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abstract

Isomorphisms of Landau-Ginzburg B-Models

Nathan James Cordner
Department of Mathematics, BYU

Master of Science

Landau-Ginzburg mirror symmetry predicts isomorphisms between graded Frobenius al-
gebras (denoted A and B) that are constructed from a nondegenerate quasihomogeneous
polynomial W and a related group of symmetries G. In 2013, Tay proved that given two
polynomials W1, W2 with the same quasihomogeneous weights and same group G, the cor-
responding A-models built with (W1,G) and (W2,G) are isomorphic. An analogous theorem
for isomorphisms between orbifolded B-models remains to be found.

This thesis investigates isomorphisms between B-models using polynomials in two vari-
ables in search of such a theorem. In particular, several examples are given showing the
relationship between continuous deformation on the B-side and isomorphisms that stem as a
corollary to Tay’s theorem via mirror symmetry. Results on extending known isomorphisms
between unorbifolded B-models to the orbifolded case are exhibited. A general pattern for
B-model isomorphisms, relating mirror symmetry and continuous deformation together, is
also observed.

Keywords: Algebraic Geometry, Mirror Symmetry, FJRW Theory
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Chapter 1. Introduction

Physicists conjectured some time ago that that to each quasihomogeneous (weighted homo-

geneous) polynomial W with an isolated singularity at the origin, and to each admissible

group of symmetries G of W , there should exist two different physical “theories,” (called

the Landau-Ginzburg A and B models, respectively) consisting of graded Frobenius algebras

(algebras with a nondegenerate pairing that is compatible with the multiplication). The

B-model theories have been constructed [6, 7, 8, 9, 10] and correspond to an “orbifolded

Milnor ring.” The A-model theories have also been constructed [4] and are a special case

of what is often called “FJRW theory.” We will not address these in this thesis, but in

many cases, these theories can be extended to whole families of Frobenius algebras, called

Frobenius manifolds.

For a large class of these polynomials (called invertible) Berglund-Hübsch [3], Henningson

[2], and Krawitz [10] described the construction of a dual (or transpose) polynomial W T and

a dual group GT . The Landau-Ginzburg mirror symmetry conjecture states that the A-

model of a pair W,G should be isomorphic to the B-model of the dual pair W T , GT . We

denote this as A[W,G] ∼= B[W T , GT ]. This conjecture has been proved in many cases in

papers such as [10] and [5], although the proof of the full conjecture remains open.

In 2013, Tay proved the following result for Landau-Ginzburg A-models. It is a sufficient

condition for A-model isomorphisms, and is called the Group-Weights theorem.

Theorem 1.1 (Group-Weights, see Section 7.1 of [13]). Let W1 and W2 be admissible polyno-

mials which have the same weights. If G ≤ Gmax
W1

and G ≤ Gmax
W2

, then A[W1, G] ∼= A[W2, G].

This theorem shows that the A-model is deformation invariant. That is, when the

polynomial W1 is continuously deformed to W2 along a path in the coefficient space that

avoids degenerate points, the respective graded Frobenius algebras along that path are all

isomorphic.
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No such theorem exists for B-models, in part because the idea of deformation invariance

is not true in general for B-models (see Example 2.34). The purpose of this thesis is to

investigate isomorphisms of B-models using polynomials of two variables in search of an

analogous theorem. One of the difficulties of verifying the mirror symmetry conjecture in

general comes from a lack of understanding of the algebra structure in more difficult cases.

So a general theorem such as this will not only be interesting as a result about graded

algebras, but may also be useful in verifying mirror symmetry and investigating higher levels

of mirror symmetry structure.

In Chapter 3, we will investigate the Group-Weights theorem and apply mirror symmetry

to classify the isomorphisms of B-models in two variables that stem as a corollary. This will

catalog the isomorphisms that are already known by this previous result, and tell us when we

have found new and interesting isomorphisms. In Chapter 4 we will introduce two algorithms

used to determine when B-models are isomorphic. In Chapters 5 and 6 we will give specific

examples and classes of examples of new isomorphisms of B-models built with polynomials

in two variables that don’t stem directly from Group-Weights. We will give further examples

of when deformation invariance exists on the B-side. Building on these results, we’ll make

the following conjecture about the relationship between A-model and B-model isomorphisms

via mirror symmetry in Chapter 7.

Conjecture 7.1. Let B1 and B2 be any two Landau-Ginzburg B-models such that B1
∼= B2.

If this isomorphism is not the result of a continuous deformation, then there exists a finite

chain of Landau-Ginzburg models C1, . . . , Cn (either A or B) such that

B1
oo // C1

oo // . . . oo // Cn oo // B2,

where each arrow represents an isomorphism of graded Frobenius algebras that is either a

continuous deformation or is the isomorphism predicted by mirror symmetry.

To further investigate this conjecture, we will conclude with one final result about ex-

tending isomorphisms of unorbifolded B-models to their corresponding orbifolded models.
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Chapter 2. Preliminaries

Here we will introduce some of the concepts needed to understand the theory of this thesis.

2.1 Admissible Polynomials

Definition 2.1. For a polynomial W ∈ C[x1, . . . , xn], we say that W is nondegenerate if it

has an isolated critical point at the origin.

Definition 2.2. Let W ∈ C[x1, . . . , xn]. We say that W is quasihomogeneous if there

exist positive rational numbers q1, . . . , qn such that for any c ∈ C, W (cq1x1, . . . , c
qnxn) =

cW (x1, . . . , xn).

We often refer to the qi as the quasihomogeneous weights of a polynomial W , or just

simply the weights of W , and we write the weights in vector form J = (q1, . . . , qn).

Definition 2.3. W ∈ C[x1, . . . , xn] is admissible if W is nondegenerate and quasihomoge-

neous with unique weights, having no monomials of the form xixj for i 6= j.

The condition that W have no cross-term monomials is necessary for constructing the

A-model. It is also interesting to note the following result about admissible polynomials.

Proposition 2.4 (Proposition 2.1.6 of [4]). If W ∈ C[x1, . . . , xn] is admissible, then the

weights qi are bounded above by 1
2
.

Because the construction of A[W,G] requires an admissible polynomial, we will only

be concerned with admissible polynomials in this paper. In order for a polynomial to be

admissible, it needs to have at least as many monomials as variables. Otherwise its quasiho-

mogeneous weights cannot be uniquely determined. We will now state the main subdivision

of the admissible polynomials.

Definition 2.5. Let W be an admissible polynomial. We say that W is invertible if it has

the same number of monomials as variables. If W has more monomials than variables, then

it is noninvertible.

3



Admissible polynomials with the same number of variables as monomials are called in-

vertible, since their associated exponent matrices (which we define in the next section) are

square and invertible. The invertible polynomials can further be decomposed into sums of

three types of polynomials, called the atomic types.

Theorem 2.6 (Theorem 1 of [11]). Any invertible polynomial is the decoupled sum of poly-

nomials in one of three atomic types:

Fermat type: W = xa,

Loop type: W = xa1
1 x2 + xa2

2 x3 + · · ·+ xann x1,

Chain type: W = xa1
1 x2 + xa2

2 x3 + · · ·+ xann .

We also assume that the ai ≥ 2 to avoid terms of the form xixj for i 6= j.

2.2 Dual Polynomials

We will now introduce the idea of the transpose operation for invertible polynomials.

Definition 2.7. Let W ∈ C[x1, . . . , xn]. If we write W =
∑m

i=1 ci
∏n

j=1 x
aij
j where the ci 6= 0

for all i, then the associated exponent matrix is defined to be A = (aij).

From this definition we notice that n is the number of variables in W , and m is the

number of monomials in W . Here A is an m × n matrix. Thus when W is invertible, we

have m = n, which implies that A is square. One can show, without much work, that this

square matrix is invertible if the polynomial W is quasihomogeneous with unique weights.

When W is noninvertible, m > n, so A has more rows than columns.

Observe that if a polynomial is invertible, then we may rescale all nonzero coefficients to

1. So there is effectively a one-to-one correspondence between exponent matrices of invertible

polynomials and the polynomials themselves (up to rescaling).
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Definition 2.8. Let W be an invertible polynomial. If A is the exponent matrix of W , then

we define the transpose polynomial to be the polynomial W T resulting from AT . By the

classification in [11], W T is again a nondegenerate, invertible polynomial.

2.3 Symmetry Groups and Their Duals

Definition 2.9. Let W be an admissible polynomial. We define the maximal diagonal sym-

metry group of W to be Gmax
W = {(ζ1, . . . , ζn) ∈ (C×)n | W (ζ1x1, . . . , ζnxn) = W (x1, . . . , xn)}.

The proofs of Lemma 2.1.8 in [4] and Lemma 1 in [1] observe that Gmax
W is finite and that

each coordinate of every group element is a root of unity. The group operation ◦ in Gmax
W is

coordinate-wise multiplication. That is,

(e2πiθ1 , . . . , e2πiθn) ◦ (e2πiφ1 , . . . , e2πiφn) = (e2πi(θ1+φ1), . . . , e2πi(θn+φn)).

Equivalently, in additive notation we can write (θ1, . . . , θn)+(φ1, . . . , φn) = (θ1 +φ1, . . . , θn+

φn) mod Z. The map (e2πiθ1 , . . . , e2πiθn) 7→ (θ1, . . . , θn) mod Z gives a group isomorphism.

Using additive notation, we will often write Gmax
W = {g ∈ (Q/Z)n | Ag ∈ Zm}, where A is

the m× n exponent matrix of W .

Definition 2.10. In this notation, Gmax
W is a subgroup of (Q/Z)n with respect to coordinate-

wise addition. For g ∈ Gmax
W , we write g = (g1, . . . , gn) where each gi is a rational number in

the interval [0,1). The gi are called the phases of g, and are uniquely determined by g.

The following definition of the transpose group is due to Krawitz and Henningson [10, 2].

Definition 2.11. Let W be an invertible polynomial, and let A be its associated exponent

matrix. The transpose group of a subgroup G ≤ Gmax
W is the set

GT = {g ∈ Gmax
WT | gAhT ∈ Z for all h ∈ G}.

The following is a list of properties of the transpose group.

5



Proposition 2.12 (Proposition 3 of [1]). If W is an invertible polynomial with weights vector

J , and G ≤ Gmax
W , then

(1) (GT )T = G;

(2) {0}T = Gmax
WT and (Gmax

W )T = {0};

(3) 〈J〉T = Gmax
WT ∩ SL(n,C) where n is the number of variables in W ;

(4) if G1 ≤ G2, then GT
2 ≤ GT

1 and G2/G1
∼= GT

1 /G
T
2 .

2.4 Graded Frobenius Algebras

Landau-Ginzburg A and B models are algebraic objects that are endowed with many levels

of structure. In this thesis, we will chiefly be concerned with their structure up to the level

of graded Frobenius algebra. For the benefit of the reader, we will give a formal definition

of a Frobenius algebra.

Definition 2.13. An algebra is a vector space A over a field of scalars F (in our case it

is C), together with a multiplication · : A × A → A that satisfies for all x, y, z ∈ A and

α, β ∈ F

• Right distributivity: (x+ y) · z = x · z + y · z,

• Left distributivity: x · (y + z) = x · y + x · z,

• Compatability with scalars: (αx) · (βy) = (αβ)(x · y).

We further require the multiplication to be associative and commutative, and for A to have

a unity e such that e · x = x for all x ∈ A.

Definition 2.14. We also define a pairing operation to be a function 〈·, ·〉 : A × A → F

that is

• Symmetric: 〈x, y〉 = 〈y, x〉,

• Linear: 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉,

• Nondegenerate: for every x ∈ A there exists y ∈ A such that 〈x, y〉 6= 0.

If the pairing further satisfies the Frobenius property, meaning that 〈x · y, z〉 = 〈x, y · z〉 for

all x, y, z ∈ A, then we call A a Frobenius algebra.
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We will only develop the theory needed for this thesis. Interested readers may reference

[4] for more details on the construction of the A-model; references [5], [10], and [13] also

contain more information on constructing A and B models, and related isomorphisms. We

will start by discussing the B-model.

2.5 Unorbifolded B-models

Definition 2.15. QW = C[x1, . . . , xn]/(∂W
∂x1
, . . . , ∂W

∂xn
) is called the Milnor ring of W (or local

algebra of W ).

We note that QW has a vector space structure with a basis consisting of monomials

that aren’t in the ideal generated by the partial derivatives of W . We define the standard

scalar multiplication and addition operations for monomials, and further allow the standard

quotient ring multiplication. We note the following result about the dimension of QW .

Theorem 2.16 (Theorem 2.6 of [13]). If W is admissible, then QW is finite dimensional.

We will further think of the Milnor ring as a graded vector space over C. The degree

of a monomial in QW is given by deg(xa1
1 x

a2
2 . . . xann ) = 2

∑n
i aiqi, where the qi are the

quasihomogeneous weights of W . This defines a grading on the basis of QW . We have the

following results about the vector space structure of the Milnor ring. First, dim(QW ) =∏n
i=1

(
1
qi
− 1
)

. Second, the highest degree of its graded pieces is 2
∑n

i=1 (1− 2qi). The

number
∑n

i=1 (1− 2qi) is called the central charge, and is denoted by ĉ (see Section 2.1 of

[10]).

To make QW into a graded Frobenius algebra, we need to define its pairing functions.

We have the following definition.

Definition 2.17. For an admissible polynomial W , let m,n ∈ QW . We define the pairing

〈m,n〉 to be the complex number that satisfies

mn =
〈m,n〉
µ

Hess(W ) + terms of degree less than deg(Hess(W )),

7



where µ is the dimension of QW as a vector space and Hess(W ) is the Hessian of W—or the

determinant of the matrix of second partial derivatives of W .

As noted by Krawitz [10], we can represent Hess(W ) as a monomial in the Milnor ring.

Further, the elements of highest degree in the Milnor ring form a one-dimensional subspace

that is spanned by Hess(W ).

One can also verify that the Milnor ring, together with the grading of the monomial basis

and this paring function, forms a graded Frobenius algebra. This motivates our definition of

the unorbifolded B-model.

Definition 2.18. We define the unorbifolded B-model B[W, {0}] by B[W, {0}] = QW .

2.6 Orbifolded B-models

We’ll now think about how to construct the orbifolded B-model B[W,G], where G is a

nontrivial group. We’ll need the following definition.

Definition 2.19. Let W ∈ C[x1, . . . , xn] be admissible, and let g = (g1, . . . , gn) ∈ Gmax
W .

The fixed locus of the group element g is the set fix(g) = {x ∈ Cn | g(x) = 0}.

We now state how G acts on the Milnor ring.

Definition 2.20. Let W be an admissible polynomial, and let g ∈ Gmax
W . We define the

map g∗ : QW → QW by g∗(m) = det(g)m ◦ g. (Here we think of g as being a diagonal map

with multiplicative coordinates). This is the group action on the elements of QW .

Definition 2.21. Let W be an admissible polynomial, and let G ≤ Gmax
W . The G-invariant

subspace of QW is defined to be QGW = {m ∈ QW | g∗(m) = m for each g ∈ G}.

To construct an orbifolded B-model, we restrict G to be a subgroup of Gmax
W ∩ SL(n,C).

Definition 2.22. Let W be an admissible polynomial, and G ≤ Gmax
W ∩ SL(n,C) where n

is the number of variables of W . We define B[W,G] =
⊕
g∈G

(
QW |fix(g)

)G
, where (·)G denotes

all the G-invariants. This is called the B-model state space.

8



The condition that G ≤ Gmax
W ∩SL(n,C) is required to construct the orbifolded B-model.

We will often denote the group Gmax
W ∩ SL(n,C) as SL(W ).

Note that if we let G = {0}, then the formula yields the Milnor ring of W , as expected.

We also note that the vector space basis of B[W,G] is made up of monomials from the

basis of the Milnor ring, along with the group elements that preserve these monomials under

the action given in Definition 2.20. We denote these basis elements bm; ge, where m is a

monomial and g is a group element corresponding to m ∈
(
QW |fix(g)

)G
.

To make B[W,G] into a graded Frobenius algebra, we will define the grading, the multi-

plication and the pairing function. We’ll start with the vector space grading.

Definition 2.23. Let W be an admissible polynomial with weights (q1, . . . , qn). For a basis

element bm; (g1, . . . , gn)e in the vector space basis for B[W,G], we define its degree to be

2p+
∑
gi /∈Z

(1− 2qi),

where p is the weighted degree of m. That is, if m = xa1
1 · · ·xann , then p =

∑n
i=1 aiqi.

The definition of B-model multiplication is due to Krawitz in [10].

Definition 2.24. The product of two elements bm; ge and bn;he is given by

bm; ge ? bn;he =

 bγnm; g + he if fix(g) ∪ fix(h) ∪ fix(g + h) = Cn,

0 otherwise,

where γ is a monomial defined as

γ =
µg∩hHess(W |fix(g+h))

µg+hHess(W |fix(g)∩fix(h))
.

Here µg∩h is the dimension of the Milnor ring of W |fix(g)∩fix(h), and µg+h is the dimension of

the Milnor ring of W |fix(g+h).

9



We note that Krawitz proved this multiplication to be associative in the case that W

is an invertible polynomial (see Proposition 2.1 of [10]). We believe this to also always be

associative when W is noninvertible polynomial, but it has never been proven in general. The

multiplication structure for examples we compute in this thesis can be checked individually

for associativity.

Finally, we have the pairing function.

Definition 2.25. Let bm; ge and bn;he be two basis elements of B[W,G]. We define the

pairing as follows:

〈bm; ge, bn;he〉 =

 〈m,n〉 if g = −h,

0 otherwise.

Note that 〈m,n〉 refers to the pairing on QW |fix(g)
.

One can verify that the orbifolded B-model B[W,G], as it has been defined, is a graded

Frobenius algebra.

2.7 A-models

We’ll include here a few comments about A-models. This will not be a full discussion of

A-model construction. For further treatment of this topic, we refer the reader to Sections

2.4 and 2.5 of [13].

To start, recall that the construction of the B-model required the group G to be contained

in SL(W ) = Gmax
W ∩SL(n,C). From parts (3) and (4) of Proposition 2.12, the corresponding

condition for the A-model is that 〈J〉 ≤ G. This motivates the following definition for

admissible groups for A-models.

Definition 2.26. Let W be an admissible polynomial with weights vector J = (q1, . . . , qn),

and let G ≤ Gmax
W . We say that G is admissible if J ∈ G.

10



We note that since W is quasihomogeneous, we have that AJT = (1, . . . , 1)T ∈ Zm. Thus

J ∈ Gmax
W .

The state space of the A-model A[W,G] is constructed in the same way the B-model was

constructed, but with the condition that G is an admissible group. However, the grading on

the A-model, differs from the B-model grading.

Definition 2.27. TheA-model degree of a basis element bm; ge is defined to be deg(bm; ge) =

dim(fix(g)) + 2
∑n

i=1(gi− qi), where g = (g1, . . . , gn) with the gi chosen such that 0 ≤ gi < 1

and J = (q1, . . . , qn) is the vector of quasihomogeneous weights of W (see Section 2.1 of [10]).

Finally, we’ll emphasize one comment about the Group-Weights theorem for A-model

isomorphisms. Note that one can give the A-model a product and pairing such that A is

a Frobenius algebra. The Group-Weights theorem then gives an isomorphism of Frobenius

algebras, not just of graded vector spaces.

2.8 Isomorphisms of Graded Frobenius Algebras

We will begin with a formal definition of algebra isomorphisms.

Definition 2.28. Let A and B be two graded Frobenius algebras over a field F . A is

isomorphic to B, written A ∼= B, if there exists a bijective map φ : A→ B that satisfies for

every α, β ∈ A and t ∈ F :

1. φ(α +A tβ) = φ(α) +B tφ(β),

2. φ(α ?A β) = φ(α) ?B φ(β),

3. φ(1A) = 1B,

4. degA(α) = degB(φ(α)) for any homogeneous α ∈ A,

5. 〈α, β〉A = 〈φ(α), φ(β)〉B.

We can now formally state the conjectured Landau-Ginzburg mirror symmetry corre-

spondence.
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Conjecture 2.29. If W is an admissible polynomial and G is an admissible group, then

A[W,G] ∼= B[W T , GT ].

To help us better understand Landau-Ginzburg mirror symmetry, we will focus on study-

ing isomorphisms between Landau-Ginzburg B-models. The following are some common re-

sults about isomorphisms between unorbifolded B-models. We will refer back to these later

on in the thesis. Note that we consider two polynomials to be equivalent if they define the

same singularity at the origin. That is, we say that f ∼ g if there exists a diffeomorphism

h : Cn → Cn such that f = g ◦ h.

Theorem 2.30 (Theorem 2.2.8 of [12]). If W1 and W2 are quasihomogeneous functions fixing

the origin, then W1 and W2 are equivalent if and only if their Milnor rings are isomorphic.

Theorem 2.31 (Theorem 5.1.1 of [12]). If two nondegenerate quasihomogeneous polynomials

are equivalent, then they have the same unordered set of weights.

Theorem 2.32 (Webb’s Theorem, Theorem 5.1.3 of [12]). Let W1 and W2 be nondegenerate

quasihomogeneous polynomials with the same (ordered) weights. If no elements in a basis

for QW1 have weighted degree 1, then W1 and W2 are equivalent.

These are all results about B-model isomorphisms using the trivial group {0}. The

following is a result includes orbifolded B-models.

Proposition 2.33 (Proposition 2.3.2 of [5]). Suppose W1 and W2 are nondegenerate, quasi-

homogeneous polynomials with no variables in common. If G1 ≤ SL(W1) and G2 ≤ SL(W2),

then G1 ×G2 is contained in SL(W1 +W2), fixes W1 +W2, and we have an isomorphism

B[W1, G1]⊗ B[W2, G2] ∼= B[W1 +W2, G1 ×G2].

Note that Theorem 2.32 is a type of Group-Weights result on the B-side. However,

Group-Weights does not hold in general for B-models as the next example demonstrates.
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Example 2.34 (Example 5.1.4 of [12]). Let W1 = x4 + y4 and W2 = x3y + xy3. Both

polynomials have weights
(

1
4
, 1

4

)
. The set {1, y, y2, x, xy, xy2, x2, x2y, x2y2} is a basis for both

QW1 and QW2 . One can verify that any ring homomorphism from QW1 to QW2 will not be

surjective, so we see that B[W1, {0}] 6∼= B[W2, {0}]. But notice that x2y2 has weighted degree

1. We see that any choice of basis for QW1 or QW2 will contain a monomial of weighted

degree 1. Therefore this does not contradict Webb’s Theorem.

This example shows that Group-Weights is not sufficient for B-model isomorphisms. This

also shows that deformation invariance does not hold in general on the B-side, since there

is no way to deform x4 + y4 into x3y + xy3 while maintaining isomorphic Milnor rings. In

Chapter 6 of this thesis we will investigate examples where one can continuously deform

polynomials while maintaining isomorphic B-models.
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Chapter 3. Isomorphisms in Two Variables

Stemming From Group-Weights

The purpose of this chapter is to investigate B-model isomorphisms that stem from using the

Group-Weights theorem for A-models and mirror symmetry. We will focus on polynomials

in two variables. This will help us to know when we have discovered new and interesting

isomorphisms of B-models—that is, ones that didn’t already stem from this theorem.

3.1 Preliminaries

Proposition 3.1 (Proposition 2 of Section 3 in [1]). (1) For a loop W = xa1
1 x2 + xa2

2 x3 +

· · ·+ x
an−1

n−1 xn + xann x1, then Gmax
W = 〈(φ1, . . . , φn)〉, where

φ1 =
(−1)n

a1 · · · an + (−1)n+1
, φi =

(−1)n+1−ia1 · · · ai−1

a1 · · · an + (−1)n+1
, i ≥ 2.

(2) For a chain W = xa1
1 x2 + xa2

2 x3 + · · · + x
an−1

n−1 xn + xann , then Gmax
W = 〈(φ1, . . . , φn)〉,

where

φi =
(−1)n+i

ai · · · an
.

Proposition 3.2. If W is an invertible polynomial with weights vector J , then |〈J〉| =[
Gmax
WT : 〈J〉T

]
, where

[
Gmax
WT : 〈J〉T

]
denotes the index of 〈J〉T in Gmax

WT .

Proof. Consider {0} ≤ 〈J〉. By property (4) of Proposition 2.12, 〈J〉T ≤ {0}T = Gmax
WT and

〈J〉/{0} = 〈J〉 ∼= Gmax
WT /〈J〉T . Hence

|〈J〉| =
∣∣∣∣Gmax

WT

〈J〉T

∣∣∣∣ =

∣∣Gmax
WT

∣∣
|〈J〉T |

=
[
Gmax
WT : 〈J〉T

]
by Lagrange’s theorem.
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3.2 Classification of Two-Variable Weight Systems

Landau-Ginzburg mirror symmetry is currently only defined for invertible polynomials. We

therefore want to find admissible weight systems (q1, q2) that have at least two invertible

polynomials. We can then use the Group-Weights theorem for A-models and mirror sym-

metry to find isomorphic B-models. The following results are due to my own calculations,

but they can also be found in Section 3.1 of [13].

We first note that possible monomials are of the form xa, ya, xay, or xya. There are

four possible types of invertible polynomials in two variables: xa + yb, xay + yb, xya + xb, or

xay + xyb.

Family 1. Let n ∈ N, n ≥ 3. J =
(

1
n
, 1
n

)
fixes xn + yn, xn−1y + yn, xyn−1 + xn, and

xn−1y + xyn−1.

Proof. A Fermat monomial xa is fixed by 1
n

if and only if
(

1
n

)
a = a

n
= 1 if and only if a = n.

So J fixes xn and yn, and these are the only valid Fermat monomials. The monomial xay is

fixed by J if and only if a
n

+ 1
n

= 1 if and only if a+1
n

= 1 if and only if a = n− 1. So J fixes

xn−1y, and similarly J fixes xyn−1. Combining these monomials yields the four invertible

polynomials as desired.

We now note that in order for a weight system J to fix a Fermat monomial, one of its

coordinates must be of the form 1
n
. Since three out of the four possible invertible types in

two-variables contains a Fermat monomial, we will only need to consider weight systems

that have a 1
n

in one of its coordinates. We will proceed with choosing this to be the first

coordinate. A similar case will result by swapping the two coordinates.

Family 2. Let α, n ∈ N with α, n ≥ 2. J =
(

1
n
, 1
αn

)
fixes xn + yαn and xyαn−α + xn, and

J =
(

1
αn
, 1
n

)
fixes xαn + yn and xαn−αy + yn.
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Proof. First suppose that α ∈ R, α > 1. We may assume that αn ∈ Z. Certainly J fixes

xn and yαn. Now consider xya. This is fixed by J if and only if 1
n

+ a
αn

= 1 if and only if

a+α
αn

= 1 if and only if a = αn− α. Since αn ∈ Z, we must require α ∈ Z to have a ∈ Z.

Now consider the monomial xby. It is fixed by J if and only if b
n

+ 1
αn

= 1 if and only if

1+αb
αn

= 1 if and only if b = αn−1
αn

. However, b ∈ Z if and only if α = 1. Therefore there is no

such monomial fixed by J .

After combining monomials, we find that the only invertible polynomials fixed by J are

xn + yαn and xyαn−α + xn where α > 1, α ∈ Z.

