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abstract

Octahedral Extensions and Proofs of Two Conjectures of Wong

Kevin Ronald Childers
Department of Mathematics, BYU

Master of Science

Consider a non-Galois cubic extension K/Q ramified at a single prime p > 3. We show that
if K is a subfield of an S4-extension L/Q ramified only at p, we can determine the Artin
conductor of the projective representation associated to L/Q, which is based on whether or
not K/Q is totally real. We also show that the number of S4-extensions of this type with K
as a subfield is of the form 2n− 1 for some n ≥ 0. If K/Q is totally real, n > 1. This proves
two conjectures of Siman Wong.
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Chapter 1. Introduction

This thesis is mostly concerned with octahedral extensions, which are Galois extensions of

number fields with Galois group isomorphic to S4, the group of symmetries of the octahedron.

We will develop relationships between the S4-extensions and their cubic subfields. Our main

goal will be to prove the following two conjectures made by Siman Wong in [27].

Conjecture 1.1. Let K/Q be a quartic number field with S4-Galois closure ramified at a

single prime p > 3. Let K3/Q be a cubic subfield of the Galois closure of K/Q. Let ρ̃ be the

projective 2-dimensional Artin representation associated to K/Q.

(i) Suppose K3/Q is totally real. If ρ̃ has conductor p2, then vp(disc(K)) = 1.

(ii) Suppose K3/Q is not totally real. If ρ̃ has conductor p2 then vp(disc(K)) = 3, otherwise

vp(disc(K)) = 1.

Conjecture 1.2. Let K/Q be a non-Galois cubic extension such that | disc(K)| is a prime

power. Then the number of S4-extensions L/Q containing K with | disc(L)| a prime power

is 2n − 1 for some integer n. Furthermore, if K/Q is totally real, then n > 0.

In Chapter 2, we will give necessary background definitions and results in the subjects of

number fields, Galois representations, and group cohomology. In Section 2.1 we will discuss

number rings, factorization of primes, basic class field theory, some Galois theory of number

fields, and Dirichlet’s Unit Theorem. Section 2.2 contains necessary definitions for Galois

representations, such as the conductor, and we also discuss ramification groups. In Section

2.3 we define cohomology of groups, give basic results, and discuss the Hochschild-Serre

spectral sequence.

Chapter 3 is devoted to the proof of Conjecture 1.1, which is restated as Theorem 3.1.

Our treatment relies heavily on results of Serre’s 1977 paper [21]. We have published these

results separately as [4].

In Chapter 4 we will prove Conjecture 1.2, restated as Theorem 4.5, and several related

results. For instance, we will prove a generalization to the first part of Conjecture 1.2 which
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holds for ramification at more primes and for an arbitrary base number field as Theorem

4.6. The proof relies on showing that the S4-extensions are the non-identity elements of

an elementary abelian 2-group, Cn
2 (here we are using the notation Cm to denote the cyclic

group of order m). We also give examples of various values of n occurring (in the context of

Conjecture 1.2 or Theorem 4.6), as well as explicit examples of the group operation.
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Chapter 2. Background

2.1 Number Fields

Our main results all consider extensions of number fields. This section briefly states the

important definitions and results that we will need throughout.

2.1.1 Number fields. By a number field, we mean a subfield of C which is a finite

extension of the rational numbers Q. For two number fields K and F , K/F means that K

is an extension of F . We will denote the degree of K as an F -vector space by [K : F ]. If

[K : F ] = n, then there are n embeddings K → C which restrict to the identity on F , see

[17, pg 259].

An algebraic integer is a number α ∈ C which is a root of a monic polynomial in Z[x].

The set of algebraic integers in a number field K forms a ring [17, pg 16], called the ring of

integers of K. We denote this ring by OK . Notice that Z ⊂ OK , and OK ∩Q = Z.

Definition 2.1. ([17, pg 55]) A Dedekind domain is an integral domain R which satisfies

(i) Every ideal is finitely generated (R is Noetherian),

(ii) Every nonzero prime ideal is maximal (R has Krull dimension 1),

(iii) R is integrally closed in its field of fractions K.

Condition (iii) means that that for a root α of a monic polynomial in R[X], α ∈ K

implies α ∈ R. The ring OK is a Dedekind domain for any number field K, see [17, pg 56].

In general, a Dedekind domain is not a unique factorization domain. However, Dedekind

domains always have unique factorization of ideals.

2.1.2 Factorization of ideals.
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Theorem 2.2 ([17, pg 59]). Let R be a Dedekind domain, and a an ideal of R. Then a can

be written uniquely as a product of prime ideals of R,

a = p
vp1 (a)
1 · · · pvpr (a)r

This implies that for a prime ideal p, we have a well defined function vp defined on ideals

of R. It takes in an ideal and returns the exponent of p in the factorization (0 if p does not

appear in the factorization). We can also define vp on elements, by allowing vp(α) to equal

vp(a) where a = αR.

Factorization of ideals is especially interesting for extensions of number fields. Let K/F

be an extension of number fields, and p a prime ideal of F (this means “p is a non-zero prime

of OF”). Then pOK is an ideal of OK , so it has a unique factorization into prime ideals of

OK ,

pOK = Pe1
1 · · ·Per

r .

We call the Pi’s primes lying over p, and p the prime lying below Pi. We call ei the

ramification index of Pi | p, see [17, pg 64]. We say that p ramifies in K if any of the

ei’s are greater than 1.

For any prime P of K, OK/P is a finite field of characteristic p (where (p) is the prime

ideal of Z lying below P), see [17, pg 56]. Therefore we have a field extension (OK/P)/(Z/p).

More generally, if K/F is an extension of number fields, and P is a prime of K lying over a

prime p of F , then (OK/P)/(OF/p) is an extension of finite fields, see [17, pg 64]. We call

the degree of this extension the inertial degree of P | p.

Theorem 2.3 ([17, pg 65]). Let K/F be an extension of number fields, and let p be a prime

of F . Suppose that pOK has prime factorization

pOK = Pe1
1 · · ·Per

r
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in K. Let fi denote the inertial degree of Pi | p. Then

r∑
i=1

eifi = [K : F ].

Suppose that K/F is a Galois extension of number fields and p is a prime of F . If P,P′

are both primes of K lying over p, then P and P′ have the same ramification indexes e and

inertial degrees f by [17, pg 71]. If r is the number of distinct primes of K lying over p, then

Theorem 2.3 reduces to

efr = [K : F ].

in this case. Three special cases are:

(i) e = [K : F ] and f = r = 1. In this case we say that p is totally ramified in K/F .

(ii) f = [K : F ] and e = r = 1. In this case we say that p is inert in K/F .

(iii) r = [K : F ] and e = f = 1. In this case we say that p splits completely in K/F .

2.1.3 The discriminant. An important invariant of a number field is the discriminant,

which we now define.

Definition 2.4. ([17, pg 24]) Let K be a number field of degree n. Let σ1, · · · , σn denote

the n embeddings of K → C. Let α1, . . . , αn ∈ K. Then the discriminant of the n-tuple

(α1, . . . , αn) is defined as

disc(α1, . . . , αn) = det([σi(αj)])
2.

The ring OK is always a free abelian group of rank n by [17, pg 30]. In other words,

there exist algebraic integers α1, . . . , αn ∈ K called an integral basis for OK (see [17, pg

30]) so that every α ∈ OK is uniquely representable in the form

α = m1α1 + · · ·+mnαn with mi ∈ Z.

It is also a fact that the discriminant of an integral basis for OK is an invariant of OK .
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Theorem 2.5 ([17, pg 32]). Let K be a number field of degree n over Q. If α1 . . . , αn and

β1, . . . , βn are two integral bases for OK, then

disc(α1, . . . , αn) = disc(β1, . . . , βn).

Therefore we define the discriminant of K to be the discriminant of any integral basis

for OK , denoted disc(K). Notice that disc(K) ∈ Q, since it is fixed by any embedding of

K → C. In fact, disc(K) ∈ Z, since all entries of the matrix are algebraic integers. A

remarkable and useful fact about disc(K) is the following theorem.

Theorem 2.6 ([19, pg 202]). Let K be a number field. Then a prime p ∈ Z ramifies in K

if and only if p | disc(K).

One consequence of this theorem is that only a finite number of primes can ramify in a

given number field. A useful theorem for determining factorizations of primes is the following.

Theorem 2.7 ([6, pg 99]). Let K/F be an extension of number fields of degree n. Choose

α ∈ K of degree n, so that K = F (α). Let g(x) ∈ OF [x] be the minimal polynomial of α.

Fix a prime p of F , and let p be the prime of Z lying below p. Assume that p - [OK : OF [α]].

Assume that g(x) factors as

g(x) ≡ g1(x)e1 · · · gr(x)er (mod p).

Let fi = deg gi(x). Then the prime factorization of pOK is given by

pOK = Pe1
1 · · ·Per

r ,

where Pi = (p, gi(α)), and Pi | p has inertial degree fi.

2.1.4 Infinite primes. Thus far the primes we have discussed are the finite primes of

K. We can also talk about the infinite primes of K, which are the embeddings K → C, see
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[7, pg 94]. Let K/F be an extension of number fields. Let τ be an embedding of K → C.

Then σ = τ |F is an embedding of F → C, and we say τ lies over σ, or σ lies below τ .

An embedding σ : K → C is a real embedding if σ(K) ⊂ R, and is non-real otherwise.

If σ is a non-real embedding, then the composition of σ with complex conjugation is also

a non-real embedding. We consider a non-real embedding to be “the same” as its complex

conjugate. If all embeddings of K are real, then we say that K is a totally real number field.

If τ lies above σ, with σ real and τ non-real, then we say that σ ramifies, with ramification

index 2, see [7, pg 94]. In any other case, the ramification index of τ over σ is 1. There is

no analogue of inertial degree for infinite primes.

Suppose that σ is an infinite prime of F . Let σ1, . . . , σr1 be the real embeddings of K over

σ and τ1, τ 1, · · · , τr2 , τ r2 be the non-real embeddings of K over σ. Then r1 + 2r2 = [K : F ],

which is an analogue of Theorem 2.3.

