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ABSTRACT

Investigations into Non-Degenerate Quasihomogeneous

Polynomials as Related to FJRW Theory

Scott C. Mancuso

Department of Mathematics, BYU

Master of Science

The motivation for this paper is a better understanding of the basic building blocks of

FJRW theory. The basics of FJRW theory will be briefly outlined, but the majority of the

paper will deal with certain multivariate polynomials which are the most fundamental

building blocks in FJRW theory. We will first describe what is already known about

these polynomials and then discuss several properties we proved as well as conjectures

we disproved. We also introduce a new conjecture suggested by computer calculations

performed as part of our investigation.

Keywords: FJRW theory, Landau-Ginzburg, algebraic geometry
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Chapter 1. Introduction

In this thesis we investigate some of the basic building blocks of FJRW theory. FJRW

theory provides the A-model construction for Landau-Ginzburg mirror symmetry. Landau-

Ginzburg mirror symmetry depends on two mathematical models, called the A-model and

the B-model. These models are built from a polynomial W and a group G, which should

each have a “dual” or “transpose”, W T and G

T respectively. The Landau-Ginzburg mirror

symmetry conjecture states that the A-model obtained from W and G (denoted by A
W,G

)

is isomorphic in some way to the B-model obtained from W

T and G

T (denoted by B
W

T
,G

T ).

Our present purpose is to provide better understanding about the polynomial W needed

to construct the FJRW A-model. Much of our work is exploring a very large list of weight

systems (see definition 1) of these polynomials.

In Chapter 2 we will describe the requirements that W must satisfy in order to be used

in the FJRW construction, as well as provide pertinent facts about the polynomial that are

already known. In Chapter 3 we will give some new results about the maximal group of

diagonal symmetries (denoted G

max, the largest G allowed in the FJRW construction) of a

large class of polynomials, called invertible polynomials. Chapter 4 will detail our attempts

to provide a new way of classifying which polynomials can be used to construct the A-model.

Finally, in Chapter 5 we will discuss two important conjectures about invertible polynomials

and present new evidence concerning them.

Chapter 2. Non-Degenerate Quasihomogeneous Polynomials

The purpose of FJRW theory is to provide the construction of the A-model of Landau-

Ginzburg mirror symmetry. The details of the full construction are found in [3] and [2],

while a good overview can be found in [5]. The most basic building block of this model is

a polynomial W 2 C[x1, . . . , xn

]. But only certain polynomials may be used; namely, they

must satisfy the following two definitions.
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Definition 1: Let W 2 C[x1, . . . , xn

]. We say that W is quasihomogeneous if there

exist positive rational numbers (q1, . . . , qn) such that for every c 2 C, W (cq1x1, . . . , c
qn
x

n

) =

cW (x1, . . . , xn

). We call (q1, . . . , qn) the weight system or weights of W, and we say that

each x

i

has weight q
i

.

Definition 2: Let W 2 C[x1, . . . , xn

]. We say that W is non-degenerate if

(i) W has a critical point at the origin (i.e. all partial derivatives are zero there),

(ii) the origin is the only critical point of W ,

(iii) W has no term of the form x

i

x

j

(i 6= j), and

(iv) W is quasihomogeneous and the weights of W are unique (that is, there is only one

way to choose (q1, . . . , qn) to satisfy definition 1).

We will demonstrate these conditions with a few examples.

Example 1: We will give an example of a non-degenerate quasihomogeneous polynomial

and show that it satisfies the above definitions. We will follow this with several examples

of polynomials that fail to be either quasihomogeneous or non-degenerate, along with an

explanation of why it fails to meet one of the criteria listed above. Most of these non-

examples are easily generalized, and we will point out how. This will give us a better idea

of what non-degenerate quasihomogeneous polynomials look like, which will be useful in

following the arguments through the rest of this thesis. We omit the proofs of the generalized

non-examples as they follow the specific examples given below.

(i) Let W = x

3 + y

4. We will show that W is a non-degenerate quasihomogeneous poly-

nomial and we will find its weight system.

2



For c 2 C, suppose W (cq1x, cq2y) = cW (x, y). This means that

(cq1x)3 + (cq2y)4 = cx

3 + cy

4

)c

3q1
x

3 + c

4q2
y

4 = cx

3 + cy

4

)c

3q1 = c and c

4q2 = c

)q1 =
1

3
and q2 =

1

4

so W is quasihomogeneous with weight system (13 ,
1
4). Also, this is clearly the only

solution that will work for all c, so the weight system is unique.

Now we show that W is non-degenerate. To do this we need to find the partial deriva-

tives, set them equal to 0, and solve. If (0, 0) is the only solution, then W is non-

degenerate.

W

x

= 3x2 = 0 W

y

= 4y3 = 0

) x = 0 ) y = 0

Since (x, y) = (0, 0) is the only solution, the origin is the only critical point of W .

Therefore, W is an example of a non-degenerate quasihomogeneous polynomial.

(ii) Let W = x

3 + a where a 2 C, a 6= 0. Then for c 2 C,

W (cq1x) = c

3q1
x

3 + a cW = cx+ ca

For any c 6= 1 these two equations cannot be equal, regardless of what q1 is. So W is

not quasihomogeneous. In general, a polynomial with a nonzero constant term cannot

be quasihomogeneous.

(iii) Let W = x

3 + y. It is easy to see that W is quasihomogeneous with unique weight
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system (q1, q2) = (13 , 1). We will next look at the partial derivatives of W .

W

x

= 3x2 = 0 W

y

= 1 6= 0

) x = 0 )W is not non-degenerate

In general, a quasihomogeneous polynomial with a nonzero linear term cannot be non-

degenerate.

(iv) Let W = x

3 + x

2
y. Again W is quasihomogeneous, this time with weights (q1, q2) =

(13 ,
1
3). Again looking for critical points, we find

W

x

= 3x2 + 2xy = 0 W

y

= x

2 = 0

) x(3x+ 2y) = 0 ) x = 0

) x = 0 or x = �2

3
y

Since x = 0 makes both partial derivatives 0, y can roam freely. So (0, 0) is a critical

point of W , but there are also infinitely many other critical points all along the y axis.

So W is not non-degenerate.

(v) LetW = x

3+y

2
x+z

2
x. ThenW is quasihomogeneous with weight system (q1, q2, q3) =

(13 ,
1
3 ,

1
3). Examining the partial derivatives of W , we see that

W

x

= 3x2 + y

2 + z

2 = 0 W

y

= 2yx = 0 W

z

= 2zx = 0

Setting x = 0 makes both W

y

= 0 and W

z

= 0, leaving one equation in two variables.

Thus there will be infinitely many solutions, so W is not non-degenerate. In general,

a quasihomogeneous polynomial in more than two variables where any one variable

appears in every monomial cannot be non-degenerate.

(vi) Let W = x

2
y. Then W is quasihomogeneous with weight system (q1, q2) = (14 ,

1
2).
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But it could also have the weight system (13 ,
1
3), or in general any weight system of

the form (q1, 1 � 2q1), 0 < q1 <

1
2 . So the weights are not unique. In general,

a quasihomogeneous polynomial with fewer monomials than variables will not have

unique weights, and therefore cannot be non-degenerate.

A straightforward argument like the ones given in the examples above shows that every

non-degenerate quasihomogeneous polynomial has constant term 0, all linear terms 0, and

at least as many nonzero terms as there are variables. Additionally, if there are more than

two variables, then none of the variables appear in every term.

There is a large class of non-degenerate quasihomogeneous polynomials that are partic-

ularly useful and which we will be discussing in more detail throughout this paper. These

are the invertible non-degenerate quasihomogeneous polynomials.

Definition 3: A non-degenerate quasihomogeneous polynomial is invertible if it has the

same number of monomials as variables.

It is a simple exercise to show that any invertible non-degenerate quasihomogeneous

polynomial can be rescaled so all coe�cients are 1 via an invertible linear map. Such a

rescaling does not a↵ect the resulting theory at all, so it is common practice to always assume

this has been done when discussing invertible polynomials. We will adopt this practice for

the remainder of this paper.

Invertible polynomials are particularly well understood. In fact, we can give a complete

list of the possible forms an invertible polynomial can have.

Definition 4: There are three atomic types of polynomials. These are:

• Fermat type: x↵

• loop type: x↵1
1 x2 + x

↵2
2 x3 + · · ·+ x

↵n
n

x1

• chain type: x↵1
1 x2 + x

↵2
2 x3 + · · ·+ x

↵n
n

5



where each exponent ↵
i

is an integer greater than one. We will refer to a polynomial that

has one of these three types as an atomic polynomial.

The following proposition is based on the work of Kreuzer and Skarke [7], though it is

not explicitly stated there. A proof is included in [6], although it was certainly known before

that.

Proposition 1: Let W 2 C[x1, . . . , xn

]. Then W is an invertible non-degenerate quasiho-

mogeneous polynomial if and only if it can be written as a sum of atomic polynomials having

no variables in common (i.e. each x

i

appears in only one atomic polynomial).

This is one of the features that make invertible polynomials easy to work with. The

convenience of these atomic types will be demonstrated throughout this paper.

Besides being easier to work with than non-invertible polynomials, invertible polynomials

are of particular interest for another reason. As mentioned in the introduction, our moti-

vation for studying these polynomials is their place in Landau-Ginzburg mirror symmetry.

While the FJRW construction (the A-model) makes sense for non-invertible polynomials,

we do not currently know what the corresponding transpose polynomial should be for the

B-model. However, we do know what the transpose should be for invertible polynomials.

