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abstract

The Frobenius Manifold Structure of the Landau-Ginzburg A-Model
for Sums of An and Dn Singularities

Rachel Webb
Mathematics Department, BYU

Master of Science

In this thesis we compute the Frobenius manifold of the Landau-Ginzburg A-model
(FJRW theory) for certain polynomials. Specifically, our computations apply to polynomials
that are sums of An and Dn singularities, paired with the corresponding maximal symmetry
group. In particular this computation applies to several K3 surfaces. We compute the nec-
essary correlators using reconstruction, the concavity axiom, and new techniques. We also
compute the Frobenius manifold of the D3 singularity.

Keywords: K3 surfaces, reconstruction lemma, concavity axiom, Frobenius algebra, Frobe-
nius manifold, Landau-Ginzburg mirror symmetry, FJRW theory
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Chapter 1. Introduction

First semester calculus teaches us that the zeros of a function’s derivative signal interesting

behavior of the function. Likewise, mirror symmetry studies functions W : Cn → C that

have an isolated critical point at the origin. Mirror symmetry often includes a choice of a

group of symmetries of W ; i.e., invertible linear maps g : Cn → Cn satisfying W ◦ g = W .

The idea of mirror symmetry is to identify mirror pairs (W,G) and (W T , GT ), and from

these construct some sort of isomorphic A- and B-models, AW,G and BWT , GT .

Landau-Ginzburg mirror symmetry is one example of this process that applies to a larger

class of pairs (W,G) than other common types of mirror symmetry. It is also of interest for

its relatively tractable computations. The Landau-Ginzburg A- and B-models have several

layers of structure, the simplest being that of a graded algebra with a pairing satisfying the

Frobenius property. Furthermore, the Landau-Ginzburg models are Frobenius manifolds,

and they also exhibit higher genus structure. The Landau-Ginzburg A-model is given by the

FJRW theory of the pair (W, G) (see [FJR13]), while the B-model is an older construction.

Some progress has been made in proving the Landau-Ginzburg isomorphism AW,G ∼=

BWT , GT at various levels of structure. The paper [Kra10] proves that AW,G ∼= BWT , GT as

graded vector spaces, and as Frobenius algebras when G = Gmax. The Frobenius algebra

isomorphism is proved for “two-thirds” of all pairs (W,G) in [FJJS12]. At the level of Frobe-

nius manifolds, however, the isomorphism has been fully worked out for only 16 examples

plus 3 infinite families of examples.

The reason for the sparsity of examples of Frobenius manifolds is twofold. First, the

A-model structure of the manifold is described by certain correlators, which are integrals of

cohomology classes on the moduli space of curves. Though there exist combinatorial axioms

that can be used for their computation, the infinite number of necessary correlators makes

computing all of them a difficult problem. Second, the B-model structure involves a choice

of primitive form. For all but a few polynomials, the list of all possible primitive forms is

not currently known, much less which one will yield a B-model isomorphic to the A-model.
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The goal of this thesis is to extend our list of known constructions of Landau-Ginzburg

A-model Frobenius manifolds to a much larger class of examples. My strategy for doing this

is as follows. I use a property of the FJRW theory of a polynomial W , which states that if

W = W1 + . . .+Wr, then as Frobenius algebras,

AW,GmaxW

∼= AW1, GmaxW1
⊗ . . .⊗AWr, GmaxWr

. (1.1)

This interpretation of AW,GmaxW
leads me to consider polynomials W that are sums of poly-

nomials Wi whose corresponding algebras AWi, GmaxWi
are particularly straightforward. In par-

ticular, I consider polynomials Wi such that AWi, GmaxWi
has a unique primitive element with

respect to its multiplication. That is, there is a unique non-scalar element α ∈ AWi, GmaxWi
,

such that if α = β ? γ, then either β or γ is an element of C. It turns out that there are

exactly two kinds of polynomials whose rings have this property: the An−1-polynomials,

which look like xn, and the Dn+1 polynomials, which look like x2y + yn. Thus, the goal of

this thesis is to prove the following:

Theorem 1.0.1. Let W be a sum of An−1 and Dn+1 polynomials in distinct variables. Then

the Frobenius manifold structure of AW,GmaxW
is completely determined by the pairing, the

three-point correlators, and the four-point correlators

〈pWi
, pWi

, hWi
, hW 〉

for each polynomial summand Wi. The value of this correlator is 1
n

when Wi 6= D3. Here,

pWi
is the unique primitive basis element and hWi

is the unique basis element of highest

degree in the corresponding algebra. The element hW is the unique basis element of highest

degree in AW,GmaxW
.

When Wi is a D3 polynomial, the relevant correlator turns out to have a different value,

which we also compute in this thesis.

This theorem applies to a wide range of examples, including several so-called K3 sur-
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faces. These polynomials are important examples because they exhibit multiple kinds of

mirror symmetry besides Landau-Ginzburg mirror symmetry. Table 1.1 contains a list of

K3 surfaces whose Frobenius manifold structure is determined by Theorem 1.0.1 (there are

29 of them).

x2y + y2 + z12 + w6 x2y + y4 + z24 + w3 x2y + y6 + z4 + w6

x2y + y2 + z8 + w8 x2y + y4 + z4 + w8 x2y + y9 + z3 + w9

x2y + y2 + z20 + w5 x2y + y5 + z15 + w3 x2y + y10 + z4 + w5

x2y + y3 + z12 + w4 x2y + y5 + z5 + w5 x2y + y12 + z3 + w8

x2y + y3 + z6 + w6 x2y + y6 + z12 + w3 x2y + y21 + z3 + w7

x4 + y4 + z4 + w4 x10 + y15 + z2 + w3 x12 + y2 + z4 + w6

x12 + y12 + z2 + w3 x2 + y6 + z6 + w6 x2 + y4 + z8 + w8

x3 + y4 + z4 + w6 x3 + y3 + z6 + w6 x20 + y2 + z4 + w5

x42 + y2 + z3 + w7 x10 + y2 + z5 + w5 x18 + y2 + z3 + w9

x24 + y2 + z3 + w8 x12 + y3 + z3 + w4

Table 1.1: The twenty-nine K3 surfaces whose Frobenius manifold structure is determined
by Theorem 1.0.1.

In the course of proving Theorem 1.0.1, it came to my attention that while the Frobenius

manifold structure of Dn+1 is computed in [FJR13] for n > 2, the case n = 2 does work with

the method used there. Thus, I also work out the Frobenius manifold structure of D3 in this

thesis.

In addition, theD3 Frobenius manifold computation led me to discover that Equation (92)

in [FJR13] is not quite right. This equation is particularly useful for computing Frobenius

manifolds, and we use it in our D3 computations. A correct version of this equation and its

derivation is presented as Lemma 3.2.1 in this thesis.

Finally, the astute reader may observe that the isomorphism in Equation (1.1) also holds

at the level of Frobenius manifolds. It turns out this is not helpful for a few reasons. First,

there is no proven corresponding isomorphism on the B-side, and so knowing that the pieces

AWi, GmaxWi
and BWi, GmaxWi

are isomorphic does not automatically lead to an isomorphism of

the larger objects. The only way to prove an A to B isomorphism, then, is to use so-

called correlators, or structure constants that determine the manifold. But it is not clear
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what Equation (1.1) says about correlators. One description of the relationship between

the correlators of AW,GmaxW
and the correlators of AWi, GmaxWi

is worked out by Kauffmann

in [Kau99], but this description is sufficiently general to make its application to a specific

example quite a challenge. Kauffmann’s approach would be an alternative (and probably

doable) method to prove Theorem 1.0.1, but appears to be equally if not more difficult than

the strategy we develop here.

In Chapter 2 of this thesis I will define a general Frobenius manifold over a vector space,

and then describe the specific construction of the Frobenius manifold of AW,G. Chapter 3

will give an overview of several known strategies for computing correlators, including the

correlator axioms and reconstruction techniques. Next, Chapter 4 contains the proof of

Theorem 1.0.1, including the introduction of a new technique for computing correlators.

Finally, Chapter 5 contains our computations of the D3 Frobenius manifold, and Chapter 6

concludes this thesis with some ideas for future research.

Chapter 2. Frobenius manifolds

2.1 The general construction

The purpose of this section is to introduce the reader to the idea of a Frobenius manifold. We

will begin by defining a Frobenius algebra, and then give a heuristic definition of a Frobenius

manifold. We will conclude with the precise definition of a Frobenius manifold over a vector

space, which will be sufficient for our needs.

If R is a ring, an R-algebra is an R-module equipped with an associative multiplication

and identity element. Now suppose we have a finite rank R-module with such a multipli-

cation. Suppose that our multiplication is also commutative, and that our R-algebra has a

symmetric nondegenerate bilinear form, called a pairing. Denote the pairing by 〈·, ·〉. We

say this pairing is Frobenius if it satisfies the axiom 〈ab, c〉 = 〈a, bc〉 for all elements a, b, and

c in the algebra. A k-algebra equipped with a Frobenius pairing is a Frobenius algebra.
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Example 2.1.1. A familiar example of a Frobenius algebra is the cohomology ring of a

closed orientable manifold, with the Frobenius pairing equal to the cup product evaluated on

the fundamental class of the manifold. Equivalently, using de Rham cohomology, consider

the ring of closed differential forms modulo exact forms. Then the Frobenius pairing of ω

with σ is equal (up to a sign) to integration of ω over the Poincaré dual of σ.

The idea of a Frobenius manifold is to define a local Frobenius algebra structure on the

tangent space of a complex manifold M . Our ring of scalars will be local sections of OM .

That is, we want to define an associative and commutative multiplication on our tangent

vectors, as well as a nongenenerate pairing satisfying appropriate properties. When we have

done this, for each point p in the manifold M , the space TpM will have the structure of a

Frobenius algebra over C. Thus, a second intuitive definition of a Frobenius manifold is that

of gluing together Frobenius C-algebras in some smoothly varying way.

The precise definition of a general Frobenius manifold is quite involved (for an introduc-

tion see [Koc01] or [Loo09]). In practice, however, almost all concrete Frobenius manifolds

of current interest have vector spaces for the base manifold. This simplification leads to a

much more straightforward definition, which we now present.

Let {αi} be a basis for M a C-vector space. Then the dual vectors to the αi, which we will

denote ti, form a natural set of coordinates for M . This allows us to write a function from

M to C as a power series in the dual vectors ti, so we identify OM with C[[ti]]. Also, since

TpM is canonically isomorphic to M∗∗, we will frequently identify the coordinate tangent

vectors ∂
∂ti

with the basis vectors αi. Because M is a vector space, these form a (global)

basis B = {αi} for the sheaf of sections of TM as a free OM -module. This discussion shows

that we can understand TM as M ⊗ C[[ti]], and in fact we will routinely think of TM in

this way (see [Koc01]).

Definition 2.1.2. Let M be a vector space with basis {αi}. Then using the notation defined

above, a Frobenius manifold structure on M is given by

1. a constant symmetric nondegenerate OM -bilinear pairing η : TM × TM → C, and

5



2. a potential T ∈ OM(U) where U is a neighborhood of the origin of M :

T =
∑
k≥3

∑
(α1,...,αk)∈Bk

〈α1, . . . , αk〉
k!

t1 . . . tk, (2.1)

where the 〈α1, . . . , αk〉 are any complex numbers such that T satisfies the equations

∑
k,l

Tijkη
klTlmn =

∑
k,l

Timkη
klTljn (2.2)

T1ij = ηij. (2.3)

Here, Tijk indicates the third partial derivative ∂3T
∂ti∂tj∂tk

, and ηij and ηij represent the ijth

entry of the matrix for η (relative to B) and the inverse of the matrix for η, respectively.

In practice, we usually define the potential T by writing down a power series that satisfies

Equations (2.2) and (2.3). We then show that our power series converges in a neighborhood

of the origin. Before we have shown convergence, we say that T defines a formal Frobenius

manifold.

The equations labeled (2.2) are called the WDVV equations, and their purpose is to

ensure that the potential T will define a multiplication on the tangent space TM that is

associative. Equation (2.3) ensures that the multiplication has an identity. This is explained

with the following theorem.

Theorem 2.1.3. Given a pairing η and a potential T as in Definition 2.1.2, define a mul-

tiplication on TM by

αi ? αj =
∑
k,l

Tijkη
kl αl. (2.4)

This multiplication can be extended linearly to all of TM. The multiplication ? is commutative

and associative with identity α1, and with it η satisfies the Frobenius property, making TM

into a Frobenius algebra over OM .

Proof. That ? is commutative follows from the fact that Tijk = Tjik.

6



To check associativity, we proceed as follows:

(αi ? αj) ? αk =

(∑
l,m

Tijlη
lm αm

)
? αk

=
∑
l,m

Tijlη
lm (αm ? αk)

=
∑
n,p

(∑
l,m

Tijlη
lmTmkn

)
ηnp αp. (2.5)

Alternatively, we compute

αi ? (αj ? αk) = αi ?

(∑
l,m

Tjklη
lm αm

)

=
∑
l,m

Tjklη
lm (αi ? αm)

=
∑
n,p

(∑
l,m

Tjklη
lmTimn

)
ηnp αp. (2.6)

Equations (2.5) and (2.6) are equivalent via an application of Equation (2.2) to the terms in

parentheses.

Next, we check that α1 is the identity. The definition yields

α1 ? αi =
∑
j,k

T1ijη
jk αk.

Applying Equation (2.3) yields

α1 ? αi =
∑
j,k

ηijη
jk αk.

7



Note that
∑

j ηijη
jk is equal to the ikth entry of [ηij][η

ij] = I, where I is the identity matrix.

Thus,
∑

j ηijη
jk = δik, and we conclude

α1 ? αi =
∑
k

δikαk = αi.

Finally, we show that η is Frobenius under ?.

η( αi ? αj, αk ) = η

(∑
l,m

Tijlη
lm αm, αk

)

=
∑
l,m

Tijlη
lm η(αm, αk )

=
∑
l,m

Tijlη
lmηmk

=
∑
l

Tijlδlk = Tijk.

On the other hand, we can compute

η(αi, αj ? αk ) = η
(
αi, Tjklη

lm αm
)

=
∑
l,m

Tjklη
lmηmi

= Tijk.

For the second equality we used the fact that η is symmetric, so ηim = ηmi. Thus, η is

Frobenius.

Just as many important Frobenius algebras have a natural grading (for example the

cohomology ring of Example 2.1.1), many important Frobenius manifolds also have some

kind of “graded structure.” We describe this structure with a vector field called an Euler

field.

Definition 2.1.4. Let M be a (vector space) Frobenius manifold with potential T and coor-

8



dinates {ti}. Then an Euler field E on M is a vector field of the form

E =
∑
i

(diti + ri)
∂

∂ti

satisfying

E(T ) = dTT

up to quadratic terms, for some complex numbers di, ri and dT .

