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abstract

An Equivalence of Shape and Deck Groups; Further Classification of Sharkovskii Groups

Tyler Willes Hills
Department of Mathematics, BYU

Doctor of Philosophy

In part one we show that for a compact, metric, locally path-connected topological space
X, the shape group of X - as defined in Foundations of Shape Theory by Mardesic and
Segal - is isomorphic to the inverse limit of discrete homotopy groups introduced by Conrad
Plaut and Valera Berestovskii. We begin by providing the reader preliminary definitions
of the fundamental group of a topological space, inverse systems and inverse limits, the
Shape Category, discrete homotopy groups, and culminate by providing an isomorphism of
the shape and deck groups for peano continua. In part two we develop work and provide
further classification of Sharkovskii topological groups, which we call Sharkovskii Groups.
We culminate in proving the fact that a locally compact Sharkovskii group must either be
R if it is not compact, or a torsion-free solenoid if it is compact.

Keywords: fundamental group, discrete homotopy group, inverse system, inverse limit, shape 
category, shape group
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Chapter 1. Introduction

1.1 Homology Theory

One encounters homology and homotopy theories very early on in a course in algebraic

topology. These theories play an important and vital role in the development, study, and

usefulness of algebraic topology, and in order to understand the contents of this paper, we

need to understand the purpose, goals, and shortcomings, of both homology theory and

homotopy theory.

The origins of homology theory can be traced back to the mid-to-late 1800s with the

work of Euler, Riemann, and Betti. The theory was developed in order to study and classify

manifolds by identifying, in a certain sense, the various type of ”holes” within the space

- if two spaces have different types of ”holes”, then they are fundamentally different in

a topological sense. For example, the 1-dimensional sphere S1 is topologically a different

manifold than an arc, since S1 has a ”hole” while an arc does not; the plane R2 is a different

manifold than the 2-dimensional sphere S2 since the latter has a ”hole” while the former

does not – and both spaces are different than the 2-dimensional torus T2 since the torus has

two ”holes”.

Homology theory makes the idea of counting and classifying the holes within a space

precise by considering equivalence classes of cycles of various dimension within the space,

where two cycles of the same dimension are considered equivalent if one can be continuously

deformed to the another. A cycle that can be continuously deformed to a point is called

nulhomotopic and is considered trivial. For example, a cycle that goes around the circle S1

is not nulhomotopic, while any cycle in an arc is. In both the sphere S2 and the plane R2,

any 1-dimensional loop is nulhomotopic; however, S2 has a non-nulhomotopic 2-dimensional

cycle - perhaps better thought of as a balloon - that goes around the ”hole” of the sphere,

while any 2-dimensional cycle in R2 is, as in the 1-dimensional case, nulhomotopic.

The non-nulhomotopic n-dimensional equivalence classes of cycles generate an algebraic
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group, called the n-th homology group of the space, which we associate to the space. The

usefulness of these groups in classifying and distinguishing spaces is due to the fact that these

groups are homotopy invariants. That is, if two spaces have the same homotopy type, then

they have the same homology groups; put another way, if two spaces do not have the same

homology groups, then they do not have the same homotopy type - in particular they are

not homeomorphic. Thus, homology theory provides a tool which can be used to distinguish

if two spaces are not homeomorphic. What’s more, the homology groups of a space have the

benefit of ease of computability, due in a large part to the famous theorem by Mayer and

Vietoris and the use of exact sequences.

1.2 Homotopy Groups and Covering Space Theory

Similar to the homology groups of a space, we can associate other homotopy invariant al-

gebraic groups, homotopy groups, to a pointed space - a pointed space is simply a space

with a chosen basepoint. The first homotopy group, called the fundamental group or π1, of

a space was first introduced and defined by Poincare in 1894 as an alternative to homology

theory. The fundamental group had several advantages over homology and was generalized

to higher homotopy groups denoted by πn for a natural number n. Intuitively, the n-th

homotopy group of a space consists of equivalence classes of maps from the sphere Sn into

the space, where as in the case of homology, two maps are considered equivalent if one can

be continuously deformed into the other.

One of the uses of the fundamental group of a space is its integral role in the theory of

covering spaces. For certain nice spaces there is a Galois correspondence between subgroups

of the space’s fundamental group and its covering spaces. Related to this correspondence is

the fact that for this same class of spaces, a space’s fundamental group is isomorphic to the

group of deck transformations of the space’s universal cover. As mentioned, the connections

between the fundamental group and covering space theory hold for a certain class of nice

spaces, and generalizing these connections to other, somewhat more pathological, spaces
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and a weaker notion of cover is what initially motivated Plaut and Berestovskii to introduce

discrete homotopy groups in their paper [7, p.1750], a topic we will visit in a later section.

1.3 Shape Theory

Despite the incredible usefulness of homotopy groups, there are some insufficiencies, however.

The Warsaw Circle, for example, does not have the homotopy type of a point, yet all of its

homotopy groups are 0 [20, p.xiii-xiv]. Similarly, the spaces S2 × RP3 and RP2 × S3 have

isomorphic homotopy groups but are not homotopy equivalent. This is because homotopy

theory is suited best for spaces which behave nice locally. in 1968, hoping to develop tools

and a theory which would be better suited for spaces which do not behave well locally, Karol

Borsuk introduced shape theory.

The fundamental group considers maps of S1 into the space, whereas Borsuk considered

embedding a pathological space in a larger, more well-behaved space like an absolute neigh-

borhood retract of a metric space such as the Hilbert cube. This enabled him to consider

a decreasing sequence of neighborhoods {Un} in the larger space whose intersection,
⋂
Un,

was the embedded original space. He then considered a sequence {fn} of maps of S1 into

the decreasing sequence - fn : S1 → Un [20, p.xiv-xv]. This approach led Borsuk to develop

a theory that agreed with homotopy theory on ANRs but generalized to more pathological

spaces.

A few years later, Mardesic and Segal took a different approach to shape theory, which

is the approach we take in this paper. This approach relies on nerves of covers of the space

in question, which provides the benefit of not requiring an embedding into a larger space.

Essentially, this approach looks at the inverse limit of an inverse system of homotopy groups

of a sequence of nerves of refining open covers whose mesh goes to 0.
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1.4 Discrete Homotopy Groups

As was mentioned in the section on homotopy groups and covering space theory, for a

certain class of nice spaces, there are intimate connections between the fundamental group

of a space and the space’s covers. This class of spaces includes those which are connected,

locally path-connected, and semilocally simply-connected. In 2007 Plaut and Berestovskii

introduced a weaker notion of covering space for spaces which they called coverable [7,

p.1748]. These coverable spaces include geodesic metric spaces, connected and locally path-

connected compact spaces, Peano continua, and more pathological spaces like the topologist’s

sine curve as well as totally disconnected spaces. Associated with each coverable space is

an analogue of the classical universal cover called the uniform universal cover, to which is

associated a group which Plaut and Berestovskii call the deck group [7, p.1750].

In classical covering space theory one considers the fundamental group of the space. In

coverable space theory, rather than maps of S1 into the space, one instead considers algebraic

groups, called discrete homotopy groups, consisting of classes of discrete loops, i.e. a finite

set of points in the space satisfying certain conditions involving what Plaut and Berestovskii

call an entourage [7, p.1749]. One then consider an inverse system, called the fundamental

inverse system [7, p.1750], of these groups, the inverse limit of which is the deck group of

the space.

The main result of part 1 of this dissertation is the following, see Theorem 28.

Theorem 1. Let (X, x0) be a compact, connected locally path-connected, pointed, metric

space, then the shape group of X is isomorphic to the deck group of X.
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Chapter 2. Inverse Systems, Inverse Limits, and a

few Categories

2.1 Inverse Systems, Inverse Limits, and Category Pro

Much of the content in this section can be found in [20, p.3-7]. Let S be a set. A preordering

on S is a reflexive and transitive binary relation ≤, so that for any s, s′, s′′ ∈ S, we have

1. s ≤ s

2. s ≤ s′ and s′ ≤ s′′ imply s ≤ s′′

We call S a preordered set if it has a preordering. By a directed set we mean a preordered

set with the property that if s, s′ ∈ S then there exists s′′ ∈ S such that s ≤ s′′ and s′ ≤ s′′.

An ordering on S is a preordering that is also antisymmetric; that is, s ≤ s′ and s′ ≤ s

together imply s = s′. A total or linear ordering is an ordering for which, given any two

elements s, s′ ∈ S then either s ≤ s′ or s′ ≤ s. Note that if an ordering is total then it is

directed.

Let C be a category. An Inverse System in C is a triple X = (Xi, pi,i′ , I) where I is a

directed set, Xi is an object in C for each i ∈ I, and pi,i′ : Xi′ → Xi is a morphism in C

whenever i ≤ i′ with the conditions that pi,i : Xi → Xi is the identity on Xi and if i ≤ i′ ≤ i′′

then pi,i′′ = pi,i′ ◦ pi′,i′′ . We call the Xi’s terms and the pi,i′ ’s connecting morphisms. If I is

the set of natural numbers with its standard total ordering, then we often call X an inverse

sequence and write X = (Xn, pn,n+1) since all nonconsecutive morphisms are compositions

of consecutive morphisms.

If I consists of only one element, then we call the system X rudimentary and often write

it, with abusive notation, simply as X where X is the single term.

If X = (Xi, pi,i′ , I) and Y = (Yj, qj,j′ , J) are inverse systems in C, then we define a

morphism between the two systems Ψ : X→ Y to consist of a set map ρ : J → I and maps
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(fj : Xρ(j) → Yj), one such map for every j ∈ J , with the condition that each pair j ≤ j′ ∈ J

admits an i ∈ I such that ρ(j), ρ(j′) ≤ i with

fj ◦ pρj ,i = qj,j′ ◦ fj′ ◦ pρj′ ,i

which is equivalent to the commutativity of the following diagram. Note that in such dia-

grams we often omit the letters p, q and their indices, since we understand the corresponding

morphisms to be the connecting morphisms in their respective systems.

