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abstract

Investment-Consumption with a Randomly Terminating Income

James B. Taylor, Jr.
Department of Mathematics, BYU

Doctor of Philosophy

We develop a stochastic control model for an investor’s optimal investment and consump-
tion over an uncertain planning horizon when the investor is endowed with a defaultable
income stream. The distributions of the random time of default and the random terminal
time are prescribed by deterministic hazard rates, and the investor makes investments in a
standard financial market with a bond and a stock, modeled by geometric Brownian motion.
In addition, the investor purchases insurance against both default and the terminal date,
the default insurance serving as a proxy for the investor’s disutility for default. We approx-
imate the original continuous-time problem with a sequence of discrete-time Markov chain
control problems by applying dynamic programming and the Markov chain approximation.
We demonstrate how the problem can be solved numerically through a logarithmic trans-
formation of the investor’s wealth variable, even when the utilities are CRRA with large
risk aversion parameter. The model and computational approach are applied to a retiree’s
optimal annuity decision in the presence of default risk, and we demonstrate that default
risk can lead a retiree to annuitize significantly smaller proportions of savings, even when a
portion of the defaulted annuity can be recovered, than is traditionally considered optimal by
the retirement-finance community. Hence, we show that credit risk may play an important
role in resolving the annuity puzzle.

Keywords: annuity puzzle, random endowment
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1. Introduction

If people do not believe that mathematics is simple, it is only because they do not

realize how complicated life is.

– John Von Neumann

Life annuities are important financial instruments that help retirees hedge against various

risks they face during retirement, including especially longevity risk, or the risk of outliving

savings and other accumulated assets. The academic literature on life annuities has cata-

logued the benefits that annuities offer to retirees over other investment opportunities, and

indeed, several authors, including [21] and [3], have suggested that retirees might optimally

allocate their savings for the retirement period by placing much if not all of their savings

into annuities. Nevertheless, the relatively small historical and current size of the annuity

market suggests that retirees do not annuitize, for whatever reason, near levels considered

optimal by researchers. This discrepancy between optimal “rational” levels of annuitization,

on the one hand and realized levels of annuitization, on the other hand, is often referred to

in academic financial economics as the annuity puzzle.

Many authors have studied the annuity puzzle and have proposed resolutions. For in-

stance, some authors, including [10], suggest that a retiree’s desire to leave a bequest at

death could significantly reduce the optimal level of annuitization since no annuitized wealth

can be recuperated by heirs at the time of death. Some authors, including [3], have noted

that the possibility of sudden, sharp declines in health could greatly reduce the optimal level

of annuitization. Other authors have offered other additional factors that could drive retirees

away from full annuitization. (See [1] for a more comprehensive list). Certainly, many of the

proposed resolutions do impact the annuity decision to some degree and perhaps combine

in effect. It is noteworthy that many of the proposed explanations can be categorized as

aversions to one of two types of risk: liquidity risk - the inability to access capital when it

is needed — and credit or counterparty risk — the risk that the counterparty in a contract,
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such as an insurance company offering an annuity, will default on their financial obligations.

Nevertheless, in spite of numerous attempted resolutions of the annuity puzzle, there is a

gap in the literature for quantitative demonstrations of how aversion to liquidity risk, credit

risk, or any other risk can induce rational agents to annuitize at the level observed in real

markets.

In this dissertation, we develop a stochastic control model and more specifically, an

optimal investment-consumption model in order to study the effect of default risk on an

investor’s optimal asset allocation given that one of the assets provides a constant income

stream until a random date but may default. The model admits several interesting financial

and economic applications, though we focus primarily on its application to the optimal

annuity decision in the presence of default risk.

An overview of the model, applied to the annuity problem for concreteness, is as follows.

Let (Ω,F ,F,P) be a filtered probability space with a filtration F = (Ft) that satisfies the

usual hypothesis and is rich enough to support a Brownian motion, W = (Wt), a random

time τM , corresponding to a retiree’s time of death, and a random time τD, corresponding

to the time of default of the annuity. The Brownian motion and random times are assumed

to be mutually independent. The retiree has some savings, x, at retirement a portion of

which can be used to purchase an annuity. The retiree then receives a continuous stream of

income from the annuity at constant rate α until the earlier of the investor’s uncertain time

of death and the annuity’s random time of default. There may be some guaranty program

so that upon default, the investor only loses that portion of the annuity not ensured by the

guaranty. Throughout retirement, the retiree must select a consumption rate, c ≥ 0, and

divide any capital between a risk-free asset S0 and a risky asset S1. The capital invested in

S0 is denoted π0, and the capital invested in S1 is denoted π. The retiree may borrow against

the future income stream given that life insurance pM is purchased against her uncertain

time of death and default insurance pD called a credit default swap, is purchased against

the uncertain time of default, in part to guarantee any repayment. The debt may never
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exceed the expected remaining income from the endowment. The decision variables, return

on investments, and expected remaining income combine to define the investor’s total wealth

process X which is constrained below by the discounted future income before default and

constrained below by any remaining, non-defaultable income after default.

The sudden change in the dynamics of the total wealth as well as the jump in the

borrowing limit at the time of default necessitates the construction of a coupled pair of

optimal control problems. The post-default cost functional J2 is defined as the retiree’s

expected utility for consumption until death and utility for bequest at death. The post-

default optimization problem is then to maximize J2 over the decision variables:

Problem (D). Given the retiree’s total wealth x at the time of default t = τD maximize the

retiree’s expected utility for bequest and consumption over the retiree’s remaining lifetime,

D(t, x) = sup
(c,π,pM )

J2(t, x, c, π, pM).

Additionally, determine the optimal policies, (c∗, π∗, p∗M), if they exist.

Importantly, D is itself a utility function, the post-default utility.

The pre-default cost functional J1 consists of the retiree’s expected utility for consumption

until the time of default, the retiree’s utility for bequest if the retiree dies before default

occurs, and the retiree’s post-default utility for consumption and bequest if default occurs

during the retiree’s lifetime. The pre-default optimization problem, and the main problem

of this dissertation, is to optimize the pre-default cost functional for a given annuity rate α

over the decision variables:

Problem (V). Given a fixed initial wealth x and endowment income rate α, maximize the

pre-default cost functional, J1, over the admissible decision variables,

V (x;α) = sup
(c,π,pM ,pD)

J1(x, c, π, pM , pD). (1.1)

Additionally, determine the optimal policies, (c∗, π∗, p∗M , p
∗
D), if they exist.
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The investment-consumption model outlined above belongs to the class of investment

consumption models that feature a random endowment. An early example of such a model

is [14], Richard’s investigation of optimal life insurance purchasing. More recent studies

include [4], [7], and [19]. In particular, Davis and Vellekoop [19], citing a lack of explicit

results in the random endowment literature, seek a closed-form solution for the optimal con-

trol policies in a simple optimal consumption model with a randomly terminating income.

However, the duality techniques employed by Davis and Vellekoop produce a duality gap

and therefore fail to provide an explict solution. Furthermore, they note difficulty in obtain-

ing even numerical approximations to the solution when working with utility functions that

become singular near subsistence levels of consumption and wealth, such as the constant

relative risk-aversion (CRRA) utility functions with negative risk-aversion parameter. Un-

fortunately, in the expected-utility paradigm, such utility functions are the most commonly

used by researchers to model the risk-averse investment behavior encountered in real mar-

kets. One of the important contributions of this dissertation is the introduction of techniques

that overcome many of the difficulties in working with a randomly terminating income and

singular utility functions.

Our investment-consumption model shares many features with Richard’s life insurance

model. In his original paper, Richard obtains a closed-formed solution for the value function

and optimal policies using the dynamic programming principle and solving a non-linear par-

tial differential equation. Essential to Richard’s solution was an unconstrained set of decision

variables. For instance, the financial agent could freely buy and sell life insurance, which

does not reflect how a small investor can participate in the insurance market. Pliska and Ye

[13] revisited Richard’s model, imposing constraints more in line with real markets. Pliska

and Ye employed the Markov chain approximation (MCA) in order to solve the constrained

version of Richard’s model numerically. MCA is a powerful tool for solving control problems

that produces a sequence of discrete-time problems which can be solved numerically and

whose solutions converge to the solution of the original, continuous-time control problem.
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We similarly employ MCA to obtain a sequence of discrete-time problems that approximate

the solutions to the continuous-time control problems.

The second important contribution of this dissertation is in application to a retiree’s

preference for annuities. Once V (x;α) is known for a given level of income rate α, it is

straightforward to optimize value function V over income rates and thus determine the

optimal allocation of wealth into the risky endowment. In particular, let A(α) be the price

of a life annuity as a function of the annuity income rate α. Then the optimal annuity

problem is:

Problem (A). Given a retiree with total savings x at retirement, find the retiree’s optimal

level of annuitization, α∗,

α∗ = arg max
α

{V (x;α) | 0 ≤ A(α) ≤ x} (1.2)

Our model permits the division of the purchased annuity into a defaultable portion and a

non-defaultable portion. This is significant because in practice, a retiree does not necessarily

lose the entire future annuity income in the event of a default. First, state authorities

assume control of the insolvent company’s assets, and a retiree can recuperate losses during

liquidation of the assets. Second, every state has a limited guaranty program that replaces

the retiree’s annuity income, either directly or through purchase of a new annuity on the

retiree’s behalf. Our model allows us to treat the guaranteed annuity as non-defaultable

and only that portion of the annuity beyond the guaranty limits as defaultable. As a base

case, we suppose the full annuity is defaultable and demonstrate that risk of default in whole

significantly reduces a retiree’s appetite for life annuities. While the base case may seem

unrealistic, in fact, regulations limit the ability of annuity sellers to advertise the existence of

state guaranty programs so that indeed, many retirees may not account for annuity guaranty

in their decision-making.

In addition to the case of total default, we also analyze the retiree’s optimal annuity

decision as the relative portions of defaultable and non-defaultable annuity are adjusted.
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We find that the optimal annuity level moves to full annuitization as the guaranty program

covers an increasingly greater percentage of the annuity. This suggests that there may be

benefits to social welfare in making retirees aware of state guaranty programs as it could

provide retirees greater confidence in annualizing savings and therefore, more effectively

funding retirement.

The thesis proceeds as follows. In Chapter 2, we review the mathematical theory used

to develop and solve the investment and consumption model, including basic theory of dif-

fusions, basic stochastic control theory, and a short introduction to the Markov chain ap-

proximation. We illustrate the theory by providing a somewhat careful review of Richard’s

model including its solution through MCA. In Chapter 3, we develop the new investment

consumption model, which incorporates a randomly terminating income over an uncertain

time horizon. Also in Chapter 3 we apply the Markov chain approximation to obtain a

sequence of discrete-time problems whose solutions converge to the solution of problems (D)

and (V). Chapter 4 presents the application of our investment consumption model to prob-

lem (A). Finally, in Chapter 5, we summarize our results and discuss future research related

to our model, including three very interesting and important problems.
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2. Mathematical Background

The one thing probabilists can do which analysts can’t is stop — and they never

forgive us for it.

– Sid Port, quoted in [15]

In this chapter, we review the basic mathematical notions and theory on which we will

heavily rely in subsequent chapters. We begin by reviewing fundamentals of diffusion pro-

cesses that are relevant to stochastic control. This is followed by a brief introduction to

stochastic control problems and a survey of the necessary theory. Third, we provide a

slightly more thorough introduction to the main technique used in solving the stochastic

control models under consideration in subsequent chapters, the Markov Chain Approxima-

tion. We conclude the chapter by highlighting the use of the basic theory to solve a classic

stochastic control problem that is foundational to our model. Note that we will not provide

the most general version that can be had for each theorem but will specialize to the relevant

cases. For example, we will only require one-dimensional Brownian motion, so all theorems

are adjusted accordingly.

2.1 Diffusions

Underpinning the theory of stochastic control is the theory of probability and stochastic

processes and in particular, the theory of diffusions. Surely, the stochastic process most

widely employed in stochastic modeling is Brownian motion, a continuous stochastic process

with independent, stationary increments that are normally distributed. Standard references

for the construction of Brownian motion and its basic properties, including the construction

of the Ito integral are [8, 15, 16], from which much of the presentation in this section is

drawn.
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2.1.1 Stochastic Differential Equations. Stochastic differential equations (SDE) are

ordinary differential equations plus a random noise term, prescribed mathematically by an Ito

integral. Let (Ω,F ,F,P) be a fixed, filtered probability space where the filtration F = (Ft)

satisfies the usual hypotheses,

(i) Ft = ∩s>tFs.

(ii) F0 contains the P-null sets.

The first condition means, intuitively, that there are no jumps in the available information.

The second condition means that it is common knowledge which events are certain not to

happen, right from the beginning.

Remark. The usual hypotheses are a standard assumption for filtrations in stochastic control

theory. Filtrations satisfying the usual hypotheses have several nice properties. For instance,

if F satisfies the usual hypotheses, τ is an F-stopping time if and only if τ is an F-optional

time. These kinds of results are helpful when controlling a stopped process. In the model

we develop below, random times play an important role, and the usual hypotheses will be

very useful.

Let b : [0,∞)× R× Ω→ R and σ : [0,∞)× R× Ω→ R. We require that

(i) b(·, ·, ω), σ(·, ·, ω) are [0, T ]× R-Borel functions, almost surely-ω;

(ii) b(·, x, ·), σ(·, x, ·) are F-progressively measurable, for all x ∈ R.

We refer to b and σ as the drift and volatility, respectively.

Remark. In the classic theory of diffusions, stochastic differential equations are defined by de-

terministic drift and volatility functions, in which case it is sufficient that the drift and volatil-

ity are adapted to F. However, the stochastic differential equations of interest in stochastic

control define controlled diffusions, for which b and σ explicitly depend on ω through the

control parameter. In the case where the drift and volatility depend explicitly on ω, it is

essential that we assume they are F-progressively measurable. A progressively measurable
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process u : [0, T ] × Ω → R is a process such that for each t ∈ [0, T ], u is B([0, t]) × Ft-

measurable, which is strictly stronger than being adapted. Progressive measurability is

important for two reasons. First, progressive measurability is a technical condition so that

expectations of integrals are well-defined and can be evaluated by Fubini’s Theorem. Equally

important for the models developed below, though, is that progressive measurability ensures

that stopped processes are measurable, which will be important in the stochastic control

models we develop below.

The SDE for the drift and volatility pair (b, σ) suppressing ω-dependence for simplicity,

is the integral equation

X(t) = x+

∫ t

0

b(s,X(s)) ds+

∫ t

0

σ(s,X(s))dW (s), (2.1)

though it is often written formally in differential form as


dX(t) = b(t,X(t)) dt+ σ(t,X(t))dW (t),

X(0) = x.

Definition 2.1 (Strong Solution of SDE). An F-progressively measurable process X is a

strong solution of the SDE (2.1) if

(i) P[X(0) = x] = 1,

(ii) P
[∫ t

0
|b(s,X(s))|+ σ2(s,X(s)) ds <∞

]
= 1, for all t ∈ [0,∞), and

(iii) (2.1) holds for all t ∈ [0,∞) , almost surely.

The next theorem describes the conditions under which the existence and uniqueness of

a strong solution to (2.1) is guaranteed.

Theorem 2.2 (Existence and Uniqueness). Suppose that b(t, ·), σ(t, ·) are globally Lipschitz-

9



continuous in x for all t, ω, and satisfy the growth condition

|b(t, x, ω)|+ |σ(t, xω)| ≤ g(t, ω) +K|x|

where K is a constant and g is a progressively measurable process such that

E
[∫ t

0

g2(s, ω) ds

]
<∞.

Then there exists a continuous, F-progressively measurable process X that is a strong solution

of (2.1).

Solutions to SDEs are called diffusions, or in our case, controlled diffusions. We enforce

the hypotheses of Theorem 2.1 for the SDEs defined in our control models below.