Note that for 0 < α < 1 and αn ∈ Z, we can rewrite J =
(

1
n
, 1
αn

)
as
(

1
βm
, 1
m

)
, where

m = αn < n and β = 1
α
> 1 so that βm = n. The rest of the proof follows similarly to the

above calculation.

We now consider when the weight system J =
(

1
n
, a
b

)
fixes both a chain and a loop

polynomial. Obvious restrictions are a, b ∈ N, 0 < a
b
< 1

2
, gcd(a, b) = 1, a < b, etc. We know

J fixes xn, and we want to know when J fixes the monomials xyα and xβy.

For xyα, we require 1
n

+ αa
b

= 1 if and only if b+αan
bn

= 1 if and only if b + αan = bn if

and only if α = b(n−1)
an
∈ N. For xβy, we have that β

n
+ a

b
= 1 if and only if bβ+an

bn
= 1 if and

only if bβ + an = bn if and only if β = n(b−a)
b
∈ N. We further require α, β ≥ 2.

Consider the case b = n. This yields α = n−1
a

and β = n − a. So a | (n − 1). We will

show that this is the only case to consider.

We first have that 1
n

+ αa
b

= 1 if and only if b+αan
bn

= 1 if and only if b+ αan = bn if and

only if b
n

+αa = b, after dividing by n. Since αa and b are both integers, we must have that

b
n

is an integer implies n | b.

We know that β
n

+ a
b

= 1 if and only if β + an
b

= n. Thus an
b

= n − β is an integer.

Since gcd(a, b) = 1 by hypothesis, we have that b | n. Since we know that both b and n are

positive integers, we see that b = n as desired.
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A similar result follows when considering J =
(
a
b
, 1
n

)
. Therefore we have found all possible

weight systems that have a 1
n

in at least one of the coordinates. Hence, the following is the

only other family we need to consider.

Family 3. Let n ∈ N, n ≥ 2. Let a ∈ N such that 1 < a < n
2
, gcd(a, n) = 1, and

a | (n− 1). J =
(

1
n
, a
n

)
fixes xn + xy

n−1
a and xn−ay+ xy

n−1
a , and J =

(
a
n
, 1
n

)
fixes x

n−1
a y+ yn

and x
n−1
a y + xyn−a.

3.3 Results

Now that we have found the weight systems in two variables that yield more than one

invertible polynomial, we can write down all possible isomorphisms between A-models in

two variables that stem from the Group-Weights theorem. We can then apply the transpose

operation to polynomials and groups to the find the corresponding B-models that are also

isomorphic via mirror symmetry. The following diagram illustrates the approach.

A[W1, G1]
OO

Group-Weights

��

B[W T
1 , G

T
1 ]//Mirror Symmetryoo

OO

��
A[W2, G2] B[W T

2 , G
T
2 ]//Mirror Symmetryoo

On the A-side we have invertible polynomials W1 and W2 that have the same weights,

and groups G1 = G2 that fix W1 and W1. However, note that on the B-side we may have

GT
1 6= GT

2 , since the transpose operation for the group depends upon the choice of polynomial.

By our construction, the Group-Weights theorem gives us isomorphic A-models. After using

mirror symmetry, our diagram sets up three out of four isomorphisms in a square—thereby

automatically yielding the fourth isomorphism between B-models.

We now state the results of using this approach on polynomials in two variables. Our first

theorem considers the invertible polynomials with a Family 1 weight system, using common

subgroup G = 〈J〉.
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Theorem 3.3. For all n ∈ N, n ≥ 3,

B
[
xn + yn,

〈(
1

n
,− 1

n

)〉]
∼= B

[
xn−1 + xyn,

〈(
1

n− 1
,− 1

n− 1

)〉]
∼= B

[
xny + yn−1,

〈(
1

n− 1
,− 1

n− 1

)〉]
∼= B

[
xn−1y + xyn−1,

〈(
1

n− 2
,− 1

n− 2

)〉]
.

Proof. Let n ∈ N, n ≥ 3. Let G =
〈(

1
n
, 1
n

)〉
.

Lemma 3.4. Let W1 = xn+yn. W T
1 = xn+yn and as a subgroup of Gmax

W1
, GT = 〈

(
1
n
,− 1

n

)
〉.

Proof. Let A1 =

n 0

0 n

 be the exponent matrix of W1. Since AT1 = A1, we have that

W T
1 = W1 = xn + yn. Now consider Gmax

WT
1

=
〈(

1
n
, 0
)
,
(
0, 1

n

)〉
. We can uniquely represent all

elements of Gmax
WT

1
in the form

(
a
n
, b
n

)
where a, b ∈ {0, 1, . . . , n−1}. By part (3) of Proposition

2.12, GT = Gmax
WT

1
∩ SL(2,C). Hence

GT =

{(
a

n
,
b

n

)
∈ Gmax

WT
1
| a+ b ≡ 0 mod n

}
=

{
(0, 0),

(
1

n
,
n− 1

n

)
,

(
2

n
,
n− 2

n

)
. . . ,

(
n− 1

n
,

1

n

)}
=

〈(
1

n
,
n− 1

n

)〉
, under equivalence relations,

=

〈(
1

n
,− 1

n

)〉
.

Lemma 3.5. Let W2 = xn−1y + yn. W T
2 = xn−1 + xyn and GT =

〈(
1

n−1
,− 1

n−1

)〉
.

Proof. LetA2 =

n− 1 1

0 n

 be the exponent matrix ofW2. We then haveAT2 =

n− 1 0

1 n

,

so that W T
2 = xn−1 + xyn.

18



By Proposition 3.1, Gmax
WT

2
=
〈(

−1
n−1

, 1
n(n−1)

)〉
=
〈(

n−2
n−1

, 1
n(n−1)

)〉
. LetH =

〈(
1

n−1
,− 1

n−1

)〉
=〈(

1
n−1

, n−2
n−1

)〉
. We will first show that H ≤ Gmax

WT
2
∩ SL(2,C). Adding the coordinates of the

generator for H yields 1
n−1

+ n−2
n−1

= n−1
n−1

= 1, so H ≤ SL(2,C). Now we’ll multiply the

generator of Gmax
WT

2
by the integer n(n− 2). This yields

n(n− 2)

(
n− 2

n− 1
,

1

n(n− 1)

)
=

(
n(n− 2)2

n− 1
,
n(n− 2)

n(n− 1)

)
=

(
1

n− 1
+ n2 − 3n+ 1,

n− 2

n− 1

)
=

(
1

n− 1
,
n− 2

n− 1

)
mod 1.

Therefore H ≤ Gmax
WT

2
⇒ H ≤ Gmax

WT
2
∩ SL(2,C), as desired.

Finally, we’ll show that H must be GT . To do this, we note by Proposition 3.2 that since

|G| = n, we require [Gmax
WT

2
: GT ] = n. Also, GT = Gmax

WT
2
∩ SL(2,C). Now |H| = n − 1 and

|Gmax
WT

2
| = n(n− 1), so that [Gmax

WT
2

: H] = n and H ≤ Gmax
WT

2
∩ SL(2,C) which also has index n

in Gmax
WT

2
. Therefore H = Gmax

WT
2
∩ SL(2,C) = GT .

Lemma 3.6. Let W3 = xn + xyn−1. W T
3 = xny + yn−1 and GT =

〈(
1

n−1
,− 1

n−1

)〉
.

Proof. This follows similarly as in Lemma 3.5 by relabeling the x and y variables.

Lemma 3.7. Let W4 = xn−1y + xyn−1. W T
4 = xn−1y + xyn−1 and GT =

〈(
1

n−2
,− 1

n−2

)〉
.

Proof. Let A4 =

n− 1 1

1 n− 1

 be the exponent matrix ofW4. Since AT4 = A4, we have that

W T
4 = W4. By Proposition 3.1, Gmax

WT
4

=
〈(

1
(n−1)2−1

, −(n−1)
(n−1)2−1

)〉
=
〈(

1
(n−1)2−1

, (n−1)2−n
(n−1)2−1

)〉
.

Note that |Gmax
WT

4
| = (n− 1)2 − 1 = n(n− 2). Let H =

〈(
1

n−2
,− 1

n−2

)〉
=
〈(

1
n−2

, n−3
n−2

)〉
.
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First notice that adding the coordinates of the generator forH yields 1
n−2

+n−3
n−2

= n−2
n−2

= 1,

so H ≤ SL(2,C). Now multiply the generator of Gmax
WT

4
by the integer n. We obtain

n

(
1

(n− 1)2 − 1
,
(n− 1)2 − n
(n− 1)2 − 1

)
=

(
n

n(n− 2)
,
n((n− 1)2 − 1)

n(n− 2)

)
=

(
1

n− 2
,
−1

n− 2
+ n− 1

)
=

(
1

n− 2
,
n− 3

n− 2

)
mod 1.

Therefore H ≤ Gmax
WT

4
⇒ H ≤ Gmax

WT
4
∩ SL(2,C). Since |G| = n, |Gmax

WT
4
| = n(n − 2), and

|H| = n− 2, we see that |G| = [Gmax
WT

4
: H] = n. Therefore H = GT .

By the preceding four lemmas and by mirror symmetry, we have the following isomor-

phisms:

A[W1, G] ∼= B
[
W T

1 ,
〈(

1
n
,− 1

n

)〉]
, A[W2, G] ∼= B

[
W T

2 ,
〈(

1
n−1

,− 1
n−1

)〉]
,

A[W3, G] ∼= B
[
W T

3 ,
〈(

1
n−1

,− 1
n−1

)〉]
, A[W4, G] ∼= B

[
W T

4 ,
〈(

1
n−2

,− 1
n−2

)〉]
.

Since eachWi has weights
(

1
n
, 1
n

)
, each of theseA-models are isomorphic under the Group-

Weights theorem. Hence each of these B-models are also isomorphic, by mirror symmetry.
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Example 3.8 (Examples of Theorem 3.3).

n = 3 : B
[
x3 + y3,

〈(
1

3
, −1

3

)〉]
∼= B

[
x2 + xy3,

〈(
1

2
,

1

2

)〉]
∼= B

[
x3y + y2,

〈(
1

2
,

1

2

)〉]
∼= B

[
x2y + xy2, 〈(0, 0)〉

]
.

n = 4 : B
[
x4 + y4,

〈(
1

4
, −1

4

)〉]
∼= B

[
x3 + xy4,

〈(
1

3
, −1

3

)〉]
∼= B

[
x4y + y3,

〈(
1

3
, −1

3

)〉]
∼= B

[
x3y + xy3,

〈(
1

2
,

1

2

)〉]
.

n = 5 : B
[
x5 + y5,

〈(
1

5
, −1

5

)〉]
∼= B

[
x4 + xy5,

〈(
1

4
, −1

4

)〉]
∼= B

[
x5y + y4,

〈(
1

4
, −1

4

)〉]
∼= B

[
x4y + xy4,

〈(
1

3
, −1

3

)〉]
.

Our second theorem considers polynomials with a Family 2 weight system, again using

common subgroup G = 〈J〉.

Theorem 3.9. For all n, α ∈ N with n, α ≥ 2,

B
[
xn + yαn,

〈(
1

n
,−1

n

)〉]
∼= B

[
xαn−α + xyn,

〈(
1

n− 1
,− 1

n− 1

)〉]
∼= ∼=

B
[
xαn + yn,

〈(
1

n
,−1

n

)〉]
∼= B

[
xny + yαn−α,

〈(
1

n− 1
,− 1

n− 1

)〉]
.

Proof. Let n, α ∈ N with n, α ≥ 2. First consider the weight system J =
(

1
n
, 1
αn

)
, and let

G = 〈J〉.

Lemma 3.10. Let W1 = xn + yαn. W T
1 = xn + yαn, and GT =

〈(
1
n
, n−1

n

)〉
.
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Proof. Since the exponent matrix of W1 is symmetric, we have that W T
1 = W1. We know

that Gmax
WT

1
=
〈(

1
n
, 0
)
,
(
0, 1

αn

)〉
. Let H =

〈(
1
n
, n−1

n

)〉
. Certainly H ≤ SL(2,C). Further,(

1
n
, 0
)

+ α(n − 1)
(
0, 1

αn

)
=
(

1
n
, n−1

n

)
, so H ≤ Gmax

WT
1

. So H ≤ Gmax
WT

1
∩ SL(2,C). Recall

that G =
(

1
n
, 1
αn

)
, and that |G| = αn. Now |Gmax

WT
1
| = αn2, and |H| = n. Therefore

[Gmax
WT

1
: H] = |Gmax

WT
1
/H| = αn = |G|. Thus H = H ≤ Gmax

WT
1
∩ SL(2,C) = GT by Proposition

2.12 and Proposition 3.2.

Lemma 3.11. Let W2 = xn + xyαn−α. We can then represent W T
2 as either xny+ yαn−α or

xyn + xαn−α. In either case, GT =
〈(

1
n−1

, n−2
n−1

)〉
.

Proof. We can represent the exponent matrix of W2 in two ways by interchanging the order

of monomials:

A1 =

n 0

1 αn− α

 , A2 =

1 αn− α

n 0

 .
Transposing these matrices gives us

AT1 =

n 1

0 αn− α

 , AT2 =

 1 n

αn− α 0

 ,
which correspond to the polynomials xny + yαn−α and xyn + xαn−α. We will let W T

2 =

xny + yαn−α, with the other case following similarly by relabeling variables.
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By Proposition 3.1, Gmax
WT

2
=
〈(

−1
n(αn−α)

, 1
αn−α

)〉
. Let H =

〈(
1

n−1
, n−2
n−1

)〉
. Certainly

H ≤ SL(2,C). Now multiply the generator of Gmax
WT

2
by −αn:

−αn
(

−1

n(αn− α)
,

1

αn− α

)
=

(
αn

n(αn− α)
,
−αn
αn− α

)
=

(
1

n− 1
,
−n
n− 1

)
=

(
1

n− 1
,
−n+ 2(n− 1)

n− 1

)
mod 1

=

(
1

n− 1
,
n− 2

n− 1

)
.

Therefore H ≤ Gmax
WT

2
⇒ H ≤ Gmax

WT
2
∩ SL(2,C).

Now |Gmax
WT

2
| = n(αn−α) = αn(n−1), and |H| = n−1. Therefore [Gmax

WT
2

: H] = αn(n−1)
n−1

=

αn = |G|. Hence by Proposition 2.12 and Proposition 3.2, H = GT .

Now consider J =
(

1
αn
, 1
n

)
, and let G = 〈J〉.

Lemma 3.12. Let W3 = xαn + yn. W T
3 = xαn + yn, and GT =

〈(
1
n
, n−1

n

)〉
.

Proof. This follows similarly as in Lemma 3.10 by relabeling the variables x and y.

Lemma 3.13. Let W4 = xαn−αy + yn. We can then represent W T
4 as either xny + yαn−α or

xyn + xαn−α. In either case, GT =
〈(

1
n−1

, n−2
n−1

)〉
.

Proof. We can represent the exponent matrix of W4 in two ways by interchanging monomials:

A1 =

αn− α 1

0 n

 , A2 =

 0 n

αn− α 1

 .
Transposing these matrices gives us

AT1 =

αn− α 0

1 n

 , AT2 =

0 αn− α

n 1

 ,
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which correspond to the polynomials xyn+xαn−α and xny+yαn−α. The proof of the transpose

group follows similarly as in Lemma 3.11.

By Lemma 3.10, Lemma 3.11, and by mirror symmetry, we have that

A
[
xn + yαn,

〈(
1

n
,

1

αn

)〉]
∼= B

[
xn + yαn,

〈(
1

n
,
n− 1

n

)〉]
,

A
[
xn + xyαn−α,

〈(
1

n
,

1

αn

)〉]
∼= B

[
xny + yαn−α,

〈(
1

n− 1
,
n− 2

n− 1

)〉]
∼= B

[
xyn + xαn−α,

〈(
1

n− 1
,
n− 2

n− 1

)〉]
.

By the Group-Weights theorem, these two A-models are isomorphic. It follows that these

B-models are also isomorphic, by mirror symmetry.

By Lemma 3.12, Lemma 3.13, and by mirror symmetry, we have that

A
[
xαn + yn,

〈(
1

αn
,

1

n

)〉]
∼= B

[
xαn + yn,

〈(
1

n
,
n− 1

n

)〉]
,

A
[
xαn−αy + yn,

〈(
1

αn
,

1

n

)〉]
∼= B

[
xny + yαn−α,

〈(
1

n− 1
,
n− 2

n− 1

)〉]
∼= B

[
xyn + xαn−α,

〈(
1

n− 1
,
n− 2

n− 1

)〉]
.

By the Group-Weights theorem, these two A-models are isomorphic. It follows that these

B-models are also isomorphic.

Since W2 and W4 have the same transpose polynomial, we see that each of these B-models

are isomorphic. This proves the theorem.
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Example 3.14. [Examples of Theorem 3.9, top row]

n = 2, α = 2 : B
[
x2 + y4,

〈(
1

2
,

1

2

)〉]
∼= B

[
x2 + xy2, 〈(0, 0)〉

]
n = 2, α = 3 : B

[
x2 + y6,

〈(
1

2
,

1

2

)〉]
∼= B

[
x3 + xy2, 〈(0, 0)〉

]
n = 2, α = 4 : B

[
x2 + y8,

〈(
1

2
,

1

2

)〉]
∼= B

[
x4 + xy2, 〈(0, 0)〉

]
n = 3, α = 2 : B

[
x3 + y6,

〈(
1

3
, −1

3

)〉]
∼= B

[
x4 + xy3,

〈(
1

2
,

1

2

)〉]
n = 3, α = 3 : B

[
x3 + y9,

〈(
1

3
, −1

3

)〉]
∼= B

[
x6 + xy3,

〈(
1

2
,

1

2

)〉]

This next result uses polynomials with a Family 3 weight system, and the common

subgroup G = 〈J〉.

Theorem 3.15. For all n ∈ N, n ≥ 2, and a ∈ N satisfying 1 < a ≤ n
2
, a | (n − 1),

gcd(a, n) = 1, then

B
[
x
n−1
a + xyn,

〈(
a

n− 1
, − a

n− 1

)〉]
∼= B

[
xn−ay + xy

n−1
a ,

〈(
a

n− a− 1
, − a

n− a− 1

)〉]
∼= ∼=

B
[
xny + y

n−1
a ,

〈(
a

n− 1
, − a

n− 1

)〉]
∼= B

[
x
n−1
a y + xyn−a,

〈(
a

n− a− 1
, − a

n− a− 1

)〉]
.

Proof. Let n ∈ N, and let a ∈ N satisfy the hypothesis of the theorem. Let J =
(

1
n
, a
n

)
, and

G = 〈J〉. Notice that since gcd(a, n) = 1, we have that |G| = n.

Lemma 3.16. Let W1 = xn + xy
n−1
a . We can then represent W T

1 as either x
n−1
a + xyn or

xny + y
n−1
a . In either case, GT =

〈(
a

n−1
, − a

n−1

)〉
.
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Proof. We can represent the exponent matrix of W1 in two ways:

A1 =

n 0

1 n−1
a

 , A2 =

1 n−1
a

n 0

 .
Transposing these matrices gives us

AT1 =

n 1

0 n−1
a

 , AT2 =

 1 n

n−1
a

0

 ,
which correspond to the polynomials xny+y

n−1
a and xyn+x

n−1
a . We will let W T

1 = xny+y
n−1
a ,

with the other case following similarly by relabeling variables.

By Proposition 3.1, Gmax
WT

1
=
〈(

−a
n(n−1)

, a
n−1

)〉
. Let H =

〈(
a

n−1
, − a

n−1

)〉
. Certainly

H ≤ SL(2,C). Now multiply the generator of Gmax
WT

1
by −n:

−n
(

−a
n(n− 1)

,
a

n− 1

)
=

(
a

n− 1
,
−an
n− 1

)
=

(
a

n− 1
,
−an+ a(n− 1)

n− 1

)
mod 1

=

(
a

n− 1
,− a

n− 1

)
.

Therefore H ≤ Gmax
WT

1
⇒ H ≤ Gmax

WT
1
∩ SL(2,C). Further, |Gmax

WT
1
| = n

(
n−1
a

)
, and |H| = n−1

a
,

so [Gmax
WT

1
: H] = n = |G|. By Proposition 2.12 and Proposition 3.2, H = GT .

Lemma 3.17. Let W2 = xn−ay+xy
n−1
a . W T

2 = xn−ay+xy
n−1
a , and GT =

〈(
a

n−a−1
, − a

n−a−1

)〉
.

Proof. Since the exponent matrix of W2 is symmetric, we have that W T
2 = W2. By Propo-

sition 3.1, Gmax
WT

2
=

〈(
1

(n−a)(n−1
a )−1

, −(n−a)

(n−a)(n−1
a )−1

)〉
. Simplifying the denominator, we can

write Gmax
WT

2
=

〈(
1

n(n−1
a
−1)

, −(n−a)

n(n−1
a
−1)

)〉
. Let H =

〈(
1

n−1
, n−2
n−1

)〉
. Certainly H ≤ SL(2,C).
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Now multiply the generator of Gmax
WT

2
by n:

n

(
1

n
(
n−1
a
− 1
) , −(n− a)

n
(
n−1
a
− 1
)) =

(
1(

n−1
a

)
− 1

,
−n+ a(
n−1
a

)
− 1

)

=

(
1(

n−1
a

)
− 1

,
−n+ a+ a

(
n−1
a
− 1
)(

n−1
a

)
− 1

)
mod 1

=

(
1(

n−1
a

)
− 1

,
−1(

n−1
a

)
− 1

)

=

(
a

n− a− 1
,− a

n− a− 1

)
.

Therefore H ≤ Gmax
WT

2
⇒ H ≤ Gmax

WT
2
∩SL(2,C). Now |Gmax

WT
2
| = n

(
n−1
a
− 1
)
, and |H| = n−1

a
−1,

so [Gmax
WT

2
: H] = n = |G|. Hence by Proposition 2.12 and Proposition 3.2, H = GT .

Now let J =
(
a
n
, 1
n

)
, and G = 〈J〉.

Lemma 3.18. Let W3 = x
n−1
a y + yn. We can then represent W T

3 as either x
n−1
a + xyn or

xny + y
n−1
a . In either case, GT =

〈(
a

n−1
, − a

n−1

)〉
.

Proof. We can represent the exponent matrix of W3 in two ways by interchanging monomials:

A1 =

n−1
a

1

0 n

 , A2 =

 0 n

n−1
a

1

 .
Transposing these matrices gives us

AT1 =

n−1
a

0

1 n

 , AT2 =

0 n−1
a

n 1

 ,
which correspond to the polynomials x

n−1
a +xyn and xny+ y

n−1
a . The proof of the transpose

group follows similarly as in Lemma 3.16.

Lemma 3.19. Let W4 = x
n−1
a y+xyn−a. W T

4 = x
n−1
a y+xyn−a, and GT =

〈(
a

n−a−1
, − a

n−a−1

)〉
.
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Proof. This follows similarly as in Lemma 3.2 by relabeling the variables x and y.

By Lemma 3.16, Lemma 3.17, and by mirror symmetry, we have that

A
[
xn + xy

n−1
a ,

〈(
1

n
,
a

n

)〉]
∼= B

[
x
n−1
a + xyn,

〈(
a

n− 1
, − a

n− 1

)〉]
∼= B

[
xny + y

n−1
a ,

〈(
a

n− 1
, − a

n− 1

)〉]
,

A
[
xn−ay + xy

n−1
a ,

〈(
1

n
,
a

n

)〉]
∼= B

[
xn−ay + xy

n−1
a ,

〈(
a

n− a− 1
, − a

n− a− 1

)〉]
.

By the Group-Weights theorem, these two A-models are isomorphic. It follows that these

B-models are also isomorphic, by mirror symmetry.

By Lemma 3.18, Lemma 3.19, and by mirror symmetry, we have that

A
[
x

n−1
a y + yn,

〈(
a

n
,

1

n

)〉]
∼= B

[
x

n−1
a + xyn,

〈(
a

n− 1
, − a

n− 1

)〉]
∼= B

[
xny + y

n−1
a ,

〈(
a

n− 1
, − a

n− 1

)〉]
,

A
[
x

n−1
a y + xyn−a,

〈(
a

n
,

1

n

)〉]
∼= B

[
x

n−1
a y + xyn−a,

〈(
a

n− a− 1
, − a

n− a− 1

)〉]
.

By the Group-Weights theorem, these two A-models are isomorphic. It follows that these

B-models are also isomorphic. Since W1 and W3 have the same transpose polynomial, we

see that each of these B-models are isomorphic. This proves the theorem.
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Example 3.20 (Examples of Theorem 3.15, top row).

n = 5, a = 2 : B
[
x2 + xy5,

〈(
1
2 ,

1
2

)〉] ∼= B
[
x3y + xy2, 〈(0, 0)〉

]
.

n = 7, a = 2 : B
[
x3 + xy7,

〈(
1
3 , −

1
3

)〉] ∼= B [x5y + xy3,
〈(

1
2 ,

1
2

)〉]
.

n = 7, a = 3 : B
[
x2 + xy7,

〈(
1
2 ,

1
2

)〉] ∼= B
[
x4y + xy2, 〈(0, 0)〉

]
.

n = 9, a = 2 : B
[
x4 + xy9,

〈(
1
4 , −

1
4

)〉] ∼= B [x7y + xy4,
〈(

1
3 , −

1
3

)〉]
.

n = 9, a = 4 : B
[
x2 + xy9,

〈(
1
2 ,

1
2

)〉] ∼= B
[
x5y + xy2, 〈(0, 0)〉

]
.

3.4 A Complete Classification

So far, we have gone through each of the three families of weight systems and computed

the resulting B-model isomorphisms when the choice of group on the A-side was 〈J〉—the

smallest possible choice of common subgroup. In order to classify all possible isomorphisms

between B-models in two variables that stem from the Group-Weights theorem, we will need

to check for other intermediate subgroups of Gmax
W1
∩Gmax

W2
on the A-side where both W1 and

W2 are invertible. A result proved by Tay states that 〈J〉 is the only possible intermediate

subgroup.

Theorem 3.21 (Theorem 3.1 of [13]). Let W1 and W2 be distinct invertible polynomials in

two variables with the same weights. The only admissible subgroup of Gmax
W1
∩Gmax

W2
is 〈J〉.

Since there are no other possible choices of common subgroup, and since the three families

classify all cases in two variables where one weight system has more than one invertible

polynomial, this shows us that we have uncovered all the B-model isomorphisms in two

variables that stem directly from the Group-Weights theorem for A-models.
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Chapter 4. Algorithms for B-Model Iso-

morphisms

Now that we have a complete list of B-model isomorphisms in two variables that stem from

results we already know, we want to press forward to determine new isomorphisms between

B-models. To help us accomplish this goal, we will first develop some computational methods

and algorithms for B-model isomorphisms. These will assist us later on in the thesis as we

explore various possibilities for isomorphic B-models.

4.1 Computing and Verifying Algebra Isomorphisms

Here are two algorithms used in our computations of B-model isomorphisms. They have

been implemented in code, which can be found in Appendix A. Though our focus is on

B-model isomorphisms, there is nothing special about the choice of B-models as input for

these algorithms. These methods will also work the same between A-models, and between

A and B models.

