
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2014-06-19

Hecke Eigenvalues and Arithmetic Cohomology
William Leonard Cocke
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Cocke, William Leonard, "Hecke Eigenvalues and Arithmetic Cohomology" (2014). All Theses and Dissertations. 4130.
https://scholarsarchive.byu.edu/etd/4130

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/4130?utm_source=scholarsarchive.byu.edu%2Fetd%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Hecke Eigenvalues and Arithmetic Cohomology

William Leonard Cocke

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Darrin Doud, Chair
Paul Jenkins
William Lang

Department of Mathematics

Brigham Young University

June 2014

Copyright c© 2014 William Leonard Cocke

All Rights Reserved

abstract

Hecke Eigenvalues and Arithmetic Cohomology

William Leonard Cocke
Department of Mathematics, BYU

Master of Science

We provide algorithms and documention to compute the cohomology of congruence sub-
groups of SL3(Z) using the well-rounded retract and the Voronoi decomposition. We define
the Sharbly complex and how one acts on a k-sharbly by the Hecke operators. Since the
norm of a sharbly is not preserved by the Hecke operators we also examine the reduction
techniques described by Gunnells and present our implementation of said techniques for
n = 3.

Keywords: Hecke Action, Arithmetic Cohomology, Sharblies, Modular Symbols

Acknowledgments

I am grateful to Darrin Doud for his support, guidance, and profinite patience throughout the

project. Special thanks to my wife Em for her support throughout our life together. I would

be remiss to not acknowledge the small primate who attended all of my research meetings,

listened to my drafts, and helped me clarify new ideas. I also wish to publicly thank the

Mathematics Department at Brigham Young University, especially the indispensable Lonette

Stoddard, who kept the department running nigh single handedly. I am presently and always

indebted to our Heavenly Father who knew all the following results and graciously allowed

me to discover them for myself.

ERITIS SICTUM DEUS, SCIENTES BONUM ET MALUM.

Contents

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Reciprocity Laws . 1

1.2 Serre’s Conjecture and Generalizations . 2

1.3 The Ash-Doud-Pollack-Sinnott Conjecture 4

1.4 Computation for Cohomology and Hecke Operators 6

2 Calculating Cohomology 7

2.1 Ash’s Approach . 8

2.2 Voronoi’s Work on Perfect Forms . 17

2.3 Calculating the Cohomology for Γ0(N) . 20

2.4 Pn−1(Z/NZ). 21

2.5 Calculating the Stabilizers . 25

2.6 Orientation of the Orbits . 27

2.7 Orbit Implementation Details . 29

2.8 Using the Orbit Information to Calculate Cohomology 30

3 The Sharbly Complex 33

3.1 Definition . 33

3.2 The Norm of a Sharbly . 36

3.3 Implementation of the Sharbly Complex . 39

4 The Hecke Operators 40

iv

4.1 The Hecke Operators for Classical Modular Forms 41

4.2 The Hecke Operators on the Sharbly Complex 43

5 Sharbly Reduction Methods 45

5.1 Modular Symbol Reduction . 47

5.2 LLL Reduction . 49

5.3 Converting Cohomology to Sharblies . 51

5.4 Choosing Appropriate Lifts . 53

5.5 Hermite Normal Form . 54

5.6 Sharbly Reduction Methods: Introduction 56

5.7 Sharbly Reduction Methods: Geometric . 58

6 Example When N = 11 64

6.1 Orbits of the Stabilizers . 64

6.2 Making the Boundary Matrix . 65

A Stabilizers of Cells 66

A.1 Notation . 66

A.2 Stabilizer of σ0 . 66

A.3 Stabilizer of τ2 . 69

A.4 Stabilizer of τ3 . 70

A.5 Stabilizer of ω2 . 73

A.6 Intersection Data . 74

A.7 Boundaries of the Standard Cells . 74

B Algorithms for P2(Z/NZ) 75

C Computing the Kernel Modulo the Boundary 85

D Data for the Example N = 11 86

v

D.1 Stab(σ0)-orbits of P2(Z/11Z) . 86

D.2 Stab(τ2)-orbits of P2(Z/11Z) . 89

D.3 Stab(τ3)-orbits of P2(Z/11Z) . 93

D.4 Stab(ω2)-orbits of P2(Z/11Z) . 96

D.5 Calculating Suborbits Under the Intersection 102

E Computer Code 117

E.1 Stabilizer Algorithm . 117

E.2 Calculating Orbits . 123

E.3 Constructing Hecke Operators . 140

E.4 Integer LLL Reduction Algorithm . 142

E.5 Candidate Selection Code . 152

E.6 HNF Reduction Algorithm . 157

Bibliography 163

vi

List of Tables

1.1 Dimensions of Cohomology and the Cuspidal Range 3

2.1 Number of Classes of Perfect Forms for Dimensions 2-8 18

6.1 Size and Representatives of Stab(σ0)-orbits of P2(Z/11/Z) 65

6.2 Size and Representatives of Stab(τ2)-orbits of P2(Z/11/Z) 65

6.3 Size and Representatives of Stab(τ3)-orbits of P2(Z/11/Z) 65

vii

List of Figures

2.1 A Portion of the SL2(Z) orbit of σ. 15

5.1 The parallelepiped formed by (2, 3)T and (1, 3)T 48

5.2 Determing η when n = 2 . 59

5.3 Decomposing the octahedron . 60

5.4 Constructing the 3-iterated cone over the 1 polytope. 61

5.5 The 2-iterated cone over the 2 polytope. 61

5.6 The 1-iterated cone over the 3-orthoplex. 62

5.7 The 4-orthoplex or 16-cell. 64

viii

Chapter 1. Introduction

In 1987, Serre [54] made his famous modularity conjecture. Serre conjectured a correspon-

dence the eigenvalues of Hecke operators on modular forms and Galois representations. Reci-

procity conjectures such as Serre’s have since been generalized to the arithmetic cohomology

of congruence subgroups of SLn(Z). However, the computation of arithmetic cohomology has

proven quite difficult even given larger, faster, computing devices. Currently such cohomol-

ogy groups have been computed for n ≤ 4 since larger n yield non-simplicial cell complexes.

Moreover, given a cohomology class there is not in general a feasible way to compute the

Hecke action.

For the cases when n ≤ 4 the cohomology is always simplicial and there are techniques

to compute it. Because the cohomology of congruence subgroups of SLn(Z) vanishes in

sufficiently high dimension, the needed calculations are always finite. However, the action

of the corresponding Hecke operators is still difficult to compute and except for the top

dimension such computations are not known to terminate and indeed have only been tested

for n = 2, 3, and 4 for one of the dimensions of cohomology in each case.

1.1 Reciprocity Laws

Reciprocity laws are one of the most surprising discoveries of the last fifty years in mathe-

matics. In general reciprocity laws attempt to establish a correspondence between certain

properties of the absolute Galois group of the rational numbers, GQ = Gal(Q/Q), and prop-

erties of some other collection of objects. The absolute Galois group of Q is a somewhat

mysterious group. For example, it has infinite order and yet only two of the automorphisms

which make it up can be explicitly written down: the identity automorphism and complex

conjugation. Since GQ corresponds to automorphisms which permute roots of polynomial

equations, knowing the structure of GQ would lend considerable insight into polynomials

over Z. Consequently reciprocity laws are particularly useful and interesting when the ob-

1

jects involved are computable and thus allow one to understand certain properties of GQ.

Consider the following general examples:

Example 1.1. i) Certain homomorphisms GQ −→ F× correspond to homomorphisms of

(Z/N)× −→ F× for various N .

ii) Certain homomorphisms GQ → GL2(Qp) correspond to modular forms for Γ0(N) for

various N .

iii) Certain homomorphisms GQ → GLn(Fp) correspond to Hecke eigenclasses in H∗(Γ, V)

where Γ = Γ0(N) ⊂ SLn(Z) for V a mod p coefficient module.

In general these reciprocity laws allow us to understand some of the properties of GQ

by studying concrete objects. One of the most widely acclaimed reciprocity laws is Serre’s

modularity conjecture.

1.2 Serre’s Conjecture and Generalizations

In 1973, Serre conjectured that odd irreducible continuous representations ρ : GQ → GL2(Fp)

are modular; meaning that there is a resulting modular form which is an eigenfunction of

the Hecke operators such that the mod p reduction of the `th eigenvalue equals the trace of

the Frobenius of ρ. Serre gave a conjectural recipe for the character, level, and weight of the

corresponding space of modular forms. For more details on Serre’s conjecture see [54]. It

is worth noting that Serre’s conjecture has been proven by a series of celebrated results of

Khare and Wintenberger [36][37][38].

Recall that the Hecke operators are a family of commuting linear operators that act on

the space of cuspidal modular forms of a given weight. Consequently, the Hecke operators

have common eigenspaces. These eigenspaces are spanned by eigenfunctions. The mod p

2

reductions of the eigenvalues of these eigenfunctions correspond to the coefficients of the

characteristic polynomial of the Frobenius of ρ.

Serre’s conjecture served as the foundation for other conjectures concerning homomor-

phisms from GQ to groups of matrices. These generalizations of Serre’s conjecture mostly

take one of two forms. One area of research is the examination of two dimensional rep-

resentations of the absolute Galois groups of different number fields. Research conducted

by Cremona [27] focused on imaginary quadratic extensions and Dembélé[28] has examined

real quadratic extensions. More recently, work by Gunnells, Hajir, and Yasaki [34] examine

the case when Q is replaced by Q(ζ5) the cyclotomic quartic field; this case is particularly

interesting since they needed to use the Sharbly complex, a technique developed to study

n-dimensional representations of GQ for n > 3.

The other main generalization of Serre’s conjecture involves studying representations

ρ : GQ → GLn(Fp). To do this one reinterprets the correspondence in terms of the coho-

mology of congruence subgroups of SLn(Z). For any n the cuspidal cohomology occurs in

bands of dimension roughly half-way between 0 and a finite number called the cohomolog-

ical dimension. The following table based on formulas of Schwermer [52] gives the total

dimension of cohomology in terms of the dimension of a complex X , which we will construct

explicitly in chapter 2. However, the cohomology of congruence subgroups Γ vanishes after

a slightly smaller number known as the virtual cohomological dimension. Schwermer also

gives formulas which compute the range of cuspidal cohomology.

Table 1.1: Dimensions of Cohomology and the Cuspidal Range

n 2 3 4 5 6 7 8 9
dim(X) 2 5 9 14 20 27 35 44
vcd Γ 1 3 6 10 15 21 28 36
top degree of H∗cusp 1 3 5 8 11 15 19 24
bottom degree of H∗cusp 1 2 4 6 9 12 16 20

The study of the cohomology of subgroups of SLn(Z) yields a theory of boundary forms

and cuspidal forms mirroring that of modular forms. See Schwermer [52] for more details.

3

Most of the work involving the generalization to n-dimensional representations of GQ has

focused on calculating the top dimensional cohomology for n = 3. Various computations for

n = 3 supporting a conjectural correspondence between Galois representations and Hecke

eigenvalues for the top dimensional cohomology have been conducted by Avner Ash and his

collaborators [1][2][5][10][11][17][18][19][59].

For n = 4 the top dimensional cohomology occurs in dimension 6, while the cuspidal

cohomology appears in dimensions 4 and 5. A series of papers by Ash, Gunnells, and Mc-

Connell establish the needed machinery and provide computational results for H5(Γ0(N),C)

for Γ0(N) a congruence subgroup of SL4(Z) [12][13][14][15][16]. The next section examines

the details of the generalization of Serre’s conjecture to n-dimensional Galois representations.

1.3 The Ash-Doud-Pollack-Sinnott Conjecture

For a continuous representation

ρ : GQ → GLn(Fp)

unramified outside of pN , we can define det(I − ρ(Frob`)T) for ` 6 |pN since the determinant

is conjugacy invariant. Let v ∈ H∗(Γ0(N),C) be a Hecke eigenclass, where

Γ0(N) = {γ ∈ SLn(Z) : the bottom row of γ ≡ (0, . . . , 0, ∗) (mod N).

In such a situation we say that ρ is attached to v if for every ` 6 |pN we have that

Pv,`(T) =
n∑
k=0

(−1)ka`,k`
k(k−1)/2T k = det(I − ρ(Frob`)T),

where a`,k is an eigenvalue of the Hecke operator T`,k.

Based on Serre’s conjecture Ash conjectured the following in [3].

Conjecture 1.2. For all simultaneous eigenvectors v of the Hecke operators there is an

attached ρ and such a representation must be odd, meaning that complex conjugation is

4

mapped to a matrix γ such that γ is conjugate to a matrix with alternating 1’s and −1’s

down the diagonal. Consequently, the trace of complex conjugation is either 1, 0 or −1.

The above conjecture was proven by Peter Scholze [50], in a widely acclaimed tour de

force, conditional on some results in operator theory. Ash also developed a converse conjec-

ture in his work with Sinnott [20] and in his work with Doud and Pollack [10].

Conjecture 1.3. For all odd continuous ρ : GQ → GLn(Fp) there exists a Hecke eigenclass

v with ρ attached.

We will call this conjecture the ADPS conjecture. The strong form of the conjecture

gives specific recipes for the weight, level, and character attached to the representations.

The aforementioned papers of Ash and Sinnott [20], and Ash, Doud, and Pollack [10], give

computational evidence for this conjecture in the case n = 3 for which the eigenclass belongs

to the top dimensional cohomology. Moreover in certain cases the ADPS conjecture has been

proven:

i) For n = 2 it is none other than Serre’s conjecture.

ii) Ash proved that the ADPS conjecture holds if the representation is a sum of one-

dimensional representations with certain other restrictions [6].

iii) For sums of a one-dimensional character and a two-dimensional odd representation [9]

work by Ash and Doud proves the conjecture in squarefree level.

iv) In [10] Ash, Doud, and Pollack prove that the ADPS conjecture holds for certain

irreducible symmetric square representations.

v) In [8] Ash and Doud prove that for certain n-dimensional highly reducible representa-

tions the conjecture holds.

5

1.4 Computation for Cohomology and Hecke Operators

To generate evidence for the ADPS conjecture, one encounters two distinct computational

challenges. First, one must compute the cohomology of congruence subgroups of SLn(Z).

Second, one must act on the cohomology of such subgroups by the Hecke operators. The

first problem has historically been the easier of the two to solve.

One way to calculate the cohomology of congruence subgroups Γ0(N) ⊂ SLn(Z) is to first

design algorithms to calculate the cohomology of SLn(Z) and then apply Shapiro’s lemma

[61]. However, the action of the Hecke operators is not easily computable on the general

constructions of homology for SLn(Z). For the top dimensional cohomology this conundrum

was resolved by Manin [44] with his discovery of modular symbols.

Most research has focused on cuspidal cohomology, and since for n = 3 and n = 4 there

is a Leftschetz duality between the the cuspidal cohomology occuring in H3 and H2 for

n = 3 and H5 and H4 for n = 4, previous computations have focused exclusively on H3 with

arbitrary coefficient modules for n = 3 and H5(Γ0(N),Fp) for n = 4.

As part of this thesis we wrote a program which calculates H2(Γ,C) and H3(Γ,C) for Γ =

Γ0(N) a congruence subgroup of SL3(Z). These calculations could provide computational

evidence for the theorems of Ash and Doud in [7]. Moreover, such computations should

also generate new examples of boundary cohomology that have not previously been studied.

However in all cases we computed we found only cuspidal cohomology, which is dual to the

cuspidal cohomology of H3(Γ,C). It is known that there are boundary classes corresponding

to the cohomology with nontrivial coefficient modules and nontrivial characters; it was not

previously known that for N < 65 there are no boundary classes in H2(Γ,C). We tested

our calculations by computing the Hecke action on the top dimensional cohomology and the

eigenvalues agreed with those previous calculated by Ash and others.

In order to calculate the cohomology one degree below the cohomological dimension we

used techniques developed by McConnell [45] which allow one to explicitly compute the

cohomology for n < 5; these techniques use the Voronoi complex as studied by Voronoi in

6

his work on perfect quadratic forms [60].

As part of our research we also wrote a program to test an experimental technique of

Gunnells [33] which aims to calculate the Hecke action on cohomology classes one below

the cohomological dimension. Gunnells’ technique is not known to terminate and our ex-

periments provide additional evidence that it does so. However, we did not test Gunnells

methods on any cohomology classes, since we found no new classes to test.

All of our calculations were done in C++, but we verified many of our calculations using

PARI [58].

In this thesis we first describe how to calculate H2(Γ0(N),C) and H3(Γ0(N),C) for Γ0(N)

a congruence subgroup of SL3(Z). For computational purposes we will show that the cells

of the related retract correspond to orbits of P2(Z/NZ) under the right group actions. Then

we can use the orbits to construct the boundary maps which yield the cohomology (chapter

2). Then for each cohomology class there is a corresponding chain of orbits of P2(Z/NZ)

and we use this correspondence to map our cohomology into the Sharbly complex, a complex

developed by Lee and Szczarba [42] to study cohomology of SLn(Z) (chapter 3). We map

into the Sharbly complex because the Sharbly complex has an easily computed Hecke action

(chapter 4). However, after acting by the Hecke operators, the sharbly chain needs to be

modified before we can map it back into our cell complex (chapter 5). We then present an

example of this process (chapter 6).

Chapter 2. Calculating Cohomology

We will discuss two cell complexes that have been used to calculate the cohomology of

congruence subgroups of SL3(Z). One complex was utilized by Voronoi in his study of

quadratic forms [60]; albeit Voronoi was not explicitly aware of its cohomological application

at the time. A dual complex, known as the well-rounded retract, was discovered by Ash and

utilized to calculate the homology of SL3(Z). Chronologically the well-rounded retract was

7

utilized for reciprocity calculations beginning in 1975 [56], while the computational value of

the Voronoi complex was not exploited until 2000 [33]. Although our computations follow

the work of Voronoi, we summarize the work of Ash and Voronoi separately for historical

reasons. Then we explain how one explicitly uses the information from the Voronoi celluation

to actually compute cohomology. The methods mentioned generalize to higher dimensions,

but in what follows we will often focus on n = 3.

2.1 Ash’s Approach

Ash’s computations of cohomology start with the cone of positive-definite, symmetric, real,

n × n matrices; for convenience we let C denote this cone, and we will show that there is

a smaller space called the well-rounded retract W inside of C which can used to calculate

homology. In what follows it is assumed that n ≥ 2 and is fixed. Naturally C relates to

quadratic forms and the theory was historically developed for the study and classification

of quadratic forms. Recall that for a symmetric n× n matrix A we can symbolically define

a quadratic form on n variables by XTAX, where X is a column vector containing the

variables.

The following definitions can be found in Ash [2]. There are similar definitions in the

work of Voronoi [60] and we shall later see that these definitions provide the duality of the

two complexes.

Definition 2.1. The arithmetic minimum of A ∈ C is defined to be

m(A) = min{xTAx : x ∈ Zn\{0}}.

Since A is positive-definite, we note that m(A) exists. If A is integral than m(A) is a

positive integer.

8

Definition 2.2. The set of minimal vectors of A ∈ C are

M(A) =
{
x ∈ Zn : xTAx = m(A)

}
.

In words, M(A) is the set of vectors which achieve the arithmetic minimum of A. Alter-

natively, we know from linear algebra that any A ∈ C can be written as A = BTB for some

invertible matrix B. Then

m(A) = min{xTBTBx : x ∈ Zn\{0}} = min{||Bx|| : x ∈ Zn}

is the length of the shortest vector of the lattice BZn. Similarly

M(A) = {x ∈ Zn : ||Bx|| = m(A)},

which is the set of minimal vectors of BZn. Since each lattice has only a finite set of minimal

vectors we see that |M(A)| is finite. We will discuss a few basic details about lattices in 5.2

where we will also discuss the concept of a reduced lattice and LLL-reduction. M(A) will

be invariant under multiplication by −1 since (−x)TA(−x) = xTAx.

It should be noted that a vector in M(A) will always be primitive, meaning that the

greatest common divisor of the entries is 1.

The following definition is crucial to the construction of the well-rounded retract W .

Definition 2.3. A ∈ C is well-rounded if M(A) spans Rn.

Example 2.4. i) Let In be the n × n identity matrix. Clearly In ∈ C. We see that

m(In) = 1, and M(In) = {±e1,±e2, . . . ,±en}, where ei is the standard ith unit vector.

In is well-rounded.

ii) Let

J =

 1 1/4

1/4 1

 ∈ C.
9

Then for

X = (x, y)T , XTJX = x2 +
1

2
xy + y2.

Since (1, 0)→ 1 we have that m(J) = 1 and solving the equation x2 + 1/2xy + y2 = 1

for integer points gives us that M(J) = {±e1,±e2}. We thus see that m(A) and M(A)

do not uniquely determine A since m(I2) = m(J) and M(I2) = M(J). This will be an

important property in the rest of the chapter.

iii) Let

K =


2 −1 0

−1 2 −1

0 −1 2

 ∈ C.
Then for

X = (x, y, z)T , XTKX = 2(x2 + y2 + z2 − xy − yz).

A direct approach shows us that m(K) = 2 with M(K) = {±e1,±e2,±e3,±(e1 +

e2),±(e2 + e3),±(e1 + e2 + e3)}. K is also well-rounded.

iv) Let

N =

3 1

1 2

 ∈ C.
Then for

X = (x, y)T , XTNX = 3x2 + 2xy + 2y2.

Then m(N) = 2,M(N) = {±e2}. Therefore N is not well-rounded.

What makes C useful for our desired computations is that it has a natural GLn(R) action;

moreover the inherited action of GLn(Z) will take well-rounded matrices to well-rounded

10

matrices. For a matrix G ∈ GLn(R) and A ∈ C define G · A = GAGT . Since

XT (GAGT)X = (GTX)TA(GTX) (2.1)

we have that G ·A is positive definite; taking the transpose shows it is symmetric and hence

G · A is in C. The stabilizer of In is {G ∈ GLn(R) : GTG = I} = O(n,R) by definition.

Lemma 2.5. The action of GLn(R) on C is transitive.

Proof. As mentioned above it is a standard fact from linear algebra that for A ∈ C there

is a B ∈ GLn(R) such that A = BTB. For A,D ∈ C let A = BT
1 B1, D = BT

2 B2 for some

B1, B2 ∈ GLn(R). Then

(
B1
−1B2

)T · A = BT
2 B
−1
1

T
BT

1 B1B
−1
1 B2 = D.

Hence the GLn(R) action on C is transitive, and C is diffeomorphic to the symmetric

space GLn(R)/O(n,R).

Following Ash [2] we let C1 = {A ∈ C : m(A) = 1}. Then we set

X ∼= {A ∈ C1 : A is well-rounded}.

X can be thought of as the set of rays of well-rounded matrices; meaning every ray of

well-rounded matrices has a unique representative in X .

Because A is well-rounded if and only if M(A) has rank n, restricting the action in

equation 2.1 to integral matrices shows us that M(G · A) will also be well-rounded. Hence

the GLn(Z) action will take well-rounded matrices to well-rounded matrices. Since the

actions of GLn(R) and GLn(Z) commute with homotheties, we see that the GLn(Z) action

on C induces a GLn(Z) action on X .

11

For our calculations we do not work with the full general linear group, but instead consider

subgroups of SLn(R). In an analogous way to the above work we see that the SLn(R) action

is transitive on C and the stabilizer of any point is isomorphic to SOn(R); this allows us to

identify X with the global Riemannian symmetric space SLn(R)/SOn(R). This space is a

contractible smooth manifold of real dimension d = n(n+ 1)/2− 1 = n(n− 1)/2. For n = 2

the reader might be familiar with the standard representation of this space via the upper

half-plane. (See Gelfand [32] and Example 2.11 for more details.)

Any subgroup Γ ≤ SLn(R) inherits the action on C. Let Γ = Γ0(N), the congruence

subgroup of SLn(Z) consisting of matrices whose bottom row is congruent to (0, . . . , 0, ∗)

(mod N).

For γ ∈ Γ, we have that γZn = Zn, since γ is an integral matrix of determinant 1. Thus

C1 and X are Γ-invariant. Relying on work from Ash [2] and Soulé [56], we know that there

exists a Γ-equivariant deformation retract of C1 onto X . Furthermore, one can construct

such a retract explicitly. To do so, let E be a subset of Zn. We define a function σ from the

power set of Zn to the power set of X as follows.

Definition 2.6. Let σ(E) = {A ∈ X : M(A) = E}.

