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abstract

Almost Homeomorphisms and Inscrutability

Michael Steven Andersen
Department of Mathematics, BYU

Doctor of Philosophy

“Homeomorphic” is the standard equivalence relation in topology. To a topologist, spaces
which are homeomorphic to each other aren’t merely similar to each other, they are the same
space. We study a class of functions which are homeomorphic at “most” of the points of
their domains and codomains, but which may fail to satisfy some of the properties required
to be a homeomorphism at a “small” portion of the points of these spaces. Such functions
we call “almost homeomorphisms.” One of the nice properties of almost homeomorphisms
is the preservation of almost open sets, i.e. sets which are “close” to being open, except for
a “small” set of points where the set is “defective.” We also find a surprising result that all
non-empty, perfect, Polish spaces are almost homeomorphic to each other.

A standard technique in algebraic topology is to pass between a continuous map between
topological spaces and the corresponding homomorphism of fundamental groups using the
π1 functor. It is a non-trivial question to ask when a specific homomorphism is induced by
a continuous map; that is, what is the image of the π1 functor on homomorphisms?

We will call homomorphisms in the image of the π1 functor “tangible homomorphisms”
and call homomorphisms that are not induced by continuous functions “intangible homo-
morphisms.” For example, Conner and Spencer [1] used ultrafilters to prove there is a map
from HEG to Z2 not induced by any continuous function f : HE→ Y , where Y is some topo-
logical space with π1(Y ) = Z2. However, in standard situations, such as when the domain is
a simplicial complex, only tangible homomorphisms appear.

Our job is to describe conditions when intangible homomorphisms exist and how easily
these maps can be constructed. We use methods from Shelah [3] and Pawlikowski [5] to
prove that Conner and Spencer could not have constructed these homomorphisms with
a weak version of the Axiom of Choice. This leads us to define and examine a class of
pathological objects that cannot be constructed without a strong version of the Axiom of
Choice, which we call the class of inscrutable objects. Objects that do not need a strong
version of the Axiom of Choice are scrutable. We show that the scrutable homomorphisms
from the fundamental group of a Peano continuum are exactly the homomorphisms induced
by a continuous function.

Keywords: scrutability, inscrutability, tangible, intangible, almost homeomorphism, Pol-
ish, almost open, meager, nowhere dense, dense, Cantor, Gödel, Shelah
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Chapter 1. Preliminaries

1.1 Almost Open Sets

The intuition to have on almost open sets is that an almost open set A is slightly defective

in fulfilling the requirements to be an open set. There exists a “small amount” of elements

that A needs to either gain or lose to become an open set; the precise meaning of “small

amount” is formalized in the following definitions.

Definition 1.1 (Nowhere dense set). A set N is nowhere dense in X if every nonempty

open set of X contains a nonempty open set that does not intersect N . This is equivalent

to the closure of N having empty interior.

Definition 1.2 (Meager set). A set M ⊂ X is meager in X if it is the countable union of

nowhere dense sets in X. The complement of a meager set is called a comeager set.

Definition 1.3 (Almost open set). A set A ⊂ X is almost open if it is the symmetric

difference of an open set of X with a meager set of X.

1.1.1 Nowhere Dense Sets.

Definition 1.4 (Dense set). A set D is dense in X if DX = X.

Lemma 1.5. Here are a few properties of nowhere dense sets.

(a) If N ⊂ X ⊂ Y and N is nowhere dense in X then N is nowhere dense in Y .

(b) Let X = ΠiXi, where each Xi is first countable. Suppose that Aj is nowhere dense

in Xj. Then A = X1 × X2 × · · · × Xj−1 × Aj × Xj+1 × · · · is a nowhere dense set.

The singleton sets of a Hausdorff space with no isolated points are nowhere dense. A

nowhere dense set of X cannot contain an isolated point of X.
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Proof. (a) Let U ⊂ Y be open and nonempty. If (U ∩X) is empty, then U contains itself

as a nonempty subset that has empty intersection with N . If (U ∩ X) is nonempty,

then (U ∩X) is open in X, so it contains nonempty open V such that (N ∩ V ) = ∅.

There exists open V ′ ⊂ Y such that (V ′ ∩X) = V , so (V ′ ∩ U) ∩N = ∅ and (V ′ ∩ U)

is nonempty and open in Y . So N is nowhere dense in Y .

(b) Since Aj closed in Xj, its complement in Xj is open in Xj, which implies that X1 ×

X2 × · · · ×Xj−1 × Aj ×Xj+1 × · · · is open in X.

Pick any point in A, call it x = (x1, x2, · · · ). Pick a sequence {yi} ⊂ Xj converging to

xj such that yi /∈ Aj for any i. Then the sequence zi = {(x1, x2, · · · , xj−1, yi, xj+1, · · · )}

is a sequence converging to x. Each zi is not in A, because the jth component of Zi is

not in Aj, so x is in the boundary of A. Since X was chosen arbitrarily, all points of

A are boundary points of A. So A is a set whose closure has empty interior, so A is

nowhere dense.

Example 1.6. It is possible for N ⊂ X ⊂ Y such that N is nowhere dense in Y , but dense

in X. This is a counterexample to the converse of Lemma 1.5(a).

Proof. Suppose that N = X = {0} and Y = R. Then N is nowhere dense in Y , since Y

is a Baire, Hausdorff space and singleton sets are nowhere dense in such spaces. However,

N = X and no space is nowhere dense in itself.

1.1.2 Meager Sets.

Definition 1.7 (Net). Suppose that Ai ⊂ Xi. The net of the {Ai}’s in ΠiXi is the set

⋃
i

X1 ×X2 × · · · ×Xi−1 × Ai ×Xi+1 × · · ·

and is denoted net ({Ai}).
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Lemma 1.8. Here are a few properties of meager sets.

(a) If M ⊂ X ⊂ Y and M is meager in X, then M is meager in Y .

{x ∈ X | A ∩ ({x} × Y ) is meager in ({x} × Y )}

is comeager in X.

(b) Let X = ΠiXi be a countable product of first countable spaces and let Ai ⊂ Xi be

meager in Xi. Then net({Ai}) is meager in X.

Proof. Let M be meager and M = ∪iNi, where each of the countably many Ni is nowhere

dense.

(a) Since each Ni is nowhere dense in X, Lemma 1.5(a) implies that each Ni is nowhere

dense in Y , so M is the union of countably many nowhere sets sets of Y , so M is

meager in Y .

(b) Each Ai is a countable union of nowhere dense sets of Xi, call one of these N . Lemma

1.5(b) implies that

⋃
i

X1 ×X2 × · · · ×Xi−1 ×N ×Xi+1 × · · ·

is nowhere dense in X. This implies that

⋃
i

X1 ×X2 × · · · ×Xi−1 × Ai ×Xi+1 × · · ·

is meager in X. The countable union of all of these sets over all of the Ai’s is therefore

meager.
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1.1.3 Borel Sets.

Definition 1.9 (Gδ set). A Gδ subset of a topological space X is a countable intersection

of open sets of X.

Definition 1.10 (Fσ set). An Fσ subset of a topological space X is a countable union of

closed sets of X.

Definition 1.11 (σ−algebra). A σ−algebra is a set A of subsets of a set X satisfying the

following properties:

(a) X ∈ A

(b) For all A ∈ A the set AcX is an element of A.

(c) For any countable subset of A, call it {Ai}, the union
⋃
iAi is an element of A.

Definition 1.12 (Borel set). The collection of Borel sets of a topological space X is the

smallest sigma algebra containing the open sets of X. A Borel set of X is a member of this

collection.

Definition 1.13 (Coinfinite). A subset A of a set X is coinfinite if X \ A is infinite.

Definition 1.14 (Cocountable). A subset A of a set X is cocountable if X \A is countable.

1.1.4 Almost Open Sets.

Lemma 1.15. Here are a few properties of almost open sets.

(a) The almost open subsets of X form an abelian group under 4.

(b) The almost open sets of a topological space form a sigma algebra.

(c) Borel sets are almost open.

(d) If A ⊂ X ⊂ Y with A almost open in X and X a Gδ subset of Y , then A is almost

open in Y .
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(e) If A ⊂ X ⊂ Y with A almost open in X and X comeager in Y , then A is almost open

in Y .

(f) Let h : X → Y be a homeomorphism. A set A ⊂ X is almost open if and only if h(A)

is almost open.

Proof.

(a) Suppose that A = U4M , B = V4N , where A,B are almost open, U, V are open, and

M,N are meager. The boundary of an open set is nowhere dense, so the calculations

below show that A4B is almost open.

A4B = (U4M)4(V4N) = (U4V )4(M4N)

=
(
((U ∪ V ) \ (U ∩ V )) ∪ bd(U ∩ V )

)
4(M4N)

=
(
((U ∪ V ) \ (U ∩ V ))

)
4(bd(U ∩ V )4M4N)

So the set of almost open sets is closed under4. Every multiplicatively closed subset of

(P(X),4) is a normal subgroup of (P(X),4), so the almost open sets form a normal

subgroup of (P(X),4).