2.1.5 Hilbert and narrow class fields. For an extension to be unramified, it must not

ramify at any primes, finite or infinite. The only unramified extension of Q is itself by [6, pg

198]. It is a fact that the composite of all abelian unramified extensions of K is a number

field (see [7, pg 148]), called the Hilbert class field of K. Its degree over K is called the

class number. The Galois group of this extension can be identified by class field theory

(see [19, Ch VI]) as the group of equivalence classes of ideals of OK modulo principal ideals

of OK . The group operation is multiplication of ideals, see [19, pg 22].

The narrow class field of K is the composite of all abelian extensions which are

unramified at all finite primes, and the narrow class number of K is the degree of this

extension. The Galois group of this extension is identified by class field theory with the

group of ideals modulo totally positive principal ideals. A totally positive principal ideal

is an ideal that has a generator α for which σ(α) > 0 for all real embeddings σ : K → R, see

[8, pg 180].
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2.1.6 Galois theory of number fields. Let K/F be a Galois extension of number

fields, and G the Galois group. We will make use of the following subgroups of G.

Definition 2.8. ([17, pg 98]) Let p be a prime of F and P a prime of K lying over p.

(i) The decomposition group of P | p is defined as

D = {σ ∈ G : σ(P) = P}.

(ii) The inertia group of P | p is defined as

I = {σ ∈ G : σ(α) ≡ α mod P for all α ∈ OK}.

By reducing mod P, the elements of D induce automorphisms of OK/P fixing OF/p,

and we obtain a homomorphism D → Gal((OK/P)/(OF/p)). This map is surjective and

has kernel I by [17, pg 99], therefore

D/I ∼= Gal((OK/P)/(OF/p)) ∼= Cf ,

where f is the inertial degree of P | p. We have that |I| = e by [17, pg 100], where e is the

ramification index of P | p, so |D| = ef . The fixed field of D is called the decomposition

field, and the fixed field of I is called the inertia field, see [17, pg 99]. These fields have

the following properties.

Theorem 2.9 ([17, pg 104]). Let K/F be a Galois extension of number fields, P a prime of

K, and p the prime of F lying below P. Let F ′ be a subextension of K/F , and p′ the prime

of F ′ lying below P.

(i) The decomposition field is the largest F ′ such that both the inertial degree and the

ramification index of p′ | p are equal to 1.

(ii) The decomposition field is the smallest F ′ such that P is the only prime lying over p′.
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(iii) The inertia field is the largest F ′ such that the ramification index of p′ | p is 1.

(iv) The inertia field is the smallest F ′ such that P is totally ramified over p′.

When P | p is unramified, I is trivial, therefore D ∼= Gal((OK/P)/(OF/p)), where the

right side is generated by the Frobenius automorphism α 7→ αp, see [10, pg 288]. We call the

corresponding generator of D the Frobenius automorphism of P | p (see [17, pg 109]),

and denote this element of D by ϕ. It satisfies

ϕ(α) ≡ α|OF /p| (mod P) for all α ∈ OK , see [17, pg 108].

By [17, pg 109], all Frobenius automorphisms for primes over p of F are conjugate. We will

define a Frobenius automorphism ϕ of p to be any Frobenius automorphism of a prime over

p, which is well defined up to conjugacy.

2.1.7 Dirichlet’s Unit Theorem. We will also need a basic understanding of the units

of OK for a number field K.

Theorem 2.10 (Dirichlet’s Unit Theorem, see [17, pg 142]). Let K be a number field. Let r1

denote the number of real embeddings of K and r2 the number of pairs of non-real embeddings

of K. Then

O×K
∼= Zr1+r2−1 × V,

where V is the finite cyclic group consisting of the roots of unity in K.

2.2 Galois representations

The main theorem of Chapter 3 is a result about certain Galois representations. This section

develops the basic theory that we need. Let Q denote an algebraic closure of Q, and let

GQ = Gal(Q/Q). The group GQ is a profinite group, which means that it is a compact,
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Hausdorff topological space under the Krull topology, see [18, pg 2]. Thus by [18, pg 4] we

can write GQ as a limit over its normal subgroups of finite index:

GQ = lim←−GQ/N = lim←−Gal(K/Q),

where K runs through finite Galois extensions of Q.

2.2.1 Galois representations. Let V be an F-vector space. When F has a topology,

we can think of GL(V ) as a subspace of Fn2
.

Definition 2.11. A Galois representation is a continuous homomorphism

ρ : GQ → GL(V ).

The dimension of ρ is just the dimension of V . All Galois representations we consider

will have dimension 2, meaning that the codomain is GL(V ) where V ∼= F2. Sometimes

we talk about V as the representation, instead of ρ. By this we mean to consider V as an

FGQ-module, where the GQ action is achieved via ρ.

Let τ ∈ GQ denote the automorphism of complex conjugation. We say a Galois repre-

sentation ρ : GQ → GL(V ) is odd if ρ(τ) is a nonscalar matrix, see [21, Sec 1]. We say ρ is

even otherwise.

2.2.2 Ramification groups.

Definition 2.12. ([19, pg 168]) Let K/F be a Galois extension of number fields, and let

P be a prime of OK . Let p be the prime of F lying below P. For i ≥ 0, define the ith

ramification group of P | p to be

Gi = {σ ∈ Gal(K/F ) : σ(α) ≡ α mod Pi+1 for all α ∈ OK}.

The ramification groups Gi form a decreasing chain of normal subgroups of D, with

10



G0 = I, the inertia group. Only finitely many Gi are non-trivial by [22, pg 62]. If G1 is

trivial, we say that P | p is tamely ramified. Otherwise, we say that P | p is wildly

ramified, see [8, pg 145].

The following results about ramification groups are proved in [19] in terms of valuations

and in [22] for local fields. For number fields, they are left as exercises in [17], so we provide

proofs of them here. We follow the exercises given in [17, pg 122–123]. For the remainder of

the subsection, let K/F be a Galois extension of number fields, P a prime of K, p the prime

of F lying below P, and p the prime of Z lying below P. Let Gi denote the ramification

groups of P | p. Fix π ∈ OK with vP(π) = 1.

Proposition 2.13. For σ ∈ Gi−1, σ ∈ Gi if and only if σ(π) ≡ π (mod Pi+1).

Proof. The forwards implication is trivial. We will prove the reverse implication in three

stages. Assume that σ ∈ Gi−1 for some i ≥ 1 and also assume σ(π) ≡ π (mod Pi+1).

Case 1. Suppose α ∈ πOK . Write α = πβ with β ∈ OK . Since σ ∈ Gi−1,

σ(β) ≡ β (mod Pi),

and we can write σ(β) = β + π′ with π′ ∈ Pi. We have

σ(α) ≡ σ(βπ) ≡ σ(β)σ(π) ≡ (β + π′)π ≡ βπ + π′π ≡ α + 0 (mod Pi+1).

Case 2. Suppose α ∈ P. Since vP(π) = 1, we can write πOK = PJ with P and J coprime.

Using the Chinese Remainder Theorem (see [17, pg 253]) we can choose β ∈ OK such

that

β ≡ 1 (mod P) and β ≡ 0 (mod J).

So β ∈ J , and αβ ∈ πOK . Again, we can write σ(β) = β + π′ for some π′ ∈ Pi. I

11



claim that σ(α) ∈ P. To see this, note that σ ∈ G0 and α ∈ P, so

σ(α) ≡ α ≡ 0 (mod P).

In particular,

σ(αβ) = σ(α)σ(β) = σ(α)(β + π′) ≡ σ(α)β (mod Pi+1).

On the other hand,

σ(αβ) ≡ αβ (mod Pi+1)

by Case 1. Thus we have

σ(α)β ≡ αβ (mod Pi+1).

Since β ≡ 1 (mod P), we have that β is invertible modulo any power of P. We cancel

to obtain

σ(α) ≡ α (mod Pi+1).

Case 3. Suppose α ∈ OK . First, I claim that OK = OG0
K + P, where OG0

K denotes the

elements of OK fixed by the inertia group G0. It is clear that OK ⊇ OG0
K + P. Let p′

be the prime of OG0
K lying below P. By Theorem 2.9, K/KG0 is totally ramified at p′,

so P | p′ has inertial degree 1. Therefore OG0
K /p′ is naturally isomorphic to OK/P. In

particular, the composition of injection and projection

OG0
K → OK → OK/P

is surjective. Let α ∈ OK . Let β ∈ OG0
K such that β 7→ α+P in the above composition.

Then α−β 7→ P in the projection, so α = β+π′ for some π′ ∈ P. Thus OK = OG0
K +P,

12



as desired. We now can use the fact that σ fixes β together with Case 2 to obtain

σ(α) = σ(β + π′) = σ(β) + σ(π′) ≡ β + π′ = α (mod Pi+1).

Proposition 2.14. For σ ∈ G0, σ ∈ Gi if and only if σ(π) ≡ π (mod Pi+1).

Proof. Let σ ∈ G0. The forward implication is obvious. Suppose that σ ∈ Gj − Gj+1. I

claim that σ(π) ≡ π (mod Pi+1) if and only if i ≤ j. It is clear that if i ≤ j, σ(π) ≡ π

(mod Pi+1). On the other hand, if i > j, then we cannot have σ(π) ≡ π (mod Pi+1) by

Proposition 2.13, else σ ∈ Gi ⊂ Gj+1. This proves the claim.

Now suppose that σ(π) ≡ π (mod Pi+1). Then i ≤ j, so σ ∈ Gj ⊆ Gi.

Theorem 2.15. There is a homomorphism G0 → (OK/P)× with kernel G1.

In particular, G0/G1 is cyclic of order dividing |OK/P| − 1. Thus if G0 is non-cyclic, G1

must be nontrivial. In other words, P | p is wildly ramified. We will prove Theorem 2.15

using two lemmas.

Lemma 2.16. For each σ ∈ I = G0, there exists an ασ such that

σ(π) ≡ ασπ (mod P2).

Further, ασ is determined mod P.

Proof. We can choose τ so that vP(τ) ≥ 3, and P = πOK + τOK (see [17, pg 61]). Let

σ ∈ G0. Since P | πOK , πOK = PJ for some ideal J of OK which is relatively prime to P.

By the Chinese Remainder Theorem (see [17, pg 253]) we can choose x ∈ OK such that

x ≡ σ(π) (mod P2) and x ≡ 0 (mod J).
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We have that x ∈ P, since σ ∈ G0 = I implies that

x ≡ σ(π) ≡ π ≡ 0 (mod P).