Example 2.7. i) Let E be any finite subset of Zn containing the zero vector 0. Then

since A((0)) = 0 we have that σ(E) = ∅ and |σ(E)| = 0.

ii) Let n = 2 and let E = {±e1,±e2}. Let A =

x y

y z

 ∈ C. Since M(A) = E and

m(A) = 1 we have that eT1Ae1 = x = 1 and eT2Ae2 = z = 1. Noting that ±(e1 − e2) /∈

M(A), we have (e1−e2)TA(e1−e2) = 2−2y > 1 and (e1 +e2)TA(e1 +e2) = 2y+2 > 1

which means that |y| < 1/2. Thus

σ(E) =


1 y

y 1

 : −1

2
< y <

1

2


and |σ(E)| is infinite.

12

iii) Let n = 2 and let E = {±e1,±e2,±(e1 + e2)}. Let A =

x y

y z

 ∈ C. Then as above

x = z = 1 and we have (e1 + e2)TA(e1 + e2) = 2y + 2 = 1⇒ y = −1
2
. In this case we

have

σ(E) =


 1 −1

2

−1
2

1




and |σ(E)| = 1.

iv) If E doesn’t span Rn, or is not invariant under −1 then σ(E) = ∅. If E contains a

non-primitive point then σ(E) = ∅. Furthermore the work of Voronoi [60] shows that

if |E| is greater than 2n − 1 then σ(E) = ∅.

Remark. It would be very interesting to have an absolute criterion on a subset K of Zn that

determines whether σ(K) is nonempty.

In the above example we have seen sets E such that |σ(E)| = 0, 1, or∞. The next lemma

implies that these are the only possibilities for |σ(E)|.

Lemma 2.8. σ(E) is convex.

Proof. If |σ(E)| ≤ 1 this is obviously true. Assume A,B ∈ σ(E) and A 6= B. Then

XTAX = XTBX = 1 for all X ∈ E. Then XT ((1− α)A+ αB)X = XT (1 − α)AX +

XTαBX = 1− α + α = 1 and thus ((1− α)A+ αB) ∈ E.

Proposition 2.9. (Ash [2].) σ(E) is bounded in the vector space V of all n× n symmetric

matrices.

Proof. Let A = BTB ∈ σ(E) for some B ∈ GLn(R). As found after definition 2.2 m(A)

is equal to the length of the shortest vector of BZn. Now since A is well-rounded we have

that M(A) spans Rn. Thus the minimal vectors of BZn being BM(A) must span Rn.

Consequently the lattice BZn is determined by BM(A).

13

Since A ∈ X , we have that m(A) is 1 and thus BM(A) is contained in the unit sphere

of Rn. We know that BM(A) must have cardinality equal to |E| and span Rn. Since there

are only a compact set of such possibilities (the n-sphere), we see that σ(E) is relatively

compact and thus bounded.

Having shown σ(E) is a convex, bounded subset of V , we see that its closure is a cell

as defined by Hatcher [35]. The well-rounded retract W is the cell complex obtained by

decomposing X into the union of the closures of the σ(E). By construction Γ acts on X

cellularly, since σ(γE) = γTσ(E)γ = γ · σ(E).

Theorem 2.10. (Ash [2].) The retract W has the structure of a connected locally finite

regular cell complex in which the closed cells are exactly the nonempty sets of the form σ(E)

for all finite subsets E ⊂ Zn.

The construction of the well-rounded retract W has only explicitly been carried out for

n ≤ 5. For a given n there are only finitely many SLn(Z)-orbits of cells. Moreover, Ash

showed that the virtual cohomological dimension of the cell complex is equal to n(n−1)
2

.

Example 2.11. Consider n = 2. There are two SL2(Z) orbits of cells:

i) The 0-dimensional orbit is the orbit of

τ =


 1 1/2

1/2 1


 .

We note that τ =

 0 1

−1 0

 · σ(E) from example 2.7 iii) since

 0 −1

−1 0


 1 1/2

1/2 1


 0 1

−1 0

 =

 1 −1/2

−1/2 1

 .

14

ii) The top dimension is spanned by a single SL2(Z)-orbit; this 1-dimensional orbit is the

orbit of

σ =


1 y

y 1

 : |y| < 1

2

 = σ(±{e1, e2}).

We can see the details of this cell complex by first realizing h = {z ∈ C : Im(z) > 0} as the

homogeneous space for SPos2(R)/SO2(R) where SPos2(R) is C ∩SL2(R). To do this we take

the map f : SPos2(R)/SO2(R)→ h given by f


a b

b c

 SO2(R)

 = 1
a
(−b+ i).

Alternatively

a b

b c

 = 1
a

 1 −x

−x y

 for suitable x, y. Then f


a b

b c

 SO2(R)

 =

x+ iy.

Thus after scaling by the determinant we can see that f(σ) is the arc of the unit circle

between −1
2

+
√

3
2
i and 1

2
+
√

3
2
i. Analogously f(τ) is the point −1

2
+
√

3
2
i. The other cells

are all contained in the same SL2(Z)-orbit, where SL2(Z) acts on h by fractional linear

transformation. The exposition by Fuchs [31] shows that the map f is SL2(Z)-equivariant.

A portion of this orbit is presented below in red.

-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
σ

τ

Figure 2.1: A Portion of the SL2(Z) orbit of σ.

Example 2.12. For n = 3 there are five SL3(Z) orbits of cells:

15

i) The 0-dimensional orbit is the orbit of

µ = σ (±{e1, e2, e3, e1 + e2, e1 + e2 + e3, e1 + e3}) .

ii) The 1-dimensional orbit is the orbit of

ω2 = σ (±{e1, e2, e3, e1 + e2, e1 + e2 + e3}) .

iii) There are two 2-dimensional orbits, one is the orbit of

τ2 = σ (±{e1, e2, e3, e1 + e2}) ,

and the other is the orbit of

τ3 = σ (±{e1, e2, e3, e1 + e2 + e3}) .

ib) There is one top dimensional orbit of dimension 3, it is the orbit of

σ0 = σ (±{e1, e2, e3}) .

For n = 3 Ash used the above cells to determine the top dimensional homology of congruence

subgroups of SL3(Z) and the corresponding Hecke action [2]. While one can extend his results

to calculate any level of the homology, the Hecke action does not extend in an obvious way.

Clearly there is some work to be done to determine σ(E) for a given set E. The Voronoi

celluation will circumvent this problem and we can work directly with E.

16

2.2 Voronoi’s Work on Perfect Forms

There is a complex discovered by Voronoi which is dual to the well-rounded retract and

has recently gained importance in its recent use to calculate cohomology of congruence

subgroups over extensions of Q. This section examines some of Voronoi’s work on perfect

forms as discussed in [60] and shows how his work leads to a cell complex R, which can

be used to calculate the cohomology of congruence subgroups. We will continue with the

notation from the previous section, but will often refer to A, φ ∈ C as quadratic forms.

Definition 2.13. A quadratic form A ∈ C is perfect if m(A) and M(A) uniquely determine

A.

Example 2.14. We let In, J be defined as in example 2.4.

i) In is not perfect since m(In) = m(Jn) = 1 and M(In) = m(Jn) = {e1, . . . , en} where

Jn is the n × n matrix containing J in the upper left corner, 1’s down the remaining

diagonal and 0 elsewhere.

ii) Let H =

 1 1/2

1/2 1

. Then m(H) = 1 and M(H) = {±e1,±e2,±(e1 − e2)}. H is

perfect, since eTi

x y

y z

 ei = 1 implies that x = z = 1 and (e1 − e2)T

1 y

y 1

 (e1 −

e2) = 1⇒ y = 1
2
.

For cohomology purposes we are interested in the number of classes of perfect forms

under the action of GLn(Z) since these will ultimately contribute to the number of cells in

the Voronoi celluation. Voronoi classified all classes of perfect forms for n ≤ 5 [60]. We will

write Nperf for the number of equivalence classes of perfect quadratic forms under the action

of GLn(Z). Table 2.2 displays the value of Nperf for n ≤ 8 as calculated by Voronoi for n ≤ 5

17

[60], by Barnes for n = 6 [21], by Jaquet and Chiffelle for n = 7, and by Sikirić, Schürman,

and Vallentin [55] for n = 8.

Table 2.1: Number of Classes of Perfect Forms for Dimensions 2-8

Dimension 2 3 4 5 6 7 8

Nperf 1 1 2 3 7 33 10916

The algorithms needed to compute the number of classes of perfect forms are quite inter-

esting in of and themselves, see Schürmann [51] for more information. Following McConnell

[45] we will use the minimal vectors of a perfect quadratic form to construct the cell complex

R. McConnell proves that R is dual to W and thus we can use R or W to calculate the

cohomology of Γ.

Let P ⊂ Zn be the set of primitive points. Recall that (x1, . . . , xn) ∈ Zn is primitive if

and only if (x1, . . . , xn) = 1. For any x ∈ P we can construct a positive semi-definite form

ωx on Rn by setting

ωx(y) = 〈x, y〉2,

for all y ∈ Rn.

For a perfect form φ with M(φ) = {x1, . . . , xn} define

Rφ =

{
θ ∈ C : θ =

s∑
i=1

ρiωxi , ρ ∈ R+ ∪ {0}

}
.

By construction Rφ is a convex cone in C ′, the space of all quadratic forms, with finitely

many faces. The dimension of Rφ is equal to the dimension of C which is n2+n
2
. The interior

of Rφ lies entirely in C although its boundary will include some positive semi-definite forms.

Then we can construct a cell complex by taking cells to be subsets F ⊂ C such that

F corresponds to the interior of some face Z of Rφ for a perfect form φ. We call this cell

complex the Voronoi celluation and denote it as R. We are interested in R for two reasons.

18

First we have the following theorem of McConnell:

Theorem 2.15. (McConnell [45].) Given S ∈ W, there is a unique F ∈ R such that the

minimal vectors which determine the forms bounding F are exactly the minimal vectors that

determine S. The map S → F is a canonical bijection W → R which is inclusion-reversing

on the face relations.

The second reason we are interested in R is the existence of explicit algorithms to calcu-

late R for low dimensional cells; this algorithm has been implemented most recently in the

exciting work of Ash, Gunnells, and McConnell [12]. The steps needed to implement this

algorithm are examined in the rest of this chapter. For convenience we will refer to the cells

in R by the names of the corresponding cell in W . We will also write σ = ±{a1, . . . , an} to

represent the face σ whose vertices are the ai. Essentially we will refer to a cell in either W

or R by its minimal vectors; technically this means we are writing σ (±{e1, e2}) = {e1, e2}.

Example 2.16. For n = 2 there is one SL2(Z)-orbit of perfect quadratic forms. We will

work with the form given by the matrix H from example 2.14. M(H) = ±{e1, e2, e1 − e2}︸ ︷︷ ︸
σ

.

Since we are inherited interesting in well-rounded forms, we want to restrict our attention

to subsets of M(H) that span R2. The following are the only subsets of M(H) that span

R2: ±{e1, e2}︸ ︷︷ ︸
τ

,±{e1, e1 − e2}︸ ︷︷ ︸
τ1

,±{e2, e1 − e2}︸ ︷︷ ︸
τ2

all lie in the same SL2(Z) orbit, namely

 1 1

−1 0

 · τ = τ1 and

 1 0

−1 1

 · τ = τ2.

Using the transformation matrix in example 2.11 i) we get the same decomposition ofW

into SL2(Z)-orbits as before.

Example 2.17. For n = 3 there is also one SL2(Z)-orbit of perfect quadratic forms given

19

by the form corresponding to the matrix

K =


1 −1/2 −1/2

−1/2 1 0

= 1/2 0 1

 .

We note that M(K) = ±{e1, e2, e3, e1 + e2, e1 + e3, e1 + e2 + e3} which corresponds to the

top dimensional cell which is σ0. The other cells are labeled in a similar way.

Thus τ2 ∼ ±{e1, e2, e3, e1 + e2}, τ3 ∼ ±{e1, e2, e3, e1 + e2 + e3}, etc.

2.3 Calculating the Cohomology for Γ0(N)

The methods above prove the existence of the well-rounded retract W and the Voronoi

celluationR which can be used to compute the cohomology of SLn(Z). We wish to implement

these complexes to compute the cohomology of congruence subgroups Γ0(N) ⊂ SLn(Z).

The following sections are primarily concerned with the calculation of cohomology for the

congruence subgroup Γ0(N).

We follow the exposition from [12]. We write WT for the SL3(Z)-orbit of the cell of type

T in W . Since we are dealing with congruence subgroups of SL3(Z), we fix n = 3 in what

follows. However, all of the calculations are analogous to those for n = 4 and indeed could

potentially be modified to work for higher n.

Recall that there are five SL3(Z)-orbits of cells in the well-rounded retract for n = 3. In

the Voronoi retract we are interested in the faces of the polyhedron formed from the minimal

vectors of the equivalence class of the perfect ternary form. Thus under the correspondence

between W and R we identify a cell with its minimal vectors. Without loss of generality

we will identify the cell with its set of minimal vectors; although technically the cell is the

set of A ∈ X such that M(A) is the set of minimal vectors. For example σ0 as defined in

example 2.12 corresponds to the cell ±{e1, e2, e3} = σ0 ∈ R. Recall that there is only one

orbit of top dimensional cells in W for n = 3. However, under the action of the subgroup

20

Γ0(N) ⊂ SL3(Z) the single orbit might decompose into multiple orbits.

To calculate the cohomology of Γ0(N) we need to understand how any SL3(Z)-orbit of

cells in W decomposes into Γ0(N)-orbits of cells. We first note that for a fixed SL3(Z)-orbit

of cells WT we have a correspondence between

{σ ∈ WT} ↔ {γStab(T) : γ ∈ SL3(Z)}

given by σ → γStab(T) such that σ = γσT . The above identification will allow us to

determine how the SL3(Z)-orbits of cells break up into suborbits under the action of Γ0(N)

by looking at Stab(T)-orbits of the finite projective space P2(Z/NZ). We define the space

Pn−1(Z/NZ) in the following section; in that section we also show give two lemmas that

combined with the choice of orientations will allow us to actually calculate the cohomology

of Γ0(N) using a spectral sequence.

2.4 Pn−1(Z/NZ).

Pn−1(Z/NZ) consists of primitive n-tuples modulo homotheties. Naturally, this space is

defined as a set of equivalence classes of affine space. Recall that An(Z/NZ) is the set

of n-tuples with entries in Z/NZ. A tuple (a1, . . . , an) is called primitive in A(Z/NZ) if

gcd(a1, . . . , an, N) = 1. Let An(Z/NZ)† be the subset of An(Z/NZ) consisting of primitive

tuples.

Definition 2.18. Pn−1(Z/NZ) is An(Z/NZ)† modulo homotheties, meaning two tuples

(a1, . . . , an), (α1, . . . , αn) ∈ An(Z/NZ)† are in the same equivalence class in Pn−1(Z/NZ) if

and only if there is a u ∈ U(Z/NZ), that is to say u is a unit in Z/NZ, with

u(a1, . . . , an) = (α1, . . . , αn).

Without loss of generality we will treat the entries of a tuple (a) = (a1, . . . , an) ∈

An(Z/NZ) as integers that are reduced modulo N to their smallest nonnegative representa-

21

tive; this notation will not only save time, but also affords itself to computer implementation.

We will also write [a] ∈ Pn−1(Z/NZ) for the homotheties class of tuple a.

To aid in computations we will want to determine a canonical representative of each class

in Pn−1(Z/NZ). To do this we will use the natural lexicographical ordering of An(Z/NZ). In

this ordering we first scale a tuple to its smallest nonzero representative and then order by the

standard ordering on the positive integers. If N is prime, then simply scaling the first nonzero

entry to 1 determines a unique representative of every class; moreover this representative

will be minimal with respect to the standard lexicographical ordering. We want to generalize

these two properties for our choice of representative of a class in Pn−1(Z/NZ) for a generic

N . First we prove the following lemma.

Theorem 2.19. Any class in Pn−1(Z/NZ) contains a tuple (a1 . . . , an), for which the small-

est positive representative of the first nonzero ai is a divisor of N .

Proof. Let (a1, . . . , an) ∈ An. Without loss of generality assume that ai is the first nonzero

entry in the tuple. Then if (ai, N) = d we can find nonzero integers r and s such that

air +Ns = d.

Dividing by d we have

ai
d
r +

N

d
s = 1.

Thus we see that r is a unit modulo N/d. Then we can apply a theorem of Bass [41] which

states that subrings of semilocal rings are small and hence r lifts to a unit modulo N .

Alternatively, consider the case that N is a prime power, say N = pn. Then for any

divisor d of N , we know the units of Z/(N/d)Z are the elements coprime to p; these are

clearly units in Z/NZ. Then since we can lift the units modulo each prime, the Chinese

Remainder Theorem allows us to lift units in Z/dZ to units of Z/NZ for d|N .

Thus for any equivalence class in Pn−1(Z/NZ) we can construct a representative (a1, . . . , an)

for each class such that the first nonzero ai is a divisor of N . Since (ai, N) = d, we have that

22

d ≤ ai; therefore a unit multiple of the tuple (a1, . . . , an) such that the first nonzero entry is

a divisor of N will be the minimal element of the equivalence class of (a1, . . . , an).

For computational purposes we want to store an equivalence class [a] ∈ Pn−1 by its

minimal element: the element minimal with respect to the lexicographical ordering on An

denoted [a]min. As stated [a]min will have the form (a1, . . . , an) where the first nonzero ai|N .

There are a total of

(d(N)− 1)Nn−1 + (d(N)− 1)Nn−2 + · · ·+ (d(N)− 1)N + d(N)− 1

tuples whose first nonzero entry is a divisor of N ; here d(N) is the number of divisors of

N (d(4) = 3). If N is prime then every such tuple will determine a unique class in Pn−1.

However, when N is composite some of the tuples with this form will not be primitive and

some will be collinear and hence determine the same class in Pn−1.

In general, when N is not prime, there are some primitive tuples where the stabilizer of

the first entry changes the following entries; see below for examples of non-reduced primitive

tuples. In Appendix B we present a simple algorithm which first reduces a tuple and then acts

by the stabilizer of the first nonzero element to produce a minimal representative of the input

tuple. However, the simplicity of the complete ordering makes up for the need to remove

redundant elements. For example using the entire list of tuples of the form (a1, . . . , an) where

the first nonzero ai|N allows us to assign an integer to every class in a canonical way. Thus

we avoid the need for search tables and are able to save working memory by only storing

integers. While formulas can be found for the number of classes in Pn−1(Z/NZ) we found

that the complexity of such enumeration algorithms outweighed the benefits. The tuple to

integer conversion algorithm and code we constructed can be found in Appendix B.

Since we are storing projective tuples by their minimal element we must take caution that

when acting on [a]min by elements of Γ we must reduce the output to preserve the minimal

representation. Our reduction algorithm can also be found in Appendix B.

23

Example 2.20. The following tuples are in A3 for various N .

i) (1, 1, 1) is a minimal representative of its class for all N .

ii) (2, 2, 2) is not a minimal representative of its class for any N ; if 2|N then the tuple is

not primitive, otherwise it is not reduced.

iii) (3, 4, 2) is not a minimal representative for N = 6, since 5 · (3, 4, 2) = (3, 2, 4) is

contained in the same class and (3, 2, 4) comes before (3, 4, 2) in our ordering.

The next two lemmas reveal how the set Pn−1(Z/NZ) will allow us to calculate the

cohomology of Γ0(N).

Lemma 2.21. The bottom row map b : SLn(Z) → Pn−1(Z/NZ) gives a bijection between

Γ0(N)\SLn(Z) and Pn−1. Moreover, this map respects the action of SLn(Z) on the right.

Proof. From the rules of determinants it is clear that the image of b will consist of primitive

tuples and thus maps into Pn−1(Z/NZ). Moreover, any class in Pn−1(Z/NZ) has a primitive

representation, which is the bottom row of some matrix in SLn(Z); in section 5.3 we produce

an algorithm which outputs such a matrix for n = 3 using a constructive argument due to

Schenkman [49].

Clearly the only matrices sent to the class containing (0, 0, . . . , 0, 1) are those in Γ0(N).

Moreover working modulo N it is apparent that the left cosets of Γ0(N) will have the same

image under the bottom row map. Thus, we have an injective and surjective map from

Γ0(N)\SLn(Z) to Pn−1(Z/NZ).

The action of SLn(Z) is respected since the action of SLn(Z) on Pn−1(Z/NZ) can be

thought of a multiplying a row vector on the right by a matrix.

Lemma 2.22. The set of Γ0(N)-orbits of cells in WT correspond to the orbits of the right

action of Stab(T)-action on Pn−1.

Proof. We note that Γ0(N)\WT = Γ\SLn(Z)/Stab(T) from the previous section. Then by

lemma 2.21 we have that Γ0(N)\SLn(Z)/Stab(T) ∼= Pn−1(Z/NZ)/Stab(T).

24

Hence we have reduced the problem of how the SLn(Z)-orbits decompose when we re-

strict the action to Γ0(N) into a problem about Stab(T)-orbits of Pn−1(Z/NZ). In order to

calculate the orbits of the stabilizer we must first calculate the stabilizers for the standard

cells in the well-rounded retract for n = 3. We are primarily interested in the cohomology

one below the top dimension; consequently, we need only consider the cells with dimensions

1, 2, and 3.

2.5 Calculating the Stabilizers

We briefly recall our decision to identify a cell with its minimal vectors; this will actually

make the action of the stabilizer easier since γ · σ(E) = γTσ(E)γ = σ(γE). Thus by

considering our cells as subsets of Z3 the action of SL3(Z) becomes matrix multiplication.

Elements of Z3 can be acted on the left or on the right by 3 × 3 matrices depending on

whether we are viewing the vector as a column or a row. For our purposes we want to view

the cells as columns and thus the stabilizers listed below are for the left action of SL3(Z).

One way to work with a given cell would be to consider it as the columns of a 3× 2k matrix

modulo permutation of the columns, where k is determined by the dimension of the cell.

Given a fixed ordering of the elements of a cell, each element of the stabilizer will possibly

reorder the elements. The orientation character on the stabilizer of a given cell (discussed

in section 2.6), is the sign of the permutation action on the rays constituting the elements

of the cell.

For n = 3 the cells are rather small and can be found after theorem 2.10, recall that

we let e1, e2, e3 be the standard unit vectors and t1 = e1 + e2, t3 = e1 + e2 + e3. Hence

σ0 = ±{e1, e2, e3}, τ2 = ±{e1, e2, e3, t2}, τ3 = ±{e1, e2, e3, t3} and ω2 = ±{e1, e2, e3, t2, t3}.

Lemma 2.23. To calculate the stabilizer of a cell that contains the standard unit vectors,

it suffices to utilize a finite computer search through all matrices whose column sets are a

subset of the given cell.

Proof. This suffices, since an element of GL3(Z) that stabilizes a cell σ containing the stan-

25

dard unit vectors must take the unit vectors to elements of the cell. Thus, the columns must

be elements of the cell.

Because all of our cells contain the standard unit vectors, this observation motivated a

simple computer program that searches through all possible matrices containing the elements

of a given cell, computes the determinant, and checks that the image is exactly the desired

cell; the program can be found in Appendix E.1. We ran our program once and then stored

the data in a text file for future reference. The cohomology calculations simply read the

appropriate stabilizers from the text file. A hard copy of the data can be found in Appendix

A. As part of the data we hand computed the orientations of the matrices.

The stabilizer program mentioned above produced an output that agrees with a proof by

Ash in [2] that the stabilizer of σ0 is the group of order 24 generated by

Stab(σ0) =

〈
0 −1 0

1 0 0

0 0 1


︸ ︷︷ ︸

h1

,


0 0 1

1 0 0

0 1 0


︸ ︷︷ ︸

h2

〉
.

A quick calculation in Magma [24] shows us that this group is isomorphic to S4, the

symmetric group of order 24. We used Magma to identify the output of the stabilizer

program for each cell. For the other standard cells we found that

Stab(τ2) =

〈
0 1 0

1 0 0

0 0 −1

 ,


−1 0 0

0 −1 0

0 0 1

 ,


1 −1 0

1 0 0

0 0 1


〉
,

has order 12 and is isomorphic to D12, the dihedral group of order 12.

Stab(τ3) =

〈
0 −1 0

−1 0 0

0 0 −1

 ,


0 0 −1

0 −1 0

−1 0 0

 ,


1 −1 0

1 0 −1

1 0 0


〉
,

26

has order 24 and is isomorphic to S4.

Stab(ω2) =

〈
0 −1 0

−1 0 0

0 0 −1

 ,


−1 0 0

−1 0 1

−1 1 0


〉
,

has order 8 and is isomorphic to D8.