For this reason it is particularly important that we have a solid understanding of invertible

polynomials.

When discussing non-degenerate quasihomogeneous polynomials, it is often helpful to

consider the exponent matrix of the polynomial, which we define here.

Definition 5: Let W =
P

m

j=1 aj

Q
n

i=1 x
↵ij

i

2 C[x1, . . . , xn

] be a polynomial. Then the
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exponent matrix A

W

of W is defined as

A

W

= (↵
ij

) =

0

BBBBBBB@

↵11 ↵12 · · · ↵1n

↵21 ↵22 · · · ↵2n

...
...

. . .
...

↵

m1 ↵

m2 · · · ↵

mn

1

CCCCCCCA

.

That is, the rows represent the monomials in W and the columns represent the variables.

This technical definition looks much complicated than it really is. We will demonstrate

how simple the exponent matrix is with an example.

Example 2: Let W = x

3
y + y

4. Then the exponent matrix of W is

A

W

=

0

B@
3 1

0 4

1

CA .

Notice that the exponents of the first monomial x3
y appear in the first row (3 1). The first

column corresponds to x, and the second column to y. Similarly, the second row gives us

the second polynomial, y4.

One thing to notice is that the exponent matrix includes no information about the coef-

ficients in W . For invertible polynomials, this is irrelevant because, as mentioned, we always

assume the coe�cients have been rescaled to 1. The exponent matrix is most useful for ana-

lyzing invertible polynomials, and indeed we will only be using it for invertible polynomials

in this paper, so there is no concern about losing information.

Finally, we cite one useful fact about the exponent matrix here.

Lemma 1 ([4], Lemma 2): If W is an invertible non-degenerate quasihomogeneous polyno-

mial, then its exponent matrix A

W

is an invertible matrix.
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Chapter 3. The Maximal Group of Diagonal Symmetries of an

Invertible Polynomial

Definition 6: Let W 2 C[x1, . . . , xn

] be a non-degenerate quasihomogeneous polynomial.

Then the maximal group of diagonal symmetries of W is defined as

G

max

W

= {(c1, . . . , cn) 2 (C⇤)n | W (c1x1, . . . , cnxn

) = W (x1, . . . , xn

)}

A simple proposition will show that this is in fact a group.

Proposition 2: Let W =
P

m

j=1 aj

Q
n

i=1 x
↵ij

i

2 C[x1, . . . , xn

] be a non-degenerate quasiho-

mogeneous polynomial. Then G

max

W

forms a subgroup of (C⇤)n.

Proof. First, note that the identity (1, . . . , 1) 2 G

max

W

, so G

max

W

is not empty. We will show

that it is also closed under multiplication and inverses.

Let (c1, . . . , cn), (d1, . . . , dn) 2 G

max

W

. Then their product is (c1d1, . . . , cndn). To see that

this is in G

max

W

, first notice that

W (c1x1, . . . , cnxn

) = W (x1, . . . , xn

)

)
mX

j=1

a

j

nY

i=1

(c
i

x

i

)↵ij =
mX

j=1

a

j

nY

i=1

x

↵ij

i

)
mX

j=1

a

j

nY

i=1

c

↵ij

i

nY

i=1

x

↵ij

i

=
mX

j=1

a

j

nY

i=1

x

↵ij

i

)
nY

i=1

c

↵ij

i

= 1 for each j from 1 to m.
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Similarly,
Q

n

i=1 d
↵ij

i

= 1 for each j from 1 to m. From this, we see that

W (c1d1x1, . . . , cndnxn

) =
mX

j=1

a

j

nY

i=1

(c
i

d

i

x

i

)↵ij

=
mX

j=1

a

j

nY

i=1

c

↵ij

i

nY

i=1

d

↵ij

i

nY

i=1

x

↵ij

i

=
mX

j=1

a

j

(1)(1)
nY

i=1

x

↵ij

i

=
mX

j=1

a

j

nY

i=1

x

↵ij

i

= W (x1, . . . , xn

).

So by definition, (c1d1, . . . , cndn) 2 G

max

W

, and G

max

W

is closed under multiplication.

We now consider (c1, . . . , cn)�1 = (c�1
1 , . . . , c

�1
n

).

W (c�1
1 x1, . . . , c

�1
n

x

n

) =
mX

j=1

a

j

nY

i=1

(c�1
i

x

i

)↵ij

=
mX

j=1

a

j

nY

i=1

(c
↵ij

i

)�1
nY

i=1

x

↵ij

i

=
mX

j=1

a

j

(1)
nY

i=1

x

↵ij

i

=
mX

j=1

a

j

nY

i=1

x

↵ij

i

= W (x1, . . . , xn

).

So by definition, (c�1
1 , . . . , c

�1
n

) 2 G

max

W

, and G

max

W

is closed under inverses. Therefore, Gmax

W

is a subgroup of (C⇤)n.

It is known (see [3], Lemma 2.1.8) that this group is finite. This allows us to prove the

following corollary.

Corollary 1: If c = (c1, . . . , cn) 2 G

max

W

, then each c

i

is a root of unity.

9



Proof. Since G

max

W

is finite, c must have finite order. That is, for some d 2 N, c

d =

(cd1, . . . , c
d

n

) = (1, . . . , 1), so each c

i

is a root of unity.

We will use corollary 1 to define some new notation. If we write c
i

= e

2⇡igi
, g

i

2 Q/Z, then

we can writeGmax

W

as an additive subgroup of (Q/Z)n. So instead of writing (e2⇡ig1 , . . . , e2⇡ign)

for an element of Gmax

W

, we can simply write (g1, . . . , gn). For simplicity of our discussion,

this latter notation is what we will use for the remainder of this paper.

Using this new notation, we have a convenient way of finding a set of generators for Gmax

W

.

Proposition 3 ([8], Theorem 3.1.9): Let W be an invertible non-degenerate quasihomoge-

neous polynomial. Then the group G

max

W

is generated by the columns of the inverse of the

exponent matrix A

W

.

Example 3: Let W = x

2
y + y

3. Notice that this polynomial is a chain, one of our three

atomic types (see definition 4). So by proposition 1, W is an invertible non-degenerate

quasihomogeneous polynomial. Its exponent matrix is

A

W

=

0

B@
2 1

0 3

1

CA

which has inverse

A

�1
W

=

0

B@
1
2 �1

6

0 1
3

1

CA .

So, treating G

max

W

as a subgroup of (Q/Z)2, Gmax

W

=
⌦
(12 , 0), (�

1
6 ,

1
3)
↵
. In our original

(multiplicative) notation, this corresponds to
⌦
(e2⇡i(

1
2 )
, 1), (e2⇡i(�

1
6 )
, e

2⇡i( 13 ))
↵
.

Let g1 and g2 be the two additive generators, respectively. Notice that 3g2 = (�1
2 , 1) =

(12 , 0) = g1 (recall that each coordinate can be reduced mod Z), so in fact Gmax

W

is generated

by just g2.

In the course of our investigations into the maximal symmetry group of a polynomial,

we discovered a useful fact about Gmax

W

when W is invertible, which we prove here. We will

10



first require a few lemmas about the generators of Gmax

W

.

Lemma 2: Let W = W1 + · · · + W

n

be an invertible non-degenerate quasihomogeneous

polynomial, where each W

i

corresponds to a single atomic polynomial in W . Then G

max

W

=

G

max

W1
⇥ · · ·⇥G

max

Wn
.

Proof. Let us consider the exponent matrix A

W

. By construction, A
W

is a block diagonal

matrix with the exponent matrices of its atomic polymonials on the diagonal; that is,

A

W

=

0

BBBBBBB@

A

W1 0 · · · 0

0 A

W2 · · · 0

...
...

. . .
...

0 0 · · · A

Wn

1

CCCCCCCA

.

Since each A

Wi is invertible, we see that

A

�1
W

=

0

BBBBBBB@

A

�1
W1

0 · · · 0

0 A

�1
W2

· · · 0

...
...

. . .
...

0 0 · · · A

�1
Wn

1

CCCCCCCA

.

By proposition 3, Gmax

W

is generated by the columns of A�1
W

. From here it is easy to see that

G

max

W

= G

max

W1
⇥ · · ·⇥G

max

Wn
.

Lemma 3 ([10]): Let W be an invertible non-degenerate quasihomogeneous polynomial with

exponent matrix A. Then

|Gmax

W

| = |det(A)|.

Lemma 4: Let W be an atomic polynomial (i.e. W is either a Fermat, chain, or loop).

Then G

max

W

is cyclic.

Proof. Let A
W

be the exponent matrix of W . We will prove the three cases separately.

11



The case of a Fermat is trivial since a Fermat consists of a single monomial, so A

W

has

only one entry. Thus, A�1
W

also has only one entry. By proposition 3, this one entry generates

G

max

W

, making G

max

W

cyclic.

Now consider the case where W is a chain, say W = x

↵1
1 x2+x

↵2
2 x3+ · · ·+x

↵n�1
n�1 x

n

+x

↵n
n

.

Then

A

W

=

0

BBBBBBBBBB@

↵1 1 0 · · · 0

0 ↵2 1 · · · 0

0 0 ↵3 · · · 0

...
...

...
. . .

...

0 0 0 · · · ↵

n

1

CCCCCCCCCCA

.

This is an upper triangular matrix, so |det(A
W

)| = ↵1↵2 · · ·↵n

(the product of the diagonal

elements). By lemma 3, this is also the order of Gmax

W

. We will show that there is a column

in A

�1
W

of order ↵1↵2 · · ·↵n

, proving that this column alone generates Gmax

W

.

