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ABSTRACT

American Spread Option Models and Valuation

Yu Hu
Department of Mathematics, BYU

Doctor of Philosophy

Spread options are derivative securities, which are written on the difference between the values
of two underlying market variables. They are very important tools to hedge the correlation risk.
American style spread options allow the holder to exercise the option at any time up to and in-
cluding maturity. Although they are widely used to hedge and speculate in financial market, the
valuation of the American spread option is very challenging. Because even under the classic as-
sumptions that the underlying assets follow the log-normal distribution, the resulting spread doesn’t
have a distribution with a simple closed formula. In this dissertation, we investigate the Ameri-
can spread option pricing problem. Several approaches for the geometric Brownian motion model
and the stochastic volatility model are developed. We also implement the above models and the
numerical results are compared among different approaches.

Keywords: American Spread Option, Option Pricing, PDE, Finite Difference Method, Monte Carlo
Simulation, Dual Method, FFT, Stochastic Volatility
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CHAPTER 1. INTRODUCTION

Vanilla options are a category of options which have only standard terms. For example, Standard

European and American options are vanilla options. Generally, one can trade vanilla options to

manage the volatility risk in a single asset framework. Spread options are two-asset derivative

securities, which are written on the difference between the values of two underlying market vari-

ables. Because it captures the co-movement structures between the two underlying assets, it is an

important tool to hedge the correlation risk.

Spread options are widely traded in financial markets, for example, the notes over bonds spread,

municipal over bonds spread and the treasury over Eurodollar spread in the US fixed income mar-

ket, locational spread and produce spread in the commodity market, index spread in the equity

market, the heating oil/crude oil and gasoline/crude oil crack spread and spark spread (the differ-

ence between the market price of electricity or natural gas and its production cost) in the energy

market.

A lot of firms, like most manufacturers and oil refineries in [1], are involved in two markets: the

raw materials the firm needs to purchase and the finished products the firm needs to sell. The price

of raw materials and finished products are often subjected to different variables such as demand,

supply, world economy, government regulations and other factors. As such, the firm can be at

enormous risk when the price of raw materials rises while the price of finished products declines.

However, the firm can use spread options to hedge the risk. Following [2] and [3], we suppose the

firm has the following production schedule:

t0: hedge decision

t1: deadline for the production decision

t2: purchase of the raw materials
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t3: selling of the finished products

where t0< t1< t2< t3. Let Fin(t, t2) and Fout(t, t3) be the future prices of raw materials and

finished product at time t, respectively. And suppose Kc(t) is the forward price of the produc-

tion cost to produce one unit output product from the one unit input raw material at time t. If

the forward spread between the input price and output price exceeds the production cost at time

t < t1, i.e., Fout(t, t3) − Fin(t, t2) > Kc(t), then a simple hedge strategy for the firm is to use

future contracts consisting of longing the raw materials and shorting the finished products, which

will lock in the forward profits :Fout(t, t3)− Fin(t, t2)−Kc(t). However, hedging with the future

contracts also sacrifices the firm’s opportunity to profit from a potentially widened spread. If there

is a potential increasing of the spread, the inflexibility of simple future contracts trading would

be a drawback. Instead one can hedge the risk by trading with spread options. There are a lot

of trading strategies by using spread options discussed in [2]. Here we look at the hedge strategy

by shorting a call spread option with the strike price K = Kc(t), maturity t1 and payoff func-

tion max{Fout(t, t3) − Fin(t, t2) − K, 0}. At time t1, if the spreads exceed the strike price, i.e.,

Fout(t, t3) − Fin(t, t2) ≥ K, the option will be exercised by the holder. As a result, the firm will

purchase the raw materials at time t2, sell finished products at time t3 and get an income K = Kc.

At time t1, if Fout(t, t3)−Fin(t, t2) < K, the owner will let the option expire, and the firm will not

produce. In either case, the firm will earn the option premium at time t0 and also hedge the risk

involved.

On the other hand, one can also use the spread option to speculate. Like vanilla options on a single

asset, the price of vanilla options is an increasing function of the price of the underlying asset.

Thus, a speculator will long a call option if he thinks the price of the underlying asset will rise.

The price of the spread option is an increasing function of the spread between the prices of the two

underlying assets. Suppose everything else is the same. If we believe the spread will rise, we will

long the spread option. In other words, if one believes that the two underlying assets will move

away from each other, the price of the spread will increase. Thus, one will long the spread option.

2



If we believe the spread will drop, we will short the spread option. In other words, if one believes

that the two underlying assets will become more aligned with each other, the price of the spread

option will decline. Hence, we will short the option.

Before we go through the techniques of pricing American style spread options, let’s review the

European spread options and standard American options.

The payoff function for a European spread option is max{S1(T ) − S2(T ) −K, 0}, where S1 and

S2 are the values of the two underlying market variables, where T is maturity and where K is the

strike price. The first model for pricing the spread option is to model the resulting spread directly

as a geometric Brownian motion. Then, the price of the spread option is the same as the price of

the standard option on a single asset. However, this is clearly not a good model as it only permits

the positive spreads, and, also, it ignores the co-movement structure between the two underlying

market variables, which was pointed out in [4]. An alternative approach in [5] and [6] is to model

the two underlying market variables S1 and S2 as the arithmetic Brownian motions, together with

the constant correlation. Then, the resulting spread in this model is an arithmetic Brownian motion,

and a closed formula is available. This approach has its drawback as it permits the negative values

for the two underlying assets.

By going one step further, one can model each individual asset as a geometric Brownian motion and

assume that the correlation between the two underlying assets is a constant ρ, which is widely stud-

ied in [7], [8], [9] and [10]. Then the resulting spread at maturity is the difference of two log-normal

random variables. It doesn’t have a simple distribution with a closed formula, which prevents us

from deriving a closed formula solution to the price of the European spread option. However, for a

special case of the European spread option, i.e., K = 0, which is called an exchange option, there

is a closed formula called Margrabe formula that comes from Margrabe in [11]. The idea of this

approach is that because the payoff function for the exchange option is max{S1(T ) − S2(T ), 0},

3



by taking out S2(T ), the payoff function becomes S2(T ) max{S1(T )
S2(T )

− 1, 0}. The quotient of two

log-normal random variables is still log-normal. Thus, one can derive a closed formula solution for

exchange option. WhenK 6= 0, generally, there is no closed formula solution, but there are several

ways to approximate it. The first one is the Kirk approximation formula which was introduced in

[12]. The idea of the Kirk approximation is that when K � S2, we may regard S2 + K as a geo-

metric Brownian motion. Then, one can get the Kirk formula by applying the Margrabe formula.

Another approach is the pseudo analytic formula due to [3] and [13]. By using the conditional

distribution technique which reduces the two dimensional integrals for computing the expectation

to the one dimensional integral, the pseudo analytic formula involves the one dimensional integra-

tion, which one can efficiently compute by the Gauss-Hermite quadrature method.

The Black-Scholes formula gives the option price as a function of several parameters. It is easy

to get most of the parameters except the volatility. Instead of computing the option price by giv-

ing the volatility, one can observe the option prices from the market, using it to solve the inverse

problem to compute the volatility. The volatility implied by the market option prices are called

implied volatility. If the Black-Scholes model is perfect, the implied volatility should be a constant

for all market options on the same asset. However, empirical studies in [14] and [15] have revealed

that the implied volatility depends on the strike price and maturity of the options. If we plot the

implied volatility as a function of its strike price (and maturity), we get the so called volatility

smile (surface). On the other hand, given the volatility smile, one can determine the risk neutral

probability density distribution for an asset at a future time. The risk neutral probability density

distribution is called the implied distribution. Hull in [14] and Cont-Tankov in [15] showed that

the implied distribution has heavier tails than the log-normal distribution and is also more peaked,

which means that both large and small movements are more likely than the log-normal model dis-

tribution, and intermediate movements are less likely. One of the important reasons for that is that

we assume that the volatility is a constant. Hence, in order to overcome these limitations, we study

the stochastic volatility models which assume the volatility is a stochastic process.
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Now we consider a model that overcomes the drawback of the constant volatility by introducing

stochastic volatility, in which the volatility process is a stochastic process. It is called a stochastic

volatility model, which was introduced by Henston in [16]. Hong in [13] studied the three-factor

stochastic volatility model to price the European spread option. He proposed the fast Fourier

transform technique to price the European spread option under the three-factor stochastic volatil-

ity model. He also compared the performance for pricing the European spread option among the

fast Fourier transform technique, the Monte Carlo simulation and the partial differential equation

approach. It turns out that the fast Fourier transform technique is much faster, more effective.

We know that it is not optimal to exercise an American call option on a non-dividend-paying stock

before the expiration date, which means a European call option and an American call option, on

the same non-dividend paying stock with the same strike and maturity, have the same value. The

idea is that for a non-dividend paying stock the price of the European option is always bigger than

or equal to the intrinsic value of the American option. One can regard the European option price

as the future expected payoff, and the intrinsic value is the value that we receive by exercising the

option immediately. As long as the future expected payoff is bigger than or equal to the intrinsic

value, we will hold it until maturity. Thus, the price of American option is the same as the corre-

sponding European option. However, it could be optimal to exercise an American put option on a

non-dividend-paying stock before the expiration date. Let’s consider an extreme case from Hull in

[14]. Suppose the strike price of the American put option is $10 and the stock price is very close

to $0. By exercising it immediately, the investor can earn $10. If the investor keeps the option, it

may be less than $10 as the stock price rise, but it will never be more than $10. Furthermore, the

earlier to receive $10, the more interest the investor will receive.

Thus for pricing American options, we take into account the early exercise feature, and it involves

the question how to make decision about the early exercise. From [17], in terms of partial differen-
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tial equations, the American option problem is a partial differential equation with a free boundary

problem. From the theory of the partial differential equation, we know that there is no simple

closed formula for the partial differential equation with a free boundary condition. Hence, we fo-

cus on the numerical methods to solve the partial differential equation.

An alternative approach to price an American option is Monte Carlo simulation introduced by

Tsitsiklis-Roy in [18] and Longstaff-Schwartz in [19]. The idea is that one can choose a linear

combination of basis functions of current state price to approximate the expected future payoff and

to compare this value with the intrinsic value of the American option. Then, it determines early ex-

ercise time. In practice, we usually get the lower bound for American options by this method. The

convergence of Longstaff-Schwartz method is showed in [20]. Roger in [21] and Haugh-Kogan

in [22] proposed the dual method to compute the price of the American option. The idea of this

approach is to represent the price of the American option through a minimal-maximum problem,

where the minimal is taken over a class of martingales. The dual method usually leads to generate

an upper bound for American options.

For pricing the American spread option, we consider the European spread option with the early

exercise feature, which makes the valuations of the American spread options more challenging. In

this dissertation, we investigate the American spread option pricing problem. Several approaches

for the geometric Brownian motion model and the stochastic volatility model are developed, in-

cluding the partial differential equation method, the Monte Carlo simulation method and the dual

method. We also implement the above models and the numerical results are compared among dif-

ferent approaches.

The remainder of this dissertation is organized as follows. In chapter 2, we introduce the option

pricing theory: stochastic calculus, martingale pricing theory, Black-Scholes model, American

options as well as the models for the European spread option. In chapter 3, we present the two-

6



factor geometric Brownian motion model for pricing the American spread option and the different

approaches for the valuation of the American spread option. Then in chapter 4, we investigate the

three-factor stochastic volatility model for the American spread option by introducing the volatility

as a stochastic process, where the two underlying assets share the same volatility process. The

subject of chapter 5 is the numerical implementations and results for the American spread options

under the two-factor geometric Brownian motion model and the three-factor stochastic volatility

model. The numerical results also are compared under different approaches. We conclude with

directions for future research in the last chapter.
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CHAPTER 2. OPTION PRICING THEORY

2.1 STOCHASTIC CALCULUS

We recall basic definitions and results on stochastic calculus, which will be used for our analysis.

We refer readers to [23] for more details.

Definition 2.1. Let (Ω,F ,P) be a probability space. Let W (t) = W (t, ω) be a stochastic process

withW (0) = 0. W (t) is called a Brownian motion if for all 0 < t0 < t1 < · · · < tm the increments

W (t0) = W (t0)−W (0),W (t1)−W (t0),W (t2)−W (t1), · · · ,W (tm)−W (tm−1) (2.1)

are independent and each of these increments is normally distributed with

E[W (ti+1)−W (ti)] = 0, (2.2)

Var[W (ti+1)−W (ti)] = ti+1 − ti. (2.3)

Having the one dimensional Brownian motion, then one can define a d-dimensional Brownian

motion as follows.

Definition 2.2. A d-dimensional Brownian motion is a process

W (t) = (W1(t), · · · ,Wd(t)) (2.4)

with the following properties

(i) Each Wi(t)(i = 1, · · · , d) is a one dimensional Brownian motion.

(ii) If i 6= j, then the process Wi(t) and Wj(t) are independent.

Then we have a filtration Ft associated with the d-dimensional Brownian motion, such that the

following holds.

8



(iii) For 0 ≤ s < t, Fs ⊆ Ft .

(iv) For each t > 0, W (t) is Ft measurable, i.e., W (t) ∈ Ft .

(v) For 0 ≤ s < t, W (t)−W (s) is independent of Fs.

The following theorems tell us how to recognize a Brownian motion.

Theorem 2.3 (Levy, One Dimension). Let W (t), t ≥ 0, be a martingale relative to the filtration

Ft, t ≥ 0. Assume that W (0) = 0, W (t) has continuous paths, and [W,W ](t) = t for all t ≥ 0.

Then W (t) is a Brownian motion.

Theorem 2.4 (Levy, Two Dimension). Let W1(t) and W2(t) , t ≥ 0, be a martingales relative to

the filtration Ft, t ≥ 0. Assume that for i = 1, 2, we have Wi(0) = 0, Wi(t) has continuous paths,

and [Wi,Wi](t) = t for all t ≥ 0. In addition, [W1,W2] = 0 for all t ≥ 0. Then W1(t) and W2(t)

are independent Brownian motions.

LetW (t) be a m−dimensional Brownian motion and let Ft be the association filtration. We model

the n-dimensional underlying process St to be a Ft measurable Markov process in Rn through the

stochastic differential equations

dS(t) = µ(t, S(t))dt+ σ(t, S(t))dWt, (2.5)

where µ : R+ × Rn → Rn and σ : R+ × Rn → Rn×m are jointly Borel measurable functions.

In order to guarantee the existence and uniqueness of the solution of the stochastic differential

equation (2.5), we also assume that µ and σ satisfy the Lipschitz and growth conditions, see [24].

One can also write it into a vector-matrix form as follows.

d


S1(t)

...

Sn(t)

 =


µ1(t, S(t))

...

µn(t, S(t)))

 dt+


σ11(t, S(t)) · · · σ1m(t, S(t))

...
...

...

σn1(t, S(t)) · · · σnm(t, S(t))

 d

W1(t)

...

Wm(t)

 , (2.6)

where S(t) = (S1(t), S2(t), · · · , Sn(t))T .
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Theorem 2.5 (Multi-Dimensional Ito Formula). Let S(t), t > 0, be the solution of the stochastic

differential equations (2.6). Suppose that f(t, x1, · · · , xn) is a twice continuously differentiable

function. Then the stochastic process V = f(t, S1(t), · · · , Sn(t)) satisfies

dV =

[
ft(t, S1, · · · , Sn) +

1

2

n∑
i,j=1

aijfxixj(t, S1, · · · , Sn)

]
dt (2.7)

+
n∑
i=1

µi(t, S1, · · · , Sn)fxidSt(t), (2.8)

where 
a11 · · · a1n

...
...

...

an1 · · · ann

 =


σ11 · · · σ1m

...
...

...

σn1 · · · σnm



σ11 · · · σn1

...
...

...

σ1m · · · σnm

 . (2.9)

We will need the following theorem on Markov property, which is taken from [23].

Theorem 2.6. Let S(t), t > 0, be the solution of the stochastic differential equations (2.6) and

h(y) be a Borel-measurable function. Then, there exists a Borel-measurable function g(t, x), such

that

E [h(S(T ))|Ft] = g(t, S(t)). (2.10)

2.2 MARTINGALE PRICING THEORY

In this section, we review martingale pricing theory. Let (Ω,F ,Ft,P) be a probability space with

filtration Ft. We assume F = FT . Suppose now there are (d+1) traded assets in the market with

their processes S0(t), S1(t), · · · , Sd(t). We assume that the risk free interest rate is constant r and

S0(t) represents the money market account

dS0(t) = rS0(t)dt. (2.11)
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Before introducing the no-arbitrage, we first define the self-financing portfolio. For any given d+1

traded assets with values {S0(t), S1(t), · · · , Sd(t)} at time t, the value of a portfolio at time t is

X(t) =
n∑
i=0

∆i(t)Si(t), (2.12)

where ∆(t) = {∆0(t),∆1(t), · · · ,∆d(t)} represents the allocation into the corresponding assets

at time t. {∆1(t),∆2(t), · · · ,∆n(t)} is also called an investment strategy (or trading strategy). A

gain process G(t) is defined by

G(t) =
d∑
i=0

∫ t

0

∆i(u)dSi(u). (2.13)

We assume ∆ is d+ 1 dimensional predictable process and the integral in (2.13) make sense.

Definition 2.7. A portfolio X(t) is called self-financing if

X(t) = X(0) +G(t). (2.14)

Then, a self-financing portfolio X(t) means that there is no infusion or withdrawal of money. The

purchase of a new asset is financed by the sale of an old one, which means the change in the value

of the portfolio is only due to changes in the value of the assets. In case of two assets, the value of

portfolio is given by

X(t) = ∆1(t)S1(t) + ∆2(t)S2(t), (2.15)

and a self-financing portfolio satisfies

dX(t) = ∆1(t)dS1(t) + ∆2(t)dS2(t). (2.16)

This is described by the stochastic integral equation

X(t) = X(0) +

∫ t

0

∆1(u)dS1(u) +

∫ t

0

∆2(u)dS2(u). (2.17)
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Following [25], we say that there exists an arbitrage opportunity at [0, T ] for the self-financing

portfolio Xt if there exists a t ∈ (0, T ], such that

X(0) = 0, X(t) ≥ 0, and P{X(t) > 0} > 0. (2.18)

And if there is no arbitrage opportunity at [0, T ], we say it is an arbitrage free market. The following

theorems, which are taken from [25], are widely used in no arbitrage pricing models.

Theorem 2.8. Suppose we have an arbitrage free market at the time interval [0, T ]. For any two

portfolios X1 and X2, if

X1(T ) ≥ X2(T ), (2.19)

and

P{X1(T ) > X2(T )} > 0, (2.20)

then, for all t ∈ [0, T ),

X1(t) > X2(t). (2.21)

The proof of this theorem follows from the definition of no-arbitrage.