Note that given a Frobenius manifold M , it is not always possible to define a correspond-

ing Euler field. However, Frobenius manifolds of interest in this thesis will all have Euler

fields. In fact, we will always use Euler fields with ri = 0. In the case ri = 0, existence of an

Euler field is equivalent to a certain property of T which is very similar to quasihomogeneity

(see Definition 2.2.1). This is the content of the following lemma.

Lemma 2.1.5. Let M be a (vector space) Frobenius manifold with potential T and coordi-

nates {ti}. Then E =
∑

i diti
∂
∂ti

is an Euler field on M if and only if for every c ∈ C,

T (cd1t1, . . . , c
dµtµ) = cdTT (t1, . . . , tµ). (2.7)

Note the similarity of the property in Lemma 2.1.5 and the definition of quasihomogeneity

(Definition 2.2.1). In fact, the only difference is that the di in the Lemma need only be

complex numbers, whereas the qi in Definition 2.2.1 must be positive rationals. We will call

a function with Property (2.7) Euler of degree dT . We will see that given the existence of

an Euler field for an (Euler) function, the variable ti often behaves as if it had “degree” di.

Proof. For simplicity, write the potential T as

T =
∑

n1,...,nµ

bn1...nµt
n1
1 . . . tnµµ .

9



Then the equation E(T ) = dTT becomes

E(T ) =

(∑
i

diti
∂

∂ti

) ∑
n1,...,nµ

bn1...nµt
n1
1 . . . tnµµ


=

∑
n1,...,nµ

(∑
i

dini

)
bn1...nµt

n1
1 . . . tnµµ

=
∑

n1,...,nµ

dT bn1...nµt
n1
1 . . . tnµµ .

From equating coefficients, this is equivalent to the equations

∑
i

dini = dT (2.8)

for every choice of integers n1, . . . , nµ such that bn1...nµ 6= 0.

On the other hand, the statement that T is an Euler function becomes

T (cd1t1, . . . , c
dµtµ) =

∑
n1,...,nµ

bn1...nµc
d1n1tn1

1 . . . cdµnµtnµµ

=
∑

n1,...,nµ

c
∑
i dinibn1...nµt

n1
1 . . . tnµµ

=
∑

n1,...,nµ

cdT bn1...nµt
n1
1 . . . tnµµ .

Again by equating coefficients, since this must hold for every c ∈ C, this is equivalent to the

equations ∑
i

dini = dT

for every choice of integers n1, . . . , nµ such that bn1...nµ 6= 0.

We have now defined a Frobenius manifold as a Frobenius algebra structure on the tangent

space of a vector space. We are ready to investigate a particular kind of Frobenius manifold,

the Landau-Ginzburg A-model.
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2.2 The Frobenius manifold of the Landau-Ginzburg A-model

Landau-Ginzburg mirror symmetry is currently defined only for “invertible” polynomials

with appropriate “groups of symmetries”. We will first explain the definitions of these

polynomials and groups, and then we will describe the construction of the corresponding

Frobenius manifold.

2.2.1 Polynomials and symmetry groups. We give the necessary definitions below,

beginning with the polynomial.

Definition 2.2.1. A function W : CN → C is quasihomogeneous if there exist positive

rational numbers q1, q2, . . . , qN so that for every c ∈ C,

W (cq1x1, c
q2x2, . . . , c

qNxN) = cW (x1, x2, . . . , xN).

The numbers q1, . . . , qN are called the weights of W .

Definition 2.2.2. A function W : CN → C is nondegenerate if it has an isolated critical

point at the origin of CN .

Definition 2.2.3. A nondegenerate, quasihomogeneous polynomial is invertible if (1) the

weights are unique and (2) the polynomial has the same number of monomials as variables.

In this thesis, we will focus on two families of invertible polynomials. These are the

polynomials An−1 = xn and Dn+1 = x2y + yn. These A and D polynomials are two of the

so-called simple singularities, and are of interest in many areas of mathematics. As discussed

in the introduction, I chose to focus on these polynomials because their Frobenius algebras

are particularly easy to work with. This will become clearer as we progress through this

thesis.

Example 2.2.4. The polynomial An−1 = xn has the unique system of weights q1 = 1
n
. It

is nondegenerate since ∂
∂x

(xn) = nxn−1 vanishes only at the origin. Since An−1 has one

monomial and one variable, x, it is invertible.

11



Similarly, the polynomial Dn+1 = x2y + yn has the unique system of weights (q1, q2) =

(n−1
2n
, 1
n
). The gradient ( ∂

∂x
Dn+1,

∂
∂y
Dn+1) = (2xy, x2 + nyn−1) vanishes only at the origin,

so it is nondegenerate. Since Dn+1 has two monomials and two variables, it is invertible.

The next theorem will tell us how sums of invertible polynomials behave.

Theorem 2.2.5. Let W be a sum of invertible polynomials in distinct variables, so W =

W1 +W2 where W1 ∈ C[x1, . . . , xN ] and W2 ∈ C[y1, . . . , yM ], and each Wi is invertible. Then

W is also invertible.

Proof. It is clear that W is quasihomogeneous with a unique system of weights. Similarly,

W is nondegenerate since the set of partial derivatives of W will equal the union of the sets

of partials of W1 and W2. The partials of W1 will force x1 = . . . = xN = 0, and likewise the

partials of W2 will force y1 = . . . = yM = 0. Finally, because each Wi has the same number of

variables as monomials, W will also have equal numbers of variables and monomials. Thus,

W is invertible.

In this thesis, I will focus on sums of A and D polynomials in distinct variables (e.g.,

x3 + y4 is the sum of two A-polynomials).

Next, we define the “group of symmetries” of an invertible polynomial.

Definition 2.2.6. Let W : CN → C be an invertible polynomial. Then the maximal sym-

metry group of W , denoted Gmax
W , is defined as follows:

Gmax
W = {(γ1, γ2, . . . , γN) ∈ (C×)N : W (γ1x1, γ2x2, . . . , γNxN) = W (x1, x2, . . . , xN)}. (2.9)

In other words, Gmax
W is the set of diagonal linear maps g satisfying W ◦ g = W . As

in Definition 2.2.6, however, we will denote one of these maps by the elements (γ1, . . . , γN)

appearing on the diagonal of the matrix. It is a fact that the coordinates γ1, . . . , γN of an

element of Gmax
W are always roots of unity; hence γj = e2πiΘj for some unique Θj ∈ Q∩ [0, 1).

When working with explicit examples, we will write (Θ1, . . . ,ΘN) for (γ1, . . . , γN) to save
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space. Note that the group operation then becomes addition. From now on, we will use

g to denote an element of Gmax
W , γ1, . . . , γN to denote its multiplicative coordinates, and

Θ1, . . . ,ΘN to denote its additive coordinates. Occasionally, we will use a superscript g on

the coordinates to indicate what group element they came from; i.e., g = (Θg
1, . . . ,Θ

g
N).

Example 2.2.7. Let us compute Gmax
An−1

= Gmax
xn . From the definition, γ ∈ C× is in Gmax

xn

if and only if (γx)n = xn, which is true if and only if γn = 1. So our symmetry group is

exactly equal to the multiplicative group of nth roots of unity. In additive notation, we can

write any group element uniquely as t
n

for some t ∈ {0, . . . , n− 1}.

Similarly, (γ1, γ2) ∈ Gmax
Dn+1

if and only if (γ1x)2(γ2)y + (γ2y)n = x2y + yn, which is true

if and only if γ2
1γ2 = 1 and γn2 = 1. Then the second equation tells us that γ2 is any nth root

of unity, and γ1 is a square root of γ−1
2 . Equivalently, if γ1 is any 2nth root of unity, then

γ−1
2 is the square of γ1. Then our symmetry group consists of the multiplicative elements

(e2πik/2n, e−2πik/n) for k ∈ {0, . . . , 2n− 1}. Additively, the group is generated by ( 1
2n
, −1
n

).

The following theorem tells us how Gmax
W behaves when W is a sum of polynomials.

Theorem 2.2.8. Let W = W1 +W2 be a sum of invertible polynomials in distinct variables

x1 . . . xN and y1 . . . yM . Then

Gmax
W = Gmax

W1
×Gmax

W2
.

Proof. When we solve for g = (γ1, . . . , γN , γN+1, . . . , γN+M) ∈ Gmax
W , the resulting system

of equations will partition naturally into two unrelated systems, one involving the variables

γ1 . . . γN and one in γN+1 . . . γN+M . The first system will define the first N coordinates of

g as an element of Gmax
W1

, and the second system will define the last M coordinates as an

element of Gmax
W2

.

Because we always take W to be quasihomogeneous, Gmax
W will always contain a certain

non-identity element, which we now define.

Definition 2.2.9. Let W be quasihomogeneous with weights (q1, q2, . . . , qN). Then the

exponential grading operator jW = (e2πiq1 , e2πiq2 , . . . , e2πiqN ) is always in Gmax
W .
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The fact that jW is always in Gmax
W follows directly from the definition of quasihomoge-

neous, taking c = e2πi = 1. Note that in additive notation, jW = (q1, q2, . . . , qN).

We will need one more definition concerning elements of Gmax
W .

Definition 2.2.10. The fixed locus of a group element g = (γ1, . . . , γN) ∈ Gmax
W is the

subspace of CN where g restricts to the identity map.

Thus, the dimension of the fixed locus of g is the number of the γj that are equal to

1. Equivalently, if we write g = (Θ1, . . . ,ΘN) where γj = e2πiΘj , the dimension of the fixed

locus is the number of the Θj that equal 0.

2.2.2 Frobenius manifold construction. Recall that the Landau-Ginzburg A-model

of a pair (W,G) is written AW,G. We will now define AW,G as a Frobenius manifold, given

an invertible polynomial W and corresponding group G.

We will begin by defining AW,G as a Frobenius algebra over C. We will then take

this algebra to be the base manifold M in Definition 2.1.2. We will choose the Frobenius

manifold pairing on TM to be the OM -linear extension of the pairing on M (by identifying

M canonically with M∗∗ ∼= TM). However, the potential we will choose will define a

multiplication on TM that is not just a linear extension of the multiplication on M . We

will see that we can recover M including its multiplicative structure by looking at T0M in

the Frobenius manifold.

Let us begin, then, with a vector space basis for the Frobenius algebra AW,G. What

follows will be a short summary of the construction; for more details, see [FJR13] for a theo-

retical or [Kra10] for a more computational approach. We will need the following definition.

Definition 2.2.11. Let W : CN → C be an invertible polynomial. Then the Milnor ring of

W is defined to be

QW =
C[x1, . . . , xN ](
∂W
∂x1
, . . . , ∂W

∂xN

) . (2.10)
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We will be particularly interested in the space QW · ω, where ω = dx1 ∧ . . . ∧ dxN . If

G ≤ Gmax
W , then this space has a natural G-action on it given by

(γ1, . . . , γN) · (xa1
1 . . . xaNN ω) = γa1+1

1 . . . γaN+1
N xa1

1 . . . xaNN ω.

Here, (γ1, . . . , γN) ∈ Gmax
W is written multiplicatively. The +1’s in the exponents of the γi

on the right hand side of Equation (2.10) come from the volume form ω.

We are now ready to describe the basis of the Frobenius algebra of AW,G.

Definition 2.2.12. Let W be invertible, G ≤ Gmax
W . We require G to contain the exponential

grading operator jW . Then as a vector space, AW,G is equal to

⊕
g∈G

(
QW |fix(g)

· ωg
)G

. (2.11)

Here, W |fix(g) indicates the restriction of W to the fixed locus of g, and ωg = dxi1 ∧ . . .∧dxim

where xi1 , . . . , xim are the variables fixed by g. The exponent G indicates that we take only

the G-invariant subspace of QW |fix(g)
· ωg.

In this thesis, we will only be concerned with rings AW,G where G = Gmax
W .

We will usually write a basis element of AW,G coming from the summand corresponding

to g as meg where m is a monomial in the appropriate Milnor ring (note that we omit the

volume form). In this case we say that meg “comes from the sector” g, or that “the sector

of meg is g.”

We will now define a grading for the Frobenius algebra of AW,G by defining the degree

of our canonical basis vectors.

Definition 2.2.13. Let α in AW,G be a basis element coming from the sector

g = (Θ1,Θ2, . . . ,ΘN). Then we define the W-degree of α as

degW (α) = D + 2
N∑
j=1

(Θj − qj),
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where D is the dimension of the fixed locus of g.

Notice that the W -degree of an element depends only on the sector and not on the

monomial.

Let us do an example of the computation of a basis for the Frobenius algebra of AW,G.

Example 2.2.14. Let W = x3 and G = Gmax
W = 〈ζ〉, where ζ = e2πi/3 (so G is the

multiplicative group of 3rd roots of unity). Then the sum in Equation (2.11) is taken over

the three elements g = 1, g = ζ, and g = ζ2.

When g = 1, fix(g) = C[x] because g is the identity map, so QW |fix(g)
= C[x]/(3x2) =

span{1, x}. We now compute the G-invariants of this space—note that we only need to check

a generator of G. We find ζ · (dx) = ζdx and ζ · (x dx) = ζ2x dx, so the G-invariant subspace

here is 0-dimensional. Thus, this summand contributes no basis elements.

If g = ζ, then fix(g) = {0}, so QW |fix(g)
= C/(0) = span{1}. Since ζ · 1 = 1, we have that

any multiple of 1 is invariant, so that this summand contributes the basis element eζ, or e1/3

in additive notation.

The case g = ζ2 is similar to g = ζ. We conclude that a basis for AW,G is { e1/3, e2/3 }.

We can also compute the degrees of these basis elements using Definition 2.2.13 as follows:

degW (e1/3) = 0 + 2(1/3− 1/3) = 0

degW (e2/3) = 0 + 2(2/3− 1/3) = 2/3.

This completes the definition of the basis of the Frobenius algebra of AW,G; the second

step is to define the pairing. To do this we will need the following definitions.

Definition 2.2.15. Let W be an invertible polynomial with weights (q1, . . . , qN). The weighted

degree of a monomial xa1
1 . . . xaNN in QW is defined to be a1q1 + . . .+ aNqN .

Note that this definition makes QW into a graded C-algebra. The next two theorems tell

us something about that graded structure.
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Theorem 2.2.16 ([AGL98] p. 40, 4◦). As a graded C-algebra, QW has a one-dimensional

homogeneous subspace of highest degree. The degree of an element in this subspace is called

the central charge of W , and is denoted ĉW . It is given by

ĉW =
N∑
j=1

(1− 2qj).

Here, (q1, . . . , qN) are the weights of W .

As we will see later, ĉW is in some sense the “dimension of the pairing.”