The details of the calculation of the inverse matrix are rather tedious, but the result is

simple to verify, so we give the inverse here:

A

�1
W

=

0

BBBBBBBBBB@

1
↵1

�1
↵1↵2

1
↵1↵2↵3

· · · (�1)n�1
Qn

i=1 ↵i

0 1
↵2

�1
↵2↵3

· · · (�1)n�2
Qn

i=2 ↵i

0 0 1
↵3

· · · (�1)n�3
Qn

i=3 ↵i

...
...

...
. . .

...

0 0 0 · · · 1
↵n

1

CCCCCCCCCCA

.

Now let ⇢

n

be the last column of A�1
W

. Recall that G

max

W

< (Q/Z)n. Each ↵

i

2 N, so

|⇢
n

| =
Q

n

i=1 ↵i

since that is the largest denominator of any entry in ⇢

n

and is a multiple of all

other denominators (each numerator is ±1, so we only need to consider the denominators).

This is the order of Gmax

W

, so G

max

W

=
⌦
⇢

n

↵
, and G

max

W

is cyclic.

We now consider the final case where W is a loop; that is, W = x

↵1
1 x2 + x

↵2
2 x3 + · · · +

12



x

↵n�1
n�1 x

n

+ x

↵n
n

x1. Then

A

W

=

0

BBBBBBBBBB@

↵1 1 0 · · · 0

0 ↵2 1 · · · 0

0 0 ↵3 · · · 0

...
...

...
. . .

...

1 0 0 · · · ↵

n

1

CCCCCCCCCCA

.

By expanding along the first column, we quickly find the determinant:

det(A
W

) = ↵1

����������������

↵2 1 0 · · · 0

0 ↵3 1 · · · 0

0 0 ↵4 · · · 0

...
...

...
. . .

...

0 0 0 · · · ↵

n

����������������

+ (�1)n�1

����������������

1 0 0 · · · 0

↵2 1 0 · · · 0

0 ↵3 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

����������������

=
nY

i=1

↵

i

+ (�1)n�1

As in the case of chains, this tells us the order of Gmax

W

. We proceed as in that case,

finding a column of A�1
W

(i.e. an element of Gmax

W

) with this order.

Let ⇢
n

= (a1n, a2n, . . . , ann)T be the last column of A�1
W

. So

A

W

⇢

n

=

0

BBBBBBBBBB@

↵1 1 0 · · · 0

0 ↵2 1 · · · 0

0 0 ↵3 · · · 0

...
...

...
. . .

...

1 0 0 · · · ↵

n

1

CCCCCCCCCCA

0

BBBBBBBBBB@

a1n

a2n

a3n

...

a

nn

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

0

0

0

...

1

1

CCCCCCCCCCA

.

This system of equations is also easily solved, giving the closed form solution

a

mn

=
(�1)n�m

Q
m�1
i=1 ↵

iQ
n

i=1 ↵i

+ (�1)n�1
.

13



In each entry of ⇢
n

, the numerator and denominator are relatively prime and the denom-

inator is always the same. Thus the denominator again tells us the order of ⇢
n

2 G

max

W

; that

is, |⇢
n

| =
Q

n

i=1 ↵i

+ (�1)n�1 = |Gmax

W

|. Thus, Gmax

W

=
⌦
⇢

n

↵
, and G

max

W

is again cyclic.

Corollary 2: Let W1 and W2 be two atomic polynomials (i.e. either a Fermat, chain, or

loop), each having a di↵erent atomic type. Then G

max

W1
6= G

max

W2
.

Remark: Note that when we say G

max

W1
6= G

max

W2
, we do not mean that they are not iso-

morphic. Indeed, since lemma 4 showed that every G

max for atomic polynomials is cyclic,

it is very easy to find examples where G

max

W1
⇠= G

max

W2
. But recall that Gmax is a subgroup of

(Q/Z)n, so when we say G

max

W1
6= G

max

W2
, we mean they are not equal as subgroups of (Q/Z)n.

Proof. Again the case where either polynomial is a Fermat is trivial since Fermats have only

one coordinate and chains and loops must have more than one. So we only need to consider

the case where (without loss of generality) W1 = x

↵1
1 x2 + x

↵2
2 x3 + · · · + x

↵n�1
n�1 x

n

+ x

↵n
n

is a

chain and W2 = x

�1
1 x2 + x

�2
2 x3 + · · ·+ x

�n�1
n�1 xn

+ x

�n
n

x1 is a loop.

Consider the generators found in the proof of lemma 4 for Gmax

W1
and G

max

W2
. Let ⇢1 and ⇢2

be these generators, respectively. By examining the coordinates of ⇢1 = ( (�1)n�1
Qn

i=1 ↵i
,

(�1)n�2
Qn

i=2 ↵i
, . . . ,

1
↵n
), we see that every coordinate except the first one will be zero for some nonidentity

element of Gmax

W1
(recall that these coordinates are in Q/Z).

On the other hand, every coordinate of ⇢2 has the same denominator and is fully reduced.

So each has the same order as elements of Q/Z, which is also the order of Gmax

W2
. Thus, the

only element of Gmax

W2
with any zero entries is the identity. This is su�cient to prove that

G

max

W1
6= G

max

W2
.

Theorem 1: No two distinct invertible non-degenerate quasihomogeneous polynomials have

the same G

max.

Proof. Assume G

max

1 = G

max

2 , the maximal groups of diagonal symmetries for invertible

polynomials W1 and W2 respectively. Let G

max

1 =
⌦
g1, . . . , gm

↵
and G

max

2 =
⌦
h1, . . . , hn

↵
,

14



where each of these generators corresponds to a single atomic polynomial in W1 or W2. Note

that this means that each coordinate is nonzero in precisely one g and one h.

For each k from 1 to m, let g
k

= ↵1hk1 + · · · + ↵

l

h

kl
, where each ↵

j

h

kj is nonzero. This

implies that
⌦
g

k

↵
=

⌦
↵1hk1 + · · ·+ ↵

l

h

kl

↵
✓

⌦
h

k1 , . . . , hkl

↵
.

Suppose
⌦
g

k

↵
6=

⌦
h

k1 , . . . , hkl

↵
. Let c1, . . . , cnk

be the nonzero coordinates of g
k

. If each

h

kj is nonzero only on the coordinates c1, . . . , cnk
, then there must be a linear combination

a =
P

l

j=1 �j

h

kj that isn’t a multiple of g
k

(i.e. there is an element of
⌦
h

k1 , . . . , hkl

↵
that isn’t

in
⌦
g

k

↵
). Since a 2 G

max

2 , it is also in G

max

1 , and so we can write it as a =
P

m

i=1 �igi. We know

that for i 6= k, every nonzero multiple of g
i

has a nonzero coordinate outside of c1, . . . , cnk
.

Since the only nonzero coordinates of a are c1, . . . , cnk
(because a 2

⌦
h

k1 , . . . , hkl

↵
), �

i

g

i

= 0

for all i 6= k. So a = �

k

g

k

, a contradiction since we chose a to not be a multiple of g
k

. So

there exists an h

kj that is nonzero on a coordinate where g

k

is zero.

Let s be a coordinate where g
k

is zero and h

kj is nonzero. As noted above, h
kj is the only

generator of Gmax

2 that is nonzero on that coordinate. But we know that ↵
j

h

kj is zero on s

and nonzero on at least one of c1, . . . , cnk
. So h

kj is a generator for a single atomic type with

a nonidentity multiple that has a zero in one of its coordinates. As mentioned in the proof

of corollary 2, this generator cannot correspond to a Fermat or a loop, and must therefore

be a chain.

Let g

i

be the unique generator of Gmax

1 that is nonzero on s. Then we can write g

i

=

�h

kj +(other terms), where �h
kj is nonzero on s. Since ↵

j

h

kj is zero on s and nonzero on at

least one of c1, . . . , cnk
, �h

kj must also be nonzero on those same coordinates in c1, . . . , cnk
.

This claim is based on the structure of the generator for a chain: if any coordinate of a

multiple is nonzero, then all preceding coordinates are nonzero, and if any coordinate of a

multiple is zero, then all subsequent coordinates are zero. But this implies that g
i

is nonzero

on at least one of c1, . . . , cnk
, which were defined as precisely the coordinates where g

k

is

nonzero. This means that two di↵erent generators must be nonzero on the same coordinate.

But each generator corresponds to a distinct atomic polynomial, so this means that two

15



di↵erent atomic polynomials have a variable in common, a contradiction.

So
⌦
g

k

↵
=

⌦
h

k1 , . . . , hkl

↵
. A similar argument in the other direction shows that

⌦
h

k1

↵
=

⌦
g

k

, other terms
↵
. (g

k

must be a generator for this group since it is nonzero on a coordinate

that h
k1 is also nonzero on, and is the only g

i

that is nonzero on this coordinate.) This gives

a chain of containments

⌦
h

k1

↵
✓

⌦
h

k1 , . . . , hkl

↵
=

⌦
g

k

↵
✓

⌦
g

k

, other terms
↵
=

⌦
h

k1

↵
,

so
⌦
h

k1

↵
=

⌦
g

k

↵
. By corollary 2, this implies that

⌦
h

k1

↵
and

⌦
g

k

↵
correspond to the same

atomic type. Since the exponents of an atomic polynomial completely and uniquely deter-

mine its Gmax (this can be seen by examining the formulas given in the proof of lemma 4),

the corresponding atomic polynomials must be equal. Since k was chosen arbitrarily, W1

and W2 must be composed of identical atomic polynomials, and are therefore equal.