Thus we can write x = απ + βρ for some α, β ∈ OK . We have

σ(π) ≡ x ≡ απ (mod P2).

To see that α is determined mod P, suppose that

σ(π) ≡ απ ≡ γπ (mod P2).

Then we have that π(α − γ) ∈ P2, so (α − γ) ∈ P, since vP(π) = 1. Thus α is the desired

element ασ.

Lemma 2.17. For each σ ∈ G0, let ασ be as in the previous lemma. Then

αστ ≡ ασατ (mod P).

Proof. Since σ ∈ G0, σ(ατ ) ≡ ατ (mod P). Write σ(ατ ) = ατ + π′ with π′ ∈ P. We show

that

αστπ ≡ ασατπ (mod P2).

First, we have that τ(π) ≡ ατπ (mod P2). Applying σ, we obtain the following.

αστπ ≡ στ(π) ≡ σ(ατπ) ≡ σ(ατ )σ(π) ≡ (ατ + π′)ασπ ≡ ασατπ + 0 (mod P2).

Therefore π(αστ − ασατ ) ∈ P2, and αστ − ασατ ∈ P.

Proof of Theorem 2.15. Define a map ϕ : G0 → (OK/P)× by ϕ(σ) = ασ, which is well
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defined by Lemma 2.16. This map is a homomorphism by Lemma 2.17. If σ ∈ G1, then

ασπ ≡ σ(π) ≡ π (mod P2),

so α ≡ 1 (mod P). Therefore σ ∈ kerϕ. Conversely, if ϕ(σ) = 1 + p, then aσ ≡ 1 (mod p),

so σ(π) ≡ π (mod P)2. By Proposition 2.14, σ ∈ G1. Therefore kerϕ = G1.

Our next goal will be to prove the following:

Theorem 2.18. Fix i ≥ 2. There is an additive homomorphism Gi−1 → OK/P with kernel

Gi.

We will prove Theorem 2.18 using two lemmas.

Lemma 2.19. For each σ ∈ Gi−1, there exists ασ ∈ OK such that

σ(π) ≡ π + ασπ
i (mod Pi+1).

Further, ασ is unique modulo P.

Proof. Fix σ ∈ Gi−1. Then σ(π) ≡ π (mod Pi). We have that vP(πi) = i, so πi ∈ Pi−Pi+1.

Write Pi = (πi, τ) where vP(τ) ≥ i+ 1. Then there exists α, β ∈ OK such that

σ(π) = π + απi + βτ.

Mod Pi+1 we have

σ(π) ≡ π + απi (mod Pi+1).

Suppose that there exists β ∈ OK such that

σ(π) ≡ π + βπi (mod Pi+1).

15



Then we have that (α − β)πi ∈ Pi+1. Since Pi | (πi) but Pi+1 - (πi), we must have

P | (α− β). Therefore α ≡ β (mod P). Thus α is the desired element ασ.

Lemma 2.20. Let ασ denote the element constructed in Lemma 2.19. Then for σ, τ ∈ Gi−1,

αστ ≡ ασ + ατ (mod P).

Proof. We have that τ(π) ≡ π + ατπ
i (mod Pi+1). Applying σ we have

στ(π) ≡ σ(π + ατπ
i)

≡ σ(π) + σ(ατ )σ(π)i

≡ π + ασπ
i + σ(ατ )(π + ασπ

i)i (mod Pi+1).

Since σ(ατ ) ≡ ατ (mod Pi), we can write σ(ατ ) = ατ + π′ with π′ ∈ Pi. Then

στ(π) ≡ π + ασπ
i + (ατ + π′)πi(1 + ασπ

i−1)i

≡ π + (ασ + ατ )π
i (mod Pi+1).

Since αστ is determined mod P, we have that

αστ ≡ ασ + ατ (mod P).

Proof of Theorem 2.18. Define a map Gi−1 → OK/P by σ 7→ ασ. This map is well defined

by Lemma 2.19. The map is an additive homomorphism by Lemma 2.20. If σ is in the

kernel, then ασ ≡ 0 (mod P). This means that

σ(π) ≡ π (mod Pi+1),
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which implies that σ ∈ Gi by Lemma 2.14. Conversely, if σ ∈ Gi, then

σ(π) ≡ π (mod Pi+1),

so we can choose ασ = 0, thus σ is in the kernel.

Theorem 2.18 shows us that each Gi−1/Gi for i ≥ 2 is an elementary abelian p-group

(a direct sum of copies of Z/p). Since the Gi’s are all trivial for sufficiently large i, we can

conclude that each Gi is a p-group for i ≥ 1.

Theorem 2.21. G1 is the unique Sylow p-subgroup of G0.

Proof. Since G1 is normal in G0, uniqueness follows by showing that G1 is a Sylow p-subgroup

of G0. By Theorem 2.15, |G0/G1| | (|(OK/P)×|−1), which is relatively prime to p. Therefore

it suffices to know that G1 is a p-subgroup of G0. This follows from Theorem 2.18.

Corollary 2.22. Let e denote the ramification index of P | p. Then P | p is tamely ramified

if and only if (e, p) = 1.

Proof. Since G0 = I is the inertia group, |G0| = e is the ramification index. By Theorem

2.21, P | p is tamely ramified if and only if the Sylow p-subgroup of G0 is trivial, if and only

if (e, p) = 1.

Remark. Often the definition of tame ramification is given as: P | p is tamely ramified if

(e, p) = 1, and wildly ramified otherwise.

2.2.3 The conductor of a Galois representation.

Definition 2.23. ([19, pg 527]) Let K be a number field which is Galois over Q, p ∈ Z a

prime. Let ρ : GQ → GL(V ) be a Galois representation which factors through the projection

GQ → Gal(K/Q). We define the conductor of ρ to be

N =
∏
p

pnp ,
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where

np =
∞∑
i=1

1

|G0 : Gi|
dimV/Vi

with Vi = V Gi , the fixed space of the ith ramification group of a prime p | p.

When K/Q is unramified at p, Gi is trivial for all i, V = Vi, and thus np = 0. Therefore

the conductor is a finite integer. When p | p is tamely ramified, meaning that G1 is trivial,

np = dimV/V0.

One significance of the conductor is Serre’s modularity conjecture, stated in [23] and

proven recently by Khare and Wintenberger in [14] and [13].

Theorem 2.24. Let p be a prime number and let Fp an algebraic closure of Fp, the field of

p elements. Let V be a 2-dimensional Fp-vector space, and suppose that

ρ : GQ → GL(V )

is a continuous, irreducible, odd representation. Let N denote the conductor of ρ. Then ρ is

attached to a newform of level N .

Having ρ attached to a newform (see [1]) means that there exists a newform f with

Fourier expansion

f =
∞∑
n=1

anq
n

such that

tr(ρ(ϕ`)) ≡ a` (mod p)

for almost all primes `. Here ϕ` denotes a Frobenius automorphism of ` for the number field

K/Q with Galois group GQ/ ker ρ, and tr denotes the trace. See [23] for more details.

2.3 Group cohomology

We use this section to summarize the required group cohomology theory that we will use.
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2.3.1 Definitions. Let G be a group, and A a ZG-module. Consider an injective

resolution of A (see [20, pg 179]), which is an exact sequence

0→ A→ I0 → I1 → I2 → · · ·

where each In is an injective ZG-module, see [20, pg 167].

Applying the “invariant functor” (−)G (see [26, pg 160]) to the complex (meaning the

composition of two adjacent maps is 0) · · · → 0→ I0 → I1 → · · · , we obtain a complex

· · · → 0→ 0
d−1

−−−→ (I0)G
d0−−→ (I1)G

d1−−→ (I2)G → · · · .

We define for n ≥ 0 the nth cohomology group of G with coefficients in A (see [26, pg

161]) as

Hn(G,A) = ker dn/ im dn−1.

Homology groups are defined dually using the “coinvariant functor” (−)G (see [26, pg

160]), where

AG = A/〈g · a− a : a ∈ A, g ∈ G〉.

The functor (−)G turns out to be isomorphic to HomZG(Z,−) (see [26, pg 161]), which

means that

Hn(G,A) = ExtnZG(Z, A), see [20, pg 45].

This means that we can also compute Hn(G,A) by using projective resolution of Z (see

[20, pg 179] and [26, pg 63]), that is, an exact sequence

· · · → P2 → P1 → P0 → Z→ 0,

where each Pn is a projective ZG-module, see [20, pg 167]. In this case, we apply the
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contravariant functor HomZG(−, A) (see [20, pg 13]) to obtain the complex

· · · → 0→ 0→ HomZG(P0, A)
d0−−→ HomZG(P1, A)

d1−−→ HomZG(P2, A)→ · · · ,

and we have

Hn(G,A) = ker dn/dn−1(In−1).

2.3.2 Group extensions. An important application of group cohomology is group ex-

tensions. A group extension is an exact sequence of groups

0→ A→ E → G→ 0

with A abelian, and we say E is an extension of G by A, see [26, pg 182]. Two extensions

of G by A are equivalent if there exists a map E → E ′ making the following diagram

commute (see [26, pg 183]).

0 A E G 0

0 A E ′ G 0.

This is an equivalence relation, since the map E → E ′ is an isomorphism by the 5-lemma,

see [20, pg 191].

Theorem 2.25 ([26, pg 183]). There is a one-to-one correspondence between equivalence

classes of group extensions of G by A with a given G-action on A, and elements of H2(G,A).

In particular, if H2(G,A) = 0, then the only extension of G by A is the semi-direct

product (see [11, pg 367])

0→ A→ AoG→ G→ 0.

One instance where the semi-direct product is the only extension of G by A is if the orders

of A and G are relatively prime. This follows from the more general theorem given below.
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Theorem 2.26 ([11, pg 362]). Suppose that the orders of A and G are relatively prime.

Then

Hn(G,A) = 0 for all n ≥ 1.

