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abstract

Spectral Stability of Weak Detonations in the Majda Model

Jeffrey Hendricks
Department of Mathematics, BYU

Master of Science

Using analytical and numerical Evans-function techniques, we examine the spectral stability
of weak-detonation-wave solutions of Majda’s scalar model for a reacting gas mixture. We
provide a proof of monotonicity of solutions. Using monotonicity we obtain a bound on
possible unstable eigenvalues for weak-detonation-wave solutions that improves on the more
general bound given by Humpherys, Lyng, and Zumbrun [22]. We use a numerical approx-
imation of the Evans function to search for possible unstable eigenvalues in the bounded
region obtained by the energy estimate. For the parameter values tested, our results com-
bined with the result of Lyng, Raoofi, Texier, and Zumbrun [35] demonstrate that these
waves are nonlinearly phase-asymptotically orbitally stable throughout the parameter space
for which solutions were obtainable.
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Chapter 1. Introduction

1.1 Background: Weak Detonation Waves & Stability

1.1.1 Weak Detonations. In the classical theory of combustion, detonation waves are

classified as one of three types: strong, weak, and Chapman–Jouguet [13]. All of these are

compressive waves — the pressure and density increase following the wave. We recall that the

Chapman–Jouguet detonation is distinguished in the theory. In particular, the CJ detonation

travels at the slowest speed of all detonations. Moreover, the point representing the burned

state of the CJ detonation separates the detonation branch of the Hugoniot curve into two

pieces. The possible burned states on the lower portion of the branch, those corresponding

to smaller increases in the pressure, are possible end states for weak detonations. By their

nature, these waves occur only rarely if at all [16, 52], and, in contrast to the case of a strong

detonation which, like a classical gas-dynamical shock, is supersonic ahead of the front and

subsonic behind, in a weak detonation the gas flow relative to the reaction front is subsonic

both ahead of and behind the front1. This feature makes the stability analysis of such waves

delicate. In this paper, we examine the stability of these waves in a simplified combustion

model.

In an effort to understand the strongly coupled interaction between the nonlinear motion

of a gas mixture and chemical reactions involving the different species of gas making up

the mixture, Majda [38] introduced the following “qualitative” model for gas-dynamical

combustion

(u+ qz)t + f(u)x = Buxx , (1.1.1a)

zt = −kϕ(u)z . (1.1.1b)

1The CJ detonation is sonic behind the front.
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In equation (1.1.1), the unknown function u = u(x, t) is real valued and should be thought of

as a stand-in for density, velocity, and temperature; the other unknown z = z(x, t) satisfies

0 ≤ z ≤ 1 and measures the fraction by mass of reactant (fuel) in a simple one-step reaction

scheme; the flux f is a nonlinear convex function; ϕ is the ignition function—it turns on the

reaction; and k, q, and B are positive constants measuring reaction rate, heat release, and

viscosity, respectively. The main result of Majda’s analysis [38] is a proof of the existence

of strong and weak detonations, particular kinds of traveling waves, for the system (1.1.1).

These waves are combustion waves which connect an unburned state (z = 1) to a completely

burned state (z = 0); they are analogues of the corresponding waves in classical combustion

theory [13]. Notably, Majda showed that some of the strong detonations feature a “spike” in

agreement with the classical theory. More, the proof shows that weak-detonation solutions

of (1.1.1) exist only for distinguished values of the parameters. Indeed, Majda’s construction

is explicit, and it shows that the existence of a heteroclinic orbit corresponding to a weak

detonation requires the structurally unstable intersection in the plane of the one-dimensional

stable manifold at the unburned state with the one-dimensional stable manifold at the burned

state. Here, our focus is on the dynamical stability of these waves as solutions of the

evolutionary partial differential equation. We note that these waves are undercompressive;

that is, from the hyperbolic viewpoint, the “shock” formed by the end states does not satisfy

the Lax shock condition due to a deficit of incoming characteristics. This feature affects the

stability analysis. Indeed, in contrast to the case of strong detonations which are of Lax type,

we know of no stability results for these waves which are based on energy estimates and/or

weighted norms. The outgoing characteristic is an obstacle to these methods. By contrast,

our approach, based on the Evans function, applies to such undercompressive waves.

1.1.2 Stability. To describe our approach, we denote by L the linear operator obtained

by linearizing about the wave in question. Thus, the approximate evolution of a perturbation
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v is described by the linear equation (∂t−L)v = 0. The Evans function, denoted by D, is an

analytic function associated with the operator L. Its zeroes λ with Reλ ≥ 0 correspond to

eigenvalues of L. As Proposition 1.1 shows, the spectral information encoded in the zeros of

the D can be used to draw conclusions about the nonlinear stability of the wave in question.

Proposition 1.1 (Lyng-Raoofi-Texier-Zumbrun [35]). Under the Evans-function condition

D(·) has precisely one zero in {Reλ ≥ 0} (necessarily at λ = 0) , (?)

a strong or weak detonation wave of (2.1.1) is L̂∞ → Lp nonlinearly phase-asymptotically

orbitally stable, for p > 1. Here,

L̂∞(R) := {f ∈ S′(R) : (1 + | · |)3/2f(·) ∈ L∞(R)}.

Remark. We recall that if X and Y are Banach spaces, a traveling wave ū is X → Y

nonlinearly orbitally stable if, given initial data u0 close in X such that if ‖û − u0‖X is

sufficiently small, there is a phase shift δ = δ(t) such that ‖u(·, t) − ū(· − δ(t), t)‖Y → 0

as t → ∞. If also δ(t) converges to a limiting value δ(+∞), the wave is nonlinearly phase-

asymptotically orbitally stable.

The proof of Proposition 1.1 is based on the pointwise Green-function techniques devel-

oped by Zumbrun and collaborators; see, e.g., [59]. Briefly, if one is able to obtain sufficient

estimates on the Green function G(x, t; y) solving (∂t − L)G = δy, it is possible to close

an iterative argument to establish a result like Proposition 1.1. The main work of [35] is

devoted to establishing such bounds under the condition (?). Thus, our primary purpose

here is to locate the unstable zeros (if any) of the Evans function. In this paper we restrict

our attention to the case of weak detonations; a parallel Evans-based stability analysis for

strong detonations has been done [22]. Because, in all but the most trivial cases, the Evans
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function is typically too complex to be computed analytically, our approach is based on the

combination of an energy estimate to eliminate the possibility of large unstable zeros and

the numerical approximations of the Evans function to deal with the remaining, bounded

region of the unstable complex plane. As we describe below, a particular challenge asso-

ciated with performing Evans-function computations for weak detonation waves is finding

the distinguished parameter values for which these waves exist; see §2.3 below for further

discussion and more details about this issue.