Xρ(j) Xi Xρ(j′)

Yj Yj′

fj fj′

If Ψ : X→ Y is a morphism between inverse systems we often write it (fj, ρ) : X→ Y.

An example of a morphism from a rudimentary system X to an inverse sequence can be

understood by a commutative diagram of the form

X

Y1 Y2 Y3 . . .

f1
f3

An example of a morphism from an inverse sequence to a rudimentary system consists

of only one morphism f , since ρ : J → I has only one image.

X1 X2 X3 . . .

Y

f

Due to the prominent role they play in this area of mathematics, we include an example

of a morphism between two inverse sequences.

X1 X2 X3 . . .

Y1 Y2 Y3 . . .

f1 f2 f3
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We can compose morphisms of inverse systems. Suppose Z = (Zk, rk,k′ , K) is another

system and (gk, τ) : Y → Z is a morphism from Y to Z. We define (hk, σ)X → Z where

σ = ρ ◦ τ and hk = gk ◦ fj. To see that this defines a morphism from X to Z consider the

following diagram.

Xi′′

Xσ(k) Xi Xρ(j) Xi′ Xσ(k′)

Yτ(k) Yj Yτ(k′)

Zk Zk′

fτ(k) fj fτ(k′)

gk gk′

Here, τ(k), τ(k′) ≤ j, σ(k), ρ(j) ≤ i, ρ(j), σ(k′) ≤ i′ where the existence of j, i, i′ and

the commutativity of the bottom three diagrams follow by the properties of morphisms of

inverse systems. i′′ is chosen by the fact that I is a directed set and the commutativity of

the associated top portion of the diagram follows from the fact that X is an inverse system.

Furthermore, function composition is clearly associative from the definition.

For an inverse system X we can define the identity morphism IX = (idi, idI) : X → X

where idI : I → I is the identity function on I, and idi : Xi → Xi for each i ∈ I. We note

that (idi, idI) ◦ (fj, ρ) = (fj, ρ) ◦ (idi, idI) = (fj, ρ), and thus can define a category inv-C

with objects inverse systems in C and morphisms the morphisms between inverse systems

just defined.

If (fj, ρ) and (gj, τ) are two morphisms from X→ Y, we say they are equivalent, (fj, ρ) ∼

(gj, τ), if the following holds. For any j ∈ J , there is an i ∈ I, with ρ(j), τ(j) ≤ i for which

the following diagram is commutative.

Xρ(j) Xi Xτ(j)

Yj

fj
gj
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To see this is an equivalence relation, we trivially note that (fj, ρ) ∼ (fj, ρ), and if

(fj, ρ) ∼ (gj, τ) then (gj, τ) ∼ (fj, ρ). If (fj, ρ) ∼ (gj, τ) and (gj, τ) ∼ (hj, σ) then the

following commutative diagram suffices to show (fj, ρ) ∼ (hj, σ).

Xi′′

Xρ(j) Xi Xτ(j) Xi′ Xσ(j)

Yj

fj
gj

hj

We also provide the following useful facts.

1. (fj, ρ) ∼ (gj, τ) implies (hk, σ) ◦ (fj, ρ) ∼ (hk, σ) ◦ (gj, τ)

2. (fj, ρ) ∼ (gj, τ) implies (fj, ρ) ◦ (hk, σ) ∼ (gj, τ) ◦ (hk, σ)

3. (gj, τ) ◦ (fj, ρ) ∼ (g′j, τ
′) ◦ (f ′j, ρ

′)

1) and 2) will imply 3), so we prove the first two facts. Observe that the commutativity of

Xσρ(k) Xi Xστ(k)

Yσ(k)

Zk

fσ(k)

gσ(k)

hk

implies 1), and the commutativity of

Xi′′

Xσρ(k) Xi Xσ(j) Xi′ Xστ(k)

Yρ(k) Yj Yτ(k)

Zk

hρ(k) hj hτ(k)

fk
gk

implies 2), from which 3) follows.
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The discussion above provides a well-defined category pro-C with objects inverse systems

in C and morphisms equivalence classes, with respect to the above equivalence relation, of

morphisms (fj, ρ) between inverse systems. We denote these classes by [fj, ρ]. The identity

morphism class is the class containing (idi, idI) and the composition of classes is defined by

the formula [fj, ρ] ◦ [gk, τ ] = [fj ◦ gk, ρ ◦ τ ].

Definition 2. If X = (Xi, pi,i′ , I) is an inverse system in the category C, then we understand

an inverse limit of X to be an object X in C, together with a morphism p : X → X often

called the projection morphism, in pro-C with the universal mapping property.

If f : Y → X is a morphism in pro-C, there is a unique morphism h : Y → X so that

p ◦ h = f , or in other words, the following diagram is commutative in pro-C.

X

Y X

p

f

h

Inverse limits are unique – if q : Z → X is also an inverse limit of X, then there are

unique morphisms i : X → Z and j : Z → X in C so that q ◦ i = p and p ◦ j = q. Then,

qij = q and pji = p, thus by uniqueness, we have ij = idZ and ji = idX , so that i and j are

isomorphisms in C. [20, p.54]

In the following categories every inverse system has an inverse limit: Set, Ab, Grp, Top,

Cpt (compact Hausdorff spaces) [20, p.55].

2.2 The Category Shape

For additional information on this subject, one can consult [20, p.25-26]. Suppose C is a

category and D a subcategory of C. Let X be an object in C, by a (C,D)-expansion, we

mean a morphism p : X → X = (Xi, pi,i′ , I) in pro-C, from X to an inverse system X in C,

with the universal property:
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If Y = (Yj, qj,j′ , J) is an inverse system in D and g : X → Y is a morphism in pro-C,

then there is a unique morphism f : X → Y in pro-C satisfying g = f ◦ p. In other words,

we have the following commutative diagram.

X X

Y

f
p

g

We note that if X has two (C,D)-expansions, p : X → X and p′ : X → X′. By the

universal mapping property, there exist unique morphisms i and i′ satisfying ip = p′ and

i′p′ = p. Hence, i′ip = p, and by uniqueness, we have i′i = idX and ii′ = idX′ . Thus, X and

X′ are isomorphic. We call i the natural isomorphism.

A subcategory D of the category C is called dense in C if every object in C admits a

(C,D)-expansion.

Suppose X and Y have (C,D)-expansions p : X → X, p′ : X → X′, q : Y → Y and

q′ : Y → Y′. We define morphisms Ψ : X → Y and Ψ′ : X′ → Y′ to be equivalent if the

following diagram commutes in pro-D.

X X′

Y Y′

i

Ψ Ψ′

j

With i and j being the natural isomorphisms as discussed above. It is easy to see that

this defines an equivalence relation ∼, and so we can define the shape category for the pair

(C,D), written Sh(C,D). The objects of Sh(C,D) are the objects of C and the morphisms

are equivalences classes of morphisms in pro-C with respect to the equivalence relation just

defined. Hence, a morphism in Sh(C,D), G : X → Y is represented by a diagram

X X

Y Y

f

p

q

11



Chapter 3. The Fundamental Group, Discrete Ho-

motopy Groups, and an Equivalence of Their

Inverse Limits

3.1 The Fundamental Group

The first homotopy group, the fundamental group, of a space has played a very important role

in the development and application of algebraic topology. In addition to its crucial role in the

development of covering space theory and the consequent galois correspondence between the

covers of a space and the subgroups of the space’s fundamental group, many famous results

in mathematics can be easily proven using the fundamental group. These results include the

fundamental theorem of Algebra [14, p.31], Brouwer’s fixed point theorem for the unit disk

[14, p.31], and the remarkable result that states that for any map from the unit sphere S2 to

R2 there exists a pair of antipodal points in S2 which map to the same point in R2 [14, p.32].

This last result is both remarkable and surprising, because this means that at any given time,

there exists a pair of points on the earth, directly opposite to one another, with both the

same barometric pressure and temperature, for example. We also obtain rigorous proofs of

somewhat more intuitive results such as surfaces with differing genus are not homeomorphic

or even homotopy equivalent [14, p.51], and Rm is homeomorphic to Rn if and only if m = n.

Furthermore, the fundamental group enables us to think of any group in a more concrete,

geometric fashion; an elegant construction shows that for a given abstract group G, there

exists a two-dimensional cell complex with G as its fundamental group [14, p.52].

In the introduction we described the fundamental group as essentially mapping circles

into a space X. We take a slightly different but equivalent approach here by mapping in the

unit interval [0, 1]. In this discussion, X is a topological space and all maps are assumed to

be continuous. For more information on this topic, a great source is [14, p.25-28]

Definition 3. A map f : [0, 1] → X is called a path in X. The path f̄ : [0, 1] → X defined

by f̄(x) = f(1− x) is said to be the reverse of f . If z = f(0) = f(1) then the map f is said

12



to be a loop based at z. A path f is said to be reduced if there does not exist a pair a < b in

[0, 1] such that f |[a,b] is homotopic to a constant path.

If f is a path in X, then the path f̄ has the same image as f but traverses the image in

the reverse orientation.

Definition 4. If f and g are two paths in a space X with basepoint z, then a homo-

topy between f and g, relative to the endpoints (or a relative homotopy) is a map H :

[0, 1] × [0, 1] → X such that H|[0,1]×{0} = f , H|[0,1]×{1} = g, H|{0}×[0,1] = f(0) = g(0), and

H|{1}×[0,1] = f(1) = g(1). If there exists a relative homotopy between f and g, we say f and

g are homotopic.

Define the relation f ∼ g if there exists a relative homotopy between f and g. This

relation is readily seen to be an equivalence relation, and we denote the equivalence class of

f by [f ] and call [f ] the homotopy class of f .