(b) The properties of a σ−algebra T of a set X are (1) X ∈ T , (2) T is closed under

complements, and (3) T is closed under countable unions, so we prove each of these.

(1) Since every space is open in itself, every space is almost open in itself. So the

almost open sets contain the space as an element.

(2) If A is an almost open set of the space X, then A4X is both the complement of

A and an almost open set. So the almost open sets are closed under complements.

(3) Suppose that {Ai = Ui4Mi} is a countable collection of almost open sets, where

Ui is open and Mi is meager for all i.
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Define U =
⋃
i Ui, Min = (

⋃
i(Mi \ Ui)) \ U , and Mout =

⋂
i(Mi ∩ Ui). It is

obvious that U is open and Min and Mout are both meager, so U4(Min4Mout) is

an almost open set. We intend to prove that
⋃
iAi = U4(Min4Mout).

We see that Mout ⊂ U , so U4(Min4Mout) = (U ∪Min) \Mout.

Suppose that x ∈
⋃
iAi. Either there is some Ui such that x ∈ (Ui \Mi) or there

exists some Mi such that x ∈ (Mi \ Ui). Consider the first case. Then x ∈ U and

x /∈Mout, so x ∈ (U ∪Min) \Mout. Consider the second case, then either x ∈Min

or x ∈ U , but x /∈Mout, so x ∈ (U ∪Min) \Mout. So (
⋃
iAi) ⊂ (U ∪Min) \Mout.

Suppose that x ∈ (U ∪ Min) \ Mout. Then x ∈ U \ Mout or x ∈ Min \ Mout.

Consider the first case. Then there exists some Ui such that x ∈ (Ui \Mi), which

is a subset of Ai, so x ∈
⋃
iAi. Consider the second case. Then x /∈ U and x ∈Mi

for some Mi. So x ∈ Mi \ Ui ⊂ Ai ⊂
⋃
iAi. So ((U ∪Min) \Mout) ⊂ (

⋃
iAi).

So (
⋃
iAi) = (U ∪Min) \Mout = U4(Min4Mout) is an almost open set, so the

almost open sets are closed under countable unions.

(c) The Borel sets are the smallest sigma algebra containing the open sets. Part (b) shows

that the almost open sets are a sigma algebra, and since open sets are almost open,

then form a sigma algebra containing the open sets.

(d) Let A = U4M , where U is open in X and M is meager in X. By Lemma 1.8(a),

we know that M is meager in Y . There exists V , an open subset of Y , such that

V ∩ X = U . There also exists a countable collection of open subsets of Y , call them

{Oi}, such that
⋂
iOi = X. So U = V ∩X = V ∩ (

⋃
iOi). So U is a Borel subset of

Y , so U is almost open in Y . So A = U4M is almost open in Y .

(e) Write A as U4M , where U is open in X and M is meager in X. By Lemma 1.8(a),

we know that M is meager in Y . There exists V , an open subset of Y , such that

V ∩X = U . Let N = V \X, so U = V4N . N is a subset of Y \X, so N is meager in

6



Y . So A = U4M = (V4N)4M = V4(N4M), where V is open in Y and (N4M)

is meager in Y .

(f) Suppose that A = U4M , where U is open and M is meager. Then f(A) = f(U4M) =

f(U)4f(M) by injectivity. Homeomorphisms preserve meager sets, so f(M) is meager,

so f(U)4f(M) = f(A) is almost open.

1.2 Baire Spaces and Polish Spaces

Definition 1.16 (Baire Space). A topological space X is a Baire Space if for any countable

collection {Ni} of closed sets with empty interior,
⋃
iNi has empty interior.

1.2.1 Baire Spaces.

Lemma 1.17. Here are a few properties of Baire Spaces.

(a) Suppose that N ⊂ X ⊂ Y , where X is comeager in Y and Y is a Baire space. Then

N is nowhere dense in X if and only if N is nowhere dense in Y .

(b) Suppose that M ⊂ X ⊂ Y , where X is comeager in Y and Y is a Baire space. Then

M is meager in X if and only if M is meager in Y .

(c) Let Y be a Baire space, X a comeager subset of Y and A ⊂ X ⊂ Y . If A is almost

open in Y then A is almost open in X.

Proof.

(a) (⇒) Let N be nowhere dense in X. Lemma 1.5(a) implies that N is nowhere dense in

Y .

(⇐) Suppose that N is nowhere dense in Y. Assume towards contradition that N

somewhere dense in X. Then intX(NX) 6= ∅. So there exists V ⊂ Y open in Y

such that (V ∩ X) = intX(NX). The closure of a nowhere dense set is nowhere

7



dense, so NY is nowhere dense in Y . Subsets of nowhere dense sets are nowhere

dense, so (V ∩ X) = intX(NX) ⊂ NX ⊂ NY implies that (V ∩ X) is nowhere

dense in Y . This implies that V = (V ∩ X) ∪ (V \ X) is both open in Y and

meager in Y , which is a contradiction.

(b) (⇒) Let M be meager in X. Lemma 1.8(a) implies that M is meager in Y .

(⇐) Since M is meager in Y , there exists a countable collection of nowhere dense

subsets of Y , call them Ni. Part(a) implies that each Ni is nowhere dense in X,

so M is meager in X.

(c) (⇒) Lemma 1.15(e) implies that if A is almost open in X then A is almost open in Y .

(⇐) Suppose that A = U4M is almost open in Y , and that U is open in Y and M

is meager in Y . Consider that U = (U ∩ X) ∪ (U \ X) = (U ∩ X)4(U \ X),

since (U ∩ X) and (U \ X) are disjoint. The subset of a meager set is meager,

so (U \ X) ⊂ Xc
Y is meager in Y . The meager sets are closed under 4, so(

(U \X)4M
)

is meager in Y . So A = (U ∩X)4
(
(U \X)4M

)
, where (U ∩X)

is open in X and
(
(U \X)4M

)
is meager in Y .

1.2.2 Polish Spaces.

Definition 1.18 (Polish space). A topological space X is a Polish Space if it is separable

and completely metrizable.

Lemma 1.19. Here are some properties of Polish spaces.

(a) Polish spaces are Baire spaces by the Baire Category Theorem. [10, P.41]

(b) Closed sets of a Polish space may be written uniquely as the disjoint union of a perfect

set and a countable set. This is the Cantor–Bendixson theorem. [10, P.32]

8



1.2.3 Baire Groups and Polish Groups. The intuition is that topological groups are

both groups and topological spaces where the group operation and inverses preserve nice

properties of the topology. Further, Baire groups and Polish groups are topological spaces

with nice topological properties, but they are also groups with operations that interact well

with the Baire and Polish topological properties.

Definition 1.20. A topological group is a group, call it G, whose underlying set is imbued

with a topology such that F : G×G→ G, given by F (x, y) = x · y, and i : G→ G, given by

i(x) = x−1, are continuous functions.

Definition 1.21 (Baire group/Polish group). A Baire group is a topological group that is

also a Baire space. Likewise, a Polish group is a topological group that is also a Polish space.

We notice that since all Polish spaces are Baire spaces, all Polish groups are Baire groups.

Lemma 1.22. Let G be a Baire group and K be a subgroup of G. Here are some properties

of Baire Groups.

(a) Let X be a Baire group and A ⊂ X. A contains an almost open, non-meager subset if

and only if {ab−1 : a, b ∈ A} contains an open set of the identity of X. [18, p.211]

(b) K is open if and only if it contains a non-meager, almost open set.

(c) If K is a countably indexed non-open subgroup of G then K is not almost open.

(d) There exists a subgroup of a Polish group that is not almost open.

Proof. (a) This a result by Banach, Kuratowski, and Pettis. [18, p.211]

(b) (⇒) Suppose K is open. Open sets are almost open and nonempty open subsets of a

Baire space are non-meager, so K contains itself as a non-meager, almost open

set.

9



(⇐) Suppose K contains a non-meager, almost open subset. By Lemma 1.22(a), there

exists an open set U such that e ∈ U ⊂ {ab−1 : a, b ∈ K}, where e is the identity

of G. Multiplication by a fixed element preserves openness and subgroups are

closed under both multiplication and inversion, so for every k ∈ K we get k =

ke ∈ kU ⊂ k{ab−1 : a, b ∈ K} ⊂ K. So K is open in G.

(c) If K were meager then B would be meager, which is a contradiction.

Part (b) implies that every non-meager subset of A is not almost open. Since A is a

non-meager subset of itself, A is not almost open.

(d) We shall take the Cantor set to be the underlying topological space of ZN
2 . The Cantor

set is a Polish space, and Lemma 1.19(a) says that Polish spaces are Baire spaces, so

ZN
2 is a Baire group.

Let S be the extension of {ei : i ∈ N} to a basis of ZN
2 . We construct a homomorphism

φ : ZN
2 → Z2 by mapping all of the ei’s of ZN

2 to 1, making arbitrary assignments for the

images of the remaining elements of S, and then assigning the images of the non-basis

elements of ZN
2 in a manner consistent with the basis assignments. Then ker(φ) is not

an open subgroup, since (ei) → 0, but φ(ei) = 1. The index of ker(φ) is two, so by

Part (c), ker(φ) is not almost open in ZN
2 .