1.2 Related Work: stability, weighted norms & energy esti-

mates

A number of stability results for the Majda model have been obtained directly by combi-

nations of energy estimates, spectral analysis, and weighted norms. For example, under

the assumption that the heat release q is sufficiently small, Liu & Ying [31] established,

via energy estimates, the nonlinear stability of strong-detonation solutions of (1.1.1); Ying,

Yang, & Zhu [56] later fine-tuned the analysis. In related work, Ying, Yang, & Zhu [55]

extended the small-q nonlinear stability result for strong detonations to a version of the

model featuring diffusion in the z-equation. By assuming a small reaction rate Li, Liu,

& Tan [29] were able to obtain a nonlinear stability result for strong detonations. Their

technique was based on a combination of spectral analysis and Sattinger’s technique [45]

of weighted norms. Around the same time, Roquejoffre & Vila [42] examined the spectral

stability of strong detonations in the ZND (vanishing viscosity) limit. Their spectral result

can be improved to the nonlinear level with the device of weighted norms. Notably, however,

outside of the Evans-function framework, we know of no stability results for weak-detonation

solutions of the Majda model. There are results for weak-detonation solutions of the closely
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related Rosales-Majda model

ut +

(
u2

2
−Qz

)
x

= Buxx , (1.2.1a)

zx = Kϕ(u)z . (1.2.1b)

This model was extracted from the physical equations in the Mach 1 + ε asymptotic regime

by Rosales and Majda. Liu & Yu [32] and Szepessy [47] have both treated the stability of

weak-detonation solutions of (1.2.1).

1.3 Outline

In Chapter 2 we describe the Majda model and briefly review the existence problem for strong

and weak detonations. Because weak detonations are a structurally unstable phenomenon,

in this section we also describe our numerical procedure for approximating these waves. In

Chapter 3, we set up the spectral stability problem, the construction of the Evans function,

and our algorithm for approximating the Evans function and locating its zeros. We also

provide an energy estimate that limits possible unstable eigenvalues to a bounded region

of the complex plane. The final sections, Chapter 4 and Chapter 5, contain descriptions,

results, and interpretations of our various numerical experiments.
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Chapter 2. Preliminaries

2.1 Model

2.1.1 Basic Assumptions. We begin with the Majda model [35]:

ut + f(u)x = Buxx + qkϕ(u)z , (2.1.1a)

zt = Dzxx − kϕ(u)z . (2.1.1b)

Here, the scalar unknown u combines various aspects of density, velocity, and temperature.

The unknown z ∈ [0, 1] is the mass fraction of reactant. The reaction constants are the heat

release q > 0 and the reaction rate k > 0. As usual, q > 0 indicates an exothermic reaction.

The diffusion coefficients B and D are also assumed to be positive constants. We make the

standard assumption, following [38], that f ∈ C2 with

df

du
> 0 ,

d2f

du2
> 0 .

We shall use the Burgers flux

f(u) =
u2

2

as the nonlinearity in our numerical calculations below. Finally, we assume that the ignition

function ϕ is given by

ϕ(u) =


0, if u ≤ uig ,

e−EA/(u−uig), if u > uig ,

where EA > 0 is the activation energy and uig is a fixed ignition threshold.
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2.2 The Profile Existence Problem

2.2.1 Basic Analysis. We seek traveling wave solutions of the form

u(x, t) = ū(x− st), z(x, t) = z̄(x− st), s > 0, (2.2.1)

of (2.1.1) which satisfy

lim
ξ→+∞

(ū(ξ), z̄(ξ)) = (u+, z+) = (u+, 1) and lim
ξ→−∞

(ū(ξ), z̄(ξ)) = (u−, z−) = (u−, 0) .

These waves move from left to right and leave completely burned gas in their wake. Thus,

after dropping the bars, we see that the ansatz (2.2.1) leads from (2.1.1) to the system of

ordinary differential equations,

−su′ + f(u)′ = Bu′′ + qkϕ(u)z , (2.2.2a)

−sz′ = Dz′′ − kϕ(u)z . (2.2.2b)

where ′ denotes differentiation with respect to the variable ξ := x − st. After a simple

algebraic rearrangement, we can integrate (2.2.2a), and we obtain, finally, the first-order

system

u′ = B−1
(
f(u)− f(u−)− s(u− u−)− q(sz +Dy)

)
, (2.2.3a)

z′ = y , (2.2.3b)

y′ = D−1
(
− sy + kϕ(u)z

)
. (2.2.3c)

In (2.2.3), we have written y := z′ to express the system in first order. We sometimes write

this system compactly as U ′ = F (U) with U = (u, z, y)T , and we write A(U) = dF (U). We
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require that u± satisfy

uig < u− and u+ < uig (2.2.4)

so that

ϕ(u−) > 0, ϕ(u+) = 0, ϕ′(u+) = 0 . (2.2.5)

Equation (2.2.4) is needed so that the unburned state (u+, 1) is an equilibrium for the

traveling-wave equation. Indeed, to guarantee that both u± are equilibria, we require the

Rankine-Hugoniot condition

f(u+)− f(u−) = sq + s(u+ − u−) , (RH)

together with the requirements that y± = 0 and kϕ(u±)z± = 0. We write a± := f ′(u±). If

u+ < u−, the combustion wave is a detonation, and detonations are classified as of strong,

weak, or Chapman-Jouguet type according to the relationship between a± and the wave speed

s; see Table 2.1. In this paper, we focus on weak detonations.

Strong a− > s > a+

Weak s > a−, a+

Chapman-Jouguet a− = s > a+

Table 2.1: Classification of detonation waves.

The first step in constructing detonation waves is to identify all the possible equilibria of

(2.2.3). This amounts to solving (RH). The structure of solutions is well known.

Proposition 2.1 ([38, 35]). Fix u+. Then, there are 0, 1, or 2 solutions of (RH) depending

on the wave speed s. In particular, there is a speed scj depending on u+ such that

0. for s < scj, there exist no solutions u− > u+.,

1. for s = scj there exists one solution ucj− (Chapman–Jouguet detonation), and

8



y = f(u)
y

u
u+

u+ + q
uw
− us

−

u = uig

slope=s

Figure 2.1: The CJ diagram.

2. for s > scj there exist two states us− > uw− > u+ for which (RH) (but not necessarily

(2.2.5)) is satisfied (weak and strong detonation),

See Figure 2.1.

The case of our principal interest is that the wave is a weak detonation. That is,

s > a+, a− . (2.2.6)

We assume, then, that (2.2.6) holds. Linearizing (2.2.3) around the state (u−, z−, y−) =

(u−, 0, 0), we find the system of ordinary differential equations


û

ẑ

ŷ


′

=


B−1(a− − s) B−1(−sq) qB−1D

0 0 1

0 kD−1ϕ(u−) −sD−1



û

ẑ

ŷ
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The coefficient matrix is upper block-triangular, hence one easily sees that it has one positive

eigenvalue and two negative eigenvalues. Thus, there is a one-dimensional unstable manifold

at (u−, 0, 0). Similarly, we compute that


û

ẑ

ŷ


′

=


B−1(a+ − s) B−1(−sq) qB−1D

0 0 1

0 0 −sD−1



û

ẑ

ŷ

 .

Again using the structure of the coefficient matrix, we see immediately that there are

two negative eigenvalues and one zero eigenvalue. It is straightforward to see in this case

that the center manifold is a line of equilibria, so no orbit may approach the rest point

(u+, 1, 0) along the center manifold. This follows from the nature of the ignition function ϕ.