2.3.3 Spectral sequences. For our purposes, we define a spectral sequence as follows.

Definition 2.27. ([26, pg 123]) A spectral sequence consists of:

(i) a family {Epq
r } of objects for r ≥ a (where a is a fixed integer) and p, q ∈ Z,

(ii) for all p, q ∈ Z and r ≥ a, there is a map

dpqr : Epq
r → Ep+r,q−r+1

r ,

which satisfy the differential rule dpqr d
p+r,q−r+1
r = 0, and

(iii) for all p, q ∈ Z and r ≥ a, an isomorphism between Epq
r+1 and the cohomology of Epq

r

computed using the differentials of part (ii).

For our purposes, Epq
r = 0 wherever p or q is negative. We think of p and q as coordinates

on a first quadrant grid, and r as indexing the “pages” of the sequence. For instance, pages

0–3 of a spectral sequence have form as shown in Figure 2.1.

If for some r0 ≥ 0, Epq
r = Epq

r0
for all r ≥ r0, we write Epq

∞ for this stable value. Let {Hn}

denote a family of objects for n ≥ a. Following [26, pg 123], we say that Epq
r converges to

H• if each Hn has a finite filtration

0 = F tHn ⊂ · · · ⊂ F sHn = Hn

such that

Epq
∞
∼= F pHp+q/F p+1Hp+q.

We denote this by

Epq
a =⇒ Hp+q.
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E0 :

...
...

...
...

...

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

E1 :

...
...

...
...

...

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

E2 :

...
...

...
...

...

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

E3 :

...
...

...
...

...

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

• • • • • · · ·

Figure 2.1: Pages 0–3 of a spectral sequence

2.3.4 The Hochschild-Serre spectral sequence. The spectral sequence that we will

use is the Hochschild-Serre spectral sequence, given by Theorem 2.28.

Theorem 2.28 ([26, pg 195]). For a normal subgroup H of a group G, there is a convergent

spectral sequence for any ZG-module A:

Epq
2 = Hp(G/H,Hq(H,A)) =⇒ Hp+q(G,A).
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Chapter 3. Octahedral representations with prime conductor

The goal of this section is to prove the following result, which was originally conjectured by

Siman Wong in [27, Conj 2]. These results were published in [4], and are joint with Darrin

Doud.

Theorem 3.1. Let K/Q be a number field with S4-Galois closure ramified at a single prime

p > 3. Let K3/Q be a cubic subfield of the Galois closure of K/Q. Let ρ̃ be the projective

2-dimensional Artin representation associated to K/Q.

(i) Suppose K3/Q is totally real. If ρ̃ has conductor p2, then vp(disc(K)) = 1.

(ii) Suppose K3/Q is not totally real. If ρ̃ has conductor p2 then vp(disc(K)) = 3, otherwise

vp(disc(K)) = 1.

We will prove Theorem 3.1 using the techniques of Serre found in [21].

3.1 Results of Serre

A continuous representation ρ : GQ → GL(2,C) always has finite image, see [5, pg 45]. Let

ρ̃ : GQ → PGL(2,C) be the projective representation obtained by composing ρ with the

projection π : GL(2,C)→ PGL(2,C). Then the image of ρ̃ is a finite subgroup of PGL(2,C).

The following Theorem is due to Klein, and lists all possible images for ρ̃.

Theorem 3.2 ([15]). A finite subgroup of PGL(2,C) is isomorphic to one of the following

polyhedral groups:

(i) a cyclic group Cn;

(ii) a dihedral group D2n of order 2n, n ≥ 2;

(iii) the tetrahedral group A4 or order 12;

(iv) the octahedral group S4 of order 24;
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(v) the icosahedral group A5 of order 60.

Up to conjugation, all of these groups occur as subgroups of PGL(2,C) exactly once.

Given a projective representation ρ̃ : GQ → PGL(2,C), we define a lift of ρ̃ to be a

representation ρ : GQ → GL(2,C) such that ρ̃ = π ◦ ρ, see [21, Sec 6.1].

3.1.1 Conductor for a projective representation. Let ρ̃ : GQ → PGL(2,C) be a

projective representation. Let p be a prime, and Dp a decomposition group of a prime of Q

above p. Define m(p) as the smallest integer such that the restriction ρ̃|Dp has a lifting with

conductor pm(p). Then we define the conductor of ρ̃ (see [21, Sec 6.2]) to be the integer

N =
∏
p

pm(p).

If ρ̃ is unramified at p, then we necessarily have m(p) = 0. If ρ̃ is tamely ramified at p, then

we have m(p) = 1 if ρ̃(Dp) is cyclic, and m(p) = 2 if ρ̃(Dp) is dihedral by [21, Sec 6.3].

For our purposes we will only be considering ρ̃ ramified (tamely) at a single prime p.

Thus the only possible values for the conductor are p and p2. Serre has classified all odd

projective representations with prime conductor in [21], and Vignéras has classified all even

projective representations of prime conductor in [25]. One useful result in determining the

conductor of ρ̃ is the following.

Lemma 3.3 ([21, Sec 8.1]). Let ρ̃ be any 2-dimensional projective representation of GQ, and

p any prime number. Let ip = |ρ̃(Ip)|, where Ip denotes the inertia group at p. Assume that

ip is prime to p and ip ≥ 3. Then the conductor of ρ̃ is exactly divisible by p if and only if

ip | (p− 1).

This lemma will be essential to proving part (i) of Theorem 3.1. Part (ii) of Theorem 3.1

depends on Serre’s classification of odd representations.
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3.1.2 Classification of odd projective representations. Let p be a prime number,

and E/Q a Galois extension. After classifying projective representations with cyclic and

dihedral image, Serre considers three cases in [21, Sec 8.1]:

(a) Gal(E/Q) = S4 and p ≡ 5 (mod 8);

(b) Gal(E/Q) = S4 and p ≡ 3 (mod 4);

(c) Gal(E/Q) = A5 and p ≡ 3 (mod 4).

By Theorem 3.2, there is a unique subgroup (up to conjugation) of PGL(2,C) isomorphic

to each of S4 and A5. By projecting GQ → Gal(E/Q) and then embedding Gal(E/Q) →

PGL(2,C), we obtain a projective representation ρ̃. We call ρ̃ the projective Artin rep-

resentation associated to E/Q. We then have the following.

Theorem 3.4 ([21, Sec 8.1]). The representation ρ̃ has an odd lifting with conductor p if

and only if:

Case (a): E is the Galois closure of a non-real quartic field E4/Q with discriminant p3;

Case (b): E is the Galois closure of a non-real quartic field E4/Q with discriminant −p;

Case (c): E is the Galois closure of a non-real quintic field E5/Q with discriminant p2.

When these conditions are satisfied, in each case ρ̃ has precisely two non-isomorphic odd

liftings with conductor p; if one of these is ρ, the other is ρ′ = ρ⊗ ε, where ε = det(ρ).

Specifically, we will make use of case (b) of Theorem 3.4 in proving Theorem 3.1.

3.2 Octahedral representations

In this section we will prove Theorem 3.1 using the results of Serre from the previous section,

along with some additional lemmas. A result that is surprisingly useful for us is the following.
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Theorem 3.5 (Stickelberger’s Criterion [16, pg 67]). Let K/Q be a number field, and

α1, . . . , αn ∈ OK. Then

disc(α1, . . . , αn) ≡ 0 or 1 (mod 4).

Proof. Let σ1, . . . , σn denote the n embeddings K → C. Then

d = disc(α1, . . . , αn) = det([σi(αj)])
2

=

(∑
τ∈Sn

sgn(τ)στ(1)(α1) · · ·στ(n)(αn)

)2

= (P −N)2 = (P +N)2 − 4PN

where

P =
∑
τ∈An

στ(1)(α1) · · ·στ(n)(αn)

and

N =
∑

τ∈Sn−An

στ(1)(α1) · · ·στ(n)(αn).

It is clear that P and N are algebraic integers, since they are sums of products of algebraic

integers. Therefore P + N and PN are algebraic integers as well. Let L denote the Galois

closure of K/Q. I claim that P + N,PN ∈ Z, which will follow by showing that they are

fixed by Gal(L/Q).

Let τ ∈ Gal(L/Q), and note that τ ◦σi is an embedding K → C. Further, if τ ◦σi = τ ◦σj,

then σi = σj. We have that τ permutes the set {σ1, . . . , σn}. Thus Gal(L/Q) acts on this set.

We can think of Gal(L/Q) as a subset of Sn, in which case we have τ(σi) = στ(i). Therefore

we can rewrite P and N as

P =
∑
τ∈An

τ(β) and
∑

τ∈Sn−An

τ(β),
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where β = σ1(α1) · · ·σn(αn).

Suppose that χ ∈ Gal(L/Q). If χ is even, then χτ will have the same parity as τ . In this

case, P and N are fixed by χ. If χ is odd, then χτ will have the opposite parity as τ . In

this case P and N are swapped by χ. In either case, P + N and PN are fixed by χ. Since

χ was arbitrary, P +N and PN are fixed by Gal(L/Q), as desired.

Since d = (P +N)2 − 4PN with P +N,PN ∈ Z, d is a square mod 4. Therefore d ≡ 0

or 1 (mod 4).

In particular, Stickelberger’s Criterion implies that disc(K) ≡ 0 or 1 (mod 4).

3.2.1 Preliminary lemmas. Let K/Q be a quartic extension with S4-Galois closure.

Assume further that K/Q is ramified at only one prime p > 3. Then disc(K) = ±pk for some

k ≥ 1. Theorem 3.1 is stated in terms of k = vp(disc(K)). We will show that vp(disc(K)) is

always either 1 or 3.

Lemma 3.6. Let K/Q be as above. Let e denote the ramification index of any prime lying

over p in the splitting field of K/Q. Then vp(disc(K)) is either 1 (when e = 2) or 3 (when

e = 4). If vp(disc(K)) = 3, then the ramification index of any prime lying over p in the

splitting field of K/Q is e = 4.

