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abstract

Locations of Real Zeros of Newforms of Higher Levels

Hankun Ko
Department of Mathematics, BYU

Doctor of Philosophy

This dissertation is concerned with the zeros of holomorphic Hecke cusp forms in the
space of newforms. We estimate a lower bound for the number of zeros on the imaginary
axis and on the vertical line R(z) = 1

2
in the upper half plane, both of which are outside the

unit circle centered at the origin, and we denote these by δ1 and δ2 respectively. Ghosh and
Sarnak call those zeros that lie on the rays ’real’ including the arc z = exp (iθ), π

3
≤ θ ≤ π

2
,

and they showed that a lower bound for the zeros on those geodesic lines is C log k for all
sufficiently large weight k for the level 1 case. We extend their results to the newforms
with levels N which are positive integers not divisible by 4 on δ2, and N which are positive
integers on δ1. On δ2 we have C log k zeros if the weight k is sufficiently large and on δ1 we
assume a nonnegativity result on the first negative Hecke eigenvalue and get a conditional
result C log k zeros as the weight k goes to infinity.

The analysis is closely related to the knowledge of Hecke eigenvalues λf (n). Most impor-
tantly it requires Deligne’s bound λf (n)� nε (for every ε > 0) with which we look into the
proof of Theorem 3.1 in Ghosh and Sarnak [1], and get the same the approximation theorem
for any level in Chapter 2. The estimation of zeros on δ1 also requires a ‘good’ upper bound
for the first negative Hecke eigenvalue for which we investigate an upper bound for central
values of Hecke L-functions and a nonnegativity result on those values. Those will be studied
in Chapters 3 and 4. In Chapter 5 we estimate lower bounds for the number of zeros on δi,
i = 1, 2.

Keywords: real zeros, newforms
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Chapter 1. Introduction

In studying a complex valued function it is natural to ask about locations of zeros of the

function. In fact one of the most famous unsolved problems in mathematics is the Riemann

hypothesis which asserts that all nontrivial zeros of the Riemann zeta function lie on the

critical line. Many authors have studied the the locations of zeros of modular functions under

various conditions. For the Eisenstein series, it is well known that all zeros of the Eisenstein

series Ek(z) in the standard fundamental domain for SL2(Z) lie on the lower arc of the

fundamental domain; namely, on the unit circle |z| = 1. This was first proven for 4 ≤ k ≤ 26

in 1960s by Wohlfahrt [2], and Rankin [3] extended the range of values of k for which this

holds. Then Rankin and Swinnerton-Dyer [4] proved this result for all weights k ≥ 4. Rankin

[5] obtained the result for certain Poincaré series, which generalize Eisenstein series. Similar

results have been proven for various levels by many authors. The general principle of the

proof of the results is to approximate the modular forms by an elementary function having

the required number of zeros on the arc. Also the zeros of weakly holomorphic modular

forms of several levels were studied by Duke [6], Haddock [7], Garthwaite and Jenkins [8] on

a natural basis which they constructed.

As a result of the proof of the QUE (Quantum Unique Ergodicity) conjecture by Holowin-

sky and Soundararajan [9] the zero set Z(f) of a Hecke eigenform f for SL2(Z) is equidis-

tributed. That is, for any nice subset S of the fundamental domain F ,

Z(f) ∩ S
Z(f)

→ Area(S)

Area(F)

as the weight k →∞, where “Area” is the hyperbolic area with dA = dx dy
y2

.

For these Hecke eigenforms Ghosh and Sarnak [1] estimated the number of zeros on the

boundary and the center line of the fundamental domain. We do a similar analysis on the

number of zeros of newforms of various levels N . We deal with one case for N not divisible

by 4 and the other case for N any positive integer with an additional assumption on the
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first nonnegative Hecke eigenvalue. Because the shape of the lower parts of the fundamental

domain becomes very complicated as the level gets larger, we are confronted with immediate

technical difficulties, which leads to our focus on the two vertical rays rather than the entire

boundary.