Theorem 2.2.17. The one-dimensional subspace of highest degree in QW is spanned by

Hess(W ), or the Hessian of W , which is given by

Hess(W ) = det



∂2W
∂x2

1

∂2W
∂x1x2

. . . ∂2W
∂x1xN

∂2W
∂x2x1

∂2W
∂x2

2
. . . ∂2W

∂x2xN

...
...

. . .
...

∂2W
∂xNx1

∂2W
∂xNx2

. . . ∂2W
∂x2
N


.

Proof. A straightforward computation using the definition of quasihomogeneity shows that

Hess(W ) has the degree given in Theorem 2.2.16. Showing that it is nonzero is harder.

The idea is to compute the below-defined residue pairing of Hess(W ) with 1, using also the

Transformation Law on p. 657 of [GH11]. This integral turns out to be nonzero. Since the

residue pairing is bilinear, Hess(W ) must be nonzero.

We are now ready to define a pairing on the Milnor ring, which we will then extend to

a pairing on AW,G. Our pairing comes from the Grothendiek residue pairing, which is given

by the residue of the integral

〈f, g〉 =

∫
∆

fg dx1 ∧ . . . ∧ dxN
∂W
∂x1
· · · ∂W

∂xN

,

where ∆ is the boundary of a small polydisk about the origin in CN . It is a well-known fact
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(see [GH11] Chapter 5 Section 1, especially the Transformation Law on p. 657) that this

residue can also be computed as

fg =
〈f, g〉
µ

Hess(W ) + terms of lower degree, (2.12)

where µ is the dimension of the Milnor ring QW . This justifies our earlier claim that ĉW is

“the dimension of the pairing,” since the pairing of two monomials will be nonzero only if

their degrees add to ĉW .

This pairing is extended to our basis for AW,G in the following way.

Definition 2.2.18. Let meg and neh be two basis elements for AW,G. Then we define their

pairing as follows:

〈meg, neh〉 =

 〈m,n〉 if g = −h

0 otherwise
,

where 〈m,n〉 refers to the pairing in QW |fix(g)
.

Example 2.2.19. Let us compute three pairings at the Frobenius algebra level which we

will use later. First, in the ring AAn−1, GmaxAn−1
, we will compute the pairing of e 1

n
with en−1

n
.

We will see later (Section 4.2) that this is actually the pairing of the identity element with

the basis element of highest degree. Because 1
n

+ n−1
n

= 0 in Gmax
An−1

, the pairing is not

automatically zero. Then, following Formula (2.12), we want to investigate the Milnor ring

of xn−1 restricted to the fixed locus of ( 1
n
). In fact, this group element fixes no variables,

so the Milnor ring is just C. Since C is one-dimensional as a vector space, µ = 1. The

integral definition of the pairing gives 1 in this case, which agrees with the convention that

the determinant of an empty matrix is 1 (and hence Hess(W ) = 1).

Similarly, in the ring ADn+1, GmaxDn+1
, the pairing of the identity with the basis element of

highest degree is just the pairing of e(n−1
2n

, 1
n

) with e(n+1
2n

,n−1
n

). Because the two group elements

are inverses but have no fixed locus, by an argument identical to above, the pairing is 1.

Finally, in the ring AD3, GmaxD3
, we will compute the pairing of xe(0,0) with itself. Clearly
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the sector (0, 0) is the inverse of itself, so this pairing is not automatically zero. Because

the identity fixes everything, restricting to the fixed locus just returns the original polynomial

D3 = x2y + y2. It can be shown that the Milnor ring for D3 has dimension 3 and that

Hess(D3) = −6x2. Then following the formula, we find that the pairing is equal to 3
−6

= −1
2
.

In order to complete our definition of AW,G as a Frobenius algebra, we still have to

define a multiplication on our basis vectors. We will temporarily postpone this definition.

We will later define a potential for the Frobenius manifold of AW,G, which will in turn

define a multiplication on the tangent space of this manifold. It turns out that under this

multiplication, the tangent space at the origin is canonically isomorphic to the original

Frobenius algebra of AW,G, and we will use this to define our multiplication.

We now completely understand AW,G as a Frobenius algebra. Let us call this space M .

We will turn M into a Frobenius manifold following Definition 2.1.2. According to that

definition, we need to choose a constant pairing η : TM × TM → C. The most natural

choice is to extend the pairing on M bilinearly over OM to TM (recall we identify TM with

M ⊗ C[[ti]]).

The important point about this pairing is that it is straightforward to compute. Moreover,

since it is completely determined by pairings of basis elements, only a finite number of

computations are needed to understand it. Thus, the pairing on an A-model Frobenius

manifold is “easy,” and in fact completely understood. We will not address it further in this

thesis.

In fact, the difficulty in computing AW,G as a Frobenius manifold comes from the one

remaining part of our definition, the potential

T =
∑
k≥3

∑
(α1...αk)∈Bk

〈α1, . . . , αk〉
k!

t1 . . . tk.

This is because the constants 〈α1, . . . , αk〉 in the potential T are defined to be integrals of
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corresponding cohomology classes over the moduli space of curves:

〈α1, . . . , αk〉 =

∫
M0,k

Λ0,k(α1, . . . , αk).

Definition 2.2.20. The constant 〈α1, . . . , αk〉 is called a k-point correlator of the A-model

AW,G, and the αi’s are called the insertions of the correlator.

The Λ-classes are defined in [FJR13], and there it is proven that thus defined, T will

satisfy Equations (2.2) and (2.3). However, we cannot be certain of the convergence of

T without further investigation, so that in general we only understand AW,G as a formal

Frobenius manifold.

As promised, this definition of a potential yields the product for the Frobenius algebra

of AW,G by identifying the Frobenius algebra with T0M . Then computing a product of basis

vectors in the Frobenius algebra amounts to evaluating Equation (2.4) at ~0. It is fairly

straightforward to compute that this yields

αi ? αj =
∑
k,l

〈αi, αj, αk〉ηkl αl. (2.13)

We have completely defined the Frobenius manifold of AW,G. In the next section, we will

show (in Theorem 3.1.2) that this manifold has the Euler field

E =
∑
i

(
1− 1

2
degW (αi)

)
ti
∂

∂ti
.

Thus, given that the tangent vector αi has degree degW (αi), we think of the corresponding

coordinate ti as having “degree” 1− 1
2

degW (αi). An intuitive reason for this is that the tis

are really the dual vectors of the αis (see the discussion before Definition 2.1.2).

So now we have the complete definition of the Frobenius manifold of AW,G and all its

accessories. What, then, is so hard about writing down explicit examples of this object? The

challenge is that the integral appearing in the definition of a correlator (Definition 2.2.20) is
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in general extremely difficult to compute. The cohomology classes Λ0,k(α1, . . . , αk) are not

at all easy to write down. Thus, the problem of computing AW,G as a Frobenius manifold is

really just the problem of computing these correlators. In the next section, we will review

some known strategies for computing correlators.

Chapter 3. Known strategies for computing correlators

The first strategy for computing correlators is to not actually do any integrals over M0,k,

but instead to use some standard tricks to deduce the values of these integrals indirectly.

These “standard tricks” are known as the correlator axioms, and are the subject of the first

part of this section.

It should be noted that throughout this thesis, we will only work with correlators of

basis elements of AW,G. We can then extend linearly to all of TM . Thus, when we write a

correlator 〈α1, . . . , αk〉, we can talk about “the” sector of αi, for example.

3.1 The correlator axioms

We now present the correlator axioms, interspersed with the necessary definitions. These

axioms come from the geometry of a space W0,k which is associated with a correlator. This

space is a Deligne-Mumford stack of algebraic curves with the addition of some special line

bundles. The axioms have since been reduced to combinatorial rules, and this later version

is what we will present in this thesis. We will cite most of these axioms from two sources:

the first a higher-level paper explaining the geometric origins of the axiom, and the second

a more computational presentation.

The first axiom tells us that the order of elements in a correlator doesn’t matter. This

drastically reduces the number of correlators we need to compute.

Axiom 1 (Symmetry [FJR13] Theorem 4.2.2 C1 and [KPA+10] Axiom 2). Let 〈α1, α2, . . . , αk〉
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be a k-point correlator, and let σ be a permutation in Sk. Then

〈α1, α2, . . . , αk〉 = 〈ασ(1), ασ(2), . . . , ασ(k)〉.

Our next two axioms will give us strategies for identifying correlators that are zero. We

begin by defining the degree of the cohomology class Λ corresponding to a correlator.

Definition 3.1.1 ([FJR13] Theorem 4.1.8 part (1)). The degree of the cohomology class

Λ0,k(α1, α2, . . . , αk) is the following:

deg(Λ0,k(α1, α2, . . . , αk)) = −ĉW +
1

2

k∑
i=1

degW (αi).

This then allows us to prove the second correlator axiom.

Axiom 2 (Dimension [FJR13] Theorem 4.1.8 and [KPA+10] Axiom 1). A genus-zero k-

point correlator 〈α1, α2, . . . , αk〉 vanishes unless

1

2

k∑
i=1

degW (αi) = ĉW + k − 3.

Proof. Because the correlator 〈α1, α2, . . . , αk〉 is defined to be the integral
∫
M0,k

Λ0,k(α1, . . . , αk),

the correlator will be zero unless

deg(Λ0,k(α1, . . . , αk)) = dimM0,k.

Using the fact that the dimension of M0,k is k − 3, this is equivalent to

1

2

k∑
i=1

degW (αi)− ĉW = 0− 3 + k

⇐⇒ 1

2

k∑
i=1

degW (αi) = ĉW + k − 3.
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We can now show that the Frobenius manifold of AW,G has an Euler field.

Theorem 3.1.2. The vector field E =
∑

i

(
1− 1

2
degW (αi)

)
ti

∂
∂ti

is an Euler field on AW,G.

Proof. Write the potential T as

T =
∑
k≥3

∑
(α1,...,αk)∈Bk

〈α1, . . . , αk〉
k!

t1 . . . tk =
∑

n1,...,nµ

bn1...nµt
n1
1 . . . tnµµ . (3.1)

Now, recall that in the proof of Lemma 2.1.5 (see Equation (2.8)) we showed that E will

be an Euler field on AW,G if and only if there exists some constant dT such that whenever

bn1...nµ 6= 0, ∑
i

(1− 1

2
degW (αi)) = dT .

Now, from our definition of T in Equation (3.1), if bn1,...nµ 6= 0, the corresponding corre-

lator (which has ni insertions equal to αi) must not be zero. Thus, this correlator satisfies

the Dimension Axiom. But this is equivalent to saying

1

2

µ∑
i=1

ni degW (αi) = ĉW +

(
µ∑
i=1

ni

)
− 3,

which we can rewrite as ∑
i

(1− 1

2
degW (αi))ni = 3− ĉW .

Thus, if we take dT = 3− ĉW , then E is indeed the Euler field.

A second concept that assists us in determining nonzero correlators is the idea of line

bundle degrees.

Definition 3.1.3. The jth line bundle degree of a correlator 〈α1, α2, . . . , αk〉 is defined to be

lj = qj(k − 2)−
k∑
i=1

Θgi
j , (3.2)

where αi comes from the sector corresponding to the element gi = (Θgi
1 ,Θ

gi
2 , . . . ,Θ

gi
N).
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Axiom 3 (Line Bundle Degrees [FJR13] Proposition 2.2.8 and [KPA+10] Axiom 3). A

correlator 〈α1, α2, . . . , αk〉 is zero unless all its line bundle degrees are integers.

The remaining three axioms allow us to compute the values of nonzero correlators.

Axiom 4 (Pairing [FJR13] Theorem 4.2.2 C4b and [KPA+10] Axiom 7). Suppose we have

a correlator of the form 〈1, α1, α2〉. Then

〈1, α1, α2〉 = 〈α1, α2〉,

where 〈α1, α2〉 is the pairing of α1 and α2.

Axiom 5 (Forgetting Tails [FJR13] Theorem 4.2.2 C4a). Let τ : M0,k+1 →M0,k be the

map that forgets the (k + 1)st marked point, given k ≥ 3. Then

Λ0,k+1(1, α1, α2, . . . , αk) = τ ∗Λ0,k(α1, . . . , αk).

A commonly used corollary to this axiom is as follows.

Corollary 3.1.4. For k ≥ 3,

〈1, α1, α2, . . . , αk〉 = 0.

Proof. The degree of Λ0,k(α1, α2, . . . , αk) can be at most the dimension of the space M0,k

where it lives, which is k − 3. But then this is also the degree of Λ0,k+1(1, α1, α2, . . . , αk),

since 1 always has degree zero. Then our correlator cannot satisfy the Dimension Axiom,

since doing so would require the degree of Λ0,k+1(1, α1, α2, . . . , αk) to be k + 1 − 3 =

k − 2.

Our final axiom, the Concavity Axiom, is our strongest tool for directly calculating the

values of correlators. Recall that a correlator is defined as the integral of an appropriate Λ

class over M0,k. In general, we do not know how to compute this integral. The idea of the
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Concavity Axiom is to rewrite Λ classes in terms of other cohomology classes whose integrals

are known. To be precise, for correlators satisfying certain conditions, the Concavity Axiom

allows us to rewrite the corresponding Λ class in terms of so-called tautological classes κ, ψ,

and ∆ onM0,k. The integrals of polynomials in these classes have been extensively studied

(see [Zvo11] for an introduction), and they can be computed using Carl Faber’s Maple code

[Fab] or Drew Johnson’s Sage code [Joh].

Before we can state the Concavity Axiom, we need to take a moment to explain the

concept of decorated graphs corresponding to a correlator on M0,k.

Graphs on M0,k. As a set, we understand M0,k as the space of stable genus-zero

(possibly nodal) complex curves with k marked points, labeled 1 through k. That is, each

point inM0,k corresponds to a single such curve. We call the set of nodal curves the boundary

ofM0,k (see Figures 3.1 and 3.2). The stability condition is equivalent to requiring that each

irreducible component of a curve (i.e., each ball) have at least three marked points or nodes.

1

2

3

Figure 3.1: A smooth stable
genus-zero curve with 3 marked
points (an interior point inM0,3)

1

2

4

5

63

Figure 3.2: A stable nodal genus-zero curve
with 6 marked points (a boundary point in
M0,6)

We define the dual graph to such a curve as follows. Begin with a vertex for each

irreducible component of the curve. Connect vertices with an edge if the corresponding

components are joined via a node. Then, attach half edges to the vertices corresponding to

marked points. We will consider two such graphs identical if under some orientation, the

sets of integers attached to half-edges for each node are identical. See Figures 3.3 and 3.4

for examples of dual graphs.
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1

2
3

Figure 3.3: The dual graph to
the curve in Figure 3.1 above

1

2

3 4

5

6

Figure 3.4: The dual graph to the curve in Fig-
ure 3.1 above. Swapping marks 4 and 6 yields
an identical graph; swapping 1 and 4 does not.