Proof. Suppose that there are r primes above p in of K/Q, and each has ramification index

ei and inertial degree fi. Then we have by Theorem 2.3 that

e1f1 + · · ·+ erfr = [K : Q] = 4

Since K/Q is tamely ramified,

vp(disc(K)) = (e1 − 1)f1 + · · ·+ (er − 1)fr

by [22, pg 58]. Table 3.1 shows all possible splitting of pOK with ramification, and the

corresponding discriminants. In the table we take fi = 1 unless otherwise noted. Since p
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Factorizations of pOK vp(disc(K))

e1 = 2, e2 = e3 = 1 1

e1 = 2, f1 = 2 2

e1 = 3, e2 = 1 2

e1 = e2 = 2 2

e1 = 4 3

Table 3.1: Possible factorizations of pOK in the notation of Lemma 3.6

is odd, we have that p2 ≡ 1 (mod 4). Therefore if vp(disc(K)) = 2, then disc(K) = p2 by

Stickelberger’s Criterion. Since the discriminant would be a square, Gal(K/Q) would be a

subgroup of A4 by [10, pg 258], which is not permitted. Thus we must have that vp(disc(K))

is 1 or 3.

Let L denote the Galois closure of K/Q. Since p is tamely ramified, the inertia group I

is cyclic by Theorem 2.15. Since I has order e and Gal(L/Q) ∼= S4 has no elements of order

> 4, we have e ≤ 4.

Suppose that vp(disc(K)) = 3. Then pOK factors as pOK = p4. Therefore e ≥ 4, thus

e = 4.

Suppose that vp(disc(K)) = 1. Then pOK = p2p′p′′ We see that 2 | e, so e is either 2 or 4.

If it were 4, then p′ and p′′ would have to factor as 4th powers in L. However, 4 - [L : K] = 6,

so this cannot happen. Thus e = 2.

Let K3/Q be a cubic subfield of the splitting field of K/Q. Theorem 3.1 is stated in terms

of whether K3/Q is totally real, or non-real. We can interpret this information in terms of

p mod 4.

Lemma 3.7. Let K3/Q be a cubic field extension with Galois group S3 ramified only at a

prime p > 3. Then K3 is totally real if and only if p ≡ 1 (mod 4).

Proof. Let p∗ = (−1)(p−1)/2p, so that p∗ ≡ 1 (mod 4). Let L be the splitting field of K3/Q,

and K2 the unique quadratic subfield of L. We have that K2 = Q(
√
p∗), since this is the only
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quadratic extension with ramification only at p. (The discriminant of Q(
√
−p∗) is divisible

by 2, see [17, pg 33].) Then K2 is real if p ≡ 1 (mod 4) (i.e. p∗ > 0), and non-real if p ≡ 3

(mod 4) (i.e. p∗ < 0). The extension L/K2 has odd degree, thus no infinite primes can

ramify. Therefore L, and hence K3, is totally real if and only if K2 is.

3.2.2 Proof of the main Theorem. With these lemmas in hand, we are prepared to

prove Theorem 3.1.

Proof of Theorem 3.1. Assume that K/Q is is a quartic extension with S4-Galois closure

L/Q. Suppose K/Q is ramified at only one prime p > 3. Let K3/Q be a cubic subfield of

L/Q. Let ρ̃ be the projective representation associated to L/Q.

Suppose that K3/Q is totally real. Then by Lemma 3.7, p ≡ 1 (mod 4). We wish

to show that if ρ̃ has conductor p2, then vp(disc(K)) = 1. Suppose that ρ̃ does not have

vp(disc(K)) = 1. Then by Lemma 3.6, vp(disc(K)) = 3, and e = 4. But we have that

ip := |ρ̃(Ip)| = e, since ρ̃ is an isomorphism after projecting onto Gal(L/Q). Since ip = 4,

we have that ip ≥ 3, and ip is prime to p (since p is odd). Since p ≡ 1 (mod 4), ip | (p− 1)

and thus the conductor of ρ̃ is p by Lemma 3.3. This completes the proof of part (i).

Suppose that K3/Q is not totally real. Then Lemma 3.7 implies that p ≡ 3 (mod 4). In

light of our discussion and Lemma 3.6, Theorem 3.1 (ii) can be restated as

ρ̃ has conductor p2 if and only if vp(disc(K)) = 3.

Equivalently, ρ̃ has conductor p if and only if vp(disc(K)) = 1. Since p ≡ 3 (mod 4),

Stickelberger’s Criterion shows that the latter condition is equivalent to disc(K) = −p. So

we wish to show that ρ̃ has conductor p if and only if disc(K) = −p. This is exactly Theorem

3.4(b) when ρ̃ is odd.

Suppose that ρ̃ is even. This would imply that ρ̃ maps complex conjugation to the identity

in PGL(2,C). But K3 is not real, thus complex conjugation is not a trivial automorphism

of L/Q, therefore ρ̃ must be odd, and (ii) is proved.
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Chapter 4. Counting extensions

In the last chapter we discussed a cubic subfield of an S4-extension. In this chapter we explore

how often a fixed cubic extension is contained in S4-extensions with given properties. These

results were published separately in [3], and are joint with Darrin Doud.

4.1 Counting S4-extensions

Let F be a number field, and let K/F be a cubic extension, with S3-Galois closure. Let P

be a finite set of primes of F containing the primes which ramify in K. Then there are only

finitely many extensions of a given degree with ramification only in P by [16, pg 122], thus

finitely many S4-extensions of Q containing K and unramified outside of P . How many S4

extensions L/F exist which contain K and are unramified outside of P?

4.1.1 Motivating examples. The following examples were computed using GP/PARI

(see [24]) and John Jones’ number field database (see [12]).

Example 4.1. Let α be a root of f(x), K = Q(α), and P = {p,∞}. In each of the three

examples below, K/Q is unramified outside of P , but there are no S4-extensions of Q which

are unramified outside of P .

(i) f(x) = x3 − 3 and p = 3.

(ii) f(x) = x3 − x2 + 1 and p = 23.

(iii) f(x) = x3 + x− 1 and p = 31.

Example 4.2. Let K = Q(α) with α a root of f(x), and P = {p,∞}. In the examples

below, K/Q is unramified outside of P and there is a unique S4-extension L/Q containing

K and unramified outside of P . The field L can be found as the splitting field of g(x).

(i) f(x) = x3 − 2x+ 1, p = 59, and g(x) = x4 − x3 − 7x2 + 11x+ 3.
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(ii) f(x) = x3 − x2 + 3x− 2, p = 107, and g(x) = x4 − x3 − 13x2 + 20x− 28.

(iii) f(x) = x3 − x2 + x+ 2, p = 139, and g(x) = x4 − x3 − 17x2 + 26x+ 120.

Example 4.3. Let K = Q(α) with α a root of f(x), and P = {p,∞}. In the following

examples, K/Q is unramified outside of P and there are exactly three S4-extensions L/Q

containing K and unramified outside of P . Values for g(x) defining the three S4-extensions

are listed.

(i) f(x) = x3 − 4x− 1, p = 229, and

g(x) ∈ {x4 − x+ 1, x4 − x3 + 29x2 − 43x+ 17, x4 − x3 + 29x2 − 43x+ 246}.

(ii) f(x) = x3 + 4x− 1, p = 283, and

g(x) ∈ {x4 − x− 1, x4 − x3 − 35x2 + 53x− 21, x4 − x3 − 35x2 + 53x+ 262}.

(iii) f(x) = x3 − x2 + 3x− 4, p = 331, and

g(x) ∈ {x4−x3 +x2 +x− 1, x4−x3− 41x2 + 62x− 128, x4−x3− 41x2 + 393x− 459}.

Example 4.4. Let K = Q(α) with α a root of x3 − x2 − 9x− 16. The K/Q is unramified

outside of P = {6571,∞}. There are seven S4-extensions L/Q containing K and unramified

outside of P , which are the splitting fields of the following polynomials:

x4 − 2x2 − 3x+ 2, x4 − x3 − 2x2 + 4x+ 1,

x4 + 4x2 − 5x+ 1, x4 − 6571x− 45997,

x4 − x3 − 821x2 + 20945x− 85500, x4 − x3 − 821x2 − 11910x− 59216,

x4 − x3 − 821x2 + 7803x− 26361
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4.1.2 Statement of theorems. The previous examples show that when F = Q and P

consists of a single finite prime, we can get values

0 = 20 − 1, 1 = 21 − 1, 3 = 22 − 1, 7 = 24 − 1

for the number of S4-extensions with the desired properties. Based on extensive computa-

tions, Wong conjectured the following in [27], which we will prove.

Theorem 4.5. Let K/Q be a non-Galois cubic extensions such that | disc(K)| is a prime

power. Then the number of S4-extensions L/Q containing K with | disc(L)| a prime power

is 2n − 1 for some integer n. Furthermore, if K/Q is totally real, then n > 0.

Remark. Example 4.1 is not a counterexample to the last statement, since none of the

extensions K/Q are totally real. In Section 4.3 we will prove the final statement of Theorem

4.5. The remainder will follow from the more general theorem.

Theorem 4.6. Let F be a number field, and let P be a set of primes of F . Let K/F be

a non-Galois cubic extension, unramified outside of P. Then the number of S4-extensions

L/F containing K and unramified outside of P is 2n − 1 for some nonnegative integer n.

4.1.3 More examples.

Example 4.7. Let F = Q and P = {2, 3,∞}. Table 4.1 lists all cubic extensions K/Q

unramified outside of P and the S4-extensions of Q unramified outside of P containing the

various K’s.

Example 4.8. Let F = Q and P = {2, 3, 5,∞}. Let K = Q(α) with α a root of x3−18x−12.