If f and g are two paths in X with f(1) = g(0), then we can concatenate these paths

to form a new path f ∗ g : [0, 1] → X defined by f ∗ g(x) = f(2x) if x ∈ [0, 1
2
] and

f ∗ g(x) = g(2x− 1) if x ∈ [1
2
, 1]. It is well known that this induces a well-defined operation

on the set of equivalence classes of paths in X.

If we pick a basepoint z ∈ X and consider the set of loops starting and ending at z, we can

concatenate any two loops f and g. That is, we have a well-defined operation [f ]·[g] = [f ∗g].

If we define the constant loop e : [0, 1] → X defined by e(x) = z for all x ∈ [0, 1] to be a

group identity then the inverse of [f ] is [f ]−1 = [f̄ ]

Definition 5. The fundamental group of a topological space X, based at x0 and written

π1(X, x0), is the group whose elements are homotopy classes of loops based at x0 with group

operation · as defined above.

Recall that if X and Y are spaces with map f : X → Y , then the map f∗ : π1(X, x0)→

π1(Y, f(x0)) is the induced homomorphism defined by f∗[α] = [f ◦α] for [α] ∈ π1(X, x0), and

also recall that for a cover O = {Oi} of a space X, there is an associated simplicial complex,
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N(O), called the nerve of O. For every Oi ∈ O there is an associated vertex, and for any

n-wise intersection of open sets Oi1 , . . . , Oin there is an associated n−1-dimensional simplex

with vertices the corresponding n vertices.

It is well-known that in many cases for a space X, one can take a sequence of refining

open covers of X whose mesh goes to zero, so that X can be expressed as the inverse limit

of the nerves of the covers. This is, in particular, true for compact metric spaces. We shall

prove this as a corollary to a more general result, but in order to do this we need a few

definitions and results from [20].

Recall that a if Y is a subspace of X, then Y is a retract of X if there exists a map

r : X → Y such that r ◦ i : Y → Y is the identity on Y , which is equivalent to r|Y = idY .

If Y is a retract of an open set U of X containing Y , then Y is said to be a neighborhood

retract of X.

A class C spaces is called weakly hereditary if it satisfies the two conditions

1. If X ∈ C and Y is a closed subset of X, then Y ∈ C.

2. If X and Y are homeomorphic and X ∈ C, then Y ∈ C.

Definition 6. A space X is called an absolute (neighborhood) retract of a weakly hereditary

class C, if X satisfies

1. X ∈ C and

2. if X is homeomorphic to Y , Y is a closed subspace of Y ′, and Y ′ ∈ C, then Y is a

(neighborhood) retract of Y ′.

The following is a generalization of the notion of ε-near for metric spaces.

Definition 7. Suppose f, g : X → Y are maps from the space X to the space Y , and let O

be an open cover of Y . f and g are O-near if given x ∈ X there exists U ∈ O so that f(x)

and g(x) are both in U .
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The following definition is closely related to inverse limits, and the two coincide when

working in the category pro-Cpt.

Definition 8. Let X be a space. By a resolution of X we mean an inverse system X =

(Xi, pi,i′ , I) and a morphism p : X → X in pro-Top satisfying the following two conditions.

1. If Y is an ANR, O is an open cover of Y , and f : X → Y is a map. Then, there exists

i ∈ I and a map fi : Xi → Y such that f and fi ◦ pi are O-near.

2. If Y is an ANR, O is an open cover of Y . Then there is an open cover O′ of Y so that

if i ∈ I and f, f ′ : Xi → Y are maps so that f ◦ pi and f ′ ◦ pi are O′-near, then there is

an i′ ∈ I, i′ ≥ i so that f ◦ pii′ and f ′ ◦ pii′ are O-near. If each Xi is an (polyhedron)

ANR, we say that p is an (polyhedral resolution) ANR-resolution of X.

The following theorem [20, p.74] shows that in the compact case, resolutions and inverse

limits coincide.

Theorem 9. If p : X → X is a resolution in pro-Cpt. Then p is a resolution of X if and

only if p is an inverse limit of X.

Another useful theorem is the following [20, p.79].

Theorem 10. Let p : X → X be a morphism in pro-Top. If p has the following two properties

1. If i ∈ I and U is an open set in Xi containing the closure of pi(X), then there exists

i′ ≥ i so that pii′(Xi′) ⊆ U .

2. If O is a normal open cover of X, then there exists i ∈ I and a normal open cover O′

of Xi so that (pi)
−1(O′) is a refinement of O.

then p is a resolution of X.

Before proving Theorem 12 we need the following definition.
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Definition 11. Let X be a space, and C an open cover of X with nerve N(C). If {(ψU , U)}

is a partition of unity subordinate to C, then there is a canonical map p : X → N(C)

defined as follows. If U1, . . . , Un are all the open sets containing the point x ∈ X, then

p(x) = (ψU1(x), . . . , ψUn(x)) given in barycentric coordinates with respect to the vertices

corresponding to the open sets U1, . . . , Un. The star of a vertex v is the union of the interiors

of all the simplices containing v.

We importantly note that if C is an open cover of the space X, with corresponding nerve

N(C) and canonical map p : X → N(C). Then the collection of all stars Ui of the nerve

N(C) forms an open cover of N(C), and the collection C ′ = {p−1(Ui) | Ui ∈ O is a cover of

X that refines C.

We can now prove the following.

Theorem 12. Every topological space has a polyhedral resolution.

Proof. Denote by B the set of all open covers of the space X. Since X is compact, we can

assume all covers C ∈ B are finite, and if C ∈ B let ΨC = (ψU , U ∈ C) be a partition of unity

subordinate to C. Denote by XC the nerve of the cover C with canonical map pC : X → XC

as in Definition 11.

Now, denote by Γ the set of finite subsets of B partially ordered with inclusion. If

γ = {C1, . . . , Cm} ∈ Γ we can take the open cover C1 ∗ . . . ∗ Cm = {U1 ∩ . . . ∩ Um : Ui ∈

Ci, 1 ≤ i ≤ m} with corresponding nerve Xγ. If γ ≤ γ′ = {C1, . . . , Cm, . . . Ck}, then we

define the simplicial map qγγ′ : Xγ′ → Xγ determined by sending the vertex associated with

U1 ∩ . . .∩Um ∩ . . .∩Uk in Xγ′ to the vertex associated with U1,∩ . . .∩Um in Xγ. It is clear

that, if γ ≤ γ′ ≤ γ′′, then we have

qγγ′qγ′γ′′ = qγγ′′.

We further define maps pγ : X → Xγ where γ = {C1, . . . , Cm}, by the following partition

of unity (ψ(U1,...,Um), (U1 ∩ . . . ∩ Um)) with
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ψ(U1,...,Um) = ψU1 × . . . ψUm .

Observe that

qγγ′qγ′(x) = Σ(U1,...,Um,...Uk)ψU1(x) . . . ψUm(x) . . . ψUk(x)

= Σ(U1,...,Um)ψU1(x) . . . ψUm(x) = qγ(x)

Thus, for γ ≤ γ′ we have

qγγ′qγ′ = qγ,

and hence q = (qγ) defines a morphism in pro-Top from X to X.

We now define a system Z = (Zj, rjj′ , J). For fixed α ∈ I choose a basis Oα of Cl(qα(X))

in Xα. Let J be all pairs of j = (α,B) with α ∈ I and B ∈ Oα. Let Zj = B and rj : X → Zj

be qα. We define an ordering on J by j ≤ j′ = (α′, B′) if both α ≤ α′ and qαα′(B
′) ⊆ B, and

rjj′ : Zj′ → Zj to equal qαα′|B′ . Therefore r = (rj) : X → Z = (Zj, rjj′ , J) is a morphism in

the category pro-Top.

Consider an arbitrary j = (α,B) and an open set V of the closure of rj(X) = qα(X) in

Zj = B. Because Oα constitutes a basis for the neighborhoods containing Cl(qα(X)) in Xα,

there exists a B′ ∈ Oα satisfying B′ ⊆ V . Then, we have j′ = (α,B′) ∈ J and j ≤ j′, so that

rjj′(Zj′) = qαα′(B
′) = B′ ⊆ V . Furthermore, since open subsets of polyhedra are polyhedra,

we can always choose Oα to consist of polyhedra. This completes the proof.

Corollary 13. If X is a compact space, then there exists an inverse sequence of simplicial

complexes and simplicial maps X = (Xn, qnn+1) and maps qn : X → Xn for which (X, (qn)) =

lim
←−

(Xn, qnn+1).
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Definition 14. Let X be a space with basepoint x0, and {On} be a sequence of open cov-

ers of X such that (X, pn) = lim
←−

N(On) where N(On) is the nerve of the open cover On.

In N(On) let pn(x0) be the basepoint. The shape group of X is the group Sh(X, x0) =

lim
←−

(π1(N(On), pn(x0)), pnn+1∗) where π1 denotes the fundamental group and p∗nn+1 is the

induced homomorphism on fundamental groups.

In Foundations of Shape Theory, Mardesic and Segal showed that the shape group of

a space X is both well-defined and a shape invariant, that is, isomorphic objects in the

category of shape have isomorphic shape groups.

3.2 Discrete Homotopy Groups

The contents of this section can be reviewed in greater generality in [7, p.1749]. This section

deals specifically with metric spaces.

Let (X, d) be a metric space and fix ε > 0. An ε-chain is a finite, ordered, sequence of

points (x1, x2, . . . , xn) in X such that d(xi, xi+1) < ε for each i = 1, 2, . . . , n− 1. The point

x1 is called the beginning (or starting) point while xn is called the endpoint. A basic move

is the addition or removal of a single point to an ε-chain such that the resulting set of points

is again an ε-chain. Two ε-chains are said to be equivalent if one can be obtained from the

other by a finite sequence of basic moves. In [7] Plaut and Berestovskii showed that is an

equivalence relation among ε-chains, and the primary objects of interest are the equivalence

classes of chains. We denote the equivalence class of the chain C by [C].