Let f ∈ Snew
k (Γ0(N)) be a newform with trivial character, i.e., a normalized cusp form

which is an eigenform of all the Hecke operators, where k is an even weight. (See §2.1 for

precise definitions.) The Fourier expansion of f at infinity takes the form

f(z) =
∞∑
n=1

af (n)e(nz),

where af (1) = 1, and we write e(x) = exp(2πix). We denote by λf (n)n
k−1
2 the Hecke

eigenvalues which are related to the Fourier coefficients of f(z):

af (n) = af (1)λf (n)n
k−1
2

with af (1) = 1 and with λf (n) multiplicative and real, satisfying the well-known Hecke

relations

λf (m)λf (n) =
∑
d|(m,n)
(d,N)=1

λf

(mn
d2

)
.

Deligne’s bound, which is well known, states that |λf (n)| ≤ d(n) � nε for all n, where

d(n) is the divisor function. (We shall write f(x)� g(x) if there exist two constants M > 0

and x0 such that |f(x)| > M |g(x)| for x ≥ x0.) It is well known that the field generated by

the Fourier coefficients of a newform in the space of cusp forms Sk(Γ0(N), χ) is real if and

only if the Nebentypus character χ is either trivial or quadratic with χ(p)af (p) = af (p) for

all primes p. In particular, the coefficients of f are all real.

2



0 1-1

δ1 δ2

Figure 1.1: Fundamental Domain of Γ0(1)

Let δ1 and δ2 be two vertical rays on a fundamental domain of Γ0(N) defined by

δ1 = {x+ yi | x = 0, y ≥ 1},

δ2 = {x+ yi | x = 1
2
, y ≥

√
3

2
}.

Then f is a real valued function on the geodesic segments δ1 and δ2 since e(nz) are real on

δ1 and δ2 and the Fourier coefficients are all real. In fact for the full modular group, f is

also real on the arc, the lower boundary of the standard fundamental domain, which follows

from the relations

f(−z) = f(z)

and

f(1− z) = f(z).

As Ghosh and Sarnak did, we also call the zeros of f on δ1 and δ2 the “real” zeros of f . We

denote the zero set of f in the fundamental domain of Γ0(N) by Z(f). On these geodesic
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lines Ghosh and Sarnak [1] showed that the number of zeros of f goes to infinity as k goes

to infinity for the full modular group (level 1 case).

Theorem 1.1. [1, Theorem 1.4] Let fk be a Hecke eigenform of even weight k for the full

modular group SL2(Z). Then the number of zeros on δ1 and separately δ2 goes to infinity as

k →∞; we have

|Z(fk) ∩ δj| � log k

for j = 1, 2.

We extend Theorem 1.1 to newforms with various levels N ≥ 1. Here we state our main

theorems.

Theorem 1.2. Let k be an even integer and let N be a positive integer. For δ2 assume

4 - N . Consider a sequence of newforms {fk} where fk is in Snew
k (Γ0(N)). Then the number

of zeros of fk(z) on δ2 goes to infinity as k goes to infinity. More quantitatively

|Z(fk) ∩ δ2| � log k.

For the analysis on δ1 in [1] Ghosh and Sarnak use subconvexity bounds for Hecke L-

functions attached to Hecke eigenforms over the full modular group (see [10] and [11]). They

uses the result to prove [1, Proposition 4.4] which is about the first negative Hecke eigenvalue

and use it to obtain sign changes on δ1. For a level N > 1 such a strong subconvexity bound

is not available yet. Instead we get a conditional result and we have the following theorem

on δ1.

Theorem 1.3. Let k be an even integer and let N be a positive integer. Consider a sequence

of newforms {fk} where fk is in Snew
k (Γ0(N)). Suppose there exist ε0 > 0 and a positive

integer N0 such that if k ≥ N0 then there is a power of prime pr such that pr < kα, α < 1/2

and

λf (p
r) ≤ −ε0.
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Then the number of zeros of fk(z) on δ2 goes to infinity as k goes to infinity. More quanti-

tatively

|Z(fk) ∩ δ1| � log k.

The proof of the main theorems essentially relies on the approximation theorem in Chap-

ter 2, which basically reduces the problem of counting zeros of the given form to detecting

the sign changes of its Hecke eigenvalues. We extend the main approximation theorem by

Ghosh and Sarnak [1, Theorem 3.1] to newforms of higher levels in Chapter 2. We can detect

sign changes of newforms on δ2 by considering a natural parity condition on the Fourier co-

efficients of the form. On the other hand the analysis on δ1 is intrinsically harder than on δ2.

