, · · · , xV ).

(iii) Fix xi = x.

This process creates a reversible Markov chain on the sample space with invariant distribution

π.
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Proof. Define a relation X ∼j Y if xi = yi for all i 6= j, and note that this is an equivalence

relation. With this process the transition probabilities from one sample X ∈ Θ to Y ∈ Θ

are

qXY =


1
V

π(Y)∑
Z∈Θ
Z∼jX

π(Z)
, if X ∼j Y.

0, otherwise.

Then

π(X)qXY =
1

V

π(X)π(Y)∑
Z∈Θ
Z∼jX

π(Z)
= π(Y)qY X

for X ∼j Y. If X 6∼j Y, then qXY = 0 = qY X , and π(X)qXY = π(Y)qY X trivially. Thus

the Markov chain is reversible with respect to the distribution π(X), and so π(X) is an

invariant distribution of this Markov chain, by Lemma 2.16.

The use of Gibbs sampling is that it enables us to draw samples from a distribution for

which sampling would otherwise be infeasible. That is, if the chain we construct is irreducible

and aperiodic, then π is in fact the unique invariant distribution, and as the process iterates

over time, our drawn samples approximate this distribution.

In practice, the indices are picked incrementally instead of at random, and samples are

kept only after some burn-in period. This means that given an initial random vector X,

for each index i (starting at 1, going to V ) we resample xi. One full cycle is considered an

iteration, and the random vector at the end of the cycle is our sample. We ”burn in” by

ignoring the first N samples (where N is, say, 1000).

The burn-in period removes the effects of the initial random vector and lets the state

distribution converge to the unique invariant distribution (which is guaranteed to happen if

the chain is irreducible and aperiodic, see Theorem 2.14). After continuing this process, we

may stop once we have the desired number of samples.
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3.2 Expectation-Maximization

In 1977, Arthur Dempster, Nan Laird, and Donald Rubin published a much lauded paper [6]

where they developed the statistical method known as Expectation-Maximization. The EM

algorithm is a method used to compute the maximum likelihood estimates of parameters in

a statistical model in which there are latent (hidden) variables.

In general, given a statistical model with known data O and unobserved data X,

unknown parameters λ, and a likelihood function L(λ;X,O) = P(O,X|λ) the object is to

find λ∗ which maximizes L(λ;O). Note that we could marginalize out the unobserved data

by noting that

L(λ;O) = P(O|λ) =
∑
X

P(O,X|λ)

and seek to maximize this, though this computation is often untractable. Instead, we follow

an iterative procedure as follows:

(i) Given λt, compute Q(λ|λt) = EX|O,λt [lnP(O,X|λ)] =
∑
X

P(X|O, λt) lnP(O,X|λ).

(ii) Update λt+1 = argmax
λ

= Q(λ|λt).

The reader should be asking himself the following question: is P(O|λt+1) ≥ P(O|λt)

necessarily? The answer comes as a result of our development of convex analysis and Jensen’s

inequality.

First, note that since ln is a strictly increasing function, then the parameter value λ∗

which maximizes l(λ) = lnP(O|λ) must also maximize P(O|λ), and so we deal here with the

log-likelihood function l(λ).

Lemma 3.2. For any set of parameters λ and current estimate λt,

l(λ) ≥ l(λt) +
∑
X

P(X|O, λt) ln
P(O,X|λ)

P(O,X|λt)
.
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Proof. Note that

l(λ)− l(λt) = lnP(O|λ)− lnP(O|λt)

= ln

(∑
X

P(O,X|λ)

)
− lnP(O|λt)

= ln

(∑
X

P(X|O, λt)
P(O,X|λ)

P(X|O, λt)

)
− lnP(O|λt)

≥
∑
X

P(X|O, λt) ln
P(O,X|λ)

P(X|O, λt)
− lnP(O|λt)

=
∑
X

P(X|O, λt) ln
P(O,X|λ)

P(X|O, λt)P(O|λt)

=
∑
X

P(X|O, λt) ln
P(O,X|λ)

P(O,X|λt)

Thus

l(λ) ≥ l(λt) +
∑
X

P(X|O, λt) ln
P(O,X|λ)

P(O,X|λt)
.

Now we can answer our question concerning EM:

Theorem 3.3. If λt and λt+1 are parameter estimates for consecutive iterations of the EM

algorithm, then P(O|λt+1) ≥ P(O|λt).

Proof. Note that

λt+1 = argmax
λ

∑
X

P(X|O, λt) lnP(O,X|λ)

= argmax
λ

∑
X

P(X|O, λt) lnP(O,X|λ)−
∑
X

P(X|O, λt) lnP(O,X|λt)

= argmax
λ

∑
X

P(X|O, λt) ln
P(O,X|λ)

P(O,X|λt)
.
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By Theorem 3.2 and this computation we have

l(λt+1) ≥ l(λt) +
∑
X

P(X|O, λt) ln
P(O,X|λt+1)

P(O,X|λt)

≥ l(λt) +
∑
X

P(X|O, λt) ln
P(O,X|λt)
P(O,X|λt)

= l(λt) +
∑
X

P(X|O, λt) ln 1

= l(λt).

The claim is now immediate.

Given fixed data O, Expectation-Maximization attempts to find the set of parameters

to maximize the likelihood of this data, given the assumption that the data was generated

from a specific class of models, in the existence of some kind of latent variable. A common

use of EM is in training a Gaussian mixture model where only the Gaussian draws are

given (the data), but not the components from which each data point is drawn (the latent

variables). We will use this procedure to train Bursting Hidden Markov Models from data,

where certain variables are missing.

It is important to note that while the iterative process is monotonically increasing,

this does not guarantee that the method finds a global maximum. In fact, because the

monotonicity is not strict, it is even possible that the process converges to a local minimum!

A simple approach to dealing with this problem is by using many random restarts. That is,

repeat the procedure with varying initial parameter estimates, and settle on the maximizer

of all the final estimates. This increases the likelihood that the final trained model is a local

maximizer, and hopefully the global.
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3.3 Classification Trees

Classification trees are a class of decision trees, developed by Breiman et al in 1984 [7].

They are used in a wide variety of settings where labeled training data is available, and the

desired outcome is a model which is able to accurately assign labels to unlabeled data. We

assume that each sample d has P attributes, which can be real-valued or categorical, and

each sample belongs to some class k, where there are K classes. A toy example of a graphical

depiction of a trained classification tree is given in Figure 3.1.

Figure 3.1: Toy decision tree.

Given an unlabeled sample with three variables (age, charlson index, and allowable

amount), it is “pushed” down the tree by starting at the root node (the top) and performing

the following process at each node until arriving at a leaf node (a node with no children).

(i) If the expression at the current node is true, then go to the right child node.

(ii) If the expression at the current node is false, then go to the left child node.

Each leaf node has a classification assigned to it, and this unlabeled sample is then

labeled with that classification. For example, the unlabeled samples in Table 3.1 will be

pushed down the decision tree and receive final labels Not CKD and CKD, respectively.

The reader may be wondering how a classification tree is trained. We start with a

labeled data set D and choose the best attribute p and value x by which to split the data.
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Sample # Age Charlson Allowable Amount
1 50 3 $9,652
2 44 6 $1,497

Table 3.1: Two unlabeled samples for the toy decision tree.

We have now partitioned D into two sets, which we may then split as well. We continue in

this manner until some stopping criteria is met. To formalize this, we need several definitions.

Definition 3.4. Let D be a data set with K different classes. Let Nk be the number of

samples labeled class k for each 1 ≤ k ≤ K, and let fk = Nk

N
where N is the total number of

samples in D. We define the Gini impurity to be

G(D) = 1−
K∑
k=1

f 2
k .

Let’s examine what this is. Note that each fk is the fraction of samples in D from class

k. But then we have

G(D) = 1−
K∑
k=1

f 2
k

=
K∑
k=1

fk − f 2
k

=
K∑
k=1

fk(1− fk)

But since fk can also be considered the probability of randomly selecting a sample

with class k from D and (1− fk) can be considered the probability of incorrectly labeling a

sample with class k, this means that G(D) is a measure of how often one would incorrectly

label a randomly chosen sample from D. Other measures of impurity exist, but in our

implementation we use the Gini impurity.

We now define what it means to be a split of a data set D.

23



Definition 3.5. We define the split sD(p, x) of the data set D on attribute p using value x,

to be a partition D1, D2 such that

(i) dp ≤ x for all d ∈ D1 and dp > x for all d ∈ D2, where dp is the value of attribute p in

d, assuming real values; or

(ii) dp 6= x for all d ∈ D1 and dp = x for all d ∈ D2, where dp is the value of attribute p in

d, assuming categorical values.

Note that D1 ∩D2 = Ø and D = D1 ∪D2, so sD(p, x) is in fact a partition of D.

Given a set of labeled samples D, we wish to find a split that maximizes information

gain.

Definition 3.6. Let sD(p, x) = D1, D2 be a split. We define the information gain of this

split to be

I(sD(p, x)) = G(D)−
2∑
i=1

|Di|
|D|
·G(Di).

Thus the information gain is the difference between the Gini impurity of the parent set

and the weighted sum of the Gini impurities of the child sets.

We consider each node to be associated with a data set D. The root node is associated

with all available training data. To train a classification tree, given a node we find

s?D = argmax
p,x

I(sD(p, x))

and create two child nodes. The left child node is associated with D1 and the right child

node with D2. We continue splitting nodes until each leaf node is pure, i.e. consists of only

a single class. At this point each leaf node is classified with the class label it contains.