If C = (x1, x2, . . . , xn) and D = (y1, x2, . . . , ym) are two ε-chains such that d(xn, y1) < ε,

then we can concatenate C and D to make a new ε-chain of points

C ∗D = (x1, x2, . . . , xn, y1, y2, . . . , ym). It is a fact that the operation of concatenating two

chains is well-defined on equivalence classes of chains. For a chain C = (x1, x2, . . . , xn)

and D = (y1, x2, . . . , ym) we denote its equivalence class by [C] = [x1, x2, . . . , xn) and D =

(y1, x2, . . . , ym]. We observe that the operation [C] · [D] = [C ∗D] is well-defined.

We shall focus our attention on the special case where a basepoint x0 ∈ X is chosen and
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all ε-chains have beginning and endpoints equal to x0; an ε-chain starting and ending at x0

is called an ε-loop based at x0. All ε-loops based at x0 can be concatenated with each other,

and thus so can all equivalence classes. It is an important fact that the set of equivalence

classes of ε-loops based at x0 forms a group under operation ·. A canonical representative of

the identity element of the group is the ε-loop e = (x1, x2), where x1 = x2 = x0; thus we can

denote the identity, or trivial, element of the group by [e]. Note that ε-loops always have

at least 2 points, a beginning and an end point. The inverse of [x0, x1, . . . , xn] is the class

[xn, xn−1, . . . , x1]. We shall denote this group by δε(X, x0) and call it the discrete ε-homotopy

group. We further note that each homotopy class has a representative {x1, x2, . . . , xn} with

the property that d(xi, xi+2) ≥ ε, which representative we shall call a reduced ε-loop.

While homology and homotopy groups detect ”holes” within a space, ε-homotopy groups

detect holes that are, in a certain sense, ”larger” than ε.

If ε2 < ε1, then any ε2-chain is also an ε1-chain, which induces a homomorphism φ2,1 :

δε2(X, x0)→ δε1(X, x0). If {εn} is a decreasing sequence whose limit is 0, then we obtain an

inverse sequence (δεn(X, x0), φn+1,n) where φn+1,n : δεn+1 → δεn .

Definition 15. If {εn} is a decreasing sequence of positive numbers whose limit is 0, then

the deck group of a metric space X is the group ∆1(X, xo) = lim
←−

(δεn(X, x0), qn,n+1).

Before proving that ∆1(X, x0) is well-defined, we prove the following proposition.

Proposition 16. Let (X, pn) = lim
←−

(Xn, pn,n+1) and (Ym, qm) = lim
←−

(Ym, qm,m+1) be inverse

limits of inverse sequences in a category C. Suppose there exist subsequences {Xni} and

{Ymj} such that n1 ≤ m1 ≤ n2 ≤ m2 . . . ≤ ni ≤ mi . . . and morphisms fk : Xnk+1
→ Ymk ,

gk : Ymk → Xnk , one for each natural number k, so that pnk,nk+1
= gk ◦ fk and qmk−1,mk =

fnk−1
◦ gk. Then, X is isomorphic to Y .

Proof. By assumption, the following diagrams commute.

Xnk+1
Ymk

Xnk

fk

gk
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and

Ymk

Xnk
Ymk−1

gk
fk−1

By composing the projection maps pnk+1
with the maps fk we obtain a morphism X →

(Ym, qm,m+1), and hence a morphism F : X → Y by the universal mapping property of

Y . Similarly, by composing the maps qmk with the maps gk, we obtain a morphism Y →

(Xn, pn,n+1), and hence a map G : Y → X. However, by the commutativity of the above

diagrams, we obtain G ◦ F = idX and F ◦G = idY , so that F and G are isomorphisms.

We can now prove the following.

Proposition 17. For a pointed metric space (X, x0), the deck group ∆1(X, x0) is independent

of the choice of sequence {εn}.

Proof. Let {εn} and {ε′n} be decreasing sequences of positive numbers whose limit is 0.

Consider δ1(X, (pn)) = lim
←−

(δεn(X, x0), pn,n+1) and δ′1(X
′, p′n) = lim

←−
(δε′n(X, x0), p

′
n,n+1). It’s

clear we can choose subsequences {εnk} and {ε′nl} satisfying εn1 ≥ ε′n1
≥ εn2 ≥ ε′n2

. . . εni ≥

ε′ni . . . and define maps gk′ : δε′nk (X, x0) → δεnk (X, x0) by sending a representative loop,

considered as an ε′nk-loop, to itself, considered as an εnk-loop. Define fk : δεnk+1
(X, x0) →

δε′nk (X, x0) in the same manner.

It’s clear that the maps fk and gk satisfy the hypotheses of the proposition 16, since they

are simply inclusions on ε-chains. Thus, the result follows.

3.3 An Equivalence of the Shape Group and Deck Group

We begin this section with some definitions, lemmas, and propositions. Throughout this

section let I = [0, 1].

Definition 18. Let (X, x0) be a pointed space. We define (ΩX , x0) to be the set of all

continuous loops in X based at x0, that is, (ΩX , x0) = {f : I → X | f(0) = f(1) = x0}
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Suppose ε > 0 and f : I → X is a loop based at x0. By uniform continuity, there exists

β > 0 so that whenever |x−y| < β, we have |f(x)−f(y)| < ε. Thus, if 0 = t0, . . . , tn = 1 is a

partition of I with mesh less than β,
(
f(t0), . . . , f(tn)

)
is an ε-chain. We can thus associate

to f the ε-chain h̃ε(f) =
(
f(t0), . . . , f(tn)

)
. The following lemma shows this association

gives a well-defined map h̃ε : (ΩX , x0)→ δε(X, x0).

Lemma 19. The map h̃ε : (ΩX , x0)→ δε(X, x0) defined by h̃ε(f) =
[
f(t0), . . . , f(tn)

]
where

T = t0, . . . , tn is a partition of I with mesh less than β, a uniform continuity constant

corresponding to ε, is well defined.

Proof. Let ε > 0 and f : I → X be a loop based at x0. By uniform continuity, there

exists β > 0 so that for a partition T = t0 = 0 < t1 < . . . < tn = 1 with |ti+1 − ti| < β

for all 0 ≤ i ≤ n − 1, we have |f(ti+1) − f(ti)| < ε, and thus
(
f(t0), . . . , f(tn)

)
is an

ε-loop based at x0. We must show the choice of β, and the partition T of I does not

matter. Suppose S = s0 = 0 < s1 < . . . < sm = 1 also satisfies |sm+1 − sm| < β.

We can union the sets {ti} and {sj} and order the resulting set r0 = 0 < r1 < . . . <

rk = 1. Now, since diam
(
f([ti, ti+1])

)
< ε, we have

[
f(0), f(t1), . . . , f(tn−1), f(1)

]
=

[
f(0), f(t1), . . . , f(ti), f(s), f(ti+1), . . . , f(tn−1), f(1)

]
for any s ∈ [ti, ti+1]. Repeating this ar-

gument for every point of S, we obtain
[
f(0), f(t1), . . . , f(tn)

]
=
[
f(0), f(r1), . . . , f(rk)

]
; sim-

ilarly we have
[
f(0), f(s1), . . . , f(sm)

]
=
[
f(0), f(r1), . . . , f(rk)

]
. Since this is an equivalence

relation, we have
[
f(0), f(t1), . . . , f(tn)

]
=
[
f(0), f(s1), . . . , f(sm)

]
=
[
f(0), f(r1), . . . , f(rk)

]
.

Note, this same argument also shows that the choice of β is independent.

By a triangulation of I × I, we mean a triangulation consisting of straight-edge, convex

triangles in the plane.

Definition 20. Let D0 be a triangulation of I× I. The top chain of D0 is the set of vertices

of D0 contained in I × {1} with their natural ordering. Similarly, the bottom chain of D0

is the set of vertices of D0 contained in I × {0} with their natural ordering.
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Definition 21. Let (X, x0) be a pointed metric space, ε > 0, C and D be ε-loops based at

x0. An ε-homotopy between C and D consists of a triangulation D0 of I × I, and a map

H : D
(0)
0 → X such that

1. H(v) = x0 for all v ∈
(
{0, 1} × [0, 1]

)
∩D(0)

0 ,

2. C =
(
H(v1), . . . , H(vn)

)
and D =

(
H(w1), . . . , H(wm)

)
where (v1, . . . , vn), (w1, . . . , wm)

are the top and bottom chains of D0 respectively, and

3. d
(
H(s), H(t)

)
< ε for all adjacent vertices s, t of D0.

If D represents the trivial element in δε(X, x0), then we call the ε-homotopy an ε-

nulhomotopy.

The next lemma relates basic moves in δε(X, x0) to ε-homotopies.

Lemma 22. Let (X, x0) be a pointed spaces and ε > 0. Suppose C and D are two ε-chains

based at x0. Then [C] = [D] if and only if there exists an ε-homotopy between C and D.

Proof. We can suppose C and D are reduced. First suppose that [C] = [D]. We show there

exists an ε-homotopy between C and D in the case where C and D differ by a basic move

and note that this is sufficient. To this end, suppose C = (x0, x1, . . . , xk, . . . , xn−1, xn) and

D = (y0, y1, . . . , yn−2, yn−1) where xi = yi for all 0 ≤ i < k and xi = yi−1 for all k < i ≤ n.

Consider the set of vertices {( s
n
, 1), ( t

n
, 0) | s ≤ n; t ≤ n, t 6= k}, and define H( j

n
, 1) = xj,

H( j
n
) = yj if j ≤ k and H( j

n
) = yj−1 for j ≥ k+ 2. The following triangulation of D0, along

with H, is the desired ε-homotopy between C and D.