To get sign changes on δ1 we need a negative Fourier coefficient that should appear as early

as possible. In Chapter 3 we search a first negative Hecke eigenvalue by studying bounds of a

sum of Hecke eigenvalues. In Chapter 4 we combine a bound for the cubic moment of central

values of Hecke L-functions attached to holomorphic cusp forms and the nonnegativity of

those central values to obtain an upper bound for the central values of Hecke L- functions

attached to newforms. Lastly, in Chapter 5 we do analysis of counting sign changes of new

forms on δi, i = 1, 2.
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Chapter 2. Approximation of Hecke Eigen-

forms in the Space of Newforms

In this chapter we review basic facts from the Atkin-Lehner theory of newforms. After that

we derive the main approximation theorem which facilitates counting zeros of a form just by

considering normalized Hecke eigenvalues.

2.1 Preliminaries: Revisit Newforms

In this section we recall some important features about the Atkin-Lehner theory of newforms

[12] for modular forms with trivial character and Deligne’s bound for Fourier coefficients of

newforms. For a positive integer N , let Mk(Γ0(N)) denote the C-vector space of modular

forms of weight k for the congruence group

Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

and let Sk(Γ0(N)) denote the subspace of cusp forms. We denote the complex vector space

of modular forms (resp. cusp forms) of weight k with respect to Γ1 by Mk(Γ1(N)) (resp.

Sk(Γ1(N))) where

Γ1(N) :=

{(
a b

c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, and c ≡ 0 mod N

}
.

Definition 2.1. If χ is a Dirichlet character modulo N , then we say that a form f(z) ∈

Mk(Γ1) (resp. Sk(Γ1(N))) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)
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for all z ∈ H and all
(
a b
c d

)
∈ Γ0(N). The space of such modular forms (resp. cusp forms)

is denoted by Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)). If χ = χ0 is trivial, then we denote

Mk(Γ0(N), χ0) (resp. Sk(Γ0(N), χ0)) by Mk(Γ0(N)) (resp. Sk(Γ0(N))).

We recall some important operators on spaces of integer weight modular forms. Recall

that

GL+
2 (R) =

{
γ =

(
a b

c d

)
: a, b, c, d ∈ R and ad− bc > 0

}
acts on functions f : H → C by the operator

(f |kγ)(z) = (det γ)k/2(cz + d)−kf(γz),

where γ =
(
a b
c d

)
∈ GL+

2 (R).

Definition 2.2. For a prime divisor p of N with ordp(N) = l, define the Atkin-Lehner

operator |kWp on Mk(Γ0(N)) by any matrix

Wp :=

plα β

Nγ plδ

 ∈ M2(Z)

with determinant pl, where α, β, γ, δ ∈ Z (such a choice exists because (pl, N/pl) = 1 by

definition of l, and the operator Wp are independent of the choices of α, β, γ, δ (see [12,

Lemma 10])) and the Fricke involution |kWN on Mk(Γ0(N)) by the matrix

WN :=

 0 −1

N 0

 .

Definition 2.3. Let q = e2πiz. If d is a positive integer, then the V -operator is defined by

(
∞∑

n=n0

a(n)qn

)
| V (d) :=

∞∑
n=n0

a(n)qdn.

7



The U -operator U(d) is defined by

(
∞∑

n=n0

a(n)qn

)
| U(d) :=

∞∑
n=n0

a(dn)qn.

The behavior of these operators is described in the following proposition.

Proposition 2.4 (see [28] pg. 28 for a proof). Suppose that f(z) ∈ Mk(Γ0(N), χ) with χ

being a Dirichlet character.

(1) If d is a positive integer, then

f(z) | V (d) ∈Mk(Γ0(dN), χ).

Moreover, if f(z) is a cusp form, then so is f(z) | V (d).

(2) If d | N , then

f(z) | U(d) ∈Mk(Γ0(N), χ).

Moreover, if f(z) is a cusp form, then so is f(z) | U(d). And if d - N then simply view f(z)

as an element of Mk(Γ0(dN), χ).

Now suppose that f(z) ∈ Sk(Γ0(N)) and that d > 1. Then f(z) ∈ Sk(Γ0(dN)) and

f(dz) = f(z) | V (d) ∈ Sk(Γ0(dN)). So f(z) sits in Sk(Γ0(dN)) in two different ways. One

defines “old” forms in Sk(Γ0(dN)) by

Sold
k (Γ0(N)) :=

⊕
dM |N

Sk(Γ0(M)) | V (d),

where the sum runs over pairs of positive integers d, M for which dM | N and M 6= N .