In practice, classification trees are pruned, meaning that they are not grown out to

complete purity. In this case, a leaf node contains a mixture of classes, and is labeled with

the majority class. In our implementation of the random forest, our trees are not pruned,

so we offer no further discussion of pruning here.

24



3.4 Random Forests

Random forests are aptly named; they are collections of classification trees, an extension

made by Breiman of his own work [8]. The difference is that they introduce an amount of

randomness in the inference procedure, whereas classification trees are deterministic based

on the training data. To be more precise, let D be the set of labeled samples available for

training, K the number of distinct classes, P the number of attributes of each data point,

and p << P , a user-specified natural number significantly smaller than P . Then a random

forest is a collection of T trees, where splits at each node are performed in the following

manner:

(i) Randomly select p attributes.

(ii) Compute the optimal split of the available data, restricting splits to the p selected

attributes.

Thus for each split, only a random sampling of attributes can be considered. Each tree

is fully grown, i.e. not pruned. To predict the label for a new sample d, each tree in the

random forest assigns d a label as discussed above. For each possible label k, let N̂k be the

number of trees assigning d label k. We can view the prediction from the random forest in

two ways:

(i) Label d with argmaxkNk; or

(ii) Label d with a probability distribution p over the classes, where pk = |Nk|
|T | .

In our Chronic Kidney Disease classifier, we follow the second option, enabling us to

use ROC analysis to measure the efficiency of the classifier.
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3.5 Receiver Operating Characteristic

One persistent problem in supervised learning (classification) is how to best deal with rare

data. In a classification problem, rare data denotes the presence of a class for which there

is very little data, whereas a plethora of data exists for other classes (called the majority

classes). This is often a challenge when training classifiers on medical conditions, since

the condition of interest may be relatively rare in the overall population. In general, left

untreated, a classifier will naturally give weight to the majority class(es), making it a poor

predictor of the rare class of interest.

A number of ways of dealing with rarity have been proposed and implemented over the

years. These include oversampling the rare class, undersampling the majority class(es), and

cost-sensitive learning. In a binary classification problem, a good way to deal with rarity

is using receiver operating characteristic (ROC) analysis. For the following definitions, we

assume that in a data set D, each sample is labeled with one of two classes: positive or

negative. Throughout we assume that the positive class is rare, and the negative class is

majority.

Definition 3.7. Given a classifier, a sample is a true positive if it is positive and is correctly

labeled as such. A sample is a false positive if it is negative but is labeled as positive.

A sample is a true negative if it is negative and is correctly labeled as such, and is a false

negative if it is positive and incorrectly labeled as negative. Given a sample set and classifier,

let Ntp denote the number of samples that are true positive, Nfp the number of samples that

are false positive, Ntn the number of samples that are true negative, and Nfn the number of

samples that are false negative.

Definition 3.8. Given a classifier and sample set D, the sensitivity is the fraction of true

positives over all positives, and the specificity is the fraction of true negatives over all nega-
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tives. More specifically,

SensD =
Ntp

Ntp +Nfn

SpecD =
Ntn

Ntn +Nfp

Essentially, SensD is the probability of a positive being labeled correctly, and SpecD is

the probability of a negative being labeled correctly. For example, suppose we have a sample

set with 100 positives and 165,000 negatives, and a classifier with a sensitivity SensD = 0.09

and a specificity SpecD = 0.93. Then we would correctly classify 9 people as positive and

153,450 as negative, while incorrectly classfying 91 positives as negatives and 11,550 negatives

as positives, i.e. we would have 91 false negatives and 11,550 false positives.

Often with a binary classifier, for each new sample, it is possible to get a probability

distribution over the two class labels instead of a single hard label assignment. If the positive

class is rare, then often these classifiers will naturally tend to predict a greater probability of

a sample being the majority class, even if this is incorrect. This yields a high specificity, but

a very low sensitivity. It may be that we are willing to have more overall misclassifications, if

in return we are able to correctly identify the rare classes, i.e. we may be willing to sacrifice

specificity in return for sensitivity. To do this, we define a specificity-sensitivity pair.

Definition 3.9. The specificity-sensitivity pair for a classifier at λ ∈ [0, 1] for a sample set

D is

Spec-SensD(λ) = (SpecD, SensD) ,

where each sample d ∈ D is classified as positive if P(d is positive) ≥ λ and negative other-

wise.

ROC analysis allows us to see how the specificity and sensitivity are related as we

vary λ between 0 and 1. This is usually depicted by a ROC curve, in which one minus the

specificity is plotted on the x-axis against the sensitivity on the y-axis, as in Figure 3.2.
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Figure 3.2: ROC curve examples with base line.

Of these classifiers, clearly the one with overall higher specificity-sensitivity pairs is a

superior classifier, as it results in fewer misclassifications. This provides a measure of the

performance of a binary classifier: the area under the curve.

Definition 3.10. Let f be a ROC curve, which we may consider to be a function f : [0, 1]→

[0, 1] where f(0) = 0 and f(1) = 1. Define the ROC score of f to be

RS(f) =

ˆ 1

0

f(x)dx

We will use this performance measure to compare the quality of different binary clas-

sifiers in Chapter 6.
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Chapter 4. Latent Dirichlet Allocation

Developed in 2003 by Blei et al [9], Latent Dirichlet Allocation (LDA) replaced other topic

analysis methods such as Latent Semantic Indexing (LSI) [10], probabilistic Latent Semantic

Indexing (pLSI) [11], and others. These tools had been developed to extract topical informa-

tion from large collections of texts. The idea was that they could categorize each document

in a collection as being about topic X or topic Y , thus enhancing information retrieval meth-

ods. Given a specific document d out of a corpus (collection of documents), one could use

these tools to identify which documents are most similar to document d according to some

well defined metric.

LDA took this a step further, being significantly different from previous tools in that it

provided a generative model for corpus creation. It also allowed us to characterize documents

as being a distribution over topics, i.e. document i might be 40% topic X and 60% topic Y .

This has obvious advantages. While we will ultimately use LDA in dealing with patients’

health care claims and diagnosis codes, we present it in its original context of text analysis.

4.1 Formalization and Background

To formalize terminology, we refer to a term as a specific sequence of lowercase alphanumeric

characters with some defined meaning. A document is a finite list of words, where each word

is a specific instance of a term, allowing repetition. A corpus is a finite list of documents. A

term list for a corpus is a list of all terms that occur in at least one document in the corpus.

Throughout, we make use of two important distributions: categorical and symmet-

ric Dirichlet. While the categorical distribution is quite common, the symmetric Dirichlet

distribution is not, so we provide an introduction.

4.1.1 Dirichlet Distribution. The symmetric Dirichlet distribution takes as a param-

eter a scalar α ∈ R, α > 0. In general, a K-dimensional Dirichlet distribution has a vector

parameter α ∈ RK . Given K rival events, where for each i the ith event has occured αi − 1
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times, the probability density function of Dir(α) returns the belief that the probability

distribution of the K events is x. This can be explicitly written as below

f(x;α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

xαi−1
i

and if the distribution is the symmetric Dirichlet distribution, this simplifies to

f(x;α) =
Γ(Kα)

KΓ(α)
(
K∏
i=1

xi)
α−1.

Note specifically that if α = 1, then (
∏K

i=1 xi)
α−1 = (

∏K
i=1 xi)

0 = 1, so f(x1; 1) = f(x2; 1)

for any distributions x1,x2. Since for each x we have that xi > 0 for all i and
∑K

i=1 xi = 1,

we note that x lives in the standard open K − 1-simplex.

Some examples of the probability density functions for a 3-dimensional Dirichlet dis-

tribution are given in Figure 4.1.

Note how for symmetric parameters with α < 1, the distribution gets sparse, in that

the categorical distributions drawn from such a Dirichlet distribution are weighted heavily

in only one dimension.

4.2 Text Generation via Latent Dirichlet Allocation

Latent Dirichlet Allocation assumes that each corpus of M documents over K topics with a

vocabulary size V , is generated by a model having several parameters: η ∈ R,α ∈ RK ,β ∈

RV . Here, η is a parameter for a Poisson distribution, representing the tendency of certain

lengths for each document, α and β are Dirichlet parameters, used to generate categorical

distributions over the K topics and the V terms, respectively. LDA further assumes that

each corpus of M documents is generated via Algorithm 4.1:

This generation process is often depicted graphically with plate notation as shown in

Figure 4.2.
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Figure 4.1: Dirichlet distributions with various parameter vectors α, represented by a heat
map. Clockwise from top left: α = (3, 3, 3), (3, 6, 4), (.95, .95, .95), (.3, .3, .3).

Figure 4.2: Latent Dirichlet Allocation graphical plate notation.
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Algorithm 4.1 Given Dirichlet parameters α ∈ RK , β ∈ RV , and a Poisson parameter
η ∈ R, generate a corpus of M documents.

for k = 1→ K do
Sample φk ∼ Dir(β)

end for
for m = 1→M do

Sample Nm ∼ Poiss(η)
Sample θm ∼ Dir(α)
for n = 1→ Nm do

Sample zm,n ∼ Cat(θm)
Sample wm,n ∼ Cat(φzm,n

)
end for

end for

We refer to θm as the topic distribution for document m, and φk as the term distribution

for topic k. That is, θm is a categorical distribution of length K, such that

θm,k = P(z = k|d = m),

i.e., the probability of seeing topic k, given that we are considering document m. Similarly,

φk is a categorical distribution of length V , such that

φk,v = P(w = v|z = k),

i.e., the probability of seeing term v, given that we are considering topic k. Throughout we

write Θ as the matrix with mth row θm and Φ as the matrix with kth row φk. We also write

w to denote the set of all words in the corpus, wm being the set of words in document m,

and wm,n being the nth word in document m, and z to denote the set of all topic assignments

in the corpus, zm being the set of topic assignments in document m, and zm,n being the topic

assignment for word wm,n.