Since no trajectory can approach the unburned state along the center manifold, a connection

corresponding to a weak detonation corresponds to the intersection of the one-dimensional

unstable manifold exiting the burned end state with the two-dimensional stable manifold

entering the unburned state in the phase space R3.

Remark (Strong Detonations). Repeating the above calculation in the case that a− > s > a+,

we see immediately that a strong-detonation connection corresponds to the structurally

stable intersection of a pair of two-dimensional manifolds in R3. See [22] for the examination

of the Evans condition (?) in the case of strong detonations.

The next lemma is immediate by the bounds of the stable (unstable) manifold theorem.

Lemma 2.2 ([35]). Traveling-wave profiles (û, ẑ) corresponding to weak or strong detonations

satisfy ∣∣∣(d/dx)k
(

(û, ẑ)(ξ)− (u, z)±

)∣∣∣ ≤ Ce−θ|ξ|, ξ ≷ 0, 0 ≤ k ≤ 3 .
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2.2.2 End states and parametrization. Suppose
(
ū(ξ), z̄(ξ)

)
is a traveling-wave pro-

file of (2.1.1a)–(2.1.1b) satisfying (2.2.6). Evidently, (ū, z̄) is a steady solution of

ut − sux + (u2/2)x = Buxx + qkϕ(u)z , (2.2.7a)

zt − szx = Dzxx − kϕ(u)z . (2.2.7b)

As a preliminary step, we rescale space and time via

x̃ =
s

B
x , t̃ =

s2

B
t ;

we also rescale u so that

sũ(x̃, t̃) = u(x, t) and z̃(x̃, t̃) = z(x, t) .

In the new scaling (2.2.7) takes the form

ũt̃ − ũx̃ +
(
ũ2/2

)
x̃

= ũx̃x̃ + q̃k̃ϕ̃(ũ)z̃

z̃t̃ − z̃x̃ = D̃z̃x̃x̃ − k̃ϕ̃(ũ)z̃,

where k̃ = kB/s2, ϕ̃(ũ) = ϕ (ũ/s), q̃ = q/s, and D̃ = D/B. We omit the tildes from this

point forward giving the system

ut − ux +
(
u2/2

)
x

= uxx + qkϕ(u)z (2.2.9a)

zt − zx = Dzxx − kϕ(u)z. (2.2.9b)

11



This shows we can take s = 1 and the viscosity coefficient B = 1. In this case, (RH) reduces

to

1

2
(u2+ − u2−) = u+ − u− + q = 0

Consequently we can solve for the burned state u− in terms of q and u+

u− = 1−
√

1− 2(q + u+(1− u+/2)). (2.2.10)

Therefore, the physical range for q, u+ is

U := {(u+, q) ∈ R2 | 0 ≤ u+ ≤ u−, 0 ≤ q ≤ 1

2
(u+ − 1)2}. (2.2.11)

2.2.3 Profile Properties. It is worth noting that for u < uig, we can solve the system

(2.2.3) explicitly by a simple integration since ϕ(u) = 0 for u < uig. In this case we find

u = 1 + β tanh(−βξ + C)

z = 1− CDe−ξ/D

y = Ce−ξ/D

where β =
√
u2− − 2u− + 2q + 1 and C is a constant of integration. We see that u is monotone

for u < uig. This is true more generally for weak detonations.

In Majda’s original paper he proved that weak detonation solutions of the Majda model

have monotonic profiles in the case that D = 0 [38]. Majda’s proof is given by examining

the phase space which, in the D = 0 case, is two-dimensional. In the more general case

considered here, phase space is three-dimensional adding significantly to the difficulty of the

analysis. Here we prove monotonicity in the viscous case by a straightforward examination

of the structure of (2.2.3).

12



Proposition 2.3 (Monotonicity of u). For any weak detonation profile, u is decreasing in

the wave variable ξ.

Proof. For convenience, define

Φ(u) :=
1

2
(u2 − u−)− (u− u−) = (u− u−)(

1

2
(u+ u−)− 1)

so that (2.2.3a) can be written

u′ = Φ(u)− q(z +Dy).

First we claim that for weak detonations u(ξ) ≤ u− for all ξ. Suppose not. Then since

u− < 1 for weak detonations, there exists a ξ such that u− < u(ξ) < 1. In this case we see

that ϕ(u(ξ)) < 0. Notice also that

(z +Dy)′ = kϕ(u)z ≥ 0.

Thus q(z(ξ) +Dy(ξ)) ≥ 0. Combining these facts implies

u′(ξ) = Φ(u(ξ))− q(z(ξ) +Dy(ξ)) < 0,

a contradiction.

Consequently, there exists some L such that u′(ξ) < 0 for all ξ ≤ L. If u is increasing

for some ξ > L, then there exists ξ1 < ξ2 such that u(ξ1) = u(ξ2) = u∗ (see Figure 2.2).

However, u′(ξ1) < 0. So

Φ(u∗) < q(z +Dy)(ξ1).

Since z+Dy is nondecreasing in ξ this implies Φ(u∗) < q(z+Dy)(ξ2). Therefore u′(ξ2) < 0,

13



a contradiction. The desired result follows.

ξ = x−st

u
(ξ

)

u(ξ
1
) u(ξ

2
)

Figure 2.2: Contradictory example considered in the proof monotonicity.

Remark. It is worth noting the implications of the proof for strong detonations. Strong

detonation profiles are not all monotone. The proof here fails for strong detonations because

for strong detonations u− > 1. Consequently the first claim in the proposition does not hold.

The proof does show that for strong detonations a profile cannot move from decreasing to

increasing moving left to right. Thus all non-monotonic strong detonation profiles are of the

form u′(ξ) ≥ 0 for ξ ≤ L for some L, and u′(ξ) ≤ 0 for all ξ ≥ L.

In order for a solution to be physical, we must have that z is nondecreasing since it

represents the fraction by mass of reactant. It is worth noting that all solutions satisfy this

property.

Proposition 2.4 (Monotonicity of z). For any profile, z is increasing in the wave variable

ξ.

Proof. Any orbit connecting u− and u+ leaves u− along the unstable manifold into the

physical z > 0 region. If at any point ξ∗ we have z(ξ∗) > 0, z′(ξ∗) = y(ξ∗) = 0, then

14



y′ = D−1kϕ(u)z ≥ 0. Thus z′′ ≥ 0. Consequently, z′ is nondecreasing in some neighborhood

of ξ∗. Given the explicit form for the portion of a solution with u < uig, this shows that z is

monotone increasing.

2.3 Numerical Approximation of Profiles

2.3.1 Existence. In the case that (2.2.6) holds, we have seen that the existence of a weak

detonation requires that the intersection of the two-dimensional stable manifold W s(Uw
+ ) and

the one-dimensional unstable manifold W u(U−) form a heteroclinic orbit γ in R3. Dimension

considerations show that this is a structurally unstable intersection. Intuitively, structural

instability means that small perturbations can lead to topological changes in the phase

portrait. Consequently, we expect that this intersection will only occur for distinguished

values of the parameters. Thus, our numerical method for approximating the profile (a

necessary step towards the computation of the Evans function) must incorporate a method

for determining these parameters.