Definition 2.5. Let f(z) and g(z) be cusp forms in Sk(Γ0(N)). Their Petersson inner

product is defined by

8



〈f, g〉 :=
1

[SL2(Z) : Γ0(N)]
·
∫
FN

f(z)g(z)yk−2 dxdy,

where FN denotes a fundamental domain for the action of Γ0(N) on H and where z = x+ iy.

Definition 2.6. Define the space Snew
k (Γ0(N)), the subspace of newforms, to be the orthog-

onal complement of Sold
k (Γ0(N)) in Sk(Γ0(N)) with respect to the Petersson inner product.

Definition 2.7. A newform in Snew
k (Γ0(N)) is a normalized cusp form that is an eigenform

of all Hecke operators and all of the Atkin-Lehner involutions |kWp, for primes p | N , and

|kW (N).

The important properties of a newform are captured in the following theorem due to

Atkin and Lehner.

Theorem 2.8. [12, Theorem 3] Suppose that f(z) =
∑∞

n=1 af (n)qn ∈ Snew
k (Γ0(N)) is a

newform. Then the following hold.

(1) If p | N , then there is a wp ∈ {±1} for which

f |k Wp = wpf(z).

(2) There is an integer wN ∈ {±1} for which f |k WN = wNf(z). Moreover, we have

wN =
∏
p|N

wp.

(3) If p is a prime for which p2 | N , then af (p) = 0.

(4) If p | N is a prime for which ordp(N) = 1, then

af (p) = −wpp
k−2
2 .

9



Note that if f(z) =
∑∞

n=1 af (n)qn ∈ Snew
k (Γ0(N)) is a newform, then

f | U(p) = −p
k−2
2 (f |k Wp).

The space Snew
k (Γ0(N)) has a basis of newforms, and newforms determine distinct Hecke

eigenspaces. We add to our basics Deligne’s bound for the Fourier coefficients of newforms

in the following theorem.

Theorem 2.9. (Deligne) Let N be any positive integer. If f(z) =
∑∞

n=1 af (n)qn ∈ Snew
k (Γ0(N))

is a newform, then

|af (n)| ≤ d(n)n
k−1
2

for any n ≥ 1, where d is the divisor function. Writing af (n) = af (1)λf (n)n(k−1)/2 with

af (n) = 1, we have

|λf (n)| ≤ d(n)� nε

for any ε > 0.

This was proved by P. Deligne [14] for k ≥ 2 as a consequence of the Riemann Hypothesis

for varieties over finite fields, the Weil conjectures. This bound is essential to extend the

approximation theorem from the case of Hecke eigenforms for the full modular group to the

case of newforms of arbitrary levels with trivial character.

2.2 Basic Proposition for the Main Approximation Theorem

Following Ghosh and Sarnak [1] let

Is(y) = y
s−1
2 e−y

10



for y > 0 and s ∈ C. Let f(z) =
∑∞

n=1 λf (n)n(k−1)/2e2πinz ∈ Snew
k (Γ0(N)) be a newform.

Define

Φf (s;α, y) =
∞∑
n=1

λf (n)e2πinαIs(2πny)

for any real α. Then we have

f(α + iy) = (2πy)−
k−1
2 Φf (k;α, y).

We first prove the approximation theorem below.

Theorem 2.10. Let f ∈ Snew
k (Γ0(N)) be a newform. Let δ be a positive real number. Then

there exists a real number Nδ sufficiently large such that for all real s > Nδ, for all y satisfying

√
s� y < 1

100
s, and with B =

√
δs log s, we have

Φf (s;α, y)

Is(s′)
=

∑
n

|2πny−s′|≤B

λf (n)e2πinαe−|2πny−s
′|2/(2s′) +O(s−δ)

where s′ = s−1
2

and the constant involved only depends on δ.

Ghosh and Sarnak proved the theorem for a Hecke eigenforms for the full modular group

Γ0(1) = SL2(Z), i.e, when the level N = 1. Notice that the conclusion of the theorem does

not depend on the level N . We follow and examine the proof of Ghosh and Sarnak to verify

that the result can be extended to the general case of any congruence group Γ0(N) with

N being any positive integer. In the proof the only possible level involvement lies in the

estimation of normalized eigenvalues λf for which they consistently use Deligne’s bound

|λf (n)| ≤ d(n)� nε.

for any ε > 0, which is valid for any newform (See 2.9), so that we can avoid the level

dependency of the theorem. We will point out whenever the bound appears in the proof.