Call the dual graph Γ. Recall that Γ is the dual graph to a curve in M0,k, so it has k

half-edges. If we number the insertions in a k-point correlator, then this induces a labeling

of the half-edges of Γ by the group elements of the corresponding insertions. When Γ is

labeled with group elements this way, we say that it is decorated. Note that different graphs

may look the same once they are decorated. For example, if all the insertions in a correlator

are equal, different numberings of the half-edges (which correspond to distinct graphs) will

all look the same once the integers are replaced with the corresponding group elements.

A decorated graph Γ will induce decorations on the interior edges as follows. An edge is

labeled with a group element g+ one side and g− on the other. Let v be the number of whole

edges coming out of the vertex adjacent to g+ (so v ≥ 1, since g+ labels such an edge). Let

t be the total number of half and whole edges coming out of the vertex. If n1, . . . , nt−v are

the marked points on the vertex adjacent to g+, with corresponding sectors gn1 , . . . , gnt−v ,

then we define

g+ = (t− 2)jW −
∑
i

gni , (3.3)

with arithmetic occurring in the symmetry group (i.e, in (Q/Z)N). Define g− similarly. We

leave it to the reader to check that in fact, g− = −g+.

Example 3.1.5. Let W = D4 = x2y + y3 and G = Gmax
W . Then jW = (1/3, 1/3). We will

compute a basis for AW,G in Section 4.2. Consider the correlator

〈e(1/6,2/3), e(1/6,2/3), e(2/3,2/3), e(2/3,2/3)〉. This correlator in fact satisfies the Dimension Axiom
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(so it is not trivially 0). Figure 3.5 shows an undecorated dual graph to a curve in M0,4.

Then if we number the insertions in our correlator 1 through 4, we get the decorated graph

in Figure 3.6.

1

3

2

4

Figure 3.5: An undecorated dual
graph.

(1/6, 2/3)

(2/3, 2/3)

(1/6, 2/3)

(2/3, 2/3)

Figure 3.6: The graph in Figure 3.5 decorated
with the insertions of the correlator
〈e(1/6,2/3), e(1/6,2/3), e(2/3,2/3), e(2/3,2/3)〉.

Next, we compute g+ for the single edge. Note that it is adjacent to a vertex with two

half edges, so in this case t = 3. Then using Equation (3.3), we have

g+ = (3− 2)(1/3, 1/3)− (1/6, 2/3)− (2/3, 2/3) = (1/2, 0)

in Gmax
W . The decorations g+ and g− are diagrammed in Figure 3.7.

(1/6, 2/3)

(2/3, 2/3)

(1/6, 2/3)

(2/3, 2/3)

(1/2, 0) (1/2, 0)

Figure 3.7: The graph in Figure 3.6 with g+ and g−.

We will use the idea of dual graphs of curves twice in our statement of the Concavity

Axiom. The first reference will be to the line bundle degrees of such graphs. Let Γ be a fully

decorated graph (so we have computed the elements g+ as in the preceding paragraph). We

will now define the jth line bundle degree of a given vertex (as with correlators, we have a line

bundle degree for each variable in W ). We begin by collapsing any edges that are labeled

with a group element that acts as the identity in the jth coordinate. We want to think of
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half edges coming out of the bounding vertices of such an edge as living on the same vertex.

Once we have done this, if a given vertex is adjacent to decorations gn1 , . . . , gnt (including

any decorations coming from edges), we define the jth line bundle degree of the vertex to be

(t− 2)qj −
∑
i

Θ
gni
j . (3.4)

This time, we do our arithmetic in QN . Note that this is well-defined since each Θ
gni
j is a

unique element in Q ∩ [0, 1).

Example 3.1.6. Let us compute the line bundle degrees for the fully decorated graph in

Figure 3.7.

We begin with the 1st line bundle degrees. Because the first coordinate of g+ is 1/2 6= 0,

we do not collapse any edges. Instead, we compute two 1st line bundle degrees, one for each

vertex in the graph. Using Equation (3.4), we compute the 1st line bundle degree of the left

vertex to be

(3− 2)(1/3)− 1/6− 2/3− 1/2 = −1.

The first line bundle degree on the right vertex is identical.

Now let us compute the 2nd line bundle degrees. In fact, since the second coordinate of g+

is 0, we contract the middle edge for this computation, leaving only one vertex (and hence

only one line bundle degree to compute). This vertex is adjacent to 4 half-edges, and hence

t = 4 in Equation (3.4). We compute the line bundle degree to be

(4− 2)(1/3)− 2/3− 2/3− 2/3− 2/3 = −2.

Note that because of the way we have defined g+ and g−, when we compute the jth

line bundle degree of a vertex adjacent to at least one of these elements, we will always get

an integer. If none of the half edges coming out of our vertex are labeled with a g+ or a

g−, non-integer degrees are possible. If we do get non-integer degrees, the corresponding
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correlator vanishes by the Line Bundle Degrees Axiom (Axiom 3).

The second time we will use the idea of these dual graphs in the statement of the Con-

cavity Axiom is in the precise definition of the ∆ classes. This ∆ is in fact a whole family of

classes indexed by (undecorated) graphs Γ with a single edge (i.e., graphs corresponding to

curves with a single node). By convention, we always assume that the half-edge labeled with

1 is on the left in such a graph. Note that this defines a unique group element g+, calculated

as above. We will write the tautological class associated with such a graph as ∆K , where

K ⊂ {1, . . . , k} is the set of integers labeling the half edges on the left of our edge (so 1 ∈ K

always). In the Concavity Axiom, we will take a sum over all such classes.

Example 3.1.7. In the context of our running example, let us consider all possible undec-

orated graphs Γ with a single edge corresponding to curves in M0,4. Curves with the same

marked points on each of the irreducible components correspond to the same point in M0,4;

hence the order of the numbers on the half edges coming out of a given vertex on Γ does

not matter. With our convention that the half-edge labeled 1 is always on the left, we have

exactly three possibilities, as diagrammed in Figure 3.8.

1

2

3

4

1

3

2

4

1

4

2

3

Figure 3.8: The three possibilities for a graph dual to a curve in M0,4.

We can decorate each of these graphs with insertions from the correlator

〈e(1/6,2/3), e(1/6,2/3), e(2/3,2/3), e(2/3,2/3)〉, as we did to produce Figure 3.6 from Figure 3.5. Note

that when decorated, the second and third graphs will be identical (though distinct from the

first graph). Because the second and third graphs came from distinct undecorated graphs,

they will be counted separately in our Concavity Axiom computations. Each of these three

graphs defines a unique g+, as diagrammed in Figure 3.7 for the second and third graphs.

We are now ready to present the Concavity Axiom.
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Axiom 6 (Concavity [FJR13] Theorem 4.1.8 5a and [Fra12] Section 4.1). Consider the

correlator 〈α1, . . . , αk〉. Assume that each αj comes from a sector gj whose fixed locus has

dimension 0, and that all the line bundle degrees of all possible decorated dual graphs are

negative integers (not zero). If the polynomial W has two variables with weights (q1, q2),

then

Λ0,k(α1, . . . , αk) = ch2(E1) + ch2(E2) +
1

2
( ch1(E1) + ch1(E2) )2 (3.5)

where we define the symbols chd(Ei) as follows:

chd(Ei) =
Bd+1(qi)

(d+ 1)!
κd −

k∑
j=1

Bd+1(Θ
gj
i )

(d+ 1)!
ψdj +

∑
Γ

Bd+1(Θ
g−
i )

(d+ 1)!
Pd,Γ(∆). (3.6)

Here, Bd is the dth Bernoulli polynomial, and we write a group element g = (Θg
1, . . . ,Θ

g
N)

in additive notation. The final sum is over all single-edged dual graphs Γ with the half-edge

labeled 1 on the left. We define the polynomials Pd,Γ(∆) below.

P1,Γ(∆) = ∆K

P2,Γ(∆) =

 −∆K∆1∪KC |K| = 3

∆K∆K∪{j} |K| = 2, j 6∈ K.
.

The reader should be aware that what we are calling the Concavity Axiom is really a com-

bination of that axiom (originally stated in Theorem 4.1.8 part 5a of [FJR13]) and Chiodo’s

formula (see [Chi08] Theorem 1.1.1 and [Fra12] Section 4.1) reduced to the two-variable case.

I worked through a small amount of algebra to arrive at this simplified form. The strategy

for the computation I used is outlined in Section 4.1 of [Fra12]. I omit the computation itself

because it requires extensive vocabulary in areas with no bearing on the rest of this thesis.

However, the reader should be aware that [Fra12] contains a few minor typos. First, Item 4

of Property 3 should read ct(E) =
∑∞

i=1(1− ct(−E))i. Second, the left hand side of the last

two equalities in Equation (4.3) should be (jK)∗(ψ−) instead of (jK)∗(ψ+).
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These six axioms are not all the known “correlator axioms,” but just the ones we will use

in this thesis. In general, not every correlator can be computed using these axioms, or even

using the full set of correlator axioms. However, we will be able to compute every correlator

needed in this thesis using the axioms we have presented. By no means does this make our

task easy: there are still an infinite number of correlators appearing in a potential T , so

computing them all (using just the axioms) cannot be done in a finite thesis.

Thankfully, there is another strategy that will significantly reduce the number of correla-

tors we need to compute. The remainder of this chapter will explain that strategy, known as

reconstruction. The reader should bear in mind that even though reconstruction will reduce

the number of correlator computations we need to do, reconstruction will not reduce these

computations to a finite number. Thus, there will still be a good bit of work to do after this

chapter.

3.2 The reconstruction lemma

In this chapter we will prove the reconstruction lemma, an essential tool for computing

correlators. The reader who is willing to take the proof on faith can skim this section.

The idea of the reconstruction lemma is to “reconstruct” all correlators in terms of a

smaller, fixed set of correlators. This strategy was originally used in [FJR13], where the

proof relied on a certain equation derived from WDVV. As it is formulated in [FJR13],

this equation is incorrect, though the errors do not affect the proof of reconstruction itself.

Because this is equation is useful in its own right for computing correlators and we will use

it directly in Chapter 5, we will derive the correct version in the following lemma.

Lemma 3.2.1. Let K = (ξ1, . . . , ξk−3) be a tuple of elements in AW,G. Let {δl} be a basis

for AW,G and let {δ′l} be a dual basis with respect to the pairing. Then the following equality
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holds:

〈ξ ∈ K, α, β, ε ? φ〉 =
∑

ItJ=K

∑
l

cI,J〈ξ ∈ I, α, ε, δl〉〈δ′l, φ, β, ξ ∈ J〉

−
∑

ItJ=K
J 6=∅

∑
l

cI,J〈ξ ∈ I, α, β, δl〉〈δ′l, φ, ε, ξ ∈ J〉, (3.7)

where

cI,J =

∏
nK(ξk)!∏

nI(ξi)!
∏
nJ(ξj)!

are integer coefficients. Here, nX(x) refers to the number of elements equal to x in the tuple

X. Each product in cI,J is taken over all distinct elements x ∈ X.

Proof. Recall the WDVV equation

∑
k,l

Tijkη
klTlmn =

∑
k,l

Timkη
klTljn. (3.8)

We wish to see what this equation says about correlators. If we let C = {αi}, then recall

that the definition of T is

T =
∑
ρ≥3

∑
(α1,...,αρ)∈Cρ

〈α1, . . . , αρ〉
ρ!

t1 . . . tρ

where (α1, . . . , αρ) ∈ Cρ is an ordered tuple. For compactness, denote such a tuple by

X ∈ Cρ and rewrite T as follows:

T =
∑
ρ≥3

∑
X∈Cρ

〈X〉
|X|!

∏
x∈X

tx.

Equating coefficients of an arbitrary term t1 . . . tρ in Equation (3.8) should tell us some-

thing about the correlators. To this end, let us compute a third partial derivative of T .

Tijk =
∑
ρ≥3

∑
X∈Cρ

〈X〉
|X|!

∏
x∈X tx

tαitαj tαk
nX(αi) nX\αi(αj) nX\{αi,αj}(αk).
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Now let A ∈ Cρ. We will compute the coefficient of
∏

a∈A ta in Tijk. We find this equals

∑
X∈Cρ+3

X=A∪{αi,αj ,αk}

〈X〉
|X|!

nX(αi) nX\αi(αj) nX\{αi,αj}(αk).

Now, each of the terms in this sum is the same. The number of terms is equal to the

number of ways you can arrange the elements of X = A ∪ {αi, αj, αk}. So, our coefficient

equals

|X|!∏
x∈X nX(x)!

〈X〉
|X|!

nX(αi) nX\αi(αj) nX\{αi,αj}(αk).

The |X|! terms cancel. Also, I claim that in fact we can write our coefficient in terms of

A as follows:

〈A,αi, αj, αk〉∏
a∈A nA(a)!

.

This is proved separately for the case where αi = αj = αk, the case where αi = αj 6= αk,

and the case where αi, αj, and αk are all distinct. We will prove the second case; the other

two are similar. If αi = αj 6= αk, then nX(αi) = nA(αi) + 2, nX\αi(αj) = nA(αi) + 1, and

nX\{αi,αj}(αk) = nA(αk) + 1. So our coefficient can be written

〈X〉 (nA(αi) + 2) (nA(αi) + 1) (nA(αk) + 1)

(nA(αi) + 2)! (nA(αk) + 1)!
∏

x∈A\{αi,αk} nX(a)!

=
〈X〉

nA(αi)!nA(αk)!
∏

a∈A\{αi,αk} nA(a)!

=
〈A,αi, αj, αk〉∏

a∈A nA(a)!
.

This was the desired equality.

The next step is to use our formula for the coefficients of Tijk to compare coefficients of

monomials in Equation (3.8). So let X ∈ Bk. We will look at the coefficient of
∏

x∈X tx on

each side of Equation (3.8); these must be equal. We find

∑
k,l

ηkl
∑

AtB=X

〈A,αi, αj, αk〉∏
a∈A nA(a)!

〈B,αl, αm, αn〉∏
b∈B nB(b)!

=
∑
k,l

ηkl
∑

AtB=X

〈A,αi, αm, αk〉∏
a∈A nA(a)!

〈B,αl, αj, αn〉∏
b∈B nB(b)!

.
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The final step is to manipulate this a bit and use the definition of the product. We break

up the sum on the left side to obtain

∑
k,l

ηk,l
〈X,αi, αj, αk〉〈αl, αm, αn〉∏

x∈X nX(x)!
=
∑
k,l

ηkl
∑

AtB=X

〈A,αi, αm, αk〉∏
a∈A nA(a)!

〈B,αl, αj, αn〉∏
b∈B nB(b)!

−
∑
k,l

ηkl
∑

AtB=X,B 6=∅

〈A,αi, αj, αk〉∏
a∈A nA(a)!