As a corollary, we notice that this is also an example of a subset of a Polish space that

is not almost open. The homomorphism in this example is from Conner and Spencer

[1, p. 225].

Notice that we used the Axiom of Choice to construct the homomorphism in Lemma

1.22 (d) when we extended {ei : i ∈ N} to a basis of ZN
2 . Later in the paper we will show

that there is no way to construct this homeomorphism using weak versions of the Axiom of

Choice.

10



1.2.4 The Cantor Set.

Definition 1.23 (The Cantor group K). We denote the topological group ZN
2 as K in this

paper. The underlying topological space for this topological group is the Cantor space.

Lemma 1.24. The Cantor space K is homeomorphic to both Kn for any n ∈ N and KN

Proof. Since our Cantor space K is the countably infinite product ZN
2 , the spaces Kn and KN

are merely (ZN
2 )n and (ZN

2 )N, which are both countably infinite products of copies of {0, 1},

which is the definition of K.

11



Chapter 2. Almost Homeomorphisms

The intuition for almost homeomorphisms is that they are “slightly defective” in fulfilling

the requirements to be homeomorphisms. The precise meaning of “slightly defective” is

formalized in the following definition.

Note 2.1. We will be working with subspaces extensively and this necessitates notation

to differentiate between the interior, exterior, closure, etc of a set in a space and in the

subspace. We will use subscripts (e.g. intX(A), AY ) to indicate which space this operation

is respecting.

Definition 2.2 (Almost homeomorphic). A bijection f : X → Y between topological spaces

is an almost homeomorphism if there exist comeager sets C ⊂ X and D ⊂ Y such that

f |C : C → D is a homeomorphism. When there exists an almost homeomorphism between

two topological spaces, we say the spaces are almost homeomorphic.

Lemma 2.3. Here are some properties of almost homeomorphisms.

(a) Homeomorphic spaces are almost homeomorphic.

(b) Suppose that Y is a non-empty, perfect, Baire, Hausdorff space and that X is a co-

countable subset of Y . Then X and Y are almost homeomorphic.

(c) Almost homeomorphisms between Baire spaces preserve almost open sets.

(d) Suppose that F : X1 ×X2 × · · · ×Xn → Y1 × Y2 × · · · × Yn is given by

F (x1, x2, · · · , xn) = (f1(x1), f2(x2), · · · , fn(xn))

and that each fi(xi) : Xi → Yi is an almost homeomorphism. Then F is an almost

homeomorphism.

12



(e) Let X and Y be topological spaces such that X is the disjoint union of a meager set

M with a countable collection of open sets Ai and Y is the disjoint union of a meager

set N with a countable collection of open sets Bi. Suppose also that M and N have

the same cardinality. If there exists an almost homeomorphism fi : Ai → Bi for every

i ∈ N, then there exists an almost homeomorphism F : X → Y .

(f) The property of being almost homeomorphic is an equivalence relation on Baire spaces.

(g) The following spaces are almost homeomorphic: the Cantor set, the closed interval

[0, 1], R, the finite product of [0, 1]’s, Rn, the Hilbert Cube and RN.

Proof.

(a) Suppose X and Y are homeomorphic. Every space is comeager in itself, so X ⊂ X

and Y ⊂ Y are homeomorphic comeager subsets of their respective spaces, so X and

Y are almost homeomorphic.

(b) Let A = Xc
Y and B be an infinite, coinfinite, countable subset of X. We handle the

cases where A is finite and A is infinite separately.

(1) If A is finite with cardinality n, the following function f : Y → X is an almost

homeomorphism.

f(x) =


x x /∈ A ∪B

bi x = ai ∈ A

bi+n x = bi ∈ B

(Injective) Suppose that f(x) = f(y) for some x, y ∈ Y . f(A ∪ B) ∩ f((A ∪ B)c) = ∅,

so either x, y /∈ A ∪ B and x = y or x, y ∈ A ∪ B, so f(x) = f(y) = bi so

x = y = ai for i ≤ n or x = y = bi−n for i > n. So the function is injective.

(Surjective) Suppose that y ∈ X. Then f(y) = y if y /∈ (A ∪ B), or f(ai) = bi if y = bi

for i ≤ n, or f(bi−n) = bi for y = bi for i > n. So the function is surjective.

13



(Restriction) Since the union of meager sets is meager, Y \ (A ∪ B) is a comeager subset

of Y . Lemma 1.17(b) says that a comeager subset of a Baire space that is

contained in a comeager subspace is comeager in that subspace, so X \ B is

comeager in X.

The restriction of f to f |Y \(A∪B) : Y \ (A ∪ B)→ (X \ B) is the identity, so

it is a homeomorphism. So the function f is an almost homeomorphism.

(2) If A is infinite, the following function f : Y → X is an almost homeomorphism.

f(x) =


x x /∈ A ∪B

b2i−1 x = ai ∈ A

b2i x = bi ∈ B

(Bijective) Suppose that f(x) = f(y) for some x, y ∈ Y . f(A ∪ B) ∩ f((A ∪ B)c) = ∅,

so either x, y /∈ A ∪ B and x = y or x, y ∈ (A ∪ B), so f(x) = f(y) = bi

so x = y = a(i+1)/2 for odd i or x = y = bi/2 for even i. So the function is

injective.

(Surjective) Suppose that y ∈ X. Then f(y) = y if y /∈ (A∪B) or y = bi for some bi. If i

is odd then f(a(i+1)/2) = bi and if i is even then f(bi/2) = bi. So the function

is surjective.

(Restriction) Since the union of meager sets is meager, Y \ (A ∪ B) is a comeager subset

of Y . Lemma 1.17(b) says that a comeager subset of a Baire space that is

contained in a comeager subspace is comeager in that subspace, so X \ B is

comeager in X.

So X and Y are almost homeomorphic.

(c) Suppose that h : X → Y is an almost homeomorphism between Baire spaces X and Y

and A ⊂ X is almost open. Then there exist subsets C ⊂ X and D ⊂ Y , which are

comeager in their respective spaces, such that h |C C → D is a homeomorphism.
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Notice that A \C is meager. Lemma 1.15(a) says that the almost open sets are closed

under 4, so (A∩C) = (A4(A \C)) ⊂ C is almost open in X. Lemma 1.17(c) implies

that (A ∩ C) is almost open in C, because C is comeager and X is a Baire space.

Lemma 1.15(f) says that homeomorphisms preserve almost open sets, so h(A ∩ C) is

almost open in D. Lemma 1.17(c) implies that h(A ∩ C) is almost open in Y because

D is comeager in Y and Y is a Baire space.

Notice that h(A \ C) is a subset of the meager set Dc
Y , so it is meager. So

h(A ∩ C)4h(A \ C) = h((A ∩ C)4(A \ C)) = h(A)

is almost open in Y .

Let f :
(
X \ (M ∪ g−1(N))

)
→
(
Y \ (h(M) ∪N)

)
be the restriction of h to

(
X \ (M ∪

g−1(N))
)
. So f is a homeomorphism that is also a restriction of h to a comeager set.

So X and Y are almost homeomorphic.

(d) A function which is bijective in each coordinate is a bijection, so all that remains is to

show that some restriction of F to a comeager subspace is a homeomorphism.

Let Ai ⊂ Xi be a meager set such that fi |(Xi\Ai) (Xi \ Ai) → (Yi \ fi(Ai)) is a home-

omorphism. Lemma 1.8(b) implies that net({Ai}) and net ({fi(Ai)}) = F (net({Ai}))

are meager in X and Y respectively.

Since fi |(Xi\Ai) (Xi \ Ai)→ (Yi \ fi(Ai)) is a homeomorphism, the further restriction

fi |(Xi\πi(net({Ai}))) (Xi \ πi(net({Ai})))→ (Yi \ fi(πi(net({Ai}))))

is a homeomorphism. So F |(X\(net({Ai}))) is the product of homeomorphisms, so it is a

homeomorphism. So F is an almost homeomorphism.
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(e) Let g be a bijection from M to N . Define F as follows:

F (x) =

 g(x) x ∈M

fi(x) x ∈ Ai

Pasting bijections together results in a bijection, so F is a bijection. What remains to

be shown is the property that there exist comeager sets, one in the domain and the

other in the codomain, which are homeomorphic to each other.

Each fi corresponds to a pair of meager sets Mi and Ni, with Mi in the domain

and Ni in the codomain, such that fi |(Ai\Mi) is a homeomorphism with its image.

M ∪
(⋃

i∈NMi

)
and N ∪

(⋃
i∈NNi

)
are meager because countable unions of meager

sets are meager. Pasting homeomorphisms together results in a homeomorphism, so

F |(X\(M∪(⋃i∈NMi))) is a homeomorphism with its image, so F is an almost homeo-

morphism.

(f) (1) A space is homeomorphic to itself and is comeager in itself, therefore a space is

almost homeomorphic to itself.