This result was somewhat unexpected, but provides valuable insights into the relationship

between the two ingredients for FJRW theory: the polynomial W and the group G (which

must be a subgroup of Gmax

W

). This fact has already been helpful in understanding how

di↵erent objects in mirror symmetry are related (see [8]).

Chapter 4. Classification of Non-Degenerate

Quasihomogeneous Polynomials

Our research also included looking for new ways to classify non-degenerate quasihomogeneous

polynomials. To some degree, these polynomials have already been classified (Arnold worked

extensively on this; see, for example, [1]). However, the existing classifications are not

complete from the perspective of FJRW theory in that they are not rigid enough. That

is, polynomials may be classified as equivalent that do not in fact yield the same results in

FJRW theory.
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Specifically, the classification of Arnold defines two polynomials to be equivalent if they

di↵er by a smooth change of variables. But for FJRW theory, they are equivalent only if

they di↵er by a permutation of variables, a much stricter condition. For this reason we con-

tinue to look for a compact, complete way to classify all non-degenerate quasihomogeneous

polynomials, while providing more insight into the complete FJRW theory.

4.1 Quasihomogeneous dimension (QHDim)

One possible classification we’ve recently begun looking into is based on the quasihomoge-

neous dimension (or QHDim) of the polynomial.

Definition 7: Let W 2 C[x1, . . . , xn

] be a non-degenerate quasihomogeneous polynomial.

Then QHDim(W ) is the number of monomials in C[x1, . . . , xn

] of weighted degree 1 with

respect to the weight system of W . Since this is an invariant of the weight system itself, we

will often refer to QHDim of a weight system.

Recall that a non-degenerate quasihomogeneous polynomial is composed of monomials

of weighted degree 1. So QHDim of a weight system tells us how many monomials we have

available to us to construct a polynomial with that weight system. This can be very helpful in

determining which weight systems may give rise to non-degenerate quasihomogeneous poly-

nomials because many potential weight systems will not have enough monomials of weighted

degree 1 (recall that there must be at least as many monomials as there are variables).

Additionally, we are hoping that QHDim provides a good way of ordering non-degenerate

quasihomogeneous polynomials so that we can compose a complete list of them, starting with

those that have the smallest QHDim.

We began our investigation of QHDim by looking at ways to calculate QHDim for a

given weight system. The one variable case is trivial as QHDim is either 0 or 1, depending

on whether or not the numerator of the weight system divides the denominator (if we deal

only with reduced weight systems, this is equivalent to the numerator being 1). The only
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one-variable non-degenerate quasihomogeneous polynomials are Fermats (having the form

x

n), which correspond to the weight systems with QHDim = 1.

We therefore moved on to the two variable case and were able to come up with a formula

for finding the quasihomogeneous dimension of any weight system. In order to establish this

formula, we first require three lemmas.

Lemma 5: Any two-variable, non-degenerate quasihomogeneous polynomial is the sum of

an invertible polynomial in two variables and other monomials.

Proof. Let W be such a polynomial. Let W = m1 + · · ·+m

n

where each m

i

is a monomial

in C[x, y], i.e. m
i

= x

ai
y

bi . Note that for each i, a
i

� 2 or b
i

� 2.

Suppose that for each i, a

i

� 2. Then x appears in each monomial of each partial

derivative of W . Thus if x = 0, y can roam freely and the partials will still be 0, making W

degenerate, a contradiction. So there exists k 2 Z such that a
k

 1 (implying b

k

� 2).

Similarly, there exists l 2 Z such that b
l

 1, meaning a

l

� 2.

The pair (a
k

, b

l

) has four possible values:

• (0, 0) ) m

k

+m

l

is a sum of Fermats.

• (0, 1) or (1, 0) ) m

k

+m

l

is a chain.

• (1, 1) ) m

k

+m

l

is a loop.

Thus W is a sum of a two-variable invertible polynomial (m
k

+m

l

) and other monomials.

Lemma 6: Let q =
�
r

n

,

s

n

�
be a weight system with gcd(r, s, n) = 1 and r � s. If q

corresponds to a non-degenerate quasihomogeneous polynomial, then ↵0 =
⌅
n

r

⇧
is the largest

exponent of x (which has weight r

n

) that gives rise to a monomial of weighted degree 1.

Proof. If r | n, then ↵0 =
n

r

2 Z. Then x

↵0 has weighted degree 1, and any higher power of

x would have weighted degree greater than 1, so the lemma holds in this case.
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Now assume that r - n and let W be a two variable non-degenerate quasihomogeneous

polynomial with weight q. Since r - n, no power of x alone can have weighted degree 1, so

W has no terms of the form x

↵. By lemma 5, W must contain an invertible polynomial in

C[x, y]. Thus it must contain a term of the form x

↵

y (either as part of a loop or a chain).

By definition,

↵r + s = n

↵r = n� s

↵ =
n

r

� s

r

2 Z

because ↵ is an integer. But s  r, meaning s

r

 1. Since n

r

/2 Z, the inequality must be

strict, and by definition ↵ = n

r

� s

r

=
⌅
n

r

⇧
= ↵0. Obviously any higher power of x would

result in a weighted degree greater than 1, so we have the desired result.

Lemma 7: Let q =
�
r

n

,

s

n

�
be a weight system with gcd(r, s, n) = 1 and r, s  n

2 (so the

weights are no more than 1
2). Then q corresponds to a non-degenerate quasihomogeneous

polynomial if and only if

(i) n ⌘ 0 or n ⌘ r mod s, and

(ii) n ⌘ 0 or n ⌘ s mod r.

Proof. (=)) Suppose W 2 C[x, y] is a non-degenerate quasihomogeneous polynomial with

weight system q. Then, by lemma 5, W has a monomial m of the form x

↵0 or of the form

x

↵0
y. Let � be the power of y in m (so � is either 0 or 1). Then, since m has weighted degree
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1, we have

↵0r + �s = n

↵0r = n� �s

) r|n� �s

) n ⌘ �s mod r

) n ⌘ 0 mod r or n ⌘ s mod r

By a symmetric argument, n ⌘ 0 mod s or n ⌘ r mod s.

((=) For this direction, we break into three cases:

Case 1 (corresponding to a sum of Fermats): n ⌘ 0 mod r and n ⌘ 0 mod s

Let W = x

n
r + y

n
s . Then W is a non-degenerate quasihomogeneous singularity with

weight system q.

Case 2 (corresponding to a chain): WLOG n ⌘ 0 mod r and n ⌘ r mod s

By definition, s|n � r. Let � = n�r

s

. Since s, r  n

2 , we see that � � n�r

n/2 = n

n/2 �
r

n/2 =

2 � r

n/2 � 1. However, since gcd(r, s, n) = 1, r and s can’t both be equal to n

2 (well, they

could if the weights could both be equal to 1
2 , but we don’t allow this, right?). So at least

one of these inequalities is strict, meaning � > 1. Since � is an integer, � � 2. Then

W = x

n
r + y

�

x is a non-degenerate quasihomogeneous singularity with weight system q.

Case 3 (corresponding to a loop): n ⌘ s mod r and n ⌘ r mod s

Let ↵ = n�r

s

and � = n�s

r

. Similar to case 2, we know that ↵, � � 2. ThenW = x

↵

y+y

�

x

is a non-degenerate quasihomogeneous singularity with weight system q.

Theorem 2 (Two-variable QHDim formula): If q =
�
r

n

,

s

n

�
is a weight system having

gcd(r, s, n) = 1 which corresponds to a non-degenerate quasihomogeneous polynomial W ,

then QHDim(W ) =
⌅

n

rs

⇧
+ 1.

Proof. Assume WLOG that r � s. By lemma 6 the largest possible power of x that can

20



appear in a monomial of W is

↵0 =
j
n

r

k
=

8
>><

>>:

n

r

if n ⌘ 0 mod r

n�s

r

otherwise

(lemma 7 tells us that these are the only two possibilities for
⌅
n

r

⇧
). Now suppose x↵0

y

�0 has

degree 1. Since ↵0 was chosen as the largest possible power of x, �0 must be either 0 or 1.

We know that ↵0r + �0s = n. To find all nonnegative solutions to the linear Diophantine

equation ↵r + �s = n, we simply find the linear combinations of our one known solution

that give nonnegative values. Thus, all solutions are of the form (↵0�ks)r+(�0+kr)s = n,

k 2 {0, 1, . . . ,
⌅
↵0
s

⇧
} and each choice of k gives a unique solution. Thus the number of

solutions is
j
↵0

s

k
+ 1 =

$⌅
n

r

⇧

s

%
+ 1 =

j
n

rs

k
+ 1

where the last equality comes from basic properties of the floor function. Thus, QHDim(W )

=
⌅

n

rs

⇧
+ 1.

There is much work remaining to determine whether or not QHDim will provide a useful

way of classifying non-degenerate quasihomogeneous polynomials. The first step would be

to continue working with the simplest case, that being two-variable polynomials. What

information does QHDim give us about the resulting FJRW theory for these polynomials?

How are di↵erent polynomials with the same QHDim related, if at all? The above formula

for QHDim will make it easier to carry on these investigations and answer these important

questions.

Chapter 5. Invertible Representatives of Weight Systems

As we have demonstrated throughout this thesis, invertible polynomials are much easier to

work with than non-invertible polynomials. For this reason, it would be nice if we could
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always work with invertible polynomials without losing any information. A long-standing

conjecture which has recently been proven by Julian Tay provided hope that this could be

done.