In Appendix A we record the stabilizers for the above cells for n = 3.

2.6 Orientation of the Orbits

Part of our calculations for cohomology will depend on tracking the orientation of each

our cells and the orientations on the suborbits of Pn−1(Z/NZ) under the stabilizer. The

orientation of a cell can be thought of as a unique ordering of the vertices, or as part of an

assignment of direction to the complex.

To calculate the orientation of our suborbits we will need to construct the values of an

orientation character on the stabilizer of each of our cells. Since for n ≤ 4 we have that W

is simplical, meaning all the cells are simplical, the orientation character can be calculated

using the action of the stabilizer on the rays of a cell. To compute this action we first note

that all of our cells are invariant under multiplication by −1. For convenience we let σ̃ denote

the set of rays of the cell σ and will use a boldface font to symbolize the ray spanned by an

element of a cell. Thus for the cell

σ0 = ±{e1, e2, e3}

we see that

σ̃0 = {e1, e2, e3}.

Recall that

27

Stab(σ0) =

〈
0 −1 0

1 0 0

0 0 1


︸ ︷︷ ︸

h1

,


0 0 1

1 0 0

0 1 0


︸ ︷︷ ︸

h2

〉
.

To compute the orientation character ρ on a given matrix we note that h1 acts on the

ordered set σ̃0 as the permutation (e1, e2); so ρ(h1) = −1. Similarly h2 acts as the permu-

tation (e1, e2, e3) and we see that ρ(h2) = 1. Given the list of elements of each stabilizer we

then hand computed the orientation character for each element. We then crosschecked this

list with standard facts about conjugacy classes to verify accuracy.

At this point we have assigned an orientation to each element of the stabilizer of a

given cell. We now examine how this orientation affects which suborbits contribute to the

cohomology.

Definition 2.24. An Stab(σ)-orbit of Pn−1(Z/NZ) O is non-orientable if for some element

[a] = [a1, . . . , an] ∈ O, there is a γ ∈ Stab(σ) with ρ(γ) = −1 such that [a]γ = [a]. Otherwise

the orbit is orientable.

The following lemma reveals that non-orientable and orientable orbits are fairly easy to

identify.

Lemma 2.25. If an Stab(σ)-orbit of Pn−1(Z/NZ) O is non-orientable then for every element

[b] ∈ O there is γ[b] ∈ Stab(σ) such that ρ(γ) = −1 and [b]γ = [b].

Proof. Since O is non-orientable we can find an [a] and a γ ∈ Stab(σ) such that ρ(γ) = −1

and [a]γ = [a]. Then for any [b] ∈ O there is a γ′ ∈ Stab(σ) such that [a]γ′ = [b]. If ρ(γ′) = 1

then

[b]γ′−1γγ′ = [a]γγ′ = [b]γ′ = [b].

Since ρ(γ′−1γγ′) = ρ(γ) = −1 we have proven the lemma.

28

Thus the above lemma shows that an orbit is orientable if and only if every element of

the orbit is only stabilized by orientation preserving elements of the stabilizer, which is the

case if and only if any single element of the orbit is only stabilized by orientation preserving

elements of the stabilizer. Hence for computation purposes we can determine if an orbit is

orientable by examining a single element of the orbit.

As we will see in section 2.28, it will help to assign an orientation number of either −1, 0,

or 1 to every element of an orbit. If an orbit is non-orientable then every element will have

orientation number 0. For an orientable orbit we will assign the smallest element of the orbit

(under our ordering of Pn−1(Z/NZ)) the orientation number 1. Then other elements of the

orbit [b] will have an orientation number of 1 or −1 depending on the value of the orientation

of γ where [a]γ = [b].

Lemma 2.26. The orientation number of [b] in an orientable Stab(σ)-orbit of Pn−1(Z/NZ)

is well-defined.

Proof. Suppose by way of contradiction that we have γ, γ′ ∈ Stab(σ) such that [a]γ =

[a]γ′ = [b] where a is the smallest element of the orbit. Then [a]γγ′−1 = [a]. Since the orbit

is orientable we have ρ(γγ′−1) = 1. Hence ρ(γ) = ρ(γ′).

The orientation number will be important when we calculate the boundary maps of our

spectral sequence in section 2.8.

Thus for a given [a] ∈ Pn−1(Z/NZ), we have attached some additional information.

Attached to [a] we have its primitive representation (a1, . . . , an), an orientation (which is

either plus or minus 1), and a matrix which takes the first element of the orbit containing

[a] to [a]. Appendix D illustrates this in great detail.

2.7 Orbit Implementation Details

Using the ordering mentioned above, we can calculate the orbits of Pn−1(Z/NZ) under the

action of the stabilizer of each of the corresponding cells. As part of our orbit information

29

we will also determine which orbits are orientable and for orientable orbits we will associate

an orientation value to each class within the orbit.

To calculate the orbits, we create a boolean vector with (d(N)−1)Nn−1+(d(N)−1)Nn−2+

· · · + (d(N) − 1)N + 1 entries, where d(N) is the number of divisors of N . While creating

the vector we flag any non-minimal entries. In this way upon completion we will have a

one-to-one correspondence with the classes of Pn−1(Z/NZ) and unflagged entries. Then we

run a program which takes the first unflagged entry and calculates its stabilizer within the

stabilizer of the appropriate cell; if any element with negative orientation stabilizes the entry,

the orbit is non-orientable. The program then calculates the orbit under the stabilizer of

the cell and stores the appropriate orientation numbers for each element in a global vector

of integers. If the orbit is orientable, the cell is stored. Otherwise the data is deleted.

Regardless all the elements in the orbits are flagged. The program loops until every class of

Pn−1(Z/NZ) is in some orbit.

All the code needed for orbit calculations can be found in Appendix E.2.

2.8 Using the Orbit Information to Calculate Cohomology

We use the orientable orbits to calculate the cohomology H2(Γ0(N);C) for Γ0(N) ⊂ SL3(Z)

as done by Ash, Gunnells, and McConnell for Γ0(N) ⊂ SL4(Z) in [12], who follow the work

of Brown [25]; this is done by using a spectral sequence.

We let Stab(σ)N = Stab(σ)∩Γ0(N). Then we let Cσ be C treated as a Stab(σ)N -module

where the action is given by multiplication by ±1 depending on the value of the orientation

character. Then the Ei,j
1 terms of our spectral sequence are

Ei,j
1 = ⊕σ∈Wi

Hj(Γσ;Cσ),

where Wi is the set of Stab(σ)-orbits of Pn−1(Z/NZ) (or equivalently cells corresponding to

the action of Γ0(N)) of each i dimensional cell of W .

30

We recall two facts from Ash,Gunnells, and McConnell [12] that are applications of

theorems found in Brown [25]:

• Since C has characteristic 0, all the terms vanish when j 6= 0. Thus the spectral

sequence will degenerate at E1.

• Any non-orientable orbit will have H0(Γo;Co) = 0.

Equivalently we have the following theorem

Theorem 2.27. The Ei,0
1 term of the equivariant cohomology spectral sequence for H i

Γ(W ;C)

is a direct sum ⊕oCo where o runs through a set of i-dimensional cells in 1:1 correspondence

with the orientable Stab(σ)-orbits of Pn−1(Z/NZ), for all types σ of cells of dimension i.

Thus, given the boundary maps of the above spectral sequence we can calculate the

cohomology through the standard refinement of the kernel modulo the image.

In order to calculate the boundary map di,01 : Ei,0
1 → Ei+1,0

1 we need to compute how

the cells/orbits of dimension i glue together to make a cell/orbit of dimension i + 1. The

calculation of the boundary maps of the spectral sequence is very technical and we will refer

to Brown for a full account [25] or to Ash, Gunnells, and McConnell [12] for an account

specific to SLn(Z). For our purposes

di,01 : ⊕τ∈Wi
H0(Stab(τ);Cτ)→ ⊕σ∈Wi+1

H0(Stab(σ);Cσ

will be a sum of terms, d(σ,τ ′) where τ ′ is in the boundary of σ and we assume that τ ′ and τ

are in the same Γ-orbit. To do this we will need to calculate the boundaries of a given orbit.

We did this by hand for each of the standard cells and Appendix A.7 contains the ap-

propriate data. Our data also agrees with the following theorem of Ash, Gunnells, and

McConnell.

Theorem 2.28. Given a cell of σ of type T , meaning σ is in the SL3(Z-orbit of T , containing

a cell of type T ′ in its boundary. Then by decomposing O, the Stab(T)-orbit of P2(Z/NZ)

31

which corresponds to σ into its suborbits O1, . . . ,Ok under the group Stab(T)∩Stab(T ′), the

γj ∈ SL3(Z) such that b(γj) = [aj] ∈ Oj will be the translates of T ′ in the boundary of σ.

As a further check on the accuracy of our results we found that our results concurred

with those presented in the Soulé cube [57].

For implementation purposes we hard coded the intersection of the stabilizers into the

stabilizer data. The interested reader can find that data in Appendix A.6. Using the data

from Theorem 2.28 we can calculate d(σ,τ ′) as the composition tστ ′uστ ′ντ ′ where tστ ′ , uστ ′ , ντ ′

are defined below.

The map tστ ′ : H0(Stab(σ)N ∩ Stab(τ ′)N ;Cσ) −→ H0(Stab(σ)N ;Cσ) is the transfer map

C → C which acts as multiplication by the integer [Stab(σ) : Stab(σ) ∩ Stab(τ ′)]. Since we

can compute both of the finite groups above we can compute tστ ′ .

The map uστ ′ : H0(Stab(τ ′)N ;Cτ ′) −→ H0(Stab(σ)N ∩ Stab(τ ′)N ;Cσ) is ±1 depending

on the orientation of τ ′ induced by the orientation of σ. We will write this induced orien-

tation, which is either ±1, as [σ : τ]. To evaluate this number we use the following formula

proposition derived from the work of [12] which reduces the problem to determining how the

standard representatives of the SL3(Z) orbits induce orientations in one another.

Proposition 2.29. When n = 3 we have that

[σ : τ] = OT (b(γ0γ̂))OT (b(γ0γ̂α)) · [σT : (τT)].

Hence Proposition 2.29 allows us to compute [σ : τ] for n = 3 from knowledge of how

[σ : τ2], [σ0 : τ3], [τ2 : ω2], and [τ3 : ω2]. We computed these numbers by hand and found

that [τ2 : ω2] = −1 and all the other values are 1. Our computations agree with those of

McConnell [45].

The map ντ ′ : H0(Stab(τ)N ;Cτ) −→ H0(Stab(τ ′)N ;Cτ ′) will be the identity as shown in

[12].

We then sum over all possible pairs (σ, τ ′) to get matrices which represent the boundary

32

action. To compute the cohomology we need to compute the kernel modulo the boundary.

Upon row reducing these matrices we have a chain in the cell complex which represents a

cohomology class. We are now left with determining how the Hecke operators should act on

such a chain.

At this point the reader might gain some insight by viewing the example that occupies

the entirety of chapter 6.

Chapter 3. The Sharbly Complex

The following chapter defines the Sharbly complex and examines some of its basic properties.

The Sharbly complex is yet another complex which can be used to calculate the cohomology

of SLn(Z) and consequently can be used to calculate the cohomology of Γ0(N) ⊂ SLn(Z) via

Shapiro’s Lemma [61].

3.1 Definition

The following definition is the motivation for the Sharbly complex.

Definition 3.1. The Steinberg module St(n) is the ZΓ-module Hν(Γ;ZΓ).

It is a theorem of Ash [4] that St(n) is isomorphic to the quotient of the ZΓ module of

formal Z-linear combinations of the elements [v1, . . . , vn], where vi ∈ Qn\{0}, quotiented by

the submodule generated by the following relations:

i) If τ is a permutation on n letters and sgn(τ) its sign as a permutation, then

[v1, . . . , vn] = sgn(τ)[vτ(1), . . . , vτ(n)].

ii) If q ∈ Q\{0} then

[qv1, . . . , vn] = [v1, . . . , vn].

33

iii) If the rank of the matrix (v1, . . . , vn) is less than n, then [v1, . . . , vn] = 0.

iv) If v0, . . . , vn are nonzero points in Qn, then

∑
i

(−1)i
n∑
i=1

(−1)i[v1, . . . , v̂i, . . . , vn],

where v̂i means omit that term.

The Steinberg module is an example of a dualizing module as defined by Brown [25]. As

shown by Ash, Gunnells, and McConnell [16], H∗(Γ;C) may be computed by computing the

homology of a ZΓ-free resolution of St(n)⊗Z. The Sharbly complex, defined below, is such

a resolution.

The Sharbly complex was named by Ash in honor of Szczarba and Lee, two mathemati-

cians who studied the cohomology of SLn(Z) [42] and first used the Sharbly complex. The

name is a phonetic abbreviation for the Szczarba Lee complex. Our definition is based on

Ash [4].

Definition 3.2. The Sharbly complex is the chain complex {S∗, ∂} defined as follows:

1) For k ≥ 0, Sk is the module of formal Z-linear combinations of basis elements v =

[v1, . . . , vn+k], where each vi ∈ Qn\{0}, modulo the relations:

i) If τ is a permutation on (nk) letters and sgn(τ) its sign, then

[v1, . . . , vn+k] = sgn(τ)[vτ(1), . . . , vτ(n+k)].

ii) If q ∈ Q\{0} then

[qv1, . . . , vn+k] = [v1, . . . , vn+k].

iii) If the rank of the matrix (v1, . . . , vn+k) is less than n, then v = 0.

34

2) For k ≥ 1 the boundary map ∂ : Sk → Sk−1 is

[v1, . . . , vn+k] −→
n+k∑
i=1

(−1)i[v1, . . . , v̂i, . . . , vn+k],

where v̂i means that term is omitted. For k = 0, the boundary map is the 0-map.

Elements of Sk are called k-sharblies; 0-sharblies are also known as modular symbols. A

k-sharbly v can be considered as a collection of n+ k column vectors, subject to the above

relations. We will refer to a collection of n of these vectors as a submodular symbol u of v.

We note that S∗ is a complex of Z [GLn(Q)]-modules and hence ZΓ-modules in the obvious

way: an element of GLn(Q) acts on a single k-sharbly as matrix multiplication on the left

and the action extends linearly. It is worth noting that conditions i) and ii) imply that if

u has any repeating columns, then u = 0. The boundary of a k-sharbly can often include

many k− 1-sharblies with rank less than k− 1, hence the boundary of a non-zero k-sharbly

can include the zero sharbly.

Example 3.3. i) Let v =


2 2 3

4 5 6

10 −1 −2

 =


1 2 3

2 5 6

5 −1 2

 .

However, v′ =


2 4 10

2 5 −1

3 6 2

 6=


1 2 5

2 5 −1

3 6 2

 since we are not allowed to modify the rows

in any way.

ii) Let τ2 =


1 0 0 1

0 1 0 1

0 0 1 0

 . The reason for calling this 1-sharbly τ2 will become apparent

35

later. We find that

∂τ2 = −


0 0 0

1 0 1

0 1 0

+


1 0 1

0 0 1

0 1 0

−


1 0 1

0 1 1

0 0 0


︸ ︷︷ ︸

0

+


1 0 0

0 1 0

0 0 1

 .

From a computational perspective, the Sharbly complex mimics the utility of modular

symbols in enabling the computations of the Hecke action on cohomology. We let (Sk)Γ be

the module of Γ-coinvariants, or the quotient of Sk by the module generated by all elements

of the form γ · u− u for γ ∈ Γ and u ∈ Sk.

We can use Borel-Serre duality [23] to establish an isomorphism between Hk(Γ;Z) and

Hν−k((S∗)Γ), where ν is the top dimension of the cohomology. Since {S∗, δ} is a ZΓ-free

resolution of St(n) we can use the homology of the Sharbly complex to calculate the needed

cohomology. Explicit constructions of this isomorphism are difficult to come by, but justify

the utility of the Sharbly complex for determining the action of the Hecke operations.

3.2 The Norm of a Sharbly

In order to use the Sharbly complex for our desired cohomology calculations we need to

associate to each k-sharbly a norm; this norm will generalize the norm of a modular symbol

which we recall below.

Definition 3.4. For a modular symbol

v = [v1, . . . , vn]

we define

||v|| = |det[u1, . . . , un]|

36

where u = [u1, . . . , un] is in the class v and ui ∈ Zn\{0} is primitive.

The definition begs the following observation:

Lemma 3.5. For a modular symbol v there is a representative u of the class v, such that

u is integral with primitive columns. Moreover u is unique up to permutation and change of

signs. Such a representative is called a lift of v.

Proof. Let u = (u1, . . . , un) be a representation of the modular symbol v. Clearing denomi-

nators of each column of u will make u integral. Dividing each column by its common divisor

will make u primitive. Up to permutation and signs these actions are the only relations that

determine the class v; hence, the representation u is unique up to permutation and change

of signs.

We now return to k-sharblies. Recall that we can associate a set of n+k primitive column

vectors to the primitive representation of the k-sharbly u. Then we call a modular symbol

v a subsymbol of u if all the columns of the primitive representation of u appear as columns

of the primitive representation of v. For a nonzero k-sharbly u we define Z(u) to be the set

of all modular symbols that appear as a subsymbol of u. Then

Definition 3.6.

||u|| = max {||v|| : v ∈ Z(u)} .

The last part of the following example shows why the norm of 0 is not defined above.

Example 3.7. Part i) builds upon Example 3.3

i) Let v =


2 2 3

4 5 6

10 −1 −2

 then ||v|| =

∥∥∥∥∥∥∥∥∥∥


1 2 3

2 5 6

5 −1 2


∥∥∥∥∥∥∥∥∥∥

= 13. If we let v′ =


2 4 10

2 5 −1

3 6 2


we have ||v′|| = 26.

37

ii) Let u =

2 3 −3

1 2 −4

 . Then

||u|| = max


∥∥∥∥∥∥∥
2 3

1 2


∥∥∥∥∥∥∥ ,
∥∥∥∥∥∥∥
2 −3

1 −4


∥∥∥∥∥∥∥ ,
∥∥∥∥∥∥∥
3 −3

2 −4


∥∥∥∥∥∥∥
 = max{1, 5, 6} = 6.

iii) This example shows why the norm of 0 is particularly pesky. Let v = 0 =

 20 50 20

−101 223 −101

.

Then the subsymbols

 20 50

−101 223

 ,
 20 20

−101 −101

 ,
 50 20

223 −101

 have norms 9510, 0,

and 9510 respectively. For computational purposes we must check that none of the

columns of a given k-sharbly repeat themselves.

We likewise define the norm of a 1-Sharbly chain

ξ =
∑

n(u)u,

where almost all n(u) = 0 as follows. Let the support of ξ be supp(ξ) = {u : n(u) 6=

0}\{0}. We abuse notation and let Z(ξ) be the set of all modular symbols that appear as a

submodular symbol of any u ∈ supp(ξ).

Definition 3.8. With notation as above, define

||ξ|| = max {||v|| : v ∈ Z(ξ)} .

This is well-defined on all nonzero chains. A modular symbol v is unimodular if ||v|| = 1.

This definition extends to k-sharblies in the obvious way: a k-sharbly u is unimodular if

38

||u|| = 1. For a nonzero 1-sharbly this is equivalent to all submodular symbols having norm

at most 1, since to be nonzero at least one submodular symbol has positive norm.

We present another definition which, while defined using the norm of a sharbly, is only

valid for n ≤ 4.

Definition 3.9. A 0-sharbly for any n or a 1-sharbly for n ≤ 4 is called reduced if it has

norm 1.

While this definition can be made regardless of the value of n and extended to any k-

sharbly there is an implicit assumption that the term reduced can be used in the reduction

calculations described in chapter 6.

3.3 Implementation of the Sharbly Complex

Since k-sharblies correspond to equivalence classes of ordered sets of column vectors, we

can identify them with matrices. However to represent the class for computations we find

ourselves with the same problem we encountered for projective space. In order to do com-

putations we need a canonical representative of each class or we must accept that multiple

entries could correspond to the same class. Since sharbly reduction algorithms are computa-

tionally expensive, combining like terms in a canonical representative could shorten running

time. As before we will want to define a lexicographical ordering on the Sharbly complex

and use this ordering to determine a canonical representative of a given sharbly.

To define an ordering on the Sharbly complex we first use the natural ordering on column

vectors. Namely, 

x1

x2

...

xn


5



y1

y2

...

yn


if and only if x1 < y1 or xi = yi for i = 1, . . . , j for some j 5 n maximal with respect to this

property and if j < n then xj+1 < yj+1. We extend this ordering to k-sharblies by reordering

39

the columns in increasing order and requiring the first nonzero entry of each column to be

positive. Finally, any nonzero k-sharbly is less than a nonzero k+1-sharbly. For two sharbly

chains, we first order the sharblies in the individual chains and then extend our ordering

lexicographically. That is to say that two chains are compared term-wise starting with the

smallest element of each chain.

We claim the ordering on individual k-sharblies allows us to pick a natural representative

of the class as follows.

Lemma 3.10. A k-sharbly v has a unique minimal primitive integral representation, also

called a lift of v.

Proof. We first rationalize and divide by common divisors to make a primitive representation,

which will be unique up to permutation and sign change. By multiplying by −1 if necessary

we can assume that the first nonzero entry in every column will be positive. We then order

the columns and thus obtain a unique minimal primitive integral representation.

For implementation purposes we will associate v with the corresponding minimal primi-

tive integral representation. This correspondence allows us to work with sharblies as integral

objects and thus maintain precision in calculations.

Chapter 4. The Hecke Operators

This chapter defines the Hecke operators associated to the arithmetic cohomology groups

we are studying. We briefly recall the definition and fundamental facts about the Hecke

operators for classical modular forms. Then we define the Hecke operators on the Sharbly

complex.

40

4.1 The Hecke Operators for Classical Modular Forms

The author is heavily indebted to the introductory texts on modular forms by Kilford [39] and

Diamond and Shurman [29] for his current understanding of the Hecke operators; most of the

following definitions are based on a synthesis of the definitions given in the aforementioned

texts.

Briefly recall that for a weight-k modular form f we have the weight-k slash operator

(f |[γ]) (z) = f(cz + d)−kdet(γ)k−1f(γz),

where γ ∈ GL2(Q)+. We will use this operator to define the Hecke operators.

The motivation for the Hecke operators comes from the deep, plentiful, and important

arithmetic information conveyed by the coefficients of the q-expansion of modular forms.

Some of this information was famously conjectured, observed, or declared by Ramanujan

and should be considered one of the most compelling reasons to study modular forms. In

particular, the Hecke operators are one way to divine information about the q-expansion of a

modular form. Since the Hecke operators are a family of commuting operators on the space

of cusp forms, they can be simultaneously diagonalized to find an eigenbasis for the space of

new forms.

For two congruence subgroups of SL2(Z), say Γ1,Γ2, and α ∈ GL+
2 (Q) we are interested

in the double coset

Γ1αΓ2 = {γ1αγ2 : γi ∈ Γi}.

If Γ1 and Γ2 have the right properties then this coset will enable us to define Hecke operators

for the pair Γ1,Γ2. The follow definition comes from Rhie and Whaples [48] and is exactly

the right property.

Definition 4.1. Two subgroups A,B of a group G are commensurable if

[A : A ∩B] <∞ and [B : A ∩B] <∞.

41

Diamond and Shurman prove that if A,B are commensurable then the double coset AxB

can be written as a finite number of left or right cosets. They also show that two congruence

subgroups are commensurable. Hence any double coset of the form Γ0(N)αΓ0(N) can be

written as a disjoint union of a finite number of right cosets of Γ0(N); equivalently, every

double coset can be written as a disjoint union of a finite number of left cosets of Γ0(N).

For the double coset Γ0(P)

1 0

0 p

Γ0(P), the standard set (meaning most commonly

used set) of right coset representatives for this double coset is

Ωp =


pe1 a

0 pe2




where ei ∈ {0, 1} and e1 + e2 = 1. If e1 = 0 then a is a nonnegative integer less than p,

otherwise a = 0. We then define the Hecke operator Tp as

Tp · f =
∑
ω∈Ωp

f |[ω]k.

Moreover, when γ has the form

1 j

0 p

, where j < p, there are explicit formulas for

f |[γ] using the Fourier q-expansion of f(z) =
∑∞

n=0 anq
n. The following formula comes from

Kilford [39]:

f |


1 j

0 p


 (z) =

∞∑
n=0

n≡0 (mod p)

anpq
n

This simplifies to

(Tpf)(q) =
∞∑
n=1

(apn + χ(p)pk−1an/p)q
n

where we follow the convention that an/p = 0 if n/p /∈ Z and χ(p) is the identity character on

Z/pZ extended to act on Z. A modular form f is an eigenform of Tp if Tpf = apf for some

42

scalar ap. It is known that the Hecke operators Tn and Tm commute when gcd(n,m) = 1.