The power of LDA lays in our ability to discover the latent variables Φ,Θ, z given

a corpus of documents. While the generation of documents according to the assumptions

of LDA is fairly straightforward, their inference is generally intractable. Thus we rely on
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a Gibbs sampling algorithm to infer the hidden variables given a corpus. Other methods

(such as variational expectation-maximization [9]) exist, but the simplicity of Gibbs sampling

makes it the ideal choice for this introductory work.

4.3 Latent Dirichlet Allocation Inference

The derivations in this section closely mirror the work in [12] and [13], and we include

it here for self-containment. We wish to sample from P(z|w,α,β), but this is in general

intractable. Thus we use a Gibbs sampler, and for each word b in each document a we

must sample from P(za,b|z¬a,b,w,α,β) where z¬a,b denotes all the topic assignments to all

words other than the bth word in the ath document. Before we present the derivation of this

conditional distribution, we must make a few additional definitions, hereafter referred to as

the count matrices :

n(k,m,v) = The number of appearances of the term v in document m assigned to topic k.

(4.1)

n(k,m,·) =
V∑
v=1

n(k,m,v) = The number of words in document m assigned to topic k. (4.2)

n(k,·,v) =
M∑
m=1

n(k,m,v) = The number of times term v is assigned to topic k. (4.3)

n¬(k,a,·) = n(k,a,·) − 1[za,b=k] (4.4)

n¬(k,·,v) = n(k,·,v) − 1[wa,b=v] (4.5)

4.3.1 Some Computations. We now make a few computations to make the future work

easier. Note that by the law of total probability and integrating out Θ and Φ we have

P(z,w|α,β) =

ˆ ˆ
P(z,w,Θ,Φ|α,β)dΘdΦ. (4.6)
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Also by conditional probabilities,

P(z,w,Θ,Φ|α,β) = P(Φ|β)P(Θ|α)P(z|Θ)P(w|z,Φ). (4.7)

Noting that the documents are independent from each other and the topics are inde-

pendent of each other, we have

P(z|Θ)P(Θ|α) =
M∏
m=1

P(zm|θm)P(θm|α) (4.8)

and

P(Φ|β)P(w|z,Φ) =
K∏
k=1

P(φk|β)
M∏
m=1

Nm∏
n=1

P(wm,n|φzm,n
) (4.9)

Since α and β are Dirichlet distributions, we have

P(θm|α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
m,k (4.10)

and

P(φk|β) =
Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φβv−1
k,v (4.11)

From the definition of multinomial distributions, we also have

P(zm|θm) =
Nm∏
n=1

θm,zm,n (4.12)

and

P(wm,n|φzm,n
) = φzm,n,wm,n (4.13)

From the definitions of n(k,m,·) and n(k,·,v) note that

Nm∏
n=1

θm,zm,n =
K∏
k=1

θ
n(k,m,·)
m,k (4.14)
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and
M∏
m=1

Nm∏
n=1

φzm,n,wm,n =
V∏
v=1

φ
n(k,·,v)
k,v (4.15)

With these definitions and computations, we may proceed with the derivation of the

conditional distribution P(za,b|z¬a,b,w,α,β).

4.3.2 Derivation of the Conditional Distribution. By the definition of conditional

probability,

P(za,b|z¬a,b,w,α,β) =
P(za,b, z¬a,b,w|α,β)

P(z¬a,b,w|α,β)

Since the denominator is independent of za,b,

∝ P(za,b, z¬a,b,w|α,β)

Now since z = {za,b} ∪ {z 6=,a,b}, this becomes

= P(z,w|α,β)

By 4.6 and 4.7,

=

ˆ ˆ
P(z,w,Θ,Φ|α,β)dΘdΦ

=

ˆ ˆ
P(Φ|β)P(Θ|α)P(z|Θ)P(w|z,Φ)dΘdΦ

Separating the integrals, this becomes

=

ˆ
P(z|Θ)P(Θ|α)dΘ×

ˆ
P(w|z,Φ)P(Φ|β)dΦ

35



By 4.8 and 4.9 we have

=

ˆ M∏
m=1

P(zm|θm)P(θm|α)dΘ×
ˆ K∏

k=1

P(φk|β)
M∏
m=1

Nm∏
n=1

P(wm,n|φzm,n
)dΦ

Again, by the independence of documents from each other and topics from each other, this

becomes

=
M∏
m=1

ˆ
P(zm|θm)P(θm|α)dθm ×

K∏
k=1

ˆ
P(φk|β)

M∏
m=1

Nm∏
n=1

P(wm,n|φzm,n
)dφk

Then by 4.10 through 4.13, we have

=
M∏
m=1

ˆ
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
m,k

Nm∏
n=1

θm,zm,ndθm ×
K∏
k=1

ˆ
Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φβv−1
k,v

M∏
m=1

Nm∏
n=1

φzm,n,wm,ndφk

and by 4.14 and 4.15 and pulling constants outside the integrals, this becomes

=
M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

ˆ K∏
k=1

θ
αk+n(k,m,·)−1

m,k dθm ×
K∏
k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

ˆ V∏
v=1

φ
βv+n(k,·,v)−1

k,v dφk

Cleverly multiplying each integral by ”1”, we find

=
M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(n(k,m,·) + αk)

Γ(
∑K

k=1 n(k,m,·) + αk)

ˆ
Γ(
∑K

k=1 n(k,m,·) + αk)∏K
k=1 Γ(n(k,m,·) + αk)

K∏
k=1

θ
αk+n(k,m,·)−1

m,k dθm

×
K∏
k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

∏V
v=1 Γ(n(k,·,v) + βv)

Γ(
∑V

v=1 n(k,·,v) + βv)

ˆ
Γ(
∑V

v=1 n(k,·,v) + βv)∏V
v=1 Γ(n(k,·,v) + βv)

V∏
v=1

φ
βv+n(k,·,v)−1

k,v dφk

But the integrands are now the pdfs of the Dirichlet distributions with parameters

α′ = (α1 + n(1,m,·), · · · , αK + n(K,m,·))
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and

β′ = (β1 + n(k,·,1), · · · , βV + n(k,·,V ))

respectively over their entire support, so they evaluate to 1, leaving

=
M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(n(k,m,·) + αk)

Γ(
∑K

k=1 n(k,m,·) + αk)
×

K∏
k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

∏V
v=1 Γ(n(k,·,v) + βv)

Γ(
∑V

v=1 n(k,·,v) + βv)

Dropping the constants dependent only on α and β and hence conditionally independent of

za,b, this now becomes

∝
M∏
m=1

∏K
k=1 Γ(n(k,m,·) + αk)

Γ(
∑K

k=1 n(k,m,·) + αk)
×

K∏
k=1

∏V
v=1 Γ(n(k,·,v) + βv)

Γ(
∑V

v=1 n(k,·,v) + βv)

Separate the terms involving a and b from everything else, so we have

=

[∏
m6=a

∏K
k=1 Γ(n(k,m,·) + αk)

Γ(
∑K

k=1 n(k,m,·) + αk)

]
×
∏K

k=1 Γ(n(k,a,·) + αk)

Γ(
∑K

k=1 n(k,a,·) + αk)

×
K∏
k=1

[∏
v 6=wa,b

Γ(n(k,·,v) + βv)
]
× Γ(n(k,·,wa,b) + βwa,b

)

Γ(
∑V

v=1 n(k,·,v) + βv)

and dropping the constants independent of a and b, it becomes

∝
∏K

k=1 Γ(n(k,a,·) + αk)

Γ(
∑K

k=1 n(k,a,·) + αk)
×

K∏
k=1

Γ(n(k,·,wa,b) + βwa,b
)

Γ(
∑V

v=1 n(k,·,v) + βv)

Now considering definitions 4.4 and 4.5 and separating topic za,b from the other topics, we

have

∝
∏

k 6=za,b Γ(n(k,a,·) + αk)× Γ(n¬(za,b,a,·) + αza,b + 1)

Γ(1 +
∑K

k=1 n
¬
(k,a,·) + αk)

×
∏
k 6=za,b

Γ(n(k,·,wa,b) + βwa,b
)

Γ(
∑V

v=1 n(k,·,v) + βv)
×

Γ(n¬(za,b,·,wa,b) + βwa,b
+ 1)

Γ(1 +
∑V

v=1 n
¬
(za,b,·,v) + βv)
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Noting that a property of the gamma function is Γ(n + 1) = nΓ(n), we can separate this

further as

=

∏
k 6=za,b Γ(n(k,a,·) + αk)× Γ(n¬(za,b,a,·) + αza,b)× (n¬(za,b,a,·) + αza,b)

Γ(1 +
∑K

k=1 n
¬
(k,a,·) + αk)

×
∏
k 6=za,b

Γ(n(k,·,wa,b) + βwa,b
)

Γ(
∑V

v=1 n(k,·,v) + βv)
×

Γ(n¬(za,b,·,wa,b) + βwa,b
)× (n¬(za,b,·,wa,b) + βwa,b

)

Γ(
∑V

v=1 n
¬
(za,b,·,v) + βv)× (

∑V
v=1 n

¬
(za,b,·,v) + βv)