There are 15 S4-extensions of Q containing K and unramified outside of P . They can be
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f(x) defining K g(x) defining S4-extensions

x3 − 2 x4 − 4x− 6

x3 − 3 x4 − 2x3 − 4x+ 2

x4 − 2x3 − 3x2 − 2x+ 7

x4 − 6x2 − 4x+ 6

x3 − 3x− 4 x4 − 2x3 + 3x2 + 2x− 1

x4 − 16x− 24

x4 − 6x2 − 8x+ 15

x3 + 3x− 2 x4 − 4x− 3

x4 − 12x2 − 16x+ 12

x4 − 8x+ 6

x3 − 12 x4 − 6x2 − 4x+ 15

x3 − 6 x4 − 2x3 − 6x+ 3

x3 − 3x− 10 x4 − 6x2 − 8x+ 6

x4 − 12x2 − 8x+ 18

x4 − 8x− 6

x3 − 9x− 6 x4 + 3x2 − 2x+ 6

x4 + 12x2 − 16x+ 24

x4 + 12x2 − 4x+ 69

x4 − 24x2 − 56x− 30

x4 + 12x2 − 16x+ 60

x4 + 12x2 − 8x+ 42

x4 + 12x2 − 16x+ 6

Table 4.1: Extensions unramified outside of P = {2, 3,∞}
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computed as the splitting fields of the following polynomials.

x4 − 2x3 − 4x+ 20, x4 − 2x3 + 9x2 − 4x+ 2,

x4 − 2x3 + 9x2 − 6x+ 3, x4 − x3 − 9x2 + 4x+ 26,

x4 − 15x2 − 10x+ 15, x4 − 24x2 − 16x+ 24,

x4 − 6x2 − 8x+ 159, x4 + 12x2 − 32x+ 60,

x4 − 6x2 − 32x+ 87, x4 − 60x+ 135,

x4 − 2x3 + 9x2 + 32x+ 56, x4 − 60x2 − 160x+ 60,

x4 + 90x2 − 120x+ 1215, x4 − 60x2 − 160x+ 1860,

x4 + 30x2 − 40x+ 15

Example 4.9. Let P = {2, 3, 5, 7}. Let K = Q(α) with α a root of x3 + 9x − 30. Then

there are 31 S4-extensions containing K and unramified outside of P .

4.2 A group operation on fields

Let F be a number field and let P be a set of primes of F . Let K/F a non-Galois cubic

extension unramified outside of P . Let I denote the Galois closure of K/F . The idea behind

the proof of Theorem 4.6 is the following. We will describe an abelian group with exponent 2,

where the non-identity elements are the S4-extensions L/F containing K unramified outside

of P , and I acts as the identity. By the fundamental theorem of finitely generated abelian

groups (see [10, pg 195]), this group must in fact be isomorphic to Cn
2 for some integer n.

Such a group has order 2n.

4.2.1 Composites of S4-extensions. Defining the group operation depends on unique-

ness of certain group extensions of S3. First, note that S4 is an extension of S3 by the Klein

4-group V , via the short exact sequence induced by canonical projection, namely

1→ V → S4 → S4/V ∼= S3 → 1.
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The map V → S4 is embedding the copy of V which is normal inside S4. In fact, V is

an S3-module where the action is given by letting elements of S3 permute the non-identity

elements of V .

Lemma 4.10. S4 is the only extension of S3 by V with this action.

Proof. We apply the Hochschild-Serre spectral sequence (Theorem 2.28) to the group exten-

sion

1→ A3 → S3 → C2 → 1

and S3-module V (with the action as above). Then Hq(A3, V ) = 0 for all q ≥ 1 by Theorem

2.26, since the order of V and A3 are relatively prime, and H0(A3, V ) = V A3 = 0 since A3

permutes the non-identity elements. Therefore

Epq
2 := Hp(C2, H

q(A3, V )) = Hp(C2, 0) = 0

for all p and q. Therefore E2 is a page of 0’s. Nothing can change on later pages, thus E∞

is also a page of 0’s, and Hn(S3, V ) = 0 for all n. In particular, H2(S3, V ) = 0, so there is

a unique extension of S3 by V with the given action by Theorem 2.25. Since S4 is such an

extension, it is the only one.

Let L/F and L′/F be two distinct S4-extensions containing K which are both unramified

outside of P . Then L ∩ L′ must be a Galois extension of F containing K, so L ∩ L′ ⊇ I,

where I denotes the Galois closure of K/F . Note that L ∩ L′ must be an intermediate field

of L/I, and we have Gal(L/I) ∼= V . First, L ∩ L′ 6= L, since L and L′ are distinct. If

[L ∩ L′ : I] = 2, then L ∩ L′ is a Galois extension of F of degree 12. Then L ∩ L′ is fixed by

a normal subgroup of S4 of order 2, which does not exist. Therefore L∩L′ = I. Combining

this with the fact that Gal(L/I) ∼= V ∼= Gal(L/I), we have Gal(LL′/I) = V ⊕ V . Therefore

Gal(LL′/F ) is an extension of S3 by V ⊕ V . The direct sum is not only of abelian groups,

but also a direct sum as S3-modules. Since cohomology commutes with finite direct sums
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(see [26, pg 74]), Lemma 4.10 implies that

H2(S3, V ⊕ V ) = H2(S3, V )⊕H2(S3, V ) = 0⊕ 0 = 0.

Thus we obtain the following corollary.

Corollary 4.11. Let S3 act on V by permuting the non-identity elements. Let V ⊕V denote

the direct sum as S3-modules. Then there is a unique extension of S3 by V ⊕ V .

Therefore Gal(LL′/F ) will always be the same group of order 96. For the rest of the

chapter let G denote this group. The group G can be identified in Magma (see [2]) as

SmallGroup(96,227).

4.2.2 Structure of the group G. Using Magma we can understand the structure of

G. The group G has very few normal subgroups. Besides the trivial ones, there is a normal

subgroup of index 2, a normal subgroup of index 6 which we call N , and three normal

subgroups of index 24 which we call H1, H2, and H3. Further, we verify in Magma that

G/N is isomorphic to S3, and G/Hi is isomorphic to S4 for i = 1, 2, 3.

If we think of G as Gal(LL′/F ), then the unique subgroup of index 2 fixes the unique

quadratic extension F ′/F contained in LL′/F . The subgroup N must have fixed field I, and

two of H1, H2, H3, say H1 and H2, must respectively have L and L′ as fixed fields. Let L∗L′

denote the fixed field of H3. See Figure 4.1.

Let A be the subgroup of G fixing K, which has order 32. We restrict our attention from

G to A. Since A/Hi is a subgroup of G/Hi
∼= S4 of order 8, A/Hi

∼= D8. Therefore A/Hi has

exactly three subgroups of order 4. One of these is cyclic, and the other two are isomorphic

to V . One of the latter two subgroups is normal in G/Hi. Using Magma we verify that

the normal subgroup is N/Hi for each i. We call this copy of V the even Klein 4-group.

The other copy of V is not normal in S4, and we call this copy of V the odd Klein 4-group.

Let Ni be the subgroup of A corresponding to the odd Klein 4-group of A/Hi. Given an
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Figure 4.1: The normal sugbroups of G

S4-extension L/F containing K, let WK(L) denote the fixed field of the odd Klein 4-group

in Gal(L/K).

The subgroups N and Ni for i = 1, 2, 3 fix quadratic extensions of K. Call these fields

L6 := WK(L), L′6 := WK(L′), and L6 ∗L′6 := WK(L′ ∗L) respectively. Note that L6L
′
6/K is a

Klein 4-extension, and therefore has three intermediary quadratic extensions. Two of these

are, of course, L6 and L′6. Using Magma we verify that the third is L6 ∗ L′6. This can be

summed up by the lattices in Figure 4.2, which correspond under the Galois correspondence.

4.2.3 Definition of the group operation. We can now describe the group operations

alluded to earlier. Let

S = {S4-extensions containing K/F unramified outside of P} ∪ {I}.

Definition 4.12. Define ∗ : S × S → S as follows.

(i) I acts trivially:

I ∗ L = L = L ∗ I for all L ∈ S.
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Figure 4.2: The Galois correspondence for several subgroups of G

(ii) Composing an extension with itself gives I:

L ∗ L = I for all L ∈ S.

(iii) If L and L′ are distinct S4-extensions, then L ∗ L′ is defined as the third S4-extension

contained in LL′, as described above.

It is clear that ∗ is well defined, has an identity, has inverses, and is commutative. It

remains to show that ∗ is associative. Proving associativity directly would require using a

larger composite field. There is a better way.

We describe a similar group operation, which we also call ∗, on the set

T = {WK(L) : L ∈ S − {I}} ∪ {I}.

Definition 4.13. Define ∗ : T × T → T as follows.
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(i) I acts trivially:

I ∗WK(L) = WK(L) = WK(L) ∗ I for all L ∈ S − {I}.

(ii) Composing an extension with itself gives I:

I ∗ I = I and WK(L) ∗WK(L) = I for all L ∈ S − {I}.

(iii) If L,L′ ∈ S − {I} are distinct S4-extensions, then WK(L) ∗WK(L′) is defined as the

third intermediate subfield of the Klein 4-extension WK(L)WK(L′)/K.

Again, the operation is well defined, has an identity, has inverse, and is commutative.

Define T → S by mapping an extensions to its Galois closure over F . Define WK : S → T

by sending L 7→ WK(L) as defined above, and WK(I) 7→ I. It is clear that these maps are

inverses, thus T and S are in one-to-one correspondence. Further, these maps preserve ∗,

since WK(L)∗WK(L′) = WK(L∗L′) by the above discussion. Therefore proving associativity

for the operation on T will also prove associativity of the operation on S.

Proposition 4.14. The binary operation ∗ makes T and S into abelian groups.

Proof of associativity. We will prove associativity for (T , ∗) in 4 cases.

Case 1 At least one of the fields is I. We have

(I ∗ L6) ∗ L′6 = L6 ∗ L′6 = I ∗ (L6 ∗ L′6),

and

(L6 ∗ I) ∗ L′6 = L6 ∗ L′6 = L6 ∗ (I ∗ L′6).

Combining these equalities with commutativity we obtain associativity in this case.
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Case 2 A field is repeated. We have

(L6 ∗ L6) ∗ L′6 = I ∗ L′6 = L′6 = L6 ∗ (L6 ∗ L′6),

(L6 ∗ L′6) ∗ L′6 = L6 = L6 ∗ I = L6 ∗ (L′6 ∗ L′6),

and

(L6 ∗ L′6) ∗ L6 = (L′6 ∗ L6) ∗ L6 = L′6 ∗ (L6 ∗ L6)

= (L′6 ∗ L6) ∗ L6 = L6 ∗ (L′6 ∗ L6).

These equations and commutativity implies associativity in this case.

Case 3 The three fields are distinct non-identity, but lie in the same degree 96 extension.

In this case,

((L6 ∗ L′6) ∗ L6) ∗ L′6 = L′6 ∗ L′6 = I = (L6 ∗ L′6) ∗ (L6 ∗ L′6).

This is symmetric in L6, L
′
6, and L6 ∗ L′6.

Case 4 The three fields are distinct, non-identity, and do not lie in a single degree 96

extension. Each is a quadratic extension, so we can represent each field as K(
√
α) for

some element α ∈ K. Then the operation for distinct fields is given by

K(
√
α) ∗K(

√
β) = K(

√
αβ).