Beyn describes a method for dealing with this issue of structural instability in [5]. Es-

sentially, we stabilize the system by introducing the parameter k into it as an unknown

satisfying the equation k′ = 0. This will increase the dimension of both the stable and un-

stable manifolds. Consequently after inflating the state space with the parameter k, we now

seek solutions that are the structurally stable intersection of the three dimensional stable

manifold at positive infinity and the two-dimensional unstable manifold and negative infinity

in R4.

In doing so we lose control over the value of k when finding solutions. For given values

of the other parameters, the solver will return a value of k, if a solution can be found.
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2.3.2 Numerical Implementation. In order to obtain numerical solutions, we use pro-

jective boundary conditions at ±M which are given by Π±(U(±M) − U±) = 0, where Π±

is the matrix whose columns are orthonormal vectors spanning W s(Uw
− )⊥ and W u(U+)⊥ re-

spectively. Because the translation of any solution gives another solution, we also employ a

phase boundary condition u(0) = 1
2
(u+ − u−).

The result is a three point boundary value problem. Because most numerical packages are

not built to solve a three-point problem, we transform the problem to a two point boundary

value problem by doubling the dimension of the problem and halving the domain (see 2.3).

Thus we move from the system



u′

z′

y′

k′


= U ′ = f(U), x ∈ [−M,M ]

to the system U ′
V ′

 =

 f(U)

−f(V )

 , x ∈ [0,M ]

where in the new system we include three matching boundary conditions of the form

U(0) = V (0). We now have a two point boundary value problem which we solve using the

MATLAB package bvp6c, a sixth order collocation method utilized by the Evans function

package StabLab. (See [4]).

Altogether we have 1 phase condition, 3 projective conditions, and 4 matching conditions

which matches the 8 variables in the transformed system. In order to compute numerical

solution profiles, the solver will still require a reasonably close initial guess. We find that a

rudimentary guess will suffice for intermediate parameter values. For example a guess of the
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Figure 2.3: We obtain two solutions (the solid lines) on the half domain [0,M ]. The top
curve is reflected across the y-axis which when combined with the bottom curve gives the
solution to the original problem.

form

u = a− c tanh(αx) (2.3.1a)

z = a+ c tanh(αx) (2.3.1b)

y = αsech2(αx) (2.3.1c)

for x ∈ [0,M ] where the constants a, c, α are chosen to satisfy the appropriate boundary

conditions works well. However, in many parameter regions this is insufficient.

We rely on continuation in regions for which a simple guess is not close enough for the

solver to find a solution. That is, we begin in an intermediate parameter region and use

the solution for a set of parameters as the initial guess for new parameter values. In this

manner we use successive solutions to move to more extreme parameter values. For example

a simple guess of the form (2.3.1) may be sufficient to find a solution for parameter values

17



q = 0.499, D = 1, EA = 1. To find a solution profile where we change the parameter q to the

value 0.25 (holding D = EA = 1 fixed), we would use our solution for q = 0.499 as an initial

guess to find the solution for q = 0.45. We would then use that solution as an initial guess

to find the solution for q = 0.40 and so on until we obtain the desired solution for q = 0.25.

In some regions of parameter space small changes in parameters can cause larger changes

in the shape of solution profiles. In this case the size of the continuation step (that is, the

amount we change the parameter value at each step) must be adjusted to be smaller.

2.3.3 Numerical Profile Results. Even with the use of continuation there are many

parameter regions for which we are unable to obtain solutions or for which solutions do not

exist. In particular we computed solution profiles for values

(D,E, q) ∈ [10−3, 15]× [10−3, 6]× [.25, .499].

We also tested values varying values of u+ and uig but found no qualitative difference and

consequently fixed u+ = 0, uig = 0.1. The solutions we were unable to compute in the

corners of this parameter space often correspond to extreme, large values of k determined

by the solver.

In Figure 2.4 we display some examples of the numerically computed solutions of 2.2.3.

We note in particular that small values of EA result in a large left tail as seen in Fig-

ure 2.4(d), while large values of D result in a long right tail as seen in Figure 2.4(e). In

these cases we used continuation and expanded the computational domain in order for the

solutions to be within the prescribed tolerance (10−3) of the correct limiting values.
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Figure 2.4: Weak detonation profiles for different parameter values. First we consider the
intermediate parameter regime (D = 1, EA = 1) for (a) large q = 0.499 and (b) small
q = 0.250. For large q, we also consider (c) large EA (D = 1, EA = 6, and q = 0.499),
(d) small EA (D = 1, EA = 10−3, and q = 0.499), (e) large D (D = 15, EA = 1, and
q = 0.499), and (f) small D (D = 10−3, EA = 1, and q = 0.499). Profiles for u, y, and z can
be distinguished by noting that u− > 0, y− = y+ = 0, and z+ > 0.
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Chapter 3. Spectral stability

3.1 Linearized equations & eigenvalue problem

To construct the Evans function, we begin by examining the linearization of (2.2.9) about

the steady solution (û, ẑ). The linearization can be determined as follows.

Suppose εu is a perturbation of û and εz is a perturbation of ẑ. Then plugging û + εu

and ẑ + εz into (2.2.9) for u and z respectively we have

(û+ εu)t − (û+ εu)x +
1

2
(û+ εu)2x = (û+ εu)xx + qk(ϕ(û) + ϕ′(û)εu)(ẑ + εz)

noting that ϕ(u) ≈ ϕ(û)+ϕ′(û)εu is the linearization of ϕ around û. To get the linearization

we keep only the O(ε) terms leaving

[ût − ûx +
1

2
(û)2x] + [εut − εux + ε(ûu)x] = [ûxx+ qkϕ(û)ẑ] + [εuxx+ qkεϕ(û)z + εqkϕ′(û)uẑ]

Noting that û and ẑ satisfy (2.2.9a), we see that the first bracketed expression on both sides

are equal. Thus after dividing out by epsilon we are left with

ut − ux + (ûu)x = uxx + qkϕ(û)z + qkϕ′(û)uẑ.

After rearranging and going through the same process for (2.2.9b) we find that the

linearization is

ut − q(kϕ′(û)uẑ + kϕ(û)z) + ((û− 1)u)x = uxx,

zt − zx = −kϕ′(û)uẑ − kϕ(û)z +Dzxx,

where u, z now denote perturbations.
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In order to construct the Evan’s function we need to determine the corresponding eigen-

value equations. These can be determined by rewriting the linearization equations in the

form

ut = q(kϕ′(û)uẑ + kϕ(û)z) + ((û− 1)u)x + uxx

zt = zx − kϕ′(û)uẑ − kϕ(û)z +Dzxx.