2.1.2 Properties of Diffusions. One of the most useful properties of a diffusion is that

it is a Markov process. Intuitively, the Markov property means that for any time t, the path

of the diffusion X up until t does not influence the expected future path of X beyond the

position of X at t. Mathematically, a Markov process is defined as follows

Definition 2.3 (Markov Process). A Markov process is an adapted process X on (Ω,F)

together with a family of probability measures {P x}x∈R on (Ω,F) such that

(i) P x[X(0) = x] = 1 ∀ x ∈ R;

(ii) P x[X(t+ s) ∈ B | Fs] = P x[X(t+ s) ∈ B | X(s)], ∀ x ∈ R, t, s ≥ 0, B ∈ B(R);

(iii) P x[X(t+ s) ∈ B | X(s) = y] = P y[X(t) ∈ B], ∀ x ∈ R, t, s ≥ 0, B ∈ B(R).

In fact, the progressively-measurable diffusions that we will encounter satisfy an even

more impressive “memoryless” property known as the strong Markov property. The strong

Markov property is similar to the Markov property except that we may even condition at

stopping times.
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A second essential property of diffusions is that they possess almost surely continuous

sample paths, and a third is that smooth functions of diffusions satisfy a stochastic funda-

mental theorem of calculus known as Ito’s formula (see [8], Theorem 5.3.3) :

Theorem 2.4 (Ito’s Formula for a Diffusion). Let V : [0,∞) × R → R be a continuously

differentiable function, and let X be a solution to (2.1). Then for every t ≥ 0, V satisfies

V (t,X(t)) = V (0, X(0)) +

∫ t

0

Vt(s,X(s)) ds+

∫ t

0

Vx(s,X(s))dX(s)

+

∫ t

0

Vxx(s,X(s)) d〈X(s)〉

= V (0, X(0)) +

∫ t

0

(Vt(s,X(s)) +AV (s,X(s)) ds

+

∫ t

0

Vx(s,X(s))dW (s), (2.2)

where 〈·〉 is the quadratic variation process, and the differential operator A is

AV (t, x) = Vx(t, x)b(x) +
1

2
Vxx(t, x)σ(x). (2.3)

Using Ito’s formula, the instantaneous mean rate of change of a smooth function of a

diffusion can be computed (see [8], Problem 5.1.2).

Theorem 2.5 (Infinitesimal Generator). Let X be a solution to the SDE (2.1), where b and

σ are bounded and continuous functions. Then for each f ∈ C2(R),

lim
h↓0

Et,x
[
V (t+ h,X(t+ h))− V (t, x)

h

]
= AV (x), ∀ x ∈ R

Applying Theorem (2.5) to the functions x 7→ x and x 7→ x2, we obtain the local mean

and local variance of a diffusion,

Ex[X(t)− x] = b(x)t+ o(t), (2.4)

Ex[(X(t)− x)2] = σ2(x)t+ o(t), (2.5)

11



respectively.

Controlled diffusions play a central role in the theory of stochastic control theory serving

as the dynamical system to be controlled in some optimal manner. The aforementioned

properties of diffusions lead to useful techniques for solving control problems such as dynamic

programming and the Markov chain approximation, which are discussed below.

2.2 Stochastic Control Theory

As researchers have recognized the importance of modeling variables that cannot be ac-

counted for in deterministic ways, stochastic modeling has risen to prominence in varied

applications, especially in financial and economic applications. Stochastic control theory

combines classic control theory with the theory of diffusions. Throughout this section, we

assume the same probability framework introduced in the previous section.

Stochastic control models consist of three basic ingredients:

(i) a set of control variables, called “admissible” control (decision) variables,

(ii) a controlled diffusion, and

(iii) a cost functional, which provides a method for evaluating decision strategies by speci-

fying a cost or reward based on the chosen decision and evolution of the diffusion.

The fundamental goal of a stochastic control problem is to optimize, in our case, maximize,

the cost functional over the set of admissible controls, over some time interval called the plan-

ning horizon. We will assume in the sequel that the drift and volatility functions introduced

above depend on ω only through a control variable u,

b(t, x, ω) = b̃(t, x, u(t, ω))

σ(t, x, ω) = σ̃(t, x, u(t, ω)).

12



2.2.1 Admissible Controls. The first important component of any stochastic control

model is the set of control, or decision, variables. Intuitively, admissible controls must

• only react to information as it becomes available;

• permit a well-defined, controlled diffusion;

• satisfy any explicit as well as implicit constraints; and

• lead to a well-defined cost functional.

The intuitive properties above give rise to the definition of the set of admissible controls:

Definition 2.6 (Admissible Controls). The set of admissible controls, U , is the set of F-

progressively measurable processes, u : [0, T ]× Ω→ Rd, such that

(i) the controlled SDE admits a unique solution, in which case it is called a feasible control;

(ii) u(t) ∈ V ⊆ Rd and X(t) ∈ A ⊆ R, where V and A are the constraint sets; and

(iii) the cost functional is well-defined (see Definition 2.7 below.)

That u maps into Rd is just to accommodate multiple, real-valued decision variables.

2.2.2 State Process and Cost Functional. The solution to the SDE comprises the

second important component of a stochastic control model, which is the state variable,

modeled as a controlled diffusion. The controls and state process give rise to the final

important component of a stochastic control problem, the cost functional and associated

value function. A cost functional, J : [0,∞)×R×U → R, quantifies a cost or reward given

the time at which the decision is made, the state of the controlled process, and the chosen

control. A standard form for the cost functional, and the only one we are interested in, is

defined by the expectation,

J(x, u) = Ex
[∫ T

0

U(s, u(s)) ds+B(T,X(T ))

]
, (2.6)
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where U : [0, T ]× R× Rd → R, and B : [0, T ]× R → R. In the definition of the admissible

controls, we required that the cost-functional is well defined. We can now supply meaning

to that requirement.

Definition 2.7 (Well-defined Cost Functional). The cost functional J is well-defined for a

feasible control u if ∫ T

0

U(s, u(s)) ds+B(T,X(T )) ∈ L1(Ω,F) (2.7)

Associated with the cost functional is the value function, V : R → R, which gives the

optimized cost functional as a function of the starting point for the diffusion,

V (x) = sup
u∈U

J(x, u). (2.8)

Having defined the basic ingredients of a control problem, we now state the fundamental

objective for the general formulation of stochastic control given above:

Problem (P). Given a set of admissible controls, U , a controlled diffusion, X, and a cost

functional J, determine a control policy u∗ ∈ U for which

V (x) = J(x, u∗).

If it exists, the control u∗ is a called an optimal control policy.

Several useful techniques have been developed to help determine optimal control policies.

Among these are is dynamic programming approach, discussed next, and this is followed by

the Markov chain approximation, which makes use of dynamic programming techniques.

2.2.3 Dynamic Programming and and the HJB Equations. One of the important

tools for solving optimal control problems is the dynamic programming principle (DPP),

also known as Bellman’s principle of optimality. Intuitively, because the trajectory of a

diffusion depends on its present state but not the path taken to arrive at its present state,
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the optimization problem is equivalent to optimally controlling the diffusion over some time

interval, from t to t′, say, observing the state of the diffusion at t′, and then, optimally

controlling the diffusion over the remaining time horizon.

A precise mathematical statement of the DPP requires an extension of the framework

for control problems discussed above in order to accommodate conditioning on the state

variable at various times, X(t) = x, and then optimizing over the remaining interval [t, T ]. In

particular, time dependence must be incorporated in the definition of the cost functional and

value function, which can be done in a very natural way. Unfortunately, the entire underlying

probability framework must be generalized to allow for changing (conditional) measures,

Pt,X(t), as X(t) evolves. That is, the probability measure under which the expectation in

the cost functional (2.6) is computed constantly changes with the evolution of the diffusion,

necessitating a weak formulation of the control problem under a family of probability spaces

indexed by time and space. However, dynamic programming techniques will only play a

formal role in solving the main control models below, and accordingly, we omit technical

details pertaining to the weak formulation of the generic control problem, (P). We refer the

interested reader to [24] for additional information.

We define the time dependent cost functional and value function by

J(t, x, u) = Et,x
[∫ T

t

U(s, u(s)) ds+B(T,X(T ))

]
,

V (t, x) = sup
u∈U

J(t, x, u). (2.9)

Theorem 2.8 (Dynamic Programming Principle). For any x ∈ R and 0 ≤ t ≤ t′ ≤ T,

V (t, x) = sup
u∈U

Et,x
[∫ t′

t

U(s, u(s)) ds+ V (t′, X(t′))

]
. (2.10)

The DPP is useful because it permits the study of the average change in the value function

over short time intervals. Suppose that the value function V is sufficiently smooth. Invoking

Ito’s Lemma and taking the time intervals to zero, the DPP leads to the so-called Hamilton-
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Jacobi-Bellman (HJB) equation, which is a non-linear PDE satisfied by the value function,

V. For instance, the HJB equation and terminal condition for the value function V defined

above are
Vt(t, x) + sup

u∈U

{
b(t, x, u(t))Vx(t, x) + 1

2
σ2(t, x, u(t))Vxx(t, x) + U(t, x)

}
= 0

V (T, x) = B(T, x).

In addition to providing a means for determining the value function V , the HJB equation

helps determine the optimal control policies.

Remark. In stochastic control, a solution to the HJB equation provides a candidate for the

value function and control policies. To rigorously establish that the candidates are indeed

optimal requires a so-called verification theorem. In the application of dynamic programming

in later chapters, we do not solve the HJB equation explicitly but instead use it to guide the

construction of an approximating sequence of problems, as discussed in the next section.

2.3 Markov Chain Approximation

In this section, we present the Markov chain approximation (MCA), which is an approxi-

mation technique that can be used to solve a fairly large class of stochastic control prob-

lems. Essentially, MCA works by approximating the continuous-time controlled diffusion

of a stochastic control problem with a sequence of discrete-time Markov chains (DTMC)

that are locally consistent with the continuous-time diffusion, i.e., possess similar statis-

tical characteristics over short time intervals to those of the diffusion. Associated with

the sequence of DTMC is a sequence of discrete-time control problems that are essentially

discrete-time analogues of the continuous-time control problem. Under certain conditions,

it can be shown that the sequence of discrete-time value functions and the corresponding

optimal controls converge to the value function and optimal controls of the continuous-time

problem. In practice, the appropriate sequence of DTMC can often be determined by ex-
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ploiting the Hamilton-Jacobi-Bellman (HJB) equations introduced in the previous section.

The presentation in this section draws heavily from [9].

2.3.1 Local Consistency. Let X = {X(t)} be a real-valued, continuous-time diffusion,

and let ξδ,h = {ξδ,hn }∞n=1 be a discrete-time Markov chain (DTMC) on a state space Sh ∈ R.

The parameters δ and h determine the size of the discrete-time steps, ∆tδ,h, such that

sup ∆tδ,h → 0 as δ, h → 0 but inf ∆tδ,h > 0 for each δ, h > 0. We define the finite difference

operator ∆ξδ,hn = ξδ,hn+1− ξδ,hn . We denote by Ex,nδ,h the expectation operator with respect to the

transition probabilities ph conditioned on {ξδ,hn = x, uδ,hn }.

Definition 2.9 (Locally Consistent DTMC). A DTMC ξδ,h is locally consistent with a

diffusion X having drift b and volatility σ if

(i)

Ex,nδ,h [∆ξδ,hn ] = b(x, uδ,hn )∆tδ,h + o(∆tδ,h),

(ii)

Ex,nδ,h
[(

∆ξδ,hn − Ex,nδ,h [∆ξδ,hn ]
)2]

= σ2(x, uδ,hn )∆tδ,h + o(∆tδ,h),

(iii) and

lim
δ,h↓0

sup
n
{|ξδ,hn+1 − ξδ,hn |} = 0.

Intuitively, local consistency means that over short time intervals, the mean and volatility

of the DTMC are the same as that of the diffusion.

For the locally consistent DTMC ξδ,h, we construct a discrete-time control problem that

approximates the continuous-time control problem.

2.3.2 Convergence. The key mathematical theory justifying MCA is the proof that

a DTMC, or at least an appropriate continuous-time interpolation of a DTMC, converges

weakly to the diffusion with which it is locally consistent, and that therefore the value func-

tion and optimal control policies associated with the discrete-time control problem converge
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to the continuous-time value function and optimal control policies. However, the main theo-

rems pertaining to local consistency and convergence of MCA will not apply directly to the

models we develop below. Therefore, we put off a more thorough discussion of convergence

until Chapter 5.

In application, how to choose a locally consistent DTMC is not obvious a priori but can

be determined by a careful study of the dynamics of the diffusion. An effective technique

for exploiting the dynamics of the diffusion to construct the locally consistent DTMC is the

finite difference method, discussed next.

2.3.3 Finite Difference Method. In a nutshell, the finite difference method converts

the continuous-time dynamics of the continuous-time control problem as encoded in the

Hamilton-Jacobi-Bellman (HJB) equation into discrete-time dynamics by discretizing the

derivatives in the non-linear PDE. The discretized HJB is naturally associated with a

discrete-time control problem, and the transition probabilities of the discrete-time Markov

chain can be recovered from the finite difference equation. The resulting DTMC is naturally

locally consistent with the controlled diffusion of the continuous-time problem. Below, we

provide a simple example of the finite difference method in the case of the general stochastic

control problem of the form (2.6).

Let X be a controlled diffusion satisfying the SDE

dX(t) = b(t, u(t)) dt+ σ(t, u(t)) dW (t),

and let V be the value function of a stochastic control problem, given by

V (t, x) = sup
u∈U

Et,x
[∫ T

t

U(t, u(s)) ds+B(T,X(T ))

]
.

As stated in the previous section, the dynamic programming principle and Ito’s lemma give
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rise to the HJB equation for V,

0 = sup
u∈U

{
Vt(t, x) + b(t, x, u(t))Vx(t, x) +

1

2
σ2(t, x, u(t))Vxx(t, x) + U(t, u(t))

}
. (2.11)

Let δ, h > 0 be the discrete-time step size in time and space, respectively. The HJB equation

is then discretized as follows:

Vt(t, x) =
V δ,h(t+ δ, x)− V δ,h(t, x)

δ
+ o(δ), (2.12)

b+(t, x)Vx(t, x) = b+(t, x)
V δ,h(t+ δ, x+ h)− V δ,hh(t+ δ, x)

h
+ o(h), (2.13)

b−(t, x)Vx(t, x) = b−(t, x)
V δ,h(t+ δ, x)− V δ,h(t+ δ, x− h)

h
+ o(h), (2.14)

Vxx(t, x) =
V δ,h(t+ δ, x) + V δ,h(t, x− h)− 2V δ,h(t, x)

h2
+ o(h2), (2.15)

(2.16)

where b+ = max{b, 0}, b− = max{−b, 0}, and b = b+ − b−.

Remark. Vx is discretized differently based on its coefficient due to the following observation.

Since the drift b represents the local velocity of the diffusion, b+ and b− are the nonnegative

and nonpositive components of local velocity, respectively. Therefore, b+ pushes the diffusion

located at x in a nonnegative direction, i.e., to x or x+h while b− pushes the diffusion located

at x in a nonpositive direction, i.e., to x or x− h. For more details pertaining to the choice

of discretization, see [9], page 93 and pp. 326–330.

Introducing the discretizations (2.12)-(2.15) into the HJB equation (2.11) yields the dif-
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ference equation

0 = sup
u∈U

V δ,h(t+ δ, x)− V δ,h(t, x)

δ
+ b+(t, x)

V δ,h(t+ δ, x+ h)− V δ,h(t+ δ, x)

h

+ b−(t, x)
V δ,h(t+ δ, x)− V δ,h(t+ δ, x− h)

h

+
1

2
σ2(t, x, u(t))

V δ,h(t+ δ, x+ h) + V δ,h(t+ δ, x− h)− 2V δ,h(t+ δ, x)

h2

+ U(t, x, u(t)),

which can be rearranged as

V δ,h(t, x) = P x,t
δ,h (x, x+ h)V δ,h(t+ δ, x+ h) + P x,t

δ,h (x, x)V δ,h(t+ δ, x)

+ P x,t
δ,h (x, x− h)V δ,h(t+ δ, x− h) + δU(t, u(t)), (2.17)

where

P x,t
δ,h (z) =



δ

h

(
b+(t, x) + 1

2h
σ2(t, x, u(t))

)
if z = x+ h

δ

h

(
b−(t, x) + 1

2h
σ2(t, x, u(t))

)
if z = x− h

1− P x,t
δ,h (x+ h) + P x,t

δ,h (x− h) if z = x.