Theorem 2.9. Suppose that we have an arbitrage free market at the time interval [0, T ]. For any

two portfolios X1 and X2, if

X1(T ) = X2(T ), (2.22)

then, for all t ∈ [0, T ],

X1(t) = X2(t). (2.23)

Definition 2.10. A numeraire is a strictly positive price process N(t) > 0, for all t ∈ [0, T ].

One can represent the price of all other traded assets by SNi (t) = Si(t)
N(t)

(i = 1, · · · , d). Usually, we

take the money market account as our numeraire, i.e. Nt = S0(t), but one can also choose other

process as our numeraire, which could be a useful tool to simplify derivative pricing, see [26].
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Theorem 2.11 (Numeraire Invariance Theorem). Self-financing portfolio is still a self-financing

portfolio after a numeraire change.

Because of above theorems, one can define the discounted gain process GS0(t) by

GS0(t) = XS0(t)−XS0(0). (2.24)

Definition 2.12. A martingale measure (risk neutral measure) Q is defined as the P equivalent

measure on (Ω,F) under the numeraire S0-based prices, such that SS0
i are martingales under the

probability measure Q for all i = 1, · · · , d.

Definition 2.13. A self financial trading strategy is said to be Q-admissible if the discounted gain

process GS0(t) is a Q-martingale.

Definition 2.14. A derivative V is said to be attainable if there exists at least an admissible trading

strategy ∆ such that at time t = T , X(T ) = V (T ). In this case, we say V is replicated by X .

Theorem 2.15 (Risk Neutral Formula). Assume that there exists an equivalent martingale measure

Q. Let V be an attainable derivative replicated by a Q-admissible self-financing trading strategy

∆. Then for each time t, 0 ≤ t ≤ T , the no-arbitrage price of V is given by

V (t) = S0(t)EQ
[
V (T )

S0(T )

∣∣∣∣Ft] . (2.25)

The following theorem is taken from Shreve [23], which tells us how to find the equivalent proba-

bility measures.

Theorem 2.16. (Girsanov, Multiple Dimensions). Let T be a fixed positive time, let Θ(t) =

(Θ1(t), · · · , Θd(t)) be a d-dimensional adapted process. Define

Z(t) = exp

{
−
∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

‖ Θ(u) ‖2 du
}
, (2.26)

W̃ (t) = W (t) +

∫ t

0

Θ(u)du. (2.27)

13



Assume that

E
∫ T

0

||Θ(u)||2Z2(u)du <∞. (2.28)

Set Z = Z(T ), then EZ = 1, and under the probability measure Q given by

Q(A) =

∫
A

Z(ω)dP(ω) (2.29)

for all A ∈ F , the process W̃ (t) is a d-dimensional Brownian motion.

The Ito integral in (2.26) is

∫ t

0

Θ(u) · dW (u) =

∫ t

0

d∑
j=1

Θj(u)dWj(u) =
d∑
j=1

∫ t

0

Θj(u)dWj(u), (2.30)

||Θ(u)|| denotes the Euclidean norm

||Θ(u)|| =

(
d∑
j=1

Θ2
j (u)

) 1
2

, (2.31)

and (2.27) is shorthand notation for W̃ (t) = (W̃1(t), · · · , W̃2(t)) with

W̃j(t) = Wj(t) +

∫ t

0

Θj(u)du, j = 1, · · · , d. (2.32)

2.3 BLACK-SCHOLES MODEL

In this section, we review how the Black-Scholes PDE is derived. The Black-Scholes model is

based on the following assumptions, which are taken from [14] and [17].

(i) There is no arbitrage opportunity, which means that all risk free portfolio earn the same

return.

(ii) One can borrow and lend cash at a known constant risk-free interest rate r.
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(iii) One can buy and sell any amount, even fractional, units of the underlying asset.

(iv) The transactions do not incur any fees or costs. Although transaction cost is a real issue, they

tend not to be modeled explicitly when developing pricing models, which is pointed out by

Joshi [27]. The reason is that transaction cost will not create arbitrage, in any way, if a price

can not be a arbitrage price in a no transaction cost model, it will not be arbitrage price in a

model with transaction cost.

(v) The underlying asset does not pay a dividend. Actually, one can drop this assumption if the

dividends are known beforehand.

(vi) The price of the underlying asset follows a geometric Brownian motion with constant drift

and volatility. Basically, the underlying asset is the following Stochastic Differential Equa-

tion (SDE)

dSt = µStdt+ σStdWt. (2.33)

Here St is the asset value, µ is the expected return, σ is the volatility and Wt is a standard

Brownian motion.

Suppose we have an option whose value is V (S, t) at time t. And it is not necessary to specify

whether V is a call or a put. And indeed, V could be the value of a whole portfolio of different

options. By using the Ito’s formula, we get

dV = σS
∂V

∂S
dWt +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt. (2.34)

We begin by constructing a portfolio X(t), in which we are long one option, V (S(t), t) and short

∆(t) unit of the underlying asset S(t), where ∆(t) is unknown. Thus the value of our portfolio is

X(t) = V (S(t), t)−∆(t)S(t). (2.35)
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Assuming that the portfolio is self-financing, by (2.16), we have

dX(t) = dV (S(t), t)−∆(t)dS(t). (2.36)

Plugging (2.33) and (2.34) into (2.36), we get

dX(t) = σS(
∂V

∂S
−∆)dWt + (µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µ∆S)dt. (2.37)

Since the portfolio is riskless, we have

∂V

∂S
−∆ = 0. (2.38)

Because the portfolio is riskless, the portfolio will earn the risk free interest. Thus, we have

r(V − ∂V

∂S
S)dt = r(V −∆S)dt (2.39)

= rX(t)dt (2.40)

= dX(t) (2.41)

= (µS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µ∆S)dt (2.42)

= (
1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
)dt, (2.43)

which is the Black-Scholes PDE for non-dividend paying asset. In finance, ∂V
∂S

represents the option

delta, ∂V 2

∂S2 represents option gramma and ∂V
∂t

represents the option theta. Each of them measures

the sensitivity of the value of the option to a small change in the given underlying parameter. We

also call them risk measures or hedge parameters. And in mathematics, the terms with ∂V
∂S

is called

convection, and the term with ∂V 2

∂S2 is called diffusion and the term rV is called reaction term.

It seems that European call and put options are totally different. It turns out that they are strongly

correlated by the so called put-call parity. Suppose we long one underlying asset, long one put
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option and short one call option, where the call and put option have the same maturity T and same

strike price K. We use X to denote this portfolio. Thus we get our portfolio

X = S + P − C. (2.44)

Then the value of the portfolio X at maturity is

X(T ) = S + max(K − S, 0)−max(S −K, 0) ≡ K. (2.45)

By the Theorem 2.9, we have

X(t) = Kt = Ke−r(T−t). (2.46)

Hence, we get

X(t) = St + P (St, t)− C(St, t) = Ke−r(T−t). (2.47)

From the above discussion, we see if we know the price for a call option, then one can compute

the price of the put option as

P (St, t) = Ke−r(T−t) − St + C(St, t). (2.48)

Having derived the Black-Scholes PDE for the value of an option, we consider the terminal and

boundary conditions. Otherwise, the partial differential equation has many solutions. First, we

restrict our attention to the European call option with the valueC(S, t), strike priceK, and maturity

T . The terminal condition for the European call option is the price of the call option at time t = T .

Using the no arbitrage argument, we have

C(S, T ) = (S −K)+, 0 < S <∞. (2.49)
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From equation (2.33), if we start from S = 0, then the value for the underlying asset will be zero

in future, which means we will not exercise the option, and will get 0 payoff at maturity. Using the

boundary condition at S = 0, we have 0 value for the option before maturity. Hence we get

C(0, t) = 0, 0 ≤ t < T . (2.50)

For the boundary condition at S =∞, we use the put-call parity. As S →∞, the value of the put

option will be zero. Hence, we get the value of the call option by the put-call parity

C(S, t) ≈ S −Ke−r(T−t), S →∞ and 0 ≤ t < T. (2.51)

Summarizing the above discussion, for a call option we obtain the Black-Scholes PDE

∂C

∂t
+

1

2
σ2S2∂C

2

∂S2
+ rS

∂C

∂S
− rC = 0, 0 ≤ t < T , (2.52)

with the terminal and boundary conditions

C(S, t) ≈ S −Ke−r(T−t), S →∞ and 0 ≤ t < T, (2.53)

C(0, t) = 0, 0 ≤ t < T , (2.54)

C(S, T ) = max(S −K, 0), 0 < S <∞. (2.55)

Now, we consider that the underlying asset pays out a dividend and the dividend is paid continu-

ously over the life of the option. Suppose that in time dt the underlying asset pays out a dividend

qSdt, where q is a constant and represents the dividend yield. Then, by the no arbitrage argument,

we get the Black-Scholes PDE with dividends

∂C

∂t
+

1

2
σ2S2∂C

2

∂S2
+ (r − q)S∂C

∂S
− rC = 0, 0 ≤ t < T , (2.56)
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with boundary and terminal conditions

C(S, t) ≈ Se−q(T−t) −Ke−r(T−t), S →∞ and 0 ≤ t < T, (2.57)

C(0, t) = 0, 0 ≤ t < T , (2.58)

C(S, T ) = max(S −K, 0), 0 < S <∞. (2.59)

2.4 AMERICAN OPTION

In this section, we review the American option. European option can be exercised only on the

expiration date, while American option can be exercised before and on maturity. Hence American

option is more flexible and attractive for investors. Also, the owner of American options has more

exercise opportunities than the owner of the corresponding European options. So American op-

tions are more expensive than corresponding European options. For American options, it is known

that it is not optimal to exercise a call option on a non-dividend-paying stock before the expiration

date, while it can be optimal to exercise a put option on a non-dividend-paying stock before the

expiration date. Hence, we focus on the American put option.

We note that for a European put option, since it doesn’t allow early exercise and in fact, when

S → 0, we have

P (S, t) ≈ Ke−r(T−t) − S (2.60)

< K − S, (2.61)

which means that the intrinsic value could be bigger than the expected future payoff. But this

couldn’t happen for an American put option. At anytime, the value of American put option is

bigger than or equal to its intrinsic value max(K − S, 0). Hence, the owner needs to determine

when to exercise the option, which is optimal from the holder’s point of view. Thus, to determine

the value of the American option is more complicated. At each time we need to determine not
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only the option value but also whether or not the option should be exercised. In terms of partial

differential equations, it is a free boundary problem. The free boundary divides the region into

two regions: in one region one should exercise the option and in the other one should hold the

option. To be more precise, let S(t) be the free boundary, for 0 ≤ S < b(t), where early exercise

is optimal, we have

∂P

∂t
+

1

2
σ2S2∂P

2

∂S2
+ rS

∂P

∂S
− rP = −rK < 0, 0 ≤ t < T , (2.62)

P (S, t) = K − S, 0 < S < b(t). (2.63)

In the region b(t) < S <∞ where early exercise is not optimal, and we have

∂P

∂t
+

1

2
σ2S2∂P

2

∂S2
+ rS

∂P

∂S
− rP = 0, b(t) < S <∞, (2.64)

P (S, t) > K − S, b(t) < S <∞. (2.65)

On the boundary, we have P (b, t) = K−b, and the slope for the intrinsic value function is−1. We

also have ∂P
∂S

(b(t), t) = −1. Therefore, to price an American put option, we solve the following

free boundary problem

∂P

∂t
+

1

2
σ2S2∂P

2

∂S2
+ rS

∂P

∂S
− rP = 0, b(t) < S <∞, (2.66)

P (S, t) = K − S, 0 < S < b(t), (2.67)

P (b(t), t) = K − b(t), (2.68)

∂P

∂S
(b(t), t) = −1 (2.69)

P (S, t) = 0, as S →∞ (2.70)

P (0, t) = Ke−r(T−t), (2.71)

P (S, T ) = max{K − S, 0}. (2.72)

It is clear from the above discussion that the mathematical model of the American option is much
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more complicated than that of the European option. It turns out that there is no closed formula to

American put options as a free boundary problem.

2.5 SPREAD OPTION MODELS

In this section, we review models for the European spread option. Let S1 and S2 be the prices of

the two underlying assets. We consider the models for pricing a call spread option with strike price

K and maturity T . The payoff function is max(S1(T )− S2(T )−K, 0).

2.5.1 One-Factor Model. This is the simplest model. In this model, S = S1 − S2 satisfies the

geometric Brownian motion

dS = µSdt+ σSdWt, (2.73)

where µ is drift term, σ is the volatility and W is a standard Brownian motion. In this case, the

price of an European spread option is the same as the price of a options on single asset. The

drawback of this model is that the spread is positive forever, which is not supported by empirical

evidence. Furthermore, it ignores the co-movement structure between the two underlying market

variables as pointed out in [4], which could lead to mis-price. An alternative approach in [5] and

[6] overcoming limitation of one-factor geometric Brownian motion is to model the two underlying

market variables S1 and S2 as the arithmetic Brownian motions, together with the constant corre-

lation between the two market variables, then the resulting spread in this model is an arithmetic

Brownian motion again and a closed formula is available. This approach has its drawback as it

permits the negative values for the two underlying assets.

2.5.2 Two-Factor Geometric Brownian Motion Model. Assume that each underlying asset

satisfies a geometric Brownian motion in the spirit of Black-Scholes framework, which overcomes

the drawback of negative value in the asset price of the arithmetic Brownian motion. In addition,

in this model the spread could be negative, which overcomes the limitation of positive spreads
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posed by the one factor geometric Brownian motion model. Because of these, this model is widely

studied in [7], [8], [9], [10] and others. Here we assume that the two underlying assets S1 and S2 are

geometric Brownian motions with expected return µ1 and µ2, and we also assume the underlying

asset pays a dividend. The dividend is paid continuously over the life of the option. In time dt the

underlying asset pays out a dividend qiSidt(i = 1, 2), where qi(i = 1, 2) is a constant and stands

for the dividend yield. Then the system for underlying assets is

dS1(t) = (µ1 − q1)S1(t)dt+ σ1S1(t)dW1(t), (2.74)

dS2(t) = (µ2 − q2)S2(t)dt+ σ2S2(t)dW2(t), (2.75)

dW1(t)dW2(t) = ρdt, (2.76)

where σ1 and σ2 are volatilities of the assets S1 and S2, respectively. And W1 and W2 are two

standard Brownian motions with the correlation ρ under the probability measure P. In this case,

then the resulting spread is distributed as the difference of the two log-normal random variables. It

doesn’t have a simple distribution with closed formula, which prevents us from deriving a closed

formula solution for the price of the European spread option. However, for a special case of Euro-

pean spread option, say, K = 0, which is called exchange option, there is a closed formula which

came from Margrabe [11], called Margrabe formula. The idea of Margrabe formula is that because

the payoff function for exchange option is max{S1(T )−S2(T ), 0}, by taking out the S2, the payoff

function becomes S2(T ) max{S1(T )
S2(T )

− 1, 0}. Since the quotient of two log-normal random vari-

ables are still log-normal, one can derive a similar closed formula solution for exchange option.

When K 6= 0, generally, there is no simple closed formula solution, but there are several ways to

approximate it. The first one is the Kirk approximation formula introduced in [12]. The idea of the

Kirk approximation is that whenK � S2, we may regard S2+K as a geometric Brownian motion.

Then, one can get the Kirk formula by applying the Margrabe formula. Another Approach is the

pseudo analytic formula due to [3], by using the conditional distribution technique which reduces

the two dimensional integrals for computing the expectation under the risk neutral measure to one

dimensional integral, and the pseudo analytic formula involves one dimensional integration, which
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one can compute by the Gauss-Hermite quadrature method.

2.5.3 Three-Factor Stochastic Volatility Model. The three-factor stochastic volatility model

was proposed by Hong [13] to model the European spread option. Let S1 and S2 be two underlying

assets with expected return µ1 and µ2, respectively. Assume the underlying assets pay a dividend.

The dividend is paid continuously over the life of the option. In time dt, the underlying asset pays

out a dividend qiSidt(i = 1, 2), where qi is a constant and stands for the dividend yield. Then the

system for underlying assets is

dS1(t) = (µ1 − q1)S1(t)dt+ σ1
√
vS1(t)dW1(t), (2.77)

dS2(t) = (µ2 − q2)S2(t)dt+ σ2
√
vS2(t)dW2(t), (2.78)

dv = A(α− v)dt+ σv
√
vdWv, (2.79)

where W1, W2 and Wv are three correlated standard Brownian motions with the following correla-

tions under the probability measure P

dW1dW2 = ρdt, (2.80)

dW1dWv = ρ1dt, (2.81)

dW2dWv = ρ2dt. (2.82)

In this model, the variance v is a stochastic process, α is the long term mean of the variance, A is

the mean reversion rate and σv is the volatility of volatility.
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CHAPTER 3. TWO-FACTOR GEOMETRIC BROWNIAN MOTION MODEL

In this chapter, we consider the two-factor geometric Brownian model for the American spread

option. First, we derive a model under the risk neutral measure. Then, we study three approaches

for pricing American spread option, the partial differential equation, the Monte Carlo simulation

and the dual method.

Let S1 and S2 be the prices of asset 1 and asset 2 with expected return µ1 and µ2. We assume that

the underlying assets pay a dividend. The dividend is paid continuously over the life of the option.

In time dt the underlying asset pays out a dividend qiSidt(i = 1, 2), where qi is a constant and

stands for the dividend yield. The system for the underlying assets is

dS1(t) = (µ1 − q1)S1(t)dt+ σ1S1(t)dW1(t), (3.1)

dS2(t) = (µ2 − q2)S2(t)dt+ σ2S2(t)dW2(t), (3.2)

dW1(t)dW2(t) = ρdt, (3.3)

where σ1 and σ2 are volatilities of the assets S1 and S2, respectively. W1 and W2 are two standard

Brownian motions with the correlation ρ under the probability measure P.

Generally, it is much easier to deal with independent rather than correlated Brownian motions. The

following lemma allows us to transfer correlated Brownian motions into independent ones.

Lemma 3.1. We decompose correlated Brownian motions W1 and W2 into two independent ones

as follows

dW1(t)

dW2(t)

 =

1 0

ρ
√

1− ρ2


dB1(t)

dB2(t)

 , (3.4)
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where B1(t) and B2(t) are two independent Brownian motions under the probability measure P.

Proof. From (3.4) , we have

dB1 = dW1, (3.5)

dB2 = − ρ√
1− ρ2

dW1 +
1√

1− ρ2
dW2. (3.6)

Then by the properties of W1 and W2, we have

dB1dB1 = dt, (3.7)

dB1dB2 = 0, (3.8)

dB2dB2 = dt. (3.9)

For i = 1, 2, we have Bi(0) = 0. Also, Bi(t) is a martingale and has continuous paths. Then by

Theorem 2.4, we have B1(t) and B2(t) are two independent Brownian motions.