〈B,αl, αm, αn〉∏
b∈B nB(b)!

.

We multiply by the denominator of the left side and use linearity of correlators to obtain

〈X, αi, αj,
∑
k,l

〈αm, αn, αl〉ηlkαk〉 =
∑

AtB=X

cA,B
∑
l

〈A,αi, αm,
∑
k

ηklαk〉〈B,αl, αj, αn〉

−
∑

AtB=X
B 6=∅

cA,B
∑
l

〈A,αi, αj,
∑
k

ηklαk〉〈B,αl, αm, αn〉

where

cA,B =

∏
nX(x)!∏

nA(a)!
∏
nB(b)!

.

Now,
∑

k,l〈αm, αn, αl〉ηl,kαk is just the definition of the product αm ?αn (see Equation 2.13).

Moreover, we calculate the pairing of
∑

k η
klαk and αl to be

〈
∑
k

ηklαk, αl〉 =
∑
k

ηkl〈αk, αl〉

=
∑
k

ηlkηkl =
∑
k

δlk

= 1.

Then

〈X,αi, αj, αm ? αn〉 =
∑

AtB=X

cA,B
∑
l

〈A,αi, αm, α′l〉〈B,αl, αj, αn〉

−
∑

AtB=X,B 6=∅

cA,B
∑
l

〈A,αi, αj, α′l〉〈B,αl, αm, αn〉
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where α′l is the dual basis element to αl.

Using Lemma 3.2.1, the reconstruction lemma will argue that all correlators can be

written as sums involving basic correlators. We define these below.

Definition 3.2.2. A correlator 〈α1, α2, . . . , αk〉 is basic if αi is primitive for i ≤ k − 2.

An element α ∈ AW,G which is not a scalar multiple of the identity is primitive if whenever

α = φ ? ε, either φ or ε is in C.

Theorem 3.2.3 (Reconstruction Lemma [FJR13] Lemma 6.2.6). A k-point correlator

〈ξ1, . . . , ξk−3, α, β, ε ? φ〉 satisfies

〈ξ1, . . . , ξk−3, α, β, ε ? φ〉 = S+〈ξ1, . . . , ξk−3, α, ε, β ? φ〉

+〈ξ1, . . . , ξk−3, α ? ε, β, φ〉

−〈ξ1, . . . , ξk−3, α ? β, ε, φ〉, (3.9)

where S is a linear combination of correlators with fewer than k insertions. In addition, the

k-point correlators are uniquely determined by the pairing, the three-point correlators, and

by basic t-point correlators for t ≤ k.

Proof. Consider Equation (3.7). We can pull out the terms where either I or J is the empty

set (there are two of these in the first sum, but only one in the second). Remaining terms

will be a sum of products of correlators with strictly fewer than k insertions. We call this

sum S. This shows

〈ξ1, . . . , ξk−3, α, β, ε ? φ〉 = S+
∑
l

〈ξ1, . . . , ξk−3, α, ε, δl〉〈δ′l, φ, β〉

+
∑
l

〈α, ε, δl〉〈δ′l, φ, β, ξ1, . . . , ξk−3〉

−
∑
l

〈α, β, δl〉〈δ′l, φ, ε, ξ1, . . . , ξk−3〉.
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Note that in each of the three summands explicitly written out, the coefficients cI,J are equal

to 1. From the definition of the multiplication, we know
∑

l〈δ′l, φ, β〉δl equals φ ? β. Similar

computations prove Equation (3.9).

Now, for the second claim, we will repeatedly apply Equation (3.9) to a k-point correlator

with m < k − 2 primitive elements. Such a correlator can be written as

〈ξ1, . . . , ξk−3, α, β, ν〉

where α, β, and ν are all nonprimitive. Then we can write ν = ε ? φ where ε is primitive.

Then Equation (3.9) allows us to write this correlator in terms of correlators with fewer than

k insertions, and in terms of the sum

〈ξ1, . . . , ξk−3, α, ε, β ? φ〉+ 〈ξ1, . . . , ξk−3, α ? ε, β, φ〉 − 〈ξ1, . . . , ξk−3, α ? β, ε, φ〉.

Note that two of these correlators (the ones with ε in them) have m+ 1 primitive elements.

This is not the case for the correlator 〈ξ1, . . . , ξk−3, α ? ε, β, φ〉, so we apply Equation (3.9)

to this correlator with the factorization ε′ ? φ′ of φ, where ε′ is again primitive. Since φ is an

element of a graded ring, and the degree of φ′ decreases with each iteration of our algorithm,

this process must terminate at some point. That is, at some point we will see that all three

special correlators in Equation (3.9) have more than m primitive elements.

We can apply this process inductively to write our original k-point correlator solely in

terms of basic t-point correlators with t ≤ k, the three-point correlators, and the pairing.

Thus, the reconstruction lemma reduces our problem to the computation of only the

basic correlators of AW,G. The challenge is that there is still an infinite number of basic

correlators (in particular, the number of insertions in a correlator can be arbitrarily large).

All known examples of Landau-Ginzburg A-model Frobenius manifolds have been computed

by finding a bound, using the Dimension Axiom (Axiom 2), on the number of insertions in a

nonzero basic correlator. The same strategy fails in our case because our class of examples
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is “too general.” Thus, we need to develop a new strategy to complete our infinite number

of correlator computations. This strategy is presented in the next section, along with its

application to our problem.

Chapter 4. Computation of Frobenius manifolds

4.1 General strategy for computing correlators

The canonical basis for the graded algebra AW,G is the one described in Section 2.2.2. It is a

property of such algebras that there will be a unique element of highest degree in this basis.

If we consider the entire algebra AW,G, however, this element will lose its uniqueness, as it

will span a 1-dimensional subspace of elements of the same (highest) degree. The reader

should keep this in mind as we present the following notation.

Notation 4.1.1. Let W be an invertible polynomial, and let A = AW,G. Then we will use 1

to denote the identity in A and hW to denote the unique basis element of highest W -degree

in our canonical basis for A. We will also use pW to denote a primitive element in our

canonical basis for A.

Note that because AW,G is an algebra, hW will span a 1-dimensional subspace of elements

of AW,G that all have the same (highest) degree. We choose the canonical element hW to

be the element in this subspace that is given by our standard computation of a vector space

basis of AW,G, as described in Section 2.2.2.

In the remainder of this thesis, we will consider polynomials W =
∑
W` where each W`

is an invertible polynomial in distinct variables. (Note that by Theorem 2.2.5, W is also

invertible.) In such a situation, we will call the variables appearing in W` (and in no other

summand of W ) the variables subtended by W`. Now we present a key theorem which will

allow us to exploit the structure of W =
∑
W` in computations of correlators.

Theorem 4.1.2 ([FJJS12], Axiom 4 and [FJR13], Theorem 4.2.2). Let W be an invertible
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polynomial and let Gmax
W be its maximal symmetry group. Suppose W can be written as the

sum of two invertible polynomials W = Y + Z with distinct variables. Then as Frobenius

algebras,

AY,GmaxY
⊗AZ,GmaxZ

∼= AW,GmaxW

via the isomorphism (meg, neh) 7→ mneg+h. When we write the sum g + h, we are thinking

of g and h as elements of Gmax
W via inclusion (see Theorem 2.2.8). Moreover,

Λ0,k(m1eg1 , m2eg2 , . . . , mkegk)⊗Λ0,k(n1eh1 , n2eh2 , . . . , nkehk)

= Λ0,k(m1n1eg1+h1 , m2n2eg2+h2 , . . . , mknkegk+hk).

If W = W1 +W2 + . . .+Wr, we will routinely identify AW,GmaxW
with

AW1, GmaxW1
⊗ . . . ⊗ AWr, GmaxWr

via this isomorphism. Moreover, we will identify elements α ∈

AW`, G
max
W`

with their images (1, . . . , α, . . . ,1) ∈ AW,GmaxW
. One consequence of this theorem

is that to calculate a basis for W , we only need calculate bases for W1, . . . ,Wr. Another

consequence is that primitive elements inAW,GmaxW
will be of the form (1, . . . ,1,pWi

,1, . . . ,1),

where pWi
is a primitive element in AWi, GmaxWi

. Also, from the definition of the W -degree of

an element α ∈ AW,GmaxW
, it is clear that if (α1, . . . , αr) 7→ α in the isomorphism of Theorem

4.1.2, then degW (α) =
∑r

i=1 degWi
(αi). Thus, hW = (hW1 ,hW2 , . . . ,hWr) up to a constant.

The idea behind our new strategy for computing correlators is to use some new notation

for correlators that takes advantage of the tensor product structure described in the above

theorem. Once we have this notation and some associated vocabulary, it will be simple

enough to compute specific examples of Frobenius manifolds for polynomials that are sums

of An−1 and Dn+1 polynomials. The difficulty, again, will be to find a general argument that

works for all examples. Our new notation, however, will still be used in the general proof.

Notation 4.1.3. Because it is helpful to work with tensor products of our algebras AW,G,

we will find it useful to think of correlators as grids, with rows corresponding to insertions

in the correlator and columns corresponding to polynomial summands in a decomposition
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of W . Thus, let W = W1 + W2 + . . . + Wr be a decomposition of W . If (αi1, αi2, . . . , αir)

maps to αi in the isomorphism of Theorem 4.1.2, we will represent the genus-zero correlator

〈α1, α2, . . . αk〉 with the grid



α11 α12 . . . α1r

α21 α22 . . . α2r

...
...

. . .
...

αk1 αk2 . . . αkr


.

Definition 4.1.4. A basic column is a column in such a grid as above, given that the grid

corresponds to a nonzero basic correlator. The basic entries of a basic column are the first

k − 2 entries of the column.

Note that the basic entries of a basic column must be either 1 or primitive. Thus, with

this notation, it is easy to identify a basic correlator. Such a correlator will have at most

one primitive element pWi
in each of the top k− 2 rows, with the remaining entries in these

top rows equal to 1.

Example 4.1.5. Figure 4.1 contains three examples of correlator grids for 5-point cor-

relators of a polynomial with 3 summands. Grid (1) corresponds to the basic correlator
pW1 1 1
1 pW2 1
1 pW2 1
∗ ∗ ∗
∗ ∗ ∗




pW1 pW2 1
1 pW2 1
1 1 pW3

∗ ∗ ∗
∗ ∗ ∗




pW1 1 1
1 1 1

pW1 1 1
∗ ∗ ∗
∗ ∗ ∗


(1) (2) (3)

Figure 4.1: Examples of grids corresponding to basic and non-basic correlators.

〈pW1 , pW2 , pW2 , ∗, ∗〉. Grid (2) does not correspond to a basic correlator because the first row

has 2 primitive elements. Equivalently, the corresponding correlator is 〈pW1pW2 , pW2 , pW3 , ∗, ∗〉,

and pW1pW2 is not primitive. Grid (3) corresponds to the basic correlator 〈pW1 , 1, pW1 , ∗, ∗〉.

In each grid, the ∗s indicate that this entry of the grid could be any element of the appropriate
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ring without changing the example.

The next step is to combine Axioms 2 and 3 into a form that is particularly useful with

our new grid notation.

Lemma 4.1.6. A non-vanishing genus-zero k-point correlator corresponding to a polynomial

W in N variables must satisfy

1

2

k∑
i=1

Di −
N∑
j=1

lj = N + k − 3 (4.1)

where lj is the jth line bundle degree, and Di is the complex dimension of the fixed locus of

the group element corresponding to the ith insertion in the correlator.

Proof. We can combine Axiom 2 and Definition 2.2.13 to get the following, which must be

satisfied by any nonvanishing k-point correlator:

1

2

k∑
i=1

(
Di + 2

N∑
j=1

(Θgi
j − qj)

)
= ĉW + k − 3. (4.2)

Also, we can rewrite Equation (3.2), which defines the line bundle degrees, as follows:

k∑
i=1

Θgi
j = (k − 2)qj − lj. (4.3)

Hence, when we combine Equations (4.2) and (4.3), we find that a nonvanishing correlator
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must satisfy

1

2

k∑
i=1

Di +
N∑
j=1

(
k∑
i=1

Θgi
j −

k∑
i=1

qj

)
= ĉW + k − 3

1

2

k∑
i=1

Di +
N∑
j=1

((k − 2)qj − lj − kqj) = ĉW + k − 3

1

2

k∑
i=1

Di +
N∑
j=1

(−2qj − lj) =
N∑
j=1

(1− 2qj) + k − 3

1

2

k∑
i=1

Di −
N∑
j=1

lj = N + k − 3.

To see how this lemma relates to our grid notation, let W =
∑r

`=1 W` be a sum of

invertible polynomials. Suppose we have a nonvanishing correlator 〈α1, α2, . . . , αk〉, and

suppose (αi1, αi2, . . . , αir) maps to αi in the isomorphism of Theorem 4.1.2. Note that we

can break up the left hand side of Equation (4.1) as a sum over the columns of our correlator

(equivalently: polynomial summands) in the following way: if W` corresponds to coordinates

a` through b`, then

1

2

k∑
i=1

Di −
N∑
j=1

lj =
r∑
`=1

(
1

2

k∑
i=1

D`
i −

b∑̀
j=a`

lj

)

where D`
i is the complex dimension of the fixed locus of the element αi`.

This leads to the following definition.

Definition 4.1.7. Let W` be a summand (in distinct variables) of the invertible polynomial

W . Then the quantity

C` =
1

2

k∑
i=1

D`
i −

b∑̀
j=a`

lj (4.4)

is the contribution of the `th column of a correlator grid.

In this thesis we will be concerned with polynomials W = W1 + . . . + Wr where each

summand W` is an An−1 or Dn+1 polynomial. We will see in Section 4.2 that in these two

cases, D`
i ∈ 2Z for any αi` ∈ W`. Since a nonvanishing correlator must have integer line
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bundle degrees, in this case the contribution C` must be an integer. Then Lemma 4.1.6 says

that a nonvanishing basic correlator consists of r basic columns whose integer contributions

sum to n+ k − 3. (Note that for a general polynomial W , C` need only be a half-integer.)

Hence, the remainder of our analysis will be to identify the possible contributions of a

basic column, and from that describe all nonzero basic correlators. For convenience we will

rewrite a column contribution C` using Equation (3.2) as follows:

C` =
1

2

k∑
i=1

D`
i −

b∑̀
j=a`

lj

=
1

2

k∑
i=1

D`
i −

b∑̀
j=a`

(
qj(k − 2)−

k∑
i=1

Θgi
j

)

= −(k − 2)

b∑̀
j=a`

qj +
k∑
i=1

(
1

2
D`
i +

b∑̀
j=a`

Θgi
j

)
.

This leads to the notion of the contribution of an entry in a correlator grid.