Reconsolidating and recognizing that n(k,·,v) = n¬(k,·,v) for k 6= za,b, we have

=

∏K
k=1 Γ(n¬(k,a,·) + αk)× (n¬(za,b,a,·) + αza,b)

Γ(1 +
∑K

k=1 n
¬
(k,a,·) + αk)

×
K∏
k=1

Γ(n¬(k,·,wa,b) + βwa,b
)

Γ(
∑V

v=1 n
¬
(k,·,v) + βv)

×
n¬(za,b,·,wa,b) + βwa,b∑V
v=1 n

¬
(za,b,·,v) + βv

Dropping constants (everything independent of za,b) this becomes

∝
(n¬(za,b,a,·) + αza,b)× (n¬(za,b,·,wa,b) + βwa,b

)∑V
v=1 n

¬
(za,b,·,v) + βv

and rewriting
∑V

v=1 n
¬
(za,b,·,v) as n¬(za,b,·,·) this is

∝
(n¬(za,b,a,·) + αza,b)× (n¬(za,b,·,wa,b) + βwa,b

)

n¬(za,b·,·) +
∑V

v=1 βv

Note here that the first multiplicand of the numerator is the number of words in

document a which have been assigned to the topic za,b (excluding the bth word itself) plus

the prior for the topic, αza,b . The second multiplicand in the numerator is the number

of times the term wa,b is assigned to the topic za,b in the whole corpus (excluding the bth

word of the ath document) plus the prior for the term wa,b. The denominator is the total

number of words in the corpus assigned to the topic za,b (excluding the bth word of the ath

document) plus the sum of the term priors. Since we have shown that this distribution

is only proportional to this final value, we must of course normalize this before sampling,
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making the final conditional distribution

P(za,b|z¬,a,b,w,α,β) =

(n¬
(za,b,a,·)

+αza,b
)×(n¬

(za,b,·,wa,b)
+βwa,b

)

n¬
(za,b·,·)

+
∑V

v=1 βv

K∑
k=1

(n¬(k,a,·) + αk)× (n¬k,·,wa,b) + βwa,b
)

n¬(k·,·) +
∑V

v=1 βv

(4.16)

This final version is easy to sample from, since we can easily keep track of the count

matrices throughout the entire Gibbs sampling process for all documents in the corpus.

Considering our earlier discussion of Markov chains and Gibbs sampling, we should check

that our conditions for convergence to a unique invariant distribution are met.

We must recognize that the state space is the set of all possible z, so it is KN , where

we identify K with the set {1, 2, · · · , K} and N is the total number of words in the corpus.

Thus it is finite. Note also that each conditional distribution has only positive entries;

this is because αk and βv is positive for each k and v, which is a requirement for Dirichlet

parameters. Thus, given any two states z1 and z2, there is a positive probability that state

z1 will transition to z2 in N iterations. Thus the Markov chain induced by the Gibbs sampler

is irreducible.

The chain is also aperiodic. This is clearly true, since given the current state z1 and an

index i, there is a positive probability that the the ith coordinate of z1 will remain unchanged,

yielding period 1.

Since the Gibbs sampler creates a Markov chain with an invariant distribution, we

may use 2.14 to show that the process converges to a unique invariant distribution. Thus in

our sampling process, we are indeed approximately sampling from the desired distribution

P(z|w,α,β).
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4.3.3 Re-estimation. Once we have burned-in in the process and have taken a sample

z, we can examine the counts n(k,m,·) and n(k,·,v) to reestimate Θ and Φ as follows:

θ̂m,k =
n(k,m,·) + αk

n(·,m,·) +
∑K

k=1 αk
(4.17)

φ̂k,v =
n(k,·,v) + βv

n(k,·,·) +
∑V

v=1 βv
(4.18)

Sample z a sufficient number of times, aggregate the count matrices, and compute Θ̂

and Φ̂ to find a good estimation of Θ and Φ for the corpus. We summarize this in Algorithm

4.2.

Algorithm 4.2 Given a corpus of M documents, α and β, estimate Φ and Θ

Let n′(k,m,·), n
′
(k,·,v), n

′
(·,m,·), n

′
(k,·,·) = 0 for all topics k, terms v, and documents m.

for m = 1→M do
for n = 1→ Nm do

Sample zm,n = k ∼ Cat( 1
K

)
Increment n′(k,m,·), n

′
(k,·,wm,n), n

′
(·,m,·), n

′
(k,·,·)

end for
end for
while Not converged do

for m = 1→M do
for n = 1→ Nm do

Decrement n′(k,m,·), n
′
(k,·,wm,n), n

′
(·,m,·), n

′
(k,·,·) where k = zm,n

Sample zm,n = k ∼ P(zm,n|z¬,m,n,w,α,β) as given in 4.16
Increment n′

(k,m,·), n
′
(k,·,wm,n)

, n′(·,m,·), n
′
(k,·,·)

end for
end for
Check convergence

end while
Define n(k,m,·), n(k,·,v), n(·,m,·), n(k,·,·) = 0 for all topics k, terms v, and documents m.
for i = 1→ L do

Update n(k,m,·) = n(k,m,·) + n′(k,m,·)
Update n(k,·,v) = n(k,·,v) + n′(k,·,v)

Update n(·,m,·) = n(·,m,·) + n′(·,m,·)
Update n(k,·,·) = n(k,·,·) + n′(k,·,·)

end for
Estimate Θ̂ and Φ̂ according to 4.17 and 4.18 respectively
return Θ̂ and Φ̂

Thus we may estimate the topic distributions of each document in a corpus and the
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term distribution for each topic as well, given the words in the corpus and the parameters α

and β. In practice, good results can often still be achieved with using symmetric parameters

with small values, say 0.1 for each. Throughout our later analysis, we adopt the approach

of only considering symmetric Dirichlet parameters, varying their values and the number of

topics to find a good classifier.

Chapter 5. Bursting Hidden Markov Models

We first present the standard Hidden Markov Model (HMM), explain it as a generative

process, and give three classical problems associated with HMMs. We then introduce an

extension, and provide solutions to the three problems for this generalized model.

5.1 Hidden Markov Models

In a Hidden Markov Model, there is a homogeneous Markov chain X = {x1,x2, · · · } assuming

values in a finite state space Q with transition matrix A, as well as another discrete-time

process in which a sequence of random variables O = {O1, O2, · · · } takes values from the

finite observation space S = {1, · · · ,M}. This process must also be homogeneous, in that

P(Ot = s|xt = i) = P(O1 = s|x1 = i) for all t ∈ N, i ∈ Q, s ∈ S. (5.1)

In other words, the probability of any observation is only state independent, and not time

dependent. Also, similar to state transitions, these observation emissions are dependent only

on the current state. We can graphically represent this process with the following diagram:

x1 //

��

x2 //

��

. . . //

��

xt−1 //

��

xt //

��

xt+1 //

��

. . .

��
O1 O2

. . . Ot−1 Ot Ot+1 . . .
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Since the process is homogeneous and the observation emissions depend only on the

current state, this allows us to model the observation emissions by an N ×M row stochastic

observation matrix B = (bij), where

bij = P(Ot = j|xt = i). (5.2)

Thus bij is the probability of observing j given that the current state is i. We let Bi denote

the ith row of B.

Finally, to complete this model, an initial state distribution is required. This is typically

represented by a N × 1 stochastic vector π = (πi) where

πi = P(x1 = i). (5.3)

We now define λ = (A,B,π) to be a Hidden Markov Model. It is ”hidden” in that

HMMs are used to analyze data when the observation sequence is known but the underlying

state sequence is unknown. Their power is in their ability to provide probabilistic informa-

tion about a state sequence based solely on the model and a given observation sequence,

though their strengths transcend even further. Hidden Markov Models are a powerful pat-

tern recognition tool, and have been employed in speech recognition, handwriting recognition,

cryptanalysis, and bioinformatics, to name a few.

5.2 HMM Generation

It is often useful to view models by their generative process, so here we offer a simple

explanation of the generative process of an HMM. Given a desired number of transitions T ,

follow the given generative algorithm:
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Algorithm 5.1 Given the HMM λ, generate an observation sequence O

x1 ∼ Cat(π) . Sample x1 from the initial state distribution π
for t = 1→ T do

Ot ∼ Cat(Bxt) . Sample Ot from the categorical distribution Bxt

xt+1 ∼ Cat(Axt) . Sample xt+1 from the categorical distribution Axt

end for

5.3 Three Problems

There are the three classic problems for traditional Hidden Markov Models:

Problem 1. Given O and λ, determine P(O|λ).

Problem 2. Given O and λ, determine the most likely state sequence X to have generated

O, i.e. uncover the ”hidden” aspect of the process. We adopt the approach of finding the

state sequence that maximizes the expected number of correct states.

Problem 3. Given O and the cardinality N of the finite state space, find the model λ∗

which will maximize P(O|λ), i.e. fit a model to the data.

There are efficient algorithms for all three of these problems [14], which will not be

given here. Instead, we provide an improved version of these algorithms to model an even

more general model: a Bursting Hidden Markov Model (BHMM).

5.4 Bursting Hidden Markov Models

In a BHMM, each state emits not just a single observation, but a burst of observations. The

length of these bursts may take on any value in the nonnegative integers. More specifically,

we suppose that we also have a sequence of random variables Y = {Y1, Y2, · · · } taking values

among the nonnegative integers. These may be drawn from any distribution over these

values, but in this work we assume they result from Poisson parameters η = (ηi), where ηi

denotes the average number of observations expected in a burst, given state i. Thus, we

have
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P(Tt = k|xt = i) =
ηki · e−ηi
k!