Next, we derive the corresponding system under the risk neutral measure as follows. By Lemma

(3.1), our system (3.1)-(3.3) becomes

dS1(t) = (u1 − q1)S1(t)dt+ σ1S1(t)dB1(t), (3.10)

dS2(t) = (u2 − q2)S2(t)dt+ ρσ2S2(t)dB1(t) +
√

1− ρ2σ2S2(t)dB2(t). (3.11)

We define the value processes

Ŝ1 = eq1tS1(t), (3.12)

Ŝ2 = eq2tS2(t). (3.13)
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Then we have

dŜ1 = u1Ŝ1(t)dt+ σ1Ŝ1(t)dB1(t), (3.14)

dŜ2 = u2Ŝ2(t)dt+ ρσ2Ŝ2(t)dB1(t) +
√

1− ρ2σ2Ŝ2(t)dB2(t). (3.15)

We introduce the discounted value processes ŜS0
1 (t) and ŜS0

2 (t) given by

dŜS0
1 (t) = (u1 − r)ŜS0

1 (t)dt+ σ1Ŝ
S0
1 (t)dB1(t), (3.16)

dŜS0
2 (t) = (u2 − r)ŜS0

2 (t)dt+ ρσ2Ŝ
S0
2 (t)dB1(t) +

√
1− ρ2σ2ŜS0

2 (t)dB2(t). (3.17)

Now we want to find the equivalent martingale measure Q under which the discounted value pro-

cesses are Q martingales. To achieve this, we use the Girsanov theorem. Define θ = (θ1, θ2)
T

by

Aθ = u− r,

where

A =

 σ1 0

ρσ2
√

1− ρ2σ2

 , u− r =

u1 − r
u2 − r

 . (3.18)

Because A is invertible, Then Aθ = u− r has a unique solution θ. Now we define

Z(t) = exp

{
−
∫ t

0

θ · dB(u)− 1

2

∫ t

0

‖ θ ‖2 du
}
, (3.19)

and

w(t) = B(t) +

∫ t

0

θdu, (3.20)

where B(t) = (B1(t), B2(t))
T and w(t) = (w1(t), w2(t))

T . By Girsanov Theorem 2.16, setting
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Z = Z(T ), then EZ = 1. And the probability measure Q is given by

Q(A) =

∫
A

Z(w)dP(w) (3.21)

for allA ∈ F . Note that the process w(t) = (w1(t), w2(t)) is a two-dimensional Brownian motion.

From (3.20), we have

w1(t) = B1(t) + θ1t, (3.22)

w2(t) = B2(t) + θ2t. (3.23)

Plugging (3.22)-(3.23) into system (3.16)-(3.17) , we have

dŜS0
1 (t) = σ1Ŝ

S0
1 (t)dw1(t), (3.24)

dŜS0
2 (t) = ρσ2Ŝ

S0
2 (t)dw1(t) +

√
1− ρ2σ2ŜS0

2 (t)dw2(t), (3.25)

which means that the underlying processes are martingales under probability measure Q. Then by

the definition of Ŝ1(t), Ŝ2(t), we obtain

dŜ1(t) = rŜ1dt+ σ1Ŝ1dw1(t), (3.26)

dŜ2(t) = rŜ2dt+ ρσ2Ŝ2dw1(t) +
√

1− ρ2σ2Ŝ2dw2(t). (3.27)

By using Ŝi(t) = eqitSi(t)(i = 1, 2), we have the new system under risk-neutral measure Q as

follows

dS1 = (r − q1)S1dt+ σ1S1dw1(t), (3.28)

dS2 = (r − q2)S2dt+ ρσ2S2dw1(t) +
√

1− ρ2σ2S2dw2(t). (3.29)
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3.1 PARTIAL DIFFERENTIAL EQUATIONS APPROACH

In this section, we derive the partial differential equation for the price of American spread option.

We use the standard approach based on Ito formula. Recall that we have the following system

under risk neutral probability measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1S1(t)dw1(t), (3.30)

dS2(t) = (r − q2)S2(t)dt+ σ2S2(t)
(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (3.31)

wherew1 andw2 are two standard independent Brownian motions under the risk neutral probability

measure Q.

The following theorem gives a partial differential equation with a free boundary condition for

American spread option. Let v(x1, x2, t) be the price of the American spread option with x1 = S1

and x2 = S2 at time t.

Theorem 3.2. v(x1, x2, t) is the solution of the partial differential equation

0 = vt + (r − q1)x1vx1 + (r − q2)x2vx2

+
1

2
σ1

2x1
2vx1x1 +

1

2
σ2

2x2
2vx2x2 + ρσ1σ2x1x2vx1x2 − rv, (3.32)

with the boundary and terminal conditions

v(0, x2, t) = 0, (3.33)

v(b(x2, t), x2, t) = b(x2, t)− x2 −K, (3.34)

vx1(b(x2, t), x2, t) = 1, (3.35)

vx2(b(x2, t), x2, t) = −1, (3.36)

v(x1, x2, T ) = max {x1 − x2 −K, 0} , (3.37)
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where x1 = b(x2, t) is the free boundary.

Proof. The payoff function for the spread call option without early exercise is

V (T ) = max(S1(T )− S2(T )−K, 0), (3.38)

where V (t) represents the option price at time twithout early exercise. By applying the risk neutral

formula, we get the price at time t is

V (t) = e−r(T−t)EQ[max(S1(T )− S2(T )−K, 0)|Ft]. (3.39)

Because the joint process (S1(t), S2(t)) is a Markov process, by Theorem 2.6, V (t) can be written

as a function of the time variable and the values of these process at time t, i.e., V = v(x1, x2, t).

Then, we have

v(x1, x2, t) = e−r(T−t)EQ[max(S1(T )− S2(T )−K, 0)|Ft]. (3.40)

We apply Ito’s formula to the function e−rtv(x1, x2, t). By Ito’s formula, we have

d(e−rtv(S1(t), S2(t), t)) = e−rt[−rvdt+ vtdt+ vx1dS1 + vx2dS2 +
1

2
vx1x1dS1dS1

+
1

2
vx2x2dS2dS2 + vx1x2dS1dS2]

Then, from system (5.1)-(5.2), we plug dS1 and dS2 into the above equation. We obtain

d(e−rtv(S1(t), S2(t), t)) = e−rt[−rvdt+ vtdt+ vx1 [(r − q1)S1dt+ σ1S1dw1]

+ vx2

[
(r − q2)S2dt+ σ2S2(ρdw1 +

√
1− ρ2dw2)

]
+

1

2
σ1

2S1
2vx1x1dt+

1

2
σ1

2S1
2vx2x2dt+ ρσ1σ2S1S2vx1x2dt]
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Next, we put deterministic and stochastic terms together, respectively. We have

d(e−rtv(S1(t), S2(t), t)) = e−rt[−rv + vt + (r − q1)S1vx1 + (r − q2)S2vx2

+
1

2
σ1

2S1
2vx1x1 +

1

2
σ2

2S2
2vx2x2 + ρσ1σ2S1S2vx1x2 ]dt

+ e−rt
[
σ1S1vx1dw1 + vx2σ2S2(ρdw1 +

√
1− ρ2dw2)

]
. (3.41)

Because the discounted option price is a martingale under the risk neutral probability measure Q,

the dt term in the above equation is zero. Thus, we obtain the partial differential equation

0 = vt + (r − q1)x1vx1 + (r − q2)x2vx2

+
1

2
σ1

2x1
2vx1x1 +

1

2
σ2

2x2
2vx2x2 + ρσ1σ2x1x2vx1x2 − rv. (3.42)

There are two regions for the American spread option: holding region Σ1 and exercise region Σ2,

which are separated by the free boundary S1 = b(S2, t). In holding region Σ1, we have

v(S1, S2, t) > (S1 − S2 −K)+, (3.43)

and v satisfies (3.42). On the boundary, we have

v(0, x2, t) = 0, (3.44)

v(b(x2, t), x2, t) = b(x2, t)− x2 −K, (3.45)

vx1(b(x2, t), x2, t) = 1, (3.46)

vx2(b(x2, t), x2, t) = −1, (3.47)

v(x1, x2, T ) = max {x1 − x2 −K, 0} , (3.48)

where x1 = b(x2, t) is the free boundary for the American spread call option. Condition (3.44)

is that when the value S1 is 0, then the value of option is also 0. Condition (3.45) is the value

matching condition. Conditions (3.46) and (3.47) are smooth pasting conditions. They mean that
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the derivatives of option price are continuous function on the boundary. Condition (3.48) is the

terminal condition.

3.2 MONTE CARLO SIMULATION APPROACH

In this section, we use the Monte Carlo simulation method to compute American spread option

price. We have the following system under risk neutral probability measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1S1(t)dw1(t), (3.49)

dS2(t) = (r − q2)S2(t)dt+ σ2S2(t)
(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (3.50)

wherew1 andw2 are two standard independent Brownian motions under the risk neutral probability

measure Q. The payoff function for the American spread option is

V (T ) = max(S1(T )− S2(T )−K, 0). (3.51)

Let Ṽ (s1, s2, t) be the value of an American spread call option and h̃(s1, s2, t) be the intrinsic

value at time t with S1(t) = s1 and S2(t) = s2. The value of the American spread call option is

the optimal expected future payoff

Ṽ (s1, s2, t) = sup
τ∈Tt

EQ

[
e−rτ h̃(s1, s2, τ)

]
. (3.52)

In order to do the Monte Carlo simulation for the American spread option, we consider exercise

times: 0 = t0 < t1 < t2 < s < tm = T . We use Ṽi(s1, s2) to represent Ṽ (s1, s2, ti) and h̃i(s1, s2)
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to represent h̃(s1, s2, ti). Then for the American spread option, we have

Ṽm(s1, s2) = h̃m(s1, s2), (3.53)

Ṽi−1(s1, s2) = max
{
h̃i−1(s1, s2), c̃i−1(s1, s2)

}
, i = 1, · · · ,m, (3.54)

where Di−1,i = e−r(ti−ti−1) and

c̃m(s1, s2) = 0, (3.55)

c̃i−1(s1, s2) = EQ

[
Di−1,iṼi(S1(ti), S2(ti))|S1(ti−1) = s1, S2(ti−1) = s2

]
, i = 1, · · · ,m. (3.56)

To compute the American spread call option price, first, we get the value at time T from equation

(3.53). Then, we use the equation (3.54) to compare the intrinsic value h̃m−1 and the expected

future payoff c̃m−1. After that, we have the option value at time tm−1. Then we use equation (3.54)

again, to get the option value at time tm−2. Repeating this, one can get the option value at time 0.

It is more convenient that we discount all of them to the time at 0. We define the hi(s1, s2) and

Vi(s1, s2) by

hi(s1, s2) = D0,ih̃i(s1, s2), (3.57)

Vi(s1, s2) = D0,iṼi(s1, s2), i = 1, · · · ,m. (3.58)

Plugging hi(s1, s2) and Vi(s1, s2) into system (3.53)-(3.54), we have

Vm(s1, s2) = hm(s1, s2), (3.59)

Vi−1(s1, s2) = max {hi−1(s1, s2), ci−1( s1, s2)}, i = 1, · · · ,m, (3.60)
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where the expected future payoff values ci are given

cm(s1, s2) = 0, (3.61)

ci−1(s1, s2) = EQ[Vi(S1(ti), S2(ti))|S1(ti−1) = s1, S2(ti−1) = s2], i = 1, · · · ,m. (3.62)

The equation (3.61) means that the discount expected future payoff is 0. And equation (3.62) is the

discount expected future payoff at time ti.

For pricing American spread option, because one can exercise the option early, we always compare

the discount expected future payoff with discount intrinsic value. If the discount intrinsic value is

bigger than or equal to the discount expected future payoff, we exercise it immediately. Then, the

stopping rule is

τ = min
τ∈{t1,t2,··· ,tm}

{ti : hi(s1, s2) ≥ ci(s1, s2)}. (3.63)

Next, we approximate expected future payoff by

ci(s1, s2) = ψ(s1, s2)βi
T , i = 0, 1, · · · ,m− 1, (3.64)

for some basis functions ψj and constants βij , where

βi = (βi1, βi2, · · · , βiJ), (3.65)

ψ(s1, s2) = (ψ1(s1, s2), ψ2(s1, s2), · · · , ψJ(s1, s2)). (3.66)

Then, by the above approximation, we obtain

βi = B−1ψ BψV , (3.67)
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where

Bψ = (EQ[ψ(S1(ti), S2(ti))ψ(S1(ti), S2(ti))
T ]), (3.68)

BψV = EQ[ψ(S1(ti), S2(ti))Vi+1(S1(ti+1), S2(ti+1))]. (3.69)

In practice, the values of βi is approximated by Monte Carlo simulation. Given N independent

paths of the prices of the underlying assets

{S(n)
1 (t1), S

(n)
1 (t2), · · · , S(n)

1 (tm)}, n = 1, · · · , N, (3.70)

{S(n)
2 (t1), S

(n)
2 (t2), · · · , S(n)

2 (tm)}, n = 1, · · · , N, (3.71)

we have

β̃i = B̃−1ψ B̃ψV , (3.72)

where

B̃ψ =
1

N

N∑
n=1

ψ
(
S
(n)
1 (ti), S

(n)
2 (ti)

) [
ψ(S

(n)
1 (ti), S

(n)
2 (ti))

]T
, (3.73)

B̃ψV =
1

N

N∑
n=1

ψ
(
S
(n)
1 (ti), S

(n)
2 (ti)

)
Vi+1

(
S
(n)
1 (ti+1), S

(n)
2 (ti+1)

)
. (3.74)

Also, we have the estimated value Ṽi for Vi

Ṽi

(
S
(n)
1 (ti), S

(n)
2 (ti))

)
= max

{
hi

(
S
(n)
1 (ti), S

(n)
2 (ti)

)
, ci

(
S
(n)
1 (ti), S

(n)
2 (ti)

)}
, (3.75)

where the expected future payoff ci
(
S
(n)
1 (ti), S

(n)
2 (ti)

)
is given by

c̃i

(
S
(n)
1 (ti), S

(n)
2 (ti)

)
= ψ

(
S
(n)
1 (ti), S

(n)
2 (ti)

)
β̃i

T
. (3.76)

Therefore, the algorithm of Monte Carlo simulation is
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(i) Generate N different paths of the asset price processes

{Sn1 (t1), S
n
1 (t2) · · · , Sn1 (tm)} , n = 1, 2, · · ·N,

{Sn2 (t1), S
n
2 (t2) · · · , Sn2 (tm)} , n = 1, 2, · · ·N.

(ii) At maturity, set ṽm = hm.

(iii) For i = m− 1, · · · , 2, 1

(a) Compute β̃i = β̃−1ψ β̃ψV , where β̃−1ψ and β̃ψV are given in (3.73) and (3.74).

(b) Compute c̃i = ψβ̃i
T
, n = 1, · · · , N .

(c) Set ṽi = max {hi, c̃i} , n = 1, · · · , N .

(iv) Set ṽ(n)0 = hi, where ti = min{ti ∈ {t1, · · · , tm} : hi ≥ c̃i}.

(v) Take the mean of all ṽ(n)0 to get the option value ṽ0 = 1
N

∑N
n=1 ṽ

(n)
0 .

Following the idea of Longstaff-Schwartz [19] for American options, in step (iii)(c), one can use

the approximation

ṽi =


hi, if hi ≥ c̃i,

ṽi+1, if hi < c̃i.

(3.77)

The idea for this approximate is that we use the approximated expected future values to determine

the exercise times. Then, we have a new Monte Carlo simulation algorithm for the American spread

option. We call this algorithm the improved Monte Carlo simulation algorithm. The algorithm is

(i) Generate N different paths of the asset price process

{Sn1 (t1), S
n
1 (t2) · · · , Sn1 (tm)} , n = 1, 2, · · ·N,

{Sn2 (t1), S
n
2 (t2) · · · , Sn2 (tm)} , n = 1, 2, · · ·N.

35



(ii) At maturity, set ṽm = hm.

(iii) For i = m− 1, · · · , 2, 1

(a) Compute β̃i = β̃−1ψ β̃ψV , where β̃−1ψ and β̃ψV are given in (3.73) and (3.74).

(b) Compute c̃i = ψβ̃i
T
, n = 1, · · · , N .

(c) Compute ṽi

• If hi ≥ c̃i, ṽi = hi.

• If hi < c̃i, ṽi = ṽi+1.

(iv) Set ṽ(n)0 = hi, where ti = min{ti ∈ {t1, · · · , tm} : hi ≥ c̃i}.

(v) Take the mean of all ṽ(n)0 to get the option value ṽ0 = 1
N

∑N
n=1 ṽ

(n)
0 .

3.3 DUAL METHOD APPROACH

In this section, we use the dual method to price the American spread option. Recall that we have

the following system under risk neutral probability measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1S1(t)dw1(t), (3.78)

dS2(t) = (r − q2)S2(t)dt+ σ2S2(t)
(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (3.79)

wherew1 andw2 are two standard independent Brownian motions under the risk neutral probability

measure Q. The payoff function for the American spread option is

V (T ) = max(S1(T )− S2(T )−K, 0). (3.80)

The dual method usually provides an upper bound for the American spread option. The idea of

dual method is that we formulate American spread option problem as a min-max problem over
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martingales. In the following theorem, we extend the results from [21] to two dimensional for the

American spread option.

Theorem 3.3. For any martingales M = {Mti , i = 0, · · · ,m} satisfying M0 = 0, the price of the

American spread option V0(s1, s2) satisfies the following inequality

V0(s1, s2) ≤ inf
M

EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mti}

]
. (3.81)

Proof. Let Mti , i = 0, · · · ,m satisfies M0 = 0 is a martingale. We use Mi to represent Mti .

According to the optional sampling theorem of martingales, for any stopping time τ taking values

in {t1, · · · , tm}, we have

EQ[hτ (s1, s2)] = EQ [hτ (s1, s2)−Mτ ] ≤ EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mi}

]
(3.82)

By taking the infimum over all the martingales M , we obtain

EQ[hτ (s1, s2)] ≤ inf
M

EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mi}

]
(3.83)

Because this inequality holds for any τ , it also should hold for the supremum over τ . Hence we

have

sup
τ

EQ[hτ (s1, s2)] ≤ inf
M

EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mi}

]
. (3.84)

We also have

V0(s1, s2) = sup
τ

EQ[hτ (s1, s2)] ≤ inf
M

EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mi}

]
. (3.85)

Thus, we get

V0(s1, s2) ≤ inf
M

EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mi}

]
. (3.86)
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In order to use the above theorem for pricing American spread option, one needs to find a martin-

gale M with M(0) = 0. It turns that discount European spread option price is a martingale. If we

shift this martingale such that it starts with 0. Then, one can use this martingale into above theorem

to get an upper bound for the American spread option. Therefore, one can get an upper bound for

American spread option as long as we have an effective way to find the price of corresponding

European spread option. Fortunately, one can effectively compute European spread option by a

pseudo-analytic formula. From [3] and [13], we have the following pseudo-analytic formula

c(s1, s2, t) =
1√
2π

∫ +∞

−∞
e−

1
2
v2f(v)dv, (3.87)

where

f(v) = s1e
d3N(d1)− h(v)e−r(T−t)N(d2)

h(v) = K + s2 exp

[
(r − q2 −

1

2
σ2

2)(T − t) + σ2
√

(T − t)
]

σ = σ1
√

(1− ρ2)(T − t)

d1 =
1

σ

[
log

(
s1
h(v)

)
+

(
−q1 + (

1

2
− ρ2)σ12

)
(T − t)

]
d2 = d1 − σ

d3 = −q1(T − t)−
1

2
ρ2σ1

2(T − t) + ρσ1
√

(T − t)v

where N(·) representing the standard normal cumulative distribution.
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CHAPTER 4. THREE-FACTOR STOCHASTIC VOLATILITY MODEL

In this chapter, we consider the three-factor stochastic volatility model for the American spread

option. First, we derive a model under risk neutral measure. Then, we study three approaches

for pricing American spread option, the partial differential equation approach, the Monte Carlo

simulation approach and the dual method approach.