(2) Being homeomorphic is an equivalence relation, so if A ⊂ X homeomorphic to

B ⊂ Y then B is homeomorphic to A. Both A and B are comeager in their

respective spaces, so Y is almost homeomorphic to X.

(3) Suppose that X is almost homeomorphic to Y and Y is almost homeomorphic to

Z. Then there exist A ⊂ X, B ⊂ Y , C ⊂ Y , and D ⊂ Z such that A and B are

homeomorphic and C and D are homeomorphic, and each set is comeager in its

respective space.

The intersection of countably many comeager sets is comeager, so (B ∩ C) is

comeager in Y . Lemma 1.17(b) says that a subset of a comeager subspace of a

Baire space is comeager in the subspace if and only if it is comeager in the Baire

space, so (B ∩ C) is comeager in both B and C.
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Since B is homeomorphic to A, the image of (B ∩ C) in A is comeager in A. So

the image of (B ∩ C) in A is comeager in X.

Similarly, since C is homeomorphic to D, the image of (B ∩C) in D is comeager

in D, so the image of (B ∩ C) in D is comeager in Z. So there exist comeager

subsets of X and Z that are homeomorphic to each other, namely the images of

(B ∩ C) in X and Z.

(g) We will prove that the Cantor set is almost homeomorphic to both [0, 1] and the Hilbert

cube, and prove that [0, 1] is almost homeomorphic to R; Part (f) will then imply that

all of these spaces are almost homeomorphic to each other.

(1) The Cantor set, [0, 1] and R are almost homeomorphic to each other.

Let D be the dyadic rationals of [0, 1], C = [0, 1] \D, A the accessible points of

ZN
2 and B the inaccessible points of ZN

2 .

Let g : ZN
2 → [0, 1] be given by

a = (a1, a2, · · · ) 7→



∑
i

ai
2i

a ∈ B

1
2

+
∑
i

ai
2i+1

a eventually 1∑
i

ai
2i+1

a eventually 0

g is a bijection that maps A to D and B to C.

We claim that g |B : B → C is a homeomorphism. If we consider the elements

of C to be real numbers in their binary representations, then it is clear that

both B and C are countably infinitely long strings of zeros and ones that are

neither eventually zero nor eventually one, and that g |B : B → C preserves the

natural order of these strings. So g |B is a homeomorphism. So g is an almost

homeomorphism.
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(2) Part (b) states that a non-empty, perfect, Baire Hausdorff space is almost home-

omorphic to any cocountable subspace of itself, so [0, 1] is almost homeomorphic

to (0, 1), and Part (a) says that homeomorphic spaces are almost homeomorphic

to each other, so (0, 1) is almost homeomorphic to R.

(3) The Cantor set, [0, 1]n, the Hilbert cube, Rn, and RN are almost homeomorphic

to each other.

All cases are done analogously to the Hilbert cube case, so only that case will be

shown. Let f : K → [0, 1] be an almost homeomorphism. The function F : KN →

[0, 1]N with each coordinate function being f is an almost homeomorphism by

Part (d). Lemma 1.24 states that K is homeomorphic to KN, so the Hilbert cube

is almost homeomorphic to K.

2.1 Manifolds

A manifold is a special topological space with several nice qualities. Manifolds are metrizable,

are separable, and are locally homeomorphic to Euclidean space. They also have a uniform

dimension and are Hausdorff. These are other nice properties allow us to learn a lot about

manifolds. We shall prove some results about almost homeomorphisms using manifolds as a

familiar starting point.

Definition 2.4 (Manifold). A manifold is a second countable Hausdorff space that is locally

homeomorphic to Rn for some fixed n ∈ N. The number n is called the dimension of M .

Definition 2.5 (Euclidean half-space). The Euclidean half-space of dimension n is a sub-

space of Rn defined to be {(x1, x2, · · · , xn) ∈ Rn | xn ≥ 0}.

Definition 2.6 (Manifold with boundary). A manifold with boundary is a second countable

Hausdorff space that is locally homeomorphic to Rn
+ for some fixed n ∈ N. The number n is

called the dimension of M .
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Note 2.7. We notice that all manifolds are manifolds with boundary, even though not

all manifolds with boundary are manifolds. However, our theorems and lemmas regarding

manifolds are true of manifolds with boundary as well, so we will use the convention in this

paper of calling both manifolds and manifolds with boundary “manifolds.”

Some papers omit the second countability requirement for a manifold, but this paper

does not.

2.1.1 Manifold Decomposition. We will show a technique for decomposing an arbi-

trary manifold into a disjoint collection of subsets that will allow us to construct an almost

homeomorphism to the real line.

This technique is intuitively like taking an n−dimensional ice cream scoop to the manifold

and scooping out a countable collection of picturesque, round, Euclidean scoops. We shall

show that it is possible to scoop out a countably infinite set of Euclidean ice cream scoops

and that what is left is negligible in the sense that what is left over is meager.

Lemma 2.8. A manifold M of dimension n > 1 can be decomposed into a pairwise disjoint

union of a set of the carinality of the continuum which is meager in M and countably infinitely

many homeomorphic copies of Rn.

Proof. Let M be an n dimensional manifold. Since M is second countable there can be

at most countably many disjoint open sets in M . This means that there can be at most

countably many pairwise disjoint balls in M that are homeomorphic to Rn. Let A be a

maximal collection of pairwise disjoint open balls in M , each ball being homeomorphic to

Rn. We shall show that the complement of
⋃
A∈AA is meager.

First, we notice that since
⋃
A∈AA is open, its complement is closed. Suppose that

x ∈ int
((⋃

A∈AA
)c)

. Then there exists an open set U containing x that does not intersect⋃
A∈AA, which further implies that there exists a ball homeomorphic to Rn containing x,

which is itself contained in U . Since U does not intersect any element of A, this is a ball
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homeomorphic to Rn which is disjoint from any element of A. The existence of this ball

contradicts the maximality of A. So int
((⋃

A∈AA
)c)

is empty, so
(⋃

A∈AA
)c

is meager.

We have decomposed M into the countable disjoint union of the elements of A, each of

which is a ball homeomorphic to Rn, and the meager set
(⋃

A∈AA
)c

.

If
(⋃

A∈AA
)c

is not of the cardinality of the continuum, then
(⋃

A∈AA
)c

has cardinality

less than the continuum, because manifolds are of the cardinality of the continuum (so long as

the manifold is not zero dimensional). So we need to add points to
(⋃

A∈AA
)c

while retaining

its meagerness. We shall do this by dividing an element of A into two homeomorphic copies

of Rn and a meager set, then redefining A to reflect the new collection of homeomorphic

copies of Rn. Take one ball from A. This ball is homeomorphic to Rn. We can divide this ball

into three subsets, (−∞, 0)×Rn−1, {0}×Rn−1, and (0,∞)×Rn−1. Both of (−∞, 0)×Rn−1

and (0,∞)×Rn−1 are homeomorphic to Rn, while {0}×Rn−1 is meager in the ball. Lemma

1.8(a) implies that {0}×Rn−1 is meager in M , because it is meager in a subspace of M . So

(
{0} × Rn−1) ∪(⋃

A∈A
A

)c

is meager in M . Since the cardinality of {0}×Rn−1 is the cardinality of the continuum, the

newly constructed meager set is also of the cardinality of the continuum. We redefine A.

Suppose that there are only finitely many elements of A. Then we can take one element

of A and decompose it into the countably infinitely many sets of the form (m1,m1 + 1) ×

(m2,m2 + 1)×· · ·× (mn,mn + 1) where mi ∈ Z for all i. We shall call the collection of these

sets B and note that each element of B is homeomorphic to Rn.

The complement of the union of the elements of B is the set

(⋃
B∈B

B

)c

Rn

= {x ∈ Rn | x has at least one integer coordinate}

which is the net of n copies of Z in Rn, so it is meager by Lemma 1.8(b).
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The union of {x ∈ Rn | x has at least one integer coordinate} and
(⋃

A∈AA
)c

is meager,

while the union of A and B is a countably infinite collection of homeomorphic copies of

Rn.

2.1.2 Manifolds are Almost Homeomorphic.

Theorem 2.9. All manifolds of at least dimension 1 are almost homeomorphic to each other.

Proof. We shall split into the one dimensional case and the more than one dimensional case.

(1) Suppose that X is a one dimensional manifold. The one dimensional manifolds are

countable disjoint unions of R, [0, 1], [0, 1), and S1. It is possible to remove at most

countably many points from a one dimensional manifold to leave an at most countable

collection of homeomorphic copies of R. This allows us to apply Lemma 2.3(b).

If there are countably infinitely many copies of R after removing the aforementioned

points, then each is homeomorphic to (m,m+ 1),m ∈ N and by the pasting properties

of almost homeomorphisms in Lemma 2.3(e) we have an almost homeomorphism.

If there are only finitely many copies of R after the point removal, but at least 2 copies,

then a similar technique is used, except that one of the copies is homeomorphed to

(−∞, 0) and another is homeomorphed to (n,∞), for an appropriate n ∈ N. The

remaining copies, if any, are mapped to (m,m+ 1) for m ∈ N but less than n.