Furthermore, the operators Tpr is defined recursively as Tpr+1 = TpTpr−p2k−1Tpn−1 . For more

details about these facts see Diamond and Shurman [29].

Example 4.2. Let ∆ be the cusp form of weight 12 whose Fourier expansion is given by

∆ =
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + . . .

We then have that T2 ·∆ = −24∆, T3 ·∆ = 252∆ and so forth. We see that the Hecke

eigenvalues of ∆ correspond to its Fourier coefficients.

Remark. It is a standard theorem that two eigenforms of weight k and level 1 which are

eigenfunctions of the Hecke operators with the same eigenvalues are scalar multiples of each

other (see Serre [53]). It would be interesting to examine this phenomena for the cohomology

of congruence subgroups of SLn(Z) for n > 2.

4.2 The Hecke Operators on the Sharbly Complex

Recall that implicit in the definition of the Sharbly complex was a positive integer n. We

define functions Tp,k, where 0 ≤ k ≤ n, called the Hecke operators that are analogous to the

Hecke operators for modular forms described above. Thus for n > 2 we get multiple Hecke

operators for each prime p. It should be noted that for any n we technically have Tp,0 acting

as the identity operator; consequently, for n = 2 we have Tp,1 = Tp and we get the same

Hecke operators as we defined in the previous section along with the new operator T2,2.

In general one can define an action of the Hecke operators on the group cohomology

Hk(Γ, A) where Γ is a subgroup of some G and A has a G-module structure. This is a

very fascinating line of study and it is an entertaining endeavor to demonstrate that the

Hecke operators described below match the general definition as given by Rhie and Whaples

43

[48]. Such a general approach has not yet lent itself to computations. One of the major

breakthroughs in the study of arithmetic cohomology and reciprocity is the use of the Sharbly

complex to compute the Hecke action on H∗(Γ,C) [33].

Let v be a k-sharbly. Then for a prime p and an integer j < n we define the operator

Tp,j using the double coset decomposition as found in Krieg [40]:

Tp,j · v =
∑
h∈Ωp,j

h · v,

where Ωp,j is the set of all matrices of the form


pe1 aij

. . .

pen

 where ei ∈ {0, 1} and

∑
i ei = j, aij = 0 unless ei = 0 and ej = 1, in which case 0 < aij < p. Equivalently Ωp,j is

the set of all n × n matrices in Hermite Normal Form (see section 5.5) whose diagonal is a

permutation of (1, . . . , 1︸ ︷︷ ︸
n−j

, p . . . , p︸ ︷︷ ︸
j

). When n = 2 we recover the double coset decomposition

for modular forms. The code which generates the set Ωp,j can be found in Appendix E.3.

Example 4.3. i) For n = 3 we have Ω2,1 =




2 0 0

0 1 0

0 0 1

 ,


1 a 0

0 2 0

0 0 1

 ,


1 0 b

0 1 c

0 0 2

 : 0 ≤ a, b, c ≤ 1

 .

ii) For n = 2 we have

Ω3,1 =


3 0

0 1

 ,

1 0

0 3

 ,

1 1

0 3

 ,

1 2

0 3

 .



Let u be a cohomology class in Hk(Γ;Z). Then we determine the Hecke action on u by

working with a ξ ∈ Sk such that ξ is a cycle modulo Γ and ξ is the image of u under the

44

isomorphism Hk(Γ;Z) ∼= Hν−k((S∗)Γ). For h ∈ Ωp,j we have that det(h) = pj. It is a result of

basic linear algebra that the k-sharblies h · v will probably have norm larger than ||v||. The

following example demonstrates why the word “probably” is needed in the last sentence.

Example 4.4. Consider the modular symbol v =

5 2

2 1

 . Then using the set Ω2 from

Example 4.3 we have

T2,1 · v =3 0

0 1

 · v +

1 0

0 3

 · v +

1 1

0 3

 · v +

1 2

0 3

 · v =

15 6

2 1

+

5 2

6 3

+

7 3

6 3

+

9 4

6 3

 =

15 6

2 1

+

5 2

6 3

+

7 1

6 1

+

3 4

2 3

 .
Despite the fact that ||v|| = 1, only the last two 0-sharblies in the sum are unimodular.

Since we are primarily interested in the Hecke operators on H2(Γ0(N),C) for Γ0(N) ⊂

SL3(Z), the corresponding isomorphism associates cohomology classes with chains of reduced

1-sharblies. However, the Hecke action will generally take a single reduced 1-sharbly to a

chain of 1-sharblies with higher norm; this causes complications since currently there are

no known techniques which take a chain of generic 1-sharblies and return a cohomology

class. Instead we must modify the 1-sharbly chain modulo the boundary action to get a

homologous chain of reduced 1-sharblies; this very technical process occupies the majority

of the next chapter.

45

Chapter 5. Sharbly Reduction Methods

The first few chapters discussed how to calculate the cohomology by storing the boundary

maps in a matrix, introduced the Sharbly complex, and explained how the Hecke operators

act on the Sharbly complex. In this chapter we discuss an explicit implementation of the

aforementioned isomorphism betweenHk(Γ;Z) andHν−k((S∗)Γ) given by Borel-Serre duality.

Our implementation will follow that of Ash, Gunnells, and McConnell [12] and takes a chain

in the cell complex to a chain of reduced 1-sharblies. The main focus of the chapter will

be to explain how one then reduces the 1-sharbly chain outputted by the Hecke operators.

The chapter concludes with a description of how to convert a chain of 1-sharblies back into

a chain of cells.

Since the Hecke action will increase the norm of almost any input of reduced 1-sharblies

corresponding to a cohomology class in the cell complex, we are left with the problem of

rewriting the resulting 1-sharbly chain as a chain of reduced 1-sharblies modulo the boundary,

thus finding a representation of the homology class consisting of only reduced 1-sharblies.

Once we find such a representation we then convert the resulting 1-sharbly chain into the

appropriate cohomology class in the cell complex.

The problem of reducing a 1-sharbly chain is analogous to the situation encountered

with modular symbols. For chains of 0-sharblies there exist many reduction algorithms

which take as input a 0-sharbly v and return a finite sum
∑

i vi such that ||vi|| = 1 and

v =
∑

vi modulo the boundary. The fastest such algorithm was conjectured by Gunnells

[33] and proven by Doud and Ricks [30] for n ≤ 5; this algorithm uses LLL reduction to find

reduction candidates which are used to construct the vi.

Since the norm of a k-sharbly chain is defined over the norm of the submodular symbols,

it is plausible that by reducing all of the submodular symbols one can lower the norm of the k-

sharbly. For positive k, there are no known algorithms that take as input a nonunimodular

k-sharbly and return a homologous sum of k-sharblies all with lower norm. However, in

practice the techniques detailed by Gunnells [33] have been used to computationally lower

46

the norm. Since these techniques depend upon modular symbols, we will first review modular

symbol reduction before explaining the insights made by Gunnells.

5.1 Modular Symbol Reduction

Algorithms to reduce modular symbols have been of interest since 1972 when modular sym-

bols were defined by Yuri Manin [44]. Since that time there have been many modular symbol

reduction algorithms and more information in this vein can be found in Stein’s book [57].

One modular symbol reduction algorithm is specific to n ≤ 5 and uses LLL reduction; since

we are primarily interested in performing calculations for n = 3 we will use this method.

To reduce a modular symbol is to replace the symbol v with a sum of symbols ui such

that v =
∑

i ui (mod ∂S1). To do this we need to find a candidate for v for all i.

Definition 5.1. A candidate for a modular symbol v where v has primitive representative

(v1, . . . , vn) is a primitive vector u such that v(u, i) = [v1, . . . , vi−1, u, vi+1, . . . , vn] has strictly

smaller norm than v.

Theorem 5.2. Every modular symbol v is either reduced or has a candidate. Consequently

every modular symbol can be reduced modulo the boundary to a chain of reduced symbols.

Proof. The proof that every modular symbol has a candidate originates from Minkowski

and his geometry of numbers [46]. Barvinok provides a more modern proof and gives an

implementation to find such candidates [22]. From now on we will assume that every modular

symbol has a candidate.

Let v be a modular symbol with candidate u and primitive representation (v1, . . . , vn).

Then consider the 1-sharbly w with primitive representation (u, v1, . . . , vn).

∂w = −[v1, . . . , vn] + [u, v2, . . . , vn]− [v1, u, v3, . . . , vn] + · · · ± [v1, . . . , vn−1, vn].

Hence v is homologous to v(u, 1)−v(u, 2)+ · · ·±v(u, n), since they differ by a boundary.

47

Thus every homology class corresponding to a chain of nonreduced modular symbols has

a representation consisting of modular symbols with strictly smaller norm. Iterating this

process gives us the required result.

It should be noted that for a given modular symbol there are potentially a large number

of candidates. Geometrically candidates are integral points inside the parallelepiped created

by the columns of the primitive representation of the modular symbol. As the size of the

fundamental domain increases, so does the number of candidates.

Example 5.3. Consider the modular symbol v =

2 1

3 3

. ||v|| = 3. The following figure

shows the parallelepiped created by the columns of the primitive representation of v.

(1,2)

(2,4)

(0,0) (1,0)

(0,1)

Figure 5.1: The parallelepiped formed by (2, 3)T and (1, 3)T .

48

Note that there are two lattice points (1, 2) and (2, 4) in the parallelepiped formed by v.

The modular symbols v
(
1, (1, 2)T

)
and v

(
2, (1, 2)T

)
are both unimodular. Therefore (1, 2)T

is a candidate for v. So v ≡ v
(
1, (1, 2)T

)
+ v

(
2, (1, 2)T

)
(mod ∂S1). We note that (2, 4) is

not primitive and thus not a candidate.

It is often the case that a given modular symbol has many candidates. Choosing the best

candidate u for a modular symbols v, meaning the candidate which lowers the maximum

norm of the resulting v(i, u), will speed up calculations. Unfortunately there are no known

algorithms to calculate the best candidate, but there are algorithms to calculate better

candidates. Van Geemen, van der Kallen, Top, and Verberkmoes [59] developed an approach

which relies on modular arithmetic that finds candidates such that the resulting symbols have

norm less than half the norm of the input symbol. Their approach works for any n and is

the fastest reduction algorithm with known bounds. However, there is an approach proven

by Doud and Ricks [30] which is experimentally more efficient; this approach utilizes an

LLL-reduced basis for the lattice formed by the columns of a primitive representation of the

modular symbol.

5.2 LLL Reduction

LLL reduction [43] discovered by Arjen Lenstra, Hendrik Lenstra, and László Lovász is one

type of lattice reduction algorithm. In general lattice reduction algorithms seek to produce

a good basis for a given lattice from a generic basis, where good has some inherent utility

depending on the needed calculations. Recall that a lattice is the integral span of a collection

of linearly independent vectors in Euclidean space. For our purposes we will also assume that

we are dealing with a full lattice, meaning the rank of the vectors is equal to the dimension

of the ambient space. A given lattice has infinitely many bases corresponding to its orbit

under the action of GLn(Z) on Mn(R). LLL reduction takes as input a basis and returns a

49

basis consisting of vectors that are nearly orthogonal. We expound on this definition below.

Let {b1, . . . , bn} be a basis of a lattice. Then define by induction:

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j and µi,j = bi · b∗j/(b∗j · b∗j).

Definition 5.4. A basis {b1, . . . , bn} is said to be LLL reduced if {b∗1, . . . , b∗n} is the basis

described above and the following conditions hold:

1) |µi,j| ≤ 1
2
.

2) |b∗i + µi,i−1b
∗
i−1|2 ≥ 3

4
|b∗i−1|2.

Lenstra, Lenstra, and Lovász [43] proved that every lattice has at least one LLL reduced

basis and gave an algorithm to determine an LLL reduced basis for any matrix. A given

lattice may contain many LLL reduced bases. However, each of these bases can be used to

find a reduction candidate for a modular symbol as seen in the following theorem of Doud

and Ricks [30]:

Theorem 5.5. Let v be a modular symbol with n ≤ 5 such that the primitive representation

(v1, . . . , vn) of v is LLL reduced. Then one of the standard basis vectors ei will be a candidate

for v.

Let u be a candidate for v. Then for γ ∈ GLn(Z), γu will be a candidate for γv, since

det (γ(v1, . . . , vi−1, u, vi+1, . . . , vn)) = det (γ) det(v1, . . . , vi−1, u, vi+1, . . . , vn).

Thus if γ(v1, . . . , vn) is LLL reduced with candidate ej, then γ−1ej will be a candidate for

(v1, . . . , vn). Given a non-LLL reduced primitive representation of v we can use an LLL

reduction algorithm to produce a matrix γ ∈ GLn(Z) such that the primitive representation

of γv will be reduced. Then we can search the standard basis vectors to find a candidate for

γv and multiply by γ−1 to find a candidate for v.

50

For implementation purposes we wrote an integral LLL reduction algorithm, meaning

the code only used integer arithmetic, based on pseudo-code given by Cohen [26]. The code

can be found in Appendix E.4. We also have a code that finds a candidate for a modular

symbol v by choosing the best candidate from {γ−1e1, γ
−1e2, γ

−1e3} where γv has an LLL

reduced primitive representation. The candidate selection code can be found in Appendix

E.5

5.3 Converting Cohomology to Sharblies

The data previously computed in chapter 2, allows us to construct a 1-sharbly cycle ξ

corresponding to the W -cocycle u. Recall that a W -cocycle corresponds to a collection of

orbits with coefficients. In order to construct ξ we will choose a representative of each orbit

(which is really just a 3-tuple [a]) and use this to construct a matrix γ, such that the bottom

row of γ is in the equivalence class of the 3-tuple [a]. The following lemma explains how this

is done.

Lemma 5.6. For a projective 3-tuple [a] ∈ P2(Z/NZ) there is a matrix M([a]) ∈ SL3(Z)

such that the bottom row of M([a]) is equal to the minimal representation of [a].

Proof. Let (a1, a2, a3) be the minimal representation of [a]. If any of the ai are 1, then the

matrix can be taken to be one of


0 0 1

0 −1 0

1 ∗ ∗

 ,


0 0 1

1 0 0

∗ 1 ∗

 ,


1 0 0

0 1 0

∗ ∗ 1

 ,

where the ∗’s are the other entries of the minimal representative of [a].

Otherwise we will use a constructive argument modified from Schenkman [49] to produce

the desired matrix. Because [a] ∈ P2(Z/NZ), we have that gcd(a1, a2, a3, N) = 1. Since one

of the ai|N we see that gcd(a1, a2, a3) = 1. Let gcd(a1, a2) = d, then there exists integers

x, y such that a1
d
x+ a2

d
y = 1. We know gcd(d, a3) = 1 since (gcd(a1, a2, a3) = 1. Hence there

51

exist integers w, z such that dw + a3z = 1. So the matrix

M =


−y x 0

−z a1
d
−z a2

d
w

a1 a2 a3


will satisfy

det(M) = a3(+
a2

d
yz +

a1

d
xz) + w(a1x+ a2y) = dw + a3(

a1

d
xz +

a2

d
yz) = dw + a3z = 1.

The above argument can be directly implemented and extended by induction to any n.

For [a] ∈ P2(Z/N) we will write M([a]) for the corresponding matrix constructed.

For each cell type in our cohomology class we associate the cell with its set of rays as in

2.6. Furthermore we identify the standard SL3(Z)-orbit representatives with 1-sharblies by

taking the columns of the 1-sharbly to be the rays of the cell. Since we can scale any column

in a 1-sharbly, this correspondence is well-defined. For congruence subgroups of SL3(Z) we

have only two cell types of dimension 2 in the Voronoi polyhedra and they correspond to the

1-sharblies

τ2 =


1 0 0 1

0 1 0 1

0 0 1 0

 , τ3 =


1 0 0 1

0 1 0 1

0 0 1 1

 .

The top dimensional cell corresponds to the 0-sharbly σ0 =


1 0 0

0 1 0

0 0 1

 .

52

Let ξW be a cycle in H2(Γ0(N), C), we can write ξW as a chain of orbits,

ξW =
∑
i

type τ2

ηOi
Oi +

∑
j

type τ3

ηOj
Oj.

Then the 1-sharbly chain

ξ =
∑
i

ηOi
M([a]) · τ2 +

∑
j

ηOj
M([a]) · τ3

will be the image of ξ under the isomorphism of H2(Γ0(N), C) and H1(S, C).

The Hecke operator Tp,j acts on this chain linearly as described in section 4.2. We can act

on the chain to get a larger chain and then reduce the corresponding cells. But, the reduction

technique will utilize the fact that ξ corresponds to a cohomology class of Hν−1(Γ0(N),C).

Thus, we cannot choose lifts of ∂M([a]) independently of one another. Instead we will need

to choose Γ0(N)-equivariant lifts as done by Ash, Gunnells, and McConnell [12].

5.4 Choosing Appropriate Lifts

Since we our primarily interested in explicit computations we will need to choose integral

representations for our 1-sharbly chain.

As we described in chapter 2, all of the cells corresponding to 1-sharblies in ξ consist

entirely of orientable orbits. However, it is often the case that the boundary of an orientable

cell will contain nonorientable orbits. Recall from section 2.6, that a Stab(σ)-orbit is non-

orientable if and only if there is γ ∈ Stab(σ), such that γ stabilizes an element of the orbit,

but the value of the orientation character at γ is −1. Equivalently, every element of the

orbit is stabilized by a matrix with negative orientation. For a 1-sharbly u in the support

of ξ containing a boundary element corresponding to a non-orientable cell [a], we replace

ηuu · τi →
ηu
2

u · τi + γ
ηu
2

u · τi

53

where γ stabilizes [a] and has orientation number −1. We do this for each non-orientable

[a] in boundary of η, possibly replacing the original 1-sharbly with a sum of four 1-sharblies.

By so doing, we have not changed the homology class, but have made it computationally

very clear that the non-orientable cells will cancel each other out in the boundary. We are

now left with the task of choosing Γ0(N)-equivariant lifts for the orientable 0-sharblies in

the boundary of ξ.

For each 1-sharbly u in our 1-sharbly chain ξ, we need to choose a set of lifts that are

γ-equivariant, in the following way: if u,u′ are two 1-sharblies in our chain, with v ∈ ∂u

and v′ ∈ ∂u′ such that v = γ · v′ for some γ ∈ Γ0(N), then we want v(γ) = γL(v′); here

L(v) denotes the lift of v.

Ultimately we want to implement our lifts locally, meaning without the need to cross

reference the lifts we have already chosen. For a given v we compute an arbitrary lift

L(v). Then we find the orbit corresponding to the bottom row of v(γ). Let [a] to be the

smallest element in the orbit. Recall that attached to [a] we have its primitive representation

(a1, a2, a3), an orientation (which is positive), and a matrix which takes the first element of

the orbit to [a]. Since [a] is the first element of its orbit we can relate [a] to (a1, a2, a3,±1, I)

and b(v(γ)) = (b1, b2, b3,±1, γb), where [a]γb = [b1, b2, b3]. We replace L(v) with γbL(v).

Before examining Gunnells’ techniques to reduce 1-sharblies, we first make a small note

about how our choice of candidates for a modular symbol will respect the Γ0(N) equivariant

condition. Otherwise we’d be forced to reexamine the lifts after reducing the 1-sharby; since

a given 1-sharbly will be replaced with a larger number of 1-sharblies, this is not a viable

approach.

5.5 Hermite Normal Form

Since we need our calculations to be Γ0(N)-equivariant we must make sure that whenever we

choose a candidate for a 0-sharbly it respects the action of Γ0(N). That is to say that if two

0-sharblies are in the same Γ0(N)-orbit, v = γv′ for γ ∈ Γ0(N), then we want their respective

54

reduction candidates w,w′ to satisfy w = γw′. Clearly γw′ will be a candidate for v; but,

one may have selected an alternative candidate for v. To avoid such potential blunders,

we first calculate a unique GLn(Z)-orbit representative ν for the matrix represented by the

0-sharbly v, say νγ′′ = v. Then if w′′ is the candidate selected by our algorithm for nu we

choose w′′γ′′ as our candidate for v. The problem is identifying a canonical GLn(Z)-orbit

representative for each 0-sharbly; our solution is to use Hermite Normal Form.

Hermite Normal Form is a generalization of row echelon form; it corresponds to reducing

a matrix using only row (resp. column) operations that preserve the absolute value of the

determinant. Most authors, such as Cohen define HNF using column operations, meaning

the GLn(Z) action happens on the right. We will however, follow the definition in Stein [57],

with the appropriate modifications due to typographical errors in the original. An invertible

integral matrix A is in HNF if it satisfies the following:

• aij = 0, for i < j,

• aii 	 0,

• aji < aii for all j < i unless aii = 0.

Lemma 5.7. Every invertible integral matrix has a unique HNF.

The proof for the above statement and a beautiful generalization can be found in New-

man’s book Integral Matrices [47]. Our code which returns the HNF form corresponding to

a matrix can be found in Appendix E.6.

Remark. We note that the problem of choosing Γ0(N) equivariant lifts does not occur for 0-

sharblies. This is because the boundary of every 0-sharbly is automatically trivial. Moreover,

two 0-sharblies chosen to have primitive columns are equal iff one can be permuted into the

other (up to sign change). Consider the case n = 3. Since the stabilizer of σ0 has 24 elements

the Stab(σ0)-orbit of [a, b, c] contains all the tuples equivalent to [a, b, c] under permutation

(up to sign change). Hence two 0-sharblies with primitive lifts will be in the same Γ0(N)-orbit

if and only if their corresponding bottom rows are in the same Stab(σ0)-orbit.

55

5.6 Sharbly Reduction Methods: Introduction

As mentioned we need a reduction method for 1-sharblies. To do this we want to package

together the potential candidates of all the submodular symbols of a 1-sharbly in such a way

that the submodular symbols with highest norms cancel each other out. In [33], Gunnells

presents his approach and provides experimental evidence wherein it replaces a 1-sharbly

with a homologous chain of 1-sharblies all of which have smaller norm. We will summarize

his computational technique while discussing the specific implementation for n = 3. It should

be noted that these techniques have only been implemented computationally and are not

known to terminate and thus do not give an actual algorithm.

For a 1-sharbly [v1, . . . , vn, vn+1], rearranging the vectors if necessary, we will assume that

the j modular symbols [v̂1, v2, . . . , vn+1], [v1, v̂2, . . . , vn+1], . . . , [v1, v2, . . . , v̂j, . . . , vn+1] are not

reduced and the other n − j modular symbols are reduced. Let w1, . . . , wj be the candi-

dates for the above modular symbols (where wi is the candidate for the modular symbol

[v̂1, v2, . . . , vn+1]).

In general the method consists of finding a 2-sharbly chain η such that the boundary of η

will cancel with the original terms and leave behind sharblies with smaller norm. As stated

before, the techniques for packaging together the candidates and the remaining columns of

the sharbly do not provably terminate or always produce a chain of 1-sharblies with lower

norm. However, these methods have successfully reduced 1-sharblies in practice and thus

allowed the computation of the Hecke eigenvalues.

For example, suppose that n = 2 and we have the symbol v = [v1, v2, v3] such that none of

the submodular symbols [v2, v3], [v1, v3], [v1, v2] are reduced. Then we have three candidates

w1, w2, w3. We form the 2-sharbly chain η = [v1, v3, v2, w1]+[v1, w2, v3, w1]+[v1, w3, w2, w1]+

[v1, v2, w3, w1].

56

Then

[v1, v2, v3] + ∂η =

[v1, v2, v3] − [v3, v2, w1] + [v1, v2, w1]− [v1, v3, w1] + [v1, v3, v2]

− [w2, v3, w1] + [v1, v3, w1]− [v1, w2, w1] + [v1, w2, v3]

− [w3, w2, w1] + [v1, w2, w1]− [v1, w3, w1] + [v1, w3, w2]

− [v2, w3, w1] + [v1, w3, w1]− [v1, v2, w1] + [v1, v2, w3].

We can cancel as seen in the following

[v1, v2, v3] + ∂η =

[v1, v2, v3] − [v3, v2, w1] + [v1, v2, w1]− [v1, v3, w1] + [v1, v3, v2]

− [w2, v3, w1] + [v1, v3, w1]− [v1, w2, w1] + [v1, w2, v3]

− [w3, w2, w1] + [v1, w2, w1]− [v1, w3, w1] + [v1, w3, w2]

− [v2, w3, w1] + [v1, w3, w1]− [v1, v2, w1] + [v1, v2, w3].