Let S1 and S2 be the prices of asset 1 and asset 2 with expected return µ1 and µ2. We assume that

the underlying asset pays a dividend. The dividend is paid continuously over the life of the option.

In time dt the underlying asset pays out a dividend qiSidt(i = 1, 2), where qi is a constant and

stands for the dividend yield. The system for the underlying assets is

dS1(t) = (µ1 − q1)S1(t)dt+ σ1
√
vS1(t)dW1(t), (4.1)

dS2(t) = (µ2 − q2)S2(t)dt+ σ2
√
vS2(t)dW2(t), (4.2)

dv = A(α− v)dt+ σv
√
vdWv. (4.3)

In this model, the variance process v is a stochastic process, α is the long term mean of the variance,

A is the mean reversion rate and σv is the volatility of volatility, σ1 and σ2 are constants, W1, W2

and Wv are three correlated standard Brownian motions with the following correlations under the

probability measure P

dW1dW2 = ρdt, (4.4)

dW1dWv = ρ1dt, (4.5)

dW2dWv = ρ2dt. (4.6)

Generally, it is much easier to deal with independent rather than correlated Brownian motions. The
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following lemma allows us to transfer correlated Brownian motions into independent ones.

Lemma 4.1. We decompose correlated Brownian motions W1,W2 and Wv into independent ones

as follows


dW1(t)

dW2(t)

dWv(t)

 =


1 0 0

ρ
√

1− ρ2 0

ρ1 ρ3 ρ4



dB1(t)

dB2(t)

dB3(t)

 , (4.7)

where

ρ3 =
ρ2 − ρρ1√

1− ρ2
, (4.8)

ρ4 =

√
1− ρ2 − ρ21 − ρ22 + 2ρ1ρ2ρ

1− ρ2
, (4.9)

B1(t), B2(t) and B3(t) are three independent standard Brownian motions under the probability

measure P.

Proof. From (4.7), we have

dB1 = dW1, (4.10)

dB2 = − ρ√
1− ρ2

dW1 +
1√

1− ρ2
dW2, (4.11)

dB3 =
1

ρ4
(dWv − ρ1dB1 − ρ3dB2). (4.12)

By Lemma (3.1), we get

dB1dB1 = dt, (4.13)

dB1dB2 = 0, (4.14)

dB2dB2 = dt. (4.15)
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Next, from (4.10) and (4.12), we have

dB1dB3 =
1

ρ4
dW1(dWv − ρ1dB1 − ρ3dB2). (4.16)

By dW1dWv = ρ1dt, dW1dB1 = dt and dW1dB2 = 0, we obtain

dB1dB3 =
1

ρ4
(ρ1 − ρ1)dt = 0. (4.17)

From (4.11) and (4.12), we have

dB2dB3 =
1

ρ4

(
− ρ√

1− ρ2
dW1 +

1√
1− ρ2

dW2

)
(dWv − ρ1dB1 − ρ3dB2). (4.18)

By dW1dWv = ρ1dt, dW1dB1 = dt, dW1dB2 = 0, dW2dWv = ρ2dt, dW2dB1 = dW2dW1 = ρ

and dW2dB2 = dW2(− ρ√
1−ρ2

dW1 + 1√
1−ρ2

dW2) = − ρ2√
1−ρ2

+ 1√
1−ρ2

, we have

dB2dB3 =
1

ρ4

[
− ρ√

1− ρ2
(ρ1 − ρ1)dt

+
1√

1− ρ2

(
ρ2 − ρ1ρ− ρ3(−

ρ2√
1− ρ2

+
1√

1− ρ2
)

)
dt

] (4.19)

After we simplify the above equation, we obtain

dB2dB3 =
1

ρ4

[
1√

1− ρ2
(
ρ2 − ρ1ρ− ρ3

√
1− ρ2

)
dt

]
. (4.20)

Then by (4.8), we have

dB2dB3 = 0. (4.21)
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From (4.12), we have

dB3dB3 =
1

ρ24
(dWv − ρ1dB1 − ρ3dB2)(dWv − ρ1dB1 − ρ3dB2). (4.22)

By dWvdWv = dt, dB1dB1 = dt, dB2dB2 = dt, dWvdB1 = ρ1dt dWvdB2 = dWv(− ρ√
1−ρ2

dW1+

1√
1−ρ2

dW2) = ρ3dt, dB1dB2 = 0, we get

dB3dB3 =
1

ρ24

[
1 + ρ21 + ρ23 − 2ρ21 − 2ρ23(−ρ1

ρ√
1− ρ2

+
1√

1− ρ2
)

]
dt. (4.23)

After we simplify the above equation, we obtain

dB3dB3 =
1

ρ24
(1− ρ21 − ρ23)dt. (4.24)

Then by (4.8) and (4.9), we have

dB3dB3 = dt. (4.25)

For i = 1, 2, 3, we have Bi(0) = 0. Also, Bi(t) is a martingale and has continuous paths. In

addition, we have that equations (4.13)-(4.15), (4.17), (4.21) and (4.24) hold. Thus, by Theorem

2.4, we have B1(t), B2(t) and B3(t) are independent Brownian motions.

Next, we derive the corresponding system under the risk neutral measure as follows. By Lemma

4.1, system (4.1)-(4.3) becomes

dS1(t) = (u1 − q1)S1(t)dt+ σ1
√
vS1(t)dB1(t), (4.26)

dS2(t) = (u2 − q2)S2(t)dt+ ρ
√
vS2(t)dB1(t) +

√
1− ρ2

√
vS2(t)dB2(t), (4.27)

dv = A(α− v)dt+ ρ1σv
√
vdB1(t) + ρ3σv

√
vdB2(t) + ρ4σv

√
vdB3(t), (4.28)
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where

ρ3 =
ρ2 − ρρ1√

1− ρ2
, (4.29)

ρ4 =

√
1− ρ2 − ρ21 − ρ22 + 2ρ1ρ2ρ

1− ρ2
. (4.30)

Again, we define the value processes Ŝi(t)(i = 1, 2) by

Ŝ1(t) = eq1tS1(t), (4.31)

Ŝ2(t) = eq2tS2(t). (4.32)

Then, we have

dŜ1(t) = u1Ŝ1(t)dt+ σ1
√
vŜ1(t)dB1(t), (4.33)

dŜ2(t) = u2Ŝ2(t)dt+ ρ
√
vŜ2(t)dB1(t) +

√
1− ρ2

√
vŜ2(t)dB2(t), (4.34)

dv = A(α− v)dt+ ρ1σv
√
vdB1(t) + ρ3σv

√
vdB2(t) + ρ4σv

√
vdB3(t). (4.35)

We introduce the discounted value processes ŜS0
1 (t) and ŜS0

2 (t) by

dŜS0
1 = (u1 − r)ŜS0

1 dt+ σ1
√
vŜS0

1 dB1(t), (4.36)

dŜS0
2 = (u2 − r)ŜS0

2 dt+ ρ
√
vŜS0

2 dB1(t) +
√

1− ρ2
√
vŜS0

2 dB2(t), (4.37)

dv = A(α− v)dt+ ρ1σv
√
vdB1(t) + ρ3σv

√
vdB2(t) + ρ4σv

√
vdB3(t). (4.38)

Now we want to find the equivalent martingale measure Q under which the discounted value

processes are Q martingales. To achieve this, we use the Girsanov Theorem. We define θ =

(θ1, θ2, θ3)
T by

Aθ = u− r, (4.39)
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where

A =


1 0 0

ρ
√

1− ρ2 0

ρ1 ρ3 ρ4

 , u− r =

u1 − r
u2 − r

 . (4.40)

As we see, we have two equations, but there are three unknowns θi(i = 1, 2, 3). Thus, we have

many solutions. We fix θ3 = λ and define

Z(t) = exp

{
−
∫ t

0

θ · dB(u)− 1

2

∫ t

0

||θ||2du
}
, (4.41)

and

w(t) = B(t) +

∫ t

0

θdu, (4.42)

where B(t) = (B1(t), B2(t), B3(t))
T and w(t) = (w1(t), w2(t), w3(t)

T . By Girsanov Theorem

2.16, setting Z = Z(T ), then EZ = 1. And the probability measure Q is given by

Q(A) =

∫
A

Z(w)dP(w), (4.43)

for all A ∈ F . Note that the process w(t) is a three-dimensional Brownian motions under Q. By

(4.36)-(4.38) and (4.42), under the equivalent probability measure Q, we have

dŜS0
1 (t) = σ1Ŝ

S0
1 (t)
√
vdw1(t), (4.44)

dŜS0
2 (t) = ρσ2Ŝ

S0
2 (t)
√
vdw1(t) +

√
1− ρ2σ2ŜS0

2 (t)
√
vdw2(t), (4.45)

dv = A(α− v)dt− λσv
√
vdt+ ρ1σv

√
vdw1(t) + ρ3σv

√
vdw2(t) + ρ4σv

√
vdw3(t). (4.46)
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Then by Ŝi(t) = S0(t)S
S0
i (t)(i = 1, 2), we obtain

dŜ1(t) = rŜ1dt+ σ1
√
vŜ1dw1(t), (4.47)

dŜ2(t) = rŜ2dt+ ρσ2
√
vŜ2dw1(t) +

√
1− ρ2σ2Ŝ2dw2(t), (4.48)

dv = A(α− v)dt− λσv
√
vdt+ ρ1σv

√
vdw1(t) + ρ3σv

√
vdw2(t) + ρ4σv

√
vdw3(t). (4.49)

In addition, by Ŝi(t) = eqitSi(t)(i = 1, 2), we get

dS1(t) = (r − q1)S1(t)dt+ σ1S1(t)dw1, (4.50)

dS2(t) = (r − q2)S2(t)dt+ ρσ2
√
vS2(t)dw1(t) +

√
1− ρ2σ2

√
vS2(t)dw2(t), (4.51)

dv = A(α− v)dt− λσv
√
vdt+ ρ1σv

√
vdw1(t) + ρ3σv

√
vdw2(t) + ρ4σv

√
vdw3(t). (4.52)

Then we assume that λ is a linear function of
√
v, i.e., λ = c

√
v. We have

dv = A(α− v)dt− cvσvdt+ ρ1σv
√
vdw1(t) + ρ3σv

√
vdw2(t) + ρ4σv

√
vdw3(t). (4.53)

By taking k = A+ cσv, u =
Aα

A+ σv
, we get

dv = k(u− v)dt+ ρ1σv
√
vdw1(t) + ρ3σv

√
vdw2(t) + ρ4σv

√
vdw3(t). (4.54)

Therefore, we get the system under the risk neutral measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1
√
vS1(t)dw1(t), (4.55)

dS2(t) = (r − q2)S2(t)dt+ σ2
√
vS2(t)

(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (4.56)

dv = k(µ− v)dt+ σv
√
v (ρ1dw1(t) + ρ3dw2(t) + ρ4dw3) . (4.57)
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4.1 PARTIAL DIFFERENTIAL EQUATIONS APPROACH

In this section, we derive the partial differential equation for pricing the American spread option

under the three-factor stochastic volatility model. We use the standard approach based on Ito

formula. Recall that we have the system under the risk neutral measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1
√
vS1(t)dw1(t), (4.58)

dS2(t) = (r − q2)S2(t)dt+ σ2
√
vS2(t)

(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (4.59)

dv = k(µ− v)dt+ σv
√
v (ρ1dw1(t) + ρ3dw2(t) + ρ4dw3) , (4.60)

where

ρ3 =
ρ2 − ρρ1√

1− ρ2
, (4.61)

ρ4 =

√
1− ρ2 − ρ21 − ρ22 + 2ρ1ρ2ρ

1− ρ2
, (4.62)

and w1, w2 and w3 are three independent standard Brownian motions under the risk neutral proba-

bility measure Q.

The following theorem gives a partial differential equation with a free boundary condition for

the American spread option. Let v(x1, x2, x3, t) be the price of the American spread option with

x1 = S1(t), x2 = S2(t) and x3 = v(t) at time t.

Theorem 4.2. v(x1, x2, x3, t) is the solution of the PDE

0 = −rv + vt + (r − q1)x1vx1 + (r − q2)x2vx2 + k(µ− x3)vx3

+
1

2
σ1

2x1
2x3vx1x1 +

1

2
σ2

2x2
2x3vx2x2 +

1

2
σv

2x3vx3x3

+ ρσ1σ2x1x2x3vx1x2 + ρ1σ1σvx1x3vx1x3 + ρ2σ2σvx2x3vx1x2 (4.63)
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with the boundary and terminal conditions

v(0, x2, x3, t) = 0, (4.64)

v(b(x2, x3, t), x2, x3, t) = b(x2, x3, t)− x2 −K, (4.65)

vx1(b(x2, x3, t), x2, x3, t) = 1, (4.66)

vx2(b(x2, x3, t), x2, x3, t) = −1, (4.67)

vx3(b(x2, x3, t), x2, x3, t) = 0, (4.68)

v(x1, x2, x3, T ) = (x1 − x2 −K)+, (4.69)

where x1 = b(x2, x3, t) is the free boundary.

Proof. The payoff function for the spread call option without early exercise is

V (T ) = max(S1(T )− S2(T )−K, 0), (4.70)

where V (t) represents the option price without early exercise at time t. By applying the risk neutral

formula, we get the price at time t is

V (t) = e−r(T−t)EQ[max(S1(T )− S2(T )−K, 0)|Ft]. (4.71)

Because the joint processes (S1(t), S2(t), v(t)) is a Markov process, V (t) can be written as a

function of the time variable and the values of these processes at time t, i.e., V = v(x1, x2, x3, t).

Then, we have

v(x1, x2, x3, t) = e−r(T−t)EQ[max(S1(T )− S2(T )−K, 0)|Ft]. (4.72)
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We apply Ito’s formula to the function e−rtv(x1, x2, x3, t). By Ito’s formula, we have

d(e−rtv(S1, S2, v, t) = e−rt[−rvdt+ vtdt+ vx1dS1 + vx2dS2 + vx3dv

1

2
vx1x1dS1dS1 +

1

2
vx2x2dS2dS2 +

1

2
vx3x3dvdv

vx1x2dS1dS2 + vx1x3dS1dv + vx2x3dS2dv].

Then, from system (4.58)-(4.60), we plug dS1, dS2 and dv into the above equation. We obtain

d(e−rtv(S1, S2, v, t) = e−rt[−rvdt+ vtdt+ vx1((r − q1)S1dt+ σ1S1dw1)

+ vx2

[
(r − q2)S2dt+ σ2S2(ρdw1 +

√
1− ρ2dw2)

]
+ vx3

[
k(µ− v)dt+ σv

√
v(ρ1dw1 + ρ3dw2 + ρ4dw3)

]
+

1

2
σ1

2S1
2vvx1x1dt+

1

2
σ2

2S2
2vvx2x2dt+

1

2
σv

2vvx3x3dt

+ ρσ1σ2S1S2vvx1x2dt+ ρ1σ1σvS1vvx1x3dt+ ρ2σ2σvS2vvx1x2dt].

Next, we put deterministic and stochastic terms together, respectively. We have

d(e−rtv(S1, S2, v, t) = e−rt[−rv + vt + (r − q1)S1vx1 + (r − q2)S2vx2 + k(µ− v)vx3

+
1

2
σ1

2S1
2vvx1x1 +

1

2
σ2

2S2
2vvx2x2 +

1

2
σv

2vvx3x3

+ ρσ1σ2S1S2vvx1x2 + ρ1σ1σvS1vvx1x3 + ρ2σ2σvS2vvx1x2 ]dt

+ e−rt[σ1S1vx1dw1 + σ2S2(ρdw1 +
√

1− ρ2dw2)vx2

+ σv
√
v(ρ1dw1 + ρ3dw2 + ρ4dw3)vx3 ]. (4.73)

Because the discounted option price is a martingale under the risk neutral probability measure Q,
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the dt term in the above equation is zero. Thus, we obtain the partial differential equation

0 = −rv + vt + (r − q1)x1vx1 + (r − q2)x2vx2 + k(µ− x3)vx3

+
1

2
σ1

2x1
2x3vx1x1 +

1

2
σ2

2x2
2x3vx2x2 +

1

2
σv

2x3vx3x3

+ ρσ1σ2x1x2x3vx1x2 + ρ1σ1σvx1x3vx1x3 + ρ2σ2σvx2x3vx1x2 . (4.74)

There are two regions for American spread option: holding region Σ1 and exercise region Σ2,

which are separated by the free boundary S1 = b(S2, v, t). In holding region Σ1, we have

v(S1, S2, v, t) > (S1 − S2 −K)+, (4.75)

and v satisfies (4.74). On the boundary, we have

v(0, x2, x3, t) = 0, (4.76)

v(b(x2, x3, t), x2, x3, t) = b(x2, x3, t)− x2 −K, (4.77)

vx1(b(x2, x3, t), x2, x3, t) = 1, (4.78)

vx2(b(x2, x3, t), x2, x3, t) = −1, (4.79)

vx3(b(x2, x3, t), x2, x3, t) = 0, (4.80)

v(x1, x2, x3, T ) = (x1 − x2 −K)+, (4.81)

where x1 = b(x2, x3, t) is the free boundary for the American spread call option. Condition (4.76)

is that when the value S1 is 0, then the value of option is also 0. Condition (4.77) is the value

matching condition. Conditions (4.78), (4.79) and (4.80) are smooth pasting conditions. They

mean that the derivatives of option price are continuous function on the boundary. Condition

(4.81) is the terminal condition.
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4.2 MONTE CARLO SIMULATION APPROACH

In this section, we use Monte Carlo simulation method to compute the price of the American spread

option under three-factor stochastic volatility model. Recall that we have the system under the risk

neutral measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1
√
vS1(t)dw1(t),

dS2(t) = (r − q2)S2(t)dt+ σ2
√
vS2(t)

(
ρdw1(t) +

√
1− ρ2dw2(t)

)
,

dv = k(µ− v)dt+ σv
√
v (ρ1dw1(t) + ρ3dw2(t) + ρ4dw3) ,

where

ρ3 =
ρ2 − ρρ1√

1− ρ2
,

ρ4 =

√
1− ρ2 − ρ21 − ρ22 + 2ρ1ρ2ρ

1− ρ2
,

and w1, w2 and w3 are three independent standard Brownian motions under the risk neutral proba-

bility measure Q.