If there is only one copy of R then we are done.

(2) Lemma 2.8 implies that a manifold of dimension at least 2 can be decomposed into a

disjoint union of a meager set of cardinality of the continuum and countably infinitely

many homeomorphic copies of Rn. Call the meager set M and let {Ai} be the countably

many homeomorphic copies of Rn.

Let g be a bijection from M to the usual “middle thirds” Cantor set embedded in the

closed interval [0, 1]. There are countably many open intervals in the complement of
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the Cantor subset of [0, 1], and each of these open intervals are almost homeomorphic

to Rn by Lemma 2.3(g). Let fi : Ai → (ai, bi) be an almost homeomorphism between

Ai and the ith open interval in the complement of the Cantor subset of [0, 1].

Lemma 2.3(e) implies that

F (x) =

 g(x) x ∈M

fi(x) x ∈ Ai

is an almost homeomorphism.

So all manifolds of at least dimension 1 are almost homeomorphic to each other.

2.2 Perfect Polish Spaces

Definition 2.10 (Perfect Polish space). A perfect Polish space is a Polish space with no

isolated points.

2.2.1 Polish Space Decomposition.

Theorem 2.11. If Y is an imperfect Polish space containing a non-almost open set, then

there exists a perfect Polish subspace of Y which contains a non-almost open set.

Proof. Let A be the non-almost open subset of Y . Since Polish spaces are Hausdorff, sin-

gleton sets of Y are closed and countable unions of closed sets are almost open by Lemma

1.15(b), which states that the almost open sets form a sigma algebra. So a non-almost open

set would need to be of uncountable cardinality. This means that Y can be decomposed into

a perfect set X and a countable set P by Part (b).

The set (A\X) is a countable subset of the Polish space Y , so it is an almost open subset

of Y . We see that

A = (A ∩X) ∪ (A \X) = (A ∩X)4(A \X)
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because (A ∩ X) and (A \ X) are disjoint. Suppose that (A ∩ X) were almost open in Y .

Then by Lemma 1.15(a), which states that the almost open sets form a group under 4, A

is almost open. This is a contradiction. So (A ∩X) is not almost open in Y .

X is the complement of a countable set, so X is a Gδ subset of Y . Lemma 1.15(d) states

that a set which is almost open in a Gδ subspace must be almost open in the superspace, so

the contrapositive to Lemma 1.15(d) implies that since (A ∩X) is not almost open in Y , it

cannot be almost open in X.

So X is a Polish subspace of Y containing a non-almost open set and containing no

isolated points.

Definition 2.12 (Borel measurable). A function f : X → Y is a Borel measurable function

if for every Borel set B ⊂ Y the preimage f−1(B) is Borel in X.

Definition 2.13 (Baire measurable). A function f : X → Y is a Baire measurable function

if for every open set U ⊂ Y , the preimage f−1(U) is almost open in X.

Lemma 2.14. Borel measurable functions are Baire measurable functions.

Proof. Suppose that f : X → Y is Borel measurable. Let U be open in Y . Then f−1(U) is

Borel in X. Borel sets are almost open by Lemma 1.15(c). So f is Baire measurable.

Lemma 2.15. If X is an non-empty, perfect Polish space, then there exists a dense Gδ

subset of X which is homeomorphic to NN.

Proof. Let f : D → X be a continuous bijection from a closed subset of NN. This is possible

by Theorem 2.6.9 of [11, P. 77] which states that every Polish space is the one-to-one con-

tinuous image of a closed subset of NN. Suppose that J ⊂ D is a Borel set. Then f(J) is

Borel by Theorem 4.5.4 in [11, P. 153], which says that if X, Y are Polish, A ⊂ X, and the

function f : A → Y is one-to-one and continuous then f(A) is Borel. The implication that

J being Borel causes f(J) to be Borel is equivalent to f−1 being Borel measurable.

Every Borel measurable function is Baire measurable by Lemma 2.14, so Proposition 3.5.8

[11, P. 110] implies that there exists A ⊂ X which is comeager in X such that f−1 |A : A→ D
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is continuous. Since f was one-to-one and continuous, the restriction f−1 |A : A→ f−1(A) is

a homeomorphism. By a theorem of Lavrentiev [11, P. 55] there exist Gδ sets B and C such

that f−1(A) ⊂ C ⊂ NN and A ⊂ B ⊂ X such that f−1 |A : A→ f−1(A) can be extended to

a homeomorphism g : C → B.

We notice that neither B nor C have any isolated points, because B is a dense Gδ subset

of X and X has no isolated points.

Let Q be a countable dense subset of C. We shall show that C \Q is a Gδ subset of NN

with no isolated points such that any compact subset of C \Q has empty interior.

C is a Gδ subset of NN so its complement in NN is an Fσ. Points are closed in NN, so

Cc
NN ∪Qc

C is a countable union of closed sets of NN, so the complement of Cc
NN ∪Qc

C , namely

C \Q is a Gδ subset of NN.

Suppose that K ⊂ C \Q is compact and has nonempty interior in C \Q. Then we can

pick a nonempty open set O ⊂ C such that K ∩ O = (C \ Q) ∩ O. By the density of Q,

there exists a point x ∈ O ∩ Q. Since C has no isolated points we can choose a sequence

{xn} ⊂ C which converges to x and does not intersect Q. Eventually {xn} is in O, so it is

eventually in O ∩K = (C \ Q) ∩ O. This implies that the metric on K induced from C is

not complete, which contradicts every metric on a compact metric space being complete.

So C \ Q is a Gδ subset of NN, so it is a Polish space that has no isolated points. A

theorem of Alexandrov and Urysohn [10, Theorem 7.7] implies that C \Q is homeomorphic

to NN. We notice that g(C \Q) is a dense Gδ subset of X that is homeomorphic to NN.

Lemma 2.16. An non-empty, perfect Polish space contains a nowhere dense set of the

cardinality of the continuum.

Proof. Let X be an uncountable Polish space without isolated points. Proposition 2.6.1

in [11] states that every uncountable Polish Space without isolated points contains a subset

which is homeomorphic to the Cantor set, call the subset A and the homeomorphism f : K →

A.
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The Cantor set, denoted K, is homeomorphic to K2 by Lemma 1.24, call the homeomor-

phism g : K ×K → K. So (f ◦ g) : K ×K → A is a homeomorphism.

Pick a point in K, call it x. By Lemma 1.5(b) we know that {x} × K is nowhere dense

in K×K. Homeomorphisms preserve nowhere density, so (f ◦ g)({x}×K) is nowhere dense

in A. Restrictions of homeomorphisms are homeomorphisms, so (f ◦ g) |{x}×K : {x} × K →

(f ◦g)({x}×K) is a homeomorphism. But {x}×K is homeomorphic to K, so (f ◦g)({x}×K)

is a homeomorphic copy of K that is nowhere dense in A.

Lemma 1.5(a) states that being nowhere dense in a subspace implies being nowhere dense

in a superspace, so (f ◦ g)({x}×K) is a nowhere dense subset of X which is homeomorphic

to K.

2.2.2 Non-Empty Perfect Polish Spaces are Almost Homeomorphic. This result

is strictly stronger than Theorem 2.9, but relies on a stronger knowledge of descriptive set

theory than the proof of the manifold case does. The manifold case uses a topological

argument that will feel more natural to a topologist and give intuition for this stronger

result.

The theorem shows that all uncountable Polish spaces without isolated points are al-

most homeomorphic. Since meager sets cannot contain isolated points, it isn’t possible to

strengthen the theorem much more than this. If two uncountable Polish spaces share the

same cardinality of isolated points in an immediate corollary, but Polish spaces with differ-

ing numbers of isolated points cannot be almost homeomorphic because no isolated point

(which is non-meager as a singleton set) can be sent to a non-isolated point (which wound

be nowhere dense) by an almost homeomorphism.

Theorem 2.17. All non-empty, perfect Polish spaces are almost homeomorphic.

Proof. Suppose X and Y are uncountable Polish spaces without isolated points. There exist

nowhere dense sets KX ⊂ X and KY ⊂ Y which are each homeomorphic to the Cantor set

K. Then X \ KX and Y \ KY are Polish spaces with no isolated points, so by Lemma 2.15
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there exist dense Gδ subsets ZX ⊂ X \ KX and ZY ⊂ Y \ KY which are homeomorphic

to NN, therefore they are homeomorphic to each other. Further, X \ ZX and Y \ ZY are

each of cardinality 2ℵ0 and are meager in X and Y respectively, so X and Y are almost

homeomorphic.
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Chapter 3. Inscrutability

There is a long history in mathematics of categorizing the complexity of various objects or

difficulty of various tasks. Bachmann [14] and Landau [15] developed the Bachmann–Landau

notation “Big O” classification for the amount of time it would take for a computer to solve

a problem. Turing [16] and Church defined rigorously what it means for a problem to

be computable. The definition they devised gives a useful boundary between what we can

reasonably consider to be solvable by some computer and what cannot be solved by computer.