We define a time increment ∆tδ,h = δ and a DTMC ξδ,h on the discrete state space

{
(t, x) = (kδ, jh) : k, j ∈ N, 0 ≤ k ≤ T

δ
,−k ≤ j ≤ k

}
(2.18)

by the transition probabilities

Px,tδ,h(z) =


P x,t
δ,h (z) if z ∈ {x, x+ h, x− h},

0 otherwise .

Note that we may interpret the right-hand-side of (2.17) as the dynamic programming prin-

ciple for discrete-time state process ξδ,h and discrete-time value function V δ,h, under the
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transition probability Px,tδ,h,

V δ,h(t, x) = Ex,tδ,h[V (t+ δ, ξδ,h)] + U(t, u(t))∆tδ,h.

Remark. It is crucial to the above interpretation, and indeed, to the success of the MCA

algorithm, that 0 ≤ P x,t
δ,h ≤ 1 and

∑
z P

x,t
δ,h (z) = 1, for all x ∈ R, t ∈ [0, T ] so that the P x,t

δ,h

may legitimately be interpreted as transition probabilities.

It is straightforward to establish that ξδ,h is locally consistent with the diffusion X.

At this point we need only solve the discrete-time control problem for ξδ,h and then take

limits as δ, h ↓ 0 in order to obtain the optimal value function V and the associated optimal

policies, u∗, if they exist. In practice, we simply approximate the value function and optimal

policies by solving the discrete problem numerically on a sufficiently fine grid.

2.3.4 Limitations of the Markov Chain Approximation. In the literature, MCA

has been successfully applied to various stochastic control models to approximate the value

function and optimal control policies, including in financial and economic applications. How-

ever, difficulties sometimes arise in the application of MCA. As noted, the transition proba-

bilities P δ,h
t must satisfy 0 ≤ P δ,h

t ≤ 1,
∑

z P
δ,h
t (z) = 1. These conditions may fail when the

transition probabilities depend explicitly on the state variable x. In addition, implementing

MCA computationally can be difficult when the cost functional involves a singularity, i.e.,

limu↓0 U(t, u) = −∞ or limx↓0B(t, x) = −∞. These challenges arise in the control models

presented in the next section and in subsequent chapters, and we will demonstrate how a

well-chosen change of variable can help overcome these difficulties.

2.4 Richard’s Model

Frequent applications of stochastic control models, known collectively as investment con-

sumption models, arise in the fields of finance and economics. The basic set-up consists
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of an investor with some capital who finds it necessary to spend, or consume, and invest

over some planning horizon and who derives utility from the total consumption during the

investment period as well as the liquid wealth at the end of the investment period. The

control variables in investment consumption models are investment decisions, consumption

decisions, and possibly other financial and economic decisions. The investor’s wealth process,

which is a controlled diffusion influenced by investment and consumption decisions, serves as

the state variable. The cost functional is built from utility functions, which are a standard

economic tool for quantifying an individual’s behavior in the presence of risk. Merton [11]

introduces the basic continuous-time investment-consumption models for which the wealth

process is modeled as a diffusion. The literature devoted to extensions of Merton’s basic

model is vast. Among the many variations, one important extension endows the investor

with an income that is risky in one way or another, such as the study by Richard [14]. The

investment-consumption model studied in subsequent chapters involves a randomly termi-

nating endowment income and shares many features with Richard’s model. Therefore, we

present Richard’s model in some detail. We proceed by first developing the probabilistic

and financial framework for Richard’s model. We then define the key elements of control

models discussed in Section 2.2 for Richard’s model, including the controls, state variable,

and cost functional. After identifying the basic ingredients of the control model, we apply

the Markov chain approximation introduced in Section 2.3 by deriving and discretizing the

Hamilton-Jacobi-Bellman equation for the value function. While we avoid many technical-

ities, some details are included because they provide intuition for the more complex model

in the next chapter.

2.4.1 Decision Variables and Wealth Process. Let (Ω,F,F ,P) be a fixed, filtered

probability space with filtration F = (Ft) that is rich enough to support a Brownian motion,

W, and a random terminal time τM . The random time τM possesses conditional distributions
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specified by the survival function,

FM(t | s) = P
[
τD > t | τM ≥ s

]
= exp

(
−
∫ t

s

λM(u) du

)
.

An investor is endowed with an initial wealth of x and receives an exogenous stream of

income at a rate of α(t), which continues until the earlier of τM and a fixed time T, which

provides an upper bound to the control problem time horizon. For concreteness, we will

assume that the random time τM corresponds to the investor’s uncertain time of death,

although it could be used to model a number of random events. For each t ∈ [0, τM ∧T ), the

investor chooses a consumption rate, c(t) while investing any liquid capital in the financial

market. The basic assets available for investment are a risk-free asset with constant rate of

return r, S0(t) = exp(rt), and a risky asset S1, modeled by geometric Brownian motion with

constant mean rate of return µ and volatility σ,

dS1(t)

S1(t)
= µ dt+ σ dW (t).

The capital invested in the S0 at time t is denoted by π0(t), and the capital invested in S1 is

denoted by π(t). In addition to consumption and investment in the basic assets, the market

offers instantaneous term life insurance, meaning that the investor can purchase an insurance

policy at time t for pM(t) that pays out pM (t)
ηM (t)

if τM = t but expires otherwise. Here, ηM is

just a factor that determines the insurance payout rate.

Remark. A simple heuristic argument suggests that the actuarially fair payout rate per

dollar of instantaneous life insurance is ηM(t) = λM(t). Formally, the instantaneous payout

per dollar is actuarially fair if

1 =
1

ηM(t)
Pt[τM ∈ dt] =

1

ηM(t)
λM(t) FM(t | t) =

λM(t)

ηM(t)
, (2.19)
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i.e.,

ηM(t) = λM(t). (2.20)

Nonetheless, for reasons discussed below, we allow for ηM ≥ λM .

The exogenous income, consumption, and insurance purchases define the investor’s cu-

mulative income process, Γ, by

Γ(t) =

∫ t

0

(α(s)− c(s)− pM(s)) ds, t < τM ∧ T. (2.21)

Next, we define the investor’s financial gains process G expressed in differential form as

dG(t) = π0
dS0

S0

+ π
dS1

S1

= π0r dt+ π(µ dt+ σdW (t)) t < τM ∧ T, (2.22)

The investor’s Γ-financed liquid wealth, L, is defined as the sum of the cumulative income

and the gains, subject to the condition that the liquid wealth is continuously reinvested in

the risky and risk-free assets,

L(t) = Γ +G; (2.23)

L(t) = π0 + π. (Γ-financed) (2.24)

(2.21)- (2.24) yield the differential for L,

dL(t) =
(
α(t)− c(t)− pM(t) + rL(t) (2.25)

+ (µ− r)π(t)
)
dt+ σπ(t)dW (t), t < τM ∧ T (2.26)

While the liquid wealth may become negative, i.e., the investor may borrow in net, the

wealth is constrained by the expected, discounted remaining exogenous income, I, defined
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by

I(t) =

∫ T

t

exp

(
−
∫ s

t

(
r + ηM(u)

)
du

)
α(s) ds. (2.27)

The borrowing constraint is then

L(t) ≥ −I(t), t < τM ∧ T. (2.28)

Intuitively, the borrowing limit represents the fact that no lender will loan to a borrower

beyond what can be expected to be repaid. Note in equation (2.27) that the future income

is discounted by ηM instead of λM . The actuarially fair value of the expected remaining

income, on the other hand, is

Et
[∫ τM∧T

t

exp(−r(s− t))α(s) ds

]
=

∫ T

t

exp

(
−
∫ s

t

(
r + λM(u)

)
du

)
α(s) ds.

Hence, the discount factor in (2.27) is not necessarily actuarially fair. One reason for this

is that, in practice, insurers assume asymmetric information, i.e., that those purchasing life

insurance face a more dire outlook on survival then the general population, a phenomenon

known as self-selection. Therefore, we allow for insurers to discount by ηM instead of λM .

The differential for I is

dI(t) = I ′(t) dt

=
(
−α(t) +

(
r + ηM(t)

)
I(t)

)
dt (2.29)

The state variable for Richard’s investment and consumption model is the investor’s total

wealth, X, defined as the sum of the liquid wealth and the expected remaining wealth,

X = L+ I. (2.30)
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Remark. In his original study, Richard used the liquid wealth L as the state variable and

then later changed variables to incorporate the total wealth. It is more convenient for our

purposes to begin with the total wealth as the state variable.

The differential of the total wealth is

dX(t) = dL(t) + db(t)

=
(
α(t)− c(t)− pM(t) + r

(
X(t)− I(t)

)
+ (µ− r)π(t)) dt+ σπ(t) dW (t)

+ (−α(t) +
(
r + ηM(t)

)
I(t)

)
dt

=
(
−c(t) +

(
−ηM(t)X(t) + ηMI(t)− pM(t)

)
+
(
r + ηM(t)

)
X(t) + (µ− r)π(t)

)
dt

+ σπ(t)dW (t)

=
(
−c(t)− ηM(t) ζM(t) +

(
r + ηM(t)

)
X(t) + (µ− r)π(t)

)
dt

+ σπ(t)dW (t), t < τM ∧ T, (2.31)

where

ζM = X − I +
pM
ηM

. (2.32)

Intuitively, ζM is the investor’s liquid wealth plus the insurance payout; that is, ζM(t) is

the investor’s terminal wealth in the event τM = t. Thus, ηM ζM may be viewed as the cost

of financing a desired terminal wealth.

By (2.28), X is constrained to be nonnegative,

X(t) ≥ 0, t < τM ∧ T. (2.33)

Now that the state variable and constraints have been specified, we can fully define the

set of admissible controls. The purpose of the admissibility conditions is to guarantee the

existence and uniqueness of a solution to the SDE for the total wealth, (2.31), as well as

meet any imposed constraints. Note that in the context of the theory of controlled diffusions
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presented earlier, if we let b and σ be the drift and volatility,

b(t, x, u1, u2, u3) = −u1 − ηM(t)u3 +
(
r + ηM(t)

)
x+ (µ− r)u3

σ(t, x, u1, u2, u3) = σu3,

then for any reasonably-behaved ηM , the SDE drift and volatility coefficients are uniformly

Liphschitz on [0, T ]× [0,∞)× R3
+,

|b(t, x, u1, u2, u3)− b(t, y, u1, u2, u3)| = |r + ηM(t)||x− y|

|σ(t, x, u1, u2, u3)− σ(t, y, u1, u2, u3)| = 0, (2.34)

as required for the existence and uniqueness of a controlled diffusion.

Definition 2.10 (Admissible Controls). An admissible control triple (c, π, ζM) is a triple of

progressively measurable processes such that

(i) ∫ T

0

(
|c(s)|+ |ηM(s)ζM(s))|+ |π(s)|+ π2(s)

)
ds <∞; (2.35)

(ii) c ≥ 0;

(iii) ζM ≥ X − I; and

(iv) X ≥ 0.

Between the Lipschitz condition and (2.35), there exists a unique solution to the SDE

(2.31) for any initial data (t, x) ∈ [0, T ]× [0,∞) and any set of admissible controls.

2.4.2 Utility Functions and Cost Functional. The standard cost functional for fi-

nancial and economic applications, and the one that will be used in the models investigated

here, is built around the concept of a utility function, which is defined next.
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Definition 2.11. (Utility Function) A utility function U : [0,∞)× (0,∞)→ R is continu-

ously differentiable function for which

(i) U ′(t, ·) > 0 for each t ∈ [0,∞);

(ii) U ′′(t, ·) < 0 for each t ∈ [0,∞); and

(iii) lim
x→∞

U ′(t, x) = 0 for each t ∈ [0,∞).

For a given admissible consumption, portfolio, and insurance decision, a standard cost

functional is the expected total utility for consumption throughout the interval of uncertain

length and bequest at the random terminal date, conditioned on the investor’s survival to

time t and wealth at time t, X(t) = x, by

Et,x
[∫ τM∧T

t

U(s, c(s)) ds+B(τM , ζM(τM))

]
. (2.36)

However, by the independence of the Brownian motion and the random time, (2.36) is

equivalent to

Et,x
[∫ τM∧T

t

U(s, c(s)) ds+B(τM , ζM(τM))

]
= Et,x

[∫ T

t

U(s, c(s))1s<τM ds+B(τM , ζM(τM))1τM<T +B(T, ζM(T ))1T<τM

]
= Et,x

[∫ T

t

U(s, c(s))FM(s | t) ds+

∫ T

t

B(s, ζM(s)fM(s | t) ds+B(T, ζM(T ))FM(T | t)
]

= Et,x
[∫ T

t

(
U(s, c(s)) + λM(s)B(s, ζM(s))

)
FM(s | t) ds+B(T, ζM(T ))FM(T | t)

]
.

In the third and fourth lines above, the expectation is with respect to the the measure

associated with Brownian motion only.
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Thus, we define the cost functional given the investor’s current wealth, X(t) = x, by

J(t, x, c, π, ζM) = Et,x
[∫ T

t

(
U(s, c(s)) + λM(s)B(s, ζM(s))

)
FM(s | t) ds

+B(T, ζM(T ))FM(T | t)
]
, (2.37)

and the associated value function by

V (t, x) = sup
(c,π,ζM )∈U

J(t, x, c, π, ζM). (2.38)

We can now state the main problem for Richard’s model:

Problem (R). For each t, x ∈ [0, T ] × [0,∞), find an optimal consumption, portfolio, and

insurance policies, (c∗, π∗, ζ∗M) ∈ U such that

V (t, x) = J(t, x, c∗, π∗, ζ∗M),

if one exists.

In his original study, Richard did not constrain the life insurance variable to be nonneg-

ative, as we have, instead allowing the investor to both buy and sell life insurance. Richard

formally obtained an explicit solution to the PDE associated with the unconstrained problem.

However, if life insurance is constrained so that the investor can merely purchase insurance,

i.e. pM ≥ 0, the HJB for V cannot be solved explicitly. For the constrained problem, Pliska

and Ye [13] demonstrate how to use the Markov chain approximation to approximate the

solution numerically. We explore their approach next.

2.4.3 Markov Chain Approximation with Logarithmic Transformation. In Sec-

tion 2.3, we introduced a powerful technique for solving stochastic control problems, the

Markov chain approximation. We also described an algorithm that generates a sequence of

discrete-time control problems that approximate the continuous-time control problem called
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the finite difference method. We now apply these techniques to Richard’s model. According

to the finite difference method, we begin by obtaining the HJB equation for V, which is

derived in the appendix:

0 = sup
c,π,ζM∈U

{−λM(t)V (t, x) + Vt(t, x) + b(t, x)Vx(t, x)

+π2(t)σ2Vxx(t, x) + U(t, c(t)) + λM(t)B(t, ζM(t))
}
, 0 ≤ t < T. (2.39)

In addition to (2.39), V satisfies a terminal condition and a boundary condition. At t = T,

since F (T |T ) = 1, we have V (T, x) = B(T, ζM(T )). However, we note that I(T ) = 0, as

there is no income beyond T. Moreover, it may reasonably be expected that pM(t) ↓ 0 as

t ↓ T. Indeed, in Richard’s unconstrained problem he showed that the insurance control

pM was proportional to the percentage of the total wealth represented by future income. As

there is no future income at T, we should have pM(T ) = 0. Hence, ζM(T ) = X(T ). Therefore,

the terminal condition is

V (T, x) = B(T, x). (2.40)

The boundary condition follows from the constraint on the total wealth X so that zero wealth

is an absorbing state from which there can be no further consumption or gains. Thus,

lim
x↓0

V (t, x) = J(t, 0, 0, 0, 0) (2.41)

We do not intend to solve equation (2.39) directly but simply let it guide the choice

of discrete-time Markov Chain (DTMC). Instead, we discretize the continous-time HJB

equation in order to discover the transition probabilities for the discrete-time Markov Chain

by way of a discrete-time dynamic programming relation. However, the direct discretization

of (2.39) does not lend such an interpretation. To highlight the difficulties encountered in
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applying the finite difference method directly, consider the finite difference approximations:

Vt(t, x) =
V δ,h(t+ δ, x)− V δ,h(t, x)

δ
+ o(δ), (2.42)

b+(t, x, u)Vx(t, x) = b+(t, x, u)
V δ,h(t+ δ, x+ h)− V δ,hh(t+ δ, x)

h
+ o(h), (2.43)

b−(t, x, u)Vx(t, x) = b−(t, x, u)
V δ,h(t+ δ, x)− V δ,h(t+ δ, x− h)

h
+ o(h), (2.44)

Vxx(t, x) =
V δ,h(t+ δ, x) + V δ,h(t, x− h)− 2V δ,h(t, x)

h2
+ o(h), (2.45)

where

b+(t, x) = (r + ηM(t))x+ π(t)(µ− r) (2.46)

b−(t, x) = c(t) + ηM(t)ζM(t). (2.47)

That b+, b− ≥ 0 requires some justification, but suppose for now that it is true. Substituting

(2.42) – (2.45) into (2.39) results in the difference equation

V δ,h(t, x) = sup
c,π,ζM∈U

{
P t,x
δ,h (x+ h)V δ,h(t+ δ, x+ h) + P t,x

δ,h (x)V δ,h(t+ δ, x)

+P t,x
δ,h (x− h)V δ,h(t+ δ, x− h) + δ(U(t, c) + λM(t)B(t, ζM))

}
, (2.48)

where

P t,x
δ,h (z) =



δ

h

(
b+(t, x) + σ2π2(t)

2h

)
if z = x+ h

δ

h

(
b−(t, x) + σ2π2(t)

2h

)
if z = x− h

1− P t,x
δ,h (x+ h)− P t,x

δ,h (x− h) if z = x

(2.48) presents two main barriers to MCA:

(i) The transition P t,x
δ,h (x + h) depends explicitly on the wealth variable x. Because x is

unbounded, it is difficult, if not impossible, to choose discretization parameters δ and

h sufficiently small so that P t,x
δ,h is a true probability measure on the wealth state space.
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(ii) In application, the most commonly used utility functions are the CRRA utilities,

U(t, z) = exp(−ρt) z
1−γ

1− γ
,

and a CRRA utility for terminal wealth, or bequest,

B(t, z) = exp(−ρt) z
1−γ

1− γ
.