Most of the steps are the same as the Monte Carlo simulation method to price American spread

options under two-factor geometric Brownian motion model. The main difference is that when we

approximate expected future payoff value, we take one more stochastic factor into account by the

following

ci(s1, s2, s3) = EQ[Vi+1(S1(ti), S2(ti), vti)|S1(ti−1) = s1, S2(ti−1) = s2, v(ti−1) = s3]

≈
J∑
j=1

βijψj(s1, s2, s3)

= ψ(s1, s2, s3) · βTi , i = 0, 1, 2, · · · ,m− 1, (4.82)
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where

βi = (βi1, βi2, · · · , βiJ), (4.83)

ψ(s1, s2, s3) = (ψ1(s1, s2, s3), ψ2(s1, s2, s3), · · · , ψJ(s1, s2, s3)). (4.84)

4.3 DUAL METHOD APPROACH

In this section, we use the dual method to compute the price of the American spread option. Recall

that we have the system under the risk neutral measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1
√
vS1(t)dw1(t),

dS2(t) = (r − q2)S2(t)dt+ σ2
√
vS2(t)

(
ρdw1(t) +

√
1− ρ2dw2(t)

)
,

dv = k(µ− v)dt+ σv
√
v (ρ1dw1(t) + ρ3dw2(t) + ρ4dw3) ,

where

ρ3 =
ρ2 − ρρ1√

1− ρ2
,

ρ4 =

√
1− ρ2 − ρ21 − ρ22 + 2ρ1ρ2ρ

1− ρ2
,

and w1, w2 and w3 are three independent standard Brownian motions under the risk neutral proba-

bility measure Q. We do the substitution as follows

y1(t) = log(S1(t)),

y2(t) = log(S2(t)),

y3(t) = v(t).
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Then, we have the new system

dy1(t) = (r − q1 −
1

2
σ2
1y3)y1(t)dt+ σ1

√
y3y1(t)dw1(t) (4.85)

dy2(t) = (r − q2 −
1

2
σ2
2y3)y2(t)dt+ σ2

√
y3y2(t)

(
ρdw1(t) +

√
1− ρ2dw2(t)

)
(4.86)

dy3(t) = k(µ− y3)dt+ σy3
√
y3 (ρ1dw1(t) + ρ3dw2(t) + ρ4dw3) (4.87)

The dual method usually provides an upper bound for the American spread option. The idea of

dual method is that we formulate American spread option problem as a min-max problem over

martingales. In the following theorem, we extend the results from [21] to three dimensional for the

American spread option.

Theorem 4.3. For any martingales M = {Mti , i = 0, · · · ,m} satisfying M0 = 0, the price of the

American spread option V0(s1, s2, s3) satisfies the following inequality

V0(s1, s2, s3) ≤ inf
M

EQ

[
max

i=1,··· ,m
{hi(s1, s2)−Mti}

]
. (4.88)

The proof of the above theorem is similar to the proof of Theorem 3.3. So we omit the proof.

In order to use the above theorem for pricing American spread option, one needs to find a martin-

gale M with M(0) = 0. It turns that discount European spread option price is a martingale. If we

shift this martingale such that it starts with 0, then, one can use this martingale in above theorem

to get an upper bound for the American spread option. Therefore, one can get an upper bound

for American spread option as long as we have an effective way to find the price of correspond-

ing European spread option. Fortunately, one can effectively compute European spread option by
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characteristic function technique. From [13], we have the characteristic function

φ3sv(u1, u2) = exp[i[y1(0) + (r − q1)T ]u1

+ i[y2(0) + (r − q2)T ]u2 +D(T )v(0) + C(T )], (4.89)

where

D(T ) =
2ξ(1− exp(−θT ))

2θ − (θ − γ)(1− exp(−θT ))
, (4.90)

C(T ) = −kµ
σ2
v

[
2 log

(
2θ − (θ − γ)(1− exp(−θT ))

2θ

)
+ (θ − γ)T

]
+ i(r − q1)u1T + i(r − q2)u2T, (4.91)

θ =
√
γ2 − 2σ2ξ, (4.92)

γ = k − i(ρ1σ1u1 + ρ2σ2u2)σv, (4.93)

ξ = −1

2

[(
σ2
1u

2
1 + σ2

2u
2
2 + 2ρσ1σ2u1u2

)
+ i(σ2

1u1 + σ2
2u2)

]
. (4.94)
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CHAPTER 5. NUMERICAL IMPLEMENTATIONS AND RESULTS

In this chapter, we investigate the numerical implementations and results for the American spread

option under different models, including the two-factor geometric Brownian motion model and

the three-factor stochastic volatility model. For each model, we compare the numerical results of

different approaches.

5.1 TWO-FACTOR GEOMETRIC BROWNIAN MOTION MODEL

In this section, we study the numerical algorithms and results to the American spread call option

under the two-factor geometric Brownian motion model. We have three approaches for pricing

the American spread option: the partial differential equation approach, Monte Carlo simulation

approach and the dual method approach.

Recall that we have the following system under the risk neutral measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1S1(t)dw1(t), (5.1)

dS2(t) = (r − q2)S2(t)dt+ σ2S2(t)
(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (5.2)

where w1 and w2 are two standard independent Brownian motions under the risk neutral proba-

bility measure Q. We take American spread call option as an example. The payoff function is

max{S1−S2−K, 0}. The parameters are S2 = 36, σ1 = 0.4, σ2 = 0.2, r = 0.06, ρ = 0.5, T = 1,

K = 5, q1 = 0.05 and q2 = 0.01.
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5.1.1 Partial Differential Equations Approach. In this subsection, we use the partial differ-

ential equation method to compute the price of the American spread option under the two-factor

geometric Brownian motion model.

From Chapter 3, we know that the price of the American spread option is the solution of the partial

differential equation with a free boundary condition. In order to solve it numerically, we get rid of

the free boundary and formulate the problem into complementarity problem. Let v(x1, x2, t) be the

price of the American spread option with x1 = S1 and x2 = S2 at time t. We use Lv to represent

Lv = vt + (r − q1)x1vx1 + (r − q2)x2vx2

+
1

2
σ1

2x1
2vx1x1 +

1

2
σ2

2x2
2vx2x2 + ρσ1σ2x1x2vx1x2 − rv. (5.3)

Also, we know that we have two regions for the American spread option. In one region, early

exercise is optimal. We have

Lv ≤ 0, (5.4)

v = h. (5.5)

The other one, early exercise is not optimal. We have

Lv = 0, (5.6)

v ≥ h. (5.7)

Hence, the price is formulated as the solution of the following complementarity problem

Lv ≤ 0, (5.8)

v − h ≥ 0, (5.9)

(Lv)(v − h) = 0, (5.10)
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where h = max(x1 − x2 −K, 0).

It is more convenient to solve the above complementarity problem (5.8)-(5.10) by doing the fol-

lowing substitutions

x1 = ey1 ,

x2 = ey2 ,

v(x1, x2, t) = u(y1, y2, t).

Then, we have

Lu ≤ 0, (5.11)

u− h ≥ 0, (5.12)

(Lu)(u− h) = 0, (5.13)

where h = max(ey1 − ey2 −K, 0) and

Lu = ut +

(
r − q1 −

σ1
2

2

)
uy1 +

(
r − q2 −

σ2
2

2

)
uy2

+
σ1

2

2
uy1y1 +

σ2
2

2
uy2y2 + ρσ1σ2uy1y2 − ru. (5.14)

Then we use the finite difference method to solve the above complementarity problem. First,

we divide the life of the option T into N equally spaced intervals of the length ∆t = T
N

. Then

a total of N + 1 times are therefore considered: 0, ∆t, 2∆t, · · · , T . Because the range of

yi(i = 1, 2) is (−∞,+∞), we restrict yi by taking a very large positive number yi and a very

large negative number y
i
, such that y

i
≤ yi ≤ yi. Then one can divide yi into M equally spaced

intervals of length ∆yi =
yi−yi
M

. The space and time variables define a grid consisting of a total

of (M + 1)(M + 1)(N + 1) points. We use the variable uki,j to represent u(y1i, y2j, tk) with
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y1i = y
1

+ (i− 1)∆y1, y2j = y
2

+ (j − 1)∆y2 and tk = (k − 1)∆t. For the point (y1i, y2j, tk), we

have the following finite differences

ut =
uki,j − uk−1i,j

∆t
+O(∆t), (5.15)

uy1 =
uki+1,j − uki−1,j

2∆y1
+O

[
(∆y1)

2
]
, (5.16)

uy2 =
uki,j+1 − uki,j−1

2∆y2
+O

[
(∆y2)

2
]
, (5.17)

uy1y1 =
uki+1,j + uki−1,j − 2uki,j

(∆y1)2
+O

[
(∆y1)

2
]
, (5.18)

uy2y2 =
uki,j+1 + uki,j−1 − 2uki,j

(∆y2)2
+O

[
(∆y2)

2] , (5.19)

uy1y2 =
uki+1,j+1 + uki−1,j−1 − uki−1,j+1 − uki+1,j−1

4∆y1∆y2
+O

[
(∆y1)

2 + (∆y2)
2] . (5.20)

Then we incorporate all of the above finite differences into equation (5.14). We get

Luki,j =
uki,j − uk−1i,j

∆t
+

(
r − q1 −

1

2
σ2
1

)(
uki+1,j − uki−1,j

2∆y1
+O

[
(∆y1)

2
])

+

(
r − q2 −

1

2
σ2
2

)(
uki,j+1 − uki,j−1

2∆y2
+O

[
(∆y2)

2
])

+
1

2
σ2
1

(
uki+1,j + uki−1,j − 2uki,j

(∆y1)2
+O

[
(∆y1)

2
])

+
1

2
σ2
2

(
uki,j+1 + uki,j−1 − 2uki,j

(∆y2)2
+O

[
(∆y2)

2])

+ ρσ1σ2

(
uki+1,j+1 + uki−1,j−1 − uki−1,j+1 − uki+1,j−1

4∆y1∆y2
+O

[
(∆y1)

2 + (∆y2)
2])

− ruki,j. (5.21)
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After we simplify it and we ignore the higher order term, we obtain

(∆t) ∗ Luki,j = −uk−1i,j + A ∗ uki+1,j+1 +B ∗ uki+1,j + C ∗ uki+1,j−1

+D ∗ uki,j+1 + E ∗ uki,j + F ∗ uki,j−1

+G ∗ uki−1,j+1 +H ∗ uki−1,j + I ∗ uki−1,j−1, (5.22)

where

a1 = r − q1 −
1

2
σ2
1, (5.23)

a2 = r − q2 −
1

2
σ2
2, (5.24)

A =
ρσ1σ2∆t

4∆y1∆y2
, (5.25)

B =
σ2
1∆t

2(∆y1)2
+
a1∆t

2∆y1
, (5.26)

C = − ρσ1σ2∆t
4∆y1∆y2

, (5.27)

D =
σ2

2∆t

2(∆y2)2
+
a2∆t

2∆y2
, (5.28)

E = 1− r∆t− σ1
2∆t

(∆y1)2
− σ2

2∆t

(∆y2)2
, (5.29)

F =
σ2
2∆t

2(∆y2)2
− a2∆t

2∆y2
, (5.30)

G = C, (5.31)

H =
σ2
1∆t

2(∆y1)2
− a1∆t

2(∆y1)
, (5.32)

I = A. (5.33)

For the complementarity problem (5.11)-(5.13), we have

min{−Lu, u− h} = 0, (5.34)
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Then by (5.22), for the point (y1i, y2j, tk), we have

min{(∆t) ∗ Luki,j, uk−1i,j − hi,j} = 0, (5.35)

where hi,j = (ey1i − ey2j − K)+. Next, by min{X − Y,X − Z} = 0 ⇔ X = max{Y, Z} and

(5.22), we have the finite difference method for the American spread option as follows

uk−1i,j = max{A ∗ uki+1,j+1 +B ∗ uki+1,j + C ∗ uki+1,j−1

+D ∗ uki,j+1 + E ∗ uki,j + F ∗ uki,j−1

+G ∗ uki−1,j+1 +H ∗ uki−1,j + I ∗ uki−1,j−1, hi,j}, (5.36)

with boundary and terminal conditions

u(y1, y2, t) = AMPut(ey2 , K1, T − t, r, σ2, q2), (5.37)

u(y1, y2, t) = 0, (5.38)

u(y
1
, y2, t) = 0, (5.39)

u(y1, y2, t) = AMCall(ey1 , K, T − t, r, σ1, q1), (5.40)

u(y1, y2, T ) = max {ey1 − ey2 −K, 0} . (5.41)

where K1 = ey1 −K. AMPut(S,K, T, r, σ, q) and AMCall(S,K, T, r, σ, q) represent the prices of

standard American put and call options, respectively. Condition (5.37) means that for the American

spread option at time t, when ey1 is constant and very large, we regard it as the corresponding

American put option on the second underlying asset with strike K1 = ey1 −K. The reason is that

we have

(ey1 − ey2 −K)+ = ((ey1 −K)− ey2)+.
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Because we don’t have a closed formula for the American option, in order to make our computation

faster, in practice, we use the corresponding European option to approximate it, since we have

closed formula for the European option. Condition (5.38) means that when the price of the second

underlying is a very large number, we have that the option price is 0. Condition (5.39) means that

when the price of the first underlying is a very small number, we have that the option price is 0.

Condition (5.40) means that for the American spread option at time t, when ey2 is constant and

very small, we regard it as the corresponding American call option on the first underlying asset

with strike K. Condition (5.41) is the terminal condition. The above method is an explicit finite

difference method for the complementarity problem.

It turns out that one can get the corresponding European spread option price by setting hi,j = −∞

in (5.36), which means we have the finite difference method for the corresponding European spread

option as follows

uk−1i,j = A ∗ uki+1,j+1 +B ∗ uki+1,j + C ∗ uki+1,j−1

+D ∗ uki,j+1 + E ∗ uki,j + F ∗ uki,j−1

+G ∗ uki−1,j+1 +H ∗ uki−1,j + I ∗ uki−1,j−1, (5.42)

with boundary and terminal conditions

u(y1, y2, t) = BSPut(ey2 , K1, T − t, r, σ2, q2), (5.43)

u(y1, y2, t) = 0, (5.44)

u(y
1
, y2, t) = 0, (5.45)

u(y1, y2, t) = BSCall(ey1 , K, T − t, r, σ1, q1), (5.46)

u(y1, y2, T ) = max {ey1 − ey2 −K, 0} , (5.47)
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where BSPut(ey2 , K1, T − t, r, σ2, q2) and = BSCall(ey1 , K, T − t, r, σ1, q1) represents the prices

of the standard European put option and call option. Because we have the pseudo analytic formula

to compute the price of the European spread option, one can use the European spread option as the

benchmark to test our finite difference approximations.

Table A.1 (Figures 5.1 and 5.2) displays the numerical results obtained by applying the explicit fi-

nite difference method and pseudo analytic formula to the corresponding European spread option,

varying the first underlying assets S1 from 30 to 50. We take the numbers of space steps and of

time steps are 50×100, 80×400, 100×800, 120×1000, 200×1200, 300×3000 and 400×4000,

respectively. From Table A.1 (Figures 5.1 and 5.2), we note that when the number of steps of finite

difference method are larger, we get the closer results to the pseudo analytic formula. This means

there ia a good agreement between these two methods.

It turns out that one can eliminate the mixed derivative term in the equation (5.3)

Lv = vt + (r − q1 −
1

2
σ2
1)vx1 + (r − q2 −

1

2
σ2
2)vx2

+
1

2
σ1

2vx1x1 +
1

2
σ2

2vx2x2 + ρσ1σ2vx1x2 − rv.