(0, 0) ( 1
n
, 0) ( i

n
, 0) ( i+2

n
, 0) (1, 0)

(0, 1) ( 1
n
, 1) ( i

n
, 1) ( i+2

n
, 1) (1, 1)( i+1

n
, 1)
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Conversely, suppose D0 and H : D
(0)
0 → X is an ε-homotopy between C and D. We

prove the following:

Claim. If f : I → D
(1)
0 is any simple edge path from a vertex in {0} × I to a vertex in

{1}× I, and (v1, . . . , vn) are the vertices, with the induced ordering, contained in the image

of f , then the ε-chain E =
(
H(v1), . . . , H(vn)

)
is equivalent to D.

Proof of claim: We induct on the number of triangles below the image of f .

Base Case. Suppose there are no triangles below the image of f . If v1 = (0, 0) and

vn = (1, 0), then we have E = D; otherwise, the image of f is contained in
(
{0} × I

)
∪
(
I ×

{0}
)
∪
(
{1} × I

)
, and so E is equivalent to D with E not reduced and D reduced.

Inductive step. Suppose there are n ≥ 1 triangles below the image of f , and suppose

the result holds for all simple edge paths g, beginning and ending at vertices in {0} × I and

{1}×I, respectively, with n−1 or fewer triangles below the image of g. It suffices to consider

the case where g is a simple edge path identical to f , but differing by a single triangle T ,

hence the image of g has n− 1 ≥ 0 triangles below it.

Case 1. T has a single edge J on the image of f . Thus the other two edges of T , and

hence the vertex u opposite the edge J , lie on the trace of g. Since the ordered vertex set

lying in the image of f is (v1, . . . , vn), we have the ordered vertex set lying in the image

of g is (v1, . . . , vi, u, vi+1 . . . , vn). Then, by property 3) in the definition of ε-homotopy, the

ε-chain E ′ =
(
H(v1), . . . , H(vi), H(u), H(vi+1), . . . , H(vn)

)
is equivalent to E. But by the

inductive hypothesis, E ′ is equivalent to D; thus, E is equivalent to D.

Case 2. T has two edges, J1 and J2 on the image of f . This case is similar to case 1,

except that the vertex set contained in the images of f has one more vertex than the image

of g.

Proposition 23. Let (X, x0) be a pointed, locally path-connected metric space. For each

ε > 0 there exists a group homomorphism hε : π1(X, x0) → δε(X, x0) so that if ε′ < ε and

qε,ε′ : δε′(X, x0)→ δε(X, x0) then hε = qε,ε′ ◦ hε′.

Proof. By Lemma 19, we have the map h̃ε : (ΩX , x0) → δε(X, x0). We first show that this
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map extends to a map hε : π1(X, x0)→ δε(X, x0). To this end, suppose H : D0 = I×I → X

is a homotopy between paths f and g starting and ending at x0. By uniform continuity,

there exists β > 0 so that whenever |x − y| < β we have |H(x) −H(y)| < ε. Thus, we can

triangulate D0 into triangles which have diameter less than β. If (v1, . . . , vn) and (u1, . . . , um)

are the top and bottom chains of D0, respectively, then H|
D

(0)
0

is an ε-homotopy between
(
f(v1), . . . , f(vn)

)
and

(
g(u1), . . . , g(um)

)
, so by Lemma 22 we have h̃ε(f) = h̃ε(g). So we

can define the map hε : π1(X, x0)→ δε(X, x0) by hε([f ]) = h̃ε(f).

We can choose t0 = 0 < t1 < . . . < tn = 1 so that

h̃ε(f ∗ g) =
(
f( t0

2
, f( t1

2
), . . . , f( tm

2
), g(2tm+1 − 1), . . . , g(2tn − 1)

)
is equivalent to h̃ε(f) =

(
f(t0), . . . , f(tm)

)
followed by h̃ε(g) =

(
g(tm+1), . . . , g(tn)

)
so that hε([f∗g]) = hε([f ])·hε([g])

and hε determines a group homomorphism. If ε′ < ε, then because hε is independent of

β from the first paragraph, we can choose β small enough so that hε maps π1(X, x0) to

both δε′(X, x0) and δε(X, x0) simultaneously in the same manner. Furthermore, since the

homomorphism δε′(X, x0)→ δε(X, x0) is just inclusion on chains, it’s clear that hε′ = qε′,ε◦hε.

We can summarize this result in the form of the following commutative diagram:

π1(X)

δε′(X) δε(X)

hε′
hε

qε,ε′

Definition 24. For an open cover C of a space X, we define the cover 2C = {U ∪ V |

U, V ∈ C,U ∩ V 6= ∅}.

The proofs of the next two results use the algebraic fact that if G,H and K are groups,

and f : G → H and g : G → K are group homomorphisms, then there exists a map

f̃ : K → H satisfying f = f̃ ◦ g if and only if ker(g) ⊆ ker(f).

Proposition 25. Let (X, x0) be a pointed, compact, connected, locally path-connected metric

space and ε > 0. If C is an open cover of X, whose mesh is less than ε
3
, there exists a group
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homomorphism φ : π1
(
N(C), p(x0)

)
→ δε(X, x0) such that φ ◦ p∗ = hε where hε is the

map defined in Proposition 23, and p∗ : π1(X, x0)→ π1
(
N(C), p(x0)

)
is the homomorphism

induced by the canonical map p : X → N(C).

Proof. Let hε be as in Proposition 23. We must show ker(p∗) ⊂ ker(hε). Suppose f : I → X

is such that [f ] ∈ ker(p∗), then there is a nulhomotopy H : I × I → N(C) of p∗([f ]) = [p ◦ f ]

based at p(x0).

Consider the cover O of N(C) consisting of the stars of each vertex. Then the cover

C ′ = {p−1(U) | U ∈ O} refines the cover C of X, so the mesh of C ′ is less than the mesh of

C, which is less than ε
3
. Recall the map p : X → N(C) is given in barycentric coordinates by

the maps from a partition of unity subordinate to C. Since none of these maps given by the

partition of unity are identically zero, there exists a point in the star of each vertex which

lies in the image of p. Associate to each vertex u in N(C), a point x̃S ∈ X which satisfies

p(x̃S) is in the star of u.

By uniform continuity, we can find a triangulation D0 of I × I, so that the image of each

triangle, under H, is contained in the star of a vertex of N(C). We define an ε-nulhomotopy

G : D
(0)
0 → X of the ε-loop E =

(
G(v1), . . . , G(vn)

)
where (v1, . . . , vn) is the top chain of D0,

and E represents h̃ε(f). If v is a vertex of the triangle T in D0, define G(v) = x̃S where S is

a star of a vertex containing H(T ), with the condition that if there exists a vertex in N(C)

whose star contains the full image H(T ) and the point p(x0), then G(v) = x0. The choice of

star S containing H(T ) doesn’t matter because different choices of S give different choices

of x̃S differing by less than ε. Observe that for each vertex u in the bottom chain of D0,

G(u) = x0, so that G restricted to the bottom chain of D0 gives an ε-loop F representing

the trivial element in δε(X, x0). If s, t ∈ D(0)
0 are adjacent vertices, and G(s) ∈ U ∈ C ′ and

G(t) ∈ V ∈ C ′, then there are three cases.

1. U = V , so d
(
G(s), G(t)

)
< ε

3
.

2. U ∩ V 6= ∅, then d
(
G(s), G(t)

)
< 2ε

3
.
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3. There exists W ∈ C ′ satisfying U ∩W 6= ∅ and V ∩W 6= ∅. Then, d
(
G(s), G(t)

)
<

3ε
3

= ε.

We noted above that G restricted to the top chain of D0 represents h̃ε(f), and G restricted

to the bottom chain of D0 represents the trivial element of δε(X, x0). Thus G : D
(0)
0 → X is

an ε-nulhomotopy between E, an ε-loop equivalent to h̃ε(f). By Lemma 22, h̃ε(f) is trivial

in δε(X, x0).

Thus [f ] ∈ ker(hε). This then gives the existence of a map φ : π1
(
N(C), p(x0)

)
→

δε(X, x0) yielding the following commutative diagram:

π1(X,x0) δε(X,x0)

π1
(
N(C), p(x0)

)

hε

p∗
φ

Proposition 26. Let (X, x0) be a pointed compact, connected, locally path-connected metric

space. If C is an open cover of X with nerve N(C), there exists ε > 0 and a map ψ :

δε(X, x0)→ π1
(
N(C), p(x0)

)
such that p∗ = ψ◦hε where hε is the map defined in Proposition

23.

Proof. Suppose f : I → X is a loop based at x0 satisfying [f ] ∈ ker(hε). Let p : X → N(C)

be the map induced by a partition of unity subordinate to C. Let O be the cover of N(C)

whose open sets are the stars of each vertex, and consider the open cover C ′ = {p−1(U) |

U ∈ O} of X with Lebesgue number L, and choose ε = L.