11



We study the behavior of the function Is(y) in the following lemmas.

Lemma 2.11. [1, Lemma 2.2] For a fixed real s > 1, Is(y) = y
s−1
2 e−y is strictly increasing

for 0 < y < s′, and strictly decreasing if y > s′ where s′ = (s− 1)/2.

The proof is elementary calculus.

Lemma 2.12. [1, Lemma 2.3] Let |h| � s2/3−δ for some positive δ sufficiently small. Then

Is(s
′ + h) = Is(s

′)e−
h2

2s′ (1 +O(s−3δ)),

where s′ = (s− 1)/2.

Proof. We write

Is(s
′ + h) = e−s

′−h(s′)s
′
(1 +

h

s′
)s
′
.

Using the Maclaurin series for log(1 + x) we have

log

(
1 +

h

s′

)s′
= h− h2

2s′
+O

(
h3

s′2

)
.

The result follows after applying the estimation to the last factor of the first equation with

|h| � s2/3−δ.

We split the sum Φf into three sums using a parameter B which will be determined later

to get

Φf (s : α, y) =
3∑
i=1

Φf,i(s;α, y)

12



where

Φf,1(s;α, y) =
∑
n≥1

2πny−s′<−B

λf (n)e2πinαIs(2πny),

Φf,2(s;α, y) =
∑
n≥1

|2πny−s′|≤B

λf (n)e2πinαIs(2πny),

Φf,3(s;α, y) =
∑
n≥1

2πny−s′>B

λf (n)e2πinαIs(2πny).

Again Deligne’s bound appears in all the estimations of Φf,1, Φf,2 and Φf,3.

Proof of Theorem 2.10. Let δ > 0. We choose h = 2πny − s′ in Lemma 2.12, so that

Is(2πny) = Is(s
′ + h) and therefore assume that 1 ≤ B � s2/3−δ. We first estimate

Φf,3(s;α, y). Note that Is(t) = t(s−s1)/2Is1(t), and |λf (n)| � nε for any ε > 0. Then for

sufficiently large s and letting s1 = s+ 2ε, we have

Φf,3(s;α, y) =
∑
n≥1

2πny−s′>B

λf (n)e2πinα(2πny)(s−(s+2ε))/2Is+2ε(2πny)

� y−ε
∑

n> s′+B
2πy

Is+2ε(2πny).

Since 2πny > s′ +B = s−1
2

+B, by Lemma 2.11, Is+2ε(2πny) is decreasing in the sum. Now

we approximate the sum as an integral:

Φf,3(s;α, y)� y−ε

(∫ ∞
s′+B
2πy

(2πyt)s
′+εe−2πytdt+ Is+2ε(s

′ +B)

)

� y−ε
(

1

y
Γ(s′ + ε+ 1, s′ +B) + Is+2ε(s′+B)

)
(2.1)

where

Γ(s, x) =

∫ ∞
x

ts−1e−t dt

is the incomplete gamma function.

13



For the estimation of

Φf,3(s;α, y)

Is(s′)

we first observe that

Is+2ε(s′+B)

Is(s′)
= e−B(1 +

B

s′
)s
′
(s′ +B)ε

� e−B(1 +
B

s′
)s
′
(s)ε.

Using

log

(
e−B

(
1 +

B

s′

)s′)
= −B

2

2s′
+O

(
B3

s′2

)
we get

Is+2ε(s
′ +B)� Is(s

′)sεe−B
2/(2s′). (2.2)

For the estimation of the incomplete Gamma function in equation (2.1) we use the inequality

of Natalini-Palumbo [15]:

Lemma 2.13. [1, Lemma 2.4] If a > 1, b > 1, and x > b
b−1

(a− 1), one has

xa−1e−x < |Γ(a, x)| < bxa−1e−x.

In the lemma with a = s′ + ε+ 1 and b = 1 + ε+ s′/B we have

Γ(s′ + ε+ 1, s′ +B)� s′

B
(s′ +B)s

′+εe−s
′−B

� s′

B

(
1 +

B

s′

)
e−BIs(s

′)sε.