Because the cross derivative term introduces 4 more points on our finite difference grid, which

could bring more errors in our computations. In fact, one can do the following transformations to

eliminate the cross derivative term. We do the following change of variables

y1 =
log(x1)

σ1
, (5.48)

y2 =
log(x2)σ1 − ρσ2 log(x1)√

1− ρ2σ1σ2
, (5.49)

u(y1, y2, t) = v(x1, x2, t). (5.50)
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Figure 5.1: Explicit Finite Difference Method for European Spread Options(Prices)
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Figure 5.2: Explicit Finite Difference Method for European Spread Options(Errors)
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Then we get

∂v

∂x1
=

1

σ1

∂u

∂y1
+

−ρ√
1− ρ2σ1

∂u

∂y2
, (5.51)

∂v

∂x2
=

1√
1− ρ2σ2

∂u

∂y2
, (5.52)

∂2v

∂x21
=

1

σ2
1

∂2u

∂y21
+

−2ρ√
1− ρ2σ2

1

∂2u

∂y1∂y2
+

ρ2

(1− ρ2)σ2
1

∂2u

∂y22
, (5.53)

∂2v

∂x22
=

1

(1− ρ2)σ2
2

∂2u

∂y22
, (5.54)

∂2v

∂x2∂x1
=

−ρ
(1− ρ2)σ1σ2

∂2u

∂y22
+

1√
1− ρ2σ1σ2

∂2u

∂y2∂y1
. (5.55)

Then, we incorporate all of the above terms into the equation (5.3). We have

Lu =
∂u

∂t
+ (r − q1 −

1

2
σ2
1)

1

σ1

∂u

∂y1

+
−ρ(r − q1 − 1

2
σ2
1)√

1− ρ2σ1
∂u

∂y2
+ (r − q2 −

1

2
σ2
2)

1√
1− ρ2σ2

∂u

∂y2

+
1

2
σ1

2

[
1

σ2
1

∂2u

∂y21
+

−2ρ√
1− ρ2σ2

1

∂2u

∂y1∂y2
+

ρ2

(1− ρ2)σ2
1

∂2u

∂y22

]

+
1

2
σ2

2

[
1

(1− ρ2)σ2
2

∂2u

∂y22

]
+ ρσ1σ2

[
−ρ

(1− ρ2)σ1σ2
∂2u

∂y22
+

1√
1− ρ2σ1σ2

∂2u

∂y2∂y1

]
− ru. (5.56)

After we simplify the above equation, we get

Lu =
∂u

∂t
+ (r − q1 −

1

2
σ2
1)

1

σ1

∂u

∂y1

+
1√

1− ρ2

[
(r − q2 − 1

2
σ2
2)

σ2
−
ρ(r − q1 − 1

2
σ2
1)

σ1

]
∂u

∂y2
+

1

2

[
∂2u

∂y21
+
∂2u

∂y22

]
− ru. (5.57)

Hence we see that for the equation (5.57), there is no cross derivative term. Again, we use the

finite difference method to solve the complementarity problem. Similarly, we incorporate all of
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the finite differences into the equation (5.57). We get

Luki,j =
uki,j − uk−1i,j

∆t
+ a1

(
uki+1,j − uki−1,j

2∆y1
+O

[
(∆y1)

2
])

+ a2

(
uki,j+1 − uki,j−1

2∆y2
+O

[
(∆y2)

2
])

+
1

2

(
uki+1,j + uki−1,j − 2uki,j

(∆y1)2
+O

[
(∆y1)

2
])

+
1

2

(
uki,j+1 + uki,j−1 − 2uki,j

(∆y2)2
+O

[
(∆y22

])

− ruki,j. (5.58)

After we simplify it and ignore the higher order term, we have

(∆t) ∗ Luki,j = −uk−1i,j + A ∗ uki+1,j +B ∗ uki,j+1 + C ∗ uki,j

+D ∗ uki,j−1 + E ∗ uki−1,j, (5.59)

where

a1 =
(r − q1 − 1

2
σ2
1)

σ1
, (5.60)

a2 =
1√

1− ρ2

[
(r − q2 − 1

2
σ2
2)

σ2
−
ρ(r − q1 − 1

2
σ2
1)

σ1

]
, (5.61)

A =
∆t

2(∆y1)2
+
a1∆t

2∆y1
, (5.62)

B =
∆t

2(∆y2)2
+
a2∆t

2∆y2
, (5.63)

C = 1− r∆t− ∆t

(∆y1)2
− ∆t

(∆y2)2
, (5.64)

D =
∆t

2(∆y2)2
− a2∆t

2∆y2
, (5.65)

E =
∆t

2(∆y1)2
− a1∆t

2∆y1
. (5.66)

Here we use 5 points on the grid rather than 9 points with the cross derivative term, which simplifies
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our implementation significantly. Similarly, we have the finite difference method for the American

spread option as follows

uk−1i,j = max{A ∗ uki+1,j +B ∗ uki,j+1 + C ∗ uki,j

+D ∗ uki,j−1 + E ∗ uki−1,j, hi,j}, (5.67)

with terminal condition

u(y1, y2, T ) = max
{
eσ1y1 − eρσ2y1+

√
1−ρ2σ2y2 −K, 0

}
, (5.68)

and boundary conditions

u(y1, y2, t) = AMPut(eρσ2y1+
√

1−ρ2σ2y2 , K1, T − t, r, σ2, q2), (5.69)

u(y1, y2, t) = 0, (5.70)

u(y
1
, y2, t) = 0, (5.71)

u(y1, y2, t) = AMCall(eσ1y1 , K, T − t, r, σ1, q1), (5.72)

u(y1, y2, T ) = max
{
eσ1y1 − eρσ2y1+

√
1−ρ2σ2y2 −K, 0

}
, (5.73)

where K1 = eσ1y1 − K. This is the explicit finite difference method for the complementarity

problem without the cross derivative term.

Again, because we have the analytic formula to compute the price of the European spread option,

one can use the European spread option as the benchmark to test our finite difference approxi-

mations for the partial differential equation without cross derivative term. And we have the finite

difference method for the European spread option as follows

uk−1i,j = A ∗ uki+1,j +B ∗ uki,j+1 + C ∗ uki,j

+D ∗ uki,j−1 + E ∗ uki−1,j, (5.74)
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Figure 5.3: Explicit Finite Difference Method to Improved Partial Differential Equation for Euro-
pean Spread Options(Prices)
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Figure 5.4: Explicit Finite Difference Method to Improved Partial Differential Equation for Euro-
pean Spread Options(Errors)
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with terminal condition

u(y1, y2, T ) = max
{
eσ1y1 − eρσ2y1+

√
1−ρ2σ2y2 −K, 0

}
, (5.75)

and boundary conditions

u(y1, y2, t) = BSPut(eρσ2y1+
√

1−ρ2σ2y2 , K1, T − t, r, σ2, q2), (5.76)

u(y1, y2, t) = 0, (5.77)

u(y
1
, y2, t) = 0, (5.78)

u(y1, y2, t) = BSCall(eσ1y1 , K, T − t, r, σ1, q1), (5.79)

u(y1, y2, T ) = max
{
eσ1y1 − eρσ2y1+

√
1−ρ2σ2y2 −K, 0

}
, (5.80)

where K1 = eσ1y1 − K. This is the explicit finite difference method for the partial differential

equation without the cross derivative term.

Table A.2 (Figures 5.3 and 5.4) documents the numerical results obtained by the explicit finite dif-

ference method for the equation (5.57) and pseudo analytic formula to the corresponding European

spread option. We call this finite difference method as the improved partial differential equation

approach(IPDE). In order to compare to the numerical results obtained by the Table A.1. We take

the numbers of space steps and of time steps the same as in the Table A.1, which are 50 × 100,

80× 400, 100× 800, 120× 1000, 200× 1200, 300× 3000 and 400× 4000, respectively.

From Table A.1 and A.2, we note that the results obtained by improved partial differential equation

approach is much better than the one obtained by original partial differential approach. When we

take numbers of space steps and of time steps are 400× 4000, the maximum error in the Table A.1

is about 100 basis points, while it is about 4 basis points in Table A.2. Thus we take the improved

partial differential equation approach as our benchmark for the American spread option under the
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Figure 5.5: Explicit Finite Difference Method to IPDE for American Spread Options(Prices)
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Figure 5.6: Explicit Finite Difference Method to IPDE for American Spread Options(Early Exer-
cise Premiums)
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two-factor geometric Brownian motion model. The numerical results obtained by this method for

the American spread option are listed in Table A.3 (Figures 5.5 and 5.6). Then we use this method

to test our explicit finite difference method to solve the original equation (5.14). The numerical

results are shown in Table A.4 (Figures 5.7 and 5.8).

5.1.2 Monte Carlo Simulation Approach. In this subsection, we use the Monte Carlo simu-

lation method to compute the price of the American spread option under the two-factor geometric

Brownian motion model.

From Chapter 3, we have the following Monte Carlo simulation algorithm for pricing the American

spread option. The algorithm is

(i) Generate N different paths of the asset price processes

{Sn1 (t1), S
n
1 (t2) · · · , Sn1 (tm)} , n = 1, 2, · · ·N,

{Sn2 (t1), S
n
2 (t2) · · · , Sn2 (tm)} , n = 1, 2, · · ·N.

(ii) At maturity, set ṽm = hm.

(iii) For i = m− 1, · · · , 2, 1

(a) Compute β̃i = β̃−1ψ β̃ψV , where β̃−1ψ and β̃ψV are given in (3.73)and (3.74).

(b) Compute c̃i = ψβ̃i
T
, n = 1, · · · , N .

(c) Set ṽi = max {hi, c̃i} , n = 1, · · · , N .

(iv) Set ṽ(n)0 = hi, where ti = min{ti ∈ {t1, · · · , tm} : hi ≥ c̃i}.

(v) Take the mean of all ṽ(n)0 to get the option value ṽ0 = 1
N

∑N
n=1 ṽ

(n)
0 .

After we implement the finite difference method partial differential equation approach, we are
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Figure 5.7: Explicit Finite Difference Method to Original Partial Differential Equation for Ameri-
can Spread Options(Prices)
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Figure 5.8: Explicit Finite Difference Method to Original Partial Differential Equation for Ameri-
can Spread Options(Errors)
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ready to compare the numerical results with the Monte Carlo simulation method under the two-

factor geometric Brownian motion model. The numerical results obtained by Monte Carlo sim-

ulation method are documented in Table A.5 (Figures 5.9 and 5.10). The paths of Monte Carlo

simulation are 10000, 20000, 50000, 100000 and 200000, respectively. The basis functions are

standard basis functions 1, S1, S
2
1 , S

3
1 , S2, S

2
2 , S

3
2 . We fix the number of time steps m = 50 and

vary the first underlying asset price S1 from 30 to 50. We note that when the number of paths are

larger, we get the closer results compared to the numerical results obtained by the partial differen-

tial equations in the previous section. And the number in the parentheses represents the standard

errors, when we increase the number of paths, it is much smaller, which is a good agreement with

the method of Monte Carlo simulation.

In order to investigate the effects of the basis functions, then we include the cross product term

S1S2 into our standard basis functions 1, S1, S
2
1 , S

3
1 , S2, S

2
2 , S

3
2 . The numerical results are then

shown in Table A.6 (Figures 5.11 and 5.12). When we compare it to the numerical results in

Table A.5 obtained by the standard basis functions, it’s improved a little. Next, we include the

payoff function max{S1 − S2 − K, 0} into our standard basis functions 1, S1, S
2
1 , S

3
1 , S2, S

2
2 , S

3
2 ,

the numerical results are shown in Table A.7 (Figures 5.13 and 5.14). In this case, the numerical

results are improved a lot when we compare it to the results obtained by the partial differential ap-

proaches. When we simulate the paths for far out of the money options, there are possibilities that

for all paths, we have S1 < S2 +K. Therefore, in order to exclude these case, we consider relative

out of money option paths. We vary S1 from 38 to 50. Similarly, we vary S1 from 38 to 50 for

the improved Monte Carlo simulation method where we take in the money paths to approximate βi.

Lastly, we incorporate both cross product term S1S2 and the payoff function max{S1−S2−K, 0}

into our standard basis functions 1, S1, S
2
1 , S

3
1 , S2, S

2
2 , S

3
2 . The numerical results are in Table A.8

(Figures 5.15 and 5.16). The results are very close to the results obtained by applying the finite

difference method partial different equation approach. As we see, when we take 200000 paths,
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Figure 5.9: Monte Carlo Simulation for American Spread Options(Prices)
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Figure 5.10: Monte Carlo Simulation for American Spread Options(Errors)
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the maximum error from the partial differential equation is less than 1 percent, which is pretty

agreement between these two methods.

From tables A.5, A.6, A.7 and A.8, another noticeable fact is that the results obtained by Monte

Carlo simulation method are always less than the results by the partial differential equation method.

It is in agreement with the argument that we usually get a lower bound from the Monte Carlo sim-

ulation method, because the Monte Carlo simulation method usually leads a sub-optimal exercise

strategy.

So far, for the Monte Carlo simulation, we have used all paths to approximate βi, while improved

Monte Carlo simulation method usually use in the money paths. It usually save a lot of computa-

tional time. Recall that we have the following improved Monte Carlo simulation algorithm

(i) Generate N different paths of the asset price process

{Sn1 (t1), S
n
1 (t2) · · · , Sn1 (tm)} , n = 1, 2, · · ·N,

{Sn2 (t1), S
n
2 (t2) · · · , Sn2 (tm)} , n = 1, 2, · · ·N.

(ii) At maturity, set ṽm = hm.

(iii) For i = m− 1, · · · , 2, 1

(a) Compute β̃i = β̃−1ψ β̃ψV , where β̃−1ψ and β̃ψV are given in (3.73)and (3.74).

(b) Compute c̃i = ψβ̃i
T
, n = 1, · · · , N .

(c) Compute ṽi

• If hi ≥ c̃i, ṽi = hi.

• If hi < c̃i, ṽi = ṽi+1.

(iv) Set ṽ(n)0 = hi, where ti = min{ti ∈ {t1, · · · , tm} : hi ≥ c̃i}.
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Figure 5.11: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
Cross Product Term(Prices)
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Figure 5.12: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
Cross Product Term(Errors)
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Figure 5.13: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
Payoff Function Term(Prices)
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Figure 5.14: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
Payoff Function Term(Errors)
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Figure 5.15: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
both Cross Production and Payoff Function Term(Prices)
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Figure 5.16: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
both Cross Production and Payoff Function Term(Errors)
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Figure 5.17: Improved Monte Carlo Simulation for American Spread Options(Prices)
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Figure 5.18: Improved Monte Carlo Simulation for American Spread Options(Errors)

77



(v) Take the mean of all ṽ(n)0 to get the option value ṽ0 = 1
N

∑N
n=1 ṽ

(n)
0 .

Then, we study the numerical results of the price of the American spread option by the improved

Monte Carlo simulation method. First, we take the standard basis functions as our basis functions.

The numerical results are listed in Table A.9 (Figures 5.17 and 5.18). Then, we incorporate cross

product term S1S2 into our standard basis functions as our basis functions. The numerical results

are listed in Table A.10.

5.1.3 Dual method Approach. In this subsection, we use the dual method to compute the price

of the American spread option under the two-factor geometric Brownian motion model.

In the previous two subsections, we have examined the numerical results obtained by the partial

differential equation method and Monte Carlo simulation method. We know that the Monte Carlo

simulation often generates a lower bound of the option price. In this subsection, we combine the

pseudo analytic formula and dual method to generate an upper bound of the option price.

We apply the Gauss-Hermite quadrature method to compute the integration in the pseudo analytic

formula. Then, we apply the dual method Theorem 3.3 to get the upper bound of the American

spread option.

First, we investigate into the numerical results when we take large number of paths for computing

the expectation in the Theorem 3.3. The results are in Table A.11 (Figures 5.21 and 5.22). It turns

out that our results are very stable. When we increase the number of paths 20 times from 10000

to 200000, the maximum standard error reduce from 0.007 to 0.002. This implies that we may

compute a very small amount of paths and the results are listed in Table A.12 (Figures 5.23 and

5.24). As we see, even when we just take 500 paths, the maximum standard error is about 3 cents.

It is a very good method to get a tight upper bound for the American spread option, because we

compute a very small number of paths.
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Figure 5.19: Improved Monte Carlo Simulation for American Spread Options-Standard Basis
Functions with Cross Product Term(Prices)
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Figure 5.20: Improved Monte Carlo Simulation for American Spread Options-Standard Basis
Functions with Cross Product Term(Errors)
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Figure 5.21: Dual Method for American Spread Options(Prices)
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Figure 5.22: Dual Method for American Spread Options(Errors)
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We also notice that the most of results in tables A.11 and A.12 are bigger than the results obtained

by the partial differential approach. This means we get an upper bound of the option price, this is

in agreement with the dual method Theorem 3.3.

So far, we have the numerical results of three methods for the American spread option under the

two-factor geometric Brownian motion model. We compare the differences between them. The

results are listed in Figure 5.25. The differences are about 1 or 2 percent, which means that the

numerical results are very good.
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Figure 5.23: Dual Method for American Spread Options-Small Number of Paths(Prices)
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Figure 5.24: Dual Method for American Spread Options-Small Number of Paths(Errors)
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Figure 5.25: Comparison of Numerical Results between Three Methods(MC, PDE, Dual) under
Two-Factor Geometric Brownian Motion Model

5.2 THREE-FACTOR STOCHASTIC VOLATILITY MODEL

In this section, we study the numerical implementations and results for pricing American spread

call option under three-factor stochastic volatility model. We have three approaches for pricing

the American spread option: the partial differential equation approach, Monte Carlo simulation

approach and the dual method approach.

Recall that we have the system under the risk neutral measure Q

dS1(t) = (r − q1)S1(t)dt+ σ1
√
vS1(t)dw1(t), (5.81)

dS2(t) = (r − q2)S2(t)dt+ σ2
√
vS2(t)

(
ρdw1(t) +

√
1− ρ2dw2(t)

)
, (5.82)

dv = k(µ− v)dt+ σv
√
v (ρ1dw1(t) + ρ3dw2(t) + ρ4dw3) , (5.83)
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where

ρ3 =
ρ2 − ρρ1√

1− ρ2
, (5.84)

ρ4 =

√
1− ρ2 − ρ21 − ρ22 + 2ρ1ρ2ρ

1− ρ2
, (5.85)

and w1, w2 and w3 are three independent standard Brownian motions under the risk neutral proba-

bility measure Q. We choose the American call spread option as an example. The payoff function

is max{S1 − S2 − K, 0}. The parameters are S2 = 36, σ1 = 1, σ2 = 0.5, r = 0.06, ρ = 0.5,

T = 1, q1 = 0.05, q2 = 0.01, v(0) = 0.16, µ = 0.16, k = 1, σv = 0.2, ρ1 = 0, ρ2 = 0 and K = 5.

5.2.1 Partial Differential Equations Approach. In this subsection, we use the partial differ-

ential equation method to compute the price of the American spread option under the three-factor

stochastic volatility model.

From Chapter 4, we know that the price of the American spread option is the solution of the par-

tial differential equation with a free boundary condition. We want to get rid of the free boundary

and formulate the problem into complementarity problem. Let v(x1, x2, x3, t) be the price of the

American spread option with x1 = S1(t), x2 = S2(t) and x3 = v(t) at time t. We use Lv to

represent

Lv = −rv + vt + (r − q1)x1vx1 + (r − q2)x2vx2 + k(µ− x3)vx3

+
1

2
σ1

2x1
2x3vx1x1 +

1

2
σ2

2x2
2x3vx2x2 +

1

2
σv

2x3vx3x3

+ ρσ1σ2x1x2x3vx1x2 + ρ1σ1σvx1x3vx1x3 + ρ2σ2σvx2x3vx1x2 . (5.86)
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Also, we know that we have two regions for the American spread option. In one region, early

exercise is optimal. We have

Lv ≤ 0, (5.87)

v = h. (5.88)

The other one, early exercise is not optimal. We have

Lv = 0, (5.89)

v ≥ h. (5.90)

Hence, the price is formulated as the solution of the following complementarity problem

Lv ≤ 0, (5.91)

v − h ≥ 0, (5.92)

(Lv)(v − h) = 0, (5.93)

where h = max(x1 − x2 −K, 0).

It is more convenient to solve the above complementarity problem (5.8)-(5.10) by doing the fol-

lowing substitutions

x1 = ey1 ,

x2 = ey2 ,

x3 = y3,

v(x1, x2, x3, t) = u(y1, y2, y3, t).
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Then, we have

Lu ≤ 0, (5.94)

u− h ≥ 0, (5.95)

(Lu)(u− h) = 0, (5.96)

where h = max(ey1 − ey2 −K, 0) and

Lu = −ru+ ut + (r − q1 −
1

2
σ2
1y3)uy1 + (r − q1 −

1

2
σ2
3y3)uy2

+ k(µ− y3)uy3 +
1

2
σ1

2y3uy1y1 +
1

2
σ2

2y3uy2y2 +
1

2
σu

2y3uy3y3

+ ρσ1σ2y3uy1y2 + ρ1σ1σuy3uy1y3 + ρ2σ2σuy3uy1y2 . (5.97)

Then we use the finite difference method to solve the above complementarity problem. First, we

divide the life of the option T into N equally spaced intervals of length ∆t = T
N

. Then a total of

N + 1 times are therefore considered: 0, ∆t, 2∆t, · · · , T . Then we restrict yi(i = 1, 2, 3) by

y
i
≤ yi ≤ yi, we divide yi into M equally spaced intervals of length ∆yi =

yi−yi
M

. The space and

time variables define a grid consisting of a total of (M + 1)(M + 1)(M + 1)(N + 1) points.