By uniform continuity, there exists β > 0 so that whenever |t1 − t0| < β, we have

|f(t1) − f(t0)| < L. We take a partition {0 = t0, t1 . . . , tn = 1} of I with mesh less than

β. Then for each i, 0 ≤ i ≤ n − 1, there exists a U ∈ O so that the image of f |[ti,ti+1] is

contained in p−1(U). To see this is true, consider x1, x2 in the image of f |[ti,ti+1]. Then,

there exists t, t′ ∈ [ti, ti+1] so that f(t) = x1 and f(t′) = x2. However, by uniform continuity,

d(x1, x2) = d(f(t), f(t′)) < L, so that the diameter of the image of f |[ti,ti+1] < L. Thus, for

each i, the image of p ◦ f |[ti,ti+1] is contained in the star of some vertex in N(C).
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Since [f ] ∈ ker(hε), by Lemma 22 there exists an ε-nulhomotopy H : D
(0)
0 → X from

the vertex set of a triangulation D0 of I × I between E =
(
H(v1), H(v1), . . . , H(vn)

)
- an

ε-loop representing h̃ε(f), where (v1, v2, . . . , vn) is the top chain of D0 - and the ε-loop E =
(
H(u1), H(u1), . . . , H(un)

)
representing the trivial element in δε(X, x0), where (u1, . . . , un)

is the bottom chain of D0. By property 3) in the definition of ε-homotopy, each triple

(s, t, u) of pair-wise adjacent vertices in D
(0)
0 has the property that the diameter of the set

S = {H(s), H(t), H(u)} is less than ε = L, and so S is contained in the preimage, under p, of

some star of N(C). Thus, the set {p ◦H(s), p ◦H(t), p ◦H(u)} is contained in a contractible

star U . Therefore, we can continuously map the triangle of D0 with vertices s, t, and u into

U , so that s 7→ p ◦H(s), t 7→ p ◦H(t), and u 7→ p ◦H(u). It’s clear that we can continuously

map each triangle of the triangulation of D0 in this way so that two maps on two triangles

sharing a common edge agree on the common edge. What’s more, for a triangle with an edge

J lying on I ×{1}, the map can be chosen so that, when restricted to J , it agrees with p ◦ f

restricted to J . For a triangle with an edge K lying on I × {0}, the map can be chosen to

take all of K to p(x0). By the pasting lemma, we have a continuous map from I×I → N(C)

that is a nulhomotopy of p ◦ f .

Therefore [p ◦ f ] = p∗[f ] is trivial in π1
(
N(C), p(x0)

)
. This concludes the proof, and we

have the commutative diagram.

π1(X,x0) δε(X,x0)

π1
(
N(C), p(x0)

)
p∗

hε

ψ

Lemma 27. Let (X, x0) be a pointed, locally path-connected, metric space, and let (εn) be a

decreasing sequence of positive numbers converging to zero, so that

∆1(X, x0) = lim
←−

(
δεn(X, x0), qn,n+1

)
with projection maps qn : ∆1(X, x0)→ δεn(X, x0). Then

for any n, we have qn
(
∆1(X, x0)

)
⊆ hεn

(
π1(X, x0)

)
.
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Proof. For n ≥ 0 define εn = ε
2n

and observe that the sequence (εn) decreases to zero, so

we can write ∆1(X, x0) = lim
←−

(δεn(X, x0), qn,n+1). Further observe that since X is locally

path-connected, for all n, there exists m ≥ n so that d(x, y) < εm implies there exists a path

f from x to y with diameter less than εn
2

. In particular, this is true for n = 0, so that εn = ε.

Choose an arbitrary C0 ∈ δε(X, x0) and fix a coherent sequence
(
[Cn]

)
∈ ∆1(X, x0). Now,

let fm be a loop based at x0 so that
(
fm( i

km
)
)

= Cm and the diameter of f |[ i
km

, i+1
km

] < ε
2
. We

claim that hε0([fm]) = C0.

Proof of claim: Notice that if |s− t| < 1
km

, then there exists i such that i
km
≤ s, t,≤ i+2

km
,

which implies d
(
fm(s), fm(t)

)
< ε. Then, for the partition 0 < 1

km
< . . . < km−1

km
< 1 of I, we

have that
(
fm(0), fm( 1

km
), . . . , fm(1)

)
represents hε

(
[fm]

)
= Cm. But, since each εm-chain is

also an ε-chain, and since
(
[Cn]

)
is a coherent sequence, we have hε

(
[fm]

)
= Cm = C0, which

concludes the proof.

We now state and prove the main result of this section.

Theorem 28. Let (X, x0) be a compact, connected, locally path-connected, pointed, metric

space, then Sh(X, x0) ∼= ∆1(X, x0).

Proof. Throughout this proof all the spaces have a basepoint chosen without ambiguity, so

we supress the basepoint from notation. Let {Oi} be a refining sequence of finite open

covers of X consisting of path-connected, open sets whose mesh goes to 0 with corre-

sponding nerves Xi = N(Oi) and bonding maps pi,i+1, so that the shape group of X is

Sh(X, x0) = lim
←−

(π1(Xi, pi(x0)), pi,i+1∗). Further, let
(
δεi(X, x0)

)
be a sequence of discrete

homotopy groups with εi decreasing monotonically to 0.

By Proposition 23 and the universal mapping property of inverse limits, we have a map

ĥ = lim
←−

hi and commutative diagram

π1(X)

∆1(X) δεi(X)
ĥ

hi

qn
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Similarly, we have a map p̂∗ = lim
←−

pi∗

π1(X)

Sh(X) π1(Xi)

pi∗
p̂∗

p̄i∗

It’s clear that we can choose subsequences (Xik) and (εil) so that, after relabeling, we have

the following diagrams:

∆1(X) δεn(X) δεn−1
(X)

π1(X)

π1(Xn) π1(Xn−1)

qn

ψn,n

qn−1,n

ψn−1,n−1

hn

hn−1

pn∗

pn−1∗

pn−1,n∗

and

Sh(X) π1(Xn) π1(Xn−1)

π1(X)

δεn−1
(X) δεn−2

(X)

p̄n∗

φn−1,n

pn−1,n∗

φn−2,n−1

pn∗

pn−1∗

hn−1

hn−2

qn−2,n−1

The first diagram commutes by Lemma 27. The second diagram commutes, since because

X is locally path-connected, the maps pn∗ and pn−1∗ are surjective. Thus, by the universal

mapping property of inverse limits, we have a map F : Sh(X)→ ∆1(X) defined as follows: if
(
[fn]
)
∈ Sh(X), then F

(
([fn])

)
=
([
φn−1,n([fn])

])
. We also have a map G : ∆1(X)→ Sh(X)

defined as follows: if
(
[Cn]

)
∈ ∆1(X), then G

(
([Cn]

))
=
(
[ψn,n([Cn])]

)
. However, by the

commutativity of the above diagrams, the maps F ◦G and G ◦ F act on coherent sequences

in ∆1(X) and Sh(X), respectively, by a shift. Thus, F ◦G and G ◦ F are the identity maps

on ∆1(X) and Sh(X), respectively, so F and G are isomorphisms.
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Part II

Further Classifying Sharkovskii

Spaces
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Chapter 4. Introduction

[19, p.1-3] Sharkovskii’s theorem is a well-known result in dynamical systems. It is named

after Oleksandr Mikolaiovich Sharkovskii, a prominent Ukrainian mathematician, who sub-

mitted a paper titled Coexistence of cycles of a continuous mapping of a line into itself to

the Ukrainian Mathematical Journal in 1962. The paper was published by the journal in

1964. The paper provided a proof to the following theorem: If a continuous mapping of the

reals into the reals has a point with fundamental period k, and if k < l with respect to the

following ordering

3 < 5 < 7 < 9 < 11 < . . .

< 2(3) < 2(5) < 2(7) < 2(9) < 2(11) < . . .

< 22(3) < 22(5) < 22(7) < 22(9) < 22(11) < . . .

< 23(3) < 23(5) < 23(7) < 23(9) < 23(11) < . . .

...

· · · < 24 < 23 < 22 < 2 < 1

then the mapping also has a point with fundamental period l.

This result was independently published several years later by Tien-Yien Li and James

Yorke in a famous paper titled Period three implies chaos.

Theorem 29 (3 implies chaos). Let J ⊂ R be an interval, and let f : J → J be a continuous

function. If there exists a point x ∈ J such that f 3(x) = x, and fn(x) 6= x for n ∈ {1, 2},

then for each integer m ∈ N, there exists a point xm ∈ J such that fm(x) = x and fk(x) 6= x

for all l ∈ {1, 2, . . . , k − 1}.
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4.1 Generalizing Sharkovskii’s Theorem

Since 1975, mathematicians have been seeking other topological spaces on which continuous

endomorphisms satisfy the conclusion of Sharkovskii’s theorem; we refer to such spaces as

Sharkovskii spaces. [23] In 1980, Block, Guckenheimer, Misiurewicz, and Young published

a paper showing that S1, the one-dimensional sphere, is a Sharkovskii space. [8, p.164] In

1985, Helga Schirmer first defined a Sharkovskii space as we have done here and proved that

an ordered topological space Y is Sharkovskii if and only Y is ordered densely and Y has

the least upper bound property for every subset of Y bounded above. [10] In 2012 Grant,

Conner, and Meilstrup published a paper with the title A Sharkovskii Theorem for non-

locally Connected Spaces showing that the following spaces are Sharkovskii: the topologist’s

sine curve, any n-fold union of topologist sine curves, the Warsaw circle, any n-fold cover of

the Warsaw circle, and any line of topologist sine curves.

Even for spaces that are not Sharkovskii, much work has been done in studying periods

of orbits of self-maps. For work done on S1, reference [21, p.221-227] [25, p.351-370] [26,

p.5-71]; for n-ods, reference [4, p.249-271] [3, p.475-538] [11, p.84-87]; for trees, reference [2,

p.311–341] [5, p.19-31]; for the figure-eight space, reference [12, p.95-106]; for further work on

Warsaw circle and k-Warsaw circle, reference [27, p.294–299] [28, p.12–16]; for hereditarily

decomposable chainable continua, reference [18, p.549–553].

It is worth noting that all the Sharkovskii spaces mentioned are one-dimensional, since

the theorem easily fails for many higher dimensional spaces. For example, rotating a two-

dimensional disk by angle 2π
3

is a clear counterexample. Thus, many weaker versions of

the theorem have been attempted for higher dimensional spaces, but none have gained the

widespread fame as the original theorem.

Many mathematicians are still working to provide a classification of all Sharkovskii spaces.

4.2 Preliminaries

For a set S, we call a function f : S → S a self function or self map.
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Definition 1.1.1: We define a new ordering of the natural numbers called the Sharkovskii

Ordering.