It is now easy to see that

(K(
√
α) ∗K(

√
β)) ∗K(

√
γ) = K(

√
αβγ)

= K(
√
α) ∗ (K(

√
β) ∗K(

√
γ)).
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4.2.4 Application to Theorem 4.6. We can now prove Theorem 4.6.

Proof of Theorem 4.6. By Proposition 4.14 and the definition of the operation ∗ on S, the

pair (S, ∗) is an abelian group with exponent 2. Having P finite forces S to be finite by

[16, pg 122]. Therefore S ∼= Cn
2 for some integer n. We have |Cn

2 | = 2n, so there are 2n − 1

non-identity elements of S. But the non-identity elements of S are precisely the objects we

wished to count.

4.2.5 Examples of the operation. We close this section with explicit examples of the

group operation.

Example 4.15. In Example 4.7, we listed all non-Galois cubic extensions K/Q unramified

outside of P = {2, 3,∞}, along with quartic polynomials defining all S4-extensions of Q

containing K which are unramified outside of P . Using Jones’ number field database and

the following PARI code,

for(k=1,length(A),

print("---------------");

print(k," ",A[k]);

for(j=1,length(B),

if(nfisincl(A[k],B[j]),

print(" ",j," ",B[j])

)

)

)

we sort the WK(L)’s for the S4-extensions by their cubic subfields, which we list in Table

4.2. In the code, A is an array containing the polynomials defining the cubic extensions and
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B is an array containing the polynomials defining the degree six extensions.

For the choices of K where |S| = |T | ≤ 4, the group operation is obvious. Consider

K = Q(α) with α a root of x3 − 9x − 6. Then there are 7 non-identity elements in T ,

which are given as Q(β) where β is a root of a g(x) listed in Table 4.2. Call these fields

L1, . . . , L7 respectively. The following PARI code computes the group operation for non-

identity elements.

composite(f,g) =

h = polcompositum(f,g)[1];

SF = nfsubfields(h);

for(k=1,length(SF),

p = SF[k][1];

if(poldegree(p)==6 && nfisisom(f,p)==0 && nfisisom(g,p)==0,

q = polredabs(p)

)

);

q

We can use this to create a multiplication table for the group, given in Figure 4.3.

Example 4.16. We will give an example where Jones’ number field database is incomplete,

and use the group operation to fill in missing data. Let K = Q(α) with α a root of

x3 − 9x − 3. K/Q is unramified outside of P = {3, 5, 7, 11,∞}. Jones’ database list 61

degree 6 polynomials defining WK′(L) for some S4-extension L unramified outside of P

above some non-Galois cubic K ′/Q. Using the sort algorithm from the previous example,
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f(x) defining K g(x) defining WK(L)

x3 − 2 x6 + 3x4 + 3x2 − 1

x3 − 3 x6 − 3x4 − 6x2 − 4

x6 − 3x4 + 3x2 − 4

x6 − 3x4 + 12x2 − 4

x3 − 3x− 4 x6 − 3x2 − 4

x6 + 6x2 − 4

x6 − 6x4 + 18x2 − 16

x3 + 3x− 2 x6 − 3x4 − 4

x6 − 6x4 + 18x2 − 4

x6 − 6x4 + 6x2 − 4

x3 − 12 x6 + 6x4 + 12x2 − 4

x3 − 6 x6 − 3x4 − 6x3 + 3x2 − 1

x3 − 3x− 10 x6 + 3x4 + 9x2 − 1

x6 + 24x2 − 64

x6 − 30x2 − 64

x3 − 9x− 6 x6 + 6x4 − 15x2 − 4

x6 − 12x4 + 30x2 − 16

x6 + 6x4 + 3x2 − 4

x6 + 6x4 + 3x2 − 16

x6 + 6x4 − 42x2 − 4

x6 + 6x4 − 96x2 − 64

x6 + 6x4 − 6x2 − 4

Table 4.2: WK(L) for various K’s with P = {2, 3,∞}
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I L1 L2 L3 L4 L5 L6 L7

I I L1 L2 L3 L4 L5 L6 L7

L1 L1 I L5 L4 L3 L2 L7 L6

L2 L2 L5 I L7 L6 L1 L4 L3

L3 L3 L4 L7 I L1 L6 L5 L2

L4 L4 L3 L6 L1 I L7 L2 L5

L5 L5 L2 L1 L6 L7 I L3 L4

L6 L6 L7 L4 L5 L2 L3 I L1

L7 L7 L6 L3 L2 L5 L4 L4 I

Table 4.3: Multiplication table of T for K defined by x3 − 9x− 6

we find that only five of these 61 extensions contain K. They are defined by polynomials

x6 − 3x5 + 3x4 − x3 − 9x2 + 9x− 3

x6 + 6x4 − 15x2 − 25

x6 + 6x4 − 30x3 + 21x2 + 18x− 7

x6 − 3x5 − 42x4 + 65x3 + 324x2 + 198x+ 33

x6 − 3x5 + 15x4 + 143x3 − 3x2 − 1245x− 2603

Call the number fields defined by these polynomials L1, . . . , L5 respectively. Since 5 is not

of the form 2n − 1, we know that the database is incomplete. Staying within I, L1, . . . , L5,

the multiplication table is
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I L1 L2 L3 L4 L5

I I L1 L2 L3 L4 L5

L1 L1 I L3 L2 L5 L4

L2 L2 L3 I L1

L3 L3 L2 L1 I

L4 L4 L5 I L1

L5 L5 L4 L1 I.

However, if we compose L2 with L4, we get a polynomial

x6 − 3x5 − 84x4 − 187x3 − 1884x2 + 11922x− 48869.

Let L6 be the number field defined by this polynomial. Adding this field to our multiplication

table, we obtain

I L1 L2 L3 L4 L5 L6

I I L1 L2 L3 L4 L5 L6

L1 L1 I L3 L2 L5 L4

L2 L2 L3 I L1 L6 L4

L3 L3 L2 L1 I L6 L5

L4 L4 L5 L6 I L1 L2

L5 L5 L4 L6 L1 I L3

L6 L6 L4 L5 L2 L3 I.

Composing L3 with L4 yields the polynomial

x6 + 168x4 − 630x3 + 5835x2 − 37080x+ 57821.

Let L7 be the number field defined by this polynomial. When we add this into our multipli-
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cation table, we get the full multiplication table.

I L1 L2 L3 L4 L5 L6 L7

I I L1 L2 L3 L4 L5 L6 L7

L1 L1 I L3 L2 L5 L4 L7 L6

L2 L2 L3 I L1 L6 L7 L4 L5

L3 L3 L2 L1 I L7 L6 L5 L4

L4 L4 L5 L6 L7 I L1 L2 L3

L5 L5 L4 L7 L6 L1 I L3 L2

L6 L6 L7 L4 L5 L2 L3 I L1

L7 L7 L6 L5 L4 L3 L2 L1 I

Remark. It would be difficult to prove that we have found all S4-extensions of Q containing

K and unramified outside of P . It is possible that we haven’t. There could be more S4-

extensions of Q containingK and unramified outside of P , and we have only found a subgroup

of T .

4.3 Constructing an S4-extension containing a totally real

cubic extension

When F = Q and K/Q is ramified at a single finite prime p > 3, Theorem 4.6 proves the

first part of Theorem 4.5. To complete the proof of the Theorem, we need to show that there

is at least one S4-extension L/Q containing K ramified only at p when K/Q is totally real.

Having K/Q totally real is equivalent to p ≡ 1 (mod 4) by Lemma 3.7.

4.3.1 Factoring p. The ramification indexes of primes lying over p in K/Q must divide

[K : Q] = 3. Since p > 3, the ramification index of each prime lying over pmust be prime to p.

Thus the extension K/Q is tamely ramified. We know automatically that pOK either factors

as p3 or p2p′. Assuming by way of contradiction that pOK = p3, then the ramification index
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of p in the Galois closure of K/Q would have to be divisible by 3. Therefore the inertia field

is either Q, or the unique quadratic extension in the Galois closure, Q(
√
p∗). If the inertia

field is Q, then the inertia group is non-cyclic, and p is wildly ramified by Theorem 2.15, a

contradiction. If the unique quadratic subfield is Q(
√
p∗), then Q(

√
p∗)/Q is an unramified

extension of Q, which is also a contradiction to [6, pg 198]. Therefore pOK = p2p′. We

can then apply [16, pg 58] as in the proof of Lemma 3.6 to see that vp(disc(K)) = 1. Since

this is the only ramified prime, disc(K) = ±p by Theorem 2.6. By Stickelberger’s Criterion,

disc(K) = p, since p ≡ 1 (mod 4).

Consider the narrow class number of K. If it is even, then Heilbronn has shown in

[9] that K/Q is contained in an S4-extension which is the Galois closure of a quartic field

with the same discriminant, which gives us n > 0 in the context of Theorem 4.5. However,

we will prove what we need, independent of Heilbronn (see Proposition 4.23). For now we

will assume that the narrow class number of K is odd, and show that we can construct a

quadratic extension of K(
√
v)/K for which K(

√
v)/Q is not Galois and ramified only at p.

4.3.2 A key lemma. The key to constructing the quadratic extension we want is the

following lemma.

Lemma 4.17 ([7, pg 102]). Let L = K(
√
u) be a quadratic extension with u ∈ OK, and let

p be a prime in OK.

(i) If 2u 6∈ p, then p is unramified in L.

(ii) If 2 ∈ p, u 6∈ p, and u = b2 − 4c for some b, c ∈ OK, then p is unramified in L.

Proof. We follow the proof given in [7].

(i) The polynomial x2 − u has discriminant 4u 6∈ p, therefore x2 − u is separable modulo

p, see [10, pg 259]. Therefore p is unramified by Theorem 2.7.

(ii) We can write L = K(β) with β = −b+
√
u

2
. Now β is a root of x2 + bx + c, which has

discriminant b2 − 4c = u 6∈ p. Therefore p is unramified by Theorem 2.7.
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4.3.3 Units of OK mod 4. We begin by considering the units of OK . Since K/Q is

totally real, Dirichlet’s Unit Theorem (Theorem 2.10) implies that the unit group of OK is

isomorphic to Z2 × {±1}. Let u1, u2 be generators. Then modulo squares, the units of OK

are given by ±1,±u1,±u2,±u1u2. To apply condition (ii) of Lemma 4.17 we consider the

structure of (OK/4OK)×.