Thus we have that [v1, v2, v3] + ∂η =

−[v3, v2, w1]− [w2, v3, w1] + [v1, w2, v3]− [w3, w2, w1] + [v1, w3, w2]− [v2, w3, w1] + [v1, v2, w3].

If we are using Γ0(N)-equivariant lifts then the elements of the form [vi, vj, wk] where

i, j, k are distinct will vanish in ∂Γη, as shown by Gunnells in the appendix of [57]. Thus we

can replace [v1, v2, v3] with four 1-sharblies:

[v1, v2, v3]→ −[w2, v3, w1]− [w2, w2, w1] + [v1, w3, w2]− [v2, w3, w1].

Remark. The above equation highlights the main difficulty with reducing 1-sharblies. In

some sense Gunnells’ approach is extremely natural, but it replaces the 1-sharbly [v1, v2, v3]

57

with four 1-sharblies that are composed of the columns vi and the candidates for ∂[v1, v2, v3].

However, each candidate wi is chosen independent of the other two candidates; there is

no reason the symbol [w2, v3, w1] should have a norm smaller than [v1, v2, v3] and there are

examples when it doesn’t have a smaller norm. But, it practice the repeated use of the above

replacement will eventually find an expression for the homology class of [v1, v2, v3] as a sum

of reduced 1-sharblies.

One might be wondering how we knew to work with the 2-sharbly chain η. In some sense,

our choice of η is a happy coincidence or a lucky choice from the universe. In another sense

η is the most logical choice for a 2-sharbly whose boundary will reduce [v1, v2, v3]. We know

that ∂η needs to cancel out [v1, v2, v3], thus somewhere in η we will want [v1, v3, v2, w] where

w is some other vector. But, ∂[v1, v2, v3, w] = [v1, v3, v2]− [v1, v2, w] + [v1, v3, w]− [v1, v2, w].

In general a non-reduced 1-sharbly will not contain any reduced modular symbols in its

boundary. Thus [vi, vj, w] might have a higher norm unless w is the reduction point for vi, vj

as a modular symbol. It is unlikely that w is a reduction for all of the vi, vj, but we can

choose w to be the reducing point of [v2, v3]. Then the other terms are selected so as to

cancel with the remaining boundary elements and hopefully produce sharblies with smaller

norms.

5.7 Sharbly Reduction Methods: Geometric

The geometric motivation for Gunnells’ 1-sharbly reduction method comes from considering

a 2-sharbly as a simplex in n + 1 dimensions. Begin with the standard n-simplex labeled

with the columns of the 1-sharbly. Then add vertices for any needed candidates and add

edges from wi to wj, and vj for i 6= j. Then the 2-sharbly η comes from decomposing the

resulting polytope into n+1 dimensional simplices. In order to decompose the polytope into

simplices, one needs to add an edge between of the wi and the corresponding vi. In general

which wi doesn’t matter. In practice one can test all of the wi and see which decomposition

yields a chain with the smallest norm. For our purposes we will always add an edge from w1

58

to v1.

Equivalently, one can construct the needed polytope for a 1-sharbly v by taking the

(n − j)th iterated cone over the j-orthoplex. The j-orthoplex is dual to the j-hypercube.

Then when one labels the graph, place the j candidates wi and the corresponding columns

vi as the vertices of the j-orthoplex. The other n − j columns of the 1-sharbly are used to

label the remaining vertices. From a geometric perspective this approach allows us to see

the decomposition.

Remark. To find the simplicial decomposition the n− jth iterated cone over the j-orthoplex,

we need only decompose the j-orthoplex into j+ 1-dimensional simplices and then cone over

each simplex to obtain a higher dimension simplex; this observation significantly simplified

the geometry needed to understand Gunnells’ reduction technique.

Example 5.8. Reconsider the case n = 2 where v = [v1, v2, v3] and none of the submodular

are reduced. Then we form a triangle and add 3 vertices labeled w1, w2, w3 for the three

candidates of the submodular symbols of v.

v2

v1

v3

v3

v1

w3 w2

w1

v2

Figure 5.2: Determing η when n = 2

The right-hand side of figure 5.2, is equivalent to the octahedron as seen in figure 5.3.

Consequently we have the decomposition given in the previous section by cutting the octa-

hedron along the planes containing w1, v1, wi, vi for i = 2 and 3.

59

v1

w1

v2

w3

w2

v3

Figure 5.3: Decomposing the octahedron

We modify the construction if ∂v contains reduced 0-sharblies. As before we will assume

that v = [v1, v2, v3, v4] is ordered so the first j submodular symbols are non reduced. The

next few subsection gives the geometric shapes for each of the possible values of j < 4.

5.7.1 Completely Unimodular, j = 0. If all the 0-sharblies in the boundary of our

1-sharbly are unimodular, then the 1-sharbly is already reduced.

5.7.2 One nonunimodular Boundary Symbol, j = 1. If one of the 0-sharblies is

nonunimodular say [v1,v2,v3] then we only need a w1. Then η = [v1,v2,v3,v4,w1].

Geometrically we have the construction seen in figure 5.4.

60

v1

w1

v1

w1

v2

v1

w1

v2

v3

v1

w1

v2

v3

v4

Figure 5.4: Constructing the 3-iterated cone over the 1 polytope.

5.7.3 Two nonunimodular Boundary Symbols, j = 2. We construct the 2-iterated

cone over the 2-orthoplex in figure 5.5.

v4

v1 v2

w2 w1

v3

Figure 5.5: The 2-iterated cone over the 2 polytope.

61

This decomposes into 2 simplices giving us η = [v1, v3, v2, w2] + [v1, v2, w3, w3].

5.7.4 Three nonunimodular Boundary Symbols, j = 3. We cone over the 3 ortho-

plex as seen in figure 5.6

v4

v3

w3

v1

w2

w1

v2

Figure 5.6: The 1-iterated cone over the 3-orthoplex.

.

Now we notice that in general such a geometric problem can be daunting, but we note

that we already decomposed the octahedron (the 3-orthoplex) into simplices as seen in figure

5.3. Coning over the simplices with the same point (in this case v4) preserves the simplicial

decomposition. Thus we have

η = [v1, v3, v2, w1, v4] + [v1, w2, v3, w1, v4] + [v1, w3, w2, w1, v4] + [v1, v2, w3, w1, v4].

5.7.5 Four nonunimodular Boundary Symbols, j = 4. In this case we have the

4-orthoplex or 16-cell as our base figure. Instead of decomposing figure 5.7 directly we will

use the following proposition to determine η.

Proposition 5.9. The n-orthoplex labeled with v1, . . . , vn, w1, . . . , wn such that vi and wi are

62

not connected has simplicial decomposition equal

∑
ui∈{vi,wi}

±(−1)k(u2,...,un)[v1, u2, . . . , un−1, w1], (5.1)

where k(u2, . . . , un) is the number of ui that are equal to wi.

Proof. All of the facets of an n-orthoplex so labeled have the form [u1, . . . , un] with ui ∈

{vi, wi}.Adding the point w1 or v1 to each of this facets will create a simplex [v1, u2, . . . , un, w1]

and we claim these simplices give a simplicial decomposition of our n-orthoplex with the

added edge between v1 and w1. To see this we note that any interior facet, that is a facet

containing v1, w1 is in two distinct simplices corresponding to adding either v1 or w1 to the

facet. Hence given a fixed started simplex with say positive, the orientations of its neighbor-

ing simplices will be negative, the orientations of their neighboring simplices will be positive,

their neighbors will have negative orientation, and so forth. Thus, the boundary of our

extended facet construction is the boundary of our n-orthoplex and we have a simplicial

decomposition. The ±1 in (5.1) refers to the two choices of orientation such a decomposition

gives us.

For our purposes we want [v1, . . . , vn, w1] to have whatever orientation cancels out the

1-sharbly [v1, . . . , vn]. Hence for n = 4 we have

η =[v1, v2, v3, v4, w1]− [v1, v2, v3, w4, w1]− [v1, v2, w3, v4, w1]− [v1, w2, v3, v4, w1]

+ [v1, v2, w3, w4, w1] + [v1, w2, v3, w4, w1] + [v1, w2, w3, v4, w1]− [v1, w2, w3, w4, w1].

63

v1 v2

v3

v4

w1w2

w3

w4

Figure 5.7: The 4-orthoplex or 16-cell.

Chapter 6. Example When N = 11

This chapter contains examples of the data need to calculated the cohomology of Γ0(11) as

well as the calculation of the Hecke eigenvalues.

6.1 Orbits of the Stabilizers

This section explores the needed calculations when we are looking to commute the coho-

mology of Γ0(N) for N = 11. We start by determining the orbits of P2(Z/11Z) under

Stab(σ0), Stab(τ2), Stab(τ3) and Stab(ω2). We only store the orientable orbits, although we

keep a vector of the orientation of each element of P2(Z/11/Z) under each of the cells; this

information will be useful when we calculate the boundary maps. These orbits are stored in

their entirety in Appendix D. Because there are 18 Stab(ω2)-orbits of P2(Z/11Z) we do not

record that information here.

64

Orbits σ0O1 σ0O2 σ0O3 σ0O4

Size of Orbit 12 12 24 24
Orbit Repres. (1,0,2) (1,0,3) (1,2,3) (1,2,4)

Table 6.1: Size and Representatives of Stab(σ0)-orbits of P2(Z/11/Z)

Orbits τ2O1 τ2O2 τ2O3 τ2O4 τ2O5 τ2O6

Size of Orbit 6 12 12 12 12 12
Orbit Repres. (1,2,0) (1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5)

Table 6.2: Size and Representatives of Stab(τ2)-orbits of P2(Z/11/Z)

Orbits τ3O1 τ3O2 τ3O3 τ3O4

Size of Orbit 24 24 12 12
Orbit Repres. (1,0,2) (1,2,3) (1,2,9) (1,3,8)

Table 6.3: Size and Representatives of Stab(τ3)-orbits of P2(Z/11/Z)

6.2 Making the Boundary Matrix

Next we decompose the Stab(σ0)-orbits into their suborbits under the intersection of Stab(σ0)∩

Stab(τ2) and under the intersection Stab(σ0) ∩ Stab(τ3). We also decompose the Stab(τ2)

and Stab(τ3)-orbits into their suborbits under the intersection of Stab(τ2) ∩ Stab(ω2) and

Stab(τ3) ∩ Stab(ω2) respectively. A copy of the suborbits can be found in Appendix D.5.

We can now calculate the entries of the boundary matrices as described in section 2.28.

The matrix produced will be a 4 × 10 matrix, where the 4 rows are the 4 Stab(σ0)-orbits

and the 10 columns correspond to the 6 Stab(τ2)-orbits and the 4 Stab(τ3)-orbits; we will

combine these two types of orbits and refer to them as the 10 Stab(τ)-orbits. Then the

matrix entry aij will correspond to the boundary to the Stab(τ)-orbits that appear in a

suborbit of Stab(σ0).

Using the maps from 2.28 we find that the boundary map d2,0
1 : Ei,0

2 → E3,0
1 is given by

the matrix 

1 0 0 0 0 0 −2 0 0 0

−2 0 0 0 0 0 4 0 0 0

0 −1 −1 −1 −1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0


.

65

Appendix A. Stabilizers of Cells

A.1 Notation

We denote a cell by a lowercase Greek letter, either σ, τ, or ω, with a subscript. A cell

can be though of as a set of vectors, which is invariant under multiplication by −1. If we

wish to restrict to the rays spanned by these vectors (and thus identify each vector with

its coset under the action of −1), we write σ̃. All of the cells all contain the standard unit

vectors e1, e2, e3 and their negatives. Some will also contain the elements t2 = (1, 1, 0)T ,

t3 = (1, 1, 1)T and their negatives. For convenience we will use a boldface font to symbolize

the ray spanned by an element. For example, e1 is the x-axis.

A.2 Stabilizer of σ0

Recall that

σ0 = {±e1,±e2 ± e3}.

Stab(σ0) =

〈
0 −1 0

1 0 0

0 0 1


︸ ︷︷ ︸

h1

,


0 0 1

1 0 0

0 1 0


︸ ︷︷ ︸

h2

〉
.

We see that |Stab(σ0)| = 24. We now list the 24 elements along with the value of the

permutation character.

66

s1 =


1 0 0

0 1 0

0 0 1

 , ρ(s1) = 1, s2 =


1 0 0

0 0 1

0 −1 0

 , ρ(s2) = −1,

s3 =


1 0 0

0 −1 0

0 0 −1

 , ρ(s3) = 1, s4 =


1 0 0

0 0 −1

0 1 0

 , ρ(s4) = −1,

s5 =


0 1 0

1 0 0

0 0 −1

 , ρ(s5) = −1, s6 =


0 1 0

0 0 1

1 0 0

 , ρ(s6) = 1,

s7 =


0 1 0

−1 0 0

0 0 1

 , ρ(s7) = −1, s8 =


0 1 0

0 0 −1

−1 0 0

 , ρ(s8) = 1,

s9 =


0 0 1

1 0 0

0 1 0

 , ρ(s9) = 1, s10 =


0 0 1

0 1 0

−1 0 0

 , ρ(s10) = −1,

s11 =


0 0 1

−1 0 0

0 −1 0

 , ρ(s11) = 1, s12 =


0 0 1

0 −1 0

1 0 0

 , ρ(s12) = −1,

s13 =


−1 0 0

0 1 0

0 0 −1

 , ρ(s13) = 1, s14 =


−1 0 0

0 0 1

0 1 0

 , ρ(s14) = −1,

s15 =


−1 0 0

0 −1 0

0 0 1

 , ρ(s15) = 1, s16 =


−1 0 0

0 0 −1

0 −1 0

 , ρ(s16) = −1,

67

s17 =


0 −1 0

1 0 0

0 0 1

 , ρ(s17) = −1, s18 =


0 −1 0

0 0 1

−1 0 0

 , ρ(s18) = 1,

s19 =


0 −1 0

−1 0 0

0 0 −1

 , ρ(s19) = −1, s20 =


0 −1 0

0 0 −1

1 0 0

 , ρ(s20) = 1,

s21 =


0 0 −1

1 0 0

0 −1 0

 , ρ(s21) = 1, s22 =


0 0 −1

0 1 0

1 0 0

 , ρ(s22) = −1,

s23 =


0 0 −1

−1 0 0

0 1 0

 , ρ(s23) = 1, s24 =


0 0 −1

0 −1 0

−1 0 0

 , ρ(s24) = −1.

68

A.3 Stabilizer of τ2

Recall that τ2 = {±e1,±e2,±e3,±(t2)}. Then the stabilizer of τ2 consists of the following

matrices:

t1 =


1 0 0

0 1 0

0 0 1

 , ρ(s1) = 1, t2 =


1 −1 0

0 −1 0

0 0 −1

 , ρ(s2) = −1,

t3 =


0 1 0

1 0 0

0 0 −1

 , ρ(t3) = −1, t4 =


0 −1 0

1 −1 0

0 0 1

 , ρ(t4) = 1,

t5 =


1 −1 0

1 0 0

0 0 1

 , ρ(t5) = 1, t6 =


1 0 0

1 −1 0

0 0 1

 , ρ(t6) = −1,

t7 =


−1 1 0

0 1 0

0 0 −1

 , ρ(t7) = −1, t8 =


−1 0 0

0 −1 0

0 0 1

 , ρ(t8) = 1,

t9 =


0 1 0

−1 1 0

0 0 1

 , ρ(t9) = 1, t10 =


0 −1 0

−1 0 0

0 0 −1

 , ρ(t10) = −1,

t11 =


−1 1 0

−1 0 0

0 0 1

 , ρ(t11) = 1, t12 =


−1 0 0

−1 1 0

0 0 −1

 , ρ(t12) = −1,

69

A.4 Stabilizer of τ3

Given the set τ3 = {±e1,±e2,±e3,±(e1 +e2 +e3)}, we find the stabilizer Stab(τ3). We claim

St(τ3) has order 24 and is generated by the following matrices:

Stab(τ3) =

〈
0 −1 0

−1 0 0

0 0 −1

 ,


0 0 −1

0 −1 0

−1 0 0

 ,


1 −1 0

1 0 −1

1 0 0


〉
.

70

r1 =


1 0 0

0 1 0

0 0 1

 , ρ(r1) = 1, r2 =


1 0 −1

0 0 −1

0 1 −1

 , ρ(r2) = 1,

r3 =


1 −1 0

0 −1 1

0 −1 0

 , ρ(r3) = 1, r4 =


0 1 −1

1 0 −1

0 0 −1

 , ρ(r4) = 1,

r5 =


0 0 1

1 0 0

0 1 0

 , ρ(r5) = 1, r6 =


0 −1 0

1 −1 0

0 −1 1

 , ρ(r6) = 1,

r7 =


0 1 0

0 0 1

1 0 0

 , ρ(r7) = 1, r8 =


0 0 −1

0 1 −1

1 0 −1

 , ρ(r8) = 1,

r9 =


0 −1 1

0 −1 0

1 −1 0

 , ρ(r9) = 1, r10 =


1 −1 0

1 0 −1

1 0 0

 , ρ(r10) = −1,

r11 =


1 0 0

1 −1 0

1 0 −1

 , ρ(r11) = −1, r12 =


1 0 −1

1 0 0

1 −1 0

 , ρ(r12) = −1,

r13 =


−1 1 0

0 1 0

0 1 −1

 , ρ(r13) = −1, r14 =


−1 0 1

0 −1 1

0 0 1

 , ρ(r14) = −1,

r15 =


−1 0 0

0 0 −1

0 −1 0

 , ρ(r15) = −1, r16 =


0 1 −1

−1 1 0

0 1 0

 , ρ(r16) = −1,

71

r17 =


0 −1 0

−1 0 0

0 0 −1

 , ρ(r17) = −1, r18 =


0 0 1

−1 0 1

0 −1 1

 , ρ(r18) = −1,

r19 =


0 1 0

0 1 −1

−1 1 0

 , ρ(r19) = −1, r20 =


0 −1 1

0 0 1

−1 0 1

 , ρ(r20) = −1,

r21 =


0 0 −1

0 −1 0

−1 0 0

 , ρ(r21) = −1, r22 =


−1 1 0

−1 0 0

−1 0 1

 , ρ(r22) = 1,

r23 =


−1 0 1

−1 1 0

−1 0 0

 , ρ(s23) = 1, r24 =


−1 0 0

−1 0 1

−1 1 0

 , ρ(s24) = 1.

72

A.5 Stabilizer of ω2

Recall that

ω2 = {±e1,±e2,±e3,±t2,±t3}.

Stab(ω2) =

〈
0 −1 0

−1 0 0

0 0 −1

 ,


−1 0 0

−1 0 1

−1 1 0


〉

w1 =


1 0 0

0 1 0

0 0 1

 , ρ(w1) = 1, w2 =


0 1 −1

1 0 −1

0 0 −1

 , ρ(w2) = 1,

w3 =


0 −1 1

0 −1 0

1 −1 0

 , ρ(w3) = 1, w4 =


1 0 −1

1 0 0

1 −1 0

 , ρ(w4) = −1,

w5 =


−1 0 1

0 −1 1

0 0 1

 , ρ(w5) = −1, w6 =


0 −1 0

−1 0 0

0 0 −1

 , ρ(w6) = −1,

w7 =


0 1 0

0 1 −1

−1 1 0

 , ρ(w7) = −1, w8 =


−1 0 0

−1 0 1

−1 1 0

 , ρ(w8) = 1,

73

A.6 Intersection Data

A.7 Boundaries of the Standard Cells

To determine the boundary of a cell σ we view σ as a collection of 2k vectors corresponding

to the minimal vectors of some quadratic form. Then from Voronoi’s work [60] the boundary

of σ will be all cells τ which correspond to collections of 2(k + 1) vectors containing the

original 2k vectors. Since we have explicit cells to work with, we will use the labeling from

chapter 2 for n = 3. Thus σ0 = ±{e1, e2, e3}, τ2 = ±{e1, e2, e3, t2}, τ3 = ±{e1, e2, e3, t3}, and

ω2 = ±{e1, e2, e3, t2, t3}.

A.7.1 Boundary of σ0. Then we have that the boundary of σ0 contains 10 cells, 6 of

type τ2 and 2 of type τ3. The type τ2 cells in the boundary of σ0 are

τ2,


1 0 0

0 −1 0

0 0 −1

 τ2,


0 0 1

1 0 0

0 1 0

 τ2,


0 0 −1

1 0 0

0 −1 0

 τ2,


0 1 0

0 0 1

1 0 0

 τ2,


0 −1 0

0 0 1

−1 0 0

 τ2.

The type τ3 cells in the boundary of σ0 are

τ3,


1 0 0

0 −1 0

0 0 −1

 τ3,


−1 0 0

0 −1 0

0 0 1

 τ3,


−1 0 0

0 1 0

0 0 −1

 τ3.

A.7.2 Boundary of τ2. The boundary of τ2 contains 6 cells all of type ω2, they are

ω2,


0 1 0

−1 1 0

0 0 1

ω2,


0 1 0

−1 1 0

0 0 −1

ω2,


1 −1 0

1 0 0

0 0 1

ω2,


1 −1 0

1 0 0

0 0 −1

ω2,


−1 0 0

0 −1 0

0 0 1

ω2.

74

A.7.3 Boundary of τ3. The boundary of τ3 contains 3 cells all of type ω2, they are

ω2,


−1 0 0

0 0 −1

0 −1 0

ω2,


0 −1 0

0 −1 0

0 0 −1

ω2.

Appendix B. Algorithms for P2(Z/NZ)

The following is a collection of code for C++, used to construct and work with elements of

P2(Z/NZ).

B.0.4 Comments and Explanations.

/* Creates the class of Projective Three_tuples (P^2(Z/NZ)),

the ordering and conversion to integers,

along with the action of a matrix on a three tuple (three_tuple is a row)

%%%%Depends on Mat_Class%%%% a class of 3 by 3 matrices stored as 9 integers

class Three_tuple -- a class of threetuples, can construct, print, outfile,

reduce to a standard representations, and reduction for nonprime inputs

We order reduced three_tuples lexiographically.

Create Ordering This include

1) (a,b,c) to i;

2) i to (a,b,c);

3) reducetuple;

For nonprime level, we must first determine a list of "good" positions

75

We will simply fill all positions starting with a divisor of n,

then mark those entries that are already occupied.

This happens in the prologue

int abc_to_i -- returns the i in the lexiographical ordering,

assumes the input is already reduces

Three_tuple i_to_abc(int i) -- gives the abc corresponding to a given i;

void Three_tuple::Reduce_tuple() -- reduces a tuple into a fixed representative,

which is unique for prime (n)-level

bool Three_tuple::isReduced() -- tells if a tuple is reduced;

Three_tuple Mat_act_on_Tuple(Mat X, Three_tuple T) -- returns T*X

*/

class Three_tuple // a class of three tuples

{

public:

Three_tuple(int one, int two, int three);

Three_tuple();

int one,two,three;

void PrintThree_tuple() const;

void Reduce_tuple();

void OutThree_tuple() const;

bool isEqual(Three_tuple T);

bool isReduced();

};

76

Three_tuple::Three_tuple(int new_one, int new_two, int new_three)

{

one=new_one; two=new_two; three=new_three;

}

Three_tuple::Three_tuple(){;}

bool Three_tuple::isEqual(Three_tuple T)

{

return ((one==T.one)&&(two==T.two)&&(three==T.three));

}

void Three_tuple::PrintThree_tuple() const

{

cout << "[" << one << ", " << two << ", " << three <<"]\n";

//out_file << "[" << one << ", " << two << ", " << three <<"]";//"n";

}

void Three_tuple::OutThree_tuple() const

{

//cout << "[" << one << ", " << two << ", " << three <<"]\n";

out_file << "[" << one << ", " << two << ", " << three <<"]";//"n";

}

int abc_to_i(int d,int e, int f)

{

int a,b,c;

Three_tuple T (d,e,f);

77

T.Reduce_tuple();

a=T.one;

b=T.two;

c=T.three;

if((a==0)*(b==0)*(c==1))

{

return (k)*n*n+k*n+1;

}

if((a==0)*(b!=0))

{

for(int i=0;i<k;i++) //replace with divisors_of_n.size()

{

if(divisors_of_n[i]==b)

{

return k*n*n+(i)*n+c+1;

}

}

}

for(int i=0;i<k;i++)

{

if(divisors_of_n[i]==a)

{

return i*n*n+b*n+c+1;

}

}

}

78

Three_tuple i_to_abc(int i)

{

int a,b,c;

if(i==k*n*n+k*n+1)

{

Three_tuple M(0,0,1);

return M;

}

if(i>k*n*n)

{

int j=i-k*n*n;

if((j%n)!=0)

{

b=divisors_of_n[j/n];

}

else

{

b=divisors_of_n[j/n - 1];

}

c=modn(j-1);

Three_tuple M(0,b,c);

return M;

}

if(i%(n*n)!=0)

{

a=divisors_of_n[i/(n*n)];

}

79

else

{

a=divisors_of_n[i/(n*n)-1];

b=n-1;

c=n-1;

Three_tuple M(a,b,c);

return M;

}

int j=i%(n*n);

if(j%n!=0)

{

b=modn(j/n);

}

else

{

b=modn(j/n-1);

}

c=modn(i-1);

Three_tuple M(a,b,c);

return M;

}

//Need to check if tuples with a divisor in the first entry/ second are reduced

//(i.e. reduce to a fixed representative).