4.1.1 Isomorphism Search. We take as input two B-models, call them B1 and B2. We

want to determine if B1
∼= B2. If so, then we want to compute an isomorphism φ : B1 → B2.

1. We first check the graded vector space structure. We can quickly determine if

dim(B1) = dim(B2), and if the grading on the basis elements line up. If this check fails,

then B1 6∼= B2. Otherwise we proceed.

2. We now set up a possible isomorphism φ : B1 → B2, defined on the basis elements.

Write B1 = spanC{1 = a1, a2, . . . , an}, and B2 = spanC{1 = b1, b2, . . . , bn} (ordered by

degrees). We start with φ(1B1) = 1B2 . We then iterate over the basis elements of B1 from

k = 2 to n.

• Case 1. If ak has no product relations (that is, if there are no non-identity basis elements

ai, aj such that ai ? aj = cak for some c ∈ C), then send ak to some linear combination

30



of basis elements of like degree in B2. There are various choices we can make for the

particular linear combination. Currently implemented in code are diagonal blocks,

upper/lower triangular blocks, and square (or full) blocks.

• Case 2. If ak has one or more product relations, then we want to make sure that

φ(ai ?aj) = φ(ai)?φ(aj) for each combination of i, j that yields cak. We will then have

φ(ak) = 1
c
φ(ai ? ak) = 1

c
φ(ai) ?φ(aj). Since we’ve ordered the basis elements by degree,

we will have already set up the map for each ai and aj at this point (i.e. i, j < k). Each

of these equations is equivalent, and we only need one of them to determine where ak

goes. We’ll save the rest of the equations for later when it comes time to solve for the

coefficients of our linear combinations.

3. Now that we have constructed our function φ, we need to decide if there are choices

of the coefficients of the linear combinations that will make φ an isomorphism of graded

Frobenius algebras. This will require us to create a system of several equations in several

unknowns. We start by adding in the equations we get from the product structure of B1. That

is, for each product ai ? aj, we want φ(ai ? aj) = φ(ai) ?φ(aj). Similarly, we obtain equations

from the pairing structure by requiring 〈ai, aj〉B1 = 〈φ(ai), φ(aj)〉B2 . These equations will

guarantee that φ respects the product and pairing structures. The other considerations

(sending 1B1 to 1B2 , linearity, and preserving degree) of Definition 2.28 have already been

taken care of. So our problem reduces to solving a system of (generally) nonlinear equations,

which we can set up and hand off to a computer algebra system to crunch on. If a solution

is found, then we have an explicit construction of our isomorphism.

However, the biggest problem lies not in setting up this system of equations but in solving

it! In many cases where the linear combinations get large, the computer is unable to solve

the system in a reasonable amount of time. This restricts many of our computations to

smaller cases that the computer can handle.
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4.1.2 Isomorphism Verification. Given B-models B1, B2, and a map φ : B1 → B2, we

want to verify that φ is an isomorphism of graded Frobenius algebras. We can check that

φ(1B1) = 1B2 , φ is linear, and φ is degree-preserving easily enough. Computationally, we

can then verify φ(ai ? aj) = φ(ai) ? φ(aj) and 〈ai, aj〉B1 = 〈φ(ai), φ(aj)〉B2 for all 1 ≤ i ≤ n

and i ≤ j ≤ n (like a double-loop, but we employ symmetry to reduce the number of

computations). If this test passes, then φ is an isomorphism of graded Frobenius algebras as

desired. This allows us to double-check our work in the first algorithm.

4.2 Showing That No Isomorphism Exists

Fix B, a B-model based on some polynomial and group. We want to list some conditions that

are easy to check to find other B-models that are potentially isomorphic to B. Preferably,

we want to narrow this down to a finite search-space.

First, B has a unique basis element of highest degree (see Lemma 4.3 for the two variable

case). The degree of this element depends only on the weights of the polynomial, and is

given by the familiar equation
∑

(1 − 2qi). If we are looking at another weight system ri,

then we would require
∑

(1− 2qi) =
∑

(1− 2ri) if we hope to find an isomorphic B-model.

(Recall that this number is called the central charge, and is denoted by ĉ).

Next, we know that the dimension of an unorbifolded B-model is given by
∏(

1
qi
− 1
)

.

We can also observe that the dimension of an orbifolded B-model is generally less than or

equal to the dimension of its unorbifolded B-model. However, there are exceptions as we can

see in the following example.

Example 4.1 (A pathology). The unorbifolded B-model B[x2+y2, {0}] = C[x, y]/(2x, 2y) ∼=

C has one basis element. But the orbifolded B-model B[x2 + y2, 〈(1
2
, 1

2
)〉] has two basis

elements, one for each element in the symmetry group. However, this is a particularly

special case since the original B-model was one dimensional.

We can avoid these pathological examples by assuming that the central charge ĉ > 0,

which will force our unorbifolded B-models to be at least two dimensional. Therefore, if
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we’re looking at a potential weight system qi, we need to have
∏(

1
qi
− 1
)
≥ dim(B). That

way there might be some non-trivial group that we can orbifold with, and perhaps obtain an

isomorphic B-model. Further, the dimension must always be an integer. These conditions

will narrow down our search-space.

This information, combined with the usual bounds, gives us the following test for B-

models in two variables:

Theorem 4.2 (Isomorphism Criteria). Fix B, a B-model with dimension d and central

charge ĉ > 0. In order for a weight system (q1, q2) to have a polynomial and group that will

yield an isomorphic B-model to B, the following conditions must be satisfied:

(1) q1, q2 ∈ Q ∩ (0, 1
2
],

(2) 2− 2q1 − 2q2 = ĉ,

(3)
(

1
q1
− 1
)(

1
q2
− 1
)

= n ∈ N≥d.

So why should this yield a finite list of weight systems? The first condition limits us to

rational coordinates of the box (0, 1
2
]× (0, 1

2
] in the coordinate plane. The second condition

defines a line that cuts through this box. So these two conditions alone still yield an infinite

number of possibilities. Finally, the third condition defines a hyperbola—part of which

intersects our box and line. The inequality still gives us most of the line, but the fact that

the hyperbola must equal an integer means that on a good day there will only be a finite

number of cases before the solutions get too big and fall outside our box. This gives us an

algorithm to compute these weight systems. However, sometimes this algorithm will not

halt due to limiting conditions on how the line intersects the hyperbola. We’ll classify these

cases in Lemma 4.4.

Once we obtain a finite number of weight systems to look at, we can make a (slightly

larger) finite list of polynomials and groups. We then will only have a finite number of B-

models to check for isomorphisms. If none of them match our initial B-model, then we can

definitively say that there cannot be any isomorphic B-models in two variables. If necessary,

we can also rule out the one variable cases.
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4.2.1 Justifcation of the Criteria. The following lemmas and conditions are needed

to justify and explain parts of the algorithm listed above.

Lemma 4.3. For a given W in two variables with ĉ > 0 and a nontrivial group G ≤ SL(W ),

the subspace highest degree in B[W,G] is spanned by the same element that spans the subspace

of highest degree in B[W, {0}].

Proof. As noted earlier, the subspace of highest degree of B[W, {0}] is spanned by Hess(W ).

Let m represent the monomial part of Hess(W ), as we won’t need its coefficient. We will

examine the definition of B-model multiplication to show that bm; (0, 0)e is a basis element

of B[W,G]. Further, we will show that bm; (0, 0)e is an element of highest degree in B[W,G]

and that it is unique.

First, let’s recall the definition of B-model multiplication from Definition 2.24. The

product of two elements bm1; g1e and bm2; g2e is given by

bm1; g1e ? bm2; g2e =

 bγm1m2; g1 + g2e if fix(g1) ∪ fix(g2) ∪ fix(g1 + g2) = Cn,

0 otherwise.

Here γ is a monomial defined by

γ =
µg1∩g2Hess(W |fix(g1+g2))

µg1+g2Hess(W |fix(g1)∩fix(g2))
,

where µg1∩g2 is the dimension of the Milnor ring corresponding to W |fix(g1)∩fix(g2), and µg1+g2

is the dimension of the Milnor ring corresponding to W |fix(g1+g2).

Since we have assumed that our group G is nontrivial, there is an element g ∈ G such

that g 6= (0, 0). Since G is a group, there also exists h ∈ G such that g + h = (0, 0). Fixing

the coordinates of our group elements to be in [0, 1), noting that G ≤ SL(W ), and since g is

not the identity element, we need the coordinates of g to sum to 1. Since they are both not

zero, at least one is nonzero and is strictly between 0 and 1. The other coordinate then must
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be 1 minus the first coordinate, and therefore will also be strictly between 0 and 1. Hence

fix(g) is trivial. The same argument applies to h.

We further note that b1; ge and b1;he are basis elements of B[W,G]. This follows since

the group action on 1 is trivial. We then see that the dimension of B[W,G] is at least equal

to |G|, but that’s beside the point. We want to show that we get bm; (0, 0)e in our basis,

where m is the monomial part of Hess(W ).

Consider b1; ge?b1;he. By the formula, we obtain bγ; (0, 0)e. When computing γ, we are

not concerned about the coefficient—we just want to know the monomial. But notice that

fix(g)∩fix(h) is trivial, and fix(g+ h) is C2. So γ equals Hess(W )
µ

, where µ is the dimension of

QW . Therefore γ is some nonzero coefficient times m, which is what we wanted. bm; (0, 0)e

is an element of B[W,G].

From the unorbifolded case, we know that degbm; (0, 0)e = ĉ, which begs a question: Do

we get any elements of higher degree in the orbifolded case? Fortunately, we only have two

situations to check. Either we get some monomial from the basis of the Milnor ring and

the identity element (0, 0), or we get 1 paired with some g ∈ G. We already know from the

Milnor ring that bm; (0, 0)e is unique. Now we just need to show that it has a higher degree

than any b1; ge.

Recall that the B-model degree of any basis element bn; (θ1, . . . , θn)e is given by 2p +∑
θi /∈Z(1− 2qi) where p represents the quasihomogeneous degree of monomial n. In our case,

we find that each b1; ge has B-model degree of ĉ and bm; (0, 0)e has B-model degree of 2ĉ.

So for ĉ > 0, which we have assumed in the hypothesis, we have our result.

Lemma 4.4 (Halting Condition). The algorithm will halt provided that 0 < ĉ < 1.

Proof. This is a simple geometric observation. We know that 0 < ĉ < 2. When 0 < ĉ < 1,

the line 2 − 2q1 − 2q2 = ĉ (defined in condition (2) of Theorem 4.2) has x and y intercepts

that are greater than 1
2
. At ĉ = 1, the intercepts are both precisely 1

2
, and for 1 ≤ ĉ < 2, the

intercepts are between 0 and 1
2
.
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Now as we increase the possible dimension for our B-model, the hyperbola
(

1
q1
− 1
)(

1
q2
− 1
)

=

n ∈ N≥d (condition (3) of Theorem 4.2) will become steeper and the “bend” of the hyperbola

will get closer to the origin. However, if the line has x and y intercepts between 0 and 1
2
,

there is no possible way for the hyperbola to intersect the line outside of our “feasible region”

Q ∩ (0, 1
2
] (condition (1) of Theorem 4.2).

That being said, there seems to be a point at which the computer stops outputting

rational-valued solutions even if ĉ ≥ 1. Further work must be done to figure out how far we

need to go before we can reasonably say that we’ve found all possible weight systems.

4.2.2 Using the Criteria.

Example 4.5. Up to permutation of variables, B[x3 + xy3, {0}] is unique (for polynomials

in two variables).

Proof. Let B = B[x3 + xy3, {0}]. We have that deg(B) = 7, and its ĉ = 8
9
. Running the

code, we obtain the following list of solutions:

Unorbifolded Dimension Weight Systems

7 (1
3
, 2

9
), (2

9
, 1

3
)

10 (1
9
, 4

9
), (4

9
, 1

9
)

17 ( 1
18
, 1

2
), (1

2
, 1

18
)

The code halted since ĉ < 1, so we conclude that these are all the possibilities. Our original

polynomial has weights (1
3
, 2

9
), and it is the only polynomial admitted by this weight system.

Notice also that when there are two solutions, the second solution is just the result of

permuting variables.

The weight system (1
9
, 4

9
) has the polynomials x9 + xy2, x5y + xy2, and x9 + x5y + xy2.

The only group that works for any of the three is {0}, which gives us B-models of dimension

10—too large to match with B.
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The final weight system ( 1
18
, 1

2
) yields x18 + y2, x9y + y2, and x18 + x9y + y2. The groups

{0} and 〈(1
2
, 1

2
)〉 happen to work in each case. Of course {0} yields dimension 17, which is

too big. 〈(1
2
, 1

2
)〉 yields dimension 10, which is also too big. So we conclude that B is (in the

sense that we defined above) unique.

Proposition 4.6. The following is a complete list of isomorphic B-models in two variables

(up to permutation) involving the weight system (1
3
, 1

3
).

(1) B[x3 + y3, {0}] (6) B[x3 + y3 + x2y + xy2, {0}]

(2) B[x3 + xy2, {0}] (7) B[x3 + y3, 〈(1
3
,−1

3
)〉]

(3) B[x2y + xy2, {0}] (8) B[x2 + xy3, 〈(1
2
, 1

2
)〉]

(4) B[x3 + y3 + x2y, {0}] (9) B[x2 + y6, 〈(1
2
, 1

2
)〉]

(5) B[x3 + x2y + xy2, {0}] (10) B[x2 + xy3 + y6, 〈(1
2
, 1

2
)〉]

Proof. In Theorem 5.1 we will prove that B-models (1) through (10) are isomorphic. It now

remains to show that there are no other possible isomorphic B-models in two variables. Note

that for the weight system (1
3
, 1

3
) we have ĉ = 2

3
< 1. So we are safe to run the code, which

gives the following solutions:

Unorbifolded Dimension Weight Systems

4 (1
3
, 1

3
)

5 (1
2
, 1

6
), (1

6
, 1

2
)

We have listed all possible polynomials with weights (1
3
, 1

3
), and all their possible B-models.

Interestingly, they all happen to be isomorphic. For the weight system (1
2
, 1

6
) we have listed

all possible polynomials with all their possible orbifolded B-models (since the unorbifolded

dimension is too big). These are also isomorphic to the other ones listed. Since there are no

more potential weight systems, we conclude that this is a complete list.
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Example 4.7. Let’s investigate the weight system (1
4
, 1

4
) and find all the possible isomor-

phisms. Applying the algorithm, we find these solutions:

Unorbifolded Dimension Weight Systems

9 (1
4
, 1

4
)

10 (1
3
, 1

6
), (1

6
, 1

3
)

However ĉ = 1, so the algorithm does not halt. Checking up to dim = 10000 yields the

previous results. We may proceed with some confidence that these are all the possibilities.

This conclusion is also suggested by Group-Weights—Theorem 3.3 gives us isomorphisms

between B-models with polynomials of weight (1
4
, 1

4
) and B-models with polynomials of weight

(1
3
, 1

6
) and (1

6
, 1

3
).
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Chapter 5. Computations

Applying the algorithms developed in the previous chapter, we compute new isomorphisms

of Landau-Ginzburg B-models. We start by choosing a weight system, listing the possible

B-models built with polynomials fixed by that weight system, and then proceed by searching

for isomorphic B-models.

5.1 Weight System
(
1
3 ,

1
3

)
The following is list of B-models built with polynomials having weights

(
1
3
, 1

3

)
, along with

other B-models that are isomorphic to them. Recall that in Proposition 4.6 we showed that

if these isomorphisms exist, then they form a complete list for this case.

Theorem 5.1. Each of the following B-models are isomorphic.

(1) B[x3 + y3, {0}] (6) B[x3 + y3 + x2y + xy2, {0}]

(2) B[x3 + xy2, {0}] (7) B[x3 + y3, 〈(1
3
,−1

3
)〉]

(3) B[x2y + xy2, {0}] (8) B[x2 + xy3, 〈(1
2
, 1

2
)〉]

(4) B[x3 + y3 + x2y, {0}] (9) B[x2 + y6, 〈(1
2
, 1

2
)〉]

(5) B[x3 + x2y + xy2, {0}] (10) B[x2 + xy3 + y6, 〈(1
2
, 1

2
)〉]

Proof. From the Group-Weights theorem, we already know that (3) ∼= (7) ∼= (8) and (2) ∼=

(9) (see Theorem 3.3). By Theorem 2.32, we get (1) ∼= . . . ∼= (6). (8) ∼= (9) ∼= (10) will be

shown in Theorem 6.6. We will show cases (1) ∼= (7) and (1) ∼= (2) directly in Example 5.2

and Example 5.3.
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As a side note, we get the following A-model isomorphisms that don’t follow from Group-

Weights:

(1) A
[
x3 + y3, 〈(1

3
, 0), (0, 1

3
)〉
]

(3) A
[
x2y + y3, 〈(5

6
, 1

3
)〉
]

(5) A
[
x2 + y6, 〈(1

2
, 1

6
)〉
]

(2) A
[
x3 + xy2, 〈(1

3
, 5

6
)〉
]

(4) A
[
x2y + xy2, 〈(1

3
, 1

3
)〉
]

The following examples demonstrate how to use the code to compute isomorphisms. Here

we will try to verify B [x3 + y3, {0}] ∼= B
[
x3 + y3, 〈(1

3
,−1

3
)〉
]
. Running the code, we get the

following.

sage: W1 = Singularity(x^3 + y^3)

sage: B1 = OrbMilnorRing(SymmetryGroup(W1,0))

Orbifold Milnor ring for x^3 + y^3 with group generated by <(0, 0)>.

Dimension: 4

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] yb_(0, 0) Degree: 2/3 (1/3, 1/3)

[3] xb_(0, 0) Degree: 2/3 (1/3, 1/3)

[4] x*yb_(0, 0) Degree: 4/3 (2/3, 2/3)

sage: B = OrbMilnorRing(SymmetryGroup(W1,[[1/3,2/3]]))

Orbifold Milnor ring for x^3 + y^3 with group generated by <(1/3, 2/3)>.

Dimension: 4

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] b_(1/3, 2/3) Degree: 2/3 (1/3, 1/3)

[3] b_(2/3, 1/3) Degree: 2/3 (1/3, 1/3)

[4] x*yb_(0, 0) Degree: 4/3 (2/3, 2/3)

sage: construct_map(B1,B)

Isomorphic as Graded Vector Spaces

using map:

[ 1 0 0 0]

[ 0 c0 0 0]

[ 0 0 c1 0]

[ 0 0 0 9*c0*c1]

Solving equations [True, (1/9) == c0*c1, 9*c0*c1 == 9*c0*c1]

Solution(s): [

[c0 == 1/9/r1, c1 == r1]

]

The output of the code suggests our next result.

Example 5.2. B [x3 + y3, {0}] ∼= B
[
x3 + y3, 〈(1

3
,−1

3
)〉
]
.
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Proof. Let B1 = B [x3 + y3, {0}] and B2 = B
[
x3 + y3, 〈(1

3
, 2

3
)〉
]
. Choosing c1 = r1 = 1 in the

computer’s solution, we get the following map φ : B1 → B2:

φ =



1 0 0 0

0 1
9

0 0

0 0 1 0

0 0 0 1


.

We will verify directly that φ is indeed an isomorphism of graded Frobenus algebras.

Certainly φ is a linear map, sending the identity of B1 to the identity of B2, and is bijective

since the matrix is invertible. The following are the multiplication tables for B1 and B2:

? [1]1 [2]1 [3]1 [4]1

[1]1 [1]1 [2]1 [3]1 [4]1

[2]1 0 [4]1 0

[3]1 0 0

[4]1 0

? [1]2 [2]2 [3]2 [4]2

[1]2 [1]2 [2]2 [3]2 [4]2

[2]2 0 9[4]2 0

[3]2 0 0

[4]2 0

From the code, we have the following pairing matrices:

ηB1 =



0 0 0 1
9

0 0 1
9

0

0 1
9

0 0

1
9

0 0 0


ηB2 =



0 0 0 1
9

0 0 1 0

0 1 0 0

1
9

0 0 0


.

We’ll check that φ respects the non-trivial products and pairings. There is only one non-

trivial product to check:

φ([2]1 ? [3]1) = φ([4]1) = [4]2,

φ([2]1) ? φ([3]1) =
1

9
[2]2 ? [3]2 =

1

9
(9[4]2) = [4]2.
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This shows that φ respects the products. There are also two non-trivial pairing relations.

First:

〈[1]1, [4]1〉 =
1

9
,

〈φ([1]1), φ([4]1)〉 = 〈[1]2, [4]2〉 =
1

9
.

Second:

〈[2]1, [3]1〉 =
1

9
,

〈φ([2]1), φ([3]1)〉 = 〈1
9

[2]2, [3]2〉 =
1

9
〈[2]2, [3]2〉 =

1

9
(1) =

1

9
.

So φ respects the pairing. Therefore φ does give us an isomorphism of graded Frobenius

algebras.

We’ll now investigate B [x3 + y3, {0}] and B [x3 + xy2, {0}]. Here the code yields the

following output.

sage: W1 = Singularity(x^3 + y^3); W2 = Singularity(x^3 + x*y^2)

sage: B1 = OrbMilnorRing(SymmetryGroup(W1,0))

Orbifold Milnor ring for x^3 + y^3 with group generated by <(0, 0)>.

Dimension: 4

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] yb_(0, 0) Degree: 2/3 (1/3, 1/3)

[3] xb_(0, 0) Degree: 2/3 (1/3, 1/3)

[4] x*yb_(0, 0) Degree: 4/3 (2/3, 2/3)

sage: B2 = OrbMilnorRing(SymmetryGroup(W2,0))

Orbifold Milnor ring for x^3 + x*y^2 with group generated by <(0, 0)>.

Dimension: 4

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] yb_(0, 0) Degree: 2/3 (1/3, 1/3)

[3] xb_(0, 0) Degree: 2/3 (1/3, 1/3)

[4] y^2b_(0, 0) Degree: 4/3 (2/3, 2/3)

sage: construct_map(B1,B2, type="full")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0]

[0 c_0 c_1 0]
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[0 c_2 c_3 0]

[0 0 0 c_0*c_2 - 1/3*c_1*c_3]

Solving equations [True, c2^2 - 1/3*c3^2 == 0, 0 == -1/2*c0^2 + 1/6*c1^2,

0 == -1/2*c2^2 + 1/6*c3^2, (1/9) == -1/2*c0*c2 + 1/6*c1*c3,

c0*c2 - 1/3*c1*c3 == c0*c2 - 1/3*c1*c3, c0^2 - 1/3*c1^2 == 0]

Solution(s): [

[c_0 == -1/9/r1, c_1 == 1/9*sqrt(3)/r1, c_2 == r1, c_3 == sqrt(3)*r1],

[c_0 == -1/9/r2, c_1 == -1/9*sqrt(3)/r2, c_2 == r2, c_3 == -sqrt(3)*r2]

]

Since the computer was able to find a map, this output suggests that these B-models are

isomorphic.

Example 5.3. B [x3 + y3, {0}] ∼= B [x3 + xy2, {0}].

Proof. Let B1 = B [x3 + y3, {0}] and B2 = B [x3 + xy2, {0}]. Choosing r1 = 1 in the first

solution from the computer, we get the following map φ : B1 → B2:

φ =



1 0 0 0

0 −1
9

√
3

9
0

0 1
√

3 0

0 0 0 −2
9


.

We will verify directly that φ is indeed an isomorphism of graded Frobenus algebras.

Certainly φ is a linear map, sending the identity of B1 to the identity of B2, and is bijective

since the matrix is invertible. The following are the multiplication tables for B1 and B2:

? [1]1 [2]1 [3]1 [4]1

[1]1 [1]1 [2]1 [3]1 [4]1

[2]1 0 [4]1 0

[3]1 0 0

[4]1 0

? [1]2 [2]2 [3]2 [4]2

[1]2 [1]2 [2]2 [3]2 [4]2

[2]2 [4]2 0 0

[3]2 −1
3
[4]2 0

[4]2 0
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From the code, we have the following pairing matrices:

ηB1 =



0 0 0 1
9

0 0 1
9

0

0 1
9

0 0

1
9

0 0 0


ηB2 =



0 0 0 −1
2

0 −1
2

0 0

0 0 1
6

0

−1
2

0 0 0


.

We’ll check that φ respects the non-trivial products and pairings. For the products:

φ([2]1 ? [2]1) = φ(0) = 0,

φ([2]1) ? φ([2]1) = (−1

9
[2]2 +

√
3

9
[3]2) ? (−1

9
[2]2 +

√
3

9
[3]2)

=
1

81
([2]2 ? [2]2) +

3

81
([3]2 ? [3]2)

=
1

81
([4]2) +

3

81
(−1

3
[4]2)

= 0.

φ([2]1 ? [3]1) = φ([4]1) = −2

9
[4]2,

φ([2]1) ? φ([3]1) = (−1

9
[2]2 +

√
3

9
[3]2) ? ([2]2 +

√
3[3]2)

= −1

9
([2]2 ? [2]2) +

1

3
([3]2 ? [3]2)

= −1

9
([4]2) +

1

3
(−1

3
[4]2)

= −2

9
[4]2.

φ([3]1 ? [3]1) = φ(0) = 0,

φ([3]1) ? φ([3]1) = ([2]2 +
√

3[3]2) ? ([2]2 +
√

3[3]2)

= ([2]2 ? [2]2) + 3([3]2 ? [3]2)

= [4]2 + 3(−1

3
[4]2)

= 0.
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This shows that φ respects the products. Now for the pairings:

〈[1]1, [4]1〉 =
1

9
,

〈φ([1]1), φ([4]1)〉 = 〈[1]2,−
2

9
[4]2〉 = −2

9
〈[1]2, [4]2〉 =

(
−2

9

)(
−1

2

)
=

1

9
.

〈[2]1, [2]1〉 = 0,

〈φ([2]1), φ([2]1)〉 = 〈−1

9
[2]2 +

√
3

9
[3]2,−

1

9
[2]2 +

√
3

9
[3]2〉

= −1

9
· −1

9
〈[2]2, [2]2〉+

√
3

9
·
√

3

9
〈[3]2, [3]2〉

=
1

81
· −1

2
+

3

81
· 1

6

= 0.

〈[2]1, [3]1〉 =
1

9
.

〈φ([2]1), φ([3]1)〉 = 〈−1

9
[2]2 +

√
3

9
[3]2, [2]2 +

√
3[3]2〉

= −1

9
〈[2]2, [2]2〉+

√
3 ·
√

3

9
〈[3]2, [3]2〉

= −1

9
· −1

2
+

1

3
· 1

6

=
1

9
.

〈[3]1, [3]1〉 = 0,

〈φ([3]1), φ([3]1)〉 = 〈[2]2 +
√

3[3]2, [2]2 +
√

3[3]2〉

= 〈[2]2, [2]2〉+
√

3 ·
√

3〈[3]2, [3]2〉

= −1

2
+ 3 · 1

6

= 0.

So φ respects the pairing. Therefore φ does give us an isomorphism of graded Frobenius

algebras.
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5.2 Weight System
(
1
4 ,

1
4

)
The following set of B-models come from using polynomials with weight

(
1
4
, 1

4

)
and a non-

trivial group. Each of these match as graded vector spaces. Now do they match as graded

Frobenius algebras? We use the computer to help us assemble the following table.