We use ukm,n,p to represent u(y1m, y2n, y3p, tk) with y1m = y
1
+(m−1)∆y1, y2n = y

2
+(n−1)∆y2,

y3p = y
3

+ (p− 1)∆y3 and tk = (k− 1)∆t. For the point (y1m, y2n, y3p, tk), we have the following
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finite differences

ut =
ukm,n,p − uk−1m,n,p

∆t
+O(∆t), (5.98)

uy1 =
ukm+1,n,p − ukm−1,n,p

2∆y1
+O

[
(∆y1)

2
]
, (5.99)

uy2 =
ukm,n+1,p − ukm,n−1,p

2∆y2
+O

[
(∆y2)

2
]
, (5.100)

uy3 =
ukm,n,p+1 − ukm,n,p−1

2∆y3
+O

[
(∆y2)

2
]
, (5.101)

uy1y1 =
ukm+1,n,p + ukm−1,n,p − 2ukm,n,p

(∆y1)2
+O

[
(∆y1)

2
]
, (5.102)

uy2y2 =
ukm,n+1,p + ukm,n−1,p − 2ukm,n,p

(∆y2)2
+O

[
(∆y2)

2] , (5.103)

uy3y3 =
ukm,n,p+1 + ukm,n,p−1 − 2ukm,n,p

(∆y3)2
+O

[
(∆y3)

2] , (5.104)

uy1y2 =
ukm+1,n+1,p + ukm−1,n−1,p − ukm−1,n+1,p − ukm+1,n−1,p

4∆y1∆y2
+O

[
(∆y1)

2 + (∆y2)
2] , (5.105)

uy1y3 =
ukm+1,n,p+1 + ukm−1,n,p−1 − ukm−1,n,p+1 − ukm+1,n,p−1

4∆y1∆y3
+O

[
(∆y1)

2 + (∆y3)
2] , (5.106)

uy2y3 =
ukm,n+1,p+1 + ukm,n−1,p−1 − ukm,n+1,p−1 − ukm,n−1,p+1

4∆y2∆y3
+O

[
(∆y2)

2 + (∆y3)
2] . (5.107)

Then, we incorporate all of the above finite differences into the equation (5.97). After we simplify

it and ignore the big O-terms, we obtain

Lukm,n,p = −
uk−1m,n,p

∆t
+ C1u

k
m+1,n+1,p + C2u

k
m+1,n,p+1 + (A1 +B1)u

k
m+1,n,p − C2u

k
m+1,n,p−1

− C1u
k
m+1,n−1,p + C3u

k
m,n+1,p+1 + (A2 +B2)u

k
m,n+1,p − C3u

k
m,n+1,p−1

− C3u
k
m,n−1,p+1 + (−A2 +B2)u

k
m,n−1,p + C3u

k
m,n−1,p−1 − C1u

k
m−1,n+1,p

− C2u
k
m−1,n,p+1 + (−A1 +B1)u

k
m−1,n,p + C2u

k
m−1,n,p−1 + C1u

k
m−1,n−1,p

+ (A3 +B3)u
k
m,n,p +

(
1

∆t
− r − 2(B1 +B2 +B3)

)
ukm,n,p

+ (B3 − A3)u
k
m,n,p−1, (5.108)
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where

A1 =
r − q1 − 1

2
σ2
1(y

3
+ (p− 1)∆y3)

2∆y1
, (5.109)

A2 =
r − q2 − 1

2
σ2
2(y

3
+ (p− 1)∆y3)

2∆y2
, (5.110)

A3 =
k(µ− (y

3
+ (p− 1)∆y3))

2∆y3
, (5.111)

B1 =
1
2
σ2
1(y

3
+ (p− 1)∆y3)

(∆y1)2
, (5.112)

B2 =
1
2
σ2
2(y

3
+ (p− 1)∆y3)

(∆y2)2
, (5.113)

B3 =
1
2
σ2
v(y3 + (p− 1)∆y3)

(∆y3)2
, (5.114)

C1 =
ρσ1σ2(y3 + (p− 1)∆y3)

4∆y1∆y2
, (5.115)

C2 =
ρ1σ1σ3(y3 + (p− 1)∆y3)

4∆y1∆y3
, (5.116)

C3 =
ρ2σ2σ3(y3 + (p− 1)∆y3)

4∆y2∆y3
. (5.117)

For the complementarity problem (5.94)-(5.96), we have

min{−Lu, u− h} = 0. (5.118)

Then, by (5.108), for the point (y1m, y2n, y3p, tk), we have

min{−Lukm,n,p, uk−1m,n,p − hm,n} = 0, (5.119)

where hm,n = (ey1m − ey2n −K)+. Next, by min{X − Y,X − Z} = 0 ⇔ X = max{Y, Z} and
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(5.22), we have the finite difference method for the American spread option as follows

uk−1m,n,p = max{[C1u
k
m+1,n+1,p + C2u

k
m+1,n,p+1 + (A1 +B1)u

k
m+1,n,p − C2u

k
m+1,n,p−1

− C1u
k
m+1,n−1,p + C3u

k
m,n+1,p+1 + (A2 +B2)u

k
m,n+1,p − C3u

k
m,n+1,p−1

− C3u
k
m,n−1,p+1 + (−A2 +B2)u

k
m,n−1,p + C3u

k
m,n−1,p−1 − C1u

k
m−1,n+1,p

− C2u
k
m−1,n,p+1 + (−A1 +B1)u

k
m−1,n,p + C2u

k
m−1,n,p−1 + C1u

k
m−1,n−1,p

+ (A3 +B3)u
k
m,n,p +

(
1

∆t
− r − 2(B1 +B2 +B3)

)
ukm,n,p

+ (B3 − A3)u
k
m,n,p−1] ∗∆t, hm,n}, (5.120)

with the approximated boundary and terminal conditions

v(y
1
, y2, y3, t) = 0, (5.121)

v(y1, y2, y3, t) = e−r(T−t)(ey1 − ey2 −K)+, (5.122)

v(y1, y2, y3, t),= e−r(T−t)(ey1 − ey2 −K)+, (5.123)

v(y1, y2, y3, t) = 0, (5.124)

v(y1, y2, y3, t) = e−r(T−t)(ey1 − ey2 −K)+, (5.125)

v(y1, y2, y3, t) = e−r(T−t)(ey1 − ey2 −K)+, (5.126)

v(y1, y2, y3, T ) = (ey1 − ey2 −K)+. (5.127)

Because we have the fast Fourier transformation technique for the corresponding European spread

option under the three-factor stochastic volatility model. One can use this as a benchmark to test

our finite difference approximations. The numerical results are shown in Table B.1 (Figures 5.26

and 5.27). We take the numbers of space steps and of time steps are 30× 100, 40× 200, 50× 300,

60×400, 70×600 and 80×800, respectively. Then, we use these finite difference approximations

to compute the price of the corresponding American call spread option. We get the results in Table

B.2 (Figures 5.28 and 5.29). We take values in Table B.2 with numbers of space and time steps
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Figure 5.26: Explicit Finite Difference Method for European Spread Options with Stochastic
Volatility(Prices)
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Figure 5.27: Explicit Finite Difference Method for European Spread Options with Stochastic
Volatility(Errors)
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80 × 800 as benchmark to make comparison to the Monte Carlo simulation and the dual method,

which we consider in the subsequent sections.

5.2.2 Monte Carlo Simulation Approach. In this subsection, we use the Monte Carlo simu-

lation method to compute the price of the American spread option under the three-factor stochastic

volatility model.

After we implement the finite difference method of partial differential equation approach, we are

now ready to compare the numerical results of the Monte Carlo simulation method. We take the

numbers of paths are 10000, 20000, 50000, 100000 and 200000, respectively. The results are in

Table B.3 (Figures 5.30 and 5.31). The basis functions are 1, S1, S
2
1 , S

3
1 , S2, S

2
2 , S

3
2 , S3, S

2
3 and the

number of time steps are m = 50. We notice that when the number of paths are larger, we get the

closer results compared to the numerical results obtained by the partial differential equations in

the previous subsection. And the numbers in the parentheses represent the standard errors, when

we increase the number of paths, it is much smaller, which is good agreement with the method of

Monte Carlo simulation.

Next, we consider improved Monte Carlo simulation method with the following basis functions

1, S1, S
2
1 , S

3
1 , S2, S

2
2 , S

3
2 , S3, S

2
3 . The numerical results are listed in Table B.4 (Figures 5.32 and

5.33).

5.2.3 Dual Method Approach. In this subsection, we use the dual method to compute the price

of the American spread option under the three-factor stochastic volatility model.

In the previous two subsections, we have examined the numerical results obtained by the finite
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Figure 5.28: Explicit Finite Difference Method for American Spread Options with Stochastic
Volatility(Prices)
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Figure 5.29: Explicit Finite Difference Method for American Spread Options with Stochastic
Volatility(Early Exercise Premiums)
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Figure 5.30: Monte Carlo Simulation for American Spread Options(Prices)
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Figure 5.31: Monte Carlo Simulation for American Spread Options(Errors)
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Figure 5.32: Improved Monte Carlo Simulation for American Spread Options(Prices)
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Figure 5.33: Improved Monte Carlo Simulation for American Spread Options(Errors)
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Figure 5.34: Dual Method for American Spread Options with Stochastic Volatility(Prices)
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Figure 5.35: Dual method for American Spread Options with Stochastic Volatility(Errors)
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difference method and Monte Carlo simulation method. We know that the Monte Carlo simulation

often generates a lower bound of the option price. In this subsection, we combine the fast Fourier

transformation technique and the dual method to generate an upper bound of the option price. We

first compute the martingale by the fast Fourier transformation technique. Then, we use the dual

method theorem to get the upper bound price of the American spread option. The numerical results

are listed in Table B.5 (Figures 5.34 and 5.35).

So far, we have the numerical results of three methods under the three-factor stochastic volatility

model for pricing American spread option. We compare the differences between them. The results

are listed in Figure 5.36 for the American spread option.
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Figure 5.36: Comparison of Numerical Results between Three Methods(MC, PDE, Dual) under
the Three-Factor Stochastic Volatility Model
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CHAPTER 6. CONCLUSION AND FUTURE RESEARCH

6.1 CONCLUSION

We have studied the American spread option under both the two-factor geometric Brownian motion

model and the three-factor stochastic volatility model. For two-factor model geometric Brownian

motion model, we first considered the partial differential equation approach. We also solved it by

finite difference method. But this method is slow. In order to obtain more accuracy results, it takes

more computational time. Then, we considered the Monte Carlo simulation method. It is very

easy to implement and extend the model to the three factor stochastic volatility model. However,

it may be hard to get a very tight lower bound, because we have several parameters to choose. One

is how do we choose the basis functions. Another one is how many basis functions we need to

choose. These are very subjective. After we test with some parameters, we obtain a tight lower

bound. Lastly, we studied the dual method for pricing the American spread option. We obtain a

tight upper bound for American spread option with a very small amount of paths.

For the three-factor stochastic volatility model, first, we compute the price of the American spread

option by the partial differential equation approach. However, in this approach, the dimension

of the partial differential equation is high, so it takes more computational time to obtain more

accuracy results. For the Monte Carlo simulation approach, we get a tight lower bound. For the

dual method, we have an effective way to compute the martingale by fast Fourier transformation

technique. Then, we get a tight upper bound for the price of the American spread option.
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6.2 FURTHER RESEARCH

There are many exciting directions for the further research. We have studied the American spread

option under the two-factor geometric Brownian motion model and three-factor stochastic volatil-

ity model. We made the assumption that the underlying assets are continuous functions, how about

when there are jumps in our model?

Another direction is that we only study the American spread options. How about other American

style exotic options? Such as American style barrier, American style look-back and American style

Asian spread option?

Lastly, we assume that interest rates and corrections are constants for our models. However, em-

pirical research has shown that interest rate are changing over time. Actually, there are a lot

of stochastic models for interests rate, such as Hull-White model [28], Cox-Ingersoll-Ross(CIR)

model [29], Heath-Jarrow-Morton (HJM) framework [30] and others. The correlations between the

two underlying assets could also change as a response to the uncertain market conditions over time.

And from [31], we know that the implied correlation often has a frown feature rather than smiles

for implied volatility. Therefore the constant correlation assumption could lead to mis-pricing the

spread option the same as the constant volatility Black-Scholes model which generates price bias

in the vanilla options. An alternative approach is that we assume that both of them are stochastic.

Then, how to price the options with so many stochastic factors?
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APPENDIX A. TWO-FACTOR GEOMETRIC BROWNIAN MOTION MODEL

S1 Analytic Explicit Finite Difference
50×100 80×400 100×800 120×1000 200×1200 300×3000 400×4000

30 0.976 0.953 0.953 0.966 0.965 0.964 0.964 0.964

32 1.420 1.438 1.411 1.411 1.413 1.412 1.412 1.412

34 1.974 1.929 1.978 1.965 1.972 1.969 1.969 1.969

36 2.644 2.671 2.635 2.645 2.643 2.641 2.640 2.640

38 3.429 3.473 3.441 3.431 3.428 3.427 3.426 3.426

40 4.328 4.301 4.327 4.328 4.328 4.327 4.326 4.326

45 7.040 7.097 7.042 7.042 7.041 7.039 7.038 7.038

50 10.322 10.295 10.325 10.324 10.322 10.321 10.320 10.320

S1 Analytic Errors(100 Basis Points)
30 0.976 -2.316 -2.316 -1.046 -1.176 -1.276 -1.216 -1.206

32 1.420 1.783 -0.907 -0.907 -0.657 -0.727 -0.757 -0.757

34 1.974 -4.493 0.427 -0.943 -0.213 -0.473 -0.493 -0.503

36 2.644 2.741 -0.889 0.121 -0.029 -0.279 -0.349 -0.369

38 3.429 4.426 1.206 0.206 -0.104 -0.174 -0.264 -0.294

40 4.328 -2.768 -0.078 -0.018 0.022 -0.118 -0.218 -0.248

45 7.040 5.730 0.210 0.220 0.180 -0.050 -0.170 -0.210

50 10.322 -2.734 0.286 0.156 0.036 -0.104 -0.174 -0.204

Table A.1: Explicit Finite Difference Method for European Spread Options
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S1 Analytic Explicit Finite Difference to IPDE
50×100 80×400 100×800 120×1000 200×1200 300×3000 400×4000

30 0.976 0.996 0.987 0.982 0.980 0.977 0.976 0.976

32 1.420 1.430 1.430 1.422 1.421 1.421 1.420 1.419

34 1.974 1.999 1.977 1.982 1.979 1.976 1.974 1.974

36 2.644 2.684 2.656 2.655 2.647 2.644 2.644 2.643

38 3.429 3.479 3.447 3.437 3.434 3.431 3.430 3.429

40 4.328 4.385 4.345 4.332 4.338 4.329 4.328 4.328

45 7.040 7.079 7.045 7.054 7.045 7.042 7.040 7.040

50 10.322 10.328 10.350 10.325 10.332 10.323 10.323 10.322

S1 Analytic Errors(100 Basis Points)
30 0.976 1.994 1.014 0.534 0.304 0.054 -0.006 -0.026

32 1.420 1.023 1.023 0.263 0.153 0.083 0.003 -0.027

34 1.974 2.467 0.267 0.747 0.487 0.197 0.017 -0.043

36 2.644 4.011 1.251 1.101 0.341 0.031 0.071 -0.019

38 3.429 4.956 1.786 0.816 0.466 0.236 0.086 -0.004

40 4.328 5.662 1.722 0.332 0.932 0.112 0.012 0.002

45 7.040 3.910 0.570 1.440 0.490 0.240 0.050 0.030

50 10.322 0.596 2.846 0.296 0.996 0.146 0.056 0.016

Table A.2: Explicit Finite Difference Method to Improved Partial Differential Equation for Euro-
pean Spread Options
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S1 Analytic Explicit Finite Difference

50×100 80×400 100×800 120×1000 200×1200 300×3000 400×4000

30 0.976 1.017 1.008 1.003 1.000 0.998 0.997 0.997

32 1.420 1.462 1.463 1.455 1.454 1.454 1.453 1.452

34 1.974 2.048 2.026 2.031 2.029 2.026 2.024 2.023

36 2.644 2.756 2.728 2.727 2.719 2.716 2.717 2.716

38 3.429 3.581 3.549 3.539 3.535 3.533 3.532 3.531

40 4.328 4.525 4.484 4.470 4.477 4.468 4.467 4.467

45 7.040 7.351 7.317 7.327 7.317 7.315 7.314 7.313

50 10.322 10.800 10.829 10.801 10.810 10.801 10.800 10.800

S1 Analytic Early Exercise Premium(100 Basis Points)
30 0.976 4.094 3.104 2.614 2.394 2.154 2.094 2.064

32 1.420 4.273 4.313 3.533 3.433 3.383 3.303 3.273

34 1.974 7.397 5.177 5.707 5.447 5.187 4.997 4.937

36 2.644 11.271 8.461 8.331 7.541 7.261 7.311 7.211

38 3.429 15.216 11.956 10.956 10.616 10.416 10.266 10.176

40 4.328 19.642 15.602 14.162 14.832 14.022 13.922 13.912

45 7.040 31.150 27.750 28.760 27.770 27.580 27.390 27.370

50 10.322 47.846 50.726 47.916 48.786 47.916 47.826 47.796

Table A.3: Explicit Finite Difference Method to Improved Partial Differential Equation for Amer-
ican Spread Options
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S1 IPDE Explicit Finite Difference

50×100 80×400 100×800 120×1000 200×1200 300×3000 400×4000

30 0.997 0.975 0.977 0.989 0.989 0.989 0.990 0.991

32 1.452 1.472 1.448 1.448 1.450 1.450 1.450 1.450

34 2.023 1.992 2.033 2.020 2.026 2.024 2.023 2.023

36 2.716 2.748 2.715 2.722 2.721 2.717 2.716 2.716

38 3.531 3.576 3.547 3.538 3.535 3.533 3.532 3.531

40 4.467 4.451 4.474 4.473 4.473 4.470 4.468 4.468

45 7.313 7.371 7.323 7.321 7.319 7.316 7.314 7.313

50 10.800 10.784 10.810 10.807 10.805 10.802 10.800 10.800

S1 IPDE Errors(100 Basis Points)
30 0.997 -2.260 -1.980 -0.800 -0.860 -0.820 -0.700 -0.660

32 1.452 1.970 -0.450 -0.440 -0.210 -0.230 -0.260 -0.240

34 2.023 -3.180 0.910 -0.300 0.280 0.030 -0.030 -0.050

36 2.716 3.220 -0.080 0.640 0.480 0.170 0.050 0.010

38 3.531 4.540 1.640 0.730 0.420 0.230 0.070 0.020

40 4.467 -1.620 0.680 0.580 0.530 0.260 0.090 0.030

45 7.313 5.720 1.000 0.770 0.610 0.270 0.060 -0.010

50 10.800 -1.590 0.980 0.720 0.490 0.220 0.050 -0.010

Table A.4: Explicit Finite Difference Method to Original Partial Differential Equation for Ameri-
can Spread Options
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S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