(5.4)

where Tt denotes the number of observations at time t.

A BHMM’s parameters are now denoted

λ = {A,B,π,η}.

At each time, observations come in bursts, so instead of having an observation sequence, we

now have a burst sequence O = (O1,O2, · · · ) where

Ot = (Ot,1, Ot,2, · · · , Ot,Tt)

and where Ot,i is the ith observation in the tth burst, and Tt is the number of observations in

the tth burst. That is, each Ot,i is drawn from the categorical distribution with parameters

Bxt and Tt is drawn from the Poisson distribution with parameter ηxt . Thus, graphically

this is depicted with plate notation as in Figure 5.1.

Figure 5.1: BHMM graphical plate notation.

We will throughout write Ot(i) in place of Ot,i for ease of visualization. This process

will probably be best understood again by the generative algorithm given in Algorithm 5.2.

The question that remains is whether or not we can solve the same three problems

with this new model. The answer is yes, but before showing this, we introduce notation to
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Algorithm 5.2 Given the BHMM λ, generate an burst sequence O

x1 ∼ Cat(π) . Sample x1 from the initial state distribution π
for t = 1→ T do

Tt ∼ Poiss(ηxt) . Sample Tt according to Poisson parameter ηxt

for s = 1→ Tt do
Ot(s) ∼ Cat(Bxt) . Sample Ot(s) from the categorical distribution Bxt

end for
xt+1 ∼ Cat(Axt) . Sample xt+1 from the categorical distribution Axt

end for

solidify our work up until this point.

5.5 Notation

Let us summarize our notation:

N = number of states in the model

M = number of observation symbols

T = length of burst sequence

Tt = length of tth burst

Q = {1, 2, · · · , N} = distinct states of the Markov process

S = {1, 2, · · · ,M} = set of possible observations

A = state transition probabilities (N ×N row stochastic matrix)

B = observation probabilities (N ×M row stochastic matrix)

η = (ηi) = list of N state-associated Poisson parameters

π = (πi) = initial state distribution (stochastic vector of length N)

O = (O1,O2, · · · ,OT ) = burst sequence

Ot = (Oj(1), Oj(2), · · · , Oj(Tt)) = tth burst of observations

X = (x1,x2, · · · ,xT ) = state sequence.

5.6 Solutions to the Three Problems

Our solutions for BHMMs are a natural and intuitive extension of the solutions for the

standard HMM found in [14]. We provide the solutions first, giving pseudocode for their

implementation. Little justification is given here for the solution of the third problem, as

this is fully given in the following section.
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5.6.1 Solution to Problem 1. The solution of the first problem for a standard HMM

uses a recursive algorithm known as the α-pass. Here we modify the α-pass for BHMMs.

First, letting O be a burst sequence with X the corresponding state sequence, define a

function

R(i, t) =
ηTti · e−ηi
Tt!

· bi,Ot(1) · · · bi,Ot(Tt). (5.5)

Thus

R(i, t) = P(Tt|xt = i, λ) · P(Ot(1)|xt = i, λ) · · ·P(Ot(Tt)|xt = i, λ) (5.6)

= P(Ot|xt = i, λ). (5.7)

Then in general we have

P(O|X, λ) = P(O1|x1, λ) · P(O2|x2, λ) · · ·P(OT |xT , λ) (5.8)

= R(x1, 1) ·R(x2, 2) · · ·R(xT , T ) (5.9)

From the definition of π and A, we conclude that

P(X|λ) = πx1ax1,x2ax2,x3 · · · axT−1,xT
. (5.10)

By Bayes’ Rule

P(O,X|λ) = P(O|X, λ) · P(X|λ).

Since P(O|λ) =
∑
X

P(O,X|λ), we conclude that

P(O|λ) =
∑
X

P(O|X, λ) · P(X|λ) (5.11)

=
∑
X

πx1 ·R(x1, 1) · ax1,x2 ·R(x2, 2) · ax2,x3 ·R(x3, 3) · · · axT−1,xT
·R(xT , T ). (5.12)
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The computation for R(xt, t) requires Tt + 1 multiplications, so the above computation

requires about 2T ·
∑T

t=1(Tt + 1) multiplications, which is typically infeasible. Luckily the

α-pass uses recursion to calculate this with much fewer multiplications. Define a T × N

matrix α, where

αt,i = P(O1,O2, · · · ,Ot,xt = i|λ). (5.13)

Thus αt,i is the probability of the partial burst sequence up to time t, where the Markov

process is in state i at time t. For sake of appearance, we will write αt(i) for αt,i. We can

compute α1(i) easily for each i = 1, 2, · · · , N as follows:

α1(i) = P(O1,x1 = i|λ)

= P(x1 = i|λ) · P(O1|x1 = i, λ)

= πi ·R(i, 1).

Given αt−1(i) we can also compute αt,i as follows:

αt(i) = P(O1, · · · ,Ot,xt = i|λ)

= P(O1, · · · ,Ot−1,xt = i|λ) · P(Ot|xt = i, λ)

=

[
N∑
j=1

P(O1, · · · ,Ot−1,xt−1 = j,xt = i|λ)

]
·R(i, t)

=

[
N∑
j=1

P(O1, · · · ,Ot−1,xt−1 = j|λ) · P(xt = i|xt−1 = j, λ)

]
·R(i, t)

=

[
N∑
j=1

αt−1(j)aji

]
·R(i, t)
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Finally, note that

P(O|λ) =
N∑
i=1

P(O1, · · · ,OT ,xT = i|λ)

=
N∑
i=1

αT (i).

We summarize this process by Algorithm 5.3.

Algorithm 5.3 Given λ and O, find P(O|λ)

for i = 1→ N do
α1(i) = πi ·R(i, 1)

end for
for t = 2→ T do

for i = 1→ N do

αt(i) =

[
N∑
j=1

αt−1(j)aji

]
·R(i, t)

end for
end for

P(O|λ) =
N∑
i=1

αT (i)

5.6.2 Solution to Problem 2. We now use a modified β-pass to maximize the expected

number of correct states in a state sequence, given a model λ and a burst sequence O. Define

another T ×N matrix β where

βt,i = P(Ot+1,Ot+2, · · · ,OT |xt = i, λ), (5.14)

again writing βt(i) = βt,i for sake of clarity. Thus βT (i) = 1 for all i. We can now recursively

compute β by a ”backward algorithm”.

First, note that given βt+1(k) for k = 1, 2, · · · , N we can find βt(i) as follows:
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βt(i) = P(Ot+1, · · · ,OT |xt = i, λ)

=
N∑
j=1

P(Ot+1, · · · ,OT ,xt+1 = j|xt = i, λ)

=
N∑
j=1

P(xt+1 = j|xt = i, λ) · P(Ot+1, · · · ,OT |xt+1 = j, λ)

=
N∑
j=1

P(xt+1 = j|xt = i, λ) · P(Ot+1|xt+1 = j, λ) · P(Ot+2, · · · ,OT |xt+1 = j, λ)

=
N∑
j=1

aij ·R(j, t+ 1) · βt+1(j).

Now, defining another T ×N matrix γ by

γt,i = P(xt = i|O, λ)

=
P(xt = i,O|λ)

P(O|λ)

=
P(O1, · · · ,Ot,xt = i|λ) · P(Ot+1, · · · ,OT |xt = i, λ)

P(O|λ)

=
αt(i) · βt(i)
P(O|λ)

.

we have for a given burst sequence O and model λ, the most likely state at time t is

x∗t = argmax
i

γt(i) (5.15)

We summarize this process by Algorithm 5.4:

5.6.3 Solution to Problem 3. Problem 3 is certainly the most difficult to solve, but

also provides the greatest power to HMMs and BHMMs. Here, we fit a model to a burst

sequence. In this case, suppose that we know N and M , and we are also given a burst

sequence O. Our objective is to maximize P(O|λ) subject to the cardinality constraints
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Algorithm 5.4 Given λ and O, find the most likely state sequence X to have generated O.

Compute α by Algorithm 5.3
for i = 1→ N do

βT (i) = 1
end for
for t = T − 1→ 1 do

for i = 1→ N do

βt(i) =
N∑
j=1

aij ·R(j, t+ 1) · βt+1(j)

end for
end for
for t = 1→ T do

γt(i) = αt(i)·βt(i)
P(O|λ)

x∗t = argmaxi γt(i)
end for

of the state and observation spaces. To begin, we must initialize our model λ with our

best guess. If we do not have any educated guess available, choose random values so that

πi ≈ 1
N
, aij ≈ 1

N
, and bij ≈ 1

M
, preserving the appropriate stochasticities. Given our current

model λ, we seek to update to a model λ̂ such that P(O|λ̂) ≥ P(O|λ). We iterate this process

until we meet some convergence tolerance τ . Now, given only the dimensions of our spaces

and our burst sequence, we need to reestimate A,B,π and η. Unfortunately, to do this we

must further define a three dimensional tensor δ of dimensions T − 1×N ×N , where

δt,i,j = P(xt = i,xt+1 = j|O, λ). (5.16)

Thus, δt,i,j is the probability of being in state i at time t and transitioning to state j, given

the model and the observations, and once again, we write δt(i, j) for δt,i,j. We can compute
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this as follows:

δt(i, j) = P(xt = i,xt+1 = j|O, λ)

=
P(xt = i,xt+1 = j,O|λ)

P(O|λ)

=
P(O1, · · · ,Ot,xt = i,xt+1 = j|λ) · P(Ot+1, · · · ,OT |xt+1 = j, λ)

P(O|λ)

=
P(O1, · · · ,Ot,xt = i|λ) · P(xt+1 = j|xt = i, λ) · P(Ot+1, · · · ,OT |xt+1 = j, λ)

P(O|λ)

=
αt(i) · aij · P(Ot+1|xt+1 = j, λ) · P(Ot+2, · · · ,OT |xt+1 = j)

P(O|λ)

=
αt(i) · aij ·R(j, t+ 1) · βt+1(j)

P(O|λ)

Now, using the matrix γ and our tensor δ, and some other readily available information,

we can reestimate our model. We first consider the task of reestimating our transitions

probability matrix A.