Thus we have two linear operators ut = Lu(u) and vt = Lv(v). Then the eigenvalue

equations are given by replacing ut and vt with λu and λz respectively. Thus corresponding

eigenvalue equations are

u′′ = λu− q(kϕ′(û)uẑ + kϕ(û)z) + ((û− 1)u)′, (3.1.2a)

z′′ = D−1
(
λz − z′ + kϕ′(û)uẑ + kϕ(û)z

)
. (3.1.2b)

In (3.1.2) and hereafter ′ = d/dx. Alternatively, upon substitutingDz′′−λz+z′ = kϕ′(û)uẑ+

kϕ(û)z from (3.1.2b) into (3.1.2a), we can rewrite (3.1.2a) as

u′′ = λ(u+ qz)− qz′ − qDz′′ + ((û− 1)u)′ . (3.1.3)

To construct the Evans function, we write (3.1.2a)–(3.1.2b) as a first-order system. To do

so, we define W := (u, z, u′, z′)t, and we see that the eigenvalue equation can be written as

a linear system

W ′ = A(x;λ)W ,
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where

A(x;λ) =



0 0 1 0

0 0 0 1

λ+ ūx − qkϕ′(ū)ẑ −qkϕ(ū) ū− 1 0

D−1kϕ′(ū)z̄ D−1λ+D−1kϕ(ū) 0 −D−1


.

In the case of strong detonations, working with the integrated equations has the advantage

of removing the translational zero eigenvalue. While this is not the case for weak detonations,

we find that we obtain tighter energy estimates using integrated coordinates. We define

w′ := u+ qz so that (3.1.3) becomes

u′′ = λw′ − qz′ − qDz′′ − qDz′′ + ((û− 1)u)′

which can be integrated so that the eigenvalue equation becomes

u′ = λw − qz − qDz′ + (û− 1)u (3.1.4a)

w′ = u+ qz (3.1.4b)

z′′ = D−1(λz − z′ + kϕ′(û)uẑ + kϕ(û)z). (3.1.4c)

In matrix form with X := (u,w, z, z′)t, (3.1.4) takes the form

X ′ = B(x;λ)X (3.1.5)

where

B(x;λ) :=



û− 1 λ −q −qD

1 0 q 0

0 0 0 1

D−1kϕ′(û)ẑ 0 D−1(λ+ kϕ(û)) −D−1


.
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Thus we have written the eigenvalue problem as a linear system of first order ODEs

where the coefficient matrix depends on x and the spectral parameter λ. We observe that,

due to Lemma 2.2, the coefficient matrix B decays exponentially fast as x → ±∞ to a

limiting matrix B±(λ). The basic idea of the construction of the Evans function is to look

for solutions of (3.1.4) which have the “correct” asymptotic behavior, as described by the

limiting system X ′ = B±(λ)X. Then, roughly speaking, the Evans function can be thought

of as a determinant

D(λ) = det(W+(x, λ),W−(x, λ))|x=0

where W± are bases for the subspaces of solutions of (3.1.5) that decay at ±∞. Evidently,

a zero of D(λ) indicates a linear dependence between these subspaces. Such a linear depen-

dence is equivalent to the existence an eigenfunction. We omit the details of the construction.

For more details about the construction of the Evans function for the Majda model, see [35].

For more general background information about the Evans function, see, e.g., the survey

article of Sandstede [44] and [1, 40, 18].

3.2 High-frequency bounds

We note that the integrated equations (3.1.4) can be written as

λw − (1− û)w′ = qûz + q(D − 1)z′ + w′′ (3.2.1a)

λz + k(ϕ(û)− qϕ′(û)ẑ)z = z′ + kϕ′(û)ẑw′ +Dz′′. (3.2.1b)

We show by an energy estimate that any unstable eigenvalue of the integrated eigenvalue

equations lies in a bounded region of the unstable half plane. While energy estimates for

this system are given in [22], using monotonicity of weak profiles we obtain a modest im-

provement.
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Proposition 3.1 (High-frequency bounds). Any eigenvalue λ of (3.2.1) (weak detonation)

with nonnegative real part satisfies

Reλ+ | Imλ| ≤ max

{
3,

1

4D
+

(
1

4
+

1

2
|D − 1|2

)
kL+ kM

}

where

L := sup
x∈R

ϕ′(û(x))ẑ and M := sup
x∈R

((1 + q)ϕ′(û)ẑ − ϕ(û)) . (3.2.2)

Proof. We multiply (3.2.1a) by w̄ and (3.2.1b) by z̄ and integrate. In doing so we integrate

w′′w̄, z′′z̄ and z′w̄ terms by parts

∫
R
w′′w̄ =

∫
R
w′w̄′ =

∫
R
|w′|2∫

R
z′′z̄ =

∫
R
z′z̄′ =

∫
R
|z′|2∫

R
z′w̄ =

∫
R
zw̄′

noting that the boundary terms are all zero given our required end states.

Then we have

λ

∫
R
|w|2 +

∫
R
|w′|2 −

∫
R
(1− û)w′w̄ = q

∫
R
ûzw̄ − q(D − 1)

∫
R
zw̄′, (3.2.3a)

λ

∫
R
|z|2 +D

∫
R
|z′|2 + k

∫
R
(ϕ(û)− qϕ′(û)ẑ)|z|2 =

∫
R
z′z̄ − k

∫
R
ϕ′(û)ẑw′z̄. (3.2.3b)
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Taking the real part of (3.2.3), we find

Reλ

∫
R
|w|2 +

∫
R
|w′|2 − Re

(∫
R
(1− û)w′w̄

)
= Re

(
q

∫
R
ûzw̄ − q(D − 1)

∫
R
zw̄′
)
,

(3.2.4a)

Reλ

∫
R
|z|2 +D

∫
R
|z′|2 + k

∫
R
(ϕ(û)− qϕ′(û)ẑ)|z|2 = −Re

(
k

∫
R
ϕ′(û)ẑw′z̄

)
. (3.2.4b)

Similarly, taking the imaginary part of (3.2.3), we observe

Imλ

∫
R
|w|2 − Im

(∫
R
(1− û)w′w̄

)
= Im

(
q

∫
R
ûzw̄ − q(D − 1)

∫
R
zw̄′
)
, (3.2.5a)

Imλ

∫
R
|z|2 = Im

(∫
R
z′z̄ − k

∫
R
ϕ′(û)ẑw′z̄

)
= 0 . (3.2.5b)

Here we make two observations. First

∫
R
w′w̄ = −

∫
R
ww̄′

= −
∫
R
w̄w′

where the first equality comes from integration by parts. Thus
∫
Rw

′w̄ is imaginary.

Second,

∫
R
ûw′w̄ = −

∫
R
(ûw̄)′w (3.2.6)

= −
∫
R
(û′w̄ + ûw̄′)w (3.2.7)

= −
∫
R
û′|w|2 −

∫
R
ûw̄′w (3.2.8)

= −
∫
R
û′|w|2 −

∫
R
ûw′w̄ (3.2.9)
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Therefore we have

Re

(∫
R
ûw′w̄

)
= −1

2

∫
R
û′|w|2 > 0

since by Proposition 2.3 u′ < 0.