Polynomial W Symmetry Group G

0. x4 + y4 〈
(

1
2
, 1

2

)
〉 SL(W ) = 〈

(
1
4
,−1

4

)
〉

1. x4 + xy3 SL(W ) = 〈
(

1
2
, 1

2

)
〉

2. x3y + xy3 SL(W ) = 〈
(

1
2
, 1

2

)
〉

3. x4 + x3y + xy3 SL(W ) = 〈
(

1
2
, 1

2

)
〉

4. x4 + x3y + y4 SL(W ) = 〈
(

1
2
, 1

2

)
〉

5. x4 + x2y2 + xy3 SL(W ) = 〈
(

1
2
, 1

2

)
〉

6. x4 + x2y2 + y4 〈
(

1
2
, 1

2

)
〉 SL(W ) = 〈

(
1
4
,−1

4

)
〉

7. x3y + x2y2 + xy3 SL(W ) = 〈
(

1
2
, 1

2

)
〉

8. x3y + x2y2 + xy3 + y4 SL(W ) = 〈
(

1
2
, 1

2

)
〉

9. x4 + x3y + x2y2 + y4 SL(W ) = 〈
(

1
2
, 1

2

)
〉

10. x4 + x3y + xy3 + y4 SL(W ) = 〈
(

1
2
, 1

2

)
〉

11. x4 + x3y + x2y2 + xy3 + y4 SL(W ) = 〈
(

1
2
, 1

2

)
〉

Here we let Bi denote the B-model constructed with polynomial i and the smallest group

listed, and we’ll write Bi(SL) for the B-model constructed with the larger group. Using a

computer, we’ve been successful in computing the following isomorphisms:

B0(SL) ∼= B2
∼= B3

∼= B5
∼= B6

∼= B6(SL) ∼= B7
∼= B8

∼= B9

B1
∼= B11

These results were computed and verified with a computer, using the algorithms outlined

in Chapter 4. The specific results of the computation can be found in Appendix B.
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Chapter 6. Examples of B-Model Deforma-

tion Invariance and Monodromy

Recall that an important property that yields A-model isomorphisms is deformation invari-

ance. Given polynomials W1, W2 with the same weights and a group G that preserves both

W1 and W2, then at every point along a continuous path that transforms W1 into W2 we

get isomorphic A-models. We previously noted that deformation invariance doesn’t exist

in general for B-models (see Example 2.34). In this chapter, we search for examples where

B-model deformation invariance does hold. To help us in our search, we use the algorithms

developed in Chapter 4. In cases where B-model deformation invariance does hold, we also

exhibit examples of monodromy—cases where we get nontrivial automorphisms of a given

B-model by following a path from the polynomial to itself that goes around a point where

the transformed polynomial is degenerate.

6.1 First Example

Theorem 6.1. For n ∈ N, n > 3, 2 | n, B[xn+yn, SL(xn+yn)] ∼= B[xn+yn+(xy)n/2, SL(xn+

yn + (xy)n/2)].

Proof. Consider W0 = xn+yn and W1 = xn+yn+xn/2yn/2. Since Gmax
W0

= 〈
(

1
n
, 0
)
,
(
0, 1

n

)
〉, it

follows that SL(W0) = 〈
(

1
n
,− 1

n

)
〉. We will check that SL(W0) also fixes W1. In multiplicative

coordinates, the generator is (e2πi(1/n), e2πi(−1/n)). Now notice (e2πi(1/n)x)n/2(e2πi(−1/n)y)n/2 =

eπie−πixn/2yn/2 = xn/2yn/2. To see this another way, just consider (n
2
, n

2
) · ( 1

n
,− 1

n
) = 2− 2 =

0 ∈ Z. Therefore SL(W0) = SL(W1).

Label B0 = B[W0, 〈( 1
n
,− 1

n
)〉] and B1 = B[W1, 〈( 1

n
,− 1

n
)〉]. We’ll begin by computing

Milnor rings. We get that QW0 = C[x, y]/(nxn−1, nyn−1), with basis {1, y, . . . , yn−2} ⊗

{1, x, . . . , xn−2}. Now we’ll add in the group action g∗. So

g∗(xayb) = 1 · (e2πi/nx)a(e−2πi/ny)b = e(2πi/n)a−(2πi/n)bxayb.
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In this case we want a
n
− b

n
∈ Z, so n | (a− b) which is true if and only if a = b.

Now notice that QW1 = C[x, y]/(nxn−1 + n
2
xn/2−1yn/2, nyn−1 + n

2
xn/2yn/2−1). The ba-

sis is the same as QW0 with the further relations that xn−1 = −1
2
xn/2−1yn/2 and yn−1 =

−1
2
xn/2yn/2−1. However, the group action is the same, and we obtain the same monomials

in the orbifold Milnor ring as before.

For both B0 and B1, we obtain the state space

{b1; (0, 0)e, bxy; (0, 0)e, . . . , bxn−2yn−2; (0, 0)e,

b1; (
1

n
,− 1

n
)e, b1; (

2

n
,− 2

n
)e, . . . , b1; (

n− 1

n
,−(n− 1)

n
)e}.

So dim(B0) = dim(B1) = 2n− 2, as vector spaces.

We’ll now compute degrees. For 0 ≤ a ≤ n−2, the weighted degree of xaya is a
n

+ a
n

= 2a
n

.

So the degree of bxaya; (0, 0)e = 4a
n

. Also, the degree of b1; ( b
n
,− b

n
)e for 1 ≤ b ≤ n − 1 is

2− 4
n

= 2n−4
n

. In fact, these are equal when 4a = 2n− 4 if and only if 2a = n− 2. So we get

the following:

b1; (0, 0)e Degree: 0

bxy; (0, 0)e Degree: 4
n

...

bxn/2−1yn/2−1; (0, 0)e Degree: 2n−4
n

b1; ( 1
n
,− 1

n
)e Degree: 2n−4

n

...

b1; (n−1
n
,− (n−1)

n
)e Degree: 2n−4

n

bxn/2yn/2; (0, 0)e Degree: 2n
n

= 2

...

bxn−2yn−2; (0, 0)e Degree: 4n−8
n
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Products on B0. Here we have a, b ∈ {1, . . . , n− 1}.

bxaya; (0, 0)e ? b1; (
b

n
,− b

n
)e = 0.

bxaya; (0, 0)e ? bxbyb; (0, 0)e =

 bx
a+bya+b; (0, 0)e when a+ b ≤ n− 2,

0 otherwise.

b1; (
a

n
,−a

n
)e ? b1; (

b

n
,− b

n
)e =

 n2bxn−2yn−2; (0, 0)e when a+ b = n,

0 otherwise.

Products on B1:

bxaya; (0, 0)e ? b1; (
b

n
,− b

n
)e = 0.

bxaya; (0, 0)e ? bxbyb; (0, 0)e =

 bx
a+bya+b; (0, 0)e when a+ b ≤ n− 2,

0 otherwise.

b1; (
a

n
,−a

n
)e ? b1; (

b

n
,− b

n
)e =


3
4
n2bxn−2yn−2; (0, 0)e when a+ b = n,

0 otherwise.

Here we employed the relations xn−1 = −1
2
xn/2−1yn/2 and yn−1 = −1

2
xn/2yn/2−1 to line

things up nicely. Note also that the products of B0 and B1 are nearly identical.

Nonzero/Nontrivial pairings on B0:

〈bxaya; (0, 0)e, bxbyb; (0, 0)e〉 =
1

n2
, given that a+ b = n− 2.

〈b1; (
a

n
,−a

n
)e, b1; (

b

n
,− b

n
)e〉 = 1, given that a+ b = n.

Nonzero/Nontrivial pairings on B1:

〈bxaya; (0, 0)e, bxbyb; (0, 0)e〉 =
1

3
4
n2

given that a+ b = n− 2

〈b1; (
a

n
,−a

n
)e, b1; (

b

n
,− b

n
)e〉 = 1 given that a+ b = n
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We’re now ready to state and prove the isomorphism φ : B0 → B1. We define φ on basis

elements. So

φ(b1; (0, 0)eB0) = b1; (0, 0)eB1 ,

φ(b1; (
a

n
,−a

n
)eB0) = b1; (

a

n
,−a

n
)eB1 ,

φ(bxaya; (0, 0)eB0) = cabxaya; (0, 0)eB1 .

Here we let c ∈ C satisfy cn−2 = 3
4
. In this case φ is a diagonal map with non-zero entries

along the diagonal. So φ is a bijection. We’ll now check that φ respects the product and

and pairings.

First for the products.

φ(bxaya; (0, 0)eB0 ? bxbyb; (0, 0)eB0) = φ(bxa+bya+b; (0, 0)eB0)

= ca+bbxa+bya+b; (0, 0)eB1

φ(bxaya; (0, 0)eB0) ? φ(bxbyb; (0, 0)eB0) = cabxaya; (0, 0)eB1 ? c
bbxbyb; (0, 0)eB1

= ca+bbxa+bya+b; (0, 0)eB1

φ(b1; (
a

n
,−a

n
)eB0 ? b1; (

b

n
,− b

n
)eB0) = φ(n2bxn−2yn−2; (0, 0)eB0)

= n2cn−2bxn−2yn−2; (0, 0)eB1

=
3

4
n2bxn−2yn−2; (0, 0)eB1

φ(b1; (
a

n
,−a

n
)eB0) ? φ(b1; (

b

n
,− b

n
)eB0) = b1; (

a

n
,−a

n
)eB1 ? b1; (

b

n
,− b

n
)eB1

=
3

4
n2bxn−2yn−2; (0, 0)eB1

Since these are all the non-trivial products, we have that φ respects multiplication.
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Now for the pairings. Using values of a, b that make for nonzero pairings, we have

〈φ(bxaya; (0, 0)eB0), φ(bxbyb; (0, 0)eB0)〉 = 〈cabxaya; (0, 0)eB1 , c
bbxbyb; (0, 0)eB1〉

= cn−2〈bxaya; (0, 0)eB1 , bxbyb; (0, 0)eB1〉

= cn−2

(
1

3
4
n2

)
=

3

4

(
1

3
4
n2

)
=

1

n2
.

〈φ(b1; (
a

n
,−a

n
)eB0), φ(b1; (

b

n
,− b

n
)eB0)〉 = 〈b1; (

a

n
,−a

n
)eB1 , b1; (

b

n
,− b

n
)eB1〉 = 1.

We see that φ respects pairings. Therefore φ is indeed an isomorphism of graded Frobenius

algebras.

Theorem 6.2. For n ∈ N, n > 3, 2 | n, and α ∈ C with α 6= 2, B[xn + yn, SL(xn + yn)] ∼=

B[xn + yn + α(xy)n/2, SL(xn + yn + α(xy)n/2)].

Proof. By introducing a parameter α ∈ C, we can take this one step further. If Wα =

xn + yn + α(xy)n/2, we’ll have ∇Wα = (nxn−1 + αn
2
xn/2−1yn/2, nyn−1 + αn

2
xn/2yn/2−1). We’ll

now check to see when W is nondegenerate. So we’ll solve the system

nxn−1 +
αn

2
xn/2−1yn/2 = 0,

nyn−1 +
αn

2
xn/2yn/2−1 = 0.

So nxn−1 = −α(n
2
)xn/2−1yn/2 ⇒ xn/2 = −α

2
yn/2 when x, y 6= 0. Now substitute: nyn−1 +

α(n
2
)(−α

2
yn/2)yn/2−1 = nyn−1 − α2(n

4
)yn−1 = (n− α2(n

4
))yn−1 = 0. So n− α2(n

4
) = 0⇒ n =

α2(n
4
)⇒ 1 = α2

4
⇒ α = ±2. So Wα will be nondegenerate if and only if α 6= ±2.

Let Bα = B[Wα, 〈( 1
n
,− 1

n
)〉]. Many of our computations will be much the same as the work

we did for B1 in the previous theorem. Note that the Milnor ring QWα has the same basis

as QW1 , but with relations xn−1 = −α
2
xn/2−1yn/2 and yn−1 = −α

2
xn/2yn/2−1. The B-model

state space is exactly the same.
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Products on Bα:

bxaya; (0, 0)e ? b1; (
b

n
,− b

n
)e = 0.

bxaya; (0, 0)e ? bxbyb; (0, 0)e =

 bx
a+bya+b; (0, 0)e when a+ b ≤ n− 2,

0 otherwise.

b1; (
a

n
,−a

n
)e ? b1; (

b

n
,− b

n
)e =

 bγ; (0, 0)e when a+ b = n,

0 otherwise.

We’ll now compute what γ is. Let g = ( a
n
,− a

n
), h = ( b

n
,− b

n
). We then have µg∩h = 1,

µg+h = (n − 1)2 (this is the dimension of QWα). Hess((Wα)|fixg∩fixh
) = 1. It remains to

compute Hess((Wα)|fix(g+h)
) = Hess(Wα). So we do some calculus:

∂Wα

∂x
= nxn−1 + α

n

2
xn/2−1yn/2

∂Wα

∂y
= nyn−1 + α

n

2
xn/2yn/2−1

∂2Wα

∂x2
= n(n− 1)xn−2 + α(

n

2
)(
n

2
− 1)xn/2−2yn/2

∂2Wα

∂x∂y
,
∂2Wα

∂y∂x
= α(

n

2
)2xn/2−1yn/2−1

∂2Wα

∂y2
= n(n− 1)yn−2 + α(

n

2
)(
n

2
− 1)xn/2yn/2−2.

Now for a trip to the dentist. We will be using relations xn−1 = −α
2
xn/2−1yn/2 and yn−1 =

−α
2
xn/2yn/2−1. Setting up the matrix of second partial derivatives and taking the determinant

yields

Hess(Wα) = [n(n− 1)xn−2 + α(
n

2
)(
n

2
− 1)xn/2−2yn/2][n(n− 1)yn−2 + α(

n

2
)(
n

2
− 1)xn/2yn/2−2]

− [α(
n

2
)2xn/2−1yn/2−1]2

= n2(n− 1)2xn−2yn−2 + αn(n− 1)(
n

2
)(
n

2
− 1)xn/2+n−2yn/2−2

+ αn(n− 1)(
n

2
)(
n

2
− 1)xn/2yn/2+n−2 + α2(

n

2
)2(
n

2
− 1)2(xy)n−2 − α2(

n

4
)4(xy)n−2.
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Substitute:

αn(n− 1)(
n

2
)(
n

2
− 1)xn/2+n−2yn/2−2 = αn(n− 1)(

n

2
)(
n

2
− 1)(−α

2
xn/2−1yn/2)(xn/2−1yn/2−2)

= −α
2

2
n(n− 1)(

n

2
)(
n

2
− 1)(xy)n−2.

Similarly, αn(n−1)(n
2
)(n

2
−1)xn/2yn/2+n−2 = −α2

2
n(n−1)(n

2
)(n

2
−1)(xy)n−2. We then obtain

[n2(n− 1)2 − α2n(n− 1)(
n

2
)(
n

2
− 1) + α2(

n

2
)2(
n

2
− 1)2 − α2(

n

2
)4](xy)n−2.

This is a mess, but it simplifies to [n2(n − 1)2 − α2

4
(n2(n − 1)2)]xn−2yn−2. Now we can

compute the value γ:

γ =
1 · [n2(n− 1)2 − α2

4
(n2(n− 1)2)]xn−2yn−2

(n− 1)2 · 1
=

(
n2 − α2

4
(n2)

)
xn−2yn−2.

We now investigate the pairing on Bα. As before, we see 〈b1; ( a
n
,− a

n
)e, b1; ( b

n
,− b

n
)e〉 =

1 given that a+b = n. We’ll now investigate 〈bxaya; (0, 0)e, bxbyb; (0, 0)e〉 when a+b = n−2.

We just need to compute 〈xaya, xbyb〉 in QWα . To that end,

(xy)a(xy)b = (xy)n−2 =
〈xaya, xbyb〉

(n− 1)2
[n2(n− 1)2 − α2

4
(n2(n− 1)2)]xn−2yn−2

= 〈xaya, xbyb〉(n2 − α2

4
(n2))xn−2yn−2.

Equating coefficients yields 1 = 〈xaya, xbyb〉(n2 − α2

4
(n2)), or 〈xaya, xbyb〉 = 1

(n2−α2

4
(n2))

=

1
n2(1−α2/4)

. Therefore 〈bxaya; (0, 0)e, bxbyb; (0, 0)e〉 = 1
n2(1−α2/4)

.
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We’re now ready to give the isomorphism. As before, we’ll define the isomorphism φ :

B0 → Bα on basis elements. So

φ(b1; (0, 0)eB0) = b1; (0, 0)eBα ,

φ(b1; (
a

n
,−a

n
)eB0) = b1; (

a

n
,−a

n
)eBα ,

φ(bxaya; (0, 0)eB0) = cabxaya; (0, 0)eBα .

Here we let c ∈ C satisfy cn−2 = 1 − α2

4
. Notice that this φ is really an extension of the

map we had before. Again φ is a diagonal map with non-zero entries along the diagonal. So

φ is a bijection. We can quickly check, as we did before, that φ respects the products and

pairings.

First for the products.

φ(bxaya; (0, 0)eB0 ? bxbyb; (0, 0)eB0) = φ(bxa+bya+b; (0, 0)eB0)

= ca+bbxa+bya+b; (0, 0)eBα

φ(bxaya; (0, 0)eB0) ? φ(bxbyb; (0, 0)eB0) = cabxaya; (0, 0)eBα ? cbbxbyb; (0, 0)eBα

= ca+bbxa+bya+b; (0, 0)eBα

φ(b1; (
a

n
,−a

n
)eB0 ? b1; (

b

n
,− b

n
)eB0) = φ(n2bxn−2yn−2; (0, 0)eB0)

= n2cn−2bxn−2yn−2; (0, 0)eBα

= (1− α2

4
)n2bxn−2yn−2; (0, 0)eBα

φ(b1; (
a

n
,−a

n
)eB0) ? φ(b1; (

b

n
,− b

n
)eB0) = b1; (

a

n
,−a

n
)eBα ? b1; (

b

n
,− b

n
)eBα

= (1− α2

4
)n2bxn−2yn−2; (0, 0)eBα

Since these are all the non-trivial products, we have that φ respects multiplication.
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Now for the pairings. For values of a, b that yield nontrivial parings, we have

〈φ(bxaya; (0, 0)eB0), φ(bxbyb; (0, 0)eB0)〉 = 〈cabxaya; (0, 0)eBα , cbbxbyb; (0, 0)eBα〉

= cn−2〈bxaya; (0, 0)eBα , bxbyb; (0, 0)eBα〉

= cn−2

(
1

(1− α2

4
)n2

)

= (1− α2

4
)

(
1

(1− α2

4
)n2

)
=

1

n2
.

〈φ(b1; (
a

n
,−a

n
)eB0), φ(b1; (

b

n
,− b

n
)eB0)〉 = 〈b1; (

a

n
,−a

n
)eBα , b1; (

b

n
,− b

n
)eBα〉 = 1.

Thus φ respects pairings. Therefore φ is an isomorphism of graded Frobenius algebras.

As an aside, notice that by setting α = 0 we get cn−2 = 1 in the map. This gives us

n − 2 automorphisms of B0 → B0. We further note that we can introduce more constants

into the diagonal map. For every pair a, b such that a+ b = n, we can send b1; ( a
n
,− a

n
)eB1 7→

dab1; ( a
n
,− a

n
)eBα and b1; ( b

n
,− b

n
)eB1 7→ dbb1; ( b

n
,− b

n
)eBα where da ·db = 1. This affords many

different ways to construct our diagonal isomorphism.

6.1.1 A Case of Monodromy. We will consider the above example, still using the same

map but with all the d’s equal to 1. We will pick an initial value of cn−2 = 1− α2

4
and a path

in the complex plane to see how the isomorphism varies as we go around the “bad points”

α = ±2 where Wα is degenerate.

So first consider α as the path α(t) = 2(eit − 1) for t ∈ [0, 2π]. This path is the

circle of radius 2 centered at −2. The loop starts and ends at the origin, tracing the

circle counter-clockwise (i.e., it is positively oriented). We now let cn−2 = 1 − (α(t))2

4
=

1 − (eit − 1)2 = eit(2 − eit). Choose c = eit/(n−2)(2 − eit)1/(n−2). Notice that at t = 0,

c = e0(2 − 1)1/(n−2) = 1. At t = 2π, we get c = e2πi/(n−2)(2 − 1)1/(n−2) = e2πi/(n−2).

If we repeat this process, we can go around the point −2 a total of n − 2 times before
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we get back to c = 1. If we had chosen to go backwards (i.e. α(t) = 2(e−it − 1)),

we would get the results c = 1, e2πi(n−1)/(n−2), . . . , e2πi/(n−2) (since these are equivalent to

c = 1, e−2πi/(n−2), . . . , e−2πi(n−1)/(n−2)).

Going around the point −2 on this circular loop generates a cyclic group of order n− 2.

What happens if we go around the point 2? Unfortunately, nothing much changes. For a

positively-oriented circle, we get α(t) = −2(eit − 1). But then cn−2 = eit(2− eit) as before.

Borrowing some intuition from algebraic topology and the theory of multi-valued func-

tions, for any loop in C − {±2} based at 0 that doesn’t go around a “bad point” we can

define a branch cut that misses this loop. Hence every such loop is nullhomotopic, and we

can conclude that homotopic paths will yield the same results for the monodromy in this

example.

6.2 Second Example

Let n ∈ N, n ≥ 2. For the weight system
(

1
2
, 1

2n

)
, we have the following diagrams (where ar-

rows represent isomorphisms, with the direction showing the way the map was constructed):

For all n ≥ 2,

B[x2 + y2n, {0}] // B[x2 + xyn + y2n, {0}] B[x2 + xyn, {0}]oo

In the special case n = 2 we get

B[x2 + y4, 〈(1
2
, 1

2
)〉]

B[x2 + y4, {0}] //

OO

B[x2 + xy2 + y4, {0}] B[x2 + xy2, {0}]oo

If n is odd,

B[x2 + y2n, 〈(1
2
, 1

2
)〉] // B[x2 + xyn + y2n, 〈(1

2
, 1

2
)〉] B[x2 + xyn, 〈(1

2
, 1

2
)〉]oo
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These are all the isomorphisms we get between B-models built with polynomials in this

weight system.

We will prove this result in the course of the next several theorems.

Theorem 6.3. Let n ∈ N≥2. B[x2 + y2n, {0}] ∼= B[x2 + xyn + y2n, {0}] ∼= B[x2 + xyn, {0}].

Proof. The proof of this theorem follows by the following two lemmas.

Lemma 6.4. If Wα = x2 + αxyn + y2n for α ∈ C− {±2} and n ∈ N≥2, then B[W0, {0}] ∼=

B[Wα, {0}].

Proof. Let Bα = B[Wα, {0}]. So B0 = C[x, y]/(2x, 2ny2n−1) = spanC{1, y, . . . , y2n−2}, which

has dimension 2n − 1. We also see that Bα = C[x, y]/(2x + αyn, nαxyn−1 + 2ny2n−1) =

spanC{1, y, . . . , y2n−2}, which has dimension 2n− 1. Bα has further relations x = −α
2
yn and

xyn−1 = − 2
α
y2n−1. In each case deg(ya) = a

2n
. The only possible map that can work in this

case is diagonal.

When is Wα nondegenerate? We’ll solve 2x+ αyn = 0, nαxyn−1 + 2ny2n−1 = 0. Solving

for x yields x = −α
2
yn. Substitute: −nα2

2
y2n−1 + 2ny2n−1 = 0 ⇒ y2n−1(−nα2

2
+ 2n) = 0. So

either y = 0, or −nα2

2
+ 2n = 0⇒ α2 = 4⇒ α = ±2. So Wα is degenerate for α = ±2.

Since we are working with unorbifolded B-models, the product structure is relatively

simple. We have that ya ? yb = ya+b if a+ b ≤ 2n− 2, and is equal to 0 otherwise.

To understand the pairing structure, we’ll now compute the Hessian of Wα. We first

compute ∂2Wα

∂x2 = 2, ∂2Wα

∂x∂y
= ∂2Wα

∂y∂x
= nαyn−1, and ∂2Wα

∂y2 = n(n− 1)αxyn−2 + 2n(2n− 1)y2n−2.

So

Hess(Wα) = 2[n(n− 1)αxyn−2 + 2n(2n− 1)y2n−2]− (nαyn−1)2

= 2[(n2 − n)α(−α
2
yn)yn−2 + (4n2 − 2n)y2n−2]− n2α2y2n−2 substituting for x,

= −α2(n2 − n)y2n−2 + (8n2 − 4n)y2n−2 − n2α2y2n−2

= [(−2α2 + 8)n2 + (α2 − 4)n]y2n−2.
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Plugging in 0 for α yields Hess(W0) = (8n2 − 4n)y2n−2. On B0 and Bα we obtain a nonzero

value for the paring 〈ya, yb〉 precisely when a + b = 2n − 2. For nonzero B0 pairings, we

obtain

y2n−2 =
〈ya, yb〉
2n− 1

(8n2 − 4n)y2n−2 ⇒ 2n− 1

8n2 − 4n
= 〈ya, yb〉 ⇒ 1

4n
= 〈ya, yb〉.

For nonzero Bα pairings, we obtain

y2n−2 =
〈ya, yb〉
2n− 1

[(−2α2 + 8) + (α2 − 4)n]y2n−2 ⇒ 〈ya, yb〉 =
2n− 1

(−2α2 + 8)n2 + (α2 − 4)n
.

We’ll now construct a map φ : B0 → Bα, defined by φ = diag[1, c, c2, . . . , c2n−2]. We’ll

state what value c should be in just a moment. First we’ll check that φ preserves the product

structure.

φ(ya ? yb) = φ(ya+b) = ca+bya+b

φ(ya ? yb) = φ(ya) ? φ(yb) = caya ? cbyb = ca+bya+b.

For φ to preserve pairings, we require (assuming a+ b = 2n− 2):

1

4n
= 〈ya, yb〉B0 = 〈φ(ya), φ(yb)〉Bα

= 〈caya, cbyb〉Bα = c2n−2〈ya, yb〉Bα = c2n−2

(
2n− 1

(−2α2 + 8)n2 + (α2 − 4)n

)
.

Therefore c is any complex number satisfying c2n−2 = (−2α2+8)n2+(α2−4)n
4n(2n−1)

= (−2α2+8)n+(α2−4)
4(2n−1)

=

−2(α2−4)n+(α2−4)
4(2n−1)

= −(2n−1)(α2−4)
4(2n−1)

= −α2−4
4

. This gives us an isomorphism of graded Frobenius

algebras.
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Now we’ll look for some monodromy in this example. We’ll first circle around the point

−2 by letting α = 2(eit − 1). Then

c2n−2 = −1

4
[(2(eit − 1))2 − 4]

= −1

4
[4(e2it − 2eit + 1)− 4]

= −(e2it − 2eit + 1) + 1

= −e2it + 2eit

= eit(2− eit).

So c = eit/(2n−2) (2− eit)1/(2n−2)
. Starting at t = 0, we get c = e0 (2− 1)1/(2n−2) = (1)1/(2n−2) =

1, say. Increasing t by 2π yields c = e2πi/(2n−2), and so on. We cycle through the 2n−2 roots

of unity, each of which yields an automorphism of B0.

Letting α = −2(eit − 1) to go around the point 2 still yields c2n−2 = eit(2 − eit), so the

monodromy is the same as before.