Reestimation of A. To reestimate A given our burst sequence O, for each i, j =

1, 2, · · · , N we must find the expected number of transitions from i to j, as well as the total

expected number of transitions from i to any state. The first expectation is
T−1∑
t=1

δt(i, j) and

the second expectation is
T−1∑
t=1

γt(i). Thus our reestimation formula is

âij =

T−1∑
t=1

δt(i, j)

T−1∑
t=1

γt(i)

. (5.17)

Reestimation of B. To reestimate B given our burst sequence O, for each i =

1, 2, · · · ,M and j = 1, 2, · · · , N we must find the expected number of times observation j

is emitted while in state i, as well as the total expected number of observations emitted

while in state i. The first expectation is
T∑
t=1

γt(i) · C(t, j) where C(t, j) is the number of
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occurrences of observation j in the tth burst Ot. The second expectation is
T∑
t=1

γt(i) · Tt.

Thus our reestimation formula is

b̂ij =

T∑
t=1

γt(i) · C(t, j)

T∑
t=1

γt(i) · Tt

. (5.18)

Reestimation of π. Reestimation of π is quite simple, since πi = P(x1 = i|λ) = γ1(i).

Thus the reestimation formula is

π̂i = γ1(i). (5.19)

Reestimation of η. To reestimate η given our burst sequence O, for each i =

1, 2, · · · , N we must find the expected number of observations emitted while in state i as well

as the expected number of occurrences of state i. These expectations have been computed

above, and our reestimation formula is

η̂i =

T∑
t=1

γt(i) · Tt

T∑
t=1

γt(i)

. (5.20)

We re-estimate iteratively, each iteration hopefully increasing the probability of the

burst sequence given the updated model. We summarize this process with Algorithm 5.5.

In practice, some computational issues must be dealt with pertaining to underflow. See [14]

for dealing with underflow in a standard HMM. Extending these techniques to BHMMs is

fairly straightforward.

The reader may be wondering why this iterative process improves our estimation

of λ, and has probably already made the connection that its success is a direct result of

Expectation-Maximization. We now demonstrate this.
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Algorithm 5.5 Given O, N,M, and some tolerance τ , find the model λ most likely to have
generated O.

Initialize λ = (A,B,π,η)
Count = 0.
Compute α and P(O|λ) by Algorithm 5.3
while Count < MaxIters do

Count = Count +1
Compute β and γ by Algorithm 5.4
for t = 1→ T − 1 do

for i = 1→ N do
for i = 1→ N do

δt(i, j) =
αt(i)·aij ·R(j,t+1)·βt+1(j)

P(O|λ)

end for
end for

end for
for i = 1→ N do

for j = 1→ N do

âij =

T−1∑
t=1

δt(i, j)

T−1∑
t=1

γt(i)

end for
for j = 1→M do

b̂ij =

T−1∑
t=1

γt(i) · C(t, j)

T−1∑
t=1

γt(i) · Tt

end for
π̂i = γ1(i)

η̂i =

T−1∑
t=1

γt(i) · Tt

T−1∑
t=1

γt(i)

end for
λ̂ = (Â, B̂, π̂, η̂)

Compute α and P(O|λ̂) by Algorithm 5.3

if P(O|λ̂)− P(O|λ) < τ then return λ̂
end if
Update λ = λ̂

end while
return λ
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5.7 Reestimation as Expectation-Maximization

The solution to problem 3 is exactly the Expectation-Maximization algorithm. A nice for-

mulation of the solution to problem 3 for standard HMMs can be found in [15]. To see this

formulation for BHMMs, we consider EM as a tool to estimate λ given O. Recall that in

EM, we seek to find λ∗ which maximizes L(λ; O) = P(O|λ), where O is known data. To

do this, we start with an initialization λ0. Given a parameter estimate λn, we compute the

conditional expectation of the log-likelihood of λ given O and our unknown variables X,

conditioned on O, λn, i.e. we compute

Q(λ|λn) = EX|O,λn [lnP(O,X|λ)]

=
∑
X

P(X|O, λn) lnP(O,X|λ).

We then maximize Q(λ|λn) with respect to λ, and set λn+1 = argmax
λ

Q(λ|λn).

Lemma 5.1. Given a parameter estimate λn, the negative of our conditional expectectaion

−Q(λ|λn) is convex.

Proof. Suppose we have a current estimate of our parameters λn. If we define p(X) =
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P(X|O, λn), then we can compute

−Q(λ|λn) = −
∑
X

p(X) lnP(O,X|λ)

= −
∑
X

p(X) ln [P(O|X, λ)P(X|λ)]

= −
∑
X

p(X) ln

[(
T∏
t=1

P(O|xt, B,η)

)(
P(x1|π)

T−1∏
t=1

P(xt+1|xt, A)

)]

= −
∑
X

p(X) ln

[(
T∏
t=1

P(Tt|xt,η)
Tt∏
s=1

P(Ot(s)|xt, B)

)(
P(x1|π)

T−1∏
t=1

P(xt+1|xt, A)

)]

= −
∑
X

p(X) ln

[(
T∏
t=1

ηTtxt
· e−ηxt
Tt!

Tt∏
s=1

bxt,Ot(s)

)(
πx1

T−1∏
t=1

axt,xt+1

)]

= −
∑
X

p(X)

[
T∑
t=1

(
ln
ηTtxt
· e−ηxt
Tt!

+ ln axt,xt+1 +
Tt∑
s=1

ln bxt,Ot(s)

)
− ln axT ,xT+1

+ ln πx1

]

= −
∑
X

p(X)
N∑
i=1

(
N∑
j=1

M∑
k=1

T∑
t=1

[
1[xt+1=j∧xt=i∧t6=T ] ln aij +

Tt∑
s=1

1[Ot(s)=k∧xt=i] ln bik

+ 1[xt=i] ln
ηTti · e−ηi
Tt!

]
+ 1[x1=i] ln πi

)
=
∑
X

p(X)
N∑
i=1

(
N∑
j=1

M∑
k=1

T∑
t=1

[
1[xt+1=j∧xt=i∧t6=T ](− ln aij) +

Tt∑
s=1

1[Ot(s)=k∧xt=i](− ln bik)

+ 1[xt=i](Tt(− ln ηi) + lnTt! + ηi)

]
+ 1[x1=i](− ln πi)

)

Note that Q is a function of λ = (A,B,π,η), so our ”variables” are the aij, bik, ηi, and πi.

Furthermore, p(X) = P(X|O, λn) is not a function of λ, and is thus a nonnegative constant,

as is Tt. Recall that − ln(x) is a convex function of x, so here, − ln(aij),− ln(bik),− ln(ηi),

and − ln(πi) are convex functions of our variables. Recall also that linear functions are

convex (hence ηi + lnTt! is convex), a nonnegative multiple of a convex function is convex,

and the sum of convex functions is convex. Thus, we have here a sum of convex functions,

hence −Q(λ|λn) is convex.

Theorem 5.2. The reestimations of A,B,π, and η as given in Equations 5.17 - 5.20 are the
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reestimations given by the Expectation-Maximization algorithm for Bursting Hidden Markov

Models.

Proof. We have just calculated that the E-step of the algorithm yields

Q(λ|λn) =
∑
X

p(X)
N∑
i=1

(
N∑
j=1

M∑
k=1

T∑
t=1

[
1[xt+1=j∧xt=i∧t6=T ] ln aij +

Tt∑
s=1

1[Ot(s)=k∧xt=i] ln bik

+ 1[xt=i](Tt ln ηi − lnTt!− ηi)

]
+ 1[x1=i] lnπi

)

The M-step requires us to find the argmax of Q(λ|λn) with respect to λ, which is

equivalent to solving the following convex program:

Minimize: −Q(λ|λn)

Subject To: 1−
N∑
j=1

aij = 0 for each 1 ≤ i ≤ N

1−
M∑
k=1

bik = 0 for each 1 ≤ i ≤ N

1−
N∑
i=1

πi = 0

Note that we have ignored the nonnegative constraints on our variables aij, bij, πi

and ηi. This will shortly be justified when we see that the solution to the Karush-Kuhn-

Tucker conditions [4] already satisfies those constraints. Setting up the Lagrangian L =

L(A,B,π,η, δ, ε, γ) for this optimization problem gives us

L =
∑
X

p(X)
N∑
i=1

(
N∑
j=1

M∑
k=1

T∑
t=1

[
1[xt+1=j∧xt=i∧t6=T ](− ln aij) +

Tt∑
s=1

1[Ot(s)=k∧xt=i](− ln bik)

+ 1[xt=i](−Tt ln ηi + lnTt! + ηi)

]
+ 1[x1=i](− ln πi)

)