Note in particular that the boundary condition becomes

lim
x↓0

V (t, x) = −∞. (2.49)

For any reasonable choice of discretization parameters, the wealth variable transitions

very close to the boundary x = 0 with positive probability, but the singular boundary

condition at x = 0 makes numerical computation practically impossible.

Fortunately, a simple change of variable overcomes both of these difficulties. Following

Ye [13], [22], we make the logarithmic transformation

y = log(x), (2.50)

so exp(y) is just the total wealth. We also define a value function in terms of u so that it

agrees with the original value function,

V̂ (t, y) = V (t, exp(y)) = V (t, x), (2.51)
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and change control variables by

ĉ = exp(−y)c, (2.52)

π̂ = exp(−y)π, (2.53)

ζ̂M = exp(−y)ζM . (2.54)

Then

b(t, x(y)) = exp(y)
(
r + ηM(t) + π̂(t)(µ− r)− ĉ(t)− ηM(t)ζ̂M(t)

)
. (2.55)

(2.56)

We define the set of admissible controls, Û , for ĉ, π̂, and ζ̂M , analogous to the definition for

the admissible set U way. Derivatives of V in x and V̂ in y are related by

Vt(t, x) = V̂t(t, y) (2.57)

Vx(t, x) = exp(−y)V̂y(t, y) (2.58)

Vxx(t, x) = exp(−2y)(V̂yy(t, y)− V̂u(t, y)). (2.59)

Substituting (2.57)-(2.59) into (2.39) and rearranging, we obtain

0 = sup
c,π,ζM∈ Û

{
−λM(t)V̂ (t, y) + V̂t(t, y) + b̂(t, y)V̂y(t, y) +

σ2π̂2(t)

2
V̂yy(t, y)

+U(t, exp(y)ĉ) + λM(t)B(t, exp(y)ζ̂M(t))
}
, 0 ≤ t < T, (2.60)

where

b̂(t, y) = r + ηM(t) + π̂(t)(µ− r)− ĉ(t)− ηM(t)ζ̂M(t)− σ2π̂2(t)

2
. (2.61)
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In addition to (2.60), the terminal condition and boundary conditions are, respectively,

V̂ (T, y) = B(T, exp(y)) (2.62)

lim
y↓0

V (t, y) = −∞ (2.63)

We define b̂+ and b̂− by

b+(t, y) = r + ηM(t) + π̂(t)(µ− r), (2.64)

b−(t, y) = ĉ(t) + ηM(t)ζ̂M(t) +
σ2π̂2(t)

2
, (2.65)

and then discretize as before, giving the discretized HJB equation for V̂ ,

V̂ (t, y) = sup
ĉ,π̂,ζ̂M∈ Û

P̂ t,y
δ,h(y)(y, y + h)V̂ h(t+ δ, y + h) + P̂ t,y

δ,h(y)V̂ h(t+ δ, y)

+ P̂ t,y
δ,h(y)V̂ h(t+ δ, y − h) + δ(U(t, exp(u)ĉ(t)) + λM(t)B(t, exp(y)ζ̂M)) (2.66)

where

P̂ t,y
δ,h(z) =



δ
h

(
b̂+(t, y) + σ2π2(t)

2h

)
if z = y + h

δ
h

(
b̂−(t, y) + σ2π2(t)

2h

)
if z = y − h

1− P̂ t,y
δ,h(y + h)− P̂ t,y

δ,h(y − h) if z = y

At this point, it is possible, in principle, to fix the parameters δ, h and then use dis-

crete dynamic programming, iterating backward from the terminal condition, to solve the

discretized problem numerically. For a sufficiently fine time-wealth grid, the numerical so-

lution to the discrete-time problem provides a good approximation to the continuous-time

value function as well as the continuous-time optimal policies. The transformed difference

equation for V̂ , (2.66) exhibits two important features that ensure the success of a numerical

implementation. First, the explicit dependence on the transformed wealth variable y has

been eliminated so that it is readily possible to choose δ and h such that P t,y
δ,h is a legiti-
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mate transition probability. Second, the boundary condition has been pushed to y = −∞.

Numerical solutions to (2.66) can be obtained by numerical dynamic programming over a

finite, trinomial tree. Even for fine grid spacings, the logarithmic transformation attenuates

the rate at which the singular boundary approaches −∞ enough so that the computational

method succeeds.

According to the theory for MCA, local consistency is sufficient to guarantee convergence,

which Ye claimed. However, the hypotheses of the theorems cited by Ye are not satisfied

in Richard’s model. Moreover, the DTMC is not locally consistent with the continuous-

time wealth process. Nonetheless, Ye compared numerical solutions obtained via MCA with

Richard’s closed-form solutions in the unconstrained case and found apparent convergence.

We will address the convergence of Ye’s application of MCA to Richard’s model further in

Chapter 5, but for now, the important issue of convergence will be left unresolved.

A few points concerning the solution to Richard’s problem are worth noting. First, in

the unconstrained case, the the value function V takes the functional form

V (t, x) = a(t)
x1−γ

1− γ
, (2.67)

The function a is significant only in that it depends on time alone, not on the wealth.

Hence, V has the form of a CRRA utility in total wealth, and the optimal value function

is influenced by the total wealth but not by how that wealth is divided between liquid and

illiquid wealth. Second, both Richard and Ye, in the constrained case, confirm that indeed,

p∗M → 0 as t ↑ T. More specifically, they find that the greater the proportion of total wealth

is illiquid, the more insurance is desired. This is important because it confirms the intuition

that life insurance is a hedge against lost future income, and the costs of life insurance can

be viewed as a proxy for aversion to an early death.
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3. Investment Consumption with Randomly Terminating

Income: Formulation

This problem has proved remarkably hard to crack.

– Mark H. A. Davis, speaking about randomly terminating income.

In this chapter, we formulate an investment-consumption model, that consists of an

investor with some initial capital who receives an endowment income that may default and

who invests and consumes over a planning horizon with an unknown terminal date. In

the previous chapter, we introduced Richard’s model. The model developed below can be

viewed as an extension of that model. Like Richard, we permit consumption, investment,

and insurance purchasing in a simple financial market over an uncertain planning horizon.

The main difference between that model and ours lies in the features of the endowment

income. In Richard’s model, the endowment income is received continuously throughout the

entire planning interval. In our model, an endowment income is also received continuously,

but the endowment may default before the end of the planning interval. In the event that the

endowment defaults before the end of the planning interval, the investor must nonetheless

continue to consume and invest until the uncertain terminal date. Thus, whereas Richard’s

model consists of a single random time beyond which no decisions are necessary, our model

consists of independent random times, one signaling default of the investor’s income and the

other signalling the end of the need for control. Like Richard, we allow hedging against the

uncertain terminal time by permitting the purchase of terminal date-contingent insurance.

In addition, we also allow hedging against the uncertain default time by permitting the

purchase of default-contingent insurance. In real financial markets, contracts that protect

against default of an income stream are called credit default swaps. In a normal credit

default swap, if an obligator defaults on payments owed, a third party — the seller of the

credit default swap — assumes the insolvent party’s obligation to the obligee. Thus, a credit

default swap insures the obligee against default. In our model, rather than replace the
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investor’s income stream with another income stream as is done in real markets, the credit

default swap simply pays out a lump sum upon default and therefore operates more like the

terminal date-contingent insurance of Richard’s model.

An interesting feature of our model is that the dynamics of the investor’s total wealth,

which serves as the state variable of the control problem, fundamentally change at the time

of default. This change in dynamics around an independent random time necessitates the

development of two control problems — one associated with the investor’s decisions prior to

default, and one associated with the investor’s decisions after default.

We proceed by first introducing the probabilistic framework for the model. We then de-

fine the basic financial market and prescribe the investor’s decision variables, which include

consumption, investment, and insurance purchasing. Once the decision variables are intro-

duced, we define the investor’s liquid wealth and illiquid wealth. These together determine

the investor’s total wealth, which serves as the state variable for the model. Constraints on

the investor’s total wealth lead to the set of admissible controls. Finally, an expected-utility

cost functional is defined and the main optimal control problem stated.

3.1 Probabilistic Framework

Let (Ω,F,F ,P) be a probability space upon which is placed a Brownian motion, W, and two

random times, τM and τD. Furthermore, let F = (Ft)t≥0 be the completion of the filtration

generated by W, 1τM≤t, and 1τD≤t. Hence, the events {τM ≤ t} and {τD ≤ t} are Ft-

measurable for all t. We assume that the Brownian motion and random times are mutually

independent. The distributions for the random times τM and τD are prescribed by survival

functions,

FM(t | s) = P[τM > t | τM > s] = exp

(
−
∫ t

s

λM(u) du

)
(3.1)

FD(t | s) = P[τD > t | τD > s] = exp

(
−
∫ t

s

λD(u) du

)
. (3.2)
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That is,
(
FM(· | s)

)
s≥0 and

(
FD(· | s)

)
s≥0 define families of conditional distribution func-

tions for τM and τD, respectively. The conditional densities for τM and τD follow from

differentiation,

fM(t | s) = −λM(t) FM(t | s) (3.3)

fD(t | s) = −λD(t) FD(t | s) (3.4)

By independence, the conditional distributions for the minimal random time, τM ∧ τD, are

F (t | s) = P[τM ∧ τD > t | τM ∧ τD > s] = FM(t | s) FD(t | s), (3.5)

and the densities are

f(t | s) = (λM(t) + λD(t)) F (t | s).

Remark. That the distribution of a random time can be specified by a hazard rate λ requires

only the benign assumption that the probability of the random time occurring on sets of

Lebesgue measure zero is zero, a natural assumption for mortality and default. Indeed, if

P[τ ≤ t] is absolutely continuous with respect to Lebesgue measure, m, then

P[τ > t] = exp

(
−
∫ t

0

λ(u)dm(u)

)
,

where

λ(t) =
dP(t)/dm(t)

1− P[τ ≤ t]
.

3.2 Control Variables

With the probability framework fixed, we now begin defining pieces of the investment con-

sumption model. An investor with initial capital x must make certain financial decisions

over a time interval, or planning horizon, of uncertain length. The random variable τM ,

38



which will represent a retiree’s uncertain time of death in a later chapter, corresponds to

the uncertain terminal date. The investor is only concerned with making decisions over the

interval [0, τM ∧ T ), where T is a fixed upper bound for the planning horizon.

3.2.1 Consumption and Portfolio. The investor must decide how much to consume at

each moment throughout the planning interval. Mathematically, the investor’s consumption

process is an F-progressively measurable process c ≥ 0. The investor must also make invest-

ment decisions throughout the planning interval. The financial market consists of a risk-free

asset S0 such as a risk-free bond, and a risky asset S1 such as a stock. The evolutions of

these assets are defined by the SDE

dS0(t) = rS0(t) dt, (3.6)

dS1(t) = µS1(t) dt+ σS1(t)dW (t), (3.7)

where, r > 0 is the constant risk-free rate of return, µ > r is the constant mean rate of

return on the risky asset, and σ > 0 is the volatility.

Remark. The financial parameters r, µ, and σ are taken to be constants, but in fact nearly

every development that follows would work equally well with deterministic, continuous func-

tions.

An investor’s investment, or portfolio decisions, π0, π, are F-progressively measurable

processes such that the process π0 corresponds to the dollar amount invested in the bond,

and π corresponds to the dollar amount invested in the stock. We will see below that there

is no need to track π0 separately.

3.2.2 Insurance. The investor receives a stream of income from an exogeneous endow-

ment at a rate α(t) continuously throughout the planning horizon until the earlier of the time

of default τD and the end of the planning interval, τM ∧ τD ∧ T. The assumption that the τD

is independent of the Brownian motion and hence, the financial market, does not completely
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reflect the relationship between stock market performance and the default probability of

other financial instruments, but in some situations it serves as a reasonable approximation.

Nevertheless, we assume independence for simplicity and tractability. A portion of the en-

dowment income is considered non-defaultable, either because of the financial stability of its

source or because of some institutional guaranty, and it pays an income rate of αND(t). The

defaultable portion of the income rate is denoted αD(t). That is,

α(t) =


αD(t) + αND(t) if t ≤ τD,

αND(t) if t > τD,

The investor may hedge against default of the endowment income by purchasing τD-

contingent insurance, i.e. an instantaneous credit default swap. The investor’s life insurance

premium process is an F-progressively measurable process pM . We constrain pM to be non-

negative; that is, we require that the investor can purchase but not sell insurance. We will

follow conventions in the literature by writing the per dollar payout rate for insurance con-

tract as 1
ηD(t)

; that is, dollar credit default swap contract purchased for pD(t) is awarded

pD(t)
ηD(t)

if τD = t but expires otherwise. A heuristic argument suggests that the actuarially

fair payout rate per dollar of instantaneous default insurance is ηD(t) = λD(t). Formally, the

instantaneous payout per dollar is actuarially fair if

1 =
1

ηD(t)
Pt[τD ∈ dt] =

1

ηD(t)
λD(t) FD(t | t) =

λD(t)

ηD(t)
,

i.e.,

ηD(t) = λD(t).

Typically, however, insurance contracts are not actuarially fairly priced, owing to asymmetric

information between the buyer and seller. Whether an individual purchases insurance or not

depends fundamentally on that individual’s subjective beliefs about the probability of some

contingency. Therefore, those who insure against an event tend to see that event realized
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more frequently than actuarial models calibrated to the general population might imply.

One way that insurers compensate for this phenomenon is by loading the actuarially fair

hazard rates. In the case of a credit default swap, the insurer assumes that the income

stream defaults more frequently for insurance purchasers then the population at large, so

the hazard rate is loaded. For example, we could take ηD(t) = kDλD(t), where kD ≥ 1 is the

loading factor. Of course, financial intermediaries also require a profit, though we generally

ignore transaction costs. Either way, we take ηD ≥ λD.

The investor may also hedge against the uncertain terminal date by purchasing instanta-

neous term τM -contingent insurance. For concreteness, we will refer to this insurance as life

insurance. The investor’s life insurance premium process is an F-adapted process pM that

pays pM (t)
ηM (t)

if τM = t but expires otherwise. As with the credit default swap, the actuarially

fair payout rate is ηM(t) = λM(t), but we allow for ηM ≥ λM .

3.3 Wealth Processs

In this section, we describe the interplay between the investor’s decisions, returns on invest-

ment to determine the investor’s wealth, culminating in the definition of the state variable

for our investment consumption model, the investor’s total wealth, as well as the set of

admissible controls.