Lemma 6.5. If Wα = x2 + xyn + αy2n for α ∈ C − {1
4
} and n ∈ N≥2, then B[W0, {0}] ∼=

B[Wα, {0}].

Proof. If Bα = B[Wα, {0}], then B0 = C[x, y]/(2x+yn, nxyn−1) = spanC{1, y, . . . , y2n−2} with

relation x = −1
2
yn. Also, Bα = C[x, y]/(2x+yn, nxyn−1+2nαy2n−1) = spanC{1, y, . . . , y2n−2}

with relations x = −1
2
yn and xyn−1 = −2αy2n−1.

To find when Wα is nondegenerate, we solve the equations 2x + yn = 0, nxyn−1 +

2nαy2n−1 = 0. We see that x = −1
2
yn. Substituting yields n(−1

2
yn)yn−1 + 2nαy2n−1 = 0,

so (−n
2

+ 2nα)y2n−1 = 0. Hence −n
2

+ 2nα = 0, which yields α = 1
4
. This is our point of

nondegeneracy.

The product structure behaves the same as the example in Lemma 6.4. So we proceed to

compute ∂2Wα

∂x2 = 2, ∂2Wα

∂x∂y
= ∂2Wα

∂y∂x
= nyn−1, and ∂2Wα

∂y2 = n(n − 1)xyn−2 + 2n(2n − 1)αy2n−2.
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Therefore

Hess(Wα) = 2[n(n− 1)xyn−2 + 2n(2n− 1)αy2n−2]− (nyn−1)2

= 2[−1

2
n(n− 1)y2n−2 + 2n(2n− 1)αy2n−2]− n2y2n−2

= [−n(n− 1) + 4n(2n− 1)α− n2]y2n−2

= [(8α− 2)n2 + (−4α + 1)n]y2n−2.

For B0 pairings, we find that

y2n−2 =
〈ya, yb〉
2n− 1

(−2n2 + n)y2n−2 ⇒ 〈ya, yb〉 =
2n− 1

−2n2 + n
= − 1

n
.

For Bα pairings, we find that

y2n−2 =
〈ya, yb〉
2n− 1

((8α− 2)n2 + (−4α + 1)n)y2n−2 ⇒ 〈ya, yb〉 =
2n− 1

(8α− 2)n2 + (−4α + 1)n
.

(Noting, of course, that we use a + b = 2n − 2). To define φ : B0 → Bα that preserves the

pairing structure, we’ll need

− 1

n
= 〈ya, yb〉B0 = 〈caya, cbyb〉Bα

= c2n−2

(
2n− 1

(8α− 2)n2 + (−4α + 1)n

)
⇒ c2n−2 = −(8α− 2)n2 + (−4α + 1)n

n(2n− 1)
.

Hence c2n−2 = − (8α−2)n+(−4α+1)
2n−1

= − (2n−1)(4α−1)
2n−1

= −4α+1. The map φ = diag[1, c, c2, . . . , c2n−2],

which we checked before, gives us an isomorphism of graded Frobenius algebras.

Once again, we’ll look at the monodromy in this example. Setting α = −(eit − 1) yields

c2n−2 = −4(−(eit − 1)) + 1 = 4eit − 3 = eit(4− 3e−it).
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Then we can write c = eit/(2n−2) (4− 3e−it)
1/(2n−2)

. At t = 0, we get c = e0 (4− 3)1/(2n−2) =

(1)1/(2n−2), which we can choose to be just 1. Increasing t by 2π yields c = e2πi/(2n−2), and so

on. Again we cycle through the 2n− 2 roots of unity, each of which yields an automorphism

of B0.

Hence B[x2 + y2n, {0}] ∼= B[x2 + xyn + y2n, {0}] ∼= B[x2 + xyn, {0}], which is what we

wanted to show. The ambitious reader can investigate Wα,β = x2 + αxyn + βy2n with its

corresponding B-model, and compute the monodromy. Also, as a consequence of this result,

we also get some isomorphisms of A-models that don’t follow from Group-Weights. We will

catalog these shortly in Corollary 6.9.

Now we’ll examine the special case n = 2. Besides the unorbifolded B-models that we’ve

already looked at, there is one more that exists for this weight system: B[x2 + y4, 〈(1
2
, 1

2
)〉].

But this last isomorphism is a consequence of the Group-Weights theorem, as cataloged in

Theorem 3.9 and Example 3.14

Theorem 6.6. Let n ∈ N>2 be odd. B[x2 + y2n, 〈(1
2
, 1

2
)〉] ∼= B[x2 + xyn + y2n, 〈(1

2
, 1

2
)〉] ∼=

B[x2 + xyn, 〈(1
2
, 1

2
)〉].

Proof. The proof of this theorem follows by the following two lemmas.

Lemma 6.7. If Wα = x2 + αxyn + y2n for α ∈ C − {±2} and n ∈ N>2 is odd, then

B[W0, 〈(1
2
, 1

2
)〉] ∼= B[Wα, 〈(1

2
, 1

2
)〉].

Proof. Again we’ll let Bα = B[Wα, 〈(1
2
, 1

2
)〉]. By our work in the previous lemmas, we know

that the Milnor ring for Wα is spanC{1, y, . . . , y2n−2}. To compute a basis for Bα, we need to

know which basis elements are invariant under g = (1
2
, 1

2
). We can see readily that these will

precisely be the even powers of y. We also get the 1 paired up with both group elements, so
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obtain the following state space:

b1; (0, 0)e Degree: 0

by2; (0, 0)e Degree: 1
n

...

byn−1; (0, 0)e Degree:
(n−1

2 )
n

b1; (1
2
, 1

2
)e Degree:

(n−1
2 )
n

byn+1; (0, 0)e Degree:
(n+1

2 )
n

...

by2n−2; (0, 0)e Degree: n−1
n

The pairings on Bα work the same as the unorbifolded case, with also 〈b1; (1
2
, 1

2
)e, b1; (1

2
, 1

2
)e〉 =

1. For products on B0 we obtain bya; (0, 0)e ? byb; (0, 0)e = bya+b; (0, 0)e provided a + b ≤

2n− 2, and b1; (1
2
, 1

2
)e ? b1; (1

2
, 1

2
)e = γby2n−2; (0, 0)e. Using the Hessians we have computed

before, γ is given by 8n2−4n
2n−1

= 4n.

For Bα the same results hold, except b1; (1
2
, 1

2
)e ? b1; (1

2
, 1

2
)e = γby2n−2; (0, 0)e where

γ = 1
2n−1

[(−2α2 + 8)n2 + (α2 − 4)n]. We want to define φ : B0 → Bα by

φ : bya; (0, 0)e 7→ ca/2bya; (0, 0)e for a ∈ {0, 2, . . . , 2n− 2},

b1; (
1

2
,
1

2
)e 7→ b1; (

1

2
,
1

2
)e.

To check that this map works, we need only verify

φ(b1; (
1

2
,
1

2
)e ? b1; (

1

2
,
1

2
)e) = φ(4nby2n−2; (0, 0)e) = 4ncn−1by2n−2; (0, 0)e,

φ(b1; (
1

2
,
1

2
)e) ? φ(b1; (

1

2
,
1

2
)e) = b1; (

1

2
,
1

2
)e ? b1; (

1

2
,
1

2
)e

=
(−2α2 + 8)n2 + (α2 − 4)n

2n− 1
by2n−2; (0, 0)e.
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So we choose cn−1 = (−2α2+8)n+(α2−4)
4(2n−1)

= −α2−4
4

. This gives us an isomorphism of graded

Frobenius algebras.

Now we’ll investigate the monodromy. Our bad points are ±2. Surprisingly we have

arrived at the same equation for monodromy as in Lemma 6.4, except we have cn−1 instead

of c2n−2 as before. However, the power of root that we take is of little consequence. The

result is the same, except that we find that our automorphisms form a cyclic group of order

n−1. And, once again, it doesn’t matter which circle we traverse—the result is the same.

Lemma 6.8. Let Wα = x2+xyn+αy2n for α ∈ C−{1
4
} and n ∈ N>2 be odd. B[W0, 〈(1

2
, 1

2
)〉] ∼=

B[Wα, 〈(1
2
, 1

2
)〉].

Proof. Again we let Bα = B[Wα, 〈(1
2
, 1

2
)〉]. At this point we can rely on many of the compu-

tations we have already done. The Milnor rings and state spaces look exactly like those of

Lemma 6.7. The pairings are the same as those computed in Lemma 6.5.

Using previous results, we compute the product structure for B0. We obtain

bya; (0, 0)e ? byb; (0, 0)e = bya+b; (0, 0)e if a+ b ≤ 2n− 2,

b1; (
1

2
,
1

2
)e ? b1; (

1

2
,
1

2
)e = γby2n−2; (0, 0)e

where γ = −2n2+n
2n−1

= −n. The products on Bα are similar, except in that case γ =

(8α−2)n2+(−4α+1)n
2n−1

.

We define our map φ : B0 → Bα by

φ : bya; (0, 0)e 7→ ca/2bya; (0, 0)e for a ∈ {0, 2, . . . , 2n− 2},

b1; (
1

2
,
1

2
)e 7→ b1; (

1

2
,
1

2
)e.

As we’ve seen before, we need only set cn−1 = − (8α−2)n2+(−4α+1)n
2n−1

to obtain an isomorphism

of graded Frobenius algebras. Our monodromy example works almost exactly the same as
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what we did in Lemma 6.5. Here we get a cyclic group of order n − 1 instead of order

2n− 2.

To finish this result, we need to make a brief comment on why these are all the iso-

morphisms that exist between B-models within this weight system. First note that the

unorbifolded models have dimension 2n− 1, whereas the orbifolded models have dimension

n+ 1. These match precisely when 2n− 1 = n+ 1, which is true if and only if n = 2. In the

special case n = 2 we get an isomorphism between an unorbifolded model and an orbifolded

model.

When n is odd, each of the polynomials W are fixed by the group element (1
2
, 1

2
). When

n is even, this is no longer the case. Only W = x2 + y2n is fixed by that group element,

so there is only one orbifolded model. Since there are only three polynomials in this weight

system, we have determined all possible isomorphisms.

Corollary 6.9 (A-model isomorphisms). For n ∈ N≥2, we have that

A[x2 + y2n, 〈(1

2
, 0), (0,

1

2n
)〉] ∼= A[x2y + yn, 〈(− 1

2n
,

1

n
)〉].

In the special case n = 2 we obtain

A[x2 + y4, 〈(1

2
,
1

4
)〉] ∼= A[x2 + y4, 〈(1

2
, 0), (0,

1

4
)〉] ∼= A[x2y + y2, 〈(−1

4
,
1

2
)〉].

For n odd, we also have

A[x2 + y2n, 〈(1

2
,

1

2n
)〉] ∼= A[x2y + yn, 〈(n− 1

2n
,

1

n
)〉].

Notice that these are new isomorphisms that don’t follow by Group-Weights.

6.2.1 An Afterthought. At the risk of superseding what we have just accomplished,

we will now analyze the polynomial Wα,β = x2 + αxyn + βy2n. We’ll first solve for when
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Wα,β is degenerate. We notice that

∇Wα,β = (2x+ αyn, nαxyn−1 + 2nβy2n−1).

So we solve 2x + αyn = 0 ⇒ x = −α
2
yn. Substituting into nαxyn−1 + 2nβy2n−1 = 0 yields

nα(−α
2
yn)yn−1 +2nβy2n−1 = 0⇒ [−α2n

2
+2nβ]y2n−1 = 0. So −α2n

2
+2nβ = 0⇒ −α2 +4β =

0, or β = α2

4
. This is when Wα,β is degenerate. Points that we’ve seen before that satisfy

this are (α, β) = (±2, 1) and (1, 1
4
).

We now compute ∂2

∂x2 (Wα,β) = 2, ∂2

∂x∂y
(Wα,β) = ∂2

∂y∂x
(Wα,β) = nαyn−1, and ∂2

∂y2 (Wα,β) =

n(n− 1)αxyn−2 + 2n(2n− 1)βy2n−2. Therefore

Hess(Wα,β) = 2[n(n− 1)αxyn−2 + 2n(2n− 1)βy2n−2]− (nαyn−1)2

= 2n(n− 1)α(−α
2
yn)yn−2 + 4n(2n− 1)βy2n−2 − n2α2y2n−2

= [−n(n− 1)α2 + 4n(2n− 1)β − n2α2]y2n−2

= [(−n2 + n)α2 + (8n2 − 4n)β − n2α2]y2n−2

= [(−2n2 + n)α2 + (8n2 − 4n)β]y2n−2.

Consider Bα,β = B[Wα,β, {0}]. The pairings on Bα,β become

〈ya, yb〉 =
2n− 1

(−2n2 + n)α2 + (8n2 − 4n)β
=

2n− 1

n(2n− 1)(−α2 + 4β)
=

1

n(−α2 + 4β)
.

Now we can define maps from our particular B-model examples that we’ve looked at before.

For instance, we can define φ : B0,1 → Bα,β by φ = diag[1, c, . . . , c2n−2]. We simply require

1

4n
= c2n−2

(
1

n(−α2 + 4β)

)
⇒ c2n−2 =

n(−α2 + 4β)

4n
=
−α2 + 4β

4
.
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Similarly, we can define φ : B1,0 → Bα,β with

− 1

n
= c2n−2

(
1

n(−α2 + 4β)

)
⇒ c2n−2 = −n(−α2 + 4β)

n
= α2 − 4β.

Note also that if we used the nontrivial group 〈(1
2
, 1

2
)〉, we would get similar maps just by

using cn−1 instead of c2n−2. The monodromy still yields the same automorphisms that we

found before.

6.2.2 A Related Result. As will be noted in just a moment, the following B-models

exist and are isomorphic (by Theorem 2.32) for each odd integer n > 2.

B[xn + xy2, {0}] oo // B[xn + x
n+1

2 y + xy2, {0}] B[x
n+1

2 y + xy2, {0}]//oo

We will investigate the monodromy in this example by letting the polynomials continuously

deform from one to another.

Theorem 6.10. Let for each odd n ∈ N>2, B[xn + xy2, {0}] ∼= B[xn + x
n+1

2 y + xy2, {0}] ∼=

B[x
n+1

2 y + xy2, {0}].

Proof. We’ll prove this by examining the monodromy in the following two lemmas.

Lemma 6.11. Let Wα = xn + αx
n+1

2 y + xy2 and let Bα = B[Wα, {0}]. B0
∼= Bα for all

α ∈ C− {±2}.

Proof. First, B0 = C[x, y]/(nxn−1 + y2, 2xy) = spanC{1, y, y2, x, . . . , xn−2}. Note that we

have the relations y2 = −nxn−1 and xy = 0. We also compute Bα = C[x, y]/(nxn−1 +

α
(
n+1

2

)
x
n+1

2 y + y2, αx
n+1

2 + 2xy) = spanC{1, y, y2, x, . . . , xn−2}. Here we get a relation

y = −α
2
x
n−1

2 . Substituting this into the relation nxn−1 + α
(
n+1

2

)
x
n+1

2 y + y2 = 0 yields

y2 =
(
α2(n+1)

4
− n

)
xn−1.
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We’ll now list the degrees of the basis elements in the following table:

m 1 x x2 . . . x
n−1

2 y x
n+1

2 . . . xn−2 y2

deg(m) 0 1
n

2
n

. . .
(n−1

2 )
n

(n−1
2 )
n

(n+1
2 )
n

. . . n−2
n

n−1
n

In order to find out when Wα is nondegenerate, we must solve for α in the equations

nxn−1+α
(
n+1

2

)
x
n+1

2 y+y2 = 0 and αx
n+1

2 +2xy = 0. We know from before that y = −α
2
x
n−1

2 .

Therefore

nxn−1 + α(
n+ 1

2
)x

n+1
2 (−α

2
x
n+1

2 ) + (−α
2
x
n−1

2 )2 = 0

nxn−1 − α2

4
(n+ 1)xn−1 +

α2

4
xn−1 = 0

[n− α2

4
(n+ 1) +

α2

4
]xn−1 = 0

n− α2

4
n− α2

4
+
α2

4
= 0

n(1− α2

4
) = 0

1− α2

4
= 0.

So α2 = 4⇒ α = ±2.
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Now we’ll look at the product structure of Bα. First, let’s let γ = α2(n+1)
4
−n so that our

relation becomes y2 = γxn−1. We then get xn−1 = 1
γ
y2, where 1

γ
= 4

α2(n+1)−4n
.

xa ? xb =


xa+b if a+ b ≤ n− 2,

1
γ
y2 if a+ b = n− 1,

0 otherwise.

xa ? y =


xay = −α

2
x
n−1

2
+a if n−1

2
+ a ≤ n− 2,

−α
2
( 1
γ
)y2 if n−1

2
+ a = n− 1,

0 otherwise.

xa ? y2 =

 y2 if a = 0,

0 otherwise.

y ? y = y2.

All other products on Bα are zero.

Now for the pairing structure. We’ll first compute Hess(Wα). To do so, we need

∂2Wα

∂x2
= n(n− 1)xn−2 + α(

n+ 1

2
)(
n− 1

2
)x

n−3
2 y

∂2Wα

∂x∂y
= α(

n+ 1

2
)x

n+1
2 + 2y

∂2Wα

∂y2
= 2x
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Plugging in α = 0 yields Hess(W0) = 2n(n − 1)xn−1 − 4y2. Applying the relation xn−1 =

− 1
n
y2, we obtain Hess(W0) = [−2(n− 1)− 4]y2 = −2(n+ 1)y2. Now for Wα we compute

Hess(Wα) = 2x[n(n− 1)xn−2 + α(
n+ 1

2
)(
n− 1

2
)x

n−3
2 y]− [α(

n+ 1

2
)x

n+1
2 + 2y]2

= 2n(n− 1)xn−1 +
α

2
(n+ 1)(n− 1)x

n−1
2 y

− [α2(
n+ 1

2
)2xn−1 + 2(2y)(α(

n+ 1

2
)x

n+1
2 ) + 4y2]

= 2n(n− 1)xn−1 +
α

2
(n+ 1)(n− 1)x

n−1
2 (−α

2
x
n−1

2 )− α2(
n+ 1

2
)2xn−1

− 4α(
n+ 1

2
)x

n−1
2 (−α

2
x
n−1

2 )− 4(
α2(n+ 1)

4
− n)xn−1

= [2n(n− 1)− α2

4
(n+ 1)(n− 1)− α2

4
(n+ 1)2 + α2(n+ 1)− α2(n+ 1) + 4n]xn−1

= [2n(n− 1)− α2

4
(n+ 1)(n− 1)− α2

4
(n+ 1)2 + 4n]xn−1.

Changing xn−1 into y2 yields Hess(Wα) = −2(α2−4)n(n+1)
α2(n+1)−4n

y2. Note that plugging in α = 0

yields Hess(W0) = −2(n+ 1)y2 as desired.

We will now proceed to compute the pairing structure, starting with B0. For a+b = n+1,

we have that xa+b = xn−1 = − 1
n
y2 = 〈xa,xb〉

n+1
(−2)(n + 1)y2 ⇒ 1

2n
y2 = 〈xa, xb〉y2 ⇒ 1

2n
=

〈xa, xb〉. Also, y2 = 〈y,y〉
n+1

(−2)(n+1)y2 ⇒ −1
2

= 〈y, y〉. And y2 = 〈1,y2〉
n+1

(−2)(n+1)y2 ⇒ −1
2

=

〈1, y2〉. Since xy = 0 in this case, these are all of our nonzero pairings.

Now for the pairings on Bα. We compute

〈y, y〉 = 〈1, y2〉 =
4n− α2(n+ 1)

2n(α2 − 4)
,

〈x
n−1

2 , y〉 =
α

n(α2 − 4)
,

〈xa, xb〉 = − 2

n(α2 − 4)
.
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We are now ready to construct the map φ : B0 → Bα. Define φ by

φ : xa 7→ ca0x
a for a ∈ {0, . . . , n− 2},

φ : y 7→ c1y + c2x
n−1

2 ,

φ : y2 7→ λcn−1
0 y2.

We’ll choose the ordered pair (c1, c2) to equal either (1, α
2
) or (−1,−α

2
). The motivation for

this choice comes from examples computed with the code, and we’ll show that these choices

do actually work. So we’ll now solve for λ and c0. In order for φ to respect the product

structure, first note that

φ(y2) = φ(−nx
n−1

2 ? x
n−1

2 )

= −nφ(x
n−1

2 ) ? φ(x
n−1

2 )

= −n(c
n−1

2
0 x

n−1
2 ) ? (c

n−1
2

0 x
n−1

2 )

= −n
γ
cn−1

0 y2.

Hence λ = −n
γ
. We also note that

φ(y2) = φ(y) ? φ(y)

= (c1y + c2x
n−1

2 ) ? (c1y + c2x
n−1

2 )

= c2
1y

2 + 2c1c2x
n−1

2 ? y + c2
2x

n−1
2

= y2 + α(−α
2

)(
1

γ
)y2 +

α2

4
(
1

γ
)y2

= (1− α2

2γ
+
α2

4γ
)y2

= (1− α2

4γ
)y2.
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Since the previous two statements are both equal to φ(y2), we can equate them and compare

coefficients to obtain

−n
γ
cn−1

0 = 1− α2

4γ

−ncn−1
0 = γ − α2

4

cn−1
0 = −γ

n
+
α2

4n
=
α2 − 4γ

4n
.

These equations completely determine φ. We note that φ is a bijection since it is upper-

triangular and we can see that it has nonzero entries all along the main diagonal. It remains

to show that φ respects the product structure and the pairing structure. By construction we

have already verified that φ(y2) = φ(y ? y) = φ(y) ? φ(y). For the other products,

φ(xa ? xb) = φ(xa+b) = ca+b
0 xa+b for a+ b ≤ n− 2,

φ(xa) ? φ(xb) = ca0x
a ? cb0x

b = ca+b
0 xa+b.

φ(xa ? xb) = φ(− 1

n
y2) = − 1

n
(
1

γ
)cn−1

0 y2 = (
1

γ
)cn−1

0 y2 for a+ b = n− 1,

φ(xa) ? φ(xb) = ca0x
a ? cb0x

b = (
1

γ
)cn−1

0 y2.

φ(xa ? y) = φ(xay) = φ(0) = 0

φ(xa) ? φ(y) = ca0x
a ? (c1y + c2x

n−1
2 ) = ca0c1x

a ? y + ca0c2x
a ? x

n−1
2

If
n− 1

2
+ a ≤ n− 2, we get ca0c1(−α

2
x
n−1

2
+a) + ca0c2x

n−1
2

+a = 0 for either choice of (c1, c2).

If
n− 1

2
+ a = n− 1, we get ca0c1(−α

2
)(

1

γ
)y2 + ca0c2(

1

γ
)y2 = 0 for either choice of (c1, c2).
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Therefore φ respects the product structure. Now for the pairings:

〈1, y2〉B0 = −1

2
,

〈φ(1), φ(y2)〉Bα = 〈1,−n
γ
cn−1

0 y2〉Bα = −n
γ

(
α2 − 4γ

4n

)
〈1, y2〉Bα

=

(
4γ − α2

4γ

)(
4n− α2(n+ 1)

2n(α2 − 4)

)
=

(
α2(n+ 1)− 4n− α2

α2(n+ 1)− 4n

)(
4n− α2(n+ 1)

2n(α2 − 4)

)
=

(
n(α2 − 4)

α2(n+ 1)− 4n

)(
−(α2(n+ 1)− 4n)

2n(α2 − 4)

)
= −1

2
.

〈y, y〉B0 = −1

2
,

〈y, y〉Bα = 〈c1y + c2x
n−1

2 , c1y + c2x
n−1

2 〉Bα

= c2
1〈y, y〉Bα + 2c1c2〈y, x

n−1
2 〉Bα + c2

2〈x
n−1

2 , x
n−1

2 〉Bα

=
4n− α2(n+ 1)

2n(α2 − 4)
+

α2

n(α2 − 4)
− 2α2

4n(α2 − 4)

=
8n− 2α2(n+ 1) + 4α2 − 2α2

4n(α2 − 1)
= −1

2
.

〈x
n−1

2 , y〉B0 = 0,

〈φ(x
n−1

2 ), φ(y)〉Bα = 〈c
n−1

2
0 x

n−1
2 , c1y + c2x

n−1
2 〉Bα = c

n−1
2

0 c1〈x
n−1

2 , y〉Bα + c
n−1

2
0 c2〈x

n−1
2 , x

n−1
2 〉Bα

= c
n−1

2
0

[
c1

(
α

n(α2 − 4)

)
− c2

(
2

n(α2 − 4)

)]
= c

n−1
2

0

(
c1α− 2c2

n(α2 − 4)

)
= 0.

〈xa, xb〉B0 =
1

2n
,

〈φ(xa), φ(xb)〉Bα = 〈ca0xa, cb0xb〉Bα = cn−1
0 〈xa, xb〉Bα =

(
α2 − 4γ

4n

)(
−2

n(α2 − 4)

)
=
−2(α2 + 4n− α2(n+ 1)

4n2(α2 − 4)
=
α2n+ α2 − 4n− α2

2n2(α2 − 4)
=

n(α2 − 4)

2n2(α2 − 4)
=

1

2n
.

So φ respects the pairings. Hence φ is an isomorphism of graded Frobenius algebras.
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Before we exhibit the monodromy in this example, note that we can simplify the expres-

sion for cn−1
0 :

cn−1
0 =

α2 − 4γ

4n
=
α2 − α2(n+ 1) + 4n

4n
=
−α2n+ 4n

4n
=

1

4
(4− α2).

To go around the bad points, we can choose α = ±2(eit − 1) to go around either point in

the positively-oriented direction. Now notice that

cn−1
0 =

1

4
(4− α2) =

1

4
(4− 4(eit − 1)2) = 1− (eit − 1)2 = eit(2− eit).

We’ve computed this case once before (see the monodromy computed in Lemma 6.4). We

get a cyclic group of order n − 1. Replacing t with −t gives us the same cyclic group, but

iterating in reverse order (as in Lemma 6.4).

Lemma 6.12. Let Wα = αxn + x
n+1

2 y + xy2 and let Bα = B[Wα, {0}]. B0
∼= Bα for all

α ∈ C− {1
4
}.

Proof. First note that B0 = C[x, y]/(n+1
2
x
n−1

2 y+y2, x
n+1

2 +2xy) = spanC{1, x, . . . , xn−2, y, y2}.

Also, Bα = C[x, y]/(αnxn−1 + n+1
2
x
n−1

2 y+y2, x
n+1

2 +2xy) = spanC{1, x, . . . , xn−2, y, y2}. The

degrees of the monomials in this case are the same as we computed in Lemma 6.11.

To check the nondegeneracy of Wα, we’ll set αnxn−1+ n+1
2
x
n−1

2 y+y2 = 0 and x
n+1

2 +2xy =

0. We then see that y = −1
2
x
n−1

2 , and

αnxn−1 + (
n+ 1

2
)x

n−1
2 (−1

2
x
n−1

2 ) + (−1

2
x
n−1

2 )2 = 0

[αn− n+ 1

4
+

1

4
]xn−1 = 0

αn− n+ 1

4
+

1

4
= 0

(4α− 1)n = 0.
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So we require α 6= 1
4
. Now consider the relations in the quotient ring of Bα. First we get

y = −1
2
x
n−1

2 as we noted before (and this is the same in B0). Also, αnxn−1 + n+1
2
x
n−1

2 y+y2 =

0 ⇒ y2 =
[
n+1

4
− αn

]
xn−1. Let γ = n+1

4
− αn, and note that on B0 this relation becomes

y2 = n+1
4
xn−1.