We parallel these definitions to give a rigorous definition of what it means for a human to

be able to visualize or picture a mathematical object. Intuitively, a scrutable object is able

to be constructed in countably many decisions; a countably infinite number of successively

improving approximations can be made which approach the actual object arbitrarily well.

On the other hand, an inscrutable object is an object that cannot be constructed using

countably many choices, where these choices need not be made at the same time and which

may not be algorithmically related. Bases for R as a vector space over Q, a set of group

theoretic cosets of Q in R, and non-principle ultra-filters are examples of such objects.

3.1 Axiom Systems

The definition of inscrutability is based on the relationship between the Zermelo-Fraenkel

axioms and the Axiom of Choice, so we will review these in preparation for the formal

definition of inscrutability.

Definition 3.1 (Inconsistent). An axiomatic system is said to be inconsistent if a contra-

diction can be derived from the axioms.

Definition 3.2 (Consistent). An axiomatic system is said to be consistent if it is not in-

consistent
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Example 3.3. The axiom system {P,¬P} allows the statement “P and ¬P” to be derived,

so this axiom system contains a contradiction.

Definition 3.4 (Equiconsistent). Two axiomatic systems, A and B, are equiconsistent if the

consistency of A implies the consistency of B and the consistency of B implies the consistency

of A.

Definition 3.5 (Addition of an axiom to an axiomatic system). If A is an axiomatic system

and P is an axiom, it is possible to form a new (possibly inconsistent) axiomatic system

that contains all of the axioms of A and the axiom P . This concatenated system is denoted

A+ P

Definition 3.6 (Concatenation of axiomatic systems). If A and B are axiomatic systems, it

is possible to form a third (possibly inconsistent) axiomatic system that contains all of the

axioms of A and B. This concatenated system is denoted A+ B

Note 3.7. We notice that for axiomatic systems A,B, and A+B, the consistency of A+B

implies the consistency of A and B.

That is, you may always delete axioms from a consistent system while preserving consis-

tency.

3.1.1 Zermelo-Fraenkel Axioms. The Zermelo-Fraenkel axioms are the most com-

monly used axiom system in mathematics currently, although most mathematicians will add

the Axiom of Choice to the original set that Zermelo and Fraenkel originally proposed.

Definition 3.8 (Zermelo-Fraenkel Axioms). The Zermelo-Frankel axioms [21], denoted ZF,

are the following eight axioms:

Extensionality ∀A, ∀B[∀x(x ∈ A⇔ x ∈ B)⇒ A = B]

This axiom states that two sets are equal if they have exactly the same

elements.
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Foundation ∀A(A 6= ∅ ⇒ ∃x ∈ A(x ∩ A = ∅))

This axiom states that every nonempty set A contains an element x such

that the intersection of A and x as sets is empty. This is not to be confused

with the intersection of A and the set containing x, denoted {x}, which

would have x as an element and would be nonempty.

Specification ∀A, ∀p, ∃B, ∀x(x ∈ B ⇔ ∃x(x ∈ A ∧ φ(x, p))

This axiom states that for any property φ with parameter p and any set A

there exists a subset of A consisting of the elements of A which satisfy φ.

Union ∀A, ∃B, ∀x(x ∈ B ⇔ ∃y(y ∈ A ∧ x ∈ y))

This axiom states that for any set A the union of the elements of A as sets

can be formed.

Pairing ∀x,∀y,∃A,∀z(z ∈ A⇔ (x = a ∨ x = b))

This axiom states that for any two objects a set containing exactly those

two elements can be formed.

Replacement ∀x,∀y,∀z[φ(x, y, p) ∧ φ(x, z, p) ⇒ y = z] ⇒ ∀X, ∀Y, ∀y[y ∈ Y ⇔ (∃x ∈

X)φ(x, y, p)]

This axiom states that if F is a function and X is a set then there exists an

image of X under F .

Power Set ∀A∃B∀x(x ∈ B ⇔ x ⊂ A)

This axiom allows for the creation of the power set of a set.

Infinity ∃A[∅ ∈ A ∧ (∀x ∈ A)](x ∪ {x}) ∈ S

This axiom states that there exists an infinite set.
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3.1.2 Choice Axioms. A choice axiom dictates the types of choices allowed in an ax-

iomatic system. The most powerful choice axiom is the Axiom of Choice (AC). There are

several weaker choice axioms, with the most commonly used of these being the Axiom of

Dependent Choice (DC). The Axiom of Choice allows an arbitrary number of choices to be

made, while the Axiom of Countable Choice only allows countably many choices to be made.

The Axiom of Dependent Choice is strictly stronger than the Axiom of Countable Choice,

and strictly weaker than the Axiom of Choice; it allows a countable number of choices to be

made, like ACC, but allows each choice to be made individually with its output depending

on the choices that were made previously.

Here are two equivalent definitions of multivalued function, and their corresponding

equivalent statements of the Axiom of Dependent Choice.

Definition 3.9 (Multivalued Function). Let S be a set. A multivalued function on S is a

relation F ⊆ S × S such that for all s ∈ S there exists s′ ∈ S such that (s, s′) ∈ F .

Axiom 3.10 (Dependent Choice). The Axiom of Dependent Choice (DC) states that for

any nonempty set S and multivalued function F on S there exists a sequence {sn}n∈N such

that (sn, sn+1) ∈ F . Note that if F is simply a function we do not require DC to construct

such a sequence, for we may select s0 ∈ S and define by recursion F (sn) = sn+1.

Definition 3.11 (Multivalued Function). Let S be a set. A multivalued function on S is a

function f : S → P(S).

Axiom 3.12 (Dependent Choice). The Axiom of Dependent Choice (DC) states that for

any nonempty set S and multivalued function f on S there exists a sequence {sn}n∈N such

that sn+1 ∈ f(sn). Note that if F is simply a function we do not require DC to construct

such a sequence, for we may select s0 ∈ S and define by recursion F (sn) = sn+1.

Definition 3.13 (Zermelo-Fraenkel Axioms with the Axiom of Dependent Choice). The

Zermelo-Fraenkel Axioms with the Axiom of Dependent Choice is ZF + DC.
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Axiom 3.14 (The Axiom of Choice). The Axiom of Choice (AC) states that for any set X

of nonempty sets there exists a choice function on X.

Definition 3.15 (Zermelo-Fraenkel Axioms with the Axiom of Choice). The Zermelo-

Fraenkel Axioms with the Axiom of Choice, denoted ZFC are defined as follows ZFC =

ZF + AC

3.2 Formal Definition of Inscrutability

Definition 3.16 (Inscrutable). A class P is inscrutable if

ZFC + “P is empty” is inconsistent

and

ZF + DC + “P is empty” is equiconsistent with ZFC.

Definition 3.17 (Scrutable). A class P is scrutable if ZF + DC + “P is empty” is incon-

sistent.

3.3 Inscrutable Subsets of Polish Spaces

Polish spaces are topological spaces that have a lot of nice properties; they are Hausdorff,

they are separable, they have a metric, and they are complete, just to name a few of their

nice properties. Even in these nice objects we can create pathological objects inside of them.

Here are a few ways to create inscrutable subsets of Polish spaces.

3.3.1 Non-Almost Open Subsets of Polish Spaces Are Inscrutable.

Theorem 3.18. The class of non-almost open subsets of Polish spaces is inscrutable.

Proof.

(a) The kernel of the homomorphism in Lemma 1.22(d) is not almost open. This shows

that ZFC + “All subsets of Polish spaces are almost open” is inconsistent.
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(b) Next we show that ZF + DC + “All subsets of Polish spaces are almost open” is

equiconsistent with ZFC.

(⇒) The consistency of ZF + DC + “All subsets of Polish spaces are almost open”

implies the consistency of ZF which implies the consistency of ZFC by [17, P. 53].

(⇐) Assume that ZFC is consistent. Shelah showed that the consistency of ZFC implies

the consistency of ZF + DC + “Every subset of R is almost open” [3, p. 43].

Suppose P is a Polish space in a model of ZF + DC + “Every subset of R is almost

open” and that A ⊂ P is a non-almost open subset of P . Theorem 2.11 implies

that there is a subspace of P containing no isolated points, but also containing a

non-almost open set. Call this subspace X and its non-almost open subset B.

Lemma 2.17 implies that there exists an almost homeomorphism h : X → R,

while Lemma 2.3(c) implies that almost homeomorphisms between Baire spaces

preserve almost openness, so h(B) is a non-almost open subset of R.

This implies that the existence of a non-almost open subset of a Polish space

contradicts ZF + DC + “Every subset of R is almost open.” So ZF + DC + “All

subsets of Polish spaces are almost open” is consistent.

So the class of non-almost open subsets of Polish spaces is an inscrutable class.

3.3.2 Inscrutable Subgroups of Polish Groups.

Theorem 3.19. The class of non-open, countably indexed subgroups of Polish groups is an

inscrutable class.

Proof. (a) First we show that ZFC + “The class of non-open, at most countably indexed

subgroups of Polish groups is empty” is inconsistent.