First, the investor’s cumulative income process, Γ(t) is defined by

Γ(t) = x+

∫ t

0

(αD(s)1s<τD + αND(s)− c(s)− pM(s)− pD(s)) ds, 0 ≤ t ≤ τM ∧ T. (3.8)

The investor’s capital gains process, G, is the return on investments, given in differential

form by

dG(t) = π0(t)
dS0(t)

S0(t)
+ π(t)

dS1(t)

S1(t)

= π0(t) r dt+ π(t)(µ dt+ σ dW (t)), 0 ≤ t ≤ τM ∧ T. (3.9)
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The investor’s Γ-financed liquid wealth, L, is defined as the sum of the cumulative in-

come and the gains, subject to the condition that the liquid wealth is always continuously

reinvested in the stock and bond,

L(t) = Γ +G; (3.10)

L(t) = π0 + π. (3.11)

From (3.11), we see that the risk-free portfolio process, π0, is completely determined by the

liquid wealth and the risky portfolio process, π, and therefore, it will not need to be tracked

separately from π in the sequel. Combining (3.10) and (3.11) yields the differential for L,

dL(t) = dΓ(t) + dG(t)

=
(
α(t)− c(t)− pM(t) + rL(t) + (µ− r)π(t)

)
dt+ σπ(t) dW (t), 0 ≤ t ≤ τM ∧ T.

(3.12)

3.3.1 Borrowing Constraint. While the liquid wealth may become negative, i.e., the

investor may borrow in net, the liquid wealth is constrained from below by the expected

remaining discounted endowment income, I, defined by

I(t) =


ID(t) + IND(t) if t ≤ τD,

IND(t) if t > τD,

where ID and IND are the expected remaining discounted, defaultable and non-defaultable

endowment incomes, respectively,

ID(t) =

∫ T

t

exp

(
−
∫ s

t

(
r + ηM(u) + ηD(u)

)
du

)
αD(s) ds, (3.13)

IND(t) =

∫ T

t

exp

(
−
∫ s

t

(
r + ηM(u)

)
du

)
αND(s) ds. (3.14)
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Observe that the non-defaultable income is discounted by the time-value of money and

terminal-time hazard rate while the defaultable income is discounted by both these and the

default rate. Further note in (3.13) and (3.14) that the future income is discounted by ηM

instead of λM and ηD instead of λD so that I is not the actuarially fair expected remaining

income. Indeed, the actuarially fair expected remaining incomes are

Et
[∫ τM∧T∧τD

t

exp(−r(s− t))αD(s) ds

]
=

∫ T

t

exp

(
−
∫ s

t

(
r + λM(u) + λD(u)

)
du

)
αD(s) ds.

and

Et
[∫ τM∧T

t

exp(−r(s− t))αND(s) ds

]
=

∫ T

t

exp

(
−
∫ s

t

(
r + λM(u)

)
du

)
αND(s) ds.

The reason for the discrepancy, as discussed above for insurance purchasing, is that in

practice, the investor’s future cash flows are discounted above the actuarially fair rate due

to adverse selection.

The borrowing constraint for the liquid wealth is thus

L(t) ≥


−I(t) if t ≤ τD,

−IND(t) if t > τD.

The differential for I is

dI(t) =


(
−αD(t)− αND(t) + (r + ηM(t) + ηD(t))ID(t) + (r + ηM(t))IND(t)

)
dt if t ≤ τD,(

−αND(t) + (r + ηM(t))IND(t)
)
dt if t > τD.

43



The state variable for our investment and consumption model is the investor’s total

wealth, X, defined as the sum of the liquid wealth and the expected remaining wealth,

X = L+ I, 0 ≤ t ≤ τM ∧ T. (3.15)

We will find it convenient to define separately the pre- and post-default total wealth, X1 and

X2, respectively, i.e.,

X(t) = X1(t)1(t ≤ τD) +X2(t)1(t > τD), 0 ≤ t ≤ τM ∧ T. (3.16)

The differential of the total wealth before default is, after simplification,

dX1(t) = dL(t) + dI(t)

=
[
−c(t)− ηM(t)ζM(t)− ηD(t)ζD(t) + (r + ηM(t) + ηD(t))X1(t) + (µ− r)π(t)

]
dt

+ σπ(t) dW (t), 0 ≤ t ≤ τM ∧ T ∧ τD, (3.17)

and after default,

dX2(t) = dL(t) + dIND(t)

=
[
−c(t)− ηM(t)ζM(t) + (r + ηM(t))X2(t) + (µ− r)π(t)

]
dt

+ σπ(t) dW (t), τD ≤ t ≤ τM ∧ T, (3.18)

where

ζM = X − ID − IND +
pM
ηM

, (3.19)

ζD = X − ID +
pD
ηD
. (3.20)
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Intuitively, ζM is the investor’s total wealth plus the insurance payout, less the unreal-

ized future income; that is, ζM(t) is the investor’s terminal wealth given death occurs at t.

Furthermore, ζD can be interpreted as the investor’s total wealth plus the default payout,

less the defaulted income; that is, ζD(t) is the investor’s total wealth at the time of default.

The insurance variables pM and pD can easily be recovered from ζM and ζD, and we will

find it convenient to work with ζM and ζD. The no-short selling constraints on insurance,

pM , pD ≥ 0, lead to constraints on ζM and ζD, namely,

ζM(t) ≥ X(t)− I(t) (3.21)

ζD(t) ≥ X(t)− ID(t). (3.22)

The constraints (3.21) , (3.22) imply the non-negativity of ζM and ζD. Of course, there

is no need for default insurance post-default, so we automatically take ζD(t) = 0 for t > τD.

By the constraint on the liquid wealth, X1 and X2 are each constrained to be nonnegative,

X1, X2 ≥ 0. (3.23)

When necessary to avoid confusion, we will denote the pre-default decision variables by

c1, π1, ζM1 , ζD1 and the post-default decision variables by c2, π2, ζM2 , ζD2 .

3.3.2 Admissible Controls. Having defined the investor’s total wealth and introduced

the full set of constraints, we are now prepared to define the set of admissible controls. Let

G =
(
Gt
)

be the completion of the filtration generated by Brownian-motion. Note that this

filtration is automatically right-continuous, so it satisfies the usual hypotheses.

Definition 3.1 (Pre-default Admissible Controls). The set of pre-default admissible con-

trols, U1, is the collection of G-progressively measurable consumption, portfolio, and insur-

ance processes, c, π, ζM , ζD, such that

(i)

∫ T

0

|c(s)|+ |π(s)|+ |ηM(s)ζM(s)|+ |ηD(s)ζD(s)|+ π2(s) ds <∞;
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(ii) ζM , ζD satisfy (3.21)-(3.22); and

(iii) X1 ≥ 0.

Definition 3.2 (Post-default Admissible Controls). The set of post-default admissible con-

trols, U2, is the collection of G-progressively measurable consumption, portfolio, and insur-

ance processes, c, π, ζM , such that

(i)

∫ T

0

|c(s)|+ |π(s)|+ |ηM(s)ζM(s)|+ π2(s) ds <∞;

(ii) ζM satisfies (3.21); and

(iii) X2 ≥ 0.

Note that the drift and volatility for the pre-default wealth and post-default wealth

are uniformly Lipschitz continuous for each fixed control. Therefore, condition (ii) in the

respective definitions of admissible controls is sufficient to guarantee existence and uniqueness

of G-progressively measurable wealth processes, X1 and X2. Also, notice that the pre-default

and post-default controls are completely ignorant of the default time τD.

We now complete the investment-consumption model by defining the cost functional.

3.4 Cost-Functionals and Control Problem

The cost functional for our model is actually a pair of coupled cost functionals that treat the

investor’s pre-default decisions and post-default decisions independently. We first motivate

the definition of the cost functionals.

3.5 Motivation

In Definition 2.11, we introduced utility functions, which led to a natural cost functional for

investment-consumption problems. For our model, the natural cost functional possesses the
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same generic form as for Richard’s problem,

J(t, x, c, π, ζM , ζD) = Et,x
[∫ τM∧T

t

U(s, c(s)) ds+B(τM , ζM(τM))

]
, (3.24)

with associated value function

V (t, x) = sup
c,π,ζM ,ζD

J(t, x, c, π, ζM , ζD). (3.25)

Here, Et,x is the expectation conditioned on X(t) = x as well as τM , τD > t.

We develop J by first partitioning the planning horizon around τM . Noting that there is

no utility for consumption after τM ∧ T, the argument of the expectation in (3.24) becomes

∫ τM∧T

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
=

∫ τM∧T∧τD

t

U(s, c(s)) ds

+

∫ τM∧T

τD

U(s, c(s))1τD<τM∧T ds+B
(
τM , ζM(τM)

)
1τD<τM∧T +B

(
τM , ζM(τM)

)
1τD≥τM∧T .

(3.26)

Assume for the moment that the strong Markov property for X can be applied to (3.26)

for the F-stopping time τD, i.e., for all Borel-measurable f,

Et,x
[
f
(
X(τD + s)

)
| FτD

]
= EτD,X(τD)

[
f
(
X(s)

)]
. (3.27)

The strong Markov property for X at τD provides the following lemma, a proof of which is

in the appendix.

Lemma 3.3.

V (t, x) = sup
c,π,ζM ,ζD

Et,x
[∫ τM∧T∧τD

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
1τD≥τM∧T

+D
(
τD, X(τD)

)
1τD<τM∧T

]
, (3.28)
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where

D(t, x) = sup
c,π,ζM

Et,x
[∫ T∧τM

t

U(s, c(s)) +B
(
τM , ζM(τM)

)]
. (3.29)

Remark. The expectation in the definition of D above is conditioned on τD = t, τM >

t,X(τD) = x, as in (3.27).

At this point, the usual path forward is

(i) apply the expectation operator in (3.28) for τD and τM independently of W to eliminate

explicit dependence on random times;

(ii) apply the dynamic programming principle to the value function, V ; and

(iii) derive the Hamilton-Jacobi-Bellman equation and apply the Markov chain approxima-

tion.

We proceed with (i), at least formally. Then we have

V (t, x) = sup
c,π,ζM ,ζD

Et,x
[∫ τM∧T∧τD

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
1τD≥τM∧T, τM<T

+B
(
T, ζM(T )

)
1τD≥τM∧T, τM≥T +D

(
τD, X(τD)

)
1τD<τM∧T

]
,

= sup
c,π,ζM ,ζD

Et,x
[∫ τM∧T∧τD

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
1τM<T∧τD

+B
(
T,X(T )

)
1T<τM∧τD +D

(
τD, X(τD)

)
1τD<τM∧T

]
, (3.30)

where we have used the fact that if the investor hasn’t died by time T, they must accept the

utility for their terminal wealth at T as well as the fact that pM(T ) = 0.

Suppose now that we apply the expectation operator in (3.30) independently to τM and
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τD. Then

V (t, x) = sup
c,π,ζM ,ζD

Et,x
[∫ T

t

U(s, c(s))F (s | t) ds+

∫ T

t

B
(
s, ζM(s)

)
1s<τDfM(s | t)

+B
(
T,X(T )

)
F (T | t) +

∫ T

t

D
(
s,X(s)

)
1s<τMfD(s | t)

]
,

= sup
c,π,ζM ,ζD

Et,x
[∫ T

t

(
U(s, c(s)) + λM(s)B

(
s, ζM(s)

)
+ λD(s)D

(
s,X(s)

))
F (s | t) ds

+B
(
T,X(T )

)
F (T | t)

]
. (3.31)

(3.31) can be interpreted as rather than worrying about precisely when the random times

occur, the investor may equivalently view death and default as happening continuously

throughout the interval, but with the utilities for terminal wealth and post-default optimal

decisions scaled down by the respective hazard rate.

It is, unfortunately, difficult to justify the application of Fubini’s theorem in the pre-

ceding given that the controls and state variable are not independent of the random times.

There are also difficult technical issues pertaining to the the appropriate filtration for the

application of the dynamic programming principle to the value function, V. However, the

formal manipulations above suggest a pair of cost functionals for the pre-default wealth and

post-default wealth, respectively, to which dynamic programming techniques readily apply.

These are defined next.

3.5.1 Post-default Cost Functional. The investor’s cost functional, post-default, is

the map J2 : [0, T ]× [0,∞)× U2 defined by

J2(t, x, c, π, ζM) = Et,x
[∫ T

t

(U(s, c(s)) + λM(s)B(s, ζM(s)))FM(s|t) ds

+B(T,X(T ))FM(T |t)
]
, (3.32)

where Et,x is the expectation operator conditioned only on X2(t) = x.
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The post-default value function, D, is defined by

D(t, x) = sup
(c,π,ζM )∈U2

J2(t, x, c, π, ζM). (3.33)

Intuitively, D optimizes the investor’s utility over the decision variables from the time

of default to the end of the planning horizon for each time of default. Given D, it remains

only to optimize the investor’s decision-making until default, which is the purpose of the

pre-default cost functional.

3.5.2 Pre-default Cost Functional. The pre-default cost functional is the map J1 :

[0, T ]× [0,∞)× U1 defined by

J1(t, x, c, π, ζM , ζD) = Et,x
[∫ T

t

(U(s, c(s)) + λM(s)B(s, ζM(s)) + λD(s)D(s, ζD(s)))F (s|t)

+B(T,X(T ))FM(T |t)
]
, (3.34)

where Et,x is the expectation conditioned only on X1(t) = x. The pre-default value function,

V, is defined by

V (t, x) = sup
(c,π,ζM ,ζD)∈U1

J1(t, x, c, π, ζM , ζD). (3.35)

The primary control problem is then

Problem (V). Find pre-default admissible controls c∗1, π
∗
1, ζ
∗
M1
, ζ∗D1

, if they exist, such that

V (t, x) = J1(t, x, c
∗
1, π

∗
1, ζ
∗
M1
, ζ∗D1

). (3.36)

In this case, the maximizing set of control policies are post-default optimal.

Of course, a pre-requisite to solving Problem (V) is solving the sub-problem

Problem (D). Find post-default admissible controls, c∗2, π
∗
2, ζ
∗
M2
, if they exist, such that

D(t, x) = J2(t, x, c
∗
2, π

∗
2, ζ
∗
M2

). (3.37)
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In this case, the maximizing set of control policies are pre-default optimal.

The optimal policies for the whole planning horizon are “glued” together from the optimal

pre-default and post-default controls, if they exist:

Definition 3.4 (Optimal Control Policies). Given a set of pre-default optimal controls,

(c1, π1, ζM1 , ζD1) and a set of post-default optimal controls, (c2, π2, ζM2), an optimal control

policy, (c, π, ζM , ζD), over the full planning horizon is the F-progressively measurable process

defined by

(c(t), π(t), ζM(t), ζD(t)) =


(c1(t), π1(t), ζM1(t), ζD1(t)) if t ∈ [0, τD ∧ τM ∧ T ],

(c2(t), π2(t), ζM2(t), 0) if t ∈ (τD, τM ∧ T ].

The advantage to treating the optimal control problem before default and after default

separately is that dynamic programming techniques and the Markov chain approximation

can now be employed to approximate the value function and optimal controls.

Now that the admissible controls, state variables, and cost functionals have been defined,

the investment consumption model is complete. In the next section, we present a technique

for approximating, numerically, solutions to Problems (D) and (V), but first, we make a few

observations. In our model, the key decision variable both mathematically and practically

is the default insurance. Without default insurance, the investor’s borrowing limit is no

longer the whole expected future income but only the non-defaultable income since without

some form of insurance, there remains the possibility that default could occur and leave the

investor unable to fulfill obligations made against the defaultable income. Mathematically,

this requires the imposition of a moving boundary condition, and it is unclear how to proceed

in solving the associated control problem. The addition of default insurance to the model

allows the investor to guarantee debts, so the investor’s borrowing limit can jump at the time

of default without creating the potential for insolvency. Hence, default insurance allows for

a smooth transition from the pre-default problem to the post-default problem.
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Pragmatically, default insurance can be seen as a proxy for the investor’s aversion to

default. Because the investor is averse to the loss of the remaining income at default,

insurance purchases are made as a hedge. Both Richard [14] and Ye [13] showed that the

optimal amount of life insurance purchased by an investor is directly proportional to the size

of future income relative to wealth. That is, the greater the percentage of wealth that is tied

up in future income and hence would be lost through an early death, the more insurance is

purchased. Similarly, we expect that the amount of default insurance purchased should be

proportional to the percentage of total wealth that would be lost upon default, so part of

the cost of an optimal default insurance policy is the price the investor is willing to pay in

order to avoid loss of capital through default.