+
N∑
i=1

δi(1−
N∑
j=1

aij) +
N∑
i=1

εi(1−
M∑
k=1

bik) + γ(1−
N∑
i=1

πi)
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We seek a solution to the KKT conditions to find the argmax. Taking the partial

derivative with respect to aij and setting it equal to zero, we have

∂L
∂aij

=
∑
X

p(X)
T∑
t=1

1[xt+1=j∧xt=i∧t6=T ]
−1

aij
− δi = 0 (5.21)

=⇒ aij = − 1

δi

∑
X

p(X)
T−1∑
t=1

1[xt+1=j∧xt=i] (5.22)

Since 1−
∑N

j=1 aij = 0, this then becomes

0 = 1 +
N∑
j=1

1

δi

∑
X

p(X)
T−1∑
t=1

1[xt+1=j∧xt=i] (5.23)

=⇒ δi = −
N∑
j=1

∑
X

p(X)
T−1∑
t=1

1[xt+1=j∧xt=i] (5.24)

= −
∑
X

p(X)
T−1∑
t=1

1[xt=i]. (5.25)

Combining 5.22 and 5.25, we reestimate aij as

âij =
−
∑

X p(X)
∑T−1

t=1 1[xt+1=j∧xt=i]

−
∑

X p(X)
∑T−1

t=1 1[xt=i]

=

∑T−1
t=1

∑
X 1[xt+1=j∧xt=i]P(X|O, λn)∑T−1

t=1

∑
X 1[xt=i]P(X|O, λn)

=

∑T−1
t=1 P(xt+1 = j,xt = i|O, λn)∑T−1

t=1 P(xt = i|O, λn)

=

∑T−1
t=1 δt(i, j)∑T−1
t=1 γt(i)

which is precisely our reestimate for aij as given in 5.17.

Similarly, we compute the partial derivative of L with respect to bik and set it equal
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to zero:

∂L
∂bik

=
∑
X

p(X)
T∑
t=1

Tt∑
s=1

1[Ot(s)=k∧xt=i]
−1

bik
− εi = 0

=⇒ bik = − 1

εi

∑
X

p(X)
T∑
t=1

Tt∑
s=1

1[Ot(s)=k∧xt=i]

Since 1−
∑M

k=1 bik = 0, this then becomes

0 = 1 +
M∑
k=1

1

εi

∑
X

p(X)
T∑
t=1

Tt∑
s=1

1[Ot(s)=k∧xt=i]

=⇒ εi = −
M∑
k=1

∑
X

p(X)
T∑
t=1

Tt∑
s=1

1[Ot(s)=k∧xt=i]

= −
∑
X

p(X)
T∑
t=1

Tt∑
s=1

1[xt=i]

= −
∑
X

p(X)
T∑
t=1

1[xt=i] · Tt

Thus, letting C(t, k) denote the number of occurences of observation k in the tth burst,

we have

b̂ik =
−
∑

X p(X)
∑T

t=1

∑Tt
s=1 1[Ot(s)=k∧xt=i]

−
∑

X p(X)
∑T

t=1 1[xt=i] · Tt

=

∑T
t=1

∑Tt
s=1

∑
X 1[Ot(s)=k∧xt=i]P(X|O, λn)∑T

t=1

∑
X 1[xt=i] · P(X|O, λn) · Tt

=

∑T
t=1 P(xt = i|O, λn) · C(t, k)∑T

t=1 P(xt = i|O, λn) · Tt

=

∑T
t=1 γt(i) · C(t, k)∑T

t=1 γt(i) · Tt

which is again, precisely our reestimate for bik as in 5.18.
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We now examine the reestimate for π:

∂L
∂πi

=
∑
X

p(X)1[x1=i]
−1

πi
− γ = 0

=⇒ πi = −1

γ

∑
X

1[x1=i]P(X|O, λn)

Since 1−
∑N

i=1 πi = 0, we have

0 = 1 +
N∑
i=1

1

γ

∑
X

1[x1=i]P(X|O, λn)

=⇒ γ = −
N∑
i=1

∑
X

1[x1=i]P(X|O, λn)

= −
∑
X

P(X|O, λn)

= −1

and hence we reestimate πi as

π̂i =
∑
X

1[x1=i]P(X|O, λn)

= P(x1 = i|O, λn)

= γ1(i),

our reestimation for πi provided in 5.19.
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It remains to show that our reestimate for ηi as given in 5.20 is accurate:

∂L
∂ηi

=
∑
X

p(X)
T∑
t=1

1[xt=i](
−Tt
ηi

+ 1) = 0

=⇒ η̂i =

∑
X p(X)

∑T
t=1 1[xt=i]Tt∑

X p(X)
∑T

t=1 1[xt=i]

=

∑T
t=1

∑
X 1[xt=i] · P(X|O, λn) · Tt∑T

t=1

∑
X 1[xt=i]P(X|O, λn)

=

∑T
t=1 γt(i) · Tt∑T
t=1 γt(i)

which is our reestimation for ηi given in 5.20.

Since this is a solution to the KKT conditions, we have shown that

argmax
λ

Q(λ|λn) = λ̂ = (Â, B̂, π̂, η̂)

as given in Equations 5.17 - 5.20.

Corollary 5.3. The solution provided for Problem 3 is an implementation of Expectation-

Maximization for HMMs.

Proof. This is immediate from the theorem.

Chapter 6. Data Driven Diagnosis of Chronic Kidney Disease

6.1 Introduction

When a chronic disease is detected early, it is often more susceptible to medical treatments,

providing the victim a better quality of life for a longer period of time, while simultaneously

decreasing medical costs. With this in mind, statistical learning tools targeting early disease

detection not only have the potential of improving the lives of thousands of people each year,

they also carry the ability to yield significant savings to insurance providers by allowing the
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prevention of a chronic disease from progressing to a late stage which is often difficult (if

not impossible) to sucessfully treat. Chronic Kidney Disease (CKD) is certainly one such

disease.

Such statistical learning models have been implemented with moderate success based

on certain summary variables describing each patient. These variables may be somewhat

standard of any study of a population, such as age and gender, but are more often specifically

medical in nature, such as the Charlson index, the number of hospitalizations, or the number

of distinct providers seen in a year. While these summary variables have been used well in

a binary logistic regression to classify individuals into two categories (CKD or no CKD), a

weakness of such a method is that it only considers a snapshot of a patient’s medical history.

Summary variables are just that - summaries. As such, they contain important information,

yet fail to retain the information imbedded in the progression of a patient’s health state.

We propose to improve existing models by incorporating progressional data. One such

variable which is found in nearly every insurance claim is the diagnosis code. When a patient

visits a healthcare provider and a procedure is performed or a prescription given, a medical

diagnosis code is recorded indicating the reason of the visit. These codes can be symptomatic

in nature (786.05 - ”shortness of breath”) or more disease specific (250.2 - ”diabetes with

hyperosmolarity”). While these codes also represent ”snapshots” of a patient’s medical

history, they provide a more specific image of the health issues affecting a given patient. It

is a reasonable assumption that patients who will soon develop CKD will likely be suffering

from similar ailments, somewhat distinct from those afflicting those who never get CKD.

Unfortunately, there are well over 13,000 different ICD-9 diagnosis codes, and so a

metric on this space may not only be difficult to define, but also a poor measure of similarity

(or dissimilarity) of patients. We present a method to extract scaled-down information from

patients’ diagnosis codes via LDA.
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6.2 LDA and Disease Detection

The use of LDA for disease detection serves as a tool to extract meaningful information from

ICD-9 diagnosis codes. If we allow each ICD-9 diagnosis code to be a term in the vocabulary,

each patient to be represented as a document, whose words are the specific instances of ICD-9

codes given to the patient during a set period of time, then any collection of patient data can

be considered a corpus, and hence is susceptible to the methods of LDA. Therefore, taking

a large sampling of patients and K, a set number of topics, we can infer a topic distribution

for each patient, and a term distribution for each of the K topics. For patient d, each of the

K entries in θd provide added information about the patient’s health state, yielding a total

of K new predictor variables, based on the patient’s distribution over the K health topics.

A few words of caution: if we choose K to be too large, then we will add too many

predictor variables, likely forcing any trained classifier to overfit the data by increasing the

model complexity. Also, if we do not preprocess the data to remove stop words, our topics

will be filled with ”junk” terms.

In natural language processing, a stop word is a term that will occur frequently in

nearly every document of a corpus. In English text, examples of stop words include the, a,

an, and, if, to, this, etc. These words will be among the most likely words in any topic, even

though they provide no information about the topic. This problem is normally dealt with

in text analysis by compiling a list of stop words and discarding them from each document

prior to inferring an LDA model on the data. Similarly, some ICD-9 diagnosis codes occur

so frequently over so many people that they are essentially meaningless in their predictive
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abilities. These include the following:

V70.0− Routine general medical examination.

786.50− Chest pain, unspecified.

V72.31− Routine gynecological examination.

780.79− Other malaise and fatigue.

462− Acute pharyngitis.

466.0− Acute bronchitis.

724.2− Lumbago (lower back pain).

V04.81− Influenza vaccination.

Others may occur so frequently that one might consider them to be stop words, though

they still provide significant information about a patient’s health issues. A primary example

of this is Diabetes Mellitus, which is so prevalent that one might consider it a stop word,

though it certainly is not. For ICD-9 diagnosis codes, a stop words list should be compiled

initially by overall frequency, and then intelligently selected to avoid removing meaningful

ICD-9 diagnosis codes from the corpus vocabulary.