We’ll now compute the products on Bα.

xa ? xb =


xa+b if a+ b ≤ n− 2,

1
γ
y2 if a+ b = n− 1,

0 otherwise.

xa ? y =


xay = −1

2
x
n−1

2
+a if n−1

2
+ a ≤ n− 2,

−1
2
( 1
γ
)y2 if n−1

2
+ a = n− 1,

0 otherwise.

xa ? y2 =

 y2 if a = 0,

0 otherwise.

y ? y = y2.

To compute Hess(Wα), we’ll first need

∂2Wα

∂x2
= αn(n− 1)xn−2 + (

n+ 1

2
)(
n− 1

2
)x

n−3
2 y

∂2Wα

∂x∂y
= (

n+ 1

2
)x

n+1
2 + 2y

∂2Wα

∂y2
= 2x
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Then

Hess(Wα) = 2x[αn(n− 1)xn−2 + (
n+ 1

2
)(
n− 1

2
)x

n−3
2 y]− [(

n+ 1

2
)x

n+1
2 + 2y]2

= 2αn(n− 1)xn−1 +
1

2
(n+ 1)(n− 1)x

n−1
2 y − [(

n+ 1

2
)2xn−1 + 2(n+ 1)x

n−1
2 y + 4y2]

= 2αn(n− 1)xn−1 − 1

4
(n+ 1)(n− 1)xn−1 − (

n+ 1

2
)2xn−1 + (n+ 1)xn−1 − 4γxn−1

= [2αn(n− 1)− 1

4
(n+ 1)(n− 1)− (

n+ 1

2
)2 + (n+ 1)− (n+ 1) + 4αn]xn−1

= [
1

2
(4α− 1)n(n+ 1)]xn−1.

Substituting xn−1 = 1
γ
y2 yields Hess(Wα) = −2(4α−1)n(n+1)

(4α−1)n−1
y2. So Hess(W0) = −2ny2. We

can then compute the pairings on B0.

〈xa, xb〉B0 = − 2

n
for a+ b = n− 1

〈1, y2〉B0 = 〈y, y〉B0 = −n+ 1

2n

〈x
n−1

2 , y〉B0 =
1

n
.

For Bα, we get the following pairings.

〈xa, xb〉Bα =
2

(4α− 1)n
for a+ b = n− 1

〈1, y2〉Bα = 〈y, y〉Bα =
1− n(4α− 1)

2n(4α− 1)

〈x
n−1

2 , y〉Bα = − 1

(4α− 1)n
.

We are ready to construct our map φ : B0 → Bα. As before, we’ll define φ by

φ : xa 7→ ca0x
a for a ∈ {0, . . . , n− 2},

φ : y 7→ c1y + c2x
n−1

2 ,

φ : y2 7→ λcn−1
0 y2.
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First we notice that

φ(y2) = φ(
n+ 1

4
x
n−1

2 ? x
n−1

2 ) =
n+ 1

4
(c

n−1
2

0 x
n−1

2 ? c
n−1

2
0 x

n−1
2 )

= (
n+ 1

4
)(

1

γ
)cn−1

0 y2 = − n+ 1

(4α− 1)n− 1
cn−1

0 y2.

Hence λ = − n+1
(4α−1)n−1

. We’ll make a choice now and set c1 = 1. From computed examples,

we could have also set c1 = −1. That being said, notice that

λcn−1
0 y2 = φ(y2) = φ(y ? y) = φ(y) ? φ(y)

= (y + c2x
n−1

2 ) ? (y + c2x
n−1

2 )

= y2 + 2c2(−1

2
)(

1

γ
)y2 + c2

2(
1

γ
)y2

= (1− c2

γ
+
c2

2

γ
)y2.

Equating coefficients yields λcn−1
0 = 1− c2

γ
+

c22
γ

. We also obtain the equation

c
n−1

2
0 x

n−1
2 = φ(x

n−1
2 ) = φ(−2y)

= −2[y + c2x
n−1

2 ]

= −2(−1

2
)x

n−1
2 − 2c2x

n−1
2

= (1− 2c2)x
n−1

2 .

Now equate coefficients and square both sides to obtain cn−1
0 = (1− 2c2)2. Substituting into

our first equation yields

− n+ 1

(4α− 1)n− 1
(1− 2c2)2 = 1− c2

γ
+
c2

2

γ

− n+ 1

(4α− 1)n− 1
(1− 4c2 + 4c2

2) = 1 +
4

(4α− 1)n− 1
c2 −

4

(4α− 1)n− 1
c2

2

−(n+ 1)[1− 4c2 + 4c2
2] = (4α− 1)n− 1 + 4c2 − 4c2

2.
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Then

[−4(n+ 1) + 4]c2
2 + [4(n+ 1)− 4]c2 + [−(n+ 1) + 1− (4α− 1)n] = 0

−4nc2
2 + 4nc2 − 4αn = 0

c2
2 − c2 + α = 0.

So c2 = 1±
√

1−4α
2

. We then obtain cn−1
0 = [1− 2(1±

√
1−4α
2

)]2 = [1− 1∓
√

1− 4α]2 = 1− 4α.

We now want to verify that φ respects the product structure. As in Lemma 6.11, we note

that φ(xa?xb) = φ(xa)?φ(xb). (The computation is the same). By our construction, we have

already forced φ(y ? y) = φ(y) ? φ(y). It now remains to verify that φ(xa ? y) = φ(xa) ? φ(y).

To do this, note that

φ(xa ? y) =

 φ(−1
2
x
n−1

2 ) = −1
2
c
n−1

2
+a

0 x
n−1

2
+a if a < n−1

2
,

φ(−1
2
( 4
n+1

)y2) = 2
(4α−1)n−1

cn−1
0 y2 if a = n−1

2
.

Then,

φ(xa) ? φ(y) = ca0x
a ? (y + c2x

n−1
2 ) = ca0[xa ? y + c2x

a ? x
n−1

2 ].

If a < n−1
2

, we obtain ca0[−1
2
x
n−1

2
+a + c2x

n−1
2

+a] = −1
2
ca0(1 − 2c2)x

n−1
2 . Now since cn−1

0 =

(1− 2c2)2, we have that c
n−1

2
0 = 1− 2c2. Therefore this equals −1

2
c
n−1

2
+a

0 x
n−1

2
+a as desired.

If a = n−1
2

, then we get c
n−1

2
0 [− 1

2γ
y2 + c2

γ
y2] = − 1

2γ
c
n−1

2
0 (1 − 2c2)y2 = − 1

2γ
cn−1

0 y2. Now

− 1
2γ

= −1
2
(− 4

(4α−1)n−1
) = 2

(4α−1)n−1
, which is what we needed. Hence φ respects the product

structure.
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To finish, we’ll now investigate if φ respects the pairing structure.

〈1, y2〉B0 = −n+ 1

2n
,

〈φ(1), φ(y2)〉Bα = 〈1, λcn−1
0 y2〉Bα

= −
(

n+ 1

(4α− 1)n− 1

)
(1− 4α)

(
1− n(4α− 1)

2n(4α− 1)

)
= −n+ 1

2n
.

〈y, y〉B0 = −n+ 1

2n
,

〈y, y〉Bα = 〈y + c2x
n−1

2 , y + c2x
n−1

2 〉Bα = 〈y, y〉Bα + 2c2〈y, x
n−1

2 〉Bα + c2
2〈x

n−1
2 , x

n−1
2 〉Bα

=
1− n(4α− 1)

2n(4α− 1)
+ 2c2

−1

(4α− 1)n
+ c2

2

2

(4α− 1)n

=
1

2n(4α− 1)
[1− n(4α− 1)− 4c2 + 4c2

2]

=
1

2n(4α− 1)
[−n(4α− 1) + (1− 2c2)2]

=
1

2n(4α− 1)
[1− n(4α− 1)− (4α− 1)] = −n+ 1

2n
.

〈x
n−1

2 , y〉B0 =
1

n
,

〈φ(x
n−1

2 ), φ(y)〉Bα = 〈c
n−1

2
0 x

n−1
2 , y + c2x

n−1
2 〉Bα = c

n−1
2

0 〈x
n−1

2 , y〉Bα + c
n−1

2
0 c2〈x

n−1
2 , x

n−1
2 〉Bα

= (1− 2c2)

(
−1

(4α− 1)n

)
+ (1− 2c2)c2

(
2

(4α− 1)n

)
=

1

(4α− 1)n
(2c2 − 1 + 2c2 − 4c2

2)

= − 1

(4α− 1)n
(1− c2)2 = − 1− 4α

(4α− 1)n
=

1

n
.

〈xa, xb〉B0 = − 2

n
,

〈φ(xa), φ(xb)〉Bα = cn−1
0 〈xa, xb〉Bα = (1− 4α)

2

(4α− 1)n
= − 2

n
.

So φ respects the pairing structure, and thus is an isomorphism of graded Frobenius algebras.
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To investigate monodromy, set α = −(eit − 1). We get cn−1
0 = 1 − 4α = 4eit − 3 =

eit(4 − 3e−it). Hence c0 = eit/(n−1)(4 − 3e−it)1/(n−1). At t = 0, c0 = 1. As we increase t by

each 2π, we will cycle through the (n− 1)th roots of unity.

Note that this also finishes the proof of the theorem.

It may be interesting at some point to investigate the continuous deformations of Wα,β =

αxn + βx
n+1

2 y + xy2 and its corresponding B-model Bα,β = B[Wα,β, {0}]. For now this will

be left to the avid reader.

6.2.3 A Complete Classification. Building on these results, we will now attempt to

classify all possible isomorphisms of B-models built using polynomials with weights
(

1
2
, 1

2n

)
.

This will also involve the weight system
(

1
n
, n−1

2n

)
. We will restrict our attention to polyno-

mials in two variables, and only list isomorphisms up to permutation of variables.

For all n ≥ 2,

B[x2 + y2n, {0}] // B[x2 + xyn + y2n, {0}] B[x2 + xyn, {0}]oo

For n ≥ 2, if n is even then the following are isomorphic by Group-Weights:

B[x2 + y2n, 〈(1
2
, 1

2
)〉] oo // B[xn + xy2, {0}]

For n ≥ 2, if n is odd then the following are isomorphic:

B[x2 + y2n, 〈(1
2
, 1

2
)〉] //

OO

Group-Weights

��

B[x2 + xyn + y2n, 〈(1
2
, 1

2
)〉] B[x2 + xyn, 〈(1

2
, 1

2
)〉]oo

OO

Group-Weights
��

B[xn + xy2, {0}] oo
Webb

// B[xn + x
n+1

2 y + xy2, {0}] B[x
n+1

2 y + xy2, {0}]//
Webb
oo

The special case n = 1 is somewhat uninteresting. We get two solitary B-models which

are not isomorphic to each other or to anything else: B[x2 + y2, {0}] and B[x2 + y2, 〈(1
2
, 1

2
)〉].
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In the special case n = 2 we get

B[x2 + y4, 〈(1
2
, 1

2
)〉]

B[x2 + y4, {0}] //
��

Group-Weights

OO

B[x2 + xy2 + y4, {0}] B[x2 + xy2, {0}]oo

The special case n = 3 includes a few more isomorphisms. We get the following list:

(1) B[x3 + y3, {0}] (6) B[x3 + y3 + x2y + xy2, {0}]

(2) B[x3 + xy2, {0}] (7) B[x3 + y3, 〈(1
3
,−1

3
)〉]

(3) B[x2y + xy2, {0}] (8) B[x2 + xy3, 〈(1
2
, 1

2
)〉]

(4) B[x3 + y3 + x2y, {0}] (9) B[x2 + y6, 〈(1
2
, 1

2
)〉]

(5) B[x3 + x2y + xy2, {0}] (10) B[x2 + xy3 + y6, 〈(1
2
, 1

2
)〉]

All other cases are given by the more general results. This is a list of all possible B-

models built using polynomials with weights
(

1
2
, 1

2n

)
and

(
1
n
, n−1

2n

)
. These are all the possible

isomorphisms (up to the conditions stated previously).

Proof. Many of these isomorphisms come from the previous result. The Group-Weights iso-

morphisms come from Theorem 3.9 and Theorem 3.15. The isomorphisms denoted “Webb”

come by noting that polynomials in the weight system
(

1
n
, n−1

2n

)
have ĉ < 1. Therefore the

isomorphism follows by Theorem 2.32.

For the unorbifolded B-models with weights (1
2
, 1

2n
), the algorithm only produces this

solution for potential weight systems. This happens since the first coordinate is 1
2
. Any

further solutions would necessarily increase one of the coordinates to have magnitude greater

than 1
2
, which would be invalid. Since we have already classified the isomorphisms within

this weight system for these unorbifolded B-models, we conclude that they must be unique.

The question of uniqueness for the rest of the isomorphisms is a bit trickier. We want

to show that for all n ≥ 2, the only weight systems that work in the unorbifolded case are

80



(
1
2
, 1

2n

)
and

(
1
n
, n−1

2n

)
. This reduces to asking the question: can there exist an unorbifolded

B-model B̃ with n+ 1 < dim(B̃) < 2n− 1 and ĉ = n−1
n

?

Let’s look for a potential weight system (q1, q2). We require 2− 2q1− 2q2 = n−1
n

. Solving

for q1 yields q1 = n+1
2n
− q2. Now consider

(
1
q1
− 1
)(

1
q2
− 1
)

= dim(B̃). Substituting for q1

and simplifying yields

[−1 + dim(B̃)]q2
2 + [

n+ 1

2n
− n+ 1

2n
dim(B̃)]q2 + [1− n+ 1

2n
] = 0.

We can now apply the quadratic formula to find solutions for q2. For n+1 < dim(B̃) < 2n−1

we know that q2 will be a real-valued solution in the interval (0, 1
2
). Since we are looking

for rational-valued solutions, we can examine the discriminant of this quadratic equation. q2

will be in Q if and only if the discriminant D is a square in Q. After simplifying, we compute

D =
(n+ 1)2

4n2
(dim(B̃))2 −

[
5n2 − 2n+ 1

2n2

]
dim(B̃) +

(3n− 1)2

4n2
.

By factoring out 1
4n2 , we reduce our problem further to determining when

(n+ 1)2(dim(B̃))2 − 2(5n2 − 2n+ 1) dim(B̃) + (3n− 1)2

is a square in Z. We know that the solutions dim(B̃) = n+ 1 and dim(B̃) = 2n− 1 work.

How can we tell if anything in between will work too? We want our polynomial to factor

over Z. In order for it to be a square, it must have a repeated root. By a theorem in algebra,

a polynomial P has a repeated root if and only if its discriminant is zero. Therefore we can

check the polynomial discriminant (not to be confused with D itself) to determine when we

get repeated roots. We’ll first substitute dim(B̃) = n+ a for values of a ∈ N. We obtain

(n2 + 2n+ 1)a2 + (2n3 − 6n2 + 6n− 2)a+ (n4 − 8n3 + 14n2 − 8n+ 1).
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The polynomial discriminant is then

∆n = 4096a7 − 94208a6 + 225280a5 − 151552a4 − 16384a3 + 32768a2.

Setting ∆n = 0 yields the solutions a = 0, 1, 10 ± 6
√

3. Since we required a ∈ N, the only

solution that works is then a = 1. This corresponds to dim(B̃) = n+ 1.

Now we’ll substitute dim(B̃) = 2n− a for values of a ∈ N. We obtain

(n2 + 2n+ 1)a2 + (−4n3 + 2n2 − 8n+ 2)a+ (4n4 − 12n3 + 21n2 − 10n+ 1).

The polynomial discriminant is then

∆n = −16384(a7 + 24a6 − 53a5 − 22a4 + 103a3 − 28a2 − 51a+ 26).

Setting ∆n = 0 yields the solutions a = −26,−1, 1. Since we required a ∈ N, the only

solution that works is then a = 1. This corresponds to dim(B̃) = 2n − 1. Hence these are

the only two possible dimensions for dim(B̃) that work.

Within the weight system
(

1
n
, n−1

2n

)
we note that the only monomials we get are xn and

xy2 when n is even, and xn, x(n+1)/2y, and xy2 when n is odd. For any polynomial we choose

in this weight system, SL(W ) is trivial. So we have classified all possible B-models.

The lists of isomorphisms in the special cases n = 1, 2, 3 have also been verified by direct

computation.

6.2.4 A Mirror Picture. Let’s apply mirror symmetry and translate the above result

to A-model isomorphisms. For all n ≥ 2 the result B[x2 + y2n, {0}] ↔ B[x2 + xyn, {0}]

becomes A[x2 + y2n, 〈(1
2
, 0), (0, 1

2n
)〉] ↔ A[x2 + xyn, 〈( 1

n
,− 1

2n
)〉]. Also, for all n ≥ 2 we

have A[x2 + y2n, 〈(1
2
, 1

2n
)〉]↔ A[x2 + xyn, 〈(1

2
, 1

2n
)〉 by Group-Weights. This is the analog of

B[x2 + y2n, 〈(1
2
, 1

2
〉]↔ B[xn + xy2, {0}].
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Perhaps more interesting is the case n > 2 with n odd. To use mirror symmetry, we’ll

have to stick to invertible polynomials. Here is the B-side picture first:

B[x2 + y2n, 〈(1
2
, 1

2
)〉] oo //

OO

Group-Weights

��

B[x2 + xyn, 〈(1
2
, 1

2
)〉]

OO

Group-Weights
��

B[xn + xy2, {0}] oo
Webb

// B[x
n+1

2 y + xy2, {0}]

On the A-side, we get

A[x2 + y2n, 〈(1
2
, 1

2n
)〉] oo //

OO

Group-Weights

��

A[xn + xy2, 〈( 1
n
,− 1

2n
)〉]

OO

Group-Weights
��

A[x2 + xyn, 〈(1
2
, 1

2n
)〉] oo // A[x

n+1
2 y + xy2, 〈( 1

n
,− 1

2n
)〉]

Notice that in the B-picture, vertical arrows represent “discrete” isomorphisms whereas

horizontal arrows allow us to continuously deform from one B-model to other. In the A-

picture, vertical arrows represent continuous deformations and horizontal arrows are discrete.

This gives us the following “mirror-symmetric box” for each odd positive integer n > 2.

B[x2 + y2n, 〈(1
2 ,

1
2)〉]66

vv

OO

��

oo // A[x2 + y2n, 〈(1
2 ,

1
2n)〉]OO

��

55

uu
B[x2 + xyn, 〈(1

2 ,
1
2)〉]OO

��

oo // A[xn + xy2, 〈( 1
n ,−

1
2n)〉]OO

��

B[xn + xy2, {0}]
66

vv

oo // A[x2 + xyn, 〈(1
2 ,

1
2n)〉]55

uu

B[x
n+1

2 y + xy2, {0}] oo // A[x
n+1

2 y + xy2, 〈( 1
n ,−

1
2n)〉]

6.3 Monodromy in Finite Cases

Here we will highlight some possible places to look for monodromy and deformation invari-

ance among finite sets of B-models. We will examine the weight systems
(

1
3
, 1

3

)
and

(
1
4
, 1

4

)
since we’ve already done some work in classifying the related isomorphisms.
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For the weight system
(

1
3
, 1

3

)
, and restricting to invertible polynomials, we get the fol-

lowing picture:

B[x3 + y3, 〈(1
3
,−1

3
)〉]

OO

G-W
��

B[x3 + y3, {0}] oo
Webb

// B[x3 + xy2, {0}] oo
Webb

//
OO

G-W
��

B[x2y + xy2, {0}]
OO

G-W
��

B[x2 + y6, 〈(1
2
, 1

2
)〉] oo // B[x2 + xy3, 〈(1

2
, 1

2
)〉]

Here is the mirror picture:

A[x3 + y3, 〈(1
3
, 1

3
)〉]

OO

G-W
��

A[x3 + y3, 〈(1
3
, 0), (0, 1

3
)〉] oo // A[x2 + xy3, 〈(1

2
, 1

6
)〉] oo //

OO

G-W
��

A[x2y + xy2, 〈(1
3
, 1

3
)〉]

OO

G-W
��

A[x2 + y6, 〈(1
2
, 1

6
)〉] oo // A[x3 + xy2, 〈(1

3
, 1

3
)〉]

Notice that on the B-side, horizontal arrows represent continuous deformations and vertical

arrows represent “discrete” isomorphisms. On the A-side the horizontal arrows represent

“discrete” isomorphisms and vertical arrows represent continuous deformations.

For the weight system (1
4
, 1

4
), we have the following picture so far (as much as we have

been able to compute):

B[x4 + y4, 〈(1
4
,−1

4
)〉]

OO

G-W
��

B[x3 + xy4, 〈(1
3
,−1

3
)〉]

OO

G-W
��

B[x3 + y6, 〈(1
3
,−1

3
)〉]

OO

G-W
��

B[x4 + y4, 〈(1
2
, 1

2
)〉] B[x3y + xy3, 〈(1

2
, 1

2
)〉] B[x4 + xy3, 〈(1

2
, 1

2
)〉]
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Here is the mirror picture:

A[x4 + y4, 〈(1
4
, 1

4
)〉]

OO

G-W
��

A[x4 + xy3, 〈(1
4
, 1

4
)〉]

OO

G-W
��

A[x3 + y6, 〈(1
3
, 1

6
)〉]

OO

G-W
��

A[x4 + y4, 〈(0, 1
2
), (1

4
, 3

4
)〉] A[x3y + xy3, 〈(1

4
, 1

4
)〉] A[x3 + xy4, 〈(1

3
, 1

6
)〉]

Again notice that on the B-side, horizontal arrows (if any were present) represent continuous

deformations and vertical arrows are discrete isomorphisms. On the A-side the horizontal

arrows are discrete isomorphisms while the vertical arrows are continuous deformations.

These results suggest a general pattern for B-model isomorphisms, which we will explore in

the next chapter.
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Chapter 7. Observations and Results

From these results on B-model continuous deformation, we conjecture that any isomorphism

between B-models can be decomposed into a finite chain of isomorphisms involving only

mirror symmetry and deformation invariance between the A and B sides. We can state this

formally.

Conjecture 7.1. Let B1 and B2 be any two Landau-Ginzburg B-models such that B1
∼= B2.

If this isomorphism is not the result of a continuous deformation, then there exists a finite

chain of Landau-Ginzburg models C1, . . . , Cn (either A or B) such that

B1
oo // C1

oo // . . . oo // Cn oo // B2,

where each arrow represents an isomorphism of graded Frobenius algebras that is either a

continuous deformation or is the isomorphism predicted by mirror symmetry.

A similar result also likely holds for the A side, since the picture will be “flipped” by

mirror symmetry as noted earlier. Though this is not the desired analog theorem to Group-

Weights for B-models, this does give us some more understanding on the deeper theoretical

reasons for B-model isomorphisms in the context of mirror symmetry.

This conjecture, if it holds as observed, fully explains the behavior of Landau-Ginzburg

B-model isomorphisms. Either we look for isomorphic B-models within our current weight

system, or we mirror over to the A-side and use Group-Weights to get isomorphic A-models

that will mirror back to the B-side in (possibly) different weight systems. This, we conjecture,

will create a finite list of weight systems to choose from to look for isomorphic B-models.

To assist us computationally in this classification, we give one more result on finding

isomorphisms between B-models.
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7.1 An Isomorphism Extension Theorem

Given equivalent singularities W1, W2 with a common group G ≤ SL(n,C) that fixes them

both, we want to show that their corresponding B-models B[W1, G] and B[W2, G] are also

isomorphic (note the flavor of the Group-Weights theorem in this construction). To make

progress on this result, we will need a few more definitions.

Definition 7.2. An isomorphism φ : QW1 → QW2 is equivariant with respect to the group

G if for all g ∈ G and all monomials m in the basis of QW1 we have φ(g · m) = g · φ(m).

Here the operation · represents the group action of G on monomials of the Milnor ring.

Definition 7.3 (Property (*) of [5]). Let W be a nondegenerate, invertible polynomial, and

let G be an admissible group of symmetries of W . The pair (W,G) has Property (*) if

(i) W can be decomposed as W =
∑M

i=1 Wi, where the Wi are themselves invertible

polynomials having no variables in common with any other Wj.

(ii) For any element g of G whose associated sector Ag ⊆ A[W,G] is nonempty, and for

each i ∈ {1, . . . ,M} the action of g fixes either all of the variables in Wi or none of

them.

(iii) For any element g′ of GT whose associated sector of Bg′ ⊆ B[W T , GT ] is nonempty,

and for each i ∈ {1, . . . ,M} the action of g′ fixes either all of the variables in W T
i or

none of them.

Here the sector of an A or B model corresponding to a group element g refers to the

subset of the vector space basis containing the elements of the form bm; ge.

The condition imposed on the group G in the hypothesis of Theorem 7.4 is similar to

Property (*) in [5]. For the following polynomials (see Remark 1.1.1 of [5]), any possible

choice of group (that fixes the polynomial and is contained in SL(n,C)) will satisfy the

hypotheses of the theorem: fermats, loops in any number of variables, and any admissible

polynomial in two variables.
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Theorem 7.4. Let W1 and W2 be admissible polynomials that are equivalent as singularities,

with φ : QW1 → QW2 an equivariant isomorphism of graded Frobenius algebras. If G is a

group that preserves both W1 and W2 such that every g ∈ G either fixes all or none of the

variables of W1 and W2, then φ extends to an isomorphism ψ : B[W1, G]→ B[W2, G].

Consider the following diagram:

B[W1, G]
ψ // B[W2, G]

B[W1, {0}]
φ //

OO

B[W2, {0}]

OO

The bottom horizontal arrow is the isomorphism we are given by hypothesis. The dashed

vertical arrows represent an orbifolding (and, generally speaking, there won’t exist an isomor-

phism going from bottom to top). The top horizontal arrow is the map that is conjectured

to exist. In essence, we want to take the map φ that we are given, and use it to create an

isomorphism of orbifolded B-models.

Proof. By hypothesis, W1 and W2 are equivalent. We then know that QW1
∼= QW2 , so

there exists an isomorphism φ : QW1 → QW2 . Also by hypothesis, we’ll assume that φ is

equivariant with respect to G. Suppose that a basis for QW1 is spanC{m1 = 1, . . . ,mk}. We

obtain a basis for QW2 with spanC{φ(m1) = 1, . . . , φ(mk)}.

Now we’ll look at G-invariants. Suppose that (QW1)G = spanC{p1, . . . , pl}, where each

pi = mj for some j, and l ≤ k. Recall that the group action g · m = det(g)(m ◦ g). For

pi ∈ (QW1)G, we have that g · pi = pi. Now notice that since φ is equivariant, we have that

g · φ(pi) = φ(g · pi) = φ(pi). Therefore spanC{φ(p1), . . . , φ(pi)} ⊆ (QW2)G. But notice that if

we take an mi not preserved under the action of G, we get g · φ(mi) = φ(g ·mi) = φ(cmi) =

cφ(mi) for some constant c 6= 1. Therefore (QW2)G = spanC{φ(p1), . . . , φ(pi)}.