3.6 Markov Chain Approximation

In this section, we first derive the HJB equations for D and V . Recall that the HJB equa-

tions can be discretized and then interpreted as the dynamic programming principle for a

discrete-time control problem. However, as we encountered in Richard’s model in Section

2.4, direct discretization of the HJB equations is neither amenable to the discrete dynamic

programming interpretation nor to numerical implementation. Therefore, after obtaining the

HJB equations, we apply Ye’s logarithmic transformation, and the finite difference method

is then applied to the transformed HJB.

3.6.1 Post-Default HJB Equation. We first present the HJB equation for the post-

default utility D, which serves as a sort of subproblem for V. Standard dynamic programming

techniques, details of which are provided in the appendix, show that any solution to Problem

(D) satisfies

0 = sup
c,π,ζM∈U2

{
−λM(t)D(t, x) +Dt(t, x) + b2(t, x)Dx(t, x) + π2(t)σ2Dxx(t, x)

+ U(t, c(t)) + λM(t)B(t, ζM(t))

}
, (3.38)
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where

b2(t, x) = −c(t)− ηM(t)ζM(t) + (r + ηM(t))x+ (µ− r)π(t).

D also satisfies a terminal condition and a boundary condition. The terminal condition

follows directly from (3.32)

D(T, x) = B(T, x), x ∈ (0,∞). (3.39)

The boundary condition follows from the constraint for X2. If the investor ever reaches the

debt limit, all future funds are allocated to debt repayment, so there can be no further

consumption.

lim
x↓0

D(t, x) = −∞, t ∈ [0, T ]. (3.40)

3.6.2 Pre-Default HJB Equation. Next, we provide the HJB equation for V. Again,

the details of the derivation are in the appendix.

0 = sup
c,π,ζM ,ζD∈U1

− (λM(t) + λD(t))V (t, x) + Vt(t, x) + b1(t, x)Vx(t, x) + π2(t)σ2Vxx(t, x)

+ U(t, c(t)) + λM(t)B(t, ζM(t)) + λD(t)D(t, ζD(t)), (3.41)

where

b1(t, x) = −c(t)− ηM(t)ζM(t)− ηD(t)ζD(t) + (r + ηM(t) + ηD(t))x+ (µ− r)π(t).

The terminal and boundary conditions for V similar to those for D,


V (T, x) = B(T, x) x ∈ (0,∞)

lim
x↓0
V (t, x) = −∞ t ∈ [0, T ].

We reiterate that the purpose of the HJB equations are only to guide the choice of
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discrete-time control problem and discrete-time Markov chain. To rigorously establish that

solutions to (3.38) and (3.41) together with their respective terminal and boundary conditions

are solutions to the optimal control problems (D) and (V), respectively, would require a so-

called verification theorem, which we do not pursue here.

3.6.3 Logarithmic Transformation. Just as for the HJB equation derived in Section

2.4, (3.38) and (3.41) present difficulties for applying MCA. First, note that that in both

equations, the coefficient of Vx depends explicitly on x, so direct discretization does not

yield a discrete-time dynamic programming interpretation. Second, the singular boundary

condition at x = 0 poses a serious challenge for a numerical implementation. We overcome

both of the difficulties by following Ye in making a logarithmic transformation in order to

obtain an equivalent partial differential equation that can be appropriately discretized and

that moves the boundary out of the computational region.

The logarithmic transformation is accomplished changing the total wealth variable of the

HJB equations by

y = log(x). (3.42)

When necessary we will denote the pre- and post-default transformed variables as y1 and y2,

respectively. Futhermore, we define the transformed value functions, V̂ and D̂ by

V̂ (t, y) = V (t, exp(y)) = V (t, x) (3.43)

D̂(t, y) = D(t, exp(y)) = D(t, x). (3.44)

Hence, V̂ and D̂ equal the original value functions V and D so that the study of the trans-

formed problem directly yields the results of the original problem. Derivatives of D and D̂
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are related by

Dt(t, x) = D̂t(t, y)

Dx(t, x) = exp(−y)D̂y(t, y)

Dxx(t, x) = exp(−2y)(D̂yy(t, y)− D̂y(t, y)),

and similarly for V

Vt(t, x) = V̂t(t, y)

Vx(t, x) = exp(−y)V̂y(t, y)

Vxx(t, x) = exp(−2y)(V̂yy(t, y)− V̂y(t, y)).

Finally, we transform the control variables,

ĉ = exp(−y)c, (3.45)

π̂ = exp(−y)π, (3.46)

ζ̂M = exp(−y)ζM , (3.47)

ζ̂D = exp(−y)ζD, (3.48)

and note that because the transformation is smooth and monotonically increasing, a policy is

optimal in the transformed variables if and only if the corresponding untransformed policy is

optimal. The transformed control variables are interpreted as the percentage of the investor’s

total wealth allocated to the various decisions, rather than the dollar value.

Substituting the transformed derivatives and transformed variables into (3.38) and (3.41)
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and simplifying, we obtain

0 = sup
c,π,ζM∈U2

{
−λM(t)D̂(t, y) + D̂t(t, y) + b̂2(t, y)D̂y(t, y) +

π̂2(t)σ2

2
D̂yy(t, y)

+ U(t, exp(y) ĉ ) + λM(t)B(t, exp(y)ζ̂M(t))

}
, (3.49)

0 = sup
c,π,ζM ,ζD∈U1

{
−(λM(t) + λD(t))V̂ (t, y) + V̂t(t, y) + b̂1(t, y)V̂y(t, y) +

π̂2(t)σ2

2
V̂yy(t, y)

+ U(t, exp(y) ĉ ) + λM(t)B(t, exp(y)ζ̂M(t)) + λD(t)D̂
(
t, y + log(ζ̂D(t))

)}
, (3.50)

where

b̂2(t, y) = −ĉ(t)− ηM ζ̂M(t) + r + ηM(t) + π̂(t)(µ− r)− π̂2(t)σ2

2
,

b̂1(t, y) = −ĉ(t)− ηM ζ̂M(t)− ηD(t)ζ̂D(t) + r + ηM(t) + ηD(t) + π̂(t)(µ− r)− π̂2(t)σ2

2
.

The transformed terminal and boundary conditions are

D̂(T, y) = B(T, exp(y)) and D̂
y↓−∞

(t, y) = −∞, (3.51)

V̂ (T, y) = B(T, exp(y)) and V̂
y↓−∞

(t, y) = −∞. (3.52)

Note that the HJB equation for V̂ involves D̂ instead of D, which will be convenient

for optimization purposes as it makes use of the post- and pre-default log wealth variables

relationship,

y2 = y1 + log
(
ζ̂1D
)
.

With the HJB equations in hand, we continue with the finite difference method by dis-

cretizing the continuous-time PDE to get discrete-time difference relations.

3.6.4 Discretization. As discussed in Section 2.3, the discretization must be chosen

carefully to ensure that the finite difference relations can be interpreted as the expectation

of a discrete-time process. Let δ be the discrete time step size, and let h be the discrete
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wealth step size. Finite difference formulas are chosen as follows:

D̂t(t, y) =
D̂δ,h(t+ δ, y)− D̂δ,h(t, y)

δ
,+o(δ) (3.53)

b̂+2 (t, y)D̂y(t, y) = b̂+2 (t, y)
D̂δ,h(t+ δ, y + h)− D̂δ,hh(t+ δ, y)

h
+ o(h), (3.54)

b̂−2 (t, y)D̂y(t, y) = b̂−1 (t, y)
D̂δ,h(t+ δ, y)− D̂δ,h(t+ δ, y − h)

h
+ o(h), (3.55)

D̂yy(t, y) =
D̂δ,h(t+ δ, y) + D̂δ,h(t, y − h)− 2D̂δ,h(t, y)

h2
+ o(h), (3.56)

where

b̂+2 (t, y) = r + ηM(t) + π̂(t)(µ− r) (3.57)

b̂−2 (t, y) = ĉ(t) + ηM(t)ζ̂M(t) +
σ2π̂(t)2

2
, (3.58)

and

V̂t(t, y) =
V̂ δ,h(t+ δ, y)− V̂ δ,h(t, y)

δ
+ o(δ), (3.59)

b̂+1 (t, y)V̂y(t, y) = b+1 (t, y)
V̂ δ,h(t+ δ, y + h)− V̂ δ,hh(t+ δ, y)

h
+ o(h), (3.60)

b̂−1 (t, y)V̂y(t, y) = b−1 (t, y)
V̂ δ,h(t+ δ, y)− V̂ δ,h(t+ δ, y − h)

h
+ o(h), (3.61)

V̂yy(t, y) =
V̂ δ,h(t+ δ, y) + V̂ δ,h(t, y − h)− 2V̂ δ,h(t, y)

h2
+ o(h), (3.62)

where

b̂+1 (t, y) = r + ηM(t) + ηD(t) + π̂(t)(µ− r) (3.63)

b̂−1 (t, y) = ĉ(t) + ηM(t)ζ̂M(t) + ηD(t)ζ̂D(t) +
σ2π̂(t)2

2
. (3.64)

Inserting the finite difference formulas (3.53) - (3.56), (3.59) - (3.62) into the HJB equa-

tions (3.49) and (3.51), we obtain for D̂,
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D̂δ,h(t, y) =
1

1 + δλM(t)
sup
ĉ,π̂,ζ̂M

{
Qt,y
δ,h(y + h)D̂δ,hh(t+ δ, y + h) +Qt,y

δ,h(y)D̂δ,h(t+ δ, y)

+Qt,y
δ,h(y − h)D̂δ,h(t+ δ, y − h) + δU(t, exp(y)ĉ) + δλM(t)B(t, exp(y)ζ̂M)

}
,

(3.65)

where

Qt,y
δ,h(z) =



δ

h

(
b+2 (t, y) + π̂2(t)σ2

2h

)
if z = y + h

δ

h

(
b−2 (t, y) + π̂2(t)σ2

2

)
if z = y − h

1−Qt,y
δ,h(y + h)−Qt,y

δ,h(y − h) if z = y

Similarly for V̂ ,

V δ,h(t, y) =
1

1 + δ(λM(t) + λD(t))
sup
ĉ,π̂,ζ̂M

{
P t,y
δ,h(y + h)V̂ δ,h(t+ δ, y + h) + P t,y

δ,h(y)V̂ δ,h(t+ δ, y)

+P t,y
δ,h(y − h)V̂ δ,h(t+ δ, y − h) + δU(t, exp(y)ĉ) + δλM(t)B(t, exp(y)ζ̂M)

+δλD(t)D̂(t, y + log
(
ζ̂D(t)

)
)
}
, (3.66)

where

P t,y
δ,h(z) =



δ

h

(
b+1 (t, y) + π̂2(t)σ2

2h

)
if z = y + h

δ

h

(
b−1 (t, y) + π̂2(t)σ2

2h

)
if z = y − h

1− P t,y
δ,h(y + h)− P t,y

δ,h(y − h) if z = y

The transition probabilities Qt,y
δ,h and P t,y

δ,h , for appropriate choices of δ and h, constitute

legitimate transition probabilities. As noted above, the transformed control variables are

each a percentage of total wealth, and we may reasonably expect them to be relatively

small percentages. Moreover, the consumption and insurance policies are constrained to be

nonnegative. In addition, the financial parameters in real markets are relatively small, as
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well. Hence, we have 0 ≤ Qt,y
δ,h(z), P t,y

δ,h(z) ≤ 1 for all t, z.

3.6.5 Numerical Algorithm. The difference relations (3.65) and (3.66), along with the

respective terminal conditions, through backward iterations, can be employed to numerically

approximate V̂ and D̂ as well as the optimal control policies. For an initial wealth y0 and

temporal and spatial parameters δ and h, respectively, we generate a recombining trinomial

tree that originates from (t, y) = (0, y0). The post-default utility, D̂ must be approximated

first because its values are required in the finite difference relation for V̂ .

In the optimization step of the numerical algorithm for D̂, the optimal policies ĉ∗2, π̂
∗
2,

and ζ∗M2 are obtained from

ĉ∗2(t, y) = arg max
ĉ≥0

{
δU(t, exp(y)ĉ(t))− ĉ(t)D̂

δ,h(t+ δ, y)− D̂δ,h(t+ δ, y − h)

h

}
, (3.67)

π̂∗2(t, y) = arg max
π̂

{
π̂(t)(µ− r)D̂(t+ δ, y + h)− D̂(t+ δ, y)

h

+π̂2(t)

(
D̂δ,h(t+ δ, y + h) + D̂δ,h(t+ δ, y − h)− 2V̂ (t+ δ, y)

h2

−D̂
δ,h(t+ δ, y)− D̂(t+ δ, y − h)

h

)}
, (3.68)

ζ̂∗MM2(t, y) = arg max
ζ̂M≥1−exp(−y)I(t)

{
δB(t, exp(y)ζ̂M(t))

− ηM(t)ζ̂M(t)
D̂δ,h(t+ δ, y)− D̂δ,h(t+ δ, y − h)

h

}
. (3.69)

Since the functional forms of U and B are known and D̂(t+ δ, y) is known for all y, analytic

methods can be used to find the optimal policies. Indeed, for CRRA utilities, the RHS of

(3.67)-(3.69) either have a unique local and global maximum or else no maximum exists, so

either the optimal policies are at the global maximum, if feasible, or else the constraint is

tight. After the optimization is performed at each discretized t = kδ, we update D̂(kδ, y)

over the discretized wealth grid via the difference formula (3.65). Proceeding iteratively

backward, we obtain a numerical approximation to the solution of Problem (D).
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Once D̂ is approximated numerically, V̂ can also be approximated. The algorithm for V̂

is virtually the same as for D̂, though with a complication at the optimization step. The

optimization for the control policies ĉ1, π̂1, and ζM1 is once again straightforward. However,

the optimization for ζD1 requires some care. The optimal policy ζ∗D1
is obtained from

ζ∗D1
(t, y) = arg max

ζ̂D≥1−exp(−y)ID(t)

{
δD̂δ,h(t, y + ζ̂D(t))

− ηD(t)ζ̂D(t)
V̂ δ,h(t+ δ, y)− V̂ δ,h(t+ δ, y − h)

h

}
(3.70)

Although the RHS of (3.70) is analogous to the RHS of (3.69), D̂ is known only numerically.

If a feasible optimal policy exists, then the optimization step is straightforward. Otherwise,

we must rely on the fact that D̂ is strictly increasing because it is a utility, so the constraint

must be tight. In that case, we interpolate over the numerical data for D̂ to the boundary in

ζ̂D. Proceeding iteratively backward, we obtain a numerical approximation to the solution

of Problem (V).

As a final comment, in Section 2.4, we noted that the standard convergence proofs for

MCA do not apply directly to Richard’s model, and similarly, they cannot be directly applied

to the model developed in this chapter. We postpone further discussion of convergence until

Chapter 5.
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4. Application: Life Annuities

And Methuselah lived after he begat Lamech seven hundred eighty and two years,

and begat sons and daughters. And all the days of Methuselah were nine hundred

sixty and nine years: and he died.

– Genesis 5:27

One of the most important concerns of financial researchers and policy makers in the

United States is optimal financing of retirement. Indeed, in 2003 a leading academic on

pension finance and investment strategy, Zvi Bodie, wrote, “For many people, the most

important goal of financial planning is an adequate retirement income.” [2] In the past, em-

ployers offered retirement pensions that served to provide for the needs of retirees. However,

in recent years, employers have been modifying or eliminating their pension funds, placing

the responsibility for retirement financing on the individuals. Unfortunately, many retirees

are not well-prepared to identify the investment vehicles that best match their needs and

preferences for risk from among the many complex financial instruments available today.

Writes Bodie, “From a social welfare perspective, this development might actually be a step

backward. Risk is being transferred to those who are least qualified to manage it .. . . [W]e

seem to expect people to choose an appropriate mix of stocks, bonds, and cash after reading

a brochure published by an investment company. Some people are likely to make serious

mistakes.”