The kernel of the homomorphism in Lemma 1.22(d) is a finitely indexed, non-open

subgroup of a Polish group, so ZFC + “The class of non-open, at most countably

indexed subgroups is empty” is inconsistent.
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(b) Now we show that ZF + DC + “The class of non-open, at most countably indexed

subgroups of a Polish group is empty” is equiconsistent with ZFC.

(⇒) The consistency of ZF + DC + “The class of non-open, at most countably indexed

subgroups of Polish groups is empty” implies the consistency of ZF which implies

the consistency of ZFC by [17, P. 53].

(⇐) Assume that ZFC is consistent. Theorem 3.18 implies the consistency of ZF + DC

+ “All subsets of Polish spaces are almost open”. Assume that K is a non-open,

at most countably indexed subgroup of a Polish group in a model of ZF + DC +

“All subsets of Polish spaces are almost open.”

Lemma 1.22(c) implies that K is not almost open, which contradicts “All subsets

of Polish spaces are almost open.” So ZF + DC + “The class of non-open, at

most countably indexed subgroups of Polish groups is empty” is consistent.

So the class of non-open at most countably indexed subgroups of Polish spaces is an

inscrutable class.

3.3.3 Bases of R over Q as a Vector Space Are Inscrutable.

Lemma 3.20. The existence of a basis for R over Q as a vector space implies the existence

of a subset of R that is not almost open.

Proof. Suppose that B is a basis for R over Q. Pick b ∈ B, and let V be the span of B \{b}.

Notice that qb+ V is the homeomorphic image of V under f(x) = qb+ x for all q ∈ Q, and

{qb+ V | q ∈ Q} is a countable partition of R, so V cannot be meager.

We contruct the set {a − b | a, b ∈ V }. Lemma 1.22(a) states that {a − b | a, b ∈ V }

contains an open set of 0 if and only if V contains a non-meager almost open set. Since

Qb∩ V = ∅, there is no open set in V . So V is not almost open, which implies that B is not

almost open.
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Theorem 3.21. The class of bases of R over Q as a vector space is an inscrutable class.

Proof. (a) First we notice that ZFC + “bases of R over Q as a vector space is empty” is

inconsistent.

(b) Next we show that ZF + DC + “There does not exist a basis for R over Q as a vector

space” is equiconsistent with ZFC.

(⇒) The consistency of ZF + DC + “There does not exist a basis for R over Q as a

vector space” implies the consistency of ZF which implies the consistency of ZFC

by [17, P. 53].

(⇐) Assume that ZFC is consistent. Theorem 3.18 implies the consistency of ZF +

DC + “Every subset of R is almost open.”

Suppose that B is a basis for R over Q as a vector space in ZF + DC + “Every

subset of R is almost open.”

Lemma 3.20 implies that a basis for R over Q as a vector space is not almost

open.

This implies that the existence of a basis for R over Q as a vector space contradicts

ZF + DC + “Every subset of R is almost open” So ZF + DC + “There does not

exist a basis for R over Q as a vector space” is consistent.

So the class of bases of R over Q as a vector space is an inscrutable class.

3.4 Intangible Homomorphisms

As stated in the abstract, there exist homomorphisms in ZFC that are not induced by the

π1 functor. We formally define this property here and give it a simple term with which to

reference it throughout the paper (i.e. “intangible”).

3.4.1 1-Skeletons, Basepoint Invariance of Kernels, and Peano Continua. While

path connected topological spaces have the property that changing the basepoint of the space
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gives isomorphic fundamental groups, homomorphisms from one such fundamental group

have no canonical correspondence to homomorphisms from another fundamental group based

at a different point. We show that even though there is no cannonical correspondence, that

the kernels of these homomorphisms is an invariant.

Lemma 3.22. A loop in a simplicial complex X is homotopic to a loop contained in the

1-skeleton of X.

Proof. Let l be a loop in X. Let δ be a simplex of maximal dimension in X. Suppose ∆

has dimension greater than 1. Let s be a connected component of (l ∩∆) . If s contains the

center of ∆ (using barycentric coordinates), then s can be homotoped so as not to contain

the center of δ as seen in the proof of Proposition 1.14 in [7, P. 35].

The projection of s to the boundary of ∆ is homotopic to s, because a punctured sim-

plex is homotopic to its boundary, so s is homotopic to its image under such a projection.

By repeating this process for every connected component of the intersection of l with an

n−simplex, we find that l is homotopic to a curve that is contained in the (n− 1)−skeleton

of X. By induction, l is homotopic to a loop that is contained in the 1-skeleton of X.

Definition 3.23 (Peano continuum). A Peano continuum is a nonempty, compact, con-

nected, locally connected metric space.

Definition 3.24 (Loop). A loop of X is the a function f : [0, 1]→ X such that f(0) = f(1).

The basepoint of a loop is f(0).

Definition 3.25 (Free homotopy). A free homotopy class of X is the a function f : [0, 1]×

[0, 1] → X such that f(·, 0) is the loop a f(·, 1) is the loop b and f(0, s) = f(1, s) for all s.

The basepoint of a loop is f(0). The free homotopy class of a loop is the set of loops which

are freely homotopic to it.

Definition 3.26 (Trivial free homotopy class relative to φ). Let C be a free homotopy class

of loops of X. C is trivial relative to φ : π1(X, x)→ G if there exists a loop α ∈ C based at

x such that [α] ∈ ker(φ). We denote this property by C ∈ kerφ.
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Figure 3.1: Conjugation by a path P

α PαP−1

1

Lemma 3.27. If φ′ : π1(X, x1)→ G is induced by φ : π1(X, x0)→ G then H ∈ kerφ implies

H ∈ kerφ′. By induced we mean φ′ = φ◦ ip where ip is the isomorphism given by conjugation

by a path P from x0 to x1, [α]π1(X,x0) 7→ [PαP−1]π1(X,x1).

This proves that the kernel of a homomorphism from the fundamental group of a space

is invariant under choice of basepoint.

Proof. Let H ∈ kerφ. There exists α ∈ H based at x0 such that [α] ∈ kerφ. Let P be

a path such that φ′ = φ ◦ iP . Then P−1αP ∈ H and φ′([P−1αP ]) = φ(iP ([P−1αP ])) =

φ([PP−1αPP−1]) = φ([α]), which is trivial. So H ∈ kerφ′.

3.4.2 Local Triviality. Intuitively, for a homomorphism of groups φ : π1(X, x0) →

π1(Y, y0) to be intangible, the homomorphism must require some sequence of small loops of

X to be mapped to loops that do not get small in Y . Local triviality is the opposite of this

condition. That is, local triviality of a space relative to a homomorphism implies that there

is a continuous function inducing the homomorphism because the homomorphism allows all

small loops to be mapped to small loops. We study the property formally in the lemmas in

this section.
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Figure 3.2: Commutative Diagram for Lemma 3.31
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π1(X) φ π1(Y )
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The notions of 2-set simple (rel φ) and locally trivial (rel φ) are defined in [2, pp. 2670-

2671].

Definition 3.28 (2-set simple (rel φ)). Let X be a topological space, φ : π1(x) → K be a

homomorphism of groups, and C an open cover of X by path connected sets. The cover C

is 2-set simple (rel φ) if for every [γ] ∈ π1(X) and γ is freely homotopic to a curve contained

in the union of two elements of C then [γ] ∈ ker(φ).

Definition 3.29 (Locally trivial (rel φ)). Let X be a topological space and φ : π1(X)→ K

be a homomorphism of groups. The space X is locally trivial (rel φ) if every point x ∈ X is

contained in an open neighborhood U of x such that any homotopy class based at x which has

a representative contained in U lies in ker(φ). This property is independent of the basepoint

chosen in X.

Definition 3.30 (Tangible homomorphism). Let X be a Peano continuum, Y be an as-

pherical simplicial complex and φ : π1(X, x0) → π1(Y, y0) is an abstract homomorphism.

Then φ is tangible if there exists a continuous function f : X → Y such that f∗ = φ. The

homomorphism φ is intangible (as a homomorphism of groups) if no such f exists.

Theorem 3.31. Let X be a nonempty, connected, locally path connected metric space and Y

an aspherical simplicial complex. Then X is locally trivial (rel φ) if and only if φ is tangible.
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Proof. (⇒) Let φ : π1(X)→ π1(Y ) have the property that X is locally trivial (rel φ). Cover

X with open sets that are trivial (rel φ). There is a locally finite subcover of this cover. Each

x ∈ X is covered by finitely many elements of this subcover, so there exists δx such that the

ball B(x, δx) is contained in the intersection of the elements of the subcover which contain

x. The collection {B(x, δx
3

) | x ∈ X} is a cover of X, so the collection of the connected

components of elements of this cover is also a cover. Since X is locally path connected,

elements of this cover are path connected. There exists a locally finite subcover of this cover,

call it C. The union of two intersecting elements of C is contained in a set that is trivial

(rel φ) so C is 2-set simple (rel φ). Let N(C) denote the nerve of C.

Theorem 7.3 in [2, p. 2670] implies that φ factors through a map as follows:

ψ∗ : π1(X, xo)→ π1(N(C))→ π1(Y, y0).