Notice that the same process works even if we first restrict W to a fixed locus of a group

element. So for
(
QW1|fix(g)

)G
, we can write it as spanC{ri} where the ri form a subset of the

mi. We see that
(
QW2|fix(g)

)G
= spanC{φ(ri)} as before. This gives us the following: there
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are (not necessarily distinct) group elements h1, . . . , hl such that

B[W1, G] = spanC{bp1;h1e, . . . , bpl;hle},

B[W2, G] = spanC{bφ(p1);h1e, . . . , bφ(pl);hle}.

Now we have a reasonable grounding to define the map ψ : B[W1, G] → B[W2, G] by

ψ(bpi;hie) = bφ(pi);hie. Notice that we already have that ψ is a well-defined bijection that

preserves the vector space bi-grading. If we say that p1 = 1 and h1 = 0, then we also readily

see that ψ maps the identity to the identity.

That ψ preserves the pairing is also easy to show. Let B1 = B[W1, G] and B2 = B[W2, G].

Using the properties of pairings, we have for hi + hj = 0,

〈bpi;hie, bpj;hje〉B1 = 〈pi, pj〉QW1
= 〈φ(pi), φ(pj)〉QW2

= 〈bφ(pi);hie, bφ(pj);hje〉B2 .

Since all other pairings are zero, this shows that ψ respects the pairing.

Now for the products. For basis elements α, β of B1, we want to show that ψ(α ? β) =

ψ(α) ? ψ(β). We’ll consider the case where fix(hi) ∪ fix(hj) ∪ fix(hi + hj) = Cn. Otherwise,

both products will be zero. First,

ψ(α ? β) = ψ(bpi;hie ? bpj;hje) = ψ(bγ1pipj;hi + hje)

= bφ(γ1pipj);hi + hje = bφ(γ1)φ(pipj);hi + hje.

The last equality comes from considering γ1 as a monomial in QW1 . Here we have

γ1 =
µhi∩hjHess(W1|fix(hi+hj))

µhi+hjHess(W1|fix(hi)∩fix(hj))
.
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Second, we have

ψ(α) ? ψ(β) = bφ(pi);hie ? bφ(pj);hje = bγ2φ(pi)φ(pj);hi + hje = bγ2φ(pipj);hi + hje.

Finally, we have

γ2 =
µhi∩hjHess(W2|fix(hi+hj))

µhi+hjHess(W2|fix(hi)∩fix(hj))
.

Previously, we computed bases for the Milnor rings of W1 and W2 after restricting to fixed

loci and taking G-invariants. Since the dimension remained the same between W1 and W2

after these operations, we see that µhi∩hj for W1 equals µhi∩hj for W2 and similarly for µhi+hj .

So it just remains to check how φ deals with the respective Hessians. That is, we will have

bφ(γ1)φ(pipj);hi + hje = bγ2φ(pipj);hi + hje if we can show φ(γ1) = γ2. We’ll consider the

behavior of group elements, and break this down into cases.

Case 1 : hi = hj = 0. Notice that Wi restricted to the fixed locus is just Wi again. So

the Hessians divide each other, which shows that γ1 = γ2. Further, µhi∩hj = µhi+hj , which

shows that γ1 = γ2 = 1. Therefore φ(γ1) = γ2.

Case 2 : one of hi, hj = 0. Without loss of generality, we may assume hi = 0. So

γ1 =
µhjHess(W1|fix(hj))

µhjHess(W1|fix(hj))
= 1. Similarly, γ2 = 1. Therefore φ(γ1) = γ2.

Case 3 : Both hi, hj are nonzero. By hypothesis on the behavior of our group elements,we

will have the fixed locus of hi and hj trivial. But hi +hj must be 0 in order to get a nonzero

product. Therefore γ1 =
Hess(W1)

µ
, γ2 =

Hess(W2)

µ
. We will have φ(γ1) = γ2 if we can show

that φ(Hess(W1)) = Hess(W2).

Lemma 7.5. If φ : B[W1, {0}]→ B[W2, {0}] is a B-model isomorphism, then φ(Hess(W1)) =

Hess(W2).

Proof. Let B1 = B[W1, {0}] and B2 = B[W2, {0}]. Suppose m1,m2 are monomials in the

basis of B1 such that m1m2 spans the sector of highest degree in B1. Since φ is an isomor-

phism, we can write B2 = spanC{φ(m) | m is a basis element of B1}. Also, we know that φ

90



preserves pairings:

〈m1,m2〉B1 = 〈φ(m1), φ(m2)〉B2 .

Recall that m1m2 =
〈m1,m2〉B1

µ
Hess(W1), where µ = dim(B1). Since B1

∼= B2, we also have

that µ = dim(B2). Now note that Hess(W1) =
µ(m1m2)

〈m1,m2〉B1

. Apply φ:

φ(Hess(W1)) = φ

(
µ(m1m2)

〈m1,m2〉B1

)
=
µφ(m1m2)

〈m1,m2〉B1

=
µφ(m1m2)

〈φ(m1), φ(m2)〉B2

.

On the other hand, we know by the isomorphism that the element φ(m1m2) = φ(m1)φ(m2)

spans the sector of highest degree inB2. Therefore φ(m1)φ(m2) =
〈φ(m1), φ(m2)〉B2

µ
Hess(W2).

So then

Hess(W2) =
µφ(m1)φ(m2)

〈φ(m1), φ(m2)〉B2

=
µφ(m1m2)

〈φ(m1), φ(m2)〉B2

.

This shows that φ(Hess(W1)) = Hess(W2), as desired.

Back to the theorem now, we have by Lemma 7.5 the result we were seeking. So this

verifies Case 3. And, we notice, that this is enough to prove the theorem.

We can now generalize the result to sums of polynomials.

Corollary 7.6. Let W = W1 + W2 and V = V1 + V2 be sums of admissible polynomials

in distinct variables such that Wi is singularity equivalent to Vi, with φi : QWi
→ QVi an

equivariant isomorphism of graded Frobenius algebras. If Gi is a group that preserves both Wi

and Vi for each i such that each group element of Gi fixes either all or none of the variables

of Wi and Vi, then there exists isomorphism ψ : B[W,G]→ B[V,G] where G = G1 ×G2.

Proof. First we’ll construct an isomorphism φ : B[W, {0}]→ B[V, {0}] using the φi.
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Claim: By the tensor product structure (see Proposition 2.33), we know that any mono-

mial mi in the basis of QW can be written as αiβi where the αi is in the basis of QW1 and

the βi is in the basis of QW2 . We can define φ by φ : mi 7→ φ1(αi)φ2(βi) and extend linearly.

Proof of Claim: It is easy to verify that φ is a bijection, is linear, sends the identity to

the identity, and preserves degrees. To show that φ respects the pairing, we note that

〈φ(mi), φ(mj)〉QV = 〈φ1(αi)φ2(βi), φ1(αj)φ2(βj)〉QV

= 〈φ1(αi), φ1(αj)〉QV1
〈φ2(βi), φ2(βj)〉QV2

= 〈αi, αj〉QW1
〈βi, βj〉QW2

= 〈αiβi, αjβj〉QW

= 〈mi,mj〉QW .

For the products, we note that

φ(mimj) = φ(αiβiαjβj) = φ(αiαjβiβj) = φ1(αiαj)φ2(βiβj) = φ1(αi)φ1(αj)φ2(αi)φ2(αj)

= φ1(αi)φ2(βi)φ1(αj)φ2(βj) = φ(αiβi)φ(αjβj) = φ(mi)φ(mj).

Therefore φ really is an isomorphism of graded Frobenius algebras. We further check that

φ is equivariant: for g ∈ G, we have g · φ(m) = g · (φ1(α)φ2(β) = (g · φ1(α))(g · φ2(β)),

since α and β are in distinct variables, = φ1(g · α)φ2(g · β), since φ1 and φ2 are equivariant,

= φ(g ·m).

Now given our map φ, we see that W and V are equivalent singularities. Construct

map ψ as before, but with using φ as the base map. The only thing left to check is that ψ

respects products for group elements with nontrivial fixed locus. First note that with the

Wi in distinct variables, the block matrix structure of the second partial derivatives of W

will give us Hess(W ) = Hess(W1)Hess(W2). It follows that φ sends Hess(Wi) to Hess(Vi) by

Lemma 7.5 and by construction. Now the group elements g, h have to fix all the variables in
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either W1 or W2 by the hypothesis of the symmetry group structure. This way any quotient

of Hessians will reduce to either Hess(W1) or Hess(W2). This shows that ψ respects the

products, and gives us the desired isomorphism.

To further generalize the results that we’ve found, we’ll need the following definition.

Definition 7.7. A pair (W,G) is well-behaved if W =
∑
Wi where each Wi is an admissible

polynomial in distinct variables, and G =
⊕

Gi where each g ∈ Gi either fixes all or none

of the variables of Wi for each i.

As mentioned before, a polynomial W that is a fermat, loop, or a 2-variable admissible

polynomial, together with any symmetry group G of W , is guaranteed to be well-behaved.

We can further admit arbitrary sums of fermat and loop polynomials in distinct variables,

together with any of their symmetry groups (see Remark 1.1.1 of [5]). We now include a

brief result on equivariant isomorphisms.

Lemma 7.8. Suppose (W,G) and (V,G) are well-behaved. Then an isomorphism φ : QW →

QV is equivariant if and only if we have equivariant isomorphisms φi : QWi
→ QVi for each

i.

Proof. (⇒) Suppose that φ : QW → QV is an equivariant isomorphism of graded Frobenius

algebras. We can write W = W1 + · · ·+Wn and V = V1 + · · ·+ Vn where each Wi is in the

same variables as Vi but Wi is in distinct variables from Wj for all i 6= j. We can also write

G = G1 × · · · ×Gn, where Gi preserves either all or none of the variables of Wi, Vi for each

i. By Proposition 2.33, we can consider QW ∼= QW1 ⊗ · · ·⊗QWn and QV ∼= QV1 ⊗ · · ·⊗QVn .

From the tensor product structure, we find that there exists a basis of each QWi
that is a

subset of a basis of QW . By restricting φ to the variables of Wi, we obtain an equivariant

isomorphism φi : QWi
→ QVi for each i.

(⇐) Conversely, suppose that we have equivariant isomorphisms φi : QWi
→ QVi for

each i. The argument in the proof of Corollary 7.6 shows how to construct an equivariant
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isomorphism φ : QW → QV in the case that n = 2. Extending by induction gives us the

result for all n.

We are now ready to obtain the main result of this section.

Theorem 7.9. Let (W,G) and (V,G) be well-behaved. If φ : QW → QV is an equivariant

isomorphism of graded Frobenius algebras, then φ extends to an isomorphism ψ : B[W,G]→

B[V,G].

Proof. Given φ : QW → QV an equivariant isomorphism of graded Frobenius algebras, we

can apply Lemma 7.8 to obtain φi : QWi
→ QVi that are also equivariant isomorphisms of

graded Frobenius algebras. We can then extend Corollary 7.6 by induction in the case that

W = W1 + · · · + Wn and V = V1 + · · · + Vn are sums of admissible polynomials in distinct

variables such that each Wi is singularity equivalent to Vi, and Gi is a group that preserves

both Wi and Vi for each i such that each group element of Gi fixes either all or none of the

variables of Wi and Vi.

Since we have required an equivariant isomorphism for many of these results, we now

offer a partial classification of such isomorphisms.

Definition 7.10. Suppose φ : B1 → B2 is an isomorphism of B-models. Say that B1 has

basis {a1, . . . , an} and B2 has basis {b1, . . . , bn}. We say that φ is diagonal if we can write

φ(ai) = cibi for ci ∈ C nonzero (possibly after reordering the basis elements).

Theorem 7.11. Any diagonal isomorphism of Landau-Ginzburg B-models is equivariant.

Proof. Suppose φ : B1 → B2 is a diagonal isomorphism of B-models. That is, if B1 has basis

{a1, . . . , an} and B2 has basis {b1, . . . , bn}, then φ(ai) = cibi for ci ∈ C nonzero (possibly

after reordering the basis elements). Now notice the following. For any g ∈ G,

φ(g · ai) = φ(det(g)ai ◦ g) = det(g)φ(ai ◦ g) = det(g)ci(bi ◦ g).

g · φ(ai) = g · cibi = det(g)ci(bi ◦ g).
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This happens since ai ◦ g is really just a constant times ai, etc. Because φ(g · ai) = g · φ(ai)

for each i, we see that φ is equivariant.

7.2 Examples

In the following examples, we will demonstrate how we can apply the results that we’ve just

found.

Example 7.12. Consider the following isomorphisms (see Theorem 6.3 and Theorem 6.6):

B[x2 + y6, 〈(1
2
, 1

2
)〉] oo // B[x2 + xy3 + y2, 〈(1

2
, 1

2
)〉]

B[x2 + y6, {0}] oo //
��

OO

B[x2 + xy3 + y2, {0}]
��

OO

Here W1 = x2 + y6 and W2 = x2 + xy3 + y2 are equivalent singularities in two variables.

Let B1 = B[W1, {0}] and B2 = B[W2, {0}]. We have B1 = spanC{1, y, y2, y3, y4} and B2 =

spanC{1, y, y2, y3, y4}. We can define a map φ : B1 → B2 by φ(yi) = ciyi for i ∈ {0, . . . , 4},

where c satisfies c4 = 3
4
. Since φ is diagonal, it is an equivariant isomorphism of unorbifolded

B-models.

Now consider C1 = B[W1, 〈(1
2
, 1

2
)〉] and C2 = B[W2, 〈(1

2
, 1

2
)〉]. Both of these orbifolded

B-models have the state space

spanC{b1; (0, 0)e, b1; (
1

2
,
1

2
)e, by2; (0, 0)e, by4; (0, 0)e}.

Theorem 7.4 now guarantees that the map ψ : C1 → C2 given by ψ : byi; (0, 0)e 7→

bφ(yi); (0, 0)e = cibyi; (0, 0)e where c4 = 3
4
, and ψ : b1; (1

2
, 1

2
)e 7→ bφ(1); (1

2
, 1

2
)e = b1; (1

2
, 1

2
)e is

an isomorphism of graded Frobenius algebras. But this is the same map that was separately

computed in Lemma 6.7.
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Example 7.13. More generally, recall from Theorem 6.3 that we can compute for all n ≥ 2,

B[x2 + y2n, {0}] oo // B[x2 + xyn + y2n, {0}] B[x2 + xyn, {0}]//oo

Label B1 = B[x2 + y2n, {0}], B2 = B[x2 + xyn + y2n, {0}], and B3 = B[x2 + xyn, {0}].

Each unorbifolded B-model has basis spanC{1, y, . . . , y2n−2}. Previously, we defined a map

φ1 : B1 → B3 by φ1(ya) = caya, where c is a complex number that satisfies c2n−2 = 3
4

(see Lemma 6.4). We also defined a map φ2 : B2 → B3 by φ2(ya) = caya, where c is a

complex number that satisfies c2n−2 = −3 (see Lemma 6.5). As verified before, φ1 and φ2

are isomorphisms of graded Frobenius algebras. And, since these are diagonal maps, they

are equivariant.

If n is odd, then G =
〈(

1
2
, 1

2

)〉
fixes each polynomial. By Theorem 7.4, we have for all

odd n > 2

B[x2 + y2n, G] oo //
OO

B[x2 + xyn + y2n, G]
OO

B[x2 + xyn, G]//oo
OO

B[x2 + y2n, {0}] oo // B[x2 + xyn + y2n, {0}] B[x2 + xyn, {0}]//oo

Note that this is the same result obtained in Theorem 6.6. Applying mirror symmetry

to B-models built with invertible polynomials, we get the following mirror diagram.

A[x2 + y2n, 〈(1
2
, 0), (0, 1

2n
)〉] oo //

��

A[x2y + yn, 〈(− 1
2n
, 1
n
)〉]

��
A[x2 + y2n, 〈(1

2
, 1

2n
)〉] oo // A[x2y + yn, 〈(n−1

2n
, 1
n
)〉]

Note that this is the same result that we obtained in Corollary 6.9. Hence Theorem

7.4 can be used to obtain results that before were only able to be had after much difficult

computation.
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Example 7.14. Let W = W1+W2 and V = V1+V2 in C[x, y, z, w], where W1 = V1 = x3+y3,

W2 = z3+w3, and V2 = z2w+zw2. We readily see thatQW1
∼= QV1 by letting φ1 : QW1 → QV1

be the identity map. By Theorem 2.32 we know that QW2
∼= QV2 . Let φ2 : QW2 → QV2 be

any such isomorphism.

The symmetry group SL(W1) = 〈(1
3
,−1

3
)〉. Since φ1 is the identity map, it is equivariant

with respect to this group. And we note that any choice of φ2 will be equivariant with

respect to the trivial group {0}. So we form G = SL(W1) × {0} = 〈(1
3
,−1

3
, 0, 0)〉, and note

that it is contained in both SL(W ) and SL(V ). Hence (W,G) and (V,G) are well-behaved,

showing that B[W,G] ∼= B[V,G] by Corollary 7.6.
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Appendix A. The Code

This code relies on other methods and classes developed for the FJRW research group. All

computations in this thesis were done using Sage 6.8. Here is a summary of the classes and

methods used in the following code.

Class Singularity. Used to create and manipulate polynomials. Commonly used methods

and attributes for a Singularity object W include

• W.q—retrieves the quasihomogeneous weights of W.

Class SymmetryGroup. Used to create and manipulate symmetry groups. Commonly

used methods and attributes for a SymmetryGroup object G include

• G.poly—retrieves the polynomial used to construct the symmetry group.

Class OrbMilnorRing. Used to create and manipulate B-models. Commonly used meth-

ods and attributes for an OrbMilnorRing object B include

• B[i]—retrieves the i-th basis element of B (index starts at 1).

• B[i].bi degree—retrieves the bi-degree of the i-th basis element. This is often just

the degree of the basis element listed twice in a coordinate pair.

• B[i].degree—retrieves the degree of the i-th basis element.

• B[i].index—retrieves the index of the given basis element.

• B.dimension()—gives the dimension of the B-model.

• B.eta—gives the matrix of pairing relations for B.

• B.products()—prints the nontrivial product relations for B.

"""

The Isomorphism Finder (v. 2.0)

Author: Nathan Cordner, 2014-2015

"""

def construct_map(B1,B2, type="diagonal", mathematica=False):

"""

Currently implemented types:

’diagonal’ -- default, constructs diagonal matrix

’upper_triangular’ -- constructs an upper triangular matrix

’lower_triangular" -- constructs a lower triangular matrix

’full’ -- uses all possible linear combinations
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Setting ’mathematica’ to True will make the computer print out

code that will run in Wolfram Mathematica to solve the resulting

system of equations. However, I currently do not know of any

examples where Mathematica succeeded when Sage failed...

"""

#First verify vector space isomorphism

if not check_graded_vspace(B1,B2):

return

d = B1.dimension() #Let d be dimension (of both B1 and B2)

sectors = find_graded_sectors(B1)

product_relations = find_product_relations(B1)

# create d^2 variables to use

cc = list(var(’c%d’ % i) for i in range(0,d**2))

counter = 0

hom = matrix(SR,d) #SR is for Symbolic Ring

if type == "upper_triangular":

hom, counter = upper_triangular_hom(B2, d, cc, sectors, product_relations)

elif type == "lower_triangular":

hom, counter = lower_triangular_hom(B2, d, cc, sectors, product_relations)

elif type == "full":

hom, counter = full_hom(B2, d, cc, sectors, product_relations)

else:

hom, counter = diagonal_hom(B2, d, cc, sectors, product_relations)

print "using map: "

print str(hom)

compute_isomorphism(B1,B2,hom,cc,counter,product_relations,mathematica)

#the following methods are subroutines for the isomorphism calculators

def check_graded_vspace(B1,B2):

"""

Subroutine to verify that

B1,B2 are isomorphic as graded

vector spaces

"""

d1 = B1.dimension()

d2 = B2.dimension()

if not (d1 == d2):

print "Dimensions do not match"

return False

for i in range(1, d1+1):

if not (B1[i].bi_degree == B2[i].bi_degree):

print "Graded sectors do not match"

return False
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print "Isomorphic as Graded Vector Spaces"

return True

def find_graded_sectors(B1):

"""

Here we partition B1 into graded pieces

Basis elements of same degree are put together

"""

d = B1.dimension()

sectors = []

i = 1

while (i < d+1):

grading = B1[i].degree

cur_sector = []

cur_sector.append(B1[i])

while(i < d):

if (B1[i+1].degree == grading):

cur_sector.append(B1[i+1])

i += 1

else:

break

sectors.append(cur_sector)

i += 1

return sectors

def find_product_relations(B1):

"""

We now organize the multiplication

this information is stored in the list ’product_relations’

where product_relations[i] stores a 3-tuple

(a,b,c) where c * basis element i = basis element a * basis element b

(using the order on the basis produced by the code)

Note that product_relations[0] always stores ’None’

For whatever reason, each B-model indexes by 1 instead of 0...

"""

d = B1.dimension()

product_relations = []

for i in range(0, d+1):

product_relations.append(None)

for i in range(2,d+1):

for j in range(i,d+1):

elem = B1[i] * B1[j]

if not (elem == 0):

relation = (i,j,elem.coefficients()[0])

num = elem.leading_monomial().index

#print str(num) +": " + str(relation)

if (product_relations[num] == None):

product_relations[num] = [relation]

else:

product_relations[num].append(relation)

return product_relations
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#Will now store a list of lists: each number contains a list of product relations

#METHOD 1: A DIAGONAL MATRIX

def diagonal_hom(B2, d, cc, sectors, product_relations):

counter = 0

hom = matrix(SR,d) #SR is for Symbolic Ring

hom[0,0] = 1

for i in range(1, len(sectors)):

cur_sector = sectors[i]

first_num = cur_sector[0].index

for kk in range(len(cur_sector)):

elem = cur_sector[kk]

num = elem.index

if (product_relations[num] == None):

hom[num-1,num-1] = cc[counter]

counter += 1

else:

#i.e. compute f(xi) = f(c*xj *xk) = c*f(xj)*f(xk)

item = product_relations[num][0]

product_row = mult_with_symbolic_ring(B2, hom[item[0]-1],hom[item[1]-1])

#multiply by the constant c

product_row[:] = [x*(1/item[2]) for x in product_row]

hom[num-1] = product_row

return hom, counter

#METHOD 2: AN UPPER TRIANGULAR MATRIX

def upper_triangular_hom(B2, d, cc, sectors, product_relations):

counter = 0

hom = matrix(SR,d) #SR is for Symbolic Ring

hom[0,0] = 1

for i in range(1, len(sectors)):

cur_sector = sectors[i]

first_num = cur_sector[0].index

for kk in range(len(cur_sector)):

elem = cur_sector[kk]

num = elem.index

if (product_relations[num] == None):

for j in range(first_num + kk,first_num+len(cur_sector)):

hom[num-1,j-1] = cc[counter]

counter += 1

else:

#i.e. compute f(xi) = f(c*xj *xk) = c*f(xj)*f(xk)

item = product_relations[num][0]

product_row = mult_with_symbolic_ring(B2, hom[item[0]-1],hom[item[1]-1])

#multiply by the constant c

product_row[:] = [x*(1/item[2]) for x in product_row]

hom[num-1] = product_row

return hom, counter
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#METHOD 3: A LOWER TRIANGULAR MATRIX

def lower_triangular_hom(B2, d, cc, sectors, product_relations):

counter = 0

hom = matrix(SR,d) #SR is for Symbolic Ring

hom[0,0] = 1

for i in range(1, len(sectors)):

cur_sector = sectors[i]

first_num = cur_sector[0].index

for kk in range(len(cur_sector)):

elem = cur_sector[kk]

num = elem.index

if (product_relations[num] == None):

for j in range(first_num,first_num+kk+1):

hom[num-1,j-1] = cc[counter]

counter += 1

else:

#i.e. compute f(xi) = f(c*xj *xk) = c*f(xj)*f(xk)

item = product_relations[num][0]

product_row = mult_with_symbolic_ring(B2, hom[item[0]-1],hom[item[1]-1])

#multiply by the constant c

product_row[:] = [x*(1/item[2]) for x in product_row]

hom[num-1] = product_row

return hom, counter

#METHOD 4: ALL POSSIBLE LINEAR COMBINATIONS

def full_hom(B2, d, cc, sectors, product_relations):

counter = 0

hom = matrix(SR,d) #SR is for Symbolic Ring

hom[0,0] = 1

for i in range(1, len(sectors)):

cur_sector = sectors[i]

first_num = cur_sector[0].index

for kk in range(len(cur_sector)):

elem = cur_sector[kk]

num = elem.index

if (product_relations[num] == None):

for j in range(first_num,first_num+len(cur_sector)):

hom[num-1,j-1] = cc[counter]

counter += 1

else:

#i.e. compute f(xi) = f(c*xj *xk) = c*f(xj)*f(xk)

item = product_relations[num][0]

product_row = mult_with_symbolic_ring(B2, hom[item[0]-1],hom[item[1]-1])

#multiply by the constant c

product_row[:] = [x*(1/item[2]) for x in product_row]

hom[num-1] = product_row

return hom, counter

def compute_isomorphism(B1,B2,hom,cc,counter,product_relations,mathematica):

"""
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set up equations and solve the isomorphism

"""

d = B1.dimension()

equations = set([])

#set up equations that make product relations equal

for i in range(2,d+1):

for j in range(i, d+1):

elem = B1[i] * B1[j]

alt_prod = mult_with_symbolic_ring(B2, hom[i-1],hom[j-1])

if elem == 0:

eq = 0 == sum(alt_prod)

equations.add(eq)

else:

coeff = elem.leading_coefficient()

basis_num = elem.leading_monomial().index

alt_prod[:] = [x*(1/coeff) for x in alt_prod]

eq = sum(hom[basis_num-1]) == sum(alt_prod)

equations.add(eq)

for i in range(0,d):

for j in range(i,d):

#Set up equations that respect the pairing

eq = B1.eta[i,j] == pair_with_symbolic_ring(B2, hom[i], hom[j])

if not str(eq) == ’0 == 0’:

equations.add(eq)

list_equations = list(equations)

if not mathematica:

print ’Solving equations ’ + str(list_equations)

solution = solve(list_equations,cc[:counter])

print ’Solution(s): ’ + str(solution)

else:

print_mathematica(str(list_equations), cc, counter)

def pair_with_symbolic_ring(B, row1, row2):

"""

Computes pairing between two non-basis elements in B

with scalar coefficients in the symbolic ring

"""

eq = 0

for i in range(0,len(row1)):

for j in range(0,len(row2)):

eq += row1[i]*row2[j]*B.eta[i,j]

return eq

def mult_with_symbolic_ring(B, row1, row2):

"""

Try to circumvent implementing full-blown multiplication

in symbolic ring with sage. Maybe later...