One of the most effective financial products available to help individuals fund retirement

is a life annuity. Retirees seek to maintain a reasonably comfortable lifestyle throughout

retirement on the one hand while also seeking to provide a legacy to any heirs. If retirees

consume too aggressively in order to accomplish the former, they risk outliving their savings.

If they consume too conservatively to accomplish the later, or simply to avoid outliving their

savings, they may unnecessarily forego a more comfortable lifestyle and increased happiness.

As discussed in the introduction, researchers have demonstrated under a variety of assump-
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tions about financial market behavior as well as individual attitudes towards risk that one

of the most efficient means by which retirees can maintain a reasonably comfortable lifestyle

and still leave an acceptable legacy is by placing a significant portion of their accumulated

wealth in annuity contracts upon retirement. For a financial market consisting of a risk-free

bond and an annuity contract, Yaari [21] demonstrates that if a retiree has no bequest mo-

tive, full annuitization is optimal. Indeed, in Yaari’s simple model, life annuities don’t simply

outperform other investment opportunities in expectation but dominate other investments

with probability one! In a more recent study, Davidoff, Brown, and Diamond [3] demonstrate

under a wide array of more realistic assumptions that retirees should annuitize a substantial

proportion of their savings.

In spite of the consensus view held by academic researchers, participation in the private

annuity market in the United States remains relatively low . A number of commentators have

suggested factors that might lead retirees to annuitize less than academic models propose.

An incomplete list of these includes:

(i) health shocks,

(ii) social security crowding out private annuitization,

(iii) premiums above actuarially fair prices,

(iv) high-profile failures of insurance companies,

(v) irrevocability,

(vi) imperfect information, and

(vii) erosion of purchasing power due to inflation.

For a more complete list, see [1].

The risk of health shocks, for instance, is a risk that retirees face when purchasing

annuities that is not included in standard models. In the typical life-cycle approach to

62



modeling a retiree’s uncertain time of death, survival functions with deterministic hazard

rates are commonly used. Thus, in such models, although the time of death is a random

variable, the known survival distribution is fully incorporated into the actuarial pricing of

the annuity contract so that the depreciation in value of the annuity contract is continuous

and deterministic throughout the life of the retiree. In reality, however, a retiree’s survival

probability changes stochastically upon certain health events, such as diagnosis of cancer

or other serious illnesses. In that case, the value of the annuity to the retiree can realize a

significant downward jump. Moreover, and perhaps more importantly since the re-sell value

of an annuity is not usually a major factor, in the event of a health shock, a retiree may

encounter a sudden, increased need for liquid wealth in order to meet medical expenses.

However, an annuity contract is often either irrevocable or equipped with steep cancellation

fees. A retiree’s inability to liquidate an annuity without substantial loss is a financial risk

known as liquidity risk.

In addition to liquidity risk, retirees also face counterparty, or credit, risk when purchas-

ing an annuity. Credit risk is the risk annuitants bear due to the financial soundness, or lack

thereof, of the institution that provides the annuity contract, resulting in the potential for

annuity default. Not only do drops in the credit rating of the annuity seller result in annuity

value depreciation, but more importantly, a leap to insolvency can result in a significant

loss of invested capital. Given the unattractiveness to retirees of re-entering the labor mar-

ket should a capital loss necessitate it, credit risk could impact the annuitization decision.

Moreover, historical failures of insurance companies as well as recent high-profile failures of

large financial institutions generally, may tend to heighten awareness of and aversion to the

counterparty risk inherent in annuity contracts.

Although annuity default is a real and important risk assumed by retirees, institutional

safety nets exist to help alleviate the effects of default. First, upon default, an insurance

company’s assets are seized by authorities who then act to liquidate the company’s assets and

divide the proceeds as fairly as possible among the insurance company’s obligees. Second,
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Figure 4.1: Annuity Value, Recovery, and Loss at Default

individual states each sponsor life and health insurance guaranty programs that help ensure

annuity contracts, although the guaranty is limited — [1] includes a table that shows state-

by-state coverage limits. The most common caps on state coverage are around $100-200,000.

On a national level, the National Organization of Life and Health Guaranty Associations

(NOLHGA) works together with the state guaranty associations to provide oversight and

assistance in case of the failure of an insurance company that operates in several states.

Through litigation and government sponsored programs, retirees may recuperate a significant

proportion of their losses in case of annuity default.

As an example of default with recovery, suppose an average 65-year old Utahn entering

retirement purchases a simple life annuity from an insurance company for $500,000. In return,

the insurance company pays, continuously, at a constant annual rate of about $31,000 until

either the retiree dies or reaches 105 years of age. Further suppose that at any given time,

the probability that the insurance company will default within a year, given that is presently

operational, is about 0.1%. In Figure 4.1, we plot the nominal value of the contract, the

marked-to-market value given the possibility of default and the recovery limit of $200,000,

and the retiree’s loss on default.
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The small discrepancy between the nominal value of the contract and the marked-to-

market value owes to the fact that the insurance company ignores its own default probability

in the price. Notice that a little after year 33, or when the retiree reaches age 88, the value

of the remaining annuity income reaches $100,000 so that the contract is henceforth fully

ensured. Thus, the loss from default is zero for the final 17 years of the contract, should the

retiree survive.

It seems reasonable that a guaranty from a state or federal government that partially

ensures annuity contracts could help eliminate some of a retiree’s aversion to institutional

credit risk and thereby attenuate the affect of credit risk on the retiree’s optimal annuitization

decision. However, as discussed in [1], due to various regulations, annuity sellers cannot

advertise the existence of guaranty programs, so retirees do not necessarily account for

recovery in their decision-making.

Below, we employ the model developed in the previous chapter to investigate a retiree’s

optimal annuity decision. There are, of course, a number of variations on the annuity contract

available to retirees, but we restrict our attention to simple annuities, in which a lump-sum

is paid at retirement in return for a continuously paid, constant rate of income until either

the retiree dies or reaches some T years of age. In the next section, we specify parameters

for the model, relying on typical financial parameters and actuarial tables.

After specifying the parameters, we study a 65-year-old retiree’s optimal annuity decision

in two main cases. First, we study a retiree’s optimal level of annuitization, for varying

insurer credit risk, that results in a total loss to the retiree upon default; that is, the retiree

believes that none of a defaulted annuity can be recovered. This case will be called the no

recovery case, and it serves to provide a lower bound for optimal annuitization by considering

the worse case scenario.

Following the worse case of no recovery, we study a retiree’s optimal annuity decision for

varying credit risk using typical recovery limits of $100,000–$300,000. This case is called the

partial recovery case.
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4.1 Model Calibration

As a first step in applying the investment consumption model of Chapter 3 to optimal

annuitization, it is necessary to determine “realistic” parameters for the financial market,

the utilities, and the random time probabilities. We draw heavily from [1].

4.1.1 Financial Market Parameters. Recent yields on US Treasury Inflation-protected

Securities (TIPS), an inflation-adjusted, risk-free asset, have been well below 1%. Historic

inflation-adjusted interest rates, however, are typically higher, and the annuity puzzle has

persisted through several regime changes in the risk-free rate. Therefore, we take r = .02,

which is a more historical value. In finance, the market mean rate of return is implied by

the equity risk premium, µ− r. Recent estimations of the market risk premium shows a pre-

mium of around 0.03, so we take µ = 0.05. Finally, a standard metric for calibrating market

volatility, the Chicago Board of Exchange Volatility Index, was around 20 in January 2013,

or in other words, σ = 0.2.

4.1.2 CRRA Utility Parameters. As discussed in Section 2.4, the standard choice of

utility for inter-temporal consumption and bequest is the CRRA utility,

U(t, z) = exp(−ρt) z
1−γ

1− γ
.

The parameter γ represents a retiree’s risk aversion, with larger γ implying greater aversion

to risk. The parameter ρ is a retiree’s subjective time-preference, or patience. While some

authors have commented on the virtues of the CRRA utility while others have noted its flaws,

we choose it mainly because it is the most widely used utility and because it is tractable.

Common choices for γ and ρ are 4 and 0.03, respectively.

4.1.3 Mortality Probability. A common mortality model in actuarial practice is the

Gompertz-Makeham model, which according to [1], takes as a functional form for the hazard
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rate

λD(t) =
1

d
exp

(
R + t− c

d

)
,

where R is the retirement age and c and d are parameters.

Babbel and Merrill calibrated the Gompertz-Makeham model against actuarial tables,

finding a good fit with c = 87.98 and d = 11.19.

4.1.4 Default Probability. The Municipal Bond Fairness Act of 2008 [12] included

historical corporate bond default rates by credit rating, over different agency ratings. The

data included in that report suggest a historic default rate of about 0.5% for AAA-rated

bonds, which is Standard & Poor’s highest credit rating, and 1% for AA-rated companies.

Since most life insurance companies possess high credit ratings, we investigate default hazard

rates from 0 to 3%, i.e., λD ∈ [0, 0.04].

4.1.5 Summary of Parameters. Table 4.1 summarizes the financial market and utility

parameters chosen for the numerical study.

Table 4.1: Summary of Market and Risk Parameters

r µ σ γ ρ λD T
.02 .05 .20 4 .03 [0, 0.04] 105

4.2 Computation and Discussion

We apply the calibrated model to the annuity puzzle as follows. Suppose a retiree has

x = $500, 000 in savings, and wishes to annuitize A dollars. The insurance company prices

the annuity actuarially fairly, i.e., ηM = λM , except that it does not include its own credit

risk when computing the annuity price. Ignoring transaction costs, the price of an annuity

paying rate α is then

A(α) = α

∫ T

0

exp

(
−
∫ s

t

(
r + ηM(u)

)
du

)
ds. (4.1)
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The maximum income rate that can be purchased is

αmax =
x∫ T

0
exp

(
−
∫ s
t

(
r + ηM(u)

)
du
)
ds
. (4.2)

Then for each α ∈ [0, αmax], we approximate V (x;α) numerically as described in Section

3.6.5. After V (x;α) is known, the optimal annuity rate is

α∗ = arg max
α
{V (x;α)},

and the optimal level of annuitization as percentage of wealth is

θ =
A(α∗)

x

4.2.1 Computational Details. The numerical method was implemented in Matlab

R2012b. The machines on which it was implemented were 2012 Mac Pro computers with 2

× 2.4 GHz 6-Core Intel Xeon processors and 64 GB 1333 MHz memory cards. For a given

default rate, the problem was parallelized in the annuity rate α over the 12 processors. With

δ = 0.01, h = 0.02, and a somewhat coarse α grid step of 1500, or 8% of αmax, computing

time for a fixed default rate was around 12 hours.

4.2.2 Numerical Results. Table 4.2 shows the optimal fraction of initial wealth annu-

alized, θ, without guaranty as well as for guaranty limits of $100,000, $200,000, and $300,000.

Table 4.2: Optimal Annuitization as Percentage of Wealth, by Recovery Limit

λD = 0 .01 .02 .03 .04
No Recovery 1 0.34 0.24 0.19 0.15
100K Limit 1 0.53 0.43 0.39 0.34
200K Limit 1 0.68 0.58 0.53 0.47
300K Limit 1 0.82 0.73 0.63 0.63

Table 4.2 shows that, as expected, full annuitization is optimal when there is no chance

for default (Column 1). When there is no guaranty, θ drops to 0.34 for a hazard rate of
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just 0.01. Hence, even for an insurance company with the highest credit rating it can be

optimal for a retiree to annuitize as little as 34% of their savings. Table 4.2 also shows that,

as expected, the guaranty attenuates somewhat the affect of default on the optimal recovery

rate.

Numerical studies also demonstrate that just as for life insurance in Richard’s model, the

optimal purchase of default insurance is a function of the ratio of illiquid wealth to liquid

wealth. Take for example, the no recovery case λD = .01, and suppose that the retiree

annuities the optimal 34% of total savings, and suppose that the retiree’s overall wealth

doesn’t significantly decrease from the initial $500, 000 over the course of retirement. Then

we find that the optimal proportion of wealth,
p∗D(t)

X(t)
, spent of credit default swaps is virtually

nothing. Alternatively, consider the same retiree but for whom total wealth plummets due

to repeated losses on investments. In the latter case, the retiree becomes willing to spend an

increasing amount of capital to insure the annuity contract. Thus, at retirement, the retiree

optimal level of annuitization is one for which the costs of insuring against default is zero

except under unlikely, unfavorable outcomes.

Similarly, we find that life insurance purchases increase with increasing size of remaining

annuity income relative to the total wealth, suggesting that retirees who purchase an annuity

only to see their remaining savings disappear find it attractive to purchase insurance to

provide an adequate bequest in case they do not live long enough to recuperate the annuitized

wealth.
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5. Conclusion

I have had my results for a long time: but I do not yet know how I am to arrive at

them.

– Carl Friedrich Gauss

In this chapter, we summarize the key contributions of this dissertation, including the

investment consumption model developed in Chapter 3 and its application to the optimal an-

nuity problem in Chapter 4. Following that, we outline several directions for future research,

including a discussion of the convergence problem as well as extensions of our investment

consumption model and applications.

5.1 Summary of Key Results

The first significant contribution of this dissertation is the development of an investment

consumption model that permits the study of optimal investment behavior in the presence

of a risky, illiquid income stream. This was accomplished by incorporating a random time

of default into a standard investment consumption model. However, the sudden change in

the investor’s wealth dynamics at the time of default presents a significant challenge to the

analysis of standard investment consumption models, as has been noted in previous attempts

to study such a model.

We have overcome the difficulty of dealing with sudden change in dynamics, firstly, by

including a credit default swap to hedge help the investor against default. Mathematically,

the credit default swap circumvents the problems associated with large jumps in the investor’s

wealth at the time of default by permitting a smooth transition between the investor’s wealth

before and after default. As a modeling tool, moreover, the default insurance is very useful

because it serves as a proxy for the investor’s disutility for default. Capital spent purchasing

default insurance could have instead either been consumed or invested towards the terminal

wealth. Moreover, borrowing against the illiquid income stream is more expensive when the
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income may default, which further reduces the utility for consumption and terminal wealth.

In addition to serving as a proxy for disutility towards default, the credit default swap

enabled us to define a pre-default cost functional and a separate post-default cost functional,

coupled through the post-default value function, or the default utility. Because each of the

cost functionals was defined over a deterministic interval with decision processes adapted only

to the filtration generated by Brownian motion, we were able to apply dynamic programming

techniques to obtain optimal pre-default and post-default decisions. The pre-default and

post-default decisions were then “glued” together, using measurable selection, at the time of

default.

The second way by which we have overcome the usual difficulties encountered with the

application of numerical dynamic programming techniques, and specifically, the Markov

chain approximation, is by applying a logarithmic transformation on the total wealth. As

illustrated in Section 3.6.5, the logarithmic transformation of the wealth variable and control

variables simultaneously removed explicit dependence on the wealth variable from the deriva-

tive coefficients in the discretized HJB equation, allowing for a probabilistic interpretation

and removed computational difficulties of working near wealth boundary.

A particularly nice feature of our model is its ability to cope with different income streams

that carry distinct rates of default. This, for instance, permitted investigation of an income

stream with a limited guaranty. In fact, a straightforward extension of our model allows for

separate sources of income that may default at different times and with different frequency.

The second significant contribution of this dissertation is the application of the investment

consumption model to the optimal annuity problem in the presence of credit risk. We have

demonstrated that the potential for annuity default leads to costs sufficient to drive the

retiree’s optimal annuitization level far below what conventional economic theory would

suggest. Relatively low annuitization remains optimal even when a retiree believes that

guaranty programs will help replace a portion of the lost annuity. Hence, while there are

certainly a number of important factors that contribute to the so-called annuity puzzle,
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credit risk certainly stands out as a prominent player.

5.2 Future Research

The investment model developed throughout this dissertation leads naturally to several other

problems, which are detailed below.

5.2.1 MCA Convergence. In his dissertation as well as subsequent papers on MCA

with a logarithmic transformation and its application to Richard’s model, Ye [13], claims

that the standard verification of local consistency is sufficient to establish the convergence

of MCA, although he does not even verify the local consistency. In [23], Ye demonstrates

the local consistency necessary for convergence on a model much simpler than Richard’s.