Putting these facts together we have

Re

(∫
R
(1− û)w′w̄

)
=

1

2

∫
R
û′|w|2 < 0. (3.2.10)

Using the fact that Re x+ | Imx| ≤
√

2|x|, we combine (3.2.4) and (3.2.5) to get

(
Reλ+ | Imλ|

) ∫
R
|w|2 +

∫
R
|w′|2

≤
√

2q

∫
R
û|z||w|+

√
2q|D − 1|

∫
R
|z||w′|+

∫
R
|1− û||w′||w|, (3.2.11)

and

(
Reλ+ | Imλ|

) ∫
R
|z|2 + k

∫
R
(ϕ(û)− qϕ′(û)ẑ)|z|2 +D

∫
R
|z′|2

≤
∫
R
|z′||z|+

√
2k

∫
R
|ϕ′(û)ẑ||w′||z| . (3.2.12)

Note the term
∫
R |1 − û||w

′||w| is not multiplied by
√

2 because we can drop the real part

because of (3.2.10).

We now recall the general form of Young’s inequality:

ab ≤ εap +
1

4ε
bq

where a, b, ε ≥ 0 and p, q > 0 with 1
p

+ 1
q

= 1.

Using Young’s inequality (several times, with p = q = 2) together with the assumption
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that Reλ ≥ 0, we find that inequalities (3.2.11) and (3.2.12) imply

(
Reλ+ | Imλ|

) ∫
R
|w|2 +

∫
R
|w′|2 ≤

√
2q‖û‖∞

∫
R

(
ε1|z|2 +

|w|2

4ε1

)
+
√

2q|D − 1|
∫
R

(
ε2|z|2 +

|w′|2

4ε2

)
+ ‖1− û‖∞

∫
R

(
ε3|w′|2 +

|w|2

4ε3

)
(3.2.13)

and

(
Reλ+ | Imλ|

) ∫
R
|z|2 + k

∫
R
(ϕ(û)− qϕ′(û)ẑ)|z|2 +D

∫
R
|z′|2

≤
∫
R

(
ε4|z′|2 +

|z|2

4ε4

)
+
√

2kL

∫
R

(
ε5|w′|2 +

|z|2

4ε5

)
. (3.2.14)

We multiply (3.2.14) by Θ > 0 and add the result to (3.2.13). The result is

(
Reλ+ | Imλ|

)(∫
R
|w|2 + Θ|z|2

)
+ k

∫
R
ϕ(x)|z|2 +

∫
R
|w′|2 + ΘD

∫
R
|z′|2

≤
∫
R
R1(x)Θ|z|2 + ε4Θ

∫
R
|z′|2 +R2

∫
R
|w′|2 +R3

∫
R
|w|2 (3.2.15)

where

ϕ(x) = (ϕ(û)− qϕ′(û)ẑ) ,

R1(x) =

√
2ε1q‖û‖∞

Θ
+

√
2ε2q|D − 1|

Θ
+

1

4ε4
+

√
2kL

4ε5
,

R2 =
√

2

(
q|D − 1|

4ε2
+
ε3‖1− û‖∞√

2
+ ε5ΘkL

)
,

and

R3 =
√

2

(
q‖û‖∞

4ε1
+
‖1− û‖∞

4
√

2ε3

)
.
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Finally, to simplify (3.2.15), we choose

ε1 =

√
2

8
ε2 =

√
2q|D − 1|

ε3 =
2

8‖1− û‖∞
ε4 = D

ε5 =

√
2

4
Θ = (kL)−1 ,

where L and M are as in (3.2.2). We also note that ‖û‖∞ ≤ 2, ‖1− û‖∞ ≤ 1, and q ≤ 1/2.

Thus, we have

(
Reλ+ | Imλ|

) ∫
R
(|w|2 + Θ|z|2) ≤ 3

∫
R
|w|2 + C

∫
R

Θ|z|2

≤ max (3, C)

∫
R
(|w|2 + Θ|z|2), (3.2.16)

where

C :=

(
1

4D
+

(
1

4
+

1

2
|D − 1|2

)
kL+ kM

)
.

The result follows from dividing both sides of (3.2.16) by
∫
R(|w|2 + Θ|z|2).

Remark. We easily obtain the following crude bounds on L and M :

L ≤ sup
x∈R

ϕ′(û(x)) ≤ ϕ′
(
uig +

EA
2

)
=

4

EA
ϕ

(
uig +

EA
2

)
≤ 4

EA
e−2 ≈ 0.5413

EA
,

M ≤ sup
x∈R

(1 + q)ϕ′(û) ≤ 6

EA
e−2 ≈ 0.8120

EA
.
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3.3 Evans Function

As outlined above, the Evans function D(λ) acts as a kind of characteristic polynomial for

the linear operator L; that is,

D(λ0) = 0⇔ λ0 is an eigenvalue of L.

Unfortunately, it is seldom possible to explicitly compute the Evans function; however, it

is possible to approximate it numerically [24]. Since the D(λ) is analytic on the unstable

half plane, it is possible to seek zeros by winding number computations. The origins of this

approach to stability can be found in the work of Evans and Feroe [14]. These ideas have

since been used to address the stability of traveling-wave solutions to a number of systems

of interest; see, e.g., [39, 2, 8, 7].

Techniques for the numerical approximation of the Evans function have been described in

detail elsewhere [8, 23, 24], so we only summarize the important aspects of the computation

here.

(i) We approximate the profile on a finite computational domain [−M−,M+]. The compu-

tational values for plus and minus spatial infinity, M±, must be chosen with some care.

Writing the traveling-wave equation (2.2.3) as U ′ = F (U) together with the condition

that U → U± as ξ → ±∞, the typical requirement is that M± should be chosen so

that |U(±M±)− U±| is within a prescribed tolerance. We use a tolerance of 10−3.

(ii) For each profile compute the high-frequency spectral bounds given by Proposition 3.1.

To do so we must compute L and M from (3.2.2). From the bounds we can determine

a positive real number R sufficiently large so that no eigenvalue of (3.1.4) lies outside

B+
R , the half circle of radius R in the positive half-plane <(λ) ≥ 0. Now we need only

establish that the Evans function has no zeros in the bounded region B+
R .
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(iii) Given the solution profiles and appropriate bound from the previous step, we evalu-

ate the Evans function by use of the StabLab package, a MatLab-based package

developed for Evans function computation [4]. We use the polar-coordinate method

[24] for the computation and Kato’s method [26, p. 99] to analytically determine the

initial eigenvectors; details of these methods are described in [9, 7, 23]. Throughout

our study, we set the tolerances on Matlab’s stiff ODE solver ode15s to be RelTol

= 1e-6 and AbsTol = 1e-8.

(iv) We compute the number of zeros of the Evans function inside the contour S = ∂B+
R

by computing the winding number of the image of S under the Evans function. By

The Argument Principle, since the Evans function is analytic, the winding number of

the image will be equal to the number of zeros inside the preimage contour (see Figure

3.1). This is also computed using the StabLab package by choosing a set of λ-values

on S for which we sum the changes in argE(λ) as we traverse S counterclockwise. We

add λ values to our set if the change in argE(λ) is greater than 0.2 in any step. By

Rouché’s theorem, we are guaranteed to have an accurate computation of the winding

number if the argument varies by less than π/2 between two λ values [20].