� s′

B
e−B

2/(2s′)Is(s
′)sε. (2.3)

14



Combining the estimates of (2.1), (2.2) and (2.3) we estimate

Φf,3(s;α, y)� y−ε
(
s′

By
+ 1

)
e−B

2/(2s′)Is(s
′)sε.

Now we add the lower bound for B

√
δs log s ≤ B � s2/3−δ

and take y �
√
s to derive that

Φf,3(s;α, y)� Is(s
′)s−δ/2. (2.4)

For the estimation of Φf,1(s;α, y) we can replace λf (n) with sε using Deligne’s bound

λf (n) � nε and the upper bound s for n’s in the sum. Note also that Is(2πny) is strictly

increasing in the associated interval, so that we approximate the sum by the integral

Φf,1(s;α, y)� sε

(∫ s′−B
2πy

1

(2πyt)s
′
e−2πyt dt+ Is(2πy) + Is(s

′ −B)

)
. (2.5)

Using the definition of Is(y) we see that

Is(2πy)

Is(s′)
�
(

2πye

s′

)s′
e−2πy

which is decreasing exponentially in s if 2πye
s′

< 1 and it indeed is for y < s/100. For the

estimation with the last term in (2.5) we use inequality (2.2) and get

Is(s
′ −B)

Is(s′)
� e−B

2/(2s′).

15



Now we split the integral part in (2.5) into two pieces with B1 > B and substituting t by

s′t
2πy

to get

∫ s′−B1
2πy

1

(2πyt)s
′
e−2πyt dt+

∫ s′−B
2πy

s′−B1
2πy

(2πyt)s
′
e−2πyt dt

=
s′

2πy
Is(s

′)

(∫ 1−B1/s′

2πy/s′

[
te(1−t)]s′ dt+

∫ 1−B/s′

1−B1/s′

[
te(1−t)]s′ dt) . (2.6)

The integrand
[
te(1−t)]s′ is strictly increasing on the involved interval, so the second integral

is bounded above by

B1 −B
s′

(
1− B

s′

)s′
eB � B1 −B

s′
e−B

2/(2s′)

where the second inequality follows by applying the power series estimation of log
(
1− B

s′

)s′
eB =

s′ log
(
1− B

s′

)
+B.

Similarly the first integral is bounded by

∫ 1−B1/s′

2πy/s′

[
te(1−t)]s′ dt� (

1− B1

s′

)s′
eB1

=
Is(s

′ −B1)

Is(s′)

� e−B
2
1/(2s

′)

provided that B1 � s2/3−ε by Lemma 2.12. By combining these estimations of integrals in

(2.6), the integral in (2.5) is

� s′

y
Is(s

′)

(
e−B

2
1/(2s

′) +
B1 −B
s′

e−B
2/(2s′)

)
. (2.7)

Now given δ sufficiently small we choose

B =
√
δs log s, B1 =

√
1

δ
s log s

16



Hence (2.7) is

� s′

y
Is(s

′)

(
e−

s log s
δ(s−1) +

√
s log s

s′
e−

δs log s
s−1

)
� s′

y
Is(s

′)

(
s−1/δ +

√
s log s

s′
s−δ
)

� Is(s
′)

√
s log s

y
s−δ

� Is(s
′)s−

1
2
δ

where the last inequality follows if y >
√
s. Applying all these estimates to (2.5) we get

Φf,1(s;α, y)

Is(s′)
� sε

((
2πye

s′

)s′
e−2πy + e−B

2/(2s′) + s−
1
2
δ

)
� s−

1
3
δ (2.8)

where
√
s� y < s

100
.

Finally, we take h = 2πny − s in Lemma 2.12 and apply it to Φf,2(s;α, y) to get

Φf,2(s;α, y) =
∑
n≥1

|2πny−s′|≤B

λf (n)e2πinαIs(2πny)

=
∑
n≥1

|2πny−s′|≤B

λf (n)e2πinαIs(s
′)e−|2πny−s

′|2/(2s′) (1 +O(s−3δ)
)
. (2.9)

Again using Deligne’s bound we replace λf (n) with sε, so the error term involved in the sum

is estimated as follows:

∑
n≥1

|2πny−s′|≤B

λf (n)e2πinαIs(s
′)e−|2πny−s

′|2/(2s′)O(s−3δ)

�
∑
n≥1

|2πny−s′|≤B

sεIs(s
′)s−3δ

17



� sεs−3δIs(s
′)

∑
n≥1

|2πny−s′|≤B

1

� Is(s
′)

(
1 +

B

y

)
s−2δ

� Is(s
′)s−δ. (2.10)

In summary, from (2.4), (2.8), (2.9) and (2.10) we have

Φf,3(s;α, y)� Is(s
′)s−δ/2 if B =

√
δs log s and

√
s� y,

Φf,1(s;α, y)� Is(s
′)s−

1
3
δ if

√
s < y, and

Φf,2(s;α, y) =
∑
n≥1

|2πny−s′|≤B

λf (n)e2πinαIs(s
′)e−|2πny−s

′|2/(2s′) +O(Is(s
′)s−

1
2
δ).