Theorem 3 (Group-Weights Theorem [9]): Let W1 and W2 be non-degenerate quasihomo-

geneous polynomials with the same weights. Suppose G  G

max

W1
and G  G

max

W2
. Then

A
W1,G

⇠= A
W2,G

That is, the Landau-Ginzburg A-models (FJRW models) produced by the polynomials are

isomorphic, as long as they both use the same group G.

This theorem tells us that the polynomial doesn’t actually matter when determining the

structure of the A-model, only its weights and the chosen group. So we made a conjecture

which, if true, would allow us to always work with invertible polynomials without losing any

information in the theory:

Conjecture 1: Let W1 be a non-degenerate quasihomogeneous polynomial.

(i) There exists an invertible non-degenerate quasihomogeneous polynomial W2 which has

the same weight system as W1.

(ii) If W2 exists, it can be chosen such that Gmax

W1
 G

max

W2
.

We discuss each of these parts independently in the next two sections.

5.1 Weight systems with no invertible representatives

We first investigate part (i) of conjecture 1. An equivalent statement is that every weight

system that corresponds to a non-degenerate quasihomogeneous polynomial corresponds to

an invertible non-degenerate quasihomogeneous polynomial. It is certainly plausible because

invertible polynomials are the smallest possible non-degenerate quasihomogeneous polyno-
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mials (meaning they have the minimal number of monomials). So for any non-invertible

polynomial, we would hope that by eliminating some monomials we could make it invertible.

We have already shown that this is in fact possible in two variables (see lemma 5).

However, it has been known for some time that this simple approach is not always possible

in more than two variables. That is, there are non-invertible non-degenerate quasihomoge-

neous polynomials that are not made up of an invertible polynomial plus extra monomials.

The following example demonstrates this.

Example 4: Let W1 = x

2
y

2 + x

2
z + y

4
z + z

3. Notice that there is no three-variable

invertible polynomial contained in W1. However, this polynomial is in fact non-degenerate

quasihomogeneous with weights (q
x

, q

y

, q

z

) = (13 ,
1
6 ,

1
3).

Although this polynomial is not an invertible plus other monomials, there are several

invertible polynomials with the same weight system. The simplest example is a sum of three

Fermats, W2 = x

3 + y

6 + z

3.

The question remains whether every weight system has an invertible representative. In

order to investigate this question, we turned to a paper by Hertling and Kurbel [6] that

describes how to tell if a weight system corresponds to a non-degenerate quasihomogeneous

polynomial without having to actually find the polynomial. This allowed them to compile

a comprehensive list (up to a certain bound) of all possible weight systems in 2, 3, and 4

variables. We were then able to use this list to investigate which weight systems, if any,

did not correspond to any invertible polynomials. We will first give a brief overview of their

approach, then describe the computer code we used to examine the list of weight systems

and the results of that examination.

5.1.1 Hertling and Kurbel’s approach. Hertling and Kurbel detail a combinatorial

characterization of weight systems of non-degenerate quasihomogeneous polynomials. Using

this characterization, they determined an upper bound on d (the greatest common denomi-

nator of the weights in a weight system) based on an invariant called the Milnor number of
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the weight system (defined below).

Definition 8: Let W 2 C[x1, . . . , xn

] be a non-degenerate quasihomogeneous polynomial

with weight system (q1, . . . , qn). Then the Milnor number µ
W

of W is given by the formula

µ

W

=
nY

i=1

✓
1

q

i

� 1

◆
.

Using their combinatorial characterization and the upper bound they proved, Hertling

and Kurbel were able to generate a list of all weight systems up to rather large Milnor

numbers for small numbers of variables (2, 3, 4). We were able to use their lists to investigate

our conjecture. We will detail these investigations shortly.

While the work of Hertling and Kurbel has been very helpful, there are a few critical

pieces of information that it does not provide. First, they do not give any way to easily look

at a weight system and determine if it corresponds to a non-degenerate quasihomogeneous

polynomial. Essentially you have to consider all possible monomials and check if they can

be combined in any way to form a non-degenerate quasihomogeneous polynomial.

It is also unknown which weight systems have invertible representatives, and their work

did not include symmetry groups in its scope.

5.1.2 Analyzing Hertling and Kurbel’s data. Our first goal with the list of weight

systems we received from Hertling and Kurbel was to generate examples and determine if

there were any weight systems which did not correspond to any invertible polynomials (but

did correspond to at least one non-invertible). We had never found such an example, and

recall that part (i) of our conjecture states that no such examples exist.

Our approach in searching for counterexamples was essentially a brute force search. How-

ever, due to the size of the data provided, we had to develop some ways to optimize our

search in order to analyze all of the weight systems (of which there were 884,543 in the lists).

We will describe the general approach, including these optimizations.

First, by lemma 5 we know that every two-variable non-degenerate quasihomogeneous

24



polynomial is composed of an invertible polynomial plus other monomials. Thus, part (i)

is true in two variables because we can simply restrict any non-invertible polynomial to the

invertible part to get an invertible polynomial with the same weight system. So there was

no need to analyze the two-variable weight systems.

To understand the next optimization, we need another definition.

Definition 9: Let x1 and x2 be variables (not necessarily distinct) in a non-degenerate

quasihomogeneous polynomialW . We say that x1 points to or points at x2 if the monomial

x

↵

1x2 appears in W . We call x1 a pointer (for x2) and say that x2 has a pointer (at x1).

The following lemma is a subcase of (C1), one of the combinatorial characterizations of

non-degenerate quasihomogeneous polynomials given by Hertling and Kurbel, though they

were not the first to discover it ([6] contains a short survey of sources for these characteriza-

tions). We will provide a short proof that covers the case necessary for our work.

Lemma 8: Let W 2 C[x1, . . . , xn

] be a non-degenerate quasihomogeneous polynomial. Then

every variable in W is a pointer for at least one variable (possibly itself).

Proof. By way of contradiction, suppose (without loss of generality) that x1 is not a pointer.

Let m be a monomial in W . Since x1 is not a pointer, m is of the form x

↵1
1 x

↵2
2 . . . x

↵n
n

with
P

n

j=2 ↵j

� 2.

Consider the partial derivatives ofm, @m

@xi
= ↵

i

x

↵i�1
i

Q
j 6=i

x

↵j

j

. At least one of the variables

besides x1 must still have a positive exponent, meaning @m

@xi
(x1, 0, . . . , 0) = 0. Since m and i

were arbitrary, this is true for every monomial in W , meaning W

xi(x1, 0, . . . , 0) = 0 for all

i. In other words, W has a critical point at all points on the x1 axis, which contradicts our

assumption that W is non-degenerate. So every variable in W must be a pointer for at least

one variable, as desired.

In the lists of weights we analyzed, Hertling and Kurbel provide for each weight system

a map p1p2 . . . pn : {x1, . . . , xn

} ! {x1, . . . , xn

} by x

i

7! x

pi . This map encodes the “type”
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of polynomial with that weight system by telling which variable each variable points to. Of

course, most weight systems have many di↵erent choices for this map, so the given map is

just one possible choice.

This map can be used to identify many weight systems that have an invertible represen-

tative because certain maps require the existence of an invertible polynomial. The following

example demonstrates how this works. We will then give a lemma that will show how this

technique applies in general. This will allow us to easily identify which maps correspond to

invertible polynomials without having to actually find the polynomials.

Example 5: Consider the weight system (17 ,
1
7 ,

2
7). The accompanying map is 121, meaning

x1 points to itself, x2 points to itself, and x3 points to x1. This means that there is a

non-degenerate quasihomogeneous polynomial with this weight system that contains the

monomials x7
1, x

7
2, and x

3
3x1 (these are the exponents needed to give the monomials weighted

degree 1). Since these monomials together comprise a two-variable chain and a Fermat, no

other monomials are needed to make the polynomial non-degenerate.

Lemma 9: Let p = p1p2 . . . pn be a map giving the pointers in a non-degenerate quasiho-

mogeneous polynomial, as described above. Then p corresponds to an invertible polynomial

if and only if no variable is pointed at by more than one other variable (i.e. besides itself).

Proof. (=)) Suppose p corresponds to the invertible polynomial W = W1 + · · · + W

m

where each W

i

is an atomic polynomial (i.e. either a loop, chain, or Fermat). Each atomic

polynomial is in distinct variables, so any variable can only be pointed at by another variable

from the same atomic polynomial. So it is su�cient to prove the statement for atomics. But

this is obvious from the definitions of the di↵erent atomic types.

((=) Now suppose that no variable is pointed at by multiple other variables. We will

construct an invertible polynomial W with the map p.

In order to have the map p, a polynomial W 2 C[x1, . . . , xn

] must have the n monomials

{x↵i
i

x

pi}. Let W be the sum of these monomials. We will show that W is in fact a sum of
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loops, chains, and Fermats, making it invertible. We will do this by successively “removing”

the three di↵erent atomic types, and showing that after doing so there are no monomials

remaining.

First, let x

j1 be a variable not pointed at by any variable (i.e. p

i

6= j1 for all i), if it

exists. Define x

jk+1
recursively as the variable pointed at by x

jk
. This defines a polynomial

W

c

= x

↵j1
j1

x

j2+x

↵j2
j2

x

j3+ · · ·+x

↵jm
jm

x

jm (notice the last variable is pointing to itself) contained

in W . We know that W
c

must end with x

jm pointing to itself because our hypothesis is that

no variable is pointed at by more than one other variable and x

j1 isn’t pointed at by anything.