As mentioned previously, the shift to integrated coordinates does not remove the trans-

lational zero eigenvalue for weak detonations. In order to use the winding number

technique just described, the image contour cannot cross through zero; consequently,

we must first remove the zero eigenvalue in another way. In this case we find that since

the zero eigenvalue has multiplicity one, we can simply divide the Evans function by

λ to remove that zero.
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Re

Im

D(λ)−−→ Re

Im

Figure 3.1: We take a closed contour that contains the bounded region of the right half-plane
obtained from the high frequency bounds. After mapping by the Evans function we obtain
the image contour. If the origin is inside the contour then the winding number is positive,
implying the Evans function has a zero in the right half plane. Often, as is the case in this
picture, the Evans function comes very near the origin but upon zooming in it can be seen
that it does not enclose the origin.

Chapter 4. Experiments

We now discuss our experiments. Recall that s = 1, and u− ∈ (u+, 1) is determined by

(2.2.10). Also, the parameter k was used in inflating the state space and thus given values

for the other parameters, a value of k for which a solution can be found is determined by the

boundary value solver. While u+ can take values specified by (2.2.11), we find no qualitative

differences for varied values of u+ and thus we fix u+ = 0. We also find no qualitative

difference in letting uig vary and so we set uig = 0.1 throughout. These values of u+ and

uig correspond with those used in [22]. In this case (2.2.10) and (2.2.11), imply q ∈ [0, 1
2
) in

order to ensure u− < 1, the condition for a weak detonation.

We let the parameters q, E, and D vary through the ranges [0.250, 0.499], [10−3, 6],

and [10−3, 15] respectively. We find profiles to be stable throughout the parameter region

computed. However, we were not able to obtain solutions for all values of the parameters

in the specified region. In particular, as we move toward the boundaries of this parameter

space we typically find that we must take smaller continuation steps until we hit a point

that continuing is no longer feasible.
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In this section we consider the specific behavior of the Evans function as we vary the

activation energy E and the viscosity constant D across values of q. We find that as we

allow q to decrease, the parameter k increases to extreme values. For example, if we fix

D = 1 and EA = 1, then for q = 0.499, the corresponding value of k is 8.177. However for

q = 0.250, k increases to approximately 7, 913. In such regions where k begins to blow up

we generally cannot continue to find solutions.

4.1 Activation Energy

First we consider activation energy, EA, allowing it to take values in [10−3, 6]. We find that

just as k increases with decreasing values of q, it also increases as EA increases. For example,

if we fix q = 0.499 D = 1, then for EA = 10−3 we find k = 0.236. However for EA = 6 we

have k ≈ 21, 600.

In Figure 4.1 (a) and (b), we see the Evans function output for large values of EA.

For low values of q we see a single loop in the Evans function. As q increases we see the

loop break into two loops which then disappear altogether. We see that the contours do

not enclose the origin, demonstrating that the images have winding number zero. Thus the

corresponding profiles are stable. We note image contours for smaller values of q maintain

a greater distance from the origin suggesting that there is stability, even in the case of q

smaller than those for which we were able to compute profiles.

In Figure 4.1 (c) and (d), we see the Evans function output for small values of EA. The

larger image contours correspond to larger values of q. Once again, for smaller values of q

we see that the image contours move away from the origin suggesting stability even in the

case of q smaller than those computed.
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Figure 4.1: Evans function output for extreme values of EA with D = 1. The parameter
values are (a) EA = 3.2 with q varying through [.4, .499] and (c) EA = 10−3 with q varying
through [.25, .499]. Figures (b) and (d) are zoomed in versions of (a) and (c). The origin is
marked with a ‘+’.

4.2 Viscosity

We also consider values of the viscosity constant D in the range [10−3, 15]. For changes in

D we do not see the extreme changes in K that occur for activation energy. As such we find

that we are able to more easily obtain profiles across parameter space.

In Figure 4.2 (a) and (b), we see the Evans function output for large values of D. In

this case contours grow larger for smaller q values. For all levels of q the image contours

have an intrusion pointing away from the origin that ensures the contours do not contain
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Figure 4.2: Evans function output for extreme values of D with EA = 1. The parameter
values are (a) D = 15 with q varying through [.38, .499] and (c) D = .14 with q varying
through [.27, .499]. Figures (b) and (d) are zoomed in versions of (a) and (c). The origin is
marked with a ‘+’.

the origin and that the corresponding profiles are stable.

In Figure 4.2 (c) and (d), we see the Evans function output for small values of D. For

small values of D we see significant change in the shape of contours as q varies. For larger

values of q the image contours are larger, but contain no interesting features. For decreasing

values of q, we first see a protrusion pointing toward the origin. As q continues to decrease

we see the protrusion form two loops as it connects to the rest of the contour. Near the

lowest values of q computed we see these loops begin to overlap almost entirely.
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Chapter 5. Conclusions

The main contribution of this thesis is demonstrating via Evans function computation that

weak detonation solutions to the Majda model are stable. We have found that solutions are

stable throughout the parameter space tested. This improves understanding of the Majda

model in itself and also improves the understanding of how Majda’s simplified combustion

model relates to more complete physical models such as the reactive Navier-Stokes equations.

In the process of computing profiles and evaluating the Evans function we have also

demonstrated the use of techniques for solving shockwave boundary value problems. We

demonstrated the formulation of appropriate boundary conditions. We showed how to con-

vert a three point boundary value problem into a two point boundary value problem. Most

notably, we have used the method of inflating the state space in order to deal with the issue

of structural instability.

This paper also gives some analysis of the viscous Majda model. Much of the previous

analytical work on Majda’s model (particularly for weak detonations) has been done in the

much simpler D = 0 case. By allowing D 6= 0 the difficulty of the analysis and numerics is

increased significantly as it adds a dimension to the resulting system of ODEs. In particular

we have given a proof of the monotonicity of weak detonation solutions to the viscous Majda

model. There is no other existing proof of this fact of which we are aware.

35



Bibliography

[1] J. Alexander, R. Gardner, and C. Jones. A topological invariant arising in the stability
analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.

[2] J. C. Alexander and R. Sachs. Linear instability of solitary waves of a Boussinesq-type
equation: a computer assisted computation. Nonlinear World, 2(4):471–507, 1995.

[3] Leanne Allen and Thomas J. Bridges. Numerical exterior algebra and the compound
matrix method. Numer. Math., 92(2):197–232, 2002.

[4] Blake Barker, Jeffrey Humpherys, and Kevin Zumbrun. Stablab: A matlab-based nu-
merical library for Evans function computation, 2009.

[5] W.-J. Beyn. The numerical computation of connecting orbits in dynamical systems.
IMA J. Numer. Anal., 10(3):379–405, 1990.

[6] Anne Bourlioux and Andrew J. Majda. Theoretical and numerical structure of un-
stable detonations. Philosophical Transactions: Physical Sciences and Engineering,
350(1692):29–68, 1995.

[7] Thomas J. Bridges, Gianne Derks, and Georg Gottwald. Stability and instability of
solitary waves of the fifth-order kdv equation: a numerical framework. Phys. D, 172(1-
4):190–216, 2002.

[8] Leon Q. Brin. Numerical testing of the stability of viscous shock waves. Math. Comp.,
70(235):1071–1088, 2001.