With all these approximations combined, the proof is complete. Note that the main term in

the statement of Theorem 2.10 comes from the main term of Φf,2(s;α, y).

2.3 Main Approximation Theorem

Now we state and prove the main approximation theorem.

Theorem 2.14. Let f ∈ Snew
k (Γ0(N)) be a newform. Given δ > 0 there exist positive

numbers r1 and r2 such that for all integers l satisfying r1 < l < r2

√
s

log s
, and for all s

sufficiently large, the numbers yl,s = s−1
4πl

satisfy

Φf (s;α, yl,s)

Is
(
s−1

2

) = λf (l)e
2πiαl +O(s−δ) (2.11)

uniformly for any real number α, where the involved constant only depends on δ.

Again Theorem 2.14 does not depend on the level N . The proof is exactly the same as

[1, Theorem 3.1]. We added a detail here.
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Proof. Let y = s′

2πl
, s′ = s−1

2
with l being a positive integer. Then the bound for n in the

sum of Theorem 2.10 is

|2πny − s′| ≤ B ⇔ |n− l| ≤ B
l

s′

so that we must have n = l if l < s′

B
. In this case notice that 2πny− s′ = 2πly− s′ = 0. Now

observe the condition

l <
s′

B
=
s− 1

2

1√
δs log s

<
1√
δ

√
s/ log s.

The condition that
√
s� y < s/100 in Theorem 2.10 is translated in terms of l to

(
100

4π

)
s− 1

s
< l�

√
s.

Therefore given δ > 0 we can take r1 = 100
2·4π and r2 = 1√

δ
. Then for all sufficiently large s

such that s > Nδ in Theorem 2.10, s satisfies

l <
1√
δ

√
s/ log s�

√
s.

Hence we necessarily have

φf (s;α, yl,s)

Is(s′)
= λf (l)e

2πiαl +O(s−δ)

uniformly for any real number α.

Remark. In Theorem 2.14 if we take s = k an integer, α = 0 or α = 1/2 then as a function

of y, Φf is also a real valued function by definition and assuming that the condition of the

theorem is satisfied, the main term in 2.11 is

±λf (l)
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since e2πiαl = ±1. Hence the sign of Φf and therefore the sign of f(α + iy) is essentially

determined by the sign of λf (l) if its absolute values are bigger than the error term in 2.11.

In fact we can make the error term negligible by taking sufficiently large k.
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Chapter 3. The First Negative Eigenvalues

of Hecke Eigenforms in the Space of

Newforms

Again we suppose that f(z) =
∑∞

n=1 λf (n)n(k−1)/2e2πinz ∈ Snew
k (Γ0(N)) is a newform. The

goal of this chapter is to find an upper bound for the first sign change of Hecke eigenvalues.

We first state two previous results. Ghosh and Sarnak [1] proved the following theorem.

Theorem 3.1. [1, Propostion 4.4] Let f be a Hecke eigenform in Snew
k (Γ0(1)), where k is an

even weight. Then there exists ε0 > 0 such that for all sufficiently large k there is a positive

integer n such that n < k0.4963 and

λf (n) ≤ −ε0.

Let nf denote the smallest positive integer such that λf (nf ) < 0 and nf is relatively prime

to N . Matomäki [16] bounds the size of nf in terms of the analytic conductor Q = k2N in

the following theorem.

Theorem 3.2. [16, Theorem 1] Let k ≥ 2 be an even integer and let N be any positive

integer. Then for all newforms in Snew
k (Γ0(N)), one has

nf � (k2N)3/8 = k3/4N3/8

where the implied constant is absolute.

Remark. In Theorem 3.1, nf < k0.4963 if k is sufficiently large. In the aspect of upper bound

for nf in terms of weight k the result of Ghosh