This means that x
jm can’t point to any other variables in W

c

, so either it points to a di↵erent

variable in W (in which case it isn’t the “end” of W
c

), or it must point to itself. By the same

reasoning, no variable outside of W
c

can point to a variable in W

c

since each has already

reached its allotment of pointers (0 for x
j1 , 1 for all other variables). So W

c

is a chain-type

polynomial in W decoupled from the rest of W .

Similarly, every variable in W that does not have a pointer defines the beginning of a

decoupled chain. So we can remove each of these chains and be left with a non-degenerate

quasihomogeneous polynomial W 0 in the remaining variables whose invertibility agrees with

that of W .

Now every variable in W

0 must have a pointer, and must be a pointer. By the pigeonhole

principle, each variable must have exactly one pointer. This makes it obvious that W 0 is a

sum of Fermats and loops, making it invertible. Adding the chains back in shows that W is

also invertible, as desired.

With this lemma, we were able to determine that the vast majority of the weight systems

in Hertling and Kurbel’s lists correspond to invertible polynomials with minimal computa-

tional e↵ort. We simply checked the map they gave to see if it met the conditions of lemma 9.

If it did, we knew that an invertible representative had already been identified and we moved

on.

Next we applied some of the combinatorial techniques that Hertling and Kurbel described
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for checking that a given polynomial is non-degenerate. These techniques involve analyzing

the monomials that appear in the polynomial, without taking any derivatives or solving a

system of equations (as is required to check the definition of non-degenerate directly).

Their is one small caveat to this approach: it considers the variables and exponents

of the monomials, but not the coe�cients. For invertible polynomials, this is irrelevant

because we can always assume the coe�cients have been rescaled to 1. However, for non-

invertible polynomials, there may be a “bad” choice of coe�cients that would make that

polynomial degenerate. So if we ignore the coe�cients, we can’t truly be certain that any

given polynomial is non-degenerate.

This caveat does not concern us for two reasons. The first is that the set of “bad”

coe�cients forms a closed set whose complement is dense in the space of all possible coe�-

cients (that is, (C⇤)N , where N is the number of monomials in the polynomial). So almost all

choices of coe�cients will produce non-degenerate polynomials (we sometimes denote this by

saying that the generic polynomial is non-degenerate). In the event that a certain choice of

coe�cients does produce a degenerate polynomial, a small change to the chosen coordinates

will make the polynomial non-degenerate.

The other reason we can proceed with this approach is that our current objective is to

determine only the existence of an invertible polynomial. For invertibles, there is no choice

of coe�cients that can make the polynomial degenerate unless all choices are degenerate.

The details of these techniques are found in [6], and we will give only a crude idea here.

In that paper Hertling and Kurbel give five di↵erent equivalent conditions which, if satisfied

by a quasihomogeneous polynomial, indicate that the polynomial is non-degenerate. The

one we used in our calculations is referred to as (C1)’. Basically it says the following: Let

W 2 C[x1, . . . , xn

] be a quasihomogeneous polynomial. Then W is non-degenerate if and

only if, for every subset J ✓ {x1, . . . , xn

} with |J |  n+1
2 , either

(i) there is a monomial in W whose variables are in J , or

(ii) there are |J | di↵erent monomials in W that are “almost” in J . By “almost” in J , we
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mean that if you removed one variable of degree 1 from the monomial, then all of its

variables would be in J . We also require that a di↵erent variable be removed from

each of the |J | monomials.

Example 6: Let W = x

2
y

2 + x

2
z + y

4
z + z

3, which is quasihomogeneous with weights

(13 ,
1
6 ,

1
3). We will show that W satisfies (C1)’ by listing each of the subsets J up to order

3+1
2 = 2, along with which monomials m from W are needed to satisfy (C1)’ for that J and

which condition ((i) or (ii)) is met by that monomial.

J {x} {y} {z} {x, y} {x, z} {y, z}

m x

2
z y

4
z z

3
x

2
y

2
x

2
z y

4
z

(ii) (ii) (i) (i) (i) (i)

Since all of the subsets J satisfy at least one of the two conditions, W is non-degenerate.

Initially, this may not seem like an e�cient technique for determining non-degeneracy

because it requires analyzing half of a power set (the conditions must be satisfied by all

possible J). However, in practice it has proven to be extremely e�cient because we are

generally working with small numbers of variables (in our current analysis, n  4). This

keeps the number of di↵erent J to check very reasonable and turns out to be much faster

than our earlier methods (which, as mentioned previously, required taking derivatives and

solving systems of equations).

With these optimizations in place, we were able to e↵ectively use a brute force approach

to search for invertible representatives for each weight system. We first found all monomials

of weighted degree 1, then tried every possible sum of n di↵erent monomials and checked each

to see whether or not it was non-degenerate. Once we found an invertible representative, we

recorded it in a file and moved on to the next weight system.

Recall once again that part (i) of conjecture 1 was that we would find an invertible

representative for every weight system. Sadly, this turned out not to be the case. Our search

yielded the following counterexample.

29



Theorem 4: The weight system (17 ,
3
14 ,

2
7) corresponds to the non-degenerate quasihomo-

geneous polynomial W = x

7 + y

4
x + z

3
x + y

2
z

2 but not to any invertible non-degenerate

quasihomogeneous polynomial.

Proof. It is easy to verify that W is quasihomogeneous with the given weight system. We

will show that it is in fact non-degenerate directly. To do this we need to show that it has a

unique critical point at the origin, i.e. that 0 is the only solution to the system of equations

W

x

= 7x6 + y

4 + z

3 = 0

W

y

= 4y3x+ 2yz2 = 2y(2y2x+ z

2) = 0

W

z

= 3z2x+ 2y2z = z(3zx+ 2y2) = 0

This is a rather straightforward system to solve.

First, assume y = 0. Then our system is reduced to

W

x

= 7x6 + z

3 = 0

W

z

= 3z2x = 0

If x 6= 0 then W

z

tells us z = 0. But that would leave us with W

x

= 7x6 = 0 ) x = 0,

a contradiction. So we must have x = 0, implying W

x

= z

3 = 0 ) z = 0. So if y = 0, then

the only solution is the x = y = z = 0.

Now assume y 6= 0. Then our system is reduced to

W

x

= 7x6 + y

4 + z

3 = 0

W

y

= 2y2x+ z

2 = 0

W

z

= z(3zx+ 2y2) = 0

If z = 0 then W

y

tells us 2y2x = 0, and since we are assuming y 6= 0 this means that
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x = 0. But that would leave us with W

x

= 7x6 + y

4 + z

3 = y

4 = 0 ) y = 0, a contradiction.

On the other hand, if z 6= 0, then we can solve W

z

for x, giving x = �2y2

3z . Plugging this

in to W

y

gives 2y2(�2y2

3z ) + z

2 = 0 ) 3z3 = 4y4. Combining this with our formula for x

yields x2 = (�2y2

3z )
2 = 4y4

9z2 = 3z3

9z2 = 1
3z. Finally, plugging these two formulas in to W

x

gives

7(13z)
3+ 3

4z
3+ z

3 = 0 ) z = 0, a contradiction. So there is no solution when y 6= 0, showing

that W is non-degenerate.

To show that there is no invertible polynomial with this weight system, we will refer

again to lemma 9, which tells us that no variable in an invertible polynomial can be pointed

at by multiple other variables. We will start by looking at y, which has weight 3
14 . 3 - 14, so

y cannot point to itself. Also, there is no way a monomial of the form y

↵

z can have weighted

degree 1, so y can’t point to z either. By lemma 8, every variable must be a pointer, so y must

point at x. But by the same reasoning, z must also be a pointer for x since it can’t point to

itself or to y. Thus, by lemma 9, the weight system (17 ,
3
14 ,

2
7) has no invertible representative

because any non-degenerate quasihomogeneous polynomial would have x being pointed at

by both y and z. This completes the proof.

This counterexample can be easily extended to an arbitrary number of variables. To do

this, we require one more straightforward lemma.

Lemma 10: Let x1 and x2 be variables in a non-degenerate quasihomogeneous polynomial,

with reduced weights a1
b1

and a2
b2
, respectively (by “reduced” we mean gcd(a

i

, b

i

) = 1). If x1

points to x2, then b2 | b1.

Proof. By definition, we know that x↵

1x2 has weighted degree 1, meaning ↵a1
b1

+ a2
b2

= 1. By

rearranging, we see that a2b1 = b1b2 � ↵a1b2 = b2(b1 � ↵a1), i.e. b2 | a2b1. However, since

the weights are reduced, we know that gcd(a2, b2) = 1, meaning b2 | b1, as desired.

Theorem 5: For n � 3 variables, there exists a weight system corresponding to a non-

degenerate quasihomogeneous polynomial for which there are no invertible representatives.
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Proof. Consider the weight system
�
1
7 ,

3
14 ,

2
7 ,

1
3 , . . . ,

1
3

�
of length n. From before, we know

that this weight system corresponds to the polynomial x7 + y

4
x+ z

3
x+ y

2
z

2 + x

3
4 + · · ·+ x

3
n

,

which is a sum of two non-degenerate quasihomogeneous polynomials in distinct variables,

and is therefore non-degenerate and quasihomogeneous as well.

SupposeW is an invertible non-degenerate quasihomogeneous polynomial with this weight

system. Since 3 and 7 are relatively prime, by lemma 10, none of the first three variables

can point to or be pointed at by any of the remaining n� 3 variables. This means that W

contains no atomic polynomials that contain one of the first three variables and one of the

remaining variables, as either a loop or a chain would require at least one pointer between

these two sets of variables (and of course Fermats only have one variable).