Definition 4.1.8. Let W be an invertible polynomial, and let αi` be the entry in the ith row

and `th column of a nonzero basic correlator grid. Then we define the contribution of αi` to

be the quantity

c(αi`) =
1

2
D`
i +

b∑̀
j=a`

Θgi
j .

(Recall that since we restrict our attention to correlators of basis elements only, there is

indeed a unique sector for αi` equal to the appropriate restriction of gi.)

Our new notation and definitions allow us to describe a nonzero basic correlator in a

computationally straightforward way. That is, a nonzero basic correlator is defined by a grid

consisting of r basic columns, whose contributions are integers C` (in the cases considered

in this thesis) with

C` = −(k − 2)

b∑̀
j=a`

qj +
k∑
i=1

c(αi`)

that also satisfy
∑r

`=1 C` = N + k − 3.
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4.2 Frobenius algebra structure of An−1 and Dn+1

For the remainder of this thesis, let W =
∑
Wi where each Wi is an An−1 or Dn+1 poly-

nomial in distinct variables. According to Theorem 4.1.2, understanding the Frobenius

algebra structure of AW,GmaxW
amounts to understanding the Frobenius algebra structure of

AAn−1, GmaxAn−1
and ADn+1, GmaxDn+1

. In this section we will analyze the structure of these two rings.

For each, we will do the following: describe the canonical vector space basis for the algebra;

compute the contribution c of each element; identify 1, p, and h in this basis and show that

p is unique relative to the basis, and characterize when the product of two elements will

equal h.

This section is mostly a summary of computations which will be cited from elsewhere in

the literature. All we add is the computation of the contributions of the basis elements.

4.2.1 Frobenius algebra of An−1. The Frobenius algebra structure of An−1 = xn can

be found in Proposition 6.1 of [JKV01] (note that this paper uses different notation than

we do). Note that the weights vector of An−1 is (1/n). The computations in [JKV01] tell

us that the ring AAn−1, GmaxAn−1
has a unique primitive basis element. Also, when two basis

elements come from inverse sectors, their product is a scalar mulitple of hAn−1 .

As explained in [JKV01], the multiplicative identity is given by 1 = e 1
n
, and if n > 2 the

unique primitive basis element is given by pW = e 2
n
. If n = 2, the ring AAn−1, GmaxAn−1

contains

only the identity. The basis element of highest W -degree is hW = en−1
n

. We summarize the

contribution of each element in Table 4.1 below.

Element ea, 0 < a < n

Expanded form e(a/n)

Contribution c(ea) a/n

Table 4.1: Vector space basis elements for AAn−1, GmaxAn−1
and their contributions.

4.2.2 Frobenius algebra of Dn+1. The Frobenius algebra structure of Dn+1 = x2y +

yn is described in Section 5.3.1 of [FJR13], which gives an explicit isomorphism from the
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Milnor ring Qx2+xyn to ADn+1, GmaxDn+1
. This isomorphism shows that ADn+1, GmaxDn+1

has a unique

primitive element. The computations in this paper also tell us that when two elements come

from inverse sectors, including the identity sector, their product is a scalar multiple of hDn+1

(the unique element of highest weight in our usual basis). Note that the weights of Dn+1 are(
n−1
2n
, 1
n

)
.

Because the appearance of the primitive element in Dn+1 depends on whether n > 2 or

n = 2, a priori we may have to do these cases separately. For n > 2, the vector space basis

for Dn+1 is summarized in Table 4.2 below.

Element xe0 en−a , 0 < a < n en+a 0 < a < n

Expanded form xe(0,0) e(n+a
2n

,n−a
n

) e(n−a
2n

, a
n

)

Contribution c 1 3n−a
2n

n+a
2n

Table 4.2: Vector space basis elements for HDn+1,GmaxDn+1
and their contributions.

As explained in [FJR13], we know that 1 = en+1 with contribution n+1
2n

, pDn+1 = en+2

with contribution n+2
2n

, and hDn+1 = en−1 with contribution 3n−1
2n

. Note that hDn+1 has the

largest contribution of any element in this basis as well as the largest W-degree.

For n = 2, a basis for the state space is summarized in Table 4.3 below.

Element 1 p h

Expanded form e(1/4,1/2) xe(0,0) e(3/4,1/2)

Contribution c 3/4 1 5/4

Table 4.3: Vector space basis elements for HD3,GmaxD3
and their contributions.

Because the elements 1, pD3 , and hD3 all have contributions in agreement with the

formulas listed in Table 4.2, we can consider the cases n > 2 and n = 2 together.

4.3 Basic four-point correlators

In this section, as in the remainder of this thesis, we take W =
∑
W` be be a sum of An−1

and Dn+1 polynomials in distinct variables. We call the An−1 and Dn+1 polynomials the

atomic summands of W .
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Recall that the goal of this thesis is to compute the Frobenius manifold structure of

AW,GmaxW
for these polynomials. We have seen that to do so, all we really need to do is

compute all possible correlators. Moreover, thanks to the Reconstruction Lemma, we can

focus our attention on 3-point correlators and basic k-point correlators for k ≥ 4. Now, let

W = W1 + W2, let αi ∈ AW1, GmaxW1
, and let βi ∈ AW2, GmaxW2

. Then it follows from Theorem

4.1.2 and the definition of a correlator as an integral that

〈α1β1, α2β2, α3β3〉 = 〈α1, α2, α3〉〈β1, β2, β3〉,

where (αi, βi) 7→ αiβi in the isomorphism of Theorem 4.1.2. Thus, the 3-point correlators

of AW,GmaxW
are determined by the 3-point correlators of the summands. Because the 3-

point correlators for An−1 are all computed in [JKV01] and for Dn+1 in [FJR13], it is easy to

compute 3-point correlators for the polynomials we are interested in. Thus, for the remainder

of this thesis we will focus on basic k-point correlators with k ≥ 4.

The goal of this section is to use the Reconstruction Lemma 3.2.3 to identify a small col-

lection of nonzero basic four-point correlators that, with the three-point correlators and the

pairing, completely determine all four-point correlators. We begin with some new notation

and a general lemma about the possible values for the contribution of a basic column.

Notation 4.3.1. Let W` be an atomic summand of an invertible polynomial W : CN → C.

Then denote by v` the number of variables subtended by W`. In particular, v` = 1 when

W` = An−1 and v` = 2 when W` = Dn+1. Note that
∑

` v` = N .

Lemma 4.3.2. Let W` be an atomic summand of the invertible polynomial W . Then we

have the following bound on the value of the contribution of a basic column in a k-point

correlator:

v` ≤ C` ≤ 1 + v` +
k − 4

v` n
.

The maximum contribution is realized by the column (pW`
, . . . ,pW`

,hW`
,hW`

)T , except in the

case W` = A1. If W` = A1, then C` = 1.
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Proof. Denote the `th column of a basic k-point correlator by (a1`, a2`, . . . , ak`)
T . Tables 4.1

and 4.2 and the surrounding discussion show that the identity 1 has the smallest contribution

of any element in AW`, G
max
W`

. Since the contribution of a column includes the sum of the

contributions of the elements in that column, we have that C` is minimized when ai` = 1.

We compute

C` ≥ −(k − 2)
∑
j

qj +
k∑
i=1

c(1)

= k c(1)− (k − 2) c(1)

= 2 c(1).

Here we used the fact that for any FJRW ring, c(1) is exactly equal to
∑

j qj. Then C` ≥ 2
n

in the An−1 case and n+1
n

in the Dn+1 case. Because C` must be an integer, we have C` ≥ v`.

Similarly, an analysis of Tables 4.1 and 4.2 and the surrounding discussion shows that

the largest element contributions come from pW`
(if we require a basic element) and hW`

(otherwise). Thus, C` is maximized when

(a1`, a2`, . . . , ak`)
T = (pW`

, . . . ,pW`
,hW`

,hW`
)T .

In the An−1 case,

C` ≤ −(k − 2)(q1) + (k − 2) c(pAn−1) + 2 c(hAn−1)

= −(k − 2)
1

n
+ (k − 2)

2

n
+ 2

n− 1

n

= 2 +
k − 4

n
.
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In the Dn+1 case,

C` ≤ −(k − 2)

(
n− 1

2n
+

1

n

)
+ (k − 2)

n+ 2

2n
+ 2

3n− 1

2n

=
k − 2

2n
+

6n− 2

2n
= 3 +

k − 4

2n
.

This shows C` ≤ 1 + v` + k−4
v` n

.

Finally, if W` = A1, the ring AW`, G
max
W`

has only the identity element 1. Then the

contribution of this column is equal to

C` = −(k − 2)q1 +
k∑
i=1

c(1)

= 2 c(1) =
2

2
= 1.

We can now prove that for our polynomial W = W1 + . . .+Wr, all four-point correlators

are completely determined by the pairing, the three-point correlators, and at most r basic

four-point correlators.

Theorem 4.3.3. Let W be an invertible polynomial with W = W1 + . . . + Wr, where each

atomic summand W` is either an An−1 or Dn+1 polynomial. Then the four-point correla-

tors of AW,G are uniquely determined by the pairing, the three-point correlators, and the

correlators

〈pW`
, pW`

, hW`
, hW 〉

where W` 6= A1.

Proof. Figure 4.2 documents the following argument using our grid notation. The reader

may find it helpful to refer to the grids frequently to help visualize the proof.

From the Reconstruction Lemma 3.2.3 we know that we need only consider basic four-

point correlators. Let us consider the form of such a correlator. Now, from Lemma 4.3.2,
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we know that C` ≥ v`. Also, from Lemma 4.1.6, we know that
∑
C` = N + 1. Then since∑

v` = N , we must have some integer m ∈ 1, . . . , r such that Cm = vm + 1, but C` = v` for

` 6= m. However, Lemma 4.3.2 also tells us that if W` = A1, C` = 1. Thus, Wm is not an

A1-type polynomial.

Because v` + 1 is the maximum value for C` when k = 4, we must have the mth column

equal to (pWm ,pWm ,hWm ,hWm)T . From the definition of a basic correlator, the remaining

columns in our grid must have all their basic elements equal to 1. See grids (1) and (2) in

Figure 4.2. 
pW1 ∗ ∗ . . . ∗
pW1 ∗ ∗ . . . ∗
hW1 ∗ ∗ . . . ∗
hW1 ∗ ∗ . . . ∗




pW1 1 1 . . . 1
pW1 1 1 . . . 1
hW1 ∗ ∗ . . . ∗
hW1 ∗ ∗ . . . ∗


(1) (2)

pW1 1 1 . . . 1
pW1 1 1 . . . 1
hW1 ξ12 ξ13 . . . ξ1r

hW1 ξ22 ξ23 . . . ξ2r




pW1 1 1 . . . 1
pW1 1 1 . . . 1
hW1 1 1 . . . 1
hW1 hW2 hW3 . . . hWr


(3) (4)

Figure 4.2: Filling in the grid for a nonzero basic four-point correlator. Step 1: one column
must have the form (pWm ,pWm ,hWm ,hWm)T . For simplicity we take m = 1. Step 2: this
forces the remaining columns to have 1s for their basic elements (top 2 elements). Step 3:
we label the remaining non primitive elements. Step 4: using the Reconstruction Lemma we
“slide” the ξ1is into the bottom row.

For ` 6= m, call the two non-basic elements in the `th column ξ1` and ξ2`. Recall that in

this case C` = v`. Then

C` = −(k − 2)
∑
j

qj + (k − 2) c(1) + c(ξ1`) + c(ξ2`)

= c(ξ1`) + c(ξ2`)

= v`.

Here again we are using the fact that in any FJRW ring, c(1) =
∑

j qj. Then in the case

48



W` = An−1, since c(ξ1`) = a
n

where a is an integer and 0 < a < n, we have c(ξ2`) = n−a
n

.

Then since in this case v` = 1 we must have ξ1` = ea and ξ2` = en−a, and in particular ξ1` and

ξ2` come from inverse sectors. Thus, their product is a scalar multiple of hAn−1 . Similarly, if

W` = Dn+1, an identical argument shows that ξ1` and ξ2` come from inverse sectors, so that

again ξ1` ? ξ2` is a scalar multiple of hDn+1 .

Now, we have deduced that our nonzero basic 4-point correlator must have the form

〈pWm , pWm , hWmξ11 . . . ξ1r, hWmξ21 . . . ξ2r〉.

This correlator corresponds to multiplying across the rows of correlator grid (3) in Figure

4.2. We will use the Reconstruction Lemma 3.2.3 to show that after fixing m, all of these can

be determined by a single correlator. To do this, set α = pWm , β = hWmξ11 . . . ξ1r, ε = hWm ,

and φ = ξ21 . . . ξ2r. Then ε ? φ = hWmξ21 . . . ξ2r, as required. Also α ? ε = α ? β = 0, since

both of these products involve multiplying hWm by some element of smaller (but nonzero)

degree in AWm, GmaxWm
. Finally, β ? φ = hWmξ11ξ21 . . . ξ1rξ2r = d1hW1 . . . drhWr = dhW . Here, d

and each di are complex numbers. Because correlators are linear, we can pull the constant d

out to the front. We conclude that all four-point correlators are determined by the pairing,

the three-point correlators, and the correlators

〈pW`
, pW`

, hW`
, hW 〉,

for ` = 1, . . . r, omitting ` where W` = A1.

We note a fact which follows directly from the proof above that we will return to later.

Corollary 4.3.4. If a basic column has only 1s for its basic elements, then C` = v`.

Proof. Let the `th column equal (1, . . . , 1, ξ1, ξ2)T . Then in the above proof we showed

c(ξ1) + c(ξ2) = C`. It follows from a quick check of Tables 4.1 and 4.2 that it is impossible

to choose ξ1 and ξ2 so that c(ξ1) + c(ξ2) is any integer greater than v`.
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It remains to calculate the values of these correlators. The following theorem takes us

most of the way.

Theorem 4.3.5. For any correlator described in Theorem 4.3.3, the following equality holds.

〈pW`
, pW`

, hW`
, hW 〉 = 〈pW`

, pW`
, hW`

, hW`
〉.

This theorem is helpful because the correlator 〈pW`
, pW`

, hW`
, hW`

〉 comes from the

simpler ring AD,GmaxD
or AA,GmaxA

, and its value is known in almost all cases.

Proof. The idea of this proof is to use the second part of Theorem 4.1.2 to write

Λ0,4(pW`
, pW`

, hW`
, hW ) = Λ0,4(pW`

, pW`
, hW`

, hW`
)
⊗
m 6=`

Λ0,4(1, 1, 1, hWm).