3 < 5 < 7 < 9 < 11 < . . .

< 2(3) < 2(5) < 2(7) < 2(9) < 2(11) < . . .

< 22(3) < 22(5) < 22(7) < 22(9) < 22(11) < . . .

< 23(3) < 23(5) < 23(7) < 23(9) < 23(11) < . . .

...

· · · < 24 < 23 < 22 < 2 < 1

Definition 1.1.2: Let f be a continuous function from an interval I ⊆ R to itself (the

interval need not be open or closed). Denote by fn the nth composition of f with itself. Let

x ∈ I. If fn(x) = x and fk(x) 6= x for all k ∈ N, 1 ≤ k < n, we say that x has orbit n. If

there exists an x with orbit n in the domain of f , we say that f has an n-orbit.

Theorem 30 (Sharkovskii). Let f be a continuous function from an interval I ⊆ R to itself,

where I need not be closed or open. If f has an n-orbit, then f has an m-orbit for all m ≥ n

with respect to the Sharkovskii Ordering.

The self map f has the Sharkovskii property provided f has period n ∈ N whenever it

has a period m smaller in the Sharkovskii order. While Sharkovskii originally only studied

interval maps of the real line, H. Schirmer ([24]) and e.g. [6] considered connected linear

spaces and, more generally, certain 1-dimensional spaces. During the present work we would

like to give a space where every self map has the Sharkovskii property a name (as done in

[24]).

Definition 31. A topological space X is Sharkovskii provided every self map f has the

Sharkovskii property. A Sharkovskii group is a topological group G whose underlying topo-

logical space is a Sharkovskii space.
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In [16] it has been shown that every leaf of the dyadic solenoid is Sharkovskii in its

induced topology. It can be deduced from e.g. [13, Proposition 6] that the dyadic solenoid

itself cannot be Sharkovskii. Every solenoid, and more generally, every connected compact

abelian group can be described as the inverse limit of an inverse system (Tni , fi) of tori

Tni = Rni/Zni where ni ∈ N, R is the additive group of reals in its canonical topology, Z the

closed subgroup of integers, and, fi are continuous group epimorphisms.

Question 32. Classify all Sharkovskii groups.

In this thesis we shall contribute to the question, see Theorem 34. However, for reasons,

to be explained below, we shall restrict ourselves to the class of locally compact groups.

Proposition 36 below will show that Sharkovskii groups must be torsion free.

The leaf of the dyadic solenoid is not locally compact, yet, by a result of the author (see

[16]) it is Sharkovskii. Since one can expect the same result to hold for any p-adic solenoid,

there is a wealth of topologies on R making it Sharkovskii. We therefore will in the sequel

restrict ourselves to the task of classifying locally compact Sharkovskii groups. An important

role will play the particular solenoid just mentioned (see [15, Ch. 10]):

Notation 33. The Z-adic completion of the integers Z will be denoted by Ẑ. Thus every

n ∈ N allows a Z-adic expansion:

n =
∑

i≥0

xi(i+ 1)!

with x0 ∈ {0, 1} and 0 ≤ xi ≤ i + 1 for i ≥ 1. Then Ẑ can be viewed the set of all infinite

formal expansions and it turns out that Ẑ is a topological ring. The Z-adic solenoid is the

compact group

Σa := (R× Ẑ)/Z

with a := (2, 3, 4, . . .), where the identification of Z as a subgroup of R × Ẑ is given as z

corresponding to the pair (z,−z). As pointed out in [15] this solenoid can also be obtained

as the Pontryagin dual of the discrete group Q.
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The main result will be

Theorem 34. Let G be a locally compact Sharkovskii group. If G is not compact it is the

additive group of reals R. Otherwise G is the solenoid Σa.

We have not been able to prove that Σa is indeed a Sharkovskii group.

4.3 Observations on Sharkovskii Spaces and Groups

Lemma 35. If a topological group X possesses a self map f , not equal to the identity,

satisfying f 3 = idX . Then X is not Sharkovskii.

Proof. Since f is not the identity, it has an orbit of length 3. However, there are no other

orbit lengths other than 1 and 3, so f is not Sharkovskii.

Proposition 36. If G is a Sharkovskii group then it must be torsion free.

Proof. Suppose t ∈ G has order n > 1. Define on G a self map f by setting f(x) = xt

(“right shift” by t). The possible period lengths of f are all the divisors d of n. Thus f can

have only finitely many period lengths and, taking the properties of the Sharkovskii order

into account, it follows that n can only be a power of 2. Then, however, f must also possess

a fixed point, i.e., there is x ∈ G with x = x · t, leading to the contradiction that t is the

identity element of G. Thus G must be torsion free.

Crucial is the following result about connectedness by H. Schirmer:

Theorem 37 ([24, Theorem 3.3]). Every Sharkovskii space is connected.

Lemma 38 ([24, Theorem 3.4]). If r : X → Y ⊆ X is a retraction map and X is a

Sharkovskii space then so is Y .

Proof. Let φ be a self map of Y . Then, setting f := φ ◦ r extends φ to a self map of X. An

easy induction argument shows that fk(x) = φk(r(x)) for all k ≥ 1. Suppose now that φ has
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a period p. Then there is y = r(y) ∈ Y with

y = r(y) = φp(y) = φp(r(y)) = fp(y).

By the Sharkovskii property of f , for every natural number q bigger than p with respect to

the Sharkovskii order there is x ∈ X with f q(x) = x. Since q > 1 one therefore obtains

x = φq(r(x)) ∈ Y

and hence φq(y) = y for y := r(x). Thus also φ has the Sharkovskii property and therefore

the retract Y is itself a Sharkovskii space.

Corollary 39. If G =
∏

iGi is a Sharkovskii group then each factor Gi is also Sharkovskii.

Proof. Fix i. For j 6= i choose ej ∈ Gj to be the identity element, and define fj : Gj → Gj

by fj(x) = ej. Now for j = i define fj = id : Gj → Gj, and observe that the retraction

map
∏

i fi : G → G shows that the subgroup
∏

j Hj, where Hj = {ej} for j 6= i and

Hj = Gj for j = i, is also Sharkovksii. But, since Gi is isomorphic to
∏

j Hj, then Gi is also

Sharkovskii.

Another observation about Cartesian products of topological abelian groups will turn out

useful:

Lemma 40. Suppose an abelian topological group G is the direct product

G = Am,

for a closed subgroup A and some cardinal m. If G is Sharkovskii then m = 1.

Proof. If m ≥ 2 then G = A× A× Y for some closed (maybe trivial) subgroup Y . Define

f : G→ G : (a1, a2, y) 7→ (−a2, a1 − a2, y).
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Then, considering f an element in the endomorphism ring of G, one finds that f satisfies

the equation

f 2 + f + idG = 0G.

It follows that f has period 3 and therefore Lemma 35 implies that G cannot be a Sharkovskii

space. Hence m = 1 as claimed.

Corollary 41. Let n ≥ 1. Then Rn is a Sharkovskii space if, and only if, n = 1.

Proof. Suppose Rn is a Sharkovskii space. Then Lemma 40 implies that n = 1. Conversely,

R is a Sharkovskii space (see [24]).

4.4 Reduction, up to Homeomorphism, to the Abelian Connected Case

At the end of this section we shall prove Corollary 44, saying that every locally compact

Sharkovskii group, up to homeomorphism, must be abelian, connected, and either be compact

or homeomorphic to R×K with K a compact connected abelian torsion free group.

Proposition 42. Let G be a compact Sharkovskii group. Then G is homeomorphic to a

connected locally compact abelian group.

Proof. By Theorem 37, G is connected, and by [17, Theorem 9.24] the group G can be

presented as a factor group

G ∼=
Z0(G)×

∏
j∈J Sj

∆
,

where Z0(G) is the connected component of the center of G containing the identity, J is some

index set, and, for every j ∈ J the group Sj is a semisimple Lie group and ∆ is a central

closed subgroup. If J is empty there is nothing to prove. Else suppose one of the factors Sj

is not trivial. Then Sj contains a nontrivial maximal torus T ∼= Tk for some finite k ≥ 1.

In this torus the set of all 3-power elements is dense. Since Sj is the union of its maximal

tori it follows that the set X3 of all 3-power elements of Sj is dense in Sj. Therefore X3∆/∆

is dense in Sj∆/∆ showing that G contains an element of order 3. Therefore Lemma 35

implies that G cannot be Sharkovskii and thus G must be abelian.

37



The following result by J. Cleary and S. Morris will be needed (see [9, Theorem 1]):

Theorem 43. Let G be any locally compact group. Then the underlying topological space is

homeomorphic to

Rn ×K ×D

where n is a natural number, K is compact Hausdorff group, and, D is a discrete space.

We make use of this result for a first reduction:

Corollary 44. Let G be a locally compact Sharkovskii group. Then there are 0 ≤ n ≤ 1 and

a compact connected abelian group K such that G is homeomorphic to Rn ×K.

Proof. (a) By Theorem 43 there are n ≥ 0 and, compact hausdorff group K and a discrete

group D with G homeomorphic to Rn×K×D. Since K is a factor then by Corollary 39 it is

Sharkovskii; hence K is compact and Sharkovskii, so by Proposition 42, it is abelian. Hence

G is abelian, since it is the product of abelian groups. By Theorem 37 G is connected, and

so D must be a singleton set. Corollary 39 implies that the factor Rn is also Sharkovskii,

and so by Corollary 41 one obtains n ≤ 1.

4.5 Solenoids

Before continuing let us discuss solenoids in more detail. Given an infinite sequence p =

(p1, p2, p3, . . .) of prime numbers one considers the inverse sequence

S1 oo f1 S1 oo f2 S1 oo f3 . . .

for fi(z) := zpi . The inverse limit Σp of the system is the p-adic solenoid.