Thus, we can think of W as a sum of two invertible non-degenerate quasihomogeneous

polynomials, W = W1 +W2, where W1 2 C[x, y, z] and W2 2 C[x4, . . . , xn

]. But this means

thatW1 has weight
�
1
7 ,

3
14 ,

2
7

�
, which, as shown in theorem 4, has no invertible representatives,

a contradiction. Thus, there is no invertible non-degenerate quasihomogeneous polynomial

with the given weight system in n variables. Since n was arbitrary, we have the desired

result.

5.1.3 Statistics from analysis. In analyzing the lists of weight systems, we found that

there are in fact many such counterexamples. Out of the 596,879 weight systems analyzed

in three variables, 6,414 (1.07%) did not correspond to any invertible polynomial. In four

variables, there were 4,365 counterexamples out of 165,624 weight systems (2.64%). An

abbreviated list of these counterexamples is provided in Appendix A.

While a detailed analysis of the distribution of these counterexamples was not performed,

we did notice one interesting anomaly in the data. The lists were organized in increasing

order by d (the least common denominator of the weight system). The last counterexample

found in three variables was ( 3
2995 ,

748
2995 ,

749
2995) which was the 267,383rd weight system in the

list (less than halfway through). So the weight systems with no invertible representatives

were skewed toward the beginning of the list (that is, those with smaller d).
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There appears to be a connection between d and the Milnor number µ that determines

when a counterexample may be found. In our limited investigation, it seemed that in three

variables, all weight systems with d >

µ+1
3 had an invertible representative. (This explains

why none were found past d = 3000, since the list contained all weight systems up to

µ = 9000.) A similar limit seems to exist in four variables, with the bound being closer to µ

2

(though there were some small discrepancies, suggesting that our proposed formula for the

bound is incomplete). We can formalize this conjecture as follows:

Conjecture 2: (i) Any three-variable weight system with greatest common denominator

d >

µ+1
3 that corresponds to a non-degenerate quasihomogeneous polynomial has an

invertible representative.

(ii) Any four-variable weight system with greatest common denominator d ' µ

2 that corre-

sponds to a non-degenerate quasihomogeneous polynomial has an invertible representa-

tive.

(iii) A similar bound exists for larger numbers of variables.

More investigation should be performed to determine exactly when an invertible non-

degenerate quasihomogeneous polynomial is guaranteed to exist.

5.2 G

max of invertible not always the largest

We now move on to investigating part (ii) of conjecture 1. Even though part (i) turned out

not to be true, part (ii) would still be useful for the weight systems that do have invertible

representatives (which is the majority of them).

This second part again seems plausible, for the same reasons we thought part (i) might

prove true. Invertible polynomials have the minimal number of monomials for a non-

degenerate quasihomogeneous polynomial with a given number of variables. Therefore, it

should in a sense be “easier” to fix all of them, meaning there should be more elements of
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G

max. We will demonstrate with another example, using the same polynomial that we used

in example 4.

Example 7: Again let W1 = x

2
y

2+x

2
z+ y

4
z+ z

3 with weight system q = (13 ,
1
6 ,

1
3). Then

G

max

W1
=

⌦ �
0, 12 , 0

�
,

�
1
6 ,

5
6 ,

2
3

� ↵
, which has order 12.

We previously gave the sum of three Fermats, W2 = x

3 + y

6 + z

3, as an example of an

invertible with the same weight system as W1, so W1 matches the hypothesis of part (ii).

However, Gmax

W2
=

⌦ �
1
3 , 0, 0

�
,

�
0, 16 , 0

�
,

�
0, 0, 13

� ↵
, which has order 54, showing that Gmax

W1
⇥

G

max

W2
since 12 - 54.

Consider instead W3 = x

2
z + y

6 + z

3, which also has weight system q. This is a sum

of a two-variable chain and a Fermat. Using the formulas we found earlier, we find that

G

max

W3
=

⌦
g1, g2

↵
=

⌦ �
0, 16 , 0

�
,

�
1
6 , 0,

2
3

� ↵
, which has order 36. With these generators, we see

that

G

max

W1
=

⌧✓
0,

1

2
, 0

◆
,

✓
1

6
,

5

6
,

2

3

◆�

= h3g1, 5g1 + g2i

 G

max

W3

so this example agrees with part (ii).

Unfortunately, it turns out that there are also counterexamples to this conjecture, as the

next theorem demonstrates.

Theorem 6: The weight system q = (14 ,
1
4 ,

1
4) corresponds to the non-degenerate quasihomo-

geneous polynomial W = x

4+ y

3
x+ z

3
x+ y

2
z

2 which has Gmax

W

=
⌦ �

1
4 ,

11
12 ,

7
12

� ↵
. Gmax

W

is not

a subgroup of Gmax

W

0 for any invertible polynomial W 0 with this weight system.

Proof. We will not give the details of the calculations here to show that W is non-degenerate.

It is easy to see that it has the given weight system, and it is also easy to see that the given

generator g =
�
1
4 ,

11
12 ,

7
12

�
does indeed fix W , so it is in G

max

W

, even if it is not obvious that it
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generates Gmax

W

. This is su�cient for our present purpose.

The simplest way to see that no invertible polynomial with weight system q is fixed by

g is to examine all of the possibilities. There are only eighteen invertible non-degenerate

quasihomogeneous polynomials with weight system q. They are given in the following table,

along with their respective G

max.

Polynomial G

max

x

3
z + y

4 + z

4 h
�
0, 14 , 0

�
,

�
1
12 , 0,

3
4

�
i

x

3
z + y

4 + yz

3 h
�

1
36 ,

1
4 ,

11
12

�
i

x

3
z + xz

3 + y

4 h
�
0, 14 , 0

�
,

�
1
8 , 0,

5
8

�
i

x

3
z + xy

3 + z

4 h
�

1
12 ,

35
36 ,

3
4

�
i

x

3
z + xy

3 + yz

3 h
�

1
28 ,

9
28 ,

25
28

�
i

x

3
y + y

3
z + z

4 h
�

1
36 ,

11
12 ,

1
4

�
i

x

3
y + y

4 + z

4 h
�
0, 0, 14

�
,

�
1
12 ,

3
4 , 0

�
i

x

3
y + xz

3 + y

3
z h

�
1
28 ,

25
28 ,

9
28

�
i

x

3
y + xz

3 + y

4 h
�

1
12 ,

3
4 ,

35
36

�
i

x

3
y + xy

3 + z

4 h
�
0, 0, 14

�
,

�
1
8 ,

5
8 , 0

�
i

x

4 + y

3
z + z

4 h
�
1
4 , 0, 0

�
,

�
0, 1

12 ,
3
4

�
i

x

4 + y

3
z + yz

3 h
�
1
4 , 0, 0

�
,

�
0, 18 ,

5
8

�
i

x

4 + y

4 + z

4 h
�
0, 0, 14

�
,

�
0, 14 , 0

�
,

�
1
4 , 0, 0

�
i

x

4 + y

4 + yz

3 h
�
1
4 ,

3
4 ,

3
4

�
,

�
0, 34 ,

1
12

�
i

x

4 + xz

3 + y

3
z h

�
1
4 ,

1
36 ,

11
12

�
i

x

4 + xz

3 + y

4 h
�
0, 14 , 0

�
,

�
1
4 , 0,

11
12

�
i

x

4 + xy

3 + z

4 h
�
0, 0, 14

�
,

�
1
4 ,

11
12 , 0

�
i

x

4 + xy

3 + yz

3 h
�
1
4 ,

11
12 ,

1
36

�
i

A simple inspection of this table reveals that none of these groups could contain g. The

easiest way to see this is by examining the last two coordinates. None of the groups listed

could possibly have an element where both of the last two coordinates have order twelve in
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Q/Z. Since g does have this property, it is clearly not in any G

max listed, and therefore Gmax

W

cannot be a subgroup of any of them, as desired.

As with theorem 4, this counterexample can be easily generalized.

Theorem 7: For n � 3, there exists a non-invertible non-degenerate quasihomogeneous

polynomial with an invertible representative such that G

max of the non-invertible is not a

subgroup of Gmax of any invertible representative.

Proof. Consider the example from theorem 6, W = x

4 + y

3
x+ z

3
x+ y

2
z

2. We will use it to

construct the desired counterexample.

Define W

n

as follows: select integers ↵4, . . . ,↵n

> 1 such that the set {4,↵4, . . . ,↵n

} is

pairwise relatively prime. Let W

n

= W + x

↵4
4 + · · · + x

↵n
n

. Then G

max

Wn
= G

max

W

⇥ G

max

x

↵4
4

⇥

· · ·⇥G

max

x

↵n
n

.

Now let W 0 be an invertible polynomial with the same weights as W
n

, that is, (14 ,
1
4 ,

1
4 ,

1
↵4
,

. . . ,

1
↵n
). By lemma 10, none of the last n� 3 variables can point to any other variable. So

the only atomic type they can have is Fermat. Thus, W 0 = W1 + x

↵4
4 + · · · + x

↵n
n

where

W1 is an invertible polynomial with weight system (14 ,
1
4 ,

1
4). But theorem 6 tells us that

G

max

W

⇥ G

max

W1
, so G

max

Wn
⇥ G

max

W

0 . Since W

0 and n were arbitrary, this gives the desired

result.

Chapter 6. Conclusion

In this thesis we have proven some useful new facts about non-degenerate quasihomogeneous

polynomials, which are the most fundamental building blocks of FJRW theory. We have

shown that every invertible polynomial has a unique maximal group of diagonal symmetries,

which has already proven to be useful in unexpected ways (see [8]). We began investigating

a new way to classify non-degenerate quasihomogeneous polynomials and found promising

results in two variables. And we disproved two conjectures about the relationship between
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invertible and non-invertible polynomials. In doing so, we have possibly discovered a new

result about when a weight system is guaranteed to have an invertible representative.