[9] Leon Q. Brin and Kevin Zumbrun. Analytically varying eigenvectors and the stability
of viscous shock waves. Mat. Contemp., 22:19–32, 2002. Seventh Workshop on Partial
Differential Equations, Part I (Rio de Janeiro, 2001).

[10] J Buckmaster and J. Neves. One-dimensional detonation stability: the spectrum for
infinite activation energy. Phys. Fluids, 31:3571–3576, 1988.

[11] Gui-Qiang Chen, David Hoff, and Konstantina Trivisa. Global solutions to a model for
exothermically reacting, compressible flows with large discontinuous initial data. Arch.
Ration. Mech. Anal., 166(4):321–358, 2003.

[12] Phillip Colella, Andrew Majda, and Victor Roytburd. Theoretical and numerical struc-
ture for reacting shock waves. SIAM J. Sci. Statist. Comput., 7(4):1059–1080, 1986.

[13] R. Courant and K. O. Friedrichs. Supersonic flow and shock waves. Springer-Verlag,
1976. Reprinting of the 1948 original; Applied Mathematical Sciences, Vol. 21.

[14] J.W. Evans and J. A. Feroe. Traveling waves of infinitely many pulses in nerve equations.
Math. Biosci., 37:23–50, 1977.

36



[15] Wildon Fickett. Detonation in miniature. Am. J. Phys., 47(12):1050–1059, 1979.

[16] Wildon Fickett and William Davis. Detonation: Theory and Experiment. Dover, 2000.
corrected reprint of 1979 UC Berkeley Edition.

[17] Paul C. Fife. Propagating fronts in reactive media. Nonlinear problems: present and
future (Los Alamos, N.M., 1981), North-Holland Math. Stud., vol. 61, North-Holland,
Amsterdam, 1982. pp. 267–285.

[18] Kevin Gardner, Robert A.and Zumbrun. The gap lemma and geometric criteria for
instability of viscous shock profiles. Comm. Pure Appl. Math., 51(7):797–855, 1998.

[19] Robert A. Gardner. On the detonation of a combustible gas. Trans. Amer. Math. Soc.,
277(2):431–468, 1983.

[20] Peter Henrici. Applied and computational complex analysis. Vol. 1. Wiley Classics Li-
brary. John Wiley & Sons Inc., 1988. Power series—integration—conformal mapping—
location of zeros; Reprint of the 1974 original; A Wiley-Interscience Publication.

[21] Jeffrey Humpherys, Gregory Lyng, and Kevin Zumbrun. Spectral stability of ideal-gas
shock layers. Arch. Ration. Mech. Anal., 194(3):1029–1079, 2009.

[22] Jeffrey Humpherys, Gregory Lyng, and Kevin Zumbrun. Spectral stability combustion
waves: the Majda model. preprint, 2012.

[23] Jeffrey Humpherys, Björn Sandstede, and Kevin Zumbrun. Efficient computation of
analytic bases in Evans function analysis of large systems. Numer. Math., 103(4):631–
642, 2006.

[24] Jeffrey Humpherys and Kevin Zumbrun. An efficient shooting algorithm for Evans
function calculations in large systems. Phys. D, 220(2):116–126, 2006.

[25] Soyeun Jung and Jinghua Yao. Stability of znd detonations for Majda’s model. Quarterly
of Applied Mathematics. to appear.

[26] Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-
Verlag, 1995. Reprint of the 1980 edition.

[27] Bernard Larrouturou. Remarks on a model for combustion waves. Nonlinear Anal.,
9(9):905–935, 1985.

[28] Arnon Levy. On Majda’s model for dynamic combustion. Comm. Partial Differential
Equations, 17(3-4):657–698, 1992.

[29] Dening Li, Tai-Ping Liu, and Dechun Tan. Stability of strong detonation travelling
waves to combustion model. J. Math. Anal. Appl., 201(2):516–531, 1996.

37



[30] Jiequan Li and Peng Zhang. The transition from Zeldovich-von Neumann-Doring to
Chapman-Jouguet theories for a nonconvex scalar combustion model. SIAM J. Math.
Anal., 34(3):675–699 (electronic), 2002.

[31] Tai-Ping Liu and Long An Ying. Nonlinear stability of strong detonations for a viscous
combustion model. SIAM J. Math. Anal., 26(3):519–528, 1995.

[32] Tai-Ping Liu and Shih-Hsien Yu. Nonlinear stability of weak detonation waves for a
combustion model. Comm. Math. Phys., 204(3):551–586, 1999.

[33] Tai-Ping Liu and Tong Zhang. A scalar combustion model. Arch. Rational Mech. Anal.,
114(4):297–312, 1991.

[34] J. David Logan and Steven R. Dunbar. Travelling waves in model reacting flows with
reversible kinetics. IMA J. Appl. Math., 49(2):103–121, 1992.

[35] Gregory Lyng, Mohammadreza Raoofi, Benjamin Texier, and Kevin Zumbrun. Point-
wise green function bounds and stability of combustion waves. J. Differential Equations,
233(2):654–698, 2007.

[36] Gregory Lyng and Kevin Zumbrun. One-dimensional stability of viscous strong deto-
nation waves. Arch. Ration. Mech. Anal., 173(2):213–277, 2004.

[37] Gregory Lyng and Kevin Zumbrun. A stability index for detonation waves in Majda’s
model for reacting flow. Phys. D, 194(1-2):1–29, 2004.

[38] Andrew Majda. A qualitative model for dynamic combustion. SIAM J. Appl. Math.,
41(1):70–93, 1981.

[39] Robert L. Pego, Peter Smereka, and Michael I. Weinstein. Oscillatory instability of
traveling waves for a KdV-Burgers equation. Phys. D, 67(1-3):45–65, 1993.

[40] Robert L. Pego and Michael I. Weinstein. Eigenvalues, and instabilities of solitary
waves. Philos. Trans. Roy. Soc. London Ser. A, 340(1656):47–94, 1992.

[41] Abdolrahman Razani. Existence of Chapman-Jouguet detonation for a viscous combus-
tion model. J. Math. Anal. Appl., 293(2):551–563, 2004.

[42] Jean-Michel Roquejoffre and Jean-Paul Vila. Stability of ZND detonation waves in the
Majda combustion model. Asymptot. Anal., 18(3-4):329–348, 1998.

[43] Rodolfo R. Rosales and Andrew Majda. Weakly nonlinear detonation waves. SIAM J.
Appl. Math., 43(5):1086–1118, 1983.

[44] Björn Sandstede. Stability of travelling waves. Handbook of dynamical systems, Vol. 2,
pages 983–1055, North-Holland, Amsterdam, 2002.

38



[45] D. H. Sattinger. On the stability of waves of nonlinear parabolic systems. Advances in
Math., 22(3):312–355, 1976.

[46] Wan Cheng Sheng and De Chun Tan. Weak deflagration solutions to the simplest
combustion model. J. Differential Equations, 107(2):207–230, 1994.

[47] Anders Szepessy. Dynamics and stability of a weak detonation wave. Comm. Math.
Phys., 202(3):547–569, 1999.

[48] Benjamin Texier and Kevin Zumbrun. Relative Poincaré-Hopf bifurcation and galloping
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