The proof of this theorem constructs a continuous function from X to N(C) that induces

ψ∗, call it ψ : X → N(C), so there exists σ : π1(N(C))→ π1(Y ) such that φ = σ ◦ ψ∗. This

reduces the problem of finding a continuous function f : X → Y that induces φ to finding a

continuous function h : N(C)→ Y that induces σ.

By Lemma 3.22, we know that the fundamental group of the 1-skeleton of N(C) contains

the fundamental group of N(C). If we take an injective loop l in the 1-skeleton of N(C),

then we have an ordered list of vertices traversed by l, which can be mapped to the ordered

list of points received by taking an injective loop in the homotopy class σ([l]). Doing this

for all injective loops of the 1-skeleton of N(C) gives a vertex map from N(C) to Y , which

extends to a continuous map from N(C) to Y that induces σ.

(⇐) Let X be a topological space, Y a locally simply connected space, and f : X → Y

be continuous. Let p ∈ X and U be a simply connected open set containing f(p). Then any

loop based at p and contained in f−1(U) lies in ker f∗. So X is locally trivial (rel f∗). Since

this works for X a general topological space and Y a general locally connected space, the
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theorem holds in this direction for the less general case of the hypotheses.

Definition 3.32 (The Hawaiian earring). The Hawaiian earring is the one point compact-

ification of a disjoint union of countable many arcs. Notice that each arc is compactified

to be a copy of S1. We will use the following conventions: HE will denote the Hawaiian

earring, HEG denotes π1(HE), li denotes the ith copy of S1, fi denotes a parameterization

of li, ci denotes the element of HEG representing the homotopy class of li.

Theorem 3.33. Let X be a nonempty, locally path connected, first countable space and

φ : π1(X) → G. X is locally trivial (rel φ) if and only if for every continuous function

g : HE→ X, the element (φ ◦ g∗)(ci) is trivial for some i.

Proof. (⇒) Suppose there exists a continuous function g : HE→ X such that (φ ◦ g∗)(ci) is

non-trivial for all i. By continuity of g, the sequence of loops g(li) converges to a point, so

every open set containing the point of convergence contains a loop mapped non-trivially by

φ.

(⇐) Let X be first countable and not locally trivial (rel φ). There exists p ∈ X such

that every open set containing p contains a loop α such that φ([α]) is not trivial. Conjugate

the loop with a path connecting the basepoint of the loop with the basepoint of X. X is first

countable, so there exists a sequence of nested open sets {Ui} whose intersection is {p}. For

each Ui choose a loop αi ⊂ Ui based at p such that φ([αi]) is not trivial. We now have a

sequence of loops based at p, such that no loop of the sequence is mapped trivially.

We construct g : HE→ X by mapping li of HE to αi, with the basepoint of HE being

mapped to p ∈ X. This gives a continuous function from HE to X such that φ(g∗(ci)) =

φ([αi]) 6= 1 for all i.

Corollary 3.34. Let X be a Peano continuum and Y an aspherical simplicial complex. A

homomorphism φ : π1(X) → π1(Y ) is tangible if and only if for every continuous function

g : HE→ X, (φ ◦ g∗)(ci) is trivial for some i.

Proof. This follows immediately from Theorems 3.31 and 3.33.
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3.4.3 The Shelah Function. We borrow a function that was developed by Shelah that

will let us build a non-almost open set in K from an intangible homomorphism.

Definition 3.35 (Shelah function). We define the Shelah function from the Cantor group

to the Hawaiian earring group, Sh : ZN
2 → HEG , by

a = (a1, a2, · · · ) 7→ Sh(a) = [α].

Where α is the loop given by

α(x) =

 fi
(
2i(x− 1 + 1

2i
)
)
, x ∈

[
1− 1

2

i
, 1− 1

2

i+1]
and ai = 1

x0, x ∈
[
1− 1

2

i
, 1− 1

2

i+1]
and ai = 0

where fi is a parameterization of the ith copy of S1 in the Hawaiian earring and x0 is the

basepoint of the Hawaiian earring. This loop α is the loop that “goes around” ci if ai = 1

and doesn’t “go around” ci if ai = 0.

Definition 3.36 (Weakly locally path connected). A topological space X is weakly locally

path connected if for every point x ∈ X and every open set U such that x ∈ U there exists

an open set V such that x ∈ V ⊂ U and for all v ∈ V there exists a path from x to v in U .

Lemma 3.37. [4] If X is a weakly locally path connected compact metric space and π1(X)

is not finitely generated, then there exists a point x ∈ X such that every neighborhood U of

x contains a loop at x (i.e. an f ∈ π1(X, x)) which is essential in X (i.e. [f ] is not the unit

in the homotopy group).

Lemma 3.38. Suppose that φ : HEG → G is a homomorphism that maps all of the base

loop equivalence classes non-trivially. Suppose also that a, b ∈ ZN
2 , where a = (a1, a2, · · · )

and b = (b1, b2, · · · ), such that {i | ai 6= bi} is a singleton set. Then (φ ◦Sh)(a) 6= (φ ◦Sh)(b).
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Proof. Suppose that a, b ∈ ZN such that {i | ai 6= bi} = {j}. Suppose also that a = uv and

b = uejv, where ui = 0 for all i ≥ j and vi = 0 for all i ≤ j. Then

φ(Sh(a))[φ(Sh(b))]
−1 = φ(Sh(u)Sh(v))[φ(Sh(u)Sh(ei)Sh(v))]−1

= φ(Sh(u))φ(Sh(v))[φ(Sh(v))]−1[φ(Sh(ei))]
−1[φ(Sh(u))]−1

= φ(Sh(u))[φ(Sh(ei))]
−1[φ(Sh(u))]−1

By assumption, each ei is mapped non-trivially, so (φ ◦ Sh)(a) 6= (φ ◦ Sh)(b).

Lemma 3.39. Suppose that φ : HEG→ G is a homomorphism that maps all of the base loop

equivalence classes nontrivially. No ej is contained in {ab−1 | a, b ∈ (φ ◦ Sh)−1(g)} for any

g.

Proof. Suppose that ej ∈ {ab−1 | a, b ∈ (φ ◦ Sh)−1(g)} for some g ∈ G. Then there exist

a, b ∈ (φ ◦ Sh)−1(g) such that ab−1 = ab = ej. This implies that {i | ai 6= bi} = {j}. Lemma

3.38 implies that a and b cannot be in the same point preimage under (φ ◦ Sh), which is a

contradiction. So ej cannot be in {ab−1 | a, b ∈ (φ ◦ Sh)−1(g)} for any g ∈ G.

Lemma 3.40. Suppose that we are working in a model of ZF + DC + “Every subset of a

Polish space is almost open.” Then every homormophism from HEG to a countable group G

is tangible.

Proof. Since there are countably many elements of G, there are at most countably many

point preimages under (φ ◦ Sh), so at least one of these point preimages is non-meager,

call it (φ ◦ Sh)−1(g). Lemma 3.39 implies that no ei is in {ab−1 | a, b ∈ (φ ◦ Sh)−1(g)} so

{ab−1 | a, b ∈ (φ ◦ Sh)−1(g)} does not contain an open neighborhood of the identity. Since

(φ ◦Sh)−1(g) is non-meager in ZN
2 and {ab−1 | a, b ∈ (φ ◦Sh)−1(g)} does not contain an open

neighborhood of the identity, Lemma (a) implies that (φ ◦ Sh)−1(g) is not almost open.
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3.4.4 Intangible Homomorphisms Are Inscrutable.

Theorem 3.41. The class of intangible homomorphisms is an inscrutable class.

Proof.

(a) First we show that ZFC + “The class of intangible homomorphisms is empty” is

inconsistent.

Conner and Spencer [1, p. 225] use non-principle ultrafilters to construct a homomor-

phism from HEG to the fundamental group of a topological space that cannot be

induced by a continuous function. In ZFC there exist non-principle ultrafilters. So

ZFC + “The class of intangible homomorphisms is empty” is inconsistent.

(b) Next we show that ZF + DC + “every homomorphism is tangible” is equiconsistent

with ZFC.

(⇒) The consistency of ZF + DC + “every homomorphism is tangible” implies the

consistency of ZF which implies the consistency of ZFC by [17, P. 53].

(⇐) Assume that ZFC is consistent. Theorem 3.18 implies the consistency of ZF +

DC + “All subsets of Polish spaces are almost open.”

Let X be a Peano continuum in ZF + DC + “All subsets of Polish spaces are

almost open” and suppose φ : π1(X)→ G is an intangible homomorphism. Corol-

lary 3.34 implies that there exists a continuous g : HE→ X such that (φ ◦ g∗)(li)

is non-trivial for all i. Lemma 3.40 implies that there exists a subset of ZN
2 with

the usual Cantor Space topology that is not almost open.

This implies that the existence of a discontinuous homomorphism contradicts ZF

+ DC + “All subsets of Polish spaces are almost open.” So ZF + DC + “no

homomorphism is discontinuous” is consistent.

So the class of discontinuous homomorphisms is an inscrutable class.
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