Note that the solenoid in Notation 33 corresponds to the sequence of primes

p = (2; 3; 2, 2; 5; 2, 3; 7; 2, 2, 2; 3, 3; . . .),

where the “;” indicate the factorizations of respectively i.
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Two sequences p and q of primes are equivalent if in each sequence one can delete a finite

number of elements and after that each prime occurs the same number of times in both

sequences. Bing and McCord proved the following:

Theorem 45 ([1, Theorem]). The following statements are equivalent:

(a) The sequences p and q are equivalent.

(b) The solenoids Σp and Σq are homeomorphic.

(c) The solenoids Σp and Σq are algebraically and topologically isomorphic.

The torsion subgroup of S1 is (algebraically) isomorphic to Q/Z and, for every prime p

it has the p-primary subgroup isomorphic to Prüfer’s group Z(p∞) = Z[1
p
]/Z.

Lemma 46. Let p be an infinite sequence of primes. Then Σp has p-torsion isomorphic to

Z(p∞) if, and only if, the prime p appears in p only finitely many times.

Proof. Suppose first that p appears only finitely many times in p. Then Theorem 45 allows

us to delete all occurrences of p in p without changing the solenoid. Now, in each step, the

kernel of fj consists of a finite cyclic group of order pj 6= p. It follows that the p-torsion

maps isomorphically under fj. In particular, in the inverse limit, the p-torsion of S1 appears

embedded, showing that Tor(Σp) = Z(p∞) as has been claimed.

Conversely, suppose that Σp contains a p-torsion element, say x of order p. If infinitely

many primes pjk appear in the sequence p it means that x maps to 1 under the canonical

projection pk : Σp → S1. But then x which is the element (p1(x), p2(x), p3(x), . . .) would be

trivial, a contradiction. Hence p can appear only finitely many times in p.

One deduces from this the following consequence:

Corollary 47. Suppose a solenoid Σp is Sharkovskii. Then every prime p occurs infinitely

often in p.
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Proof. Suppose some prime p appears only finitely many times in the sequence p. By Lemma

46 Σp contains an element of finite order. Therefore, by Proposition 36, the group Σp cannot

be Sharkovskii.

4.6 Reduction to Finite Dimension for Compact Sharkovskii Groups

By Proposition 36 we know that every Sharkovskii group is torsion free. In the present section

we aim at showing that every compact Sharkovskii group must have finite dimension. In the

abelian case our main tool is [15, (25.8) Theorem]:

Theorem 48. Let G be an abelian compact connected and torsion free group. Then there is

a solenoid S and a cardinal m with G ∼= Sm. Moreover, S is the solenoid from Notation 33.

The easiest way to describe S is by means of its Pontryagin dual which is nothing but the

additive group Q of rational numbers endowed with the discrete topology. (See [15, (25.4)]

where the group in question is denoted by Σa and a = (2, 3, 4, . . .).)

An immediate consequence is:

Corollary 49. Let G be an compact Sharkovskii group. Then G must be a solenoid of the

form G = Σa for a = (2, 3, 4, . . .).

Proof. Since G is Sharkovskii it is torsion free by Proposition 36 and connected by Theorem

37. However, since G is also compact, then by Proposition 42 it is also abelian. Theorem 48

renders a solenoid S and a cardinal m with G ∼= Sm algebraically and topologically. Deduce

from Lemma 40 that m = 1, i.e., G = S is a solenoid for a = (2, 3, 4, . . .).

4.7 Reduction to Dimension 1

We shall prove in this section Theorem 54, saying that every finite dimensional torsion free

locally compact Sharkovskii group either is homeomorphic to R or to a solenoid of the form

Σa.
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Lemma 50. Define (polar coordinates) a function on the closed unit disc:

f(reiθ) :=





rei(θ+
2π
3
) if 0 ≤ r < 1

3
or if r = 1

(
3
2

(
r − 1

3

)2
+ 1

3

)
ei(θ+π(1−r)) if 1

3
≤ r < 1

Then all of the following holds:

(i) f is a self map of the closed unit disc.

(ii) The function h(r) := |f(reiθ| satisfies

1

3
< h(r) < r < 1

for all r in the open interval (1
3
, 1).

(iii) f has a period of length 3 but none of length 5.

(iv) f is not Sharkovskii.

Proof. (i) We need to prove that |f(reiθ| ≤ 1. This clearly holds for r ∈ [0, 1
3
) ∪ {1}. For

r ∈ [1
3
, 1] the function r → r − 1

3
is strictly increasing and therefore

|f(reiθ)| = 3

2
(r − 1

3
)2 +

1

3
≤ 3

2
(1− 1

3
)2 +

1

3
≤ 1,

as claimed.

For proving continuity at r = 1
3

we determine limr↑ 1
3
f(reiθ) and find its value to be

1
3
ei(θ+

2π
3
).

On the other hand, plugging r = 1
3

into the expression valid for r ∈ [1
3
, 1) yields

1

3
ei(θ+π(1−

1
3
)) =

1

3
ei(θ+

2π
3
).
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For checking continuity at r = 1 we determine limr↑1 f(reiθ) and find from the second

case its value (
3

2

(
1− 1

3

)2

+
1

3

)
eiθ = eiθ.

Hence f is continuous and is therefore a self map of the unit disc.

(ii) Since for 1
3
< r < 1 the we have that 0 < r − 1

3
< 1 conclude

r − h(r) = r − 1

3
− 3

2
(r − 1

3
)2 = (r − 1

3
)(1− 3

2
(r − 1

3
)) = (r − 1

3
)(1− r) > 0.

The estimate in (i) shows h(r) < 1.

(iii) Every point reiθ with 0 < r < 1
3

has period 3 and obviously there is no point with

period 5.

Next let reiθ be a point with 1
3
≤ r < 1. As a consequence of (ii) the open annulus

A := {z ∈ C | 1
3
< |z| < 1} is mapped under f into A and for all z ∈ A we have that

|f(z)| < |z|.

It follows that neither f nor any iterate can have a fixed point in A and therefore all periodic

nontrivial orbits belong to the disc |z| < 1.

(iv) is a consequence of (iii).

Lemma 51. Let S1 = {z ∈ C : |z| = 1}. Then H := {z ∈ S1 : =(z) ≥ 0} is a retract of T.

Proof. On C define r(x + iy) := x + i|y|. Then {z ∈ C : =(z) ≥ 0} is a retract of C with

retraction mapping r. Restricting r to S1 serves our purpose.

Lemma 52. Let S be a solenoid. Then S contains a closed subset C homeomorphic to [0, 1]

(i.e., an arc), a retract of S.

Proof. Consider p : S → S1 as a fibration over S1 and totally disconnected compact fiber

homeomorpic to the Čech group of S. Let r be the retraction map of S1 onto H from Lemma
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51. Then H is an arc in S1 which lifts to an arc H̃ in S. Let l : H → S denote the lifting

map. The desired retraction map will be R := i ◦ l ◦ r ◦ p, where i is the inclusion of H̃ in S.

S p //

R

44T r // H
l // H̃

i // S

Certainly R is continuous. For proving that it restricts to the identity on H̃, pick any h̃ ∈ H̃.

Then, as l is a lifting we have that l(p(h̃)) = h̃. Observing that p(h̃) ∈ H and, for every

h ∈ H one has r(h) = h, one obtains, setting h := p(h̃), from i(h̃) = h̃

R(h̃) = i(l(r(p(h̃)))) = i(l(r(h)) = i(l(h)) = i(h̃) = h̃,

as claimed. Thus R is a retraction map.

Lemma 53. Let X be a space homeomorphic to R× S for S some solenoid. Then X is not

a Sharkovskii space.

Proof. Without losing generality we may assume X = R× S. Suppose, by way of contradic-

tion, that X is a Sharkovskii space. Let R : S → S be a retract onto an arc inside S as in

Lemma 52. Define a retraction map ρ : X → X by sending (r, s) ∈ R× S to (r, R(s)). Then

ρ is a retraction map from X onto Y := R× im(R). Theorem 38 implies that Y must be a

Sharkovskii space. Note that Y is homeomorphic to R× [0, 1] and thus contains as a retract

a closed disk which, again by Theorem 38, must be Sharkovskii. This, however, contradicts

Lemma 50.

Theorem 54. Let G be a locally compact Sharkovskii group. Then G has dimension 1. In

particular, G ∼= R or G is a solenoid.

Proof. Corollary 44 shows that G can be assumed to be a group

G = Rn ×K
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for K a compact group. By Corollary 39 both Rn and K must be Sharkovskii spaces.

Corollary 41 shows that n ≤ 1. If K 6= {1} is Sharkovskii we find from Corollary 49 that

K is homeomorphic to Σa. Lemma 53 implies that precisely one of the following two cases

hold: case 1) n = 1 and K = {1}, or case 2) K = Σa and n = 0.

Up to now we only know that G is homeomorphic either to R or Σa. However, by what

we already proved, it follows that G is a locally compact group of dimension 1. By a theorem

of Montgomery (see [22]) such a group is either algebraically and topologically isomorphic to

R or to a solenoid S. Since S is Sharkovskii it is algebraically and topologically isomorphic

to Σa by Corollary 49.

Corollary 55. If G is a nontrivial, Sharkovskii Lie group it must be R.

Proof. We must exclude that G is compact. If it were, then, being a compact Lie group, it

contains a closed subgroup topologically isomorphic to the circle group S1. This subgroup has

an element of order 3, so G has an element of order 3 and is not torsion free, a contradiction.

Hence G is not compact, and the result follows.

Proof of Theorem 34. Let G be a locally compact Sharkovskii group. Therefore Theorem

54 implies that G either equals R or that G is a solenoid. If G is compact, then Corollary

49 implies that G ∼= Σa for a = (2, 3, 4, . . .), whereas if G is not compact, then it must be

R.
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