6.3 BHMM and Disease Detection

We can also consider that patients may transition through various states of health throughout

their lifetime. We can model these transitions through these unobservable states by an HMM

where the observations are the diagnosis codes. Since it is unlikely that state transitions

occur each time an insurance claim is submitted (which could be multiple times in a day),

we aggregate diagnosis codes in three month periods. This allows us to use BHMMs to model

the process, since in each three month interval we obtain a burst of data. We assume that

the collection of diagnosis codes in each three month period is itself a document, instead of
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each patient’s full collection of diagnosis codes being a full document. With this formulation,

we can represent each patient by a burst sequence.

Once again, the observation space for this data is large, and thus difficult to model.

We use LDA to reduce the dimensionality of the state space by assigning each diagnosis code

for each patient to the topic from which it was most likely generated. More precisely, for

each word wa,b, we assign

zMLE
a,b = argmax

k
P(za,b = k|wa,b, Φ̂, θ̂b)

where Φ̂ and θ̂b are our estimates of Φ and θb respectively. Note that

P(za,b = k|wa,b, Φ̂, θ̂b) =
P(za,b = k, wa,b|Φ̂, θ̂b)

P(wa,b|Φ̂, θ̂b)

=
P(wa,b|za,b = k, Φ̂) · P(za,b = k|θ̂b)

P(wa,b|Φ̂, θ̂b)

=
φ̂k,wa,b

· θ̂b,k∑K
i=1 φ̂i,wa,b

· θ̂b,i

Thus we have that

zMLE
a,b = argmax

k
φ̂k,wa,b

· θ̂b,k.

With this hard topic assignment, we can reduce the dimension of the observation space

for the BHMM from over 13,000 to some relatively small K, thereby making the training

procedure for the BHMM feasible.

6.4 The Analysis

Our dataset we used for this analysis initially consisted of health insurance claims for approx-

imately 485,000 patients from a Midwestern metropolitan area. From our claims dataset,

we consider as target cases all patients who were diagnosed with CKD (were given an ICD-9

diagnosis code 403, 404, 584, or 585) and had diagnosis codes outside the stop word list a
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year or more before the beginning of the year in which they were first diagnosed. We consider

as control cases all patients who were never diagnosed with CKD and had diagnosis codes

outside the stop word list a year or more before the beginning of their final year of data.

We refer to the year of diagnosis and the final year of data for CKD and control patients

respectively as a patient’s final year. After this restriction, we had 265,546 patients classified

as “Control” and 2,280 patients classified as “CKD”. The list of stopwords was obtained by

validation testing, as explained below.

We segmented each patient’s diagnosis codes into three month bursts for each year

prior to the final year. Randomly sampling 500 patients of class CKD and 10,000 patients

of class Control, we trained a BHMM on the sampled CKD patients and a separate BHMM

on the sampled control patients as described in 6.3, using 30 topics in the LDA inference for

the dimensionality reduction.

For each of the remaining 1,780 CKD patients and 255,546 control patients, we sub-

tracted the log-likelihood that the patient’s data was generated by the control BHMM from

the log-likelihood that it came from the CKD BHMM and called these values the scores. We

also obtained their age, gender, Charlson index, allowable amount charged to the insurance

company, and the number of hospitalizations, each for the year prior to the patient’s final

year. We also collected all diagnosis codes for each patient prior to the final year, and treat-

ing each patient’s collection of diagnosis codes as a document as in Section 6.2, we estimated

the topic distribution for each patient using LDA inference. Thus each of the patients was

represented by the following variables: score, age, gender, Charlson index, allowable amount,

number of hospitalizations, and the components of the topic distribution. We separated the

data into three sets: training, validation, and testing. The training set consisted of 1,000

randomly sampled CKD patients and 10,000 randomly sampled control patients. The valida-

tion set contained 280 CKD patients and 10,000 control patients, leaving 500 CKD patients

and 235,546 control patients for testing.

We then trained random forests of 500 trees on the classifier training set with p = b
√
P c,
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where p and P are as given in Section 3.4, varying our five free parameters: the list of stop

words, the number of topics, the symmetric hyperparameters α and β, and the number of

states for the BHMMs. Using a greedy search with our validation testing, we settled on a

specific list of stopwords, 60 topics, hyperparameters α = 0.1 and β = 0.1, and 10 BHMM

states. Of the parameter sets tested, these parameters yielded the greatest ROC score. Using

these parameters, we also trained three additional random forests: the first used only the 5

summary variables, the second used only the summary variables and the scores, and the third

used all the variables except the scores. Using each of these random forests, we estimated

the probability of being class ”CKD” or class ”Control” for each patient in the classifier test

set.

For each random forest, we computed various threshold values, allowing us to analyze

the four classifiers with a ROC curve, as seen in Figure 6.1. In Table 6.1 we provide the ROC

score for each classifier. As expected, the weakest predictor was the random forest with only

the summary variables. Including the scores from the BHMMs provided some additional lift,

but when including the topic distributions there was significant improvement. Interestingly,

including the random forest trained on all variables did not perform significantly better

than the random forest trained on all variables but the scores. This suggests a near total

redundancy of information gained from the BHMMs and that gained from the LDA topic

analysis, but also suggesting that overal topic distributions are better predictors than the

Markov process transitioning through health states.

Classifier ROC Score
Summary Variables 0.754

BHMM with Summary Variables 0.799
LDA with Summary Variables 0.835

BHMM and LDA with Summary Variables 0.838

Table 6.1: ROC scores for four random forests trained on the claims data.

In Tables 6.2 and 6.3 we provide specificity-sensitivity pairs for the best and worst

classifiers, respectively. As the specificity decreases, the improvement from including data
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Figure 6.1: ROC curves for four random forests.

from the diagnosis codes tends to increase. The overall improvement in classification abil-

ity indicates that diagnosis code data, in addition to summary variable data, can play an

important role in predictive disease diagnosis.

6.4.1 Policy Choices. Choosing the correct threshold at which to flag patients for fur-

ther medical testing may seem subjective. It certainly depends on the amount of false

positives deemed tolerable. A simple objective way to determine this choice is to create a

simple cost-savings function on the specificity-sensitivity pairs and maximize this function.

Given an estimated yearly savings of early CKD diagnosis for a patient and an estimated
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Specificity Sensitivity
99.5 8.6
99.0 14.4
98.0 21.0
97.1 26.8
95.2 36.4
90.0 53.0
84.9 65.2
80.0 73.4

Table 6.2: Specificity-Sensitivity pairs for random forest trained on summary variables with
BHMM and LDA.

Specificity Sensitivity
99.5 4.0
99.0 8.2
98.0 14.0
97.1 18.0
95.2 28.8
90.0 45.2
84.6 55.6
80.9 59.8

Table 6.3: Specificity-Sensitivity pairs for random forest trained on summary variables.

screening cost, this function could be as simple as

C(nCKD, nScreened) = CKDcost · nCKD − Scost · nScreened

where nCKD is the number of people who would develop CKD in a year and are identified,

nScreened is the number of people needed to screen in order to detect those diagnosed with

CKD, CKDcost is the estimated yearly savings of early CKD diagnosis per patient, and Scost

is the estimated screening cost per patient. Thus supposing a population of size 301,500

with 1,500 new CKD diagnoses in a year where CKDcost = $10,000 and Scost = $100, for

each of the above specificity-sensitivity pairs for our random forest with summary variables

and LDA we have the estimated cost savings given in Table 6.4.

Then selecting the threshold yielding the specificity-sensitivity pair of 84.9% − 65.2%

would give the greatest cost savings, at $5.15 million, whereas the greatest cost savings under
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Specificity Sensitivity Savings
99.5 8.6 $1.13M
99.0 14.4 $1.84M
98.0 21.0 $2.52M
97.1 26.8 $3.11M
95.2 36.4 $3.97M
90.0 53.0 $4.87M
84.9 65.2 $5.15M
80.0 73.4 $4.90M

Table 6.4: Example of cost savings estimates for the random forest trained on summary
variables with BHMM and LDA.

the model trained just on summary variables yields $3.71 million, a potentially significant

difference for a population of this size. In this manner, policy may be determined objectively

to provide the greatest cost savings, and consequentially to significantly improve the lives of

over 65% of those likely to develop CKD sometime within the next year.

Chapter 7. Conclusion

Our particular solution to predicting CKD involves several statistical learning methods, and

we have presented their groundwork in detail. We proposed a generalization of Hidden

Markov Models, and shown that similar, computationally feasible solutions exist to their

classic problems. We have proven the algorithm used in BHMMs to indeed be a monoton-

ically increasing optimization procedure by demonstrating that it is an implementation of

Expectation-Maximization.

Using these models, we have developed classifiers for the development of CKD, and

shown the lift provided by including information gleaned from diagnosis codes, as opposed

to focusing strictly on summary variables. We have demonstrated a basic example of how an

insurance company could use these classifiers to make optimal policy choices for increasing

profit.

It is our hope that this work will be a useful resource to any student (or faculty member)

seeking to better understand Markov chains, convex analysis, Gibbs sampling, Expectation-
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Maximization, and Latent Dirichlet Allocation, which is why we have presented these topics

so thoroughly. We also hope that our readers will find our generalization of Hidden Markov

Models to be approachable and usable in analyzing temporal data.

Modeling and predicting the development of a chronic disease is a nontrivial task,

often requiring complex solutions. Our solutions are by no means perfect, and there remains

great potential for further improvement. We hope, however, that our work has shown that

an approach to these problems can include novel uses or extensions of existing algorithms

to areas beyond their original purpose. Including these approaches can improve upon the

results that would be obtained by otherwise classical statistical learning procedures.
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