30 0.997 0.939 (0.037) 0.962 (0.026) 0.967 (0.016) 0.974 (0.011) 0.987 (0.008)

32 1.452 1.363 (0.046) 1.413 (0.032) 1.415 (0.020) 1.423 (0.014) 1.442 (0.010)

34 2.023 1.894 (0.055) 1.969 (0.039) 1.976 (0.024) 1.989 (0.017) 2.004 (0.012)

36 2.716 2.541 (0.065) 2.660 (0.046) 2.650 (0.029) 2.669 (0.021) 2.681 (0.015)

38 3.531 3.324 (0.075) 3.477 (0.054) 3.440 (0.033) 3.465 (0.024) 3.479 (0.017)

40 4.467 4.241 (0.085) 4.399 (0.061) 4.351 (0.038) 4.377 (0.027) 4.391 (0.019)

45 7.313 6.982 (0.112) 7.167 (0.080) 7.106 (0.050) 7.114 (0.036) 7.141 (0.025)

50 10.800 10.279 (0.137) 10.527 (0.099) 10.433 (0.062) 10.436 (0.044) 10.463 (0.031)

S1 PDE Errors(100 Basis Points)

30 0.997 5.830 3.530 3.010 2.300 1.020

32 1.452 8.940 3.970 3.790 2.970 1.010

34 2.023 12.940 5.440 4.700 3.490 1.940

36 2.716 17.450 5.600 6.550 4.720 3.440

38 3.531 20.690 5.340 9.070 6.540 5.150

40 4.467 22.610 6.790 11.620 9.070 7.640

45 7.313 33.110 14.620 20.750 19.930 17.230

50 10.800 52.070 27.280 36.660 36.420 33.690

Table A.5: Monte Carlo Simulation for American Spread Options
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S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

30 0.997 0.947 (0.038) 0.962 (0.026) 0.967 (0.016) 0.978 (0.012) 0.992 (0.008)

32 1.452 1.356 (0.046) 1.413 (0.032) 1.415 (0.020) 1.419 (0.014) 1.440 (0.010)

34 2.023 1.899 (0.055) 1.969 (0.039) 1.976 (0.024) 1.981 (0.017) 1.999 (0.013)

36 2.716 2.557 (0.065) 2.660 (0.046) 2.650 (0.029) 2.659 (0.021) 2.675 (0.015)

38 3.531 3.327 (0.075) 3.477 (0.054) 3.440 (0.033) 3.458 (0.024) 3.474 (0.017)

40 4.467 4.250 (0.085) 4.399 (0.061) 4.351 (0.038) 4.377 (0.027) 4.388 (0.019)

45 7.313 7.072 (0.111) 7.167 (0.080) 7.106 (0.050) 7.143 (0.035) 7.158 (0.025)

50 10.800 10.576 (0.129) 10.527 (0.099) 10.433 (0.062) 10.503 (0.042) 10.519 (0.030)

S1 PDE Errors(100 Basis Points)

30 0.997 4.990 3.530 3.010 1.920 0.470

32 1.452 9.680 3.970 3.790 3.360 1.220

34 2.023 12.420 5.440 4.700 4.260 2.470

36 2.716 15.920 5.600 6.550 5.660 4.060

38 3.531 20.430 5.340 9.070 7.290 5.720

40 4.467 21.690 6.790 11.620 9.000 7.930

45 7.313 24.180 14.620 20.750 17.080 15.510

50 10.800 22.350 27.280 36.660 29.730 28.130

Table A.6: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
Cross Product Term
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S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

38 3.531 3.361 (0.071) 3.498 (0.052) 3.454 (0.032) 3.480 (0.023) 3.489 (0.017)

40 4.467 4.281 (0.081) 4.456 (0.059) 4.384 (0.037) 4.397 (0.026) 4.408 (0.019)

45 7.313 7.085 (0.102) 7.290 (0.075) 7.202 (0.047) 7.193 (0.034) 7.191 (0.024)

50 10.800 10.582 (0.120) 10.731 (0.089) 10.593 (0.056) 10.603 (0.040) 10.620 (0.029)

S1 PDE Errors(100 Basis Points)

38 3.531 17.000 3.290 7.660 5.120 4.200

40 4.467 18.670 1.170 8.350 7.020 5.960

45 7.313 22.850 2.340 11.170 12.050 12.280

50 10.800 21.830 6.920 20.680 19.720 17.960

Table A.7: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
Payoff Function Term

S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

38 3.531 3.397 (0.068) 3.511 (0.049) 3.508 (0.030) 3.512 (0.022) 3.506 (0.016)

40 4.467 4.316 (0.074) 4.472 (0.054) 4.455 (0.033) 4.443 (0.024) 4.441 (0.017)

45 7.313 7.256 (0.093) 7.331 (0.067) 7.284 (0.042) 7.294 (0.030) 7.281 (0.022)

50 10.800 10.779 (0.106) 10.832 (0.078) 10.724 (0.049) 10.744 (0.035) 10.751 (0.025)

S1 PDE Errors(100 Basis Points)

38 3.531 13.410 1.980 2.240 1.890 2.460

40 4.467 15.160 -0.490 1.190 2.400 2.680

45 7.313 5.760 -1.720 2.930 1.980 3.260

50 10.800 2.080 -3.250 7.560 5.570 4.870

Table A.8: Monte Carlo Simulation for American Spread Options-Standard Basis Functions with
both Cross Production and Payoff Function Term

105



S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

38 3.531 3.505 (0.068) 3.546 (0.048) 3.523 (0.029) 3.507 (0.021) 3.513 (0.015)

40 4.467 4.423 (0.077) 4.468 (0.054) 4.453 (0.033) 4.442 (0.023) 4.449 (0.016)

45 7.313 7.240 (0.092) 7.311 (0.069) 7.295 (0.041) 7.279 (0.029) 7.281 (0.020)

50 10.800 10.746 (0.103) 10.740 (0.073) 10.758 (0.046) 10.739 (0.033) 10.738 (0.023)

S1 PDE Errors(100 Basis Points)

38 3.531 2.550 -1.540 0.750 2.400 1.780

40 4.467 4.450 -0.110 1.440 2.580 1.790

45 7.313 7.330 0.260 1.830 3.470 3.190

50 10.800 5.400 5.970 4.230 6.060 6.150

Table A.9: Improved Monte Carlo Simulation for American Spread Options

S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

38 3.531 3.555 (0.068) 3.566 (0.048) 3.542 (0.029) 3.539 (0.020) 3.536 (0.014)

40 4.467 4.475 (0.074) 4.501 (0.053) 4.494 (0.032) 4.473 (0.023) 4.477 (0.016)

45 7.313 7.303 (0.088) 7.376 (0.068) 7.312 (0.040) 7.315 (0.028) 7.320 (0.020)

50 10.800 10.857 (0.102) 10.752 (0.066) 10.774 (0.044) 10.787 (0.031) 10.794 (0.022)

S1 PDE Errors(100 Basis Points)

38 3.531 -2.430 -3.540 -1.140 -0.840 -0.520

40 4.467 -0.720 -3.410 -2.660 -0.610 -0.940

45 7.313 1.070 -6.230 0.100 -0.160 -0.700

50 10.800 -5.750 4.790 2.570 1.280 0.630

Table A.10: Improved Monte Carlo Simulation for American Spread Options-Standard Basis
Functions with Cross Product Term
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S1 PDE Dual method

10000 20000 50000 100000 200000

30 0.997 1.000 (0.001) 1.000 (0.001) 0.999 (0.001) 1.000 (0.000) 1.001 (0.000)

32 1.452 1.456 (0.002) 1.458 (0.001) 1.458 (0.001) 1.458 (0.001) 1.459 (0.000)

34 2.023 2.030 (0.002) 2.033 (0.001) 2.034 (0.001) 2.034 (0.001) 2.035 (0.000)

36 2.716 2.728 (0.002) 2.732 (0.002) 2.733 (0.001) 2.733 (0.001) 2.733 (0.001)

38 3.531 3.551 (0.003) 3.557 (0.002) 3.557 (0.001) 3.557 (0.001) 3.558 (0.001)

40 4.467 4.500 (0.004) 4.506 (0.003) 4.506 (0.002) 4.507 (0.001) 4.507 (0.001)

45 7.313 7.397 (0.005) 7.406 (0.004) 7.404 (0.002) 7.405 (0.002) 7.406 (0.001)

50 10.800 10.978 (0.007) 10.986 (0.005) 10.985 (0.003) 10.985 (0.002) 10.985 (0.002)

S1 PDE Errors(100 Basis Points)

30 0.997 -0.260 -0.260 -0.230 -0.300 -0.340

32 1.452 -0.400 -0.540 -0.530 -0.590 -0.630

34 2.023 -0.670 -0.990 -1.030 -1.070 -1.110

36 2.716 -1.220 -1.670 -1.690 -1.730 -1.760

38 3.531 -2.030 -2.610 -2.600 -2.660 -2.700

40 4.467 -3.240 -3.890 -3.890 -3.960 -3.980

45 7.313 -8.380 -9.240 -9.090 -9.200 -9.240

50 10.800 -17.840 -18.650 -18.510 -18.530 -18.530

Table A.11: Dual method for American Spread Options
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S1 PDE Dual method

10 50 100 500 1000

30 0.997 1.077 (0.101) 1.032 (0.035) 1.016 (0.015) 0.997 (0.005) 0.996 (0.003)

32 1.452 1.548 (0.128) 1.483 (0.039) 1.477 (0.019) 1.453 (0.006) 1.451 (0.004)

34 2.023 2.122 (0.148) 2.060 (0.044) 2.064 (0.024) 2.029 (0.008) 2.023 (0.006)

36 2.716 2.808 (0.165) 2.767 (0.050) 2.764 (0.030) 2.729 (0.011) 2.719 (0.007)

38 3.531 3.607 (0.178) 3.591 (0.058) 3.584 (0.036) 3.555 (0.013) 3.546 (0.009)

40 4.467 4.531 (0.190) 4.543 (0.067) 4.527 (0.042) 4.508 (0.016) 4.494 (0.011)

45 7.313 7.321 (0.218) 7.433 (0.085) 7.412 (0.056) 7.417 (0.023) 7.385 (0.016)

50 10.800 10.891 (0.246) 10.993 (0.102) 11.032 (0.066) 10.996 (0.030) 10.966 (0.021)

S1 PDE Errors(100 Basis Points)

30 0.997 -7.990 -3.470 -1.910 0.000 0.100

32 1.452 -9.540 -3.090 -2.500 -0.080 0.180

34 2.023 -9.900 -3.660 -4.040 -0.560 0.070

36 2.716 -9.240 -5.090 -4.820 -1.320 -0.370

38 3.531 -7.660 -6.000 -5.350 -2.430 -1.490

40 4.467 -6.400 -7.580 -5.950 -4.020 -2.650

45 7.313 -0.770 -11.970 -9.870 -10.390 -7.170

50 10.800 -9.150 -19.270 -23.210 -19.600 -16.620

Table A.12: Dual method for American Spread Options-Small Number of Paths
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APPENDIX B. THREE-FACTOR STOCHASTIC VOLATILITY MODEL

S1 FFT Explicit Finite Difference
30×100 40×200 50×300 60×400 70×600 80×800

30 0.990 1.321 1.066 1.006 0.991 0.986 0.984

32 1.428 1.989 1.519 1.366 1.432 1.446 1.414

34 1.977 2.710 2.230 1.915 1.904 1.979 1.982

36 2.642 3.469 3.019 2.696 2.534 2.599 2.617

38 3.423 4.259 3.850 3.551 3.349 3.374 3.392

40 4.320 5.092 4.724 4.453 4.270 4.218 4.266

45 7.033 7.861 7.519 7.258 7.087 7.000 6.921

50 10.325 11.307 10.921 10.642 10.456 10.362 10.296

S1 FFT Errors(100 Basis Points)
30 0.990 33.080 7.590 1.580 0.140 -0.450 -0.560

32 1.428 56.050 9.060 -6.230 0.350 1.810 -1.380

34 1.977 73.290 25.270 -6.230 -7.320 0.140 0.450

36 2.642 82.680 37.710 5.450 -10.750 -4.320 -2.510

38 3.423 83.540 42.700 12.790 -7.440 -4.980 -3.140

40 4.320 77.140 40.400 13.310 -5.000 -10.210 -5.420

45 7.033 82.840 48.670 22.570 5.470 -3.320 -11.220

50 10.325 98.250 59.580 31.740 13.080 3.770 -2.830

Table B.1: Explicit Finite Difference Method for European Spread Options with Stochastic Volatil-
ity
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S1 FFT Explicit Finite Difference
30×100 40×200 50×300 60×400 70×600 80×800

30 0.990 1.370 1.100 1.029 1.017 1.014 1.009

32 1.428 2.051 1.576 1.405 1.468 1.485 1.455

34 1.977 2.794 2.298 1.978 1.964 2.036 2.039

36 2.642 3.581 3.111 2.779 2.614 2.685 2.704

38 3.423 4.415 3.979 3.665 3.455 3.486 3.510

40 4.320 5.314 4.918 4.620 4.424 4.370 4.424

45 7.033 8.270 7.888 7.596 7.403 7.310 7.225

50 10.325 11.918 11.480 11.199 11.007 10.911 10.839

S1 FFT Early Exercise Premium(100 Basis Points)
30 0.990 37.990 10.980 3.870 2.660 2.370 1.850

32 1.428 62.290 14.780 -2.320 3.930 5.670 2.680

34 1.977 81.700 32.120 0.030 -1.330 5.910 6.170

36 2.642 93.900 46.910 13.750 -2.790 4.310 6.200

38 3.423 99.170 55.580 24.190 3.120 6.260 8.640

40 4.320 99.410 59.810 30.010 10.400 4.960 10.350

45 7.033 123.690 85.570 56.370 37.040 27.720 19.180

50 10.325 159.350 115.530 87.410 68.260 58.640 51.430

Table B.2: Explicit Finite Difference Method for American Spread Options with Stochastic Volatil-
ity
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S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

30 1.009 0.997 (0.038) 0.996 (0.027) 0.963 (0.016) 0.978 (0.012) 0.988 (0.008)

32 1.455 1.442 (0.047) 1.439 (0.034) 1.402 (0.020) 1.418 (0.015) 1.435 (0.010)

34 2.039 1.999 (0.057) 1.993 (0.040) 1.962 (0.024) 1.970 (0.018) 1.993 (0.012)

36 2.704 2.679 (0.067) 2.654 (0.047) 2.625 (0.029) 2.637 (0.021) 2.664 (0.015)

38 3.510 3.470 (0.078) 3.450 (0.054) 3.408 (0.033) 3.426 (0.024) 3.458 (0.017)

40 4.424 4.377 (0.089) 4.360 (0.062) 4.314 (0.038) 4.333 (0.028) 4.362 (0.019)

45 7.225 7.071 (0.115) 7.093 (0.081) 7.047 (0.050) 7.061 (0.036) 7.104 (0.026)

50 10.839 10.375 (0.142) 10.402 (0.100) 10.371 (0.062) 10.354 (0.044) 10.415 (0.031)

S1 PDE Errors(100 Basis Points)

30 1.009 1.130 1.300 4.600 3.070 2.080

32 1.455 1.260 1.630 5.260 3.700 2.050

34 2.039 4.020 4.630 7.680 6.900 4.570

36 2.704 2.510 5.040 7.900 6.700 3.960

38 3.510 4.030 5.990 10.140 8.340 5.210

40 4.424 4.680 6.340 10.990 9.030 6.150

45 7.225 15.340 13.190 17.730 16.320 12.070

50 10.839 46.360 43.670 46.790 48.470 42.380

Table B.3: Monte Carlo Simulation for American Spread Options
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S1 PDE Monte Carlo Simulation for American Spread

10000 20000 50000 100000 200000

38 3.510 3.564 (0.070) 3.523 (0.050) 3.485 (0.030) 3.475 (0.022) 3.482 (0.015)

40 4.424 4.485 (0.079) 4.453 (0.055) 4.414 (0.033) 4.380 (0.024) 4.397 (0.017)

45 7.225 7.351 (0.096) 7.269 (0.067) 7.208 (0.041) 7.190 (0.029) 7.221 (0.021)

50 10.839 10.907 (0.105) 10.722 (0.073) 10.704 (0.047) 10.668 (0.033) 10.684 (0.023)

S1 PDE Errors(100 Basis Points)

38 3.510 -5.410 -1.350 2.450 3.480 2.760

40 4.424 -6.170 -2.890 0.920 4.410 2.680

45 7.225 -12.600 -4.440 1.660 3.420 0.350

50 10.839 -6.790 11.720 13.460 17.130 15.500

Table B.4: Improved Monte Carlo Simulation for American Spread Options
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S1 PDE Dual method

10 50 100 500 1000

30 1.009 0.941 (0.034) 1.012 (0.012) 0.997 (0.005) 1.013 (0.006) 1.012 (0.004)

32 1.455 1.348 (0.075) 1.467 (0.017) 1.443 (0.008) 1.466 (0.007) 1.466 (0.005)

34 2.039 1.979 (0.030) 2.035 (0.022) 2.004 (0.012) 2.038 (0.009) 2.036 (0.006)

36 2.704 2.672 (0.027) 2.730 (0.027) 2.682 (0.015) 2.737 (0.011) 2.728 (0.008)

38 3.510 3.477 (0.052) 3.549 (0.033) 3.489 (0.019) 3.561 (0.014) 3.549 (0.010)

40 4.424 4.396 (0.084) 4.494 (0.041) 4.440 (0.025) 4.506 (0.017) 4.496 (0.011)

45 7.225 7.279 (0.113) 7.425 (0.070) 7.357 (0.045) 7.392 (0.023) 7.385 (0.016)

50 10.839 10.814 (0.140) 11.057 (0.093) 10.994 (0.060) 10.996 (0.029) 10.958 (0.021)

S1 PDE Errors(100 Basis Points)

30 1.009 6.760 -0.340 1.150 -0.490 -0.340

32 1.455 10.690 -1.190 1.160 -1.090 -1.090

34 2.039 5.970 0.430 3.470 0.080 0.290

36 2.704 3.160 -2.600 2.170 -3.330 -2.440

38 3.510 3.310 -3.960 2.080 -5.160 -3.900

40 4.424 2.770 -7.030 -1.630 -8.280 -7.190

45 7.225 -5.450 -20.000 -13.200 -16.750 -16.060

50 10.839 2.460 -21.750 -15.470 -15.690 -11.920

Table B.5: Dual Method for American Spread Options with Stochastic Volatility
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