However, the theorems relating to local consistency that Ye claims as justification for the

convergence of his approach are not satisfied in their application to Richard’s model or even

to the simpler model of [23]. Every proof of convergence of MCA of which we are aware,

including the ones cited directly by Ye, require boundedness of the utility functions. However,

the CRRA utilities employed by Ye as well as in this paper are manifestly un-bounded.

The lack of a proof of convergence for MCA in the case of unbounded utility functions

represents an important gap in the theory, since in any useful application, the utility is either

a CRRA or other unbounded utility function. We seek a proof of convergence for MCA for

CRRA utilities, which would establish convergence in Ye’s application of MCA as well as

our own.

Not only does the theory not apply to Ye’s application of MCA to Richard’s model as it

does not apply to ours, but the sequence of discrete time Markov chains suggested the finite

difference method are not locally consistent with the controlled diffusion of total wealth!

The locally consistent DTMC paradigm developed by Kushner is extremely useful, but it

is just a sufficient condition, not a necessary one. In [5], the authors prove the convergence

of a Markov chain approximation scheme applied to a singular control problem, but their
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proof does not rely on local consistency. Instead, they rely on the existence and uniqueness

of a viscosity solution for the continuous-time HJB equation, and they then show that the

solutions of a sequence of approximating, discrete-time control problems converge to the

viscosity solution. In spite of the fact that local consistency cannot be applied to Ye’s

MCA approach, which our approach is based on, Ye provided convincing evidence that

his method does converge to the solution of the control problem by applying his method to

control problems with well-known explicit solutions. Ye showed numerically that by choosing

sufficiently small discretization parameters, the error between the closed-form solutions and

the numerical approximations is very small.

Problem. Provide a convergence proof for the MCA technique used in obtaining solutions

in Ye’s model as well as, of course, our own.

5.2.2 Regime-switching Models. In order to more completely model important mar-

ket variables, basic investment consumption models are sometimes extended to include pa-

rameters that switch between a finite set of states as a Markov chain. Such models are

often called regime-switching models in financial and economic applications. The theory of

diffusions has accordingly been extended to permit a drift and volatility that jumps between

finitely many states (see [20]), and studies of investment consumption with regime-switching

parameters have been made, such as in [18]. A general version of Ito’s formula permits the

application of dynamic programming techniques to regime-switching models, and even the

Markov chain approximation can be modified to handle regime-switching, as discussed in

[17]. Two interesting applications that can be studied by combining our model with regime-

switching include the optimal annuity decision with health shocks, and callable bonds.

5.2.3 Optimal Annuities with Health Shocks. As discussed in Chapter 4, one of the

factors believed to significantly affect a retiree’s annuity decision is the possibility of a health

shock, or a stochastic change in a retiree’s survival outlook. A retiree with a mortality hazard

rate that fluctuates stochastically in time faces not only a possible sudden depreciation in

73



the value of the annuity contract, viewed as an asset, but perhaps more importantly, can

also faces serious liquidity risk associated with the sudden need for cash to meet a jump in

health costs.

The effect of health shocks on investment and consumption have been studied somewhat.

For instance, in [6], Huang et. al. study a simple consumption problem for a retiree with

an uncertain time of death using a stochastic force of mortality. However, they modeled

the force of mortality using a diffusion. It is certainly not clear that a diffusion is a good

paradigm for a force of mortality, as changes in health tend to be less constant but more

sudden. Regime-switching provides a more natural framework for changes in health, and the

augmentation of our model with a regime-switching health process permits us to study the

following interesting problem:

Problem. Find the optimal annuity decision for a retiree who faces a regime-switching force

of mortality, both when the annuity is not defaultable and when it is defaultable.

5.2.4 Callable Bonds. One of the ways in which corporations finance activities is

through the issuance of debt in the form of corporate bonds. Typically, a corporate bond

provides its the obligee with a regular, constant rate of income until a fixed expiration date,

at which time the initial investment is repaid. Naturally, bonds are subject to counterparty

risk for which they receive an interest premium. Some bonds, known as callable, or re-

deemable, bonds, carry a provision that allow for the obligor to cancel the bond before the

nominal expiration in exchange for par value plus a premium. The fixed income nature of

our model matches the cash flows associated with a callable bond, and the random times

of our model can be interpreted as a random time of bond default and a random time of

redemption. Coupling this basic set-up with regime switching allows us to follow stochastic

improvements and declines in the corporate credit rating. The application of our model with

regime-switching leads to an interesting problem:

Problem. Given a financial market consisting of a risk-free bond and a corporate bond,
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determine the an individual or institutional investor’s optimal division of wealth between

the two bonds.

The financial market could also be expanded to include a stock.
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Appendix A. Proofs and Derivations

A.1 Derivation of (2.39)

We apply dynamic programming to by studying control policies in (3.24) over a short time

interval, h,

V (t, x) = sup
c,π,ζM∈U

Et,x
[∫ t+h

t

(
U(s, c(s)) + λM(s)B(s, ζM(s))

)
FM(s | t) ds

+

∫ T

t+h

(
U(s, c(s)) + λM(s)B(s, ζM(s)

)
FM(s | t) ds

+B(T, ζM(T ))FM(T | t)
]

= sup
c,π,ζM∈U

Et,x
[∫ t+h

t

(
U(s, c(s)) + λM(s)B(s, ζM(s)

)
FM(s | t) ds

+ FM(t+ h | t)
(∫ T

t+h

(
U(s, c(s)) + λM(s)B(s, ζM(s)

)
F (s | t+ h) ds

+ B(T, ζM(T ))FM(T | t+ h)

)]
(A.1)

From iterated conditioning and the Markov property for X,

V (t, x) = sup
c,π,ζM∈U

Et,x
[∫ t+h

t

(
U(s, c(s)) + λM(s)B(s, ζM(s)

)
FM(s | t) ds

+ FM(t+ h | t)Et+h,X(t+h)

[∫ T

t+h

(
U(s, c(s)) + λM(s)B(s, ζM(s)

)
F (s | t+ h) ds

+ B(T, ζM(T ))FM(T | t+ h)

] ]
= sup

c,π,ζM∈U
Et,x

[∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s))FM(s | t) ds

+ FM(t+ h | t)V (t+ h,X(t+ h))
]
. (A.2)

By Taylor’s theorem,

FM(t+ h | t) = exp

(
−
∫ t+h

t

λM(u) du

)
= 1− λM(t)h+ o(h2), (A.3)
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and by Ito’s lemma,

V (t+ h,X(t+ h)) = V (x) +

∫ t+h

t

(Vt(s,X(s)) + b(s,X(s))Vx(s,X(s))) ds

+

∫ t+h

t

σπ(s)Vx(s,X(s)))dW (s) +

∫ t+h

t

1

2
σ2π2Vxx(s,X(s)) ds,

(A.4)

where

b(t, x) = −c(t)− ηM(t)ζM(t) + (r + ηM(t))x+ (µ− r)π(t).

Substituting (A.3) and (A.4) into (A.2), we obtain

V (t, x) = sup
c,π,ζM∈U

Et,x
[∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s))FM(s | t) ds

+ (1− λM(t)h+ o(h2))

(
V (x) +

∫ t+h

t

(
Vt(s,X(s)) + b(s,X(s))Vx(s,X(s))

)
ds

+

∫ t+h

t

σπ(s)Vx(s,X(s)) dW (s) +

∫ t+h

t

1

2
σ2π2Vxx(s,X(s)) ds

)]
. (A.5)

Multiplying each side of (A.5) by 1/h, taking the limit as h ↓ 0, and rearranging, we arrive

at the HJB equation for V,

0 = sup
c,π,ζM∈U

{−λM(t)V (t, x) + Vt(t, x) + b(t, x)Vx(t, x)

+π2(t)σ2Vxx(t, x) + U(t, c) + λM(t)B(t, x)
}
, 0 ≤ t < T. (A.6)

A.2 Proof of Lemma 3.28

We assume the strong Markov property for X at the F-stopping time, τD, i.e.,

Et,x
[
f
(
X(τD + s)

)
| FτD

]
= EτD,X(τD)

[
f
(
X(s)

)]
, for all Borel-measurable f. (A.7)

Sketch of Proof. Since the expectation in (3.24) is conditioned on τD > t, iterated condition-
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ing gives,

Et,x
[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))
1τD>τM∧T

]
= Et,x

[
E
[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))
1τD>τM∧T | FτD

] ]
. (A.8)

By definition,

FτD =
{
A ∈ F : A ∩ {τD < t} ∈ Ft

}
,

and for each t, {τD < τM ∧ T} ∩ {τD < t} = ∪s≤t({τM ∧ T ≥ s} ∩ {τD < s}). Moreover,

{τM ∧ T ≥ s} ∩ {τD < s} ∈ Fs ⊆ Ft by construction, so {τD < τM ∧ T} is FτD -measurable.

In particular, it is “known” by τD, so it can be factored through the inner expectation in

(A.8),

Et,x
[
E
[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))
1τD>τM∧T | FτD

] ]
= Et,x

[
E
[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))
| FτD

]
1τD>τM∧T

]
. (A.9)

Next, we apply the strong Markov property (A.7),

Et,x
[
E
[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))
| FτD

]
1τD>τM∧T

]
= Et,x

[
EτD,X(τD)

[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))]
1τD>τM∧T

]
(A.10)

Substituting (A.10) into (A.8) produces

V (t, x) = sup
c,π,ζM ,ζD

Et,x
[∫ τM∧T∧τD

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
1τD≥τM∧T

+EτD,X(τD)

[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))]
1τD>τM∧T

]
. (A.11)
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Since

EτD,X(τD)

[(∫ τM∧T

τD

U(s, c(s)) +B
(
τM , ζM(τM)

))]
≤ D(τD, X(τD)), (A.12)

V (t, x) ≤ sup
c,π,ζM ,ζD

Et,x
[∫ τM∧T∧τD

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
1τD≥τM∧T

+D
(
τD, X(τD)

)
1τD<τM∧T

]
. (A.13)

On the other hand, let (c, π, ζM , ζD) be an arbitrary collection of decisions. By definition,

for every ε > 0 and for each (t, x), there exists a collection (cε, πε, ζεM) such that under

(cε, πε, ζεM),

D(t, x)− ε ≤ Et,x
[∫ ∧T∧τD

t

U(s, c(s)) +B
(
τM , ζM(τM)

)]
. (A.14)

Let

(c′, π′, ζ ′M , ζ
′
D) =


(c, π, ζM , ζD) if t ≤ τD

(cε, πε, ζεM , 0) if t > τD.

That (c′, π′, ζ ′M , ζ
′
D) is progressively measurable is non-trivial but can be shown by use of

the measurable selection theorem. Under the controls, (c′, π′, ζ ′M , ζ
′
D), (A.13) and (A.14)

combine to give

V (t, x) ≤ sup
c,π,ζM ,ζD

Et,x
[∫ τM∧T∧τD

t

U(s, c(s)) ds+B
(
τM , ζM(τM)

)
1τD≥τM∧T

+D
(
τD, X(τD)

)
1τD<τM∧T

]
≤ V (t, x) + ε. (A.15)

Since ε is arbitrary, (3.28) follows.
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A.3 Derivation of (3.38)

We apply dynamic programming to the post-default value function by studying optimal

control over a short time interval, [t, t + h]. From iterated conditioning and the Markov

property for X2,

D(t, x) = sup
c,π,ζM∈U2

Et,x
[

1

h

∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s)))FM(s | t) ds

+

∫ T

t+h

(U(s, c(s)) + λM(s)B(s, ζM(s)))FM(s | t) ds+B(T,X(T ))FM(T | t)
]

= sup
c,π,ζM∈U2

Et,x
[

1

h

∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s)))FM(s | t) ds

+ FM(t+ h | t)
(∫ T

t+h

(U(s, c(s)) + λM(s)B(s, ζM(s)))FMv ds

+ B(T,X(T ))FM(T | t+ h)

)]
= sup

c,π,ζM∈U2
Et,x

[
1

h

∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s)))FM(s | t) ds

+ FM(t+ h | t)D(t,X2(t+ h))
]
. (A.16)

The survival probability FM(t+ h | t) can be expanded using Taylor’s theorem,

FM(t+ h | t) = exp

(
−
∫ t+h

t

λM(u) du

)
= 1− λM(t)h+ o(h2). (A.17)

Assuming D is sufficiently smooth, Ito’s lemma applied to D gives

D(t+ h,X2(t+ h)) = D(x) +

∫ t+h

t

[
Dt(s,X2(s)) + b2(s,X(s))Dx(s,X2(s))

]
ds

+

∫ t+h

t

σπ(s)Dx(s,X2(s)) dW (s) +

∫ t+h

t

1

2
σ2π2Dxx(s,X2(s)) ds,

(A.18)

where

b2(t, x) = −c(t)− ηM(t)ζM(t) + (r + ηM(t))x+ (µ− r)π(t)
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Substituting (A.17) and (A.18) into (A.16), we obtain

D(t, x) = sup
c,π,ζM∈U∈

Et,x
[∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s))FM(s | t) ds

+
(
1− λM(t)h+ o(h2)

)(
V (t, x) +

∫ t+h

t

[
Dt(s,X2(s)) + b2(s,X(s))Dx(s,X2(s))

]
ds

+

∫ t+h

t

σπ(s)Dx(s,X2(s))dW (s) +

∫ t+h

t

1

2
σ2π2Dxx(s,X2(s)) ds

)]
. (A.19)

Multiplying each side of (A.19) by 1/h and taking the limit as h ↓ 0, we arrive at the HJB

equation for D,

0 = sup
c,π,ζM inU∈

{
−λM(t)D(t, x) +Dt(t, x) + b2(t, x)Dx(t, x) + π2(t)σ2Dxx(t, x)

+ U(t, c(t)) + λM(t)B(t, ζM(t))

}
. (A.20)

A.4 Derivation of (3.41)

The derivation of the HJB equation for the post-default value function, V , is analogous to

the derivation for D given in the preceding section.
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V (t, x) = sup
c,π,ζM ,ζD∈U1

Et,x
[∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s)) + λD(s)D(s, ζD(s))F (s | t) ds

+

∫ T

t+h

(U(s, c(s)) + λM(s)B(s, ζM(s)) + λD(s)D(s, ζD(s))F (s | t) ds

+B(T,X(T ))FM(T | t)
]

= sup
c,π,ζM ,ζD∈U1

Et,x
[∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s)) + λD(s)D(s, ζD(s))F (s | t) ds

+ F (t+ h | t)
(∫ T

t+h

(
U(s, c(s)) + λM(s)B(s, ζM(s)) + λD(s)D(s, ζD(s))

)
F (s | t) ds

+B(T,X(T ))FM(T | t+ h)

)]
= sup

c,π,ζM ,ζD∈U1
Et,x

[∫ t+h

t

(U(s, c(s)) + λM(s)B(s, ζM(s)) + λD(s)D(s, ζD(s))F (s | t) ds

+ F (t+ h | t)V (t,X1(t+ h))
]
. (A.21)

The survival probability F (t+ h | t) can be expanded using Taylor’s theorem,

F (t+ h | t) = exp

(
−
∫ t+h

t

λM(u) + λD(u) du

)
= 1− (λM(t) + λD(t))h+ o(h2), (A.22)

and assuming V is sufficiently smooth, Ito’s lemma applied to V gives

V (t+ h,X1(t+ h)) = V (x) +

∫ t+h

t

(Vt(s,X1(s)) + b1(s,X(s))Dx(s,X2(s))) ds

+

∫ t+h

t

σπ(s)Dx(s,X2(s))) dW (s) +

∫ t+h

t

1

2
σ2π2Dxx(s,X2(s)) ds,

(A.23)

where

b1(t, x) = −c(t)− ηM(t)ζM(t)− ηD(t)ζD(t) + (r + ηM(t) + ηD(t))x+ (µ− r)π(t)

Substituting (A.22) and (A.23) into (A.21), multiplying by 1/h, and letting h ↓ 0, we arrive
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at the HJB equation for V,

0 = −(λM(t) + λD(t))V (t, x) + Vt(t, x) + b1(t, x)Dx(t, x) + π2(t)σ2Dxx(t, x)

+ U(t, c(t)) + λM(t)B(t, ζM(t)) + λD(t)D(t, ζD(t)). (A.24)
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