//assumes that the tuple is already in reduced (a,b,c) form meaning

//a|n or a==0 and b|n or a==b==0, c==1;

80

void Three_tuple::Reduce_tuple()

{

if(gcddd(one,two,three,n)!=1)

{

one=0;two=0;three=0;

return;

}

one=modn(one);two=modn(two);three=modn(three);

if(gcd(one,n)==1)

{

int one_inverse=modn_inverse[modn(one)];

two=modn(two*one_inverse);

three=modn(three*one_inverse);

one=1;

return;

}

if(one==0)

{

if(gcd(two,n)==1)

{

int two_inverse=modn_inverse[modn(two)];

three=modn(three*two_inverse);

two=1;

one=0;

return;

}

if(two==0)

81

{

three=gcd(three,n);

return;

}

//assumes that one is 0 and two is a 0-divisor

int two_inverse=modn_inverse[modn(two)];

two=modn(two*two_inverse);

three=modn(three*two_inverse);

int index=identify_divisors(two);

int min=n*n*k+n*k+1;

//cout << index << "\t" << min;

for(int i=0;i<elem_stabilizer[index].size();i++)

{

//cout << "elem_stabilizer[index][i]*one = "

<< modn(elem_stabilizer[index][i]*one) << "\n";

//cout << "elem_stabilizer[index][i]*two = "

<< modn(elem_stabilizer[index][i]*two) << "\n";

//cout << "elem_stabilizer[index][i]*three = "

<< modn(elem_stabilizer[index][i]*three) << "\n";

int minimal=abc_to_i(0,modn(elem_stabilizer[index][i]*two),

modn(elem_stabilizer[index] [i]*three));

//cout <<"minimal = " << minimal <<"\n";

if(minimal<=min)

{

min=minimal;

82

// cout << "new min = " << min << "\n";

}

}

Three_tuple T=i_to_abc(min);

//T.PrintThree_tuple(); cout <<"\n";

one=T.one; two=T.two; three=T.three;

return;

}

int one_inverse = modn_inverse[modn(one)];

one=modn(one*one_inverse); two=modn(two*one_inverse);

three=modn(three*one_inverse);

int index=identify_divisors(one);

//cout << index <<"\n";

int min=k*n*n+k*n+1;

//cout << "min = " << min << "\n";

for(int i=0;i<elem_stabilizer[index].size();i++)

{

//cout << "elem_stabilizer[index][i]*one = "

<< modn(elem_stabilizer[index][i]*one) << "\n";

//cout << "elem_stabilizer[index][i]*two = "

<< modn(elem_stabilizer[index][i]*two) << "\n";

//cout << "elem_stabilizer[index][i]*three = "

<< modn(elem_stabilizer[index][i]*three) << "\n";

int minimal=abc_to_i(modn(elem_stabilizer[index][i]*one),

modn(elem_stabilizer[index][i]*two), modn(elem_stabilizer[index][i]*three));

//cout << "minimal = " << minimal << "\n";

83

if(minimal<=min)

{

min=minimal;

// cout << "min = " << min << "\n";

}

}

Three_tuple T=i_to_abc(min);

//T.PrintThree_tuple();

//cout <<"\n";

one=T.one; two=T.two; three=T.three;

return;

}

Three_tuple Mat_act_on_Tuple(Mat X, Three_tuple T)

//as a row times a three by three matrix.

{

int dum1=X.a*T.one+X.d*T.two+X.g*T.three;

int dum2=X.b*T.one+X.e*T.two+X.h*T.three;

int dum3=X.c*T.one+X.f*T.two+X.i*T.three;

Three_tuple TT (dum1,dum2,dum3);

return TT;

}

bool Three_tuple::isReduced()

// needs to determine if the entry is really the smallest in its row

// checks that the entry is reduced.

{

84

Three_tuple TT (one,two,three);

TT.Reduce_tuple();

return isEqual(TT);

}

Appendix C. Computing the Kernel Modulo the Boundary

Let V1, V2, V3 be vector spaces of dimensions n1, n2, n3 respectively. If we have the maps

TA : V1 → V2 and TB : V2 → V3 s.t. TB ◦ TA = 0, we can examine the cohomology of the

sequence at V2. To do this we need to calculate the kernel of TB mod the image of TA. One

way to do this would be to calculate a basis for the image of TA and extend it to a basis for

the kernel of TB. If one wanted to use this approach, the algorithms given by Cohen [26]

should work.

Without loss of generality let {v1, . . . , vk, vk+1 . . . vm . . . vn} be a basis for V2 where the

{v1, . . . , vk} is a basis for the image of TA and {v1, . . . , vm} is a basis for the kernel of TB.

Then let A = [TA] with respect to this basis for V2 and a convenient basis for V1, we can

assume that the leftmost k columns of A are



1 0 . . . 0

0 1 . . . 0

...

0 0 . . . 1

0 0 . . . 0

...

0 0 . . . 0



.

Let B = [TB] with respect to the above basis for V2 and a convenient basis for V3, we can

assume that the leftmost m columns of B are all zero.

85

If we form the matrix B′ =

B
At

 and row reduce to find the null space, the first k

columns will no longer be contained in the kernel. However, the rest of the reduced row

echelon form of B will not change. Hence the rank-nullity theorem shows that the kernel of

B′ is the kernel of B minus the image of A.

Since the kernel TB and the image of TA are basis independent, the kernel ofB′ =

 [TB]

[TA]t


for any choice of basis of V1, V2, V3 will be the kernel of TB mod the image of TA.

Over R the (im(A))⊥ = ker(At) calculating the intersection of ker(B) with (im(A))⊥

reduces to calculating the intersection of two kernels; which is done by row reducing the

matrix composed of the vertical concatenation of the two matrices.

Appendix D. Data for the Example N = 11

The below orbits are presented in the form [a, b, c] ± 1 where ±1 is the orientation number

of the element.

D.1 Stab(σ0)-orbits of P2(Z/11Z)

σ0O1 =

{

[1, 0, 2] 1

[1, 9, 0] -1

[1, 0, 9] 1

[1, 2, 0] -1

[0, 1, 9] -1

[1, 6, 0] 1

[0, 1, 2] -1

86

[1, 5, 0] 1

[0, 1, 6] 1

[1, 0, 5] -1

[0, 1, 5] 1

[1, 0, 6] -1

}

σ0O2 =

{

[1, 0, 3] 1

[1, 8, 0] -1

[1, 0, 8] 1

[1, 3, 0] -1

[0, 1, 8] -1

[1, 4, 0] 1

[0, 1, 3] -1

[1, 7, 0] 1

[0, 1, 4] 1

[1, 0, 7] -1

[0, 1, 7] 1

[1, 0, 4] -1

}

σ0O3 =

{

[1, 2, 3] 1

[1, 8, 2] -1

[1, 9, 8] 1

87

[1, 3, 9] -1

[1, 6, 4] -1

[1, 4, 8] 1

[1, 5, 4] -1

[1, 7, 8] 1

[1, 7, 6] 1

[1, 3, 7] -1

[1, 7, 5] 1

[1, 3, 4] -1

[1, 9, 3] 1

[1, 8, 9] -1

[1, 2, 8] 1

[1, 3, 2] -1

[1, 5, 7] -1

[1, 4, 3] 1

[1, 6, 7] -1

[1, 7, 3] 1

[1, 4, 5] 1

[1, 8, 7] -1

[1, 4, 6] 1

[1, 8, 4] -1

}

σ0O4 =

{

[1, 2, 4] 1

[1, 7, 2] -1

[1, 9, 7] 1

88

[1, 4, 9] -1

[1, 6, 9] -1

[1, 3, 6] 1

[1, 5, 9] -1

[1, 8, 6] 1

[1, 2, 6] 1

[1, 5, 8] -1

[1, 2, 5] 1

[1, 5, 3] -1

[1, 9, 4] 1

[1, 7, 9] -1

[1, 2, 7] 1

[1, 4, 2] -1

[1, 5, 2] -1

[1, 3, 5] 1

[1, 6, 2] -1

[1, 8, 5] 1

[1, 9, 5] 1

[1, 6, 8] -1

[1, 9, 6] 1

[1, 6, 3] -1

}

D.2 Stab(τ2)-orbits of P2(Z/11Z)

τ2O1 =

{

[1, 2, 0] 1

89

[1, 8, 0] -1

[1, 6, 0] -1

[1, 4, 0] 1

[1, 7, 0] 1

[1, 3, 0] -1

}

τ2O2 =

{

[1, 2, 1] 1

[1, 8, 10] -1

[1, 6, 5] -1

[1, 4, 6] 1

[1, 7, 4] 1

[1, 3, 7] -1

[1, 8, 1] -1

[1, 2, 10] 1

[1, 4, 5] 1

[1, 6, 6] -1

[1, 7, 7] 1

[1, 3, 4] -1

}

τ2O3 =

{

[1, 2, 2] 1

[1, 8, 9] -1

[1, 6, 10] -1

90

[1, 4, 1] 1

[1, 7, 8] 1

[1, 3, 3] -1

[1, 8, 2] -1

[1, 2, 9] 1

[1, 4, 10] 1

[1, 6, 1] -1

[1, 7, 3] 1

[1, 3, 8] -1

}

τ2O4 =

{

[1, 2, 3] 1

[1, 8, 8] -1

[1, 6, 4] -1

[1, 4, 7] 1

[1, 7, 1] 1

[1, 3, 10] -1

[1, 8, 3] -1

[1, 2, 8] 1

[1, 4, 4] 1

[1, 6, 7] -1

[1, 7, 10] 1

[1, 3, 1] -1

}

τ2O5 =

{

91

[1, 2, 4] 1

[1, 8, 7] -1

[1, 6, 9] -1

[1, 4, 2] 1

[1, 7, 5] 1

[1, 3, 6] -1

[1, 8, 4] -1

[1, 2, 7] 1

[1, 4, 9] 1

[1, 6, 2] -1

[1, 7, 6] 1

[1, 3, 5] -1

}

τ2O6 =

{

[1, 2, 5] 1

[1, 8, 6] -1

[1, 6, 3] -1

[1, 4, 8] 1

[1, 7, 9] 1

[1, 3, 2] -1

[1, 8, 5] -1

[1, 2, 6] 1

[1, 4, 3] 1

[1, 6, 8] -1

[1, 7, 2] 1

[1, 3, 9] -1

92

}

D.3 Stab(τ3)-orbits of P2(Z/11Z)

τ3O1 =

}

[1, 0, 2] 1

[1, 2, 8] 1

[1, 8, 0] 1

[0, 1, 8] 1

[0, 1, 6] 1

[0, 1, 3] 1

[1, 6, 0] 1

[1, 0, 4] 1

[1, 4, 6] 1

[1, 7, 0] -1

[1, 0, 3] -1

[1, 3, 7] -1

[1, 8, 2] -1

[1, 0, 8] -1

[1, 2, 0] -1

[0, 1, 7] -1

[0, 1, 2] -1

[0, 1, 4] -1

[1, 4, 0] -1

[1, 6, 4] -1

[1, 0, 6] -1

[1, 7, 3] 1

93

[1, 0, 7] 1

[1, 3, 0] 1

}

τ3O2 =

}

[1, 2, 3] 1

[1, 3, 5] 1

[1, 5, 2] 1

[1, 6, 8] 1

[1, 7, 6] 1

[1, 8, 7] 1

[1, 4, 8] 1

[1, 8, 9] 1

[1, 9, 4] 1

[1, 9, 7] -1

[1, 7, 5] -1

[1, 5, 9] -1

[1, 5, 3] -1

[1, 2, 5] -1

[1, 3, 2] -1

[1, 8, 6] -1

[1, 6, 7] -1

[1, 7, 8] -1

[1, 9, 8] -1

[1, 4, 9] -1

[1, 8, 4] -1

[1, 9, 5] 1

94

[1, 7, 9] 1

[1, 5, 7] 1

}

τ3O3 =

}

[1, 2, 9] 1

[1, 9, 10] 1

[1, 10, 2] 1

[1, 6, 5] 1

[1, 10, 6] 1

[1, 5, 10] 1

[1, 10, 9] -1

[1, 9, 2] -1

[1, 2, 10] -1

[1, 5, 6] -1

[1, 6, 10] -1

[1, 10, 5] -1

}

τ3O4 =

}

[1, 3, 8] 1

[1, 8, 10] 1

[1, 10, 3] 1

[1, 4, 7] 1

[1, 10, 4] 1

[1, 7, 10] 1

95

[1, 10, 8] -1

[1, 8, 3] -1

[1, 3, 10] -1

[1, 7, 4] -1

[1, 4, 10] -1

[1, 10, 7] -1

}

D.4 Stab(ω2)-orbits of P2(Z/11Z)

ω2O1 =

}

[1, 0, 0] 1

[0, 1, 10] 1

[1, 0, 10] -1

[0, 1, 0] -1

}

ω2O2 =

}

[1, 0, 1] 1

[0, 1, 9] 1

[1, 9, 1] 1

[1, 5, 5] -1

[1, 0, 9] -1

[0, 1, 1] -1

[1, 9, 0] -1

[1, 5, 0] 1

96

}

ω2O3 =

}

[1, 0, 2] 1

[0, 1, 8] 1

[1, 4, 6] 1

[1, 3, 7] -1

[1, 0, 8] -1

[0, 1, 2] -1

[1, 4, 0] -1

[1, 3, 0] 1

}

ω2O4 =

}

[1, 0, 3] 1

[0, 1, 7] 1

[1, 6, 4] 1

[1, 2, 8] -1

[1, 0, 7] -1

[0, 1, 3] -1

[1, 6, 0] -1

[1, 2, 0] 1

}

ω2O5 =

}

[1, 0, 4] 1

97

[0, 1, 6] 1

[1, 7, 3] 1

[1, 8, 2] -1

[1, 0, 6] -1

[0, 1, 4] -1

[1, 7, 0] -1

[1, 8, 0] 1

}

ω2O6 =

}

[1, 2, 1] 1

[1, 6, 9] 1

[1, 7, 1] 1

[1, 8, 8] -1

[1, 2, 7] -1

[1, 6, 6] -1

[1, 7, 2] -1

[1, 8, 5] 1

}

ω2O7 =

}

[1, 2, 2] 1

[1, 6, 3] 1

[1, 3, 6] 1

[1, 4, 2] -1

[1, 2, 6] -1

98

[1, 6, 1] -1

[1, 3, 1] -1

[1, 4, 4] 1

}

ω2O8 =

}

[1, 2, 3] 1

[1, 6, 8] 1

[1, 9, 4] 1

[1, 5, 9] -1

[1, 2, 5] -1

[1, 6, 7] -1

[1, 9, 8] -1

[1, 5, 7] 1

}

ω2O9 =

}

[1, 2, 9] 1

[1, 6, 5] 1

[1, 2, 10] -1

[1, 6, 10] -1

}

ω2O10 =

}

[1, 3, 2] 1

99

[1, 4, 9] 1

[1, 8, 6] 1

[1, 7, 9] -1

[1, 3, 5] -1

[1, 4, 8] -1

[1, 8, 7] -1

[1, 7, 5] 1

}

ω2O11 =

}

[1, 3, 3] 1

[1, 4, 5] 1

[1, 5, 4] 1

[1, 9, 3] -1

[1, 3, 4] -1

[1, 4, 1] -1

[1, 5, 1] -1

[1, 9, 9] 1

}

ω2O12 =

}

[1, 3, 8] 1

[1, 4, 7] 1

[1, 3, 10] -1

[1, 4, 10] -1

}

100

ω2O13 =

}

[1, 5, 2] 1

[1, 9, 5] 1

[1, 7, 6] 1

[1, 8, 4] -1

[1, 5, 3] -1

[1, 9, 7] -1

[1, 7, 8] -1

[1, 8, 9] 1

}

ω2O14 =

}

[1, 5, 6] 1

[1, 9, 2] 1

[1, 5, 10] -1

[1, 9, 10] -1

}

ω2O15 =

}

[1, 7, 4] 1

[1, 8, 3] 1

[1, 7, 10] -1

[1, 8, 10] -1

}

101

ω2O16 =

}

[1, 10, 1] 1

[1, 10, 10] -1

}

ω2O17 =

}

[1, 10, 2] 1

[1, 10, 6] 1

[1, 10, 5] -1

[1, 10, 9] -1

}

ω2O18 =

}

[1, 10, 3] 1

[1, 10, 4] 1

[1, 10, 7] -1

[1, 10, 8] -1

}

D.5 Calculating Suborbits Under the Intersection

The orbits are presented in the order given for the orbits of Stab(σ0). The data reads as

[a, b, c] ± 1o where ±1 is the orientation number of the element under Stab(σ) and o is the

orientation number under Stab(τ) where σ is the main cell and τ is the boundary cell. Line

spaces separate the suborbits and two line spaces separated the orbits.

102

D.5.1 Decomposition of the Stab(σ0)-orbits under Stab(σ0)∩Stab(τ2) and Stab(σ0)∩

Stab(τ3). Decomposition of the Stab(σ0)-orbits under Stab(σ0) ∩ Stab(τ2)

[1, 0, 2] 1 0

[0, 1, 9] -1 0

[1, 0, 9] 1 0

[0, 1, 2] -1 0

[1, 9, 0] -1 0

[1, 5, 0] 1 0

[1, 2, 0] -1 1

[1, 6, 0] 1 -1

[0, 1, 6] 1 0

[1, 0, 5] -1 0

[0, 1, 5] 1 0

[1, 0, 6] -1 0

[1, 0, 3] 1 0

[0, 1, 8] -1 0

[1, 0, 8] 1 0

[0, 1, 3] -1 0

[1, 8, 0] -1 -1

[1, 7, 0] 1 1

103

[1, 3, 0] -1 -1

[1, 4, 0] 1 1

[0, 1, 4] 1 0

[1, 0, 7] -1 0

[0, 1, 7] 1 0

[1, 0, 4] -1 0

[1, 2, 3] 1 1

[1, 6, 4] -1 -1

[1, 2, 8] 1 1

[1, 6, 7] -1 -1

[1, 8, 2] -1 -1

[1, 7, 8] 1 1

[1, 8, 9] -1 -1

[1, 7, 3] 1 1

[1, 9, 8] 1 0

[1, 5, 4] -1 0

[1, 9, 3] 1 0

[1, 5, 7] -1 0

[1, 3, 9] -1 -1

[1, 4, 8] 1 1

[1, 3, 2] -1 -1

104

[1, 4, 3] 1 1

[1, 7, 6] 1 1

[1, 8, 7] -1 -1

[1, 7, 5] 1 1

[1, 8, 4] -1 -1

[1, 3, 7] -1 -1

[1, 4, 5] 1 1

[1, 3, 4] -1 -1

[1, 4, 6] 1 1

[1, 2, 4] 1 1

[1, 6, 9] -1 -1

[1, 2, 7] 1 1

[1, 6, 2] -1 -1

[1, 7, 2] -1 1

[1, 8, 6] 1 -1

[1, 7, 9] -1 1

[1, 8, 5] 1 -1

[1, 9, 7] 1 0

[1, 5, 9] -1 0

[1, 9, 4] 1 0

[1, 5, 2] -1 0

105

[1, 4, 9] -1 1

[1, 3, 6] 1 -1

[1, 4, 2] -1 1

[1, 3, 5] 1 -1

[1, 2, 6] 1 1

[1, 6, 8] -1 -1

[1, 2, 5] 1 1

[1, 6, 3] -1 -1

[1, 5, 8] -1 0

[1, 9, 5] 1 0

[1, 5, 3] -1 0

[1, 9, 6] 1 0

Decomposition of the Stab(σ0)-orbits under Stab(σ0) ∩ Stab(τ3).

[1, 0, 2] 1 1

[1, 6, 0] 1 1

[0, 1, 6] 1 1

[1, 2, 0] -1 -1

[0, 1, 2] -1 -1

[1, 0, 6] -1 -1

[1, 9, 0] -1 0

[0, 1, 9] -1 0

[1, 0, 5] -1 0

[1, 0, 9] 1 0

106

[1, 5, 0] 1 0

[0, 1, 5] 1 0

[1, 0, 3] 1 -1

[1, 4, 0] 1 -1

[0, 1, 4] 1 -1

[1, 3, 0] -1 1

[0, 1, 3] -1 1

[1, 0, 4] -1 1

[1, 8, 0] -1 1

[0, 1, 8] -1 1

[1, 0, 7] -1 1

[1, 0, 8] 1 -1

[1, 7, 0] 1 -1

[0, 1, 7] 1 -1

[1, 2, 3] 1 1

[1, 4, 8] 1 1

[1, 7, 6] 1 1

[1, 3, 2] -1 -1

[1, 6, 7] -1 -1

[1, 8, 4] -1 -1

[1, 8, 2] -1 -1

107

[1, 6, 4] -1 -1

[1, 3, 7] -1 -1

[1, 2, 8] 1 1

[1, 7, 3] 1 1

[1, 4, 6] 1 1

[1, 9, 8] 1 -1

[1, 7, 8] 1 -1

[1, 7, 5] 1 -1

[1, 8, 9] -1 1

[1, 5, 7] -1 1

[1, 8, 7] -1 1

[1, 3, 9] -1 0

[1, 5, 4] -1 0

[1, 3, 4] -1 0

[1, 9, 3] 1 0

[1, 4, 3] 1 0

[1, 4, 5] 1 0

[1, 2, 4] 1 0

[1, 3, 6] 1 0

[1, 2, 6] 1 0

[1, 4, 2] -1 0

[1, 6, 2] -1 0

[1, 6, 3] -1 0

108

[1, 7, 2] -1 0

[1, 6, 9] -1 0

[1, 5, 8] -1 0

[1, 2, 7] 1 0

[1, 8, 5] 1 0

[1, 9, 6] 1 0

[1, 9, 7] 1 -1

[1, 8, 6] 1 -1

[1, 2, 5] 1 -1

[1, 7, 9] -1 1

[1, 5, 2] -1 1

[1, 6, 8] -1 1

[1, 4, 9] -1 -1

[1, 5, 9] -1 -1

[1, 5, 3] -1 -1

[1, 9, 4] 1 1

[1, 3, 5] 1 1

[1, 9, 5] 1 1

D.5.2 Decomposition of the Stab(τ2) and Stab(τ3)-orbits under Stab(τ2)∩Stab(ω2)

and Stab(τ3) ∩ Stab(ω3). Decomposition of the Stab(τ2)-orbits under Stab(τ2) ∩ Stab(ω2).