We will show that the degree of each class Λ0,4(1, 1, 1, hWm) is zero, so that each of these

terms is just a complex number, and hence the degree of Λ0,4(pW`
, pW`

, hW`
, hW ) is equal

to the degree of Λ0,4(pW`
, pW`

, hW`
, hW`

). Using the definition

〈pW`
, pW`

, hW`
, hW 〉 =

∫
M0,4

Λ0,4(pW`
, pW`

, hW`
, hW ),

we can then conclude that 〈pW`
, pW`

, hW`
, hW 〉 is equal to 〈pW`

, pW`
, hW`

, hW`
〉, multi-

plied by the constants 〈1, 1, 1, hWm〉 for m 6= `.

First we show that the classes Λ0,4(1, 1, 1, hWm) have degree zero. We compute the

degree using Definition 3.1.1:

deg( Λ0,4(1, 1, 1, hWm)) =
1

2
(degW (1) + degW (1) + degW (1) + degW (hWm))− ĉW

=
1

2
(0 + 0 + 0 + 2ĉW )− ĉW

= 0.

Second, to compute the value of these (constant) classes we use the Forgetting Tails
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Axiom (Axiom 5). We find

Λ0,4(1,1,1,hWm) = τ ∗Λ0,3(1,1,hWm).

Any cohomology class on M0,3 = {pt} is a constant, so τ ∗Λ0,3(1,1,hWm) = Λ0,3(1,1,hWm).

Moreover, Λ0,3(1,1,hWm) = 〈1,1,hWm〉, since the integral of a constant over a point is equal

to the constant. Using the Pairing Axiom (Axiom 4),

〈1, 1, hWm〉 = 〈1, hWm〉 = 1.

Recall that we computed this pairing in Example 2.2.19. Thus,

Λ0,4(1, 1, 1, hWm) = 1.

We have shown that

〈pW`
, pW`

, hW`
, hW 〉 = 〈pW`

, pW`
, hW`

, hW`
〉.

Corollary 4.3.6. If W` is a Dn+1 type polynomial with n > 2 or an An−1 type polynomial,

then

〈pW`
, pW`

, hW`
, hW 〉 =

1

n
.

If W` = D3, then

〈pW`
, pW`

, hW`
, hW 〉 = ±1

8
.

Proof. The value of 〈pW`
, pW`

, hW`
, hW`

〉 is calculated in the Dn+1 case for n > 2 in Section

6.3.6 of [FJR13] and in the An−1 case for all values of n in Proposition 6.1 of [JKV01]. Because

the idea used in [FJR13] for the Dn+1 polynomials does not work when n = 2, we calculate

this correlator in the D3 case in Chapter 5 of this thesis.
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4.4 Basic higher-point correlators

The goal of this section is to prove the following theorem.

Theorem 4.4.1. Let W be an invertible polynomial with W = W1 + . . . + Wr, where each

summand W` is either an An−1 or Dn+1 polynomial. Then every genus-zero basic k-point

correlator with k > 4 vanishes.

Note that this will completely determine the Frobenius manifold structure for W in terms

of the Frobenius manifold structures of the summands W`.

The idea of the proof is to look at the grid corresponding to such a correlator, supposing

(for contradiction) that the correlator is nonzero. In Lemma 4.4.3 we will show that the

requirement that the correlator be basic puts a lower bound on the number of 1s that

can appear in this grid. However, in Lemma 4.4.4 we will show that the contribution rule∑
C` = N + k − 3 puts an upper bound on the number of 1s. We will show that these

bounds are incompatible, and thus any basic k-point correlator vanishes.

Before beginning the proof of Theorem 4.4.1, we do an example which contains the flavor

of the general proof.

Example 4.4.2. Let W = x3 + y3 + z3 + w3. For this example, let us consider 7-point

correlators. In Section 2.2.2 we computed the basis for Ax3, Gmax
x3

to be the two elements

1 = e1/3 and px3 = hx3 = e2/3 with contributions 1/3 and 2/3 respectively.

Now, we wish to fill in the entries of our correlator grid with these two elements. We are

subject to the constraint
∑
C` = N + k − 3 = 4 + 7− 3 = 8, as well as the bound in Lemma

4.3.2, which says C` ≤ 1 + v` + k−4
v` n

= 1 + 1 + 7−4
1·3 = 3. Thus, our contributions partition

8 into four pieces, which can occur in one of three ways: 1 + 1 + 3 + 3, 1 + 2 + 2 + 3, or

2 + 2 + 2 + 2.

Now, the grid of a nonzero basic correlator needs a lot of 1 entries. Thus, given a value
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for C`, let us see how many 1s the `th column can hold. We have the formula

C` = −(k − 2)

b∑̀
j=a`

qj +
k∑
i=1

c(αi`) = −5/3 +
7∑
i=1

c(αi`).

A quick computation leads to Table 4.4:

C` Maximum number of 1s Computation of C`

1 6 1s, 1 p −5/3 + 6(1/3) + 1(2/3) = 1

2 3 1s, 4 ps −5/3 + 3(1/3) + 4(2/3) = 2

3 7 ps −5/3 + 0(1/3) + 7(2/3) = 3

Table 4.4: Possible column contributions for a nonzero basic 7-point correlator for W =
x3 + y3 + z3 + w3 and the corresponding maximal number of 1s. Note that in this case, the
number of 1s is actually uniquely determined by C`; this is not true for more complicated
examples.

Now, we simply cycle through our three cases for the partition of 8 into values for the

C`, and see if anything works. The three possibilities are diagrammed in Figure 4.3. In each

case, the required column contributions make it so that we “don’t have enough 1s” to fill out

the grid.

Correlator grid



1 1 p ∗

1 1 p ∗

1 1 p ∗

1 1 p ∗

1 1 p ∗

1 1 p p

p p p p





1 1 p ∗

1 1 p ∗

1 1 1 p

1 p 1 ∗

1 p 1 ∗

1 p p p

p p p p





1 1 p 1

1 p 1 1

1 p 1 1

p 1 1 ∗

p 1 ∗ ∗

p p p p

p p p p


∑
C` = 8 1+1+3+3 1+2+2+3 2+2+2+2

Figure 4.3: Grids for potentially nonzero basic 7-point correlators. In each case we have left
∗s where the the definition of a basic correlator requires that we put a 1, but the column
contributions stipulate that we have already used up all our 1s.
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In theory, the method of the previous example could be used to prove Theorem 4.4.1

for any fixed W and k. Of course, we want to do all cases of W and k at once, which

requires insight beyond simple manipulation of correlator grids. We begin our general proof

of Theorem 4.4.1 by establishing a lower bound on the number of 1s in any p columns of a

basic correlator.

Lemma 4.4.3. Any p columns of a basic correlator will have at least (p-1)(k-2) entries equal

to 1.

Proof. The basic elements in a correlator grid must all be either 1 or p, and exactly one p

can appear in each row of the grid. The number of 1s in our p columns is minimized when

every row’s p appears in one of our p columns. Likewise, the number of ones is minimized

when the bottom two rows of the correlator grid (the non-basic elements) have no 1s in

them. This means we have at least p− 1 columns times k − 2 rows of 1s.

Now, let us step back and consider what the contribution rule
∑
C` = N+k−3 requires.

We are to partition N + k − 3 into r pieces, called C1, . . . , Cr. From Lemma 4.3.2, we know

that C` ≥ v`. Then since
∑
v` = N , we have k− 3 “extra” units to partition among the C`.

Now, let P = {` ∈ 1, 2, . . . , r | C` > v`}, so that P is the set of columns with some of

the “extra” k − 3 units. Let p = |P |. The following lemma states an upper bound on the

number of 1s in a basic column W` for ` ∈ P .

Lemma 4.4.4. Let W` be a An−1 or Dn+1-type atomic summand of W . If C` = v` + t with

t ≥ 1, then the number of ones in the `th column is at most k − 3t− 1.

Proof. Write the `th column of the correlator grid as (1, . . . ,1,pW`
, . . . ,pW`

, ξ1, ξ2)T . By

Corollary 4.3.4, since C` > v`, we know we have at least one basic element equal to pW`
.

Now, suppose this column has the maximal number of 1s yielding the contribution C`. We

claim that ξ1 = ξ2 = hW`
. If ξi 6= hW`

, then we could replace ξi by some element whose

contribution is 1
n

higher (in the An−1 case) or 1
2n

higher (in the Dn+1 case). This would

allow us to replace some pW`
(since we know there is at least one) by another 1, since
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c(pW`
)− c(1) = 1

n
or 1

2n
in the An−1 or Dn+1 case, respectively. Thus, we have increased the

number of 1s, which is a contradiction.

Let T be a basic column satisfying the above hypotheses that also contains the maximum

number of 1s. Then we have shown that

T = (1, . . . ,1, pW`
, . . . ,pW`

, hW`
, hW`

)T ,

where the exact number of 1s and pW`
s is still unknown. The remainder of the proof is done

in two cases.

An−1 case: Let O be the number of 1s in T . Then T also has two hW`
s and k − O − 2

elements equal to pW`
. Thus,

C` = −(k − 2)
∑
j

qj +O c(1) + (k −O − 2) c(pW`
) + 2 c(hW`

)

C` = −(k − 2)

(
1

n

)
+O

(
1

n

)
+ (k −O − 2)

(
2

n

)
+ 2

(
n− 1

n

)
=
k − 2−O

n
+ 2

(
n− 1

n

)
.

Since we have C` = 1 + t, we can set these two equations equal and solve for O in terms of

t. We find

O = k − 4− n(t− 1).

Now, note that the requirement t ≥ 1, coupled with Lemma 4.3.2, implies that n ≥ 3.

Moreover, since t ≥ 1, the quantity t− 1 is nonnegative. We conclude

O ≤ k − 4− 3(t− 1)

= k − 3t− 1.

Dn+1 case: Let O be the number of 1s in T . Then T also has two hW`
s and k − O − 2
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elements equal to pW`
. Thus,

C` = −(k − 2)

(
n+ 1

2n

)
+O

(
n+ 1

2n

)
+ (k −O − 2)

(
n+ 2

2n

)
+ 2

(
3n− 1

2n

)
=
k − 2−O

2n
+ 3− 1

n
.

Since we have C` = 2 + t, we can set these two equations equal and solve for O in terms of

t. We find

O = k − 4− 2n(t− 1).

Now, since t ≥ 1, the quantity t− 1 is nonnegative. This allows us to use the fact 2 ≤ n to

conclude

O ≤ k − 4− 2(2)(t− 1)

= k − 4t = k − 3t− t

≤ k − 3t− 1,

where the last inequality follows again since t ≥ 1.

We are now ready to prove that all basic k-point correlators with k > 4 vanish. The idea

is that the upper bound on the number of 1s found in Lemma 4.4.4 contradicts the lower

bound found in Lemma 4.4.3.

Proof of Theorem 4.4.1. As before, let P = {` ∈ 1, 2, . . . , r | C` > v`}. Let p = |P |. Now,

for ` ∈ P, C` = v` + t` where
∑

`∈P t` = k − 3. In particular, note that p ≤ k − 3. From

Lemma 4.4.4, the columns of P have at most
∑

`∈P (k−3t`−1) = pk−3(k−3)−p elements

equal to 1. Conversely, by Lemma 4.4.3 these columns must have at least (p − 1)(k − 2)

elements equal to 1. This yields the inequality

(p− 1)(k − 2) ≤ pk − 3(k − 3)− p.
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We solve for k to obtain

k ≤ p+ 7

2
.

When we substitute p ≤ k − 3, we conclude

k ≤ 4.

This shows that no nonzero basic correlator can have k > 4.

Chapter 5. The D3 Frobenius manifold

The goal of this section is to compute the correlator 〈pD3 , pD3 , hD3 , hD3〉. The analogous

correlator in the Dn+1 case with n > 2 was computed directly in [FJR13] using the Concavity

Axiom. Unfortunately, we cannot do the same for the D3 correlator because it does not

satisfy the hypotheses of that axiom. In fact, the insertion pD3 comes from the sector (0, 0),

which has a fixed locus of dimension 2 (dimension 0 is required for the Concavity Axiom).

Instead, we will use the Reconstruction Lemma 3.2.3 to relate our desired correlator to

the 5-point correlator 〈hD3 , hD3 , hD3 , hD3 , hD3〉. Because hD3 comes from the sector

(3/4, 1/2) which has a fixed locus of dimension 0, we will see that we can use the Concavity

Axiom to compute this 5-point correlator. This allows us to compute the desired 4-point

correlator up to a sign. Unfortunately, we cannot do better than this with any of the known

tools.

Our first step, then, is to relate the correlators 〈pD3 , pD3 , hD3 , hD3〉 and

〈hD3 , hD3 , hD3 , hD3 , hD3〉 using the reconstruction.
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Lemma 5.0.5. Let α = 〈pD3 , pD3 , hD3 , hD3〉 and β = 〈hD3 , hD3 , hD3 , hD3 , hD3〉. Then

α =

√
β

8
.

Proof. Let X = pD3 , so X2 will be a scalar multiple of hD3 . Let us apply Lemma 3.2.1 to

the correlator 〈X2, X2, X2, X2, X2〉 setting α = β = X2 and ε = φ = X. We find

〈X2, X2, X2, X2, X2〉 =
∑
l

〈X2, X2, X2, X, δl〉〈δ′l, X,X2〉+ 2
∑
l

〈X2, X2, X, δl〉〈δ′l, X,X2, X2〉

+
∑
l

〈X2, X, δl〉〈δ′l, X,X2, X2, X2〉 − 2
∑
l

〈X2, X2, X2, δl〉〈δ′l, X,X,X2〉

−
∑
l

〈X2, X2, δl〉〈δ′l, X,X,X2, X2〉.

Now, the correlator 〈X2, X, δl〉 will vanish for every value of δl by the Dimension Ax-

iom (Axiom 2), as will 〈X2, X2, δl〉. Moreover, by the Dimension Axiom the correlator

〈X2, X2, X2, δl〉 can be nonzero only if δl is a scalar multiple of 1. But in this case, by

Corollary 3.1.4, the correlator is zero anyway. Thus, we have

〈X2, X2, X2, X2, X2〉 = 2
∑
l

〈X2, X2, X, δl〉〈δ′l, X,X2, X2〉.

By the Dimension Axiom, the correlator 〈X2, X2, X, δl〉 can be nonzero only if δl = X.

Now, in Example 2.2.19 we computed that 〈X,X〉 = −1
2
. This implies that if δl = X, then

δ′l = −2X. Then

〈X2, X2, X2, X2, X2〉 = −4〈X2, X2, X,X〉2.

We will now cite the fact that pD3 ?pD3 = −1
2
hD3 . The reader can in fact check this from

the definition of the Frobenius algebra multiplication (Equation 2.13), the definition of the

pairing (Equation 2.12), and the correlator axioms. It is a straightforward but somewhat

lengthy computation. Then we have the relation X2 = −1
2
hD3 . Let α = 〈hD3 ,hD3 , X,X〉 =
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〈−2X2,−2X2, X,X〉. Thus 〈X2, X2, X,X〉 = α
4
. Similarly if

β = 〈hD3 ,hD3 ,hD3 ,hD3 ,hD3〉 = 〈−2X2,−2X2,−2X2,−2X2,−2X2〉,

then 〈X2, X2, X2, X2, X2〉 = β
(−2)5 . We have the equality

β

(−2)5
= −4

(α
4

)2

.