Theorem 4.18. Let K/Q be a cubic extension and q a prime of K lying over 2. Let f be

the inertial degree of q | 2. Then

(OK/q
2)× ∼=


Z/2 if f = 1,

Z/2× Z/6 if f = 2,

Z/2× Z/2× Z/14 if f = 3.

Proof. Consider the sequence

0→ OK/q
φ−−→ (OK/q

2)×
ψ−−→ (OK/q)× → 1 (4.1)

with the following maps. The map φ : OK/q → (OK/q
2)× is given by α+ q 7→ 1 + απ + q2,

where π ∈ OK is chosen such that vq(π) = 1. The map ψ : (OK/q
2)× → (OK/q)× is given

by α + q2 7→ α + q.

I claim that the sequence is exact. The map ψ is just reduction mod q, which is a

surjective homomorphism. We have that φ is a homomorphism, since

φ(α + β + q) = 1 + π(α + β) + q2

= 1 + πα + πβ + π2αβ + q2

= (1 + πα + q2)(1 + πβ + q2)

= φ(α + q)φ(β + q).
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The map φ is injective, since if φ(α + q) = 1 + q2,

1 + q2 = φ(α + q) = 1 + απ + q2,

which implies that απ ∈ q2. Thus vq(απ) ≥ 2, so vq(α) ≥ 1, therefore α ∈ q. The

composition of φ and ψ is 0:

ψφ(α + q) = ψ(1 + πα + q2) = 1 + πα + q = 1 + q.

Suppose that ψ(α + q2) = 1 + q. Then α − 1 ∈ q. We can write q = (π, τ), with vq(τ) ≥ 2

(see [17, pg 61]) so that α− 1 = βπ + γτ for some β, γ ∈ OK . In particular,

α + q2 = 1 + βπ + q2 = φ(β + q).

Therefore the sequence is exact.

We have that OK/q ∼= (Z/2Z)f , and (OK/q)× is cyclic of order 2f − 1. Since the orders

are relatively prime, the sequence splits by Theorem 2.26 and Theorem 2.25. When f = 1,

we obtain (OK/q
2)× ∼= Z/2× 1. When f = 2,

(OK/q
2)× ∼= (Z/2)2 × Z/3 = Z/2× Z/6.

When f = 3,

(OK/q
2)× ∼= (Z/2)3 × Z/7 = Z/2× Z/2× Z/14.

Corollary 4.19. Let K/Q be a non-Galois cubic extension in which 2 is unramified. Let f

be the inertial degree of any prime over 2 in the Galois closure of K/Q. Then

(OK/4OK)× ∼= Z/2× Z/2× Z/2`,
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where ` = 2f − 1.

Proof. The three options for factorizations of 2OK are 2OK = q1q2q3 with f = 1, 2OK = qq′

with f = 2, and 2OK = q with f = 3. We consider each case using the previous result and

the Chinese Remainder Theorem, see [17, pg 253].

If 2OK = q1q2q3, all primes have inertial degree 1. Thus (OK/q
2
i )
× ∼= Z/2 for i = 1, 2, 3,

and

(OK/4OK)× ∼=
3∏
i=1

(OK/q
2
i )
× ∼= Z/2× Z/2× Z/2 ∼= Z/2× Z/2× Z/2`.

If 2OK = qq′, one of the two primes (without loss of generality q) has inertial degree

2, and the other has inertial degree 1. So (OK/q
2)× ∼= Z/2 × Z/6, and (OK/q

′2)× ∼= Z/2.

Putting these together we have

(OK/4OK)× ∼= (OK/q
2)× × (OK/q

′2)× ∼= Z/2× Z/2× Z/6 ∼= Z/2× Z/2× Z/2`.

If 2OK = q is prime, then

(OK/4OK)× = (OK/q
2)× ∼= Z/2× Z/2× Z/14 ∼= Z/2× Z/2× Z/2`.

The important consequence of Corollary 4.19 is that (OK/4OK)× has a unique subgroup

of order 8, and the elements of order dividing 2 are exactly the `th powers. We now consider

the units of OK mod 4.

Proposition 4.20. Let K/Q be a totally real non-Galois cubic extension with odd narrow

class number. Let ` = 2f − 1, where f is the inertial degree of any prime lying over 2

in the Galois closure of K/Q. Let {u1, u2} be a system of fundamental units for OK, and

S = {±1,±u`1,±u`2,±(u1u2)
`}. Then the elements of S have distinct images in (OK/4OK)×.

Proof. Suppose by way of contradiction that two elements of S are congruent modulo 4, then

since ` is odd, their quotient u is a non-square unit congruent to 1 modulo 4. Note that 2u 6∈ p

50



for all p - 2, and for p | 2, u 6∈ p, and u = 12 − 4c for some c ∈ OK . Therefore K(
√
u)/K is

an unramified quadratic extension by Lemma 4.17. However, this is a contradiction, since

the narrow class number of K is odd.

Corollary 4.21. Let K/Q be a totally real non-Galois cubic extension and ` = 2f−1, where

f is the inertial degree of any prime lying over 2 in the Galois closure of K/Q. Let {u1, u2} be

a system of fundamental units for OK, and S = {±1,±u`1,±u`2,±(u1u2)
`}. Suppose that the

images of S are distinct in (OK/4OK)× and let H be the image of S in (OK/4OK)×. Then

H is the subgroup of order 8 in (OK/4OK)×, and a complete set of coset representatives for

H consists of the squares in (OK/4OK)×.

Proof. The set H consists of eight distinct `th powers of (OK/4OK)×. By Corollary 4.19,

|((OK/4OK)×)`| = 8,

so these are all `th powers. It is clear that the product and inverses of `th powers are

again `th powers, so H is a subgroup. There are exactly ` squares in (OK/4OK)×, since by

Corollary 4.19,

|((OK/4OK)×)2| = `.

But H contains only one square, namely the image of 1. Therefore each coset of H contains

exactly 1 of the ` squares.

4.3.4 Constructing a quadratic extension of K. We now have enough to construct

a quadratic extension of K(
√
u)/K which is unramified outside of primes above p, in the

case where the narrow class number of K is odd.

Theorem 4.22. Let K/Q be a totally real non-Galois cubic extensions ramified at only one

prime p > 3. Assume that the narrow class number of K is odd. Let pOK = p2p′ be the

factorization into prime ideals. Then there is a quadratic extension of K in which the only

finite prime that ramifies is p.
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Proof. Let h be the narrow class number of K, so that ph is principal, say ph = πOK . Then

the image of πS in (OK/4OK)× is a coset of H, therefore πS contains an element v which

is a square mod 4 by Corollary 4.21. Observe that v cannot be a square in OK , since it

generates an odd power of p. Now we apply Lemma 4.17. Since p 6= 2 and v = b2 − 4c for

some b, c ∈ OK , K(
√
v)/K is unramified at primes above 2, and unramified outside of p for

primes not above 2.

Proposition 4.23. If the narrow class number of K is even, then there exists a quadratic

extension K(
√
v)/K which is unramified (outside of ∞).

Proof. The narrow class group is an abelian group of order divisible by 2. Thus there is

a subgroup of index 2, which corresponds under the Galois correspondence to a quadratic

extension unramified outside of ∞.

So whether the narrow class number is odd or even, we have constructed a quadratic

extension of K, unramified outside of {p,∞} above Q.

4.3.5 The Galois closure of K(
√
v). We now show that in either case the quadratic

extension we have constructed has S4-Galois closure over Q, as desired.

When the narrow class number of K is odd, let K(
√
v)/K denote the quadratic extension

constructed in in Theorem 4.22. Then primes above p in K(
√
v) do not have the same

ramification index (see Theorem 4.22). Therefore K(
√
v)/Q is not a Galois extension.

Suppose that the narrow class number of K is even. In this case, let K(
√
v)/K denote

the unramified (outside of ∞) quadratic extension of constructed in Proposition 4.23. Then

the primes above p in K(
√
v) do not have the same ramification indexes either, since pOK

factors as pOK = p2p′ in K. Therefore K(
√
v)/Q is not a Galois extension in this case

either.

In both cases, K(
√
v)/Q is not Galois, so the following theorem applies.

Theorem 4.24. Let K/Q be a totally real non-Galois cubic extensions ramified only at one

prime p > 3. Let K(
√
v)/K be a quadratic extension such that K/Q is non-Galois and

52



unramified outside of {p,∞}. Then the Galois group of the Galois closure of K(
√
v)/Q is

isomorphic to S4.

Proof. Since K(
√
v)/Q has a cubic subfield (namely K), the possible Galois groups by [6,

pg 331] are

C6, S3, D6, A4, S4, A4 × C2, S4 × C2.

Note that K(
√
v)/Q is not the Galois closure of K/Q since K(

√
v)/Q is not a Galois ex-

tension. However, the Galois closure of K(
√
v)/Q must contain the Galois closure of K/Q.

Therefore the group has a proper S3-quotient. This eliminates C6, S3, A4, and A4 × C2.

Since the Galois closure of K(
√
v)/Q is ramified only at p > 2, there is a unique quadratic

sub-extension, namely Q(
√
p∗)/Q (see [17, pg 33]). Thus the Galois group has a unique

subgroup of index 2, which eliminates D6 and S4×C2. The only remaining option is for the

Galois group of the Galois closure of K(
√
v)/Q to be isomorphic to S4.

4.3.6 Proof of Theorem 4.5. We can now prove Wong’s conjecture.

Proof of Theorem 4.5. Suppose that K/Q has discriminant plus or minus a power of a prime

p > 3. This implies that K/Q is ramified only at p > 3. Applying Theorem 4.6, the number

of S4-extensions of Q containing K is 2n − 1 for some n ≥ 0.

Suppose that K/Q is totally real. Let h be the narrow class number of K. If h is even,

we can apply [9] to construct an S4-extension of K with discriminant a power of p, or we can

use Proposition 4.23 and Theorem 4.24. If h is odd, we apply Theorem 4.22 and Theorem

4.24. In either case, this shows that n > 0.
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