Suborbits of Tau_2 under Omega_2

[1, 2, 0] 1 1

[1, 6, 0] -1 -1

109

[1, 8, 0] -1 1

[1, 7, 0] 1 -1

[1, 4, 0] 1 -1

[1, 3, 0] -1 1

[1, 2, 1] 1 1

[1, 6, 6] -1 -1

[1, 8, 10] -1 -1

[1, 7, 4] 1 1

[1, 6, 5] -1 1

[1, 2, 10] 1 -1

[1, 4, 6] 1 1

[1, 3, 7] -1 -1

[1, 8, 1] -1 0

[1, 7, 7] 1 0

[1, 4, 5] 1 1

[1, 3, 4] -1 -1

[1, 2, 2] 1 1

110

[1, 6, 1] -1 -1

[1, 8, 9] -1 1

[1, 7, 8] 1 -1

[1, 6, 10] -1 -1

[1, 2, 9] 1 1

[1, 4, 1] 1 -1

[1, 3, 3] -1 1

[1, 8, 2] -1 -1

[1, 7, 3] 1 1

[1, 4, 10] 1 -1

[1, 3, 8] -1 1

[1, 2, 3] 1 1

[1, 6, 7] -1 -1

[1, 8, 8] -1 -1

[1, 7, 1] 1 1

[1, 6, 4] -1 1

[1, 2, 8] 1 -1

111

[1, 4, 7] 1 1

[1, 3, 10] -1 -1

[1, 8, 3] -1 1

[1, 7, 10] 1 -1

[1, 4, 4] 1 1

[1, 3, 1] -1 -1

[1, 2, 4] 1 0

[1, 6, 2] -1 0

[1, 8, 7] -1 -1

[1, 7, 5] 1 1

[1, 6, 9] -1 1

[1, 2, 7] 1 -1

[1, 4, 2] 1 -1

[1, 3, 6] -1 1

[1, 8, 4] -1 -1

[1, 7, 6] 1 1

[1, 4, 9] 1 1

[1, 3, 5] -1 -1

112

[1, 2, 5] 1 -1

[1, 6, 8] -1 1

[1, 8, 6] -1 1

[1, 7, 9] 1 -1

[1, 6, 3] -1 1

[1, 2, 6] 1 -1

[1, 4, 8] 1 -1

[1, 3, 2] -1 1

[1, 8, 5] -1 1

[1, 7, 2] 1 -1

[1, 4, 3] 1 0

[1, 3, 9] -1 0

Decomposition of the Stab(τ3)-orbits under Stab(τ3) ∩ Stab(ω2).

Suborbits of Tau_3 under Omega_2

[1, 0, 2] 1 1

[0, 1, 8] 1 1

[1, 4, 6] 1 1

[1, 3, 7] -1 -1

[1, 0, 8] -1 -1

[0, 1, 2] -1 -1

113

[1, 4, 0] -1 -1

[1, 3, 0] 1 1

[1, 2, 8] 1 -1

[1, 6, 0] 1 -1

[1, 0, 7] 1 -1

[0, 1, 7] -1 1

[1, 2, 0] -1 1

[1, 6, 4] -1 1

[1, 0, 3] -1 1

[0, 1, 3] 1 -1

[1, 8, 0] 1 1

[1, 7, 3] 1 1

[0, 1, 6] 1 1

[1, 0, 6] -1 -1

[1, 8, 2] -1 -1

[1, 7, 0] -1 -1

[0, 1, 4] -1 -1

[1, 0, 4] 1 1

[1, 2, 3] 1 1

[1, 6, 8] 1 1

[1, 9, 4] 1 1

[1, 5, 9] -1 -1

[1, 2, 5] -1 -1

114

[1, 6, 7] -1 -1

[1, 9, 8] -1 -1

[1, 5, 7] 1 1

[1, 3, 5] 1 -1

[1, 4, 8] 1 -1

[1, 7, 9] 1 -1

[1, 8, 6] -1 1

[1, 3, 2] -1 1

[1, 4, 9] -1 1

[1, 7, 5] -1 1

[1, 8, 7] 1 -1

[1, 5, 2] 1 1

[1, 9, 5] 1 1

[1, 7, 6] 1 1

[1, 8, 4] -1 -1

[1, 5, 3] -1 -1

[1, 9, 7] -1 -1

[1, 7, 8] -1 -1

[1, 8, 9] 1 1

[1, 2, 9] 1 1

[1, 6, 5] 1 1

[1, 2, 10] -1 -1

[1, 6, 10] -1 -1

115

[1, 9, 10] 1 -1

[1, 5, 10] 1 -1

[1, 5, 6] -1 1

[1, 9, 2] -1 1

[1, 10, 2] 1 1

[1, 10, 6] 1 1

[1, 10, 5] -1 -1

[1, 10, 9] -1 -1

[1, 3, 8] 1 1

[1, 4, 7] 1 1

[1, 3, 10] -1 -1

[1, 4, 10] -1 -1

[1, 8, 10] 1 -1

[1, 7, 10] 1 -1

[1, 7, 4] -1 1

[1, 8, 3] -1 1

[1, 10, 3] 1 1

[1, 10, 4] 1 1

[1, 10, 7] -1 -1

[1, 10, 8] -1 -1

116

Appendix E. Computer Code

E.1 Stabilizer Algorithm

#include<iostream>

#include<vector>

#include<string>

#include<fstream>

#include<cstdlib>

using namespace std;

ofstream out_file;

int det(vector <vector<int> > mat)

{

return mat[0][0]*mat[1][1]*mat[2][2]+mat[1][0]*mat[2][1]*mat[0][2]

+mat[2][0]*mat[0][1]*mat[1][2]

-mat[2][0]*mat[1][1]*mat[0][2]-mat[1][0]*mat[0][1]*mat[2][2]

-mat[0][0]*mat[2][1]*mat[1][2];

}

bool instabilizer (vector<int> vec, vector <vector<int> > mat)

{

for (int i=0; i<mat.size(); i++)

{

if (vec==mat[i])

{

117

return true;

}

}

return false;

}

vector<int> matrixmul (vector <vector<int> > mat, vector<int> vec)

{

vector<int> ans;

for (int i=0; i<mat.size(); i++)

{

int tally=0;

for (int j=0; j<mat.size(); j++)

{

tally+=mat[j][i]*vec[j];

}

ans.push_back(tally);

}

return ans;

}

int main()

{

string location;

string name;

while(true){

cout << "Tell Me The Name\n\n";

118

cin >> name;

cin >> location;

out_file.open(location);

out_file << "/* We compute and store the stabilizer of "

<< name <<" acting on row. \n\n";

vector< vector <int > > possible;

/* This is where we input the cells */

vector<int> entry;

entry.push_back(1);entry.push_back(0);entry.push_back(0);

possible.push_back(entry);

entry[0]=0;

entry[1]=1;

possible.push_back(entry);

entry[1]=0;entry[2]=1;

possible.push_back(entry);

entry[0]=1;entry[1]=1;entry[2]=0;

possible.push_back(entry);

entry[2]=1;

possible.push_back(entry);

int size =possible.size();

for (int i=0;i<size;i++)

{

for (int j=0; j<3; j++)

{

119

entry[j]=-1*possible[i][j];

}

possible.push_back(entry);

}

for (int i=0; i< possible.size(); i++)

{

for (int j=0; j<3; j++)

{

out_file << possible[i][j] << ", " ;

}

out_file << endl <<endl;

}

out_file << "*/\n\n";

system("pause");

vector<vector<vector <int> > > stabilizer;

vector<vector<int> > mat;

mat.push_back(possible[0]);

mat.push_back(possible[1]);

mat.push_back(possible[2]);

size=possible.size();

120

for (int c1=0; c1<size; c1++)

{

vector<int> vec1=possible[c1];

mat[0]=vec1;

for (int c2=0;c2<size; c2++)

{

vector<int> vec2=possible[c2];

mat[1]=vec2;

for (int c3=0; c3<size; c3++)

{

vector<int> vec3=possible[c3];

mat[2]=vec3;

if (det(mat)==1)

{

bool isin = true;

for (int i=0; i<possible.size(); i++)

{

isin= isin &&

instabilizer(matrixmul(mat,possible[i]),possible);

}

if (isin)

{

stabilizer.push_back(mat);

}

}

}

121

}

}

for (int i=0; i<stabilizer.size(); i++)

{

out_file << "Mat M"<< name <<"_"<< i+1 << " (";

for (int j=0; j<3; j++)

{

for (int k=0; k<3; k++)

{

out_file << stabilizer[i][k][j];

if(k!=2)

{out_file << ", ";}

}

if(j!=2)

{out_file << " ,";}

}

out_file << ");";

out_file << "stab_" << name

<<".push_back(M"<<name<<"_"<< i+1 <<");";

out_file << endl;

}

//out_file << "The order of the Stabilizer is "

<< stabilizer.size() << endl;

system("pause");

122

return 0;

}}

E.2 Calculating Orbits

E.2.1 Prologue.h.

/*This file contains useful information regarding the input, output,

and other common number theory functions;*/

/*

in_file--file to read from

out_file--file to print to;

int n -- desired level;

int k -- phi(n);

vector<int> units -- vector of units

vector<vector<int> > elem_stabilizer --

a vector of vectors, the ith vector

corresponds to the ith zero divisor

vector<int> divisors_of_n -- vector of the divisors of n

void make_divisors() -- fills the divisors of n vector

vector<int> modn_inverse--vector of inverses modulo n;

int gcd(int x, int y), int gcdd(int x, int y, int z),

int gcddd --obvious

int modn(int a) --reduces a modulo n and

returns a minimal nonzero output

123

int modred(int p,int a) -- reduced a modulo p and returns a

minimal nonzero output, p is prime

int modn_inversef(int j) -- determines the "inverse" of j modulo n

void make_inverse_vector() --

creates the vector of inverses modn_inverse

also creates the vector of units

vector<int> stab_of_a(int a) -- creates the stabilizer of a in Z/nZ;

void make_element_stabilizers() -- creates the stabilizers

int inversemodp(int i, int p) -- determines the inverse of i

modulo p; p is prime

int primechar -- the primecharacteristic we are

working over for convenience

vector<int> primeinverses -- vector of inverses of

said prime characteristic

*/

char str[10], str2[10];

int print_flag;

ifstream in_file; //file to read from;

ofstream out_file; //file to print to;

int n; //n for gamma knot n

int k; //k=phi(n)

int prime_ell; //prime_ell for the Hecke_Operator

vector<int> units;

vector<vector<int> > elem_stabilizer;

124

vector<int> divisors_of_n;

void make_divisors()

{

for(int i=1;i<=n/2;i++)

{

if((n/i)*i==n)

{

divisors_of_n.push_back(i);

}

}

k=divisors_of_n.size();

}

int identify_divisors(int x)

{

for(int i=0;i<k;i++)

{

//cout << divisors_of_n[i] << " ";

if(x==divisors_of_n[i])

{

//cout << "\n\n\n";

return i;

}

}

//cout << "\n" << x << "\n";

//cout <<"\n\n\terror in identify divisors\n\n";

125

return 1;

}

vector<int> modn_inverse;

//we are defining the "inverse"

//of a zero-divisor to be a minimalizer

int gcd(int x, int y)

{

int t;

while(y!=0)

{

t=y;

y=x%y;

x=t;

}

return abs(x);

}

int gcdd(int x, int y, int z)

{

return gcd(gcd(x,y),z);

}

int gcddd(int x, int y, int z, int w)

{

return gcd(gcdd(x,y,z),w);

126

}

int modn(int a)

{

int c= a%n;

if(c>=0)

{

return c;

}

return c+n;

}

int modred(int p, int a)

{

int c= a%p;

if(c>=0)

{

if(c<p)

{

return c;

}

return 0;

}

return c+p;

}

int modn_inversef(int j)

127

{

if(gcd(j,n)==1)

{

for(int i=1;i<n;i++)

{

if(i*j%n==1)

{

return i;

}

}

}

else //the goal is to minimize j by a unit action,

{ //so replace j with uj, uj minimal, uj=(j,n)

int z=gcd(j,n);

for(int i=1;i<n;i++)

{

if(gcd(i,n)==1)

{

if(modn(i*j)==z)

{

return i;

}

}

}

}

}

128

void make_inverse_vector()

{

modn_inverse.push_back(0);

modn_inverse.push_back(1);

units.push_back(1);

for(int i=2;i<n;i++)

{

if(gcd(i,n)==1)

{

units.push_back(i);

}

modn_inverse.push_back(modn_inversef(i));

}

}

vector<int> stab_of_a(int a)

{

vector<int> stab;

for (int i=0; i<units.size();i++)

{

if(modn(units[i]*a)==a)

{

stab.push_back(units[i]);

}

}

return stab;

}

129

void make_element_stabilizers()

{

for(int i=0;i<divisors_of_n.size();i++)

{

elem_stabilizer.push_back(stab_of_a(divisors_of_n[i]));

}

}

int inversemodp(int i,int p)

{

int ans=1;

while(((ans*i)%p) != 1)

{

ans = ((ans*i)%p);

}

return ans;

}

int primechar;

vector<int> primeinverses;

int max(int a, int b)

{

if(a<b)

{

return b;

130

}

return a;

}

E.2.2 Generate Orbits.h.

/*

vector<int> calculate_orbits_thrust_generic(int position,

vector<OMat> stabilizer, Three_tuple T) --

takes as input a tuple and calculates the orbits.

Uses has_been_included

%%%%Needs the machinary and constructions from Preliminary_Calc%%%%

*/

vector<int> calculate_orbits_thrust_generic(int position,

vector<OMat> stabilizer, Three_tuple T)

//assumes that T is reduced;

{ //cout <<"\n\n";

int locator=abc_to_i(T.one,T.two,T.three);

bool orientated=true;

vector<int> int_representation_of_orbit;

vector<Bit_numb> orbit;

/*if(isgood(abc_to_i(T.one,T.two,T.three))==false)

{

cout << "Buzz Buzz\n";

}*/

for(int i=0;i<stabilizer.size();i++)

{

Three_tuple TT=Mat_act_on_Tuple(stabilizer[i].M,T);

131

TT.Reduce_tuple();

if(TT.isEqual(T))

{

orientated=((orientated)&&(stabilizer[i].orient));

}

int j=abc_to_i(TT.one,TT.two,TT.three);

if(isgood(j)!=true)

{

cout << "Bleeping Error\n";

}

if(has_been_included[j]==false)

{

Bit_numb J (j,stabilizer[i].orient,stabilizer[i].M);

has_been_included[j]=true;

orbit.push_back(J);

int_representation_of_orbit.push_back(J.num);

if(position==0)

{//cout << j << "\t" << i << "\t";

orbit_stabilizing_element[j]=i;

//cout << orbit_stabilizing_element[j];

//system("pause");

}

}

}

if(orientated==true) // 1 means orientatable

{

132

for(int ii=0;ii<orbit.size();ii++)

{

orbit_first_element[position][orbit[ii].num]=locator;

if(orbit[ii].orientation==true)

{

orbit_orientations[position][orbit[ii].num]=1;

}

else

{

orbit_orientations[position][orbit[ii].num]=-1;

}

}

}

return int_representation_of_orbit;

}

//combined with the thrust function stores the orbits

vector< vector<int> > calculate_orbits_generic(int position)

{

has_been_included=has_been_dummy_false; //sets it to false

vector< vector<int> > orbit_list;

vector<OMat> stabilizer= stabs[position];

for(int i=1;i<=k*n*n+k*n+1;i++)

{

/*if(isgood(i)==false)

{

has_been_included[i]=true;

133

}*/

if(has_been_included[i]==false)

{

vector<int> orbs =

calculate_orbits_thrust_generic(position, stabilizer, i_to_abc(i));

if(orbit_orientations[position][orbs[0]]!=0)

{

orbit_list.push_back(orbs);

}

}

}

has_been_dummy_true=has_been_included;

return orbit_list;

}

//sets orientable orbits in each dimension

//and creates a uniform row thereof.

void generate_orbits(int print_flag)

{

orbits_of_generic.push_back(calculate_orbits_generic(0));

orbits_of_generic.push_back(calculate_orbits_generic(1));

orbits_of_generic.push_back(calculate_orbits_generic(2));

orbits_of_generic.push_back(calculate_orbits_generic(3));

if (print_flag!=0)

{

134

out_file << "Orbits of Sigma_0\n";

for(int i=0;i<orbits_of_generic[0].size();i++)

{

for(int ii=0;ii<orbits_of_generic[0][i].size();ii++)

{

i_to_abc(orbits_of_generic[0][i][ii]).OutThree_tuple();

out_file <<"\t"

<< orbit_orientations[0][orbits_of_generic[0][i][ii]] << "\t"

<< orbit_stabilizing_element[orbits_of_generic[0][i][ii]] << "\n";

}

out_file <<"\n";

}

out_file << "Orbits of Tau_2\n";

for(int i=0;i<orbits_of_generic[1].size();i++)

{

for(int ii=0;ii<orbits_of_generic[1][i].size();ii++)

{

i_to_abc(orbits_of_generic[1][i][ii]).OutThree_tuple();

out_file <<"\t"

<< orbit_orientations[1][orbits_of_generic[1][i][ii]] << "\n";

}

out_file <<"\n";

}

out_file << "Orbits of Tau_3\n";

for(int i=0;i<orbits_of_generic[2].size();i++)

135

{

for(int ii=0;ii<orbits_of_generic[2][i].size();ii++)

{

i_to_abc(orbits_of_generic[2][i][ii]).OutThree_tuple();

out_file <<"\t"

<< orbit_orientations[2][orbits_of_generic[2][i][ii]] << "\n";

}

out_file <<"\n";

}

out_file << "Orbits of Omega_2\n";

for(int i=0;i<orbits_of_generic[3].size();i++)

{

for(int ii=0;ii<orbits_of_generic[3][i].size();ii++)

{

i_to_abc(orbits_of_generic[3][i][ii]).OutThree_tuple();

out_file <<"\t"

<< orbit_orientations[3][orbits_of_generic[3][i][ii]] << "\n";

}

out_file <<"\n";

}

}

}

void find_suborbits(int position, int lowerposition) // finds the suborbits

{

int intersection_position=find_intersection_position

136

(position,lowerposition);

for(int i=0;i<orbits_of_generic[position].size();i++)

{

has_been_included=has_been_dummy_true;

for(int j=0;j<orbits_of_generic[position][i].size();j++)

// turns the orbit off

{

has_been_included[orbits_of_generic[position][i][j]]=false;

}

vector<vector<int> > orbits_list;

for(int iii=0;iii<orbits_of_generic[position][i].size();iii++)

{

if(has_been_included[orbits_of_generic[position][i][iii]]==false)

{

vector<int> A;

for(int jj=0;jj<intersections[intersection_position].size();jj++)

{

Three_tuple TT=

Mat_act_on_Tuple(intersections[intersection_position]

[jj],i_to_abc(orbits_of_generic[position][i][iii]));

TT.Reduce_tuple();

//TT.PrintThree_tuple(); out_file << "\t"

//<< abc_to_i(TT.one,TT.two,TT.three)

137

<< "Coming from " << i << " times" << jj << "\n";

int marker=abc_to_i(TT.one,TT.two,TT.three);

if(has_been_included[marker]==false)

{

for(int jj=0;jj<orbits_of_generic[position][i].size();jj++)

{

if(marker==orbits_of_generic[position][i][jj])

{

A.push_back(orbits_of_generic[position][i][jj]);

}

}

has_been_included[marker]=true;

}

}

orbits_list.push_back(A);

}

}

orbits_of_generic_osn[intersection_position].

push_back(orbits_list);//

}

}

void generate_suborbits(int print_flag)

{

find_suborbits(0,1);

find_suborbits(0,2);

find_suborbits(1,3);

138

find_suborbits(2,3);

if(print_flag==1)

{

for(int i=0;i<4;i++)

{

if(i==0){out_file <<"Suborbits of Sigma_0 under Tau_2\n";}

if(i==1){out_file <<"Suborbits of Sigma_0 under Tau_3\n";}

if(i==2){out_file <<"Suborbits of Tau_2 under Omega_2\n";}

if(i==3){out_file <<"Suborbits of Tau_3 under Omega_2\n";}

for(int ii=0;ii<orbits_of_generic_osn[i].size();ii++)

{

for(int iii=0;iii<orbits_of_generic_osn[i][ii].size();iii++)

{

for(int j=0;j<orbits_of_generic_osn[i][ii][iii].size();j++)

{

i_to_abc(orbits_of_generic_osn[i][ii][iii][j]).OutThree_tuple();

if(i==0){out_file <<"\t"

<< orbit_orientations[0][orbits_of_generic_osn[i][ii][iii][j]]

<<"\t" << orbit_orientations[1][orbits_of_generic_osn[i][ii][iii][j]]

<< "\n";}

if(i==1){out_file <<"\t"

<< orbit_orientations[0][orbits_of_generic_osn[i][ii][iii][j]]

<<"\t" << orbit_orientations[2][orbits_of_generic_osn[i][ii][iii][j]]

<< "\n";}

if(i==2){out_file <<"\t"

<< orbit_orientations[1][orbits_of_generic_osn[i][ii][iii][j]]

139

<<"\t" << orbit_orientations[3][orbits_of_generic_osn[i][ii][iii][j]]

<< "\n";}

if(i==3){out_file <<"\t"

<< orbit_orientations[2][orbits_of_generic_osn[i][ii][iii][j]]

<<"\t" << orbit_orientations[3][orbits_of_generic_osn[i][ii][iii][j]]

<< "\n";}

}

out_file <<"\n";

}

out_file <<"\n";

}

out_file<<"\n";

}

}

}

E.3 Constructing Hecke Operators

* Makes the Hecke_Matrices and their action on a chain of matrices.

vector<Mat> Hecke_Matrices -- stores the Hecke_Matrices;

void make_Hecke_Matrices(int prime) --

makes the set of matrices T_p,1;

vector<Mat> Hecke_Action(vector<Mat> Chain)

-- multiples the Chain by the Hecke_Matrices

*/

vector<Mat> Hecke_Matrices;

140

void make_Hecke_Matrices (int prime) //right now assumes T_p,1

{

vector<Mat> Hecke_Representatives;

for(int i=0;i<prime;i++)

{

Mat M (1,0,0,0,1,0,0,0,prime);

Mat N (1,0,0,0,prime,0,0,0,1);

M.f=i;

N.b=i;

for(int j=0;j<prime;j++)

{

M.c=j;

Hecke_Representatives.push_back(M);

}

Hecke_Representatives.push_back(N);

}

Mat M (prime,0,0,0,1,0,0,0,1);

Hecke_Representatives.push_back(M);

/*for(int i=0;i<Hecke_Representatives.size(); i++)

{

Hecke_Representatives[i].Print(); cout <<"\n\n";

}

cout << Hecke_Representatives.size();*/

Hecke_Matrices=Hecke_Representatives;

}

141

E.4 Integer LLL Reduction Algorithm

/* The machinary to run LLL on the column space of a 3 by 3 matrix

*/

Mat Gram(Mat A)//computes the Gram matrix A^t A

{ //assumes the basis is given as columns

return product(transposeMat(A),A);

}

// we are reusing k in a bad way since $k=\sigma(n)$. Oh Well.

int k_max;

long long int d[4];

long long int lam[4][4];

Mat H;

Mat B;

void step1(), step2(), step3(), step4(), REDI(int k, int L), SWAPI(int k);

int EucDivQuo(int a, int b) //returns q where $a=qb+r$ for nonnegative r,

{

if(b==0)

{

return 0;

}

if(b<0)

{

b=-b;

142

a=-a;

}

int r= modred(b,a); //r is positive

//cout << " a & " << abs(b) << " = " << r <<"\n\n";

int q=(a-r)/b;

if(q*b+r!=a)

{

cout << "Quotient Error \n";

}

return (a-r)/b; //should be q

}

void Print_LLL()

{

cout << "B=";

B.Print(); cout <<"\n\n";

cout << "H=";

H.Print(); cout <<"\n\n";

cout << "lam_11= " << lam[1][1] << " lam_21= " << lam[2][1]

<< " lam_31= " << lam[3][1] << " lam_32= " << lam[3][2] << "\n";

cout << "d0 = " << d[0] << " d1 = " << d[1] << " d2 = "

<< d[2] << " d3 = " << d[3] <<"\n";

cout << "k= " << k << " kmax= " << k_max << "\n\n";

}

void CreateVariable(Mat L)

{

143

B=L;

d[0]=1;d[1]=1;d[2]=1;d[3]=1;

lam[1][1]=1; lam[1][2]=1; lam[1][3]=1;

lam[2][1]=1; lam[2][2]=1; lam[3][3]=1;

step1();

return;

}

void step1()

{

k=2;

k_max=1;

d[0]=1;

d[1]=B.dotprod(1,1);

Mat Id (1,0,0,0,1,0,0,0,1);

H=Id;

if(print_flag==1)

{

cout << "After Step 1();\n";

Print_LLL();

system("pause");

}

step2();

return;

}

void step2()

144

{

if(k>k_max)

{

k_max=k;

long long int u;

for(int j=1;j<=k;j++)

{

u=B.dotprod(k,j);

if(j-1>0)

{

for(int i=1;i<=j-1;i++)

{

//cout << d[i-1] << "\n\n";

u=(d[i]*u-lam[k][i]*lam[j][i])/(d[i-1]);

}

}

if(j<k)

{

lam[k][j]=u;

}

if(j==k)

{

d[k]=u;

}

}

}

if(print_flag==1)

145

{

cout << "After Step 2 \n";

Print_LLL();

system("pause");

}

step3();

return;

}

void step3()