"""

new_row = [0] * len(row1)
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for i in range(0,len(row1)):

for j in range(0,len(row1)):

coeff = row1[i] * row2[j]

if not coeff == 0:

elem = B[i+1] * B[j+1]

if not elem == 0:

num = elem.leading_monomial().index

new_row[num - 1] += elem.coefficients()[0] * coeff

return new_row

def print_mathematica(str_equations, cc, counter):

"""

Convert sage output into form recognizable by mathematica

"""

str_equations = "Solve" + str_equations

str_equations = str_equations.replace(","," &&")

vars = cc[:counter]

str_vars = str(vars)

str_vars = str_vars.replace("[","{")

str_vars = str_vars.replace("]","}")

filler = ", " + str_vars + "]"

str_equations = str_equations.replace("]", filler)

print("Mathematica Code:")

print(str_equations)

#Code for verifying isomorphisms

def verify_isomorphism(B1,B2,M):

"""

Given B-models B1,B2 and a matrix M that defines a map

from B1 to B2. This is an umbrella method to check

that the map defined by M is an isomorphism of

graded Frobenius algebras

"""

#Our main concern is that M is invertible, and that

# M respects products and pairings

if not M.is_invertible():

print "matrix is not invertible!!"

print "checking products"

respects_products(B1,B2,M)

print "checking pairings"

respects_pairings(B1,B2,M)

def respects_products(B1,B2,M):

"""

Given B-models B1,B2 and a matrix M that defines a map

from B1 to B2, this method checks that the map defined

by M respects the product structure.
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i.e. show for all basis elements bi, bj in B1, that

M(bi *_1 bj) = M(bi) *_2 M(bj)

"""

n = B1.dimension()

bi = B1[1]

bj = B1[1]

for i in range(n):

bi = B1[i+1]

for j in range(n):

bj = B1[j+1]

#Compute Left Hand Side

prod = bi * bj #may not be a basis element

LHS = [0]*n

if not prod == 0:

p_index = prod.leading_monomial().index - 1

p_coeff = prod.leading_coefficient()

#Instead of worrying about what basis elements I’m getting,

#I’ll just look at coefficients

for k in range(n):

LHS[k] = M[p_index][k] * p_coeff #fix row, vary over column

#Compute Right Hand Side

a1 = [0]*n

a2 = [0]*n

for k in range(n):

a1[k] = M[bi.index-1][k]

a2[k] = M[bj.index-1][k]

RHS = mult_with_symbolic_ring(B2, a1, a2)

if not LHS == RHS:

print "Failed at " + str(i) + ", " + str(j)

print "LHS: " + str(LHS)

print "RHS: " + str(RHS)

def respects_pairings(B1,B2,M):

"""

same idea as before, just with pairings!!!

want to show that <bi, bj>_1 = <M(bi), M(bj)>_2

for all i,j

"""

n = B1.dimension()

for i in range(n):

for j in range(n):

LHS = B1.eta[i,j]

RHS = pair_with_symbolic_ring(B2, M[i], M[j])
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if not LHS == RHS:

print "Failed at " + str(i + 1) + ", " + str(j + 1)

print "LHS: " + str(LHS)

print "RHS: " + str(RHS)

"""

An algorithm to determine which weight systems could

potentially have a B-model that is isomorphic to a

given B-model. Note that the algorithm will halt on

its own if the c-hat of the given B-model is less than 1.

(two variables only)

--Nathan Cordner, June 2015

"""

def potential_weights(G, interrupt = 100):

"""

INPUT: some "B-admissible" group G,

a positive integer to halt the process from time to time

OUTPUT: a finite list of weight systems

"""

#for some reason I can’t recover the polynomial and group

#from the OrbMilnorRing object

B = OrbMilnorRing(G)

weights = G.poly.q

B_dim = B.dimension()

highest_deg = 2 - 2*weights[0] - 2*weights[1]

q1, q2 = var(’q1,q2’)

i = B_dim

while(True):

solution = solve([2-2*q1-2*q2 == highest_deg,(1/q1-1)*(1/q2-1) == i],q1,q2)

if not (0 <= float(abs(solution[0][0].rhs())) <= 0.5):

break

if not (0 <= float(abs(solution[0][1].rhs())) <= 0.5):

break

rational_value = solution[0][0].rhs() in QQ

if(rational_value):

print(’Unorbifold dimension = ’ + str(i))

print(solution)

if (i % interrupt == 0):

response = input(’We have reached ’ + str(i) + ’. Continue? (y/n)’)

if response == n:

break

i += 1
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Appendix B. Computations

Investigation into B-model isomorphisms using polynomials of weight (1/4,1/4)

and non-trivial symmetry group. (April 2015)

-----------------------------------------------------------------------------

W0 = Singularity(x^4 + y^4)

W1 = Singularity(x^4 + x*y^3)

W2 = Singularity(x^3*y + y^3*x)

W3 = Singularity(x^3*y + y^3*x + x^4)

W4 = Singularity(x^4 + y^4 + x^3*y)

W5 = Singularity(x^4 + x^2*y^2 + x*y^3)

W6 = Singularity(x^4 + x^2*y^2 + y^4)

W7 = Singularity(x^3*y + x^2*y^2 + x*y^3)

W8 = Singularity(x^3*y + x^2*y^2 + x*y^3 + y^4)

W9 = Singularity(x^4 + x^3*y + x^2*y^2 + y^4)

W10= Singularity(x^4 + x^3*y + x*y^3 + y^4) #(possibly degenerate)

W11= Singularity(x^4 + x^3*y + x^2*y^2 + x*y^3 + y^4)

B0SL = OrbMilnorRing(SymmetryGroup(W0,[[1/4,-1/4]]))

B0 = OrbMilnorRing(SymmetryGroup(W0,[[1/2,1/2]]))

B1 = OrbMilnorRing(SymmetryGroup(W1,[[1/2,1/2]]))

B2 = OrbMilnorRing(SymmetryGroup(W2,[[1/2,1/2]]))

B3 = OrbMilnorRing(SymmetryGroup(W3,[[1/2,1/2]]))

B4 = OrbMilnorRing(SymmetryGroup(W4,[[1/2,1/2]]))

B5 = OrbMilnorRing(SymmetryGroup(W5,[[1/2,1/2]]))

B6SL = OrbMilnorRing(SymmetryGroup(W6,[[1/4,-1/4]]))

B6 = OrbMilnorRing(SymmetryGroup(W6,[[1/2,1/2]]))

B7 = OrbMilnorRing(SymmetryGroup(W7,[[1/2,1/2]]))

B8 = OrbMilnorRing(SymmetryGroup(W8,[[1/2,1/2]]))

B9 = OrbMilnorRing(SymmetryGroup(W9,[[1/2,1/2]]))

B10 = OrbMilnorRing(SymmetryGroup(W10,[[1/2,1/2]]))

B11 = OrbMilnorRing(SymmetryGroup(W11,[[1/2,1/2]]))

Here’s what I can either compute or verify by Group-Weights:

Group 1. B0SL ~ B2 ~ B3 ~ B5 ~ B6 ~ B6SL ~ B7 ~ B8 ~ B9

Group 2. B1 ~ B11

Leftover: B0, B4, B10 (note that code returns errors with B10)

COMPUTATIONS:

NOTE: Group-Weights ==> B0SL ~ B2

My Theorem (6.1) ==> B0SL ~ B6SL

B2 ~ B3

sage: B2.print_summary()

Orbifold Milnor ring for x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)
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[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B3.print_summary()

Orbifold Milnor ring for x^4 + x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B2,B3,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 c0^2+1/7*c0*c1-1/21*c1^2-2/21*c0*c2-3/7*c1*c2+1/7*c2^2-62/21*c3^2]

Solving equations [(omitted)]

Solution(s): [

[c0 == -1, c1 == 0, c2 == -1/186*sqrt(31)*(2*sqrt(31) - 31), c3 == 0, c4 == -1,

c5 == (-3/2), c6 == 0, c7 == -1/2*sqrt(31), c8 == 0, c9 == 1],

... (15 other solutions)

]

To verify the isomorphism I will choose solution 1 and let

M = matrix([[1,0,0,0,0,0],[0,-1,0,-1/186*sqrt(31)*(2*sqrt(31) - 31),0,0],

[0,0,-1,(-3/2),0,0],[0,0,0,-1/2*sqrt(31),0,0],[0,0,0,0,1,0],

[0,0,0,0,0,1/7812*(2*sqrt(31) - 31)^2 - 1/1953*sqrt(31)*(2*sqrt(31) - 31) + 1]])

# c0^2 + 1/7*c0*c1 - 1/21*c1^2 - 2/21*c0*c2 - 3/7*c1*c2 + 1/7*c2^2 - 62/21*c3^2

# == 1-(2/21)*(-1)*(-1/186*sqrt(31)*(2*sqrt(31)-31))

# +(1/7)*(-1/186*sqrt(31)*(2*sqrt(31)-31))^2

# == 1/7812*(2*sqrt(31) - 31)^2 - 1/1953*sqrt(31)*(2*sqrt(31) - 31) + 1

sage: verify_isomorphism(B2,B3,M)

checking products

checking pairings

B2 ~ B5

sage: B2.print_summary()

Orbifold Milnor ring for x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)
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[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B5.print_summary()

Orbifold Milnor ring for x^4 + x^2*y^2 + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B2,B5,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 c0^2-2/11*c0*c1+3/22*c1^2+3/11*c0*c2-9/22*c1*c2-1/22*c2^2-31/11*c3^2]

Solving equations [(omitted)]

Solution(s): [

[c0 == 1, c1 == (2/3), c2 == -1/6*I*sqrt(31)*sqrt(3), c3 == 0, c4 == -1/3*I*sqrt(3),

c5 == 3/2*I*sqrt(3), c6 == 0, c7 == 1/2*I*sqrt(93), c8 == 0, c9 == 1],

... (15 others)

]

To verify the isomorphism I will choose solution 1 and let

M = matrix([[1,0,0,0,0,0],[0,1,2/3,-1/6*I*sqrt(31)*sqrt(3),0,0],[0,0,-1/3*I*sqrt(3),

3/2*I*sqrt(3),0,0],[0,0,0,1/2*I*sqrt(93),0,0],[0,0,0,0,1,0],[0,0,0,0,0,93/88]])

# c0^2 - 2/11*c0*c1 + 3/22*c1^2 + 3/11*c0*c2 - 9/22*c1*c2 - 1/22*c2^2 - 31/11*c3^2

# == 1 - (2/11)*(2/3) + (3/22)*(2/3)^2 + (3/11)*(-1/6*I*sqrt(31)*sqrt(3))

# - (9/22)*(2/3)*(-1/6*I*sqrt(31)*sqrt(3)) - (1/22)*(-1/6*I*sqrt(31)*sqrt(3))^2

# == 93/88

sage: verify_isomorphism(B2,B5,M)

checking products

checking pairings

Failed at 2, 4

LHS: 1/8

RHS: 1/744*sqrt(93)*sqrt(31)*sqrt(3)

Failed at 4, 2

LHS: 1/8

RHS: 1/744*sqrt(93)*sqrt(31)*sqrt(3)

#But notice that 1/744*sqrt(93)*sqrt(31)*sqrt(3) == 1/8, so we’re good!

B2 ~ B7

sage: B2.print_summary()
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Orbifold Milnor ring for x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B7.print_summary()

Orbifold Milnor ring for x^3*y + x^2*y^2 + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B2,B7,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 c0^2 + 1/2*c0*c1 - 1/2*c1^2 - c0*c2 + 1/2*c1*c2 + c2^2 - 3*c3^2]

Solving equations [(omitted)]

Solution(s): [

[c0 == -1, c1 == (-2/3), c2 == -1/12*sqrt(2)*(2*sqrt(2) + 3), c3 == 0,

c4 == 1/3*sqrt(3)*sqrt(2), c5 == -1/12*sqrt(3)*sqrt(2), c6 == 0, c7 == 3/4*sqrt(2),

c8 == 0, c9 == 1],

... (15 others)

]

------------

scratch

[c0 == -1, c1 == (-2/3), c2 == -1/4*sqrt(2) - 1/3, c3 == 0, c4 == 1/3*sqrt(3)*sqrt(2),

c5 == -1/12*sqrt(3)*sqrt(2), c6 == 0, c7 == 3/4*sqrt(2), c8 == 0, c9 == 1]

c0^2 + 1/2*c0*c1 - 1/2*c1^2 - c0*c2 + 1/2*c1*c2 + c2^2 - 3*c3^2

== (-1)^2 + (1/2)*(-1)*(-2/3) - (1/2)*(-2/3)^2 - (-1)*(-1/4*sqrt(2) - 1/3)

+ (1/2)*(-2/3)*(-1/4*sqrt(2) - 1/3) + (-1/4*sqrt(2) - 1/3)^2

== 1/144*(3*sqrt(2) + 4)^2 - 1/6*sqrt(2) + 8/9

M = matrix([[1,0,0,0,0,0], [0,-1,-2/3,-1/4*sqrt(2) - 1/3,0,0], [0,0,1/3*sqrt(3)*sqrt(2),

-1/12*sqrt(3)*sqrt(2),0,0],[0,0,0,3/4*sqrt(2),0,0],[0,0,0,0,1,0],

[0,0,0,0,0,1/144*(3*sqrt(2) + 4)^2 - 1/6*sqrt(2) + 8/9]])

sage: verify_isomorphism(B2,B7,M)

checking products

checking pairings
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------------

B2 ~ B8

sage: B2.print_summary()

Orbifold Milnor ring for x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B8.print_summary()

Orbifold Milnor ring for x^3*y+x^2*y^2+x*y^3+y^4 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B2,B8,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 c0^2 - 4*c0*c1 + c1^2 + 2*c0*c2 + 5*c2^2 - 16*c3^2]

Solving equations [(omitted)]

Solution(s): [

[c0 == -1/3*I*sqrt(5)*sqrt(3), c1 == -2/3*I*sqrt(5)*sqrt(3),

c2 == 1/30*sqrt(5)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2), c3 == 0, c4 == -I*sqrt(2),

c5 == 0, c6 == 0, c7 == 1/5*sqrt(6)*sqrt(5), c8 == 0, c9 == 1],

... (15 others)

]

To verify the isomorphism I will choose solution 1 and let

M = matrix([[1,0,0,0,0,0],[0,-1/3*I*sqrt(5)*sqrt(3),-2/3*I*sqrt(5)*sqrt(3),

1/30*sqrt(5)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2),0,0],[0,0,-I*sqrt(2),0,0,0],

[0,0,0,1/5*sqrt(6)*sqrt(5),0,0],[0,0,0,0,1,0],[0,0,0,0,0,1/6*(I*sqrt(2) - 2)^2

- 1/3*I*sqrt(2)*(I*sqrt(2) - 2) + 5]])

# c0^2 - 4*c0*c1 + c1^2 + 2*c0*c2 + 5*c2^2 - 16*c3^2

# == (-1/3*I*sqrt(5)*sqrt(3))^2 - 4*(-1/3*I*sqrt(5)*sqrt(3))

# *(-2/3*I*sqrt(5)*sqrt(3)) + (-2/3*I*sqrt(5)*sqrt(3))^2 + 2*(-1/3*I*sqrt(5)

# *sqrt(3))*(1/30*sqrt(5)*sqrt(3)*sqrt(2)

# *(I*sqrt(2) - 2)) + 5*(1/30*sqrt(5)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2))^2

# == 1/6*(I*sqrt(2) - 2)^2 - 1/3*I*sqrt(2)*(I*sqrt(2) - 2) + 5
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sage: verify_isomorphism(B2,B8,M)

checking products

Failed at 1, 3

LHS: [0, 0, 0, 0, 0, -1/18*(I*sqrt(2) - 2)^2 + 1/9*I*sqrt(2)*(I*sqrt(2) - 2) - 5/3]

RHS: [0, 0, 0, 0, 0, 1/6*sqrt(6)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2) - 1/3*I*sqrt(6)*sqrt(3)]

Failed at 3, 1

LHS: [0, 0, 0, 0, 0, -1/18*(I*sqrt(2) - 2)^2 + 1/9*I*sqrt(2)*(I*sqrt(2) - 2) - 5/3]

RHS: [0, 0, 0, 0, 0, 1/6*sqrt(6)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2) - 1/3*I*sqrt(6)*sqrt(3)]

checking pairings

Failed at 2, 4

LHS: 1/8

RHS: -1/96*sqrt(6)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2) + 1/48*I*sqrt(6)*sqrt(3)

Failed at 4, 2

LHS: 1/8

RHS: -1/96*sqrt(6)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2) + 1/48*I*sqrt(6)*sqrt(3)

#Fortunately, -1/96*sqrt(6)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2)

# + 1/48*I*sqrt(6)*sqrt(3) == 1/8, and

# -1/18*(I*sqrt(2) - 2)^2 + 1/9*I*sqrt(2)*(I*sqrt(2) - 2) - 5/3 == -2,

# 1/6*sqrt(6)*sqrt(3)*sqrt(2)*(I*sqrt(2) - 2) - 1/3*I*sqrt(6)*sqrt(3) == -2.

B2 ~ B9

sage: B2.print_summary()

Orbifold Milnor ring for x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B9.print_summary()

Orbifold Milnor ring for x^4 + x^3*y + x^2*y^2 + y^4 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B2,B9,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 c0^2-23/7*c0*c1-27/7*c1^2-54/7*c0*c2+52/7*c1*c2-6/7*c2^2-514/7*c3^2]

Solving equations [(omitted)]

Solution(s): [
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[c0 == -2/3*I*sqrt(3)*sqrt(2), c1 == -I*sqrt(3)*sqrt(2), c2 == -4/3*I*sqrt(3)*sqrt(2)

- 1/12*I*sqrt(514), c3 == 0, c4 == -1/2*I*sqrt(3), c5 == -13/6*I*sqrt(3), c6 == 0,

c7 == 1/4*I*sqrt(257)*sqrt(2), c8 == 0, c9 == 1], ... (15 others)

]

To verify the isomorphism I will choose solution 1 and let

M = matrix([[1,0,0,0,0,0],[0,-2/3*I*sqrt(3)*sqrt(2),-I*sqrt(3)*sqrt(2),

-4/3*I*sqrt(3)*sqrt(2)-1/12*I*sqrt(514),0,0],[0,0,-1/2*I*sqrt(3),-13/6*I*sqrt(3),0,0],

[0,0,0,1/4*I*sqrt(257)*sqrt(2),0,0],[0,0,0,0,1,0],[0,0,0,0,0,771/28]])

# c0^2 - 23/7*c0*c1 - 27/7*c1^2 - 54/7*c0*c2 + 52/7*c1*c2 - 6/7*c2^2 - 514/7*c3^2

# == (-2/3*I*sqrt(3)*sqrt(2))^2 - (23/7)*(-2/3*I*sqrt(3)*sqrt(2))*(-I*sqrt(3)*sqrt(2))

# - (27/7)*(-I*sqrt(3)*sqrt(2))^2 - (54/7)*(-2/3*I*sqrt(3)*sqrt(2))

# *(-4/3*I*sqrt(3)*sqrt(2) - 1/12*I*sqrt(514)) + (52/7)*(-I*sqrt(3)*sqrt(2))

# *(-4/3*I*sqrt(3)*sqrt(2) - 1/12*I*sqrt(514)) - (6/7)

# *(-4/3*I*sqrt(3)*sqrt(2) - 1/12*I*sqrt(514))^2

# == 4/21*I*sqrt(3)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514))

# - 6/7*(-4/3*I*sqrt(3)*sqrt(2) - 1/12*I*sqrt(514))^2 + 706/21

# == 771/28

sage: verify_isomorphism(B2,B9,M)

checking products

Failed at 1, 3

LHS: [0, 0, 0, 0, 0, -257/28]

RHS: [0, 0, 0, 0, 0, 1/56*I*sqrt(257)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514))

+ 4/7*sqrt(257)*sqrt(3)]

Failed at 3, 1

LHS: [0, 0, 0, 0, 0, -257/28]

RHS: [0, 0, 0, 0, 0, 1/56*I*sqrt(257)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514))

+ 4/7*sqrt(257)*sqrt(3)]

checking pairings

Failed at 2, 4

LHS: 1/8

RHS: -1/4112*I*sqrt(257)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514))

- 2/257*sqrt(257)*sqrt(3)

Failed at 4, 2

LHS: 1/8

RHS: -1/4112*I*sqrt(257)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514))

- 2/257*sqrt(257)*sqrt(3)

#But 1/56*I*sqrt(257)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514)) + 4/7*sqrt(257)*sqrt(3)

# == -257/28, and -1/4112*I*sqrt(257)*sqrt(2)*(16*I*sqrt(3)*sqrt(2) + I*sqrt(514))

#- 2/257*sqrt(257)*sqrt(3) == 1/8, so it all works!

B3 ~ B6

sage: B3.print_summary()

Orbifold Milnor ring for x^4 + x^3*y + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)
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[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B6.print_summary()

Orbifold Milnor ring for x^4 + x^2*y^2 + y^4 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B3,B6,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 c0^2 - 2*c1^2 - 4*c0*c2 + c2^2 - 24*c3^2]

Solving equations [(omitted)]

Solution(s): [

[c0 == -2/3*I*sqrt(3)*sqrt(2), c1 == 0, c2 == 1/93*sqrt(3)*(2*sqrt(93) - 124*I*sqrt(2)),

c3 == 0, c4 == -1/2*sqrt(3)*sqrt(2), c5 == 9/31*sqrt(31), c6 == 0, c7 == -6/31*sqrt(31),

c8 == 0, c9 == 1], ... (15 others)

]

To verify the isomorphism I will choose solution 1 and let

M = matrix([[1,0,0,0,0,0],[0,-2/3*I*sqrt(3)*sqrt(2),0,1/93*sqrt(3)*(2*sqrt(93)

- 124*I*sqrt(2)),0,0], [0,0,-1/2*sqrt(3)*sqrt(2),9/31*sqrt(31),0,0],

[0,0,0,-6/31*sqrt(31),0,0],[0,0,0,0,1,0], [0,0,0,0,0,252/31]])

# c0^2 - 2*c1^2 - 4*c0*c2 + c2^2 - 24*c3^2

# == (-2/3*I*sqrt(3)*sqrt(2))^2 - 4*(-2/3*I*sqrt(3)*sqrt(2))*(1/93*sqrt(3)*(2*sqrt(93)

# - 124*I*sqrt(2))) + (1/93*sqrt(3)*(2*sqrt(93) - 124*I*sqrt(2)))^2

# == 252/31

sage: verify_isomorphism(B3,B6,M)

checking products

Failed at 1, 2

LHS: [0, 0, 0, 0, 0, 18/31]

RHS: [0, 0, 0, 0, 0, 3/961*sqrt(31)*sqrt(3)*(2*sqrt(93) - 124*I*sqrt(2))

+ 12/31*I*sqrt(31)*sqrt(3)*sqrt(2)]

Failed at 2, 1

LHS: [0, 0, 0, 0, 0, 18/31]

RHS: [0, 0, 0, 0, 0, 3/961*sqrt(31)*sqrt(3)*(2*sqrt(93) - 124*I*sqrt(2))

+ 12/31*I*sqrt(31)*sqrt(3)*sqrt(2)]

checking pairings

#But 3/961*sqrt(31)*sqrt(3)*(2*sqrt(93) - 124*I*sqrt(2))

# + 12/31*I*sqrt(31)*sqrt(3)*sqrt(2) == 18/31

B1 ~ B11
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sage: B1.print_summary()

Orbifold Milnor ring for x^4 + x*y^3 with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] y^4b_(0, 0) Degree: 2 (1, 1)

sage: B11.print_summary()

Orbifold Milnor ring for x^4 + x^3*y + x^2*y^2 + x*y^3 + y^4

with group generated by <(1/2, 1/2)>.

Dimension: 6

Basis:

[1] b_(0, 0) Degree: 0 (0, 0)

[2] y^2b_(0, 0) Degree: 1 (1/2, 1/2)

[3] x*yb_(0, 0) Degree: 1 (1/2, 1/2)

[4] x^2b_(0, 0) Degree: 1 (1/2, 1/2)

[5] b_(1/2, 1/2) Degree: 1 (1/2, 1/2)

[6] x*y^3b_(0, 0) Degree: 2 (1, 1)

sage: construct_map(B1,B11,type="upper_triangular")

Isomorphic as Graded Vector Spaces

using map:

[1 0 0 0 0 0]

[0 c0 c1 c2 c3 0]

[0 0 c4 c5 c6 0]

[0 0 0 c7 c8 0]

[0 0 0 0 c9 0]

[0 0 0 0 0 2*c0*c1 - 2*c1^2 - 4*c0*c2 + 2*c1*c2 - 20*c3^2]

Solving equations [(omitted)]

Solution(s): [

[c0 == 1/3*I*sqrt(5)*sqrt(3), c1 == 2/3*I*sqrt(5)*sqrt(3), c2 == I*sqrt(5)*sqrt(3),

c3 == 0, c4 == -5/3/r44, c5 == -5/3/r44, c6 == 0, c7 == r44, c8 == 0, c9 == 1],

... (3 others)

]

To verify the isomorphism I will choose solution 1 and let

M = matrix([[1,0,0,0,0,0],[0,1/3*I*sqrt(5)*sqrt(3),2/3*I*sqrt(5)*sqrt(3),

I*sqrt(5)*sqrt(3),0,0], [0,0,-5/3,-5/3,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],

[0,0,0,0,0,20/3]])

# 2*c0*c1 - 2*c1^2 - 4*c0*c2 + 2*c1*c2 - 20*c3^2

# == 2*(1/3*I*sqrt(5)*sqrt(3))*(2/3*I*sqrt(5)*sqrt(3)) - 2*(2/3*I*sqrt(5)*sqrt(3))^2

# - 4*(1/3*I*sqrt(5)*sqrt(3))*(I*sqrt(5)*sqrt(3))

# + 2*(2/3*I*sqrt(5)*sqrt(3))*(I*sqrt(5)*sqrt(3))

# == 20/3

sage: verify_isomorphism(B1,B11,M)

checking products

checking pairings
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[3] P. Berglund and T. Hübsch, A generalized construction of mirror manifolds, Nucl. Phys.
B 393 (1993) 377391.

[4] Huijun Fan, Tyler J. Jarvis, and Yongbin Ruan, The Witten equation, mirror symmetry
and quantum singularity theory, Annals of Mathematics, vol. 178, no. 1 (2013), 1106.

[5] Amanda Francis, Tyler Jarvis, Drew Johnson, and Rachel Suggs, Landau-Ginzburg mir-
ror symmetry for orbifolded Frobenius algebras, Proceedings of Symposia in Pure Math-
ematics, vol. 85 (2012), 333353.

[6] K. Intriligator and C. Vafa, Landau-Ginzburg orbifolds, Nuclear Phys. B 339 (1990), no.
1, 95120.

[7] R. Kaufmann, Singularities with symmetries, orbifold Frobenius algebras and mirror
symmetry, Cont. Math. 403, 67-116.

[8] R. Kaufmann, Orbifold Frobenius algebras, cobordisms and monodromies, Orbifolds in
mathematics and physics (Madison, WI, 2001), 135161, Contemp. Math., 310, Amer.
Math. Soc., Providence, RI, 2002.

[9] R. Kaufmann, Orbifolding Frobenius algebras, Internat. J. Math. 14 (2003), no. 6,
573617.

[10] Marc Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, PhD thesis, Uni-
versity of Michigan, 2010.

[11] M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Comm.
Math. Phys. 150 (1992), no. 1, 137147. MR 1188500 (93k:32075)

[12] Rachel Suggs. An explanation of strange duality in terms of Landau-Ginzburg mirror
symmetry. Honors thesis, Brigham Young University, August 2012.
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