Appendix A. Lists of Weight Systems With No Invertible

Representatives

Below are the first one hundred counterexamples to part (i) of conjecture 1 in three and four

variables, ordered by increasing d (the greatest common denominator of the weight system).

These lists are not typeset as fractions so that they may be easily copied and inserted into

computer code by future researchers.

Three variables Four variables

(1/7, 3/14, 2/7) (1/7, 2/7, 2/7, 3/7)

(1/16, 3/16, 5/16) (1/11, 2/11, 2/11, 5/11)

(3/19, 4/19, 5/19) (1/13, 2/13, 2/13, 3/13)

(1/11, 2/11, 5/22) (1/13, 3/13, 3/13, 4/13)

(2/23, 3/23, 7/23) (1/13, 3/13, 4/13, 6/13)

(3/23, 4/23, 5/23) (2/13, 3/13, 4/13, 5/13)

(1/25, 3/25, 8/25) (1/14, 1/7, 3/14, 2/7)

(1/13, 3/26, 2/13) (1/15, 2/15, 2/15, 7/15)

(3/28, 1/7, 2/7) (1/15, 2/15, 4/15, 7/15)

(1/29, 4/29, 7/29) (1/15, 1/5, 4/15, 2/5)

(3/29, 4/29, 5/29) (1/5, 4/15, 1/3, 2/5)

(1/15, 2/15, 7/30) (1/16, 1/8, 3/16, 5/16)

(1/31, 3/31, 5/31) (2/17, 2/17, 3/17, 7/17)

(2/31, 3/31, 7/31) (2/17, 3/17, 3/17, 5/17)

(3/31, 7/31, 8/31) (2/17, 3/17, 4/17, 5/17)

(1/16, 3/32, 5/16) (2/17, 3/17, 5/17, 6/17)
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Three variables Four variables

(1/16, 5/32, 3/16) (3/17, 4/17, 5/17, 7/17)

(1/11, 5/33, 2/11) (1/19, 2/19, 2/19, 9/19)

(1/34, 3/34, 11/34) (1/19, 2/19, 3/19, 8/19)

(3/34, 2/17, 5/17) (2/19, 3/19, 4/19, 5/19)

(2/17, 5/34, 3/17) (2/19, 4/19, 5/19, 7/19)

(2/17, 3/17, 7/34) (4/19, 5/19, 6/19, 7/19)

(3/35, 1/7, 2/7) (1/10, 1/4, 3/10, 9/20)

(1/36, 5/36, 7/36) (1/21, 2/21, 5/21, 8/21)

(1/19, 3/38, 2/19) (1/21, 1/7, 4/21, 10/21)

(1/19, 2/19, 9/38) (1/21, 4/21, 4/21, 5/21)

(3/38, 5/38, 7/38) (1/21, 4/21, 5/21, 8/21)

(5/38, 3/19, 4/19) (1/21, 4/21, 1/3, 10/21)

(1/13, 4/39, 3/13) (2/21, 2/21, 1/7, 3/7)

(4/39, 5/39, 7/39) (2/21, 1/7, 4/21, 3/7)

(1/41, 5/41, 8/41) (2/21, 1/7, 2/7, 3/7)

(2/41, 3/41, 13/41) (1/7, 4/21, 2/7, 3/7)

(5/41, 6/41, 7/41) (1/22, 3/22, 3/22, 7/22)

(1/21, 2/21, 5/42) (1/22, 3/22, 5/22, 7/22)

(1/21, 5/42, 4/21) (1/22, 2/11, 3/11, 9/22)

(2/21, 1/7, 3/14) (1/11, 3/22, 2/11, 5/22)

(1/43, 3/43, 14/43) (1/11, 2/11, 5/22, 9/22)

(3/43, 4/43, 5/43) (1/23, 2/23, 4/23, 11/23)

(3/43, 10/43, 11/43) (1/23, 2/23, 6/23, 11/23)

(1/22, 3/44, 7/44) (1/23, 4/23, 6/23, 11/23)

(1/22, 3/22, 7/44) (2/23, 3/23, 4/23, 5/23)

(1/11, 5/44, 2/11) (2/23, 3/23, 4/23, 7/23)
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Three variables Four variables

(1/45, 4/45, 11/45) (2/23, 3/23, 5/23, 6/23)

(1/15, 2/15, 7/45) (2/23, 3/23, 7/23, 10/23)

(1/46, 3/46, 5/46) (1/25, 3/25, 1/5, 8/25)

(1/46, 5/46, 9/46) (1/25, 3/25, 8/25, 11/25)

(1/23, 2/23, 11/46) (1/25, 1/5, 6/25, 8/25)

(3/46, 2/23, 7/23) (1/25, 1/5, 8/25, 12/25)

(2/23, 5/46, 3/23) (2/25, 3/25, 7/25, 11/25)

(2/23, 3/23, 7/46) (2/25, 4/25, 7/25, 9/25)

(2/47, 5/47, 9/47) (3/25, 4/25, 1/5, 2/5)

(3/47, 4/47, 11/47) (3/25, 4/25, 7/25, 9/25)

(3/47, 5/47, 7/47) (4/25, 1/5, 7/25, 2/5)

(4/47, 5/47, 7/47) (4/25, 6/25, 7/25, 9/25)

(5/47, 6/47, 7/47) (1/13, 3/26, 3/26, 4/13)

(5/47, 7/47, 8/47) (1/13, 3/26, 3/13, 4/13)

(1/16, 5/48, 3/16) (1/13, 3/26, 4/13, 9/26)

(1/49, 3/49, 8/49) (1/13, 2/13, 5/26, 3/13)

(3/49, 4/49, 5/49) (1/13, 3/13, 4/13, 9/26)

(3/49, 1/7, 2/7) (1/27, 1/9, 2/9, 8/27)

(4/49, 5/49, 11/49) (2/27, 2/27, 5/27, 11/27)

(1/25, 3/50, 2/25) (2/27, 4/27, 5/27, 11/27)

(1/25, 3/50, 8/25) (2/27, 5/27, 8/27, 11/27)

(5/51, 2/17, 3/17) (1/9, 2/9, 7/27, 8/27)

(2/17, 7/51, 3/17) (1/28, 1/7, 3/14, 2/7)

(1/52, 3/52, 17/52) (1/14, 3/28, 1/7, 2/7)

(3/52, 1/13, 2/13) (3/28, 1/7, 5/28, 2/7)

(3/52, 5/52, 7/52) (1/7, 5/28, 3/14, 2/7)
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Three variables Four variables

(3/53, 4/53, 5/53) (1/7, 3/14, 1/4, 2/7)

(3/53, 5/53, 16/53) (1/7, 3/14, 2/7, 11/28)

(5/53, 8/53, 9/53) (1/29, 3/29, 4/29, 14/29)

(1/27, 2/27, 13/54) (1/29, 4/29, 7/29, 11/29)

(2/27, 5/27, 11/54) (2/29, 2/29, 3/29, 13/29)

(2/55, 3/55, 13/55) (2/29, 2/29, 5/29, 9/29)

(3/55, 4/55, 13/55) (2/29, 3/29, 4/29, 13/29)

(3/55, 4/55, 17/55) (2/29, 3/29, 8/29, 13/29)

(3/55, 13/55, 14/55) (2/29, 5/29, 6/29, 9/29)

(3/56, 1/7, 2/7) (2/29, 5/29, 8/29, 9/29)

(1/57, 4/57, 7/57) (2/29, 5/29, 9/29, 12/29)

(2/57, 5/57, 11/57) (3/29, 7/29, 8/29, 13/29)

(5/57, 3/19, 4/19) (1/15, 2/15, 1/6, 7/30)

(1/29, 2/29, 7/58) (1/15, 2/15, 7/30, 13/30)

(1/29, 7/58, 4/29) (1/31, 2/31, 8/31, 15/31)

(3/58, 4/29, 5/29) (1/31, 3/31, 5/31, 14/31)

(2/29, 5/58, 9/29) (1/31, 4/31, 6/31, 15/31)

(2/29, 3/29, 13/58) (1/31, 5/31, 6/31, 10/31)

(2/59, 3/59, 19/59) (1/31, 6/31, 10/31, 15/31)

(2/59, 5/59, 9/59) (2/31, 3/31, 7/31, 8/31)

(3/59, 7/59, 8/59) (2/31, 4/31, 9/31, 11/31)

(4/59, 5/59, 11/59) (2/31, 5/31, 6/31, 13/31)

(1/15, 7/60, 2/15) (3/31, 4/31, 4/31, 7/31)

(1/61, 3/61, 20/61) (3/31, 4/31, 6/31, 7/31)

(1/61, 4/61, 15/61) (3/31, 4/31, 7/31, 8/31)

(1/61, 5/61, 12/61) (3/31, 4/31, 7/31, 9/31)
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Three variables Four variables

(1/31, 3/62, 2/31) (3/31, 4/31, 7/31, 12/31)

(1/31, 3/62, 5/31) (4/31, 5/31, 9/31, 11/31)

(1/31, 2/31, 5/62) (4/31, 9/31, 10/31, 11/31)

(1/31, 2/31, 15/62) (1/16, 5/32, 3/16, 9/32)

(1/31, 5/62, 3/31) (1/16, 5/32, 3/16, 13/32)

(3/31, 7/62, 4/31) (1/16, 3/16, 5/16, 11/32)
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