{

REDI(k,k-1);

if(print_flag==1)

{

cout << "After REDI(" << k<<"," <<k-1 <<")\n";

Print_LLL();

system("pause");

}

if(4*d[k]*d[k-2]<3*d[k-1]*d[k-1]-4*lam[k][k-1]*lam[k][k-1])

{

SWAPI(k);

if(print_flag==1)

{

cout << "After SWAPI("<<k <<")\n";

Print_LLL();

system("pause");

}

146

k=max(2,k-1);

step3();

}

else

{

for(int i=1; i<=k-2; i++)

{

int m=k-2+1-i;

REDI(k,m);

if(print_flag==1)

{

cout << "After REDI("<<k<<","<<m<<")\n";

Print_LLL();

system("pause");

}

}

}

k++;

if(print_flag==1)

{

cout << "After Step 3\n";

Print_LLL();

system("pause");

}

step4();

return;

147

}

void step4()

{

if(k<=3)

{

step2();

}

//Print_LLL();

return;

}

void REDI(int k, int L)

{

if(2*abs(lam[k][L])>d[L])

{

int q=EucDivQuo(2*lam[k][L]+d[L],2*d[L]);

H.Columnadd(k,H,L,-q);

B.Columnadd(k,B,L,-q);

lam[k][L]=lam[k][L]-q*d[L];

for(int i=1; i<=L-1; i++)

{

lam[k][i]=lam[k][i]-q*lam[L][i];

}

}

}

148

void SWAPI(int k)

{

H.swapcolumns(k,k-1);

B.swapcolumns(k,k-1);

if(k>2)

{

for(int j=1;j<=k-2;j++)

{

long long int v=lam[k][j];

lam[k][j]=lam[k-1][j];

lam[k-1][j]=v;

}

}

long long int lamb=lam[k][k-1];

long long int Be=(d[k-2]*d[k]+lamb*lamb)/d[k-1];

for(int i=k+1; i<=k_max; i++)

{

long long int t=lam[i][k];

lam[i][k]=((d[k]*lam[i][k-1]-lamb*t)/d[k-1]);

lam[i][k-1]=(Be*t+lamb*lam[i][k])/d[k];

}

d[k-1]=Be;

}

float inner_product(float a, float b, float c)

{

return a*a+b*b+c*c;

149

}

bool test_LLL(Mat B)

{

float mu_11=(B.a*B.a+B.d*B.d+B.g*B.g*1.)/(B.a*B.a+B.d*B.d+B.g*B.g*1.);

//cout << "mu_11= " << mu_11 << "\n";

float mu_21=(B.a*B.b+B.d*B.e+B.g*B.h*1.)/(B.a*B.a+B.d*B.d+B.g*B.g*1.);

//cout << "mu_21= " << mu_21 << "\n";

float mu_31=(B.a*B.c+B.d*B.f+B.g*B.i*1.)/(B.a*B.a+B.d*B.d+B.g*B.g*1.);

//cout << "mu_31= " << mu_31 << "\n";

//second column

float bp,ep,hp; bp=B.b-mu_21*B.a; ep=B.e-mu_21*B.d; hp=B.h-mu_21*B.g;

float mu_22=(bp*B.b+ep*B.e+hp*B.h*1.)/(1.*bp*bp+ep*ep+hp*hp);

//cout << "mu_22= " << mu_22 << "\n";

float mu_32=(bp*B.c+ep*B.f+hp*B.i*1.)/(1.*bp*bp+ep*ep+hp*hp);

//cout << "mu_32= " << mu_32 << "\n";

float cp,fp,ip; cp=B.c-mu_31*B.a-mu_32*bp;

fp=B.f-mu_31*B.d-mu_32*ep;

ip=B.i-mu_31*B.g-mu_32*hp;

bool flag;

flag=((abs(mu_21<=.5))&&((abs(mu_32<=.5))&&(abs(mu_31<=.5))));

//conditions on the mu;

//cout << flag <<"\n\n";

if(flag)

{

150

if(abs((inner_product(bp,ep,hp))>=

abs(((.75-mu_21*mu_21)*inner_product(B.a,B.d,B.g))))&&

(abs(inner_product(cp,fp,ip))>=

abs(((.75-mu_32*mu_32)*inner_product(bp,ep,hp)))))

{

return true;

}

//conditions on the columns

}

return false;

}

Mat LLL_Reduce_A_column (Mat A) //takes A and outputs H where AH is LLL

{

CreateVariable(A);

return H;

}

void LLL_Reduce_A_row (Mat A) //takes A and outputs H

{ //where the rows of HA are LLL reduced

Mat B=A;

B.Transpose();

CreateVariable(B);

H.Transpose();

return; //H;

}

151

E.5 Candidate Selection Code

int test_Candidate(int i, Mat A)

{

int det_A=abs(A.Determinant());

if(i==1)

{//test e1

Mat B1=A;

B1.a=1;

B1.d=0;

B1.g=0;

int b1_det=abs(B1.Determinant());

//cout <<"b1_det= " <<b1_det <<"\n";

if(b1_det<det_A)

{

Mat B2=A;

B2.b=1;

B2.e=0;

B2.h=0;

int b2_det=abs(B2.Determinant());

//cout <<"b2_det= " <<b2_det <<"\n";

if(b2_det<det_A)

{

Mat B3=A;

B3.c=1;

B3.f=0;

B3.i=0;

int b3_det=abs(B3.Determinant());

152

//cout <<"b2_det= " <<b3_det <<"\n";

if(b3_det<det_A)

//e1 is a candidate; but, maybe not the best

{

return max(max(b1_det,b2_det),b3_det);

}

}

}

return det_A;

}

if(i==2)

{//test e2

Mat B1=A;

B1.a=0;

B1.d=1;

B1.g=0;

int b1_det=abs(B1.Determinant());

//cout <<"b1_det= " <<b1_det <<"\n";

if(b1_det<det_A)

{

Mat B2=A;

B2.b=0;

B2.e=1;

B2.h=0;

int b2_det=abs(B2.Determinant());

//cout <<"b2_det= " <<b2_det <<"\n";

if(b2_det<det_A)

153

{

Mat B3=A;

B3.c=0;

B3.f=1;

B3.i=0;

int b3_det=abs(B3.Determinant());

//cout <<"b3_det= " <<b3_det <<"\n";

if(b3_det<det_A)

//e2 is a candidate; but, maybe not the best

{

return max(max(b1_det,b2_det),b3_det);

}

}

}

return det_A;

}

if(i==3)

{//test e3

Mat B1=A;

B1.a=0;

B1.d=0;

B1.g=1;

int b1_det=abs(B1.Determinant());

//cout <<"b1_det= " <<b1_det <<"\n";

if(b1_det<det_A)

{

Mat B2=A;

154

B2.b=0;

B2.e=0;

B2.h=1;

int b2_det=abs(B2.Determinant());

//cout <<"b2_det= " <<b2_det <<"\n";

if(b2_det<det_A)

{

Mat B3=A;

B3.c=0;

B3.f=0;

B3.i=1;

int b3_det=abs(B3.Determinant());

//cout <<"b3_det= " <<b3_det <<"\n";

if(b3_det<det_A)

//e3 is a candidate; but, maybe not the best

{

return max(max(b1_det,b2_det),b3_det);

}

}

}

return det_A;

}

cout <<"Error, invalid input in CandidateTesting\n\n";

return 0;

}

int min(int a, int b)

155

{

if(a<b)

{

return a;

}

return b;

}

int min_position(int a, int b, int c)

{

a=abs(a);

b=abs(b);

c=abs(c);

int minimum=min(min(a,b),c);

if(minimum==a)

{

return 1;

}

if(minimum==b)

{

return 2;

}

return 3;

}

int FindCandidate(Mat K) //assumes K is LLL-reduced

{

156

return min_position

(test_Candidate(1,K),test_Candidate(2,K),test_Candidate(3,K));

}

E.6 HNF Reduction Algorithm

Mat swaprows (Mat A, int row1, int row2)

{

long long int ap,bp,cp,dp,ep,fp,gp,hp,ip;

if (row1==0 && row2==1)

{ap=A.d;bp=A.e;cp=A.f;dp=A.a;ep=A.b;fp=A.c;gp=A.g;hp=A.h;ip=A.i;}

if (row1==0 && row2==2)

{ap=A.g;bp=A.h;cp=A.i;dp=A.d;ep=A.e;fp=A.f;gp=A.a;hp=A.b;ip=A.c;}

if (row1==1 && row2==2)

{ap=A.a;bp=A.b;cp=A.c;dp=A.g;ep=A.h;fp=A.i;gp=A.d;hp=A.e;ip=A.f;}

if (row1==row2)

{ap=A.a;bp=A.b;cp=A.c;dp=A.d;ep=A.e;fp=A.f;gp=A.g;hp=A.h;ip=A.i;}

Mat C (ap,bp,cp,dp,ep,fp,gp,hp,ip);

return C;

}

Mat HNFprelim (Mat X)

{

Mat A=X;

if(A.a==0)

{

A=swaprows(A,0,2);

}

157

if(A.a==0)

{

A=swaprows(A,0,1);

}

return A;

}

Mat HNFstageonea (Mat X)

//creates a matrix of the form (a,b,c,d,e,f,0,h,i) from (a,b,c,d,e,f,g,h,i)

{

Mat A=X;

while(A.g!=0)

{

if(A.a<0)

{A=multrowbynegone(A,0);}

if(A.g<0)

{A=multrowbynegone(A,1);}

if(A.a<=A.g)

{ int q; q=A.g/A.a; A.g-=q*A.a; A.h-=q*A.b; A.i-=q*A.c;}

else{A=swaprows(A,0,2);}

}

return A;

}

Mat HNFstageoneb (Mat X)

//creates a matrix of the form (a,b,c,0,e,f,0,h,i) from (a,b,c,d,e,f,0,h,i)

{

158

Mat A=X;

while(A.d!=0)

{

if(A.a<0)

{A=multrowbynegone(A,0);}

if(A.d<0)

{A=multrowbynegone(A,1);}

if(A.a<=A.d)

{ int q; q=A.d/A.a; A.d-=q*A.a; A.e-=q*A.b; A.f-=q*A.c;}

else{A=swaprows(A, 0, 1);}

}

return A;

}

Mat HNFstagetwo (Mat X)

//creates a matrix of the form (a,b,c,0,e,f,0,0,i) from (a,b,c,0,e,f,0,h,i)

{

Mat A=X;

while(A.h!=0)

{

if(A.e<0)

{A=multrowbynegone(A,1);}

if(A.h<0)

{A=multrowbynegone(A,2);}

if(A.e<=A.h)

{ int q; q=A.h/A.e; A.h-=q*A.e; A.i-=q*A.f;}

else{A=swaprows(A,1,2);};

159

}

return A;

}

Mat HNFstagethree (Mat X)

//HNF of a matrix of the form (a,b,c,0,e,f,0,0,i)

//with all nonnegative entries

{

Mat A=X;

//A.Print(); cout <<endl << "Check1" << endl;

if(A.a<0)

{A=multrowbynegone(A,0);}

if(A.e<0)

{A=multrowbynegone(A,1);}

if(A.i<0)

{A=multrowbynegone(A,2);}

if(A.i!=0)

{

while(A.f<0)

{A.f+=A.i;}

while(A.f>=A.i)

{A.f-=A.i;}

}

if(A.e!=0)

{

160

while(A.b<0)

{A.b+=A.e;A.c+=A.f;}

while(A.b>=A.e)

{A.b-=A.e;A.c-=A.f;}

}

if(A.i!=0)

{

while(A.c<0)

{A.c+=A.i;}

while(A.c>=A.i)

{A.c-=A.i;}

}

//A.Print(); cout <<endl << "Check2" << endl;

return A;

}

Mat HNF(Mat X)

{

Mat A=X;

//cout << "Prelim" << endl;

A=HNFprelim(A);

//A.Print(); cout << endl << endl << "StaeoneA\n";

A=HNFstageonea(A);

//A.Print(); cout << endl <<endl <<"StageOneB\n";

A=HNFstageoneb(A);

//A.Print(); cout << endl <<endl <<"StageTwo\n";

A=HNFstagetwo(A);

161

//A.Print(); cout << endl <<endl <<"StageThree\n";

A=HNFstagethree(A);

return A;

}

Mat HNFfindU(Mat X, Mat A) // Finds U where UX=A, A is HNF

{

Mat B=X.Inverse();

int k=-X.Determinant();

Mat U = product(A,B);

U.a/=k;U.b/=k;U.c/=k;U.d/=k;U.e/=k;U.f/=k;U.g/=k;U.h/=k;U.i/=k;

return U;

}

162

Bibliography

[1] Allison, G., Ash, A., and Conrad, E. Galois representations, Hecke operators,
and the mod-p cohomology of GL(3,Z) with twisted coefficients. Experiment. Math. 7,
4 (1998), 361–390.

[2] Ash, A. Cohomology of congruence subgroups SL(n, Z). Math. Ann. 249, 1 (1980),
55–73.

[3] Ash, A. Galois representations attached to mod p cohomology of GL(n,Z). Duke
Math. J. 65, 2 (1992), 235–255.

[4] Ash, A. Unstable cohomology of SL(n,O). J. Algebra 167, 2 (1994), 330–342.

[5] Ash, A. Monomial Galois representations and Hecke eigenclasses in the mod-p coho-
mology of GL((p− 1),Z). Math. Ann. 315, 2 (1999), 263–280.

[6] Ash, A. Direct sums of mod p characters of GAL(Q/Q) and the homology of GL(n,Z).
Comm. Algebra 41, 5 (2013), 1751–1775.

[7] Ash, A., and Doud, D. Relaxation of the strict parity for reducible galois represen-
tations attached to the cohomology of GL(3,Z). in review.

[8] Ash, A., and Doud, D. Highly reducible galois representations and the homology of
GLn(Z. Proc. AMS (2014), to appear.

[9] Ash, A., and Doud, D. Reducible Galois representations and the homology of
GL(3,Z). Int. Math. Res. Not. IMRN, 5 (2014), 1379–1408.

[10] Ash, A., Doud, D., and Pollack, D. Galois representations with conjectural
connections to arithmetic cohomology. Duke Math. J. 112, 3 (2002), 521–579.

[11] Ash, A., Grayson, D., and Green, P. Computations of cuspidal cohomology of
congruence subgroups of SL(3,Z). J. Number Theory 19, 3 (1984), 412–436.

[12] Ash, A., Gunnells, P. E., and McConnell, M. Cohomology of congruence
subgroups of SL4(Z). J. Number Theory 94, 1 (2002), 181–212.

[13] Ash, A., Gunnells, P. E., and McConnell, M. Cohomology of congruence
subgroups of SL(4,Z). II. J. Number Theory 128, 8 (2008), 2263–2274.

[14] Ash, A., Gunnells, P. E., and McConnell, M. Cohomology of congruence
subgroups of SL4(Z). III. Math. Comp. 79, 271 (2010), 1811–1831.

[15] Ash, A., Gunnells, P. E., and McConnell, M. Torsion in the cohomology of
congruence subgroups of SL(4,Z) and Galois representations. J. Algebra 325 (2011),
404–415.

[16] Ash, A., Gunnells, P. E., and McConnell, M. Resolutions of the Steinberg
module for GL(n). J. Algebra 349 (2012), 380–390.

163

[17] Ash, A., and McConnell, M. Experimental indications of three-dimensional Galois
representations from the cohomology of SL(3,Z). Experiment. Math. 1, 3 (1992), 209–
223.

[18] Ash, A., Pollack, D., and Sinnott, W. A6-extensions of Q and the mod p
cohomology of GL3(Z). J. Number Theory 115, 1 (2005), 176–196.

[19] Ash, A., Pollack, D., and Soares, D. SL3(F2)-extensions of Q and arithmetic
cohomology modulo 2. Experiment. Math. 13, 3 (2004), 298–307.

[20] Ash, A., and Sinnott, W. An analogue of Serre’s conjecture for Galois representa-
tions and Hecke eigenclasses in the mod p cohomology of GL(n,Z). Duke Math. J. 105,
1 (2000), 1–24.

[21] Barnes, E. S. The perfect and extreme senary forms. Canad. J. Math. 9 (1957),
235–242.

[22] Barvinok, A. I. A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. Math. Oper. Res. 19, 4 (1994), 769–779.

[23] Borel, A., and Serre, J.-P. Cohomologie d’immeubles et de groupes S-
arithmétiques. Topology 15, 3 (1976), 211–232.

[24] Bosma, W., Cannon, J., and Playoust, C. The Magma algebra system. I. The
user language. J. Symbolic Comput. 24, 3-4 (1997), 235–265. Computational algebra
and number theory (London, 1993).

[25] Brown, K. S. Cohomology of groups, vol. 87 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.

[26] Cohen, H. A course in computational algebraic number theory, vol. 138 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[27] Cremona, J. E. Hyperbolic tessellations, modular symbols, and elliptic curves over
complex quadratic fields. Compositio Math. 51, 3 (1984), 275–324.

[28] Dembélé, L. Explicit computations of Hilbert modular forms on Q(
√

5). Experiment.
Math. 14, 4 (2005), 457–466.

[29] Diamond, F., and Shurman, J. A first course in modular forms, vol. 228 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2005.

[30] Doud, D., and Ricks, R. LLL reduction and a conjecture of Gunnells. Proc. Amer.
Math. Soc. 138, 2 (2010), 409–415.

[31] Fuchs, U. Different realizations of the upper half plane H. Avail-
able at http://www.math.ethz.ch/education/bachelor/seminars/ws0607/

modular-forms/Different_realisations_of_the_upper_half_plane.pdf, ac-
cessed June 2014.

164

http://www.math.ethz.ch/education/bachelor/seminars/ws0607/modular-forms/Different_realisations_of_the_upper_half_plane.pdf
http://www.math.ethz.ch/education/bachelor/seminars/ws0607/modular-forms/Different_realisations_of_the_upper_half_plane.pdf

[32] Gelfand, I. M., Gindikin, S. G., and Graev, M. I. Selected topics in integral ge-
ometry, vol. 220 of Translations of Mathematical Monographs. American Mathematical
Society, Providence, RI, 2003. Translated from the 2000 Russian original by A. Shtern.

[33] Gunnells, P. E. Computing Hecke eigenvalues below the cohomological dimension.
Experiment. Math. 9, 3 (2000), 351–367.

[34] Gunnells, P. E., Hajir, F., and Yasaki, D. Modular forms and elliptic curves
over the field of fifth roots of unity. Exp. Math. 22, 2 (2013), 203–216. With an appendix
by Mark Watkins.

[35] Hatcher, A. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[36] Khare, C. Serre’s modularity conjecture: the level one case. Duke Math. J. 134, 3
(2006), 557–589.

[37] Khare, C., and Wintenberger, J.-P. Serre’s modularity conjecture. I. Invent.
Math. 178, 3 (2009), 485–504.

[38] Khare, C., and Wintenberger, J.-P. Serre’s modularity conjecture. II. Invent.
Math. 178, 3 (2009), 505–586.

[39] Kilford, L. J. P. Modular forms. Imperial College Press, London, 2008. A classical
and computational introduction.

[40] Krieg, A. Hecke algebras. Mem. Amer. Math. Soc. 87, 435 (1990), x+158.

[41] Lam, T. Y. A first course in noncommutative rings, second ed., vol. 131 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2001.

[42] Lee, R., and Szczarba, R. H. On the homology and cohomology of congruence
subgroups. Invent. Math. 33, 1 (1976), 15–53.

[43] Lenstra, A. K., Lenstra, Jr., H. W., and Lovász, L. Factoring polynomials
with rational coefficients. Math. Ann. 261, 4 (1982), 515–534.

[44] Manin, J. I. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk
SSSR Ser. Mat. 36 (1972), 19–66.

[45] McConnell, M. Classical projective geometry and arithmetic groups. Math. Ann.
290, 3 (1991), 441–462.

[46] Minkowski, H. Geometrie der Zahlen. Bibliotheca Mathematica Teubneriana, Band
40. Johnson Reprint Corp., New York-London, 1968.

[47] Newman, M. Integral matrices. Academic Press, New York-London, 1972. Pure and
Applied Mathematics, Vol. 45.

[48] Rhie, Y. H., and Whaples, G. Hecke operators in cohomology of groups. J. Math.
Soc. Japan 22 (1970), 431–442.

165

[49] Schenkman, E. The basis theorem for finitely generated abelian groups. Amer. Math.
Monthly 67 (1960), 770–771.

[50] Scholze, P. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci. 116 (2012),
245–313.

[51] Schürmann, A. Enumerating perfect forms. In Quadratic forms—algebra, arithmetic,
and geometry, vol. 493 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2009,
pp. 359–377.

[52] Schwermer, J. Holomorphy of Eisenstein series at special points and cohomology of
arithmetic subgroups of SLn(Q). J. Reine Angew. Math. 364 (1986), 193–220.

[53] Serre, J.-P. A course in arithmetic. Springer-Verlag, New York-Heidelberg, 1973.
Translated from the French, Graduate Texts in Mathematics, No. 7.

[54] Serre, J.-P. Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math.
J. 54, 1 (1987), 179–230.

[55] Sikirić, M. D., Schürmann, A., and Vallentin, F. Classification of eight-
dimensional perfect forms. Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 21–32
(electronic).

[56] Soulé, C. Cohomologie de SL3(Z). C. R. Acad. Sci. Paris Sér. A-B 280, 5 (1975),
Ai, A251–A254.

[57] Stein, W. Modular forms, a computational approach, vol. 79 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2007. With an appendix
by Paul E. Gunnells.

[58] The PARI Group. PARI/GP version 2.7.0. Bordeaux, 2014. available from http:

//pari.math.u-bordeaux.fr/.

[59] van Geemen, B., van der Kallen, W., Top, J., and Verberkmoes, A. Hecke
eigenforms in the cohomology of congruence subgroups of SL(3,Z). Experiment. Math.
6, 2 (1997), 163–174.

[60] Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. J. Reine Angew. Math. 133 (1908), 97–178.

[61] Weibel, C. A. An introduction to homological algebra, vol. 38 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

166

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	Brigham Young University
	BYU ScholarsArchive
	2014-06-19

	Hecke Eigenvalues and Arithmetic Cohomology
	William Leonard Cocke
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Reciprocity Laws
	1.2 Serre's Conjecture and Generalizations
	1.3 The Ash-Doud-Pollack-Sinnott Conjecture
	1.4 Computation for Cohomology and Hecke Operators

	2 Calculating Cohomology
	2.1 Ash's Approach
	2.2 Voronoi's Work on Perfect Forms
	2.3 Calculating the Cohomology for 0(N)
	2.4 Pn-1(Z/NZ).
	2.5 Calculating the Stabilizers
	2.6 Orientation of the Orbits
	2.7 Orbit Implementation Details
	2.8 Using the Orbit Information to Calculate Cohomology

	3 The Sharbly Complex
	3.1 Definition
	3.2 The Norm of a Sharbly
	3.3 Implementation of the Sharbly Complex

	4 The Hecke Operators
	4.1 The Hecke Operators for Classical Modular Forms
	4.2 The Hecke Operators on the Sharbly Complex

	5 Sharbly Reduction Methods
	5.1 Modular Symbol Reduction
	5.2 LLL Reduction
	5.3 Converting Cohomology to Sharblies
	5.4 Choosing Appropriate Lifts
	5.5 Hermite Normal Form
	5.6 Sharbly Reduction Methods: Introduction
	5.7 Sharbly Reduction Methods: Geometric

	6 Example When N=11
	6.1 Orbits of the Stabilizers
	6.2 Making the Boundary Matrix

	A Stabilizers of Cells
	A.1 Notation
	A.2 Stabilizer of 0
	A.3 Stabilizer of 2
	A.4 Stabilizer of 3
	A.5 Stabilizer of 2
	A.6 Intersection Data
	A.7 Boundaries of the Standard Cells

	B Algorithms for P2(Z/NZ)
	C Computing the Kernel Modulo the Boundary
	D Data for the Example N=11
	D.1 Stab(0)-orbits of P2(Z/11Z)
	D.2 Stab(2)-orbits of P2(Z/11Z)
	D.3 Stab(3)-orbits of P2(Z/11Z)
	D.4 Stab(2)-orbits of P2(Z/11Z)
	D.5 Calculating Suborbits Under the Intersection

	E Computer Code
	E.1 Stabilizer Algorithm
	E.2 Calculating Orbits
	E.3 Constructing Hecke Operators
	E.4 Integer LLL Reduction Algorithm
	E.5 Candidate Selection Code
	E.6 HNF Reduction Algorithm

	Bibliography