Solving the equation for α, we find

α =

√
β

8
.

It remains to calculate the value of β using the Concavity Axiom (Axiom 6). The first

step is to check that we can in fact use this axiom; that is, we need to check that our

correlator satisfies all the hypotheses. This is the purpose of the following lemma.

Lemma 5.0.6. All the line bundle degrees of the correlator 〈hD3 , hD3 , hD3 , hD3 , hD3〉 are

negative integers.

Proof. We begin by listing all possible graphs Γ dual to stable nodal curves with five marked

points. Since all the insertions in the correlator are the same, the numbering of the marks

doesn’t matter in this case. Up to symmetry, then, we have only three possibilities, di-

agrammed in Figures 5.1-5.3. To arrive at these possibilities, I considered the possible

distributions of marks on a stable curve given the number of smooth components.

Since hD3 = e(3/4,1/2), all external half edges are marked with the group element g =

(3/4, 1/2). First, we check that the line bundle degrees coming from Figure 5.1 are negative

integers. In this case, Equation 3.4 is exactly the same as the definition of the line bundle

degrees of our 5-point correlator. We compute the line bundle degrees (l1, l2) as follows:

(5− 2)(1/4, 1/2)− 5(3/4, 1/2) = (−3,−1).
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g

g

g

g
g

Figure 5.1: Dual graph for a 5-point correlator with 1 vertex; here g = (3/4, 1/2).

g

g

g

g

g
g+

1 g−1

Figure 5.2: Dual graph for a 5-point
correlator with 2 vertices; here g =
(3/4, 1/2).

g

g

g g

g

g+
2 g−2 g+

3 g−3

Figure 5.3: Dual graph for a 5-point
correlator with 3 vertices; here g =
(3/4, 1/2).

Recall that by definition, we use arithmetic in Q2 to do this computation (instead of arith-

metic in the group Gmax
W ). This is well-defined because the fractions Θ are chosen specifically

to lie in Q ∩ [0, 1).

The next step is to use Equation 3.3 to calculate the values of the group elements g+
1 ,

etc. We find

g+
1 = (4− 2)(1/4, 1/2)− 3(3/4, 1/2) = (1/4, 1/2).

Recall that this is a group element equation, so we are working in (Q/Z)2. Then

g−1 = −g+
1 = −(1/4, 1/2) = (3/4, 1/2).

(Note that this is equivalent to g+ for the same graph reflected about a vertical axis). Because

no coordinates of g+ are zero, we do not have to contract any edges in the computation of

the line bundle degrees for the vertices of this graph. Then using Equation 3.4, the line
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bundle degrees (l1, l2) for the g+
1 node are

(4− 2)(1/4, 1/2)− 3(3/4, 1/2)− (1/4, 1/2) = (−2,−1).

Recall that here we are using arithmetic in (Q)2. These line bundle degrees are negative;

checking the other components is similar. We find that the line bundle degrees for the right

hand node in Figure 5.2 are also (−2,−1), while from left to right the line bundle degrees

for the nodes in Figure 5.3 are (−2,−1), (−1,−1), and (−2,−1).

The final step is to apply the concavity axiom.

Lemma 5.0.7. The following equality holds.

〈hD3 , hD3 , hD3 , hD3 , hD3〉 =
1

8
.

Proof. All of the sectors in this correlator are (3/4, 1/2) which has a 0-dimensional fixed

locus. Since we know from Lemma 5.0.6 that this correlator is also concave, we just have

to plug our numbers into the formulas in the Concavity Axiom (Axiom 6). In order to do

so, we will need to know what all possible one-edged graphs Γ are. This time, graphs with

different labelings of the half-edges will be considered distinct, even if their decorations by

group elements end up being the same. Let K ⊂ {1, . . . , 5} be the set of marks appearing

to the left of the edge. Recall that by convention, 1 ∈ K. Before labeling, all graphs will

look like the underlying graph in Figure 5.2 (if |K| = 3) or they will look like its reflection

about a vertical axis (if |K| = 2). Thus we have two cases.

If |K| = 3, since we know 1 ∈ K, there are
(

4
2

)
= 6 ways of picking the remaining

elements of K. Each of these six graphs will have g− = (3/4, 1/2) as computed in Lemma

5.0.6 above.

If |K| = 2, since we know 1 ∈ K, there are just 4 ways of picking the remaining element

of K. The underlying graph here is just the reflection of the underlying graph in the case

above, so that g− here is equal to −(3/4, 1/2) = (1/4, 1/2) as explained in Lemma 5.0.6
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above. Note that this gives a total of 10 graphs that we have to sum over in the final term

of Equation 3.6.

Then using the fact that q1 = 1/4, q2 = 1/2, and B2(x) = x2 − x+ 1/6, we compute

ch1(E1) =
B2(1/4)

2
κ1 −

5∑
j=1

B2(3/4)

2
ψj +

∑
Γ, |K|=2

B2(1/4)

2
∆K +

∑
Γ, |K|=3

B2(3/4)

2
∆K

=
1

96
(−κ1 +

5∑
j=1

ψj −
∑

Γ

∆K),

ch1(E2) =
B2(1/2)

2
κ1 −

5∑
j=1

B2(1/2)

2
ψj +

∑
Γ, |K|=2

B2(1/2)

2
∆K +

∑
Γ, |K|=3

B2(1/2)

2
∆K

=
1

24
(−κ1 +

5∑
j=1

ψj −
∑

Γ

∆K).

Now, B3(x) = x3 − 3
2
x2 + 1

2
x. Then B3(1/2) = 0, so ch2(E2) = 0. We further compute

ch2(E1) =
B3(1/4)

6
κ2 −

5∑
j=1

B3(3/4)

6
ψ2
j +

∑
Γ, |K|=2

B3(1/4)

6
P2,Γ(∆) +

∑
Γ, |K|=3

B3(3/4)

6
P2,Γ(∆)

=
1

128
(κ2 +

5∑
j=1

ψj +
∑

Γ, |K|=2

∆K∆K∪j +
∑

Γ, |K|=3

∆K∆1∪KC ).

When we plug this information into Equation (3.5) and integrate the resulting polynomial

in κ’s, ψ’s, and ∆’s using Drew Johnson’s Sage package [Joh], we get the value 1
8
. As a check

on computation, the same integration was performed with Carl Faber’s Maple package [Fab].

The result was the same.

We have proved the following theorem.

Theorem 5.0.8. The following equality holds:

〈pD3 , pD3 , hD3 , hD3〉 = ±1

8
.
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Proof. Combining Lemmas 5.0.5 and 5.0.7, we compute

〈pD3 , pD3 , hD3 , hD3〉 =

√(
1

8

)(
1

8

)
= ±1

8
.

The conclusion of Theorem 5.0.8 leads us to hope that the Frobenius manifolds resulting

from the two possible values of 〈pD3 , pD3 , hD3 , hD3〉 should at least be isomorphic. This,

unfortunately, is not the case. This is the content of the final definition and theorem in this

thesis.

Definition 5.0.9. Let M1 and M2 be Frobenius manifolds over vector spaces with potentials

T1 and T2 and Euler fields E1 and E2, respectively. Let Uj be a neighborhood of the origin

in Mj where the potential Tj is known to converge. Then an isomorphism of M1 and M2 is

a biholomorphic map φ : U1 → U2 such that

1. φ(0) = 0

2. T1 = T2 ◦ φ

3. φ∗(id1) = id2 where idj is the identity on Mj

4. φ∗(E1) = E2.

Theorem 5.0.10. The D3 Frobenius manifolds defined by the two possible values of the

correlator

〈pD3 , pD3 , hD3 , hD3〉 = ±1

8

are not isomorphic.

Proof. Let α = 〈pD3 , pD3 , hD3 , hD3〉. Then the potential for the D3 Frobenius manifold M
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is given by

T = 3
〈1,1,h〉

3!
t21th + 3

〈1,p,p〉
3!

t1t
2
p + 6

〈p,p,h,h〉
4!

t2pt
2
h +
〈h,h,h,h,h〉

5!
t5h

=
1

2
t21th −

1

4
t1t

2
p +

α

4
t2pt

2
h +

8α2

5!
t5h. (5.1)

Here, t1, tp, and th correspond to 1, p, and h, respectively. This formula was computed

directly from the definition, Equation 2.1. The coefficients in front of each term came from

the fact that the sum in Equation 2.1 is over all unordered tuples of basis elements, so

that if correlator insertions are not all distinct, a given term will appear multiple times.

For example, 〈1,1,h〉 will appear once for each possible position of the h insertion, so we

multiply the corresponding term by 3.

The computation of the 3-point correlators is a straightforward application of the Pairing

Axiom (Axiom 4), since we already computed the pairings of the corresponding elements in

Example 2.2.19. The value of the 5-point correlator was computed in terms of α in Lemma

5.0.5.

Let M1 be the D3 Frobenius manifold with potential T1 equal to T in Equation (5.1) with

α = 1
8
. Label the coordinates of M1 by (t1, tp, th). Similarly, let N be the D3 Frobenius

manifold with potential T2 equal to T in Equation (5.1) with α = −1
8
. Use coordinates

(r1, rp, rt) on N .

Now we desire to find a map φ : C3
t1,tp,th

→ C3
r1,rp,rh

satisfying the conditions of Definition

5.0.9. Write

φ = (φ1(t1, tp, th), φp(t1, tp, th), φh(t1, tp, th) ),

so that ri = φi. From condition (1) of Definition 5.0.9, we know that φ(0) = 0. Let us next

explore what condition (4) means for φ.

From the definition of W -degree, we easily compute

degW (1) = 0 degW (p) =
1

2
degW (h) = 1.
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Because the W -degrees are the same for M1 and M2, using Theorem 3.1.2 we have Euler

fields

E1 = t1
∂

∂t1
+

3

4
tp
∂

∂tp
+

1

2
th

∂

∂th

and

E2 = r1
∂

∂r1

+
3

4
rp

∂

∂rp
+

1

2
rh

∂

∂rh
.

Then using the formula for the pushforward in coordinates, we require


∂r1
∂t1

∂r1
∂tp

∂r1
∂th

∂rp
∂t1

∂rp
∂tp

∂rp
∂th

∂rh
∂t1

∂rh
∂tp

∂rh
∂th




t1

3
4
tp

1
2
th

 =


r1

3
4
rp

1
2
rh

 .

This is equivalent to the system of equations

t1
∂φi
∂t1

+
3

4
tp
∂φi
∂tp

+
1

2
th
∂φi
∂th

= diφi

for i = 1, p, h, where d1 = 1, dp = 3
4
, and dh = 1

2
. It is easy to see that this is equivalent to

requiring E(φi) = diφi. Using the vocabulary of Lemma 2.1.5, the coordinate functions φi

of φ must be Euler of degree di. Thus, we know

φ = ( c1t1 + c2t
2
h, cptp, chth ),

where the constants c1, c2, cp, and ch are complex numbers still to be solved for.

Next, condition (3) says that φ∗(
∂
∂t1

) = ∂
∂r1

. Again from the coordinate pushforward

matrix, we find this implies ∂φ1

∂t1
= 1, so we know c1 = 1.

Finally, we consider condition (2). This condition says that we want T1 = T2 ◦ φ. This is

an equality of two polynomials which we can solve by equating like coefficients. First, when

we expand the term on the right, we get a term chc2t1t
3
h, but no t1t

3
h-term appears on the

left. Thus ch = 0 or c2 = 0; it is easy to see that if c2 = 0 the map φ will not be bijective.
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So ch = 0. Thus, φ must have the form

φ = (t1, cptp, chth).

Next, equating coefficients of t21th-terms yields 1
2

= ch
2

, so ch = 1. Similarly, equating

coefficients of the t1t
2
p-terms yields −1

4
= − c2p

4
, which means c2

p = 1. But then fixing α = 1
8

and equating coefficients of the t2pt
2
h-term (which has opposite sign in the two potentials), we

have α
4

= −αc2pc
2
h

4
= −α

4
, which is a contradiction.

We close by noting the reason for the bad news behind Theorem 5.0.10: simply put,

the WDVV equations (or the reconstruction algorithm) were not strong enough to uniquely

determine the Frobenius manifold structure of D3. Though this is disappointing, the reader

should keep in mind that this Frobenius manifold is still uniquely determined by the definition

of the correlator (Definition 2.2.20). And, in fact, reconstruction narrowed the possibilities

down to only two.

Chapter 6. Conclusion

We have completely determined the A-model Frobenius manifold structure for a pair (W,Gmax
W )

when W is a sum of An−1 and Dn+1-type polynomials (though only up to the sign of a 4-

point correlator for polynomials with D3 summands). To do this, we had to develop a new

strategy for computing correlators specifically designed for sums of polynomials. We discov-

ered that the Frobenius manifold structure of W is in fact determined by the structure of

its summands in a very clean way. In the course of this proof, we computed the Frobenius

manifold structure of D3, as it had been overlooked in earlier literature.

We restricted our investigations to the polynomials An−1 and Dn+1 because they are ex-

actly those polynomials with a unique primitive element in the usual basis for their Frobenius

algebra structure. A natural question for subsequent investigation is, can the techniques in
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this thesis be easily extended to polynomials whose summands have arbitrarily many prim-

itive elements? This would allow for a complete understanding of the Frobenius manifold

structure of the pair (W,Gmax
W ) based on our understanding of its component pieces. Such

an understanding, derived from the methods used in this thesis, might be easier to compute

with than the ideas already worked out in [Kau99].

A second question of great interest is, now that we understand the A-model Frobenius

manifold for this large class of polynomials, can we compute the corresponding B-model

Frobenius manifold and show that they are isomorphic? As explained in the introduction,

this is a hard question because the pairing on a B-model Frobenius manifold is determined

by a primitive form. The primitive form is just a differential form in a straightforward

space, but we are required to choose it so that the induced pairing is flat (i.e., constant in

some coordinate system). It is not at all clear what differential forms will do the trick. An

understanding of the primitive forms for the B-models of our class of polynomials would be

substantial progress in this area.

This leads us to a third question, by far the most difficult. The murky nature of primitive

forms is a huge obstacle to our understanding of the Landau-Ginzburg B-model and hence of

the mirror symmetry relationship. A useful theorem would be to characterize the primitive

form of the B-model of a sum of polynomials in terms of the (easier to understand) primitive

forms of the pieces. Such a characterization might lead to an analog of Theorem 4.1.2 on

the B-side. This would be a huge leap forward in our understanding of Landau-Ginzburg

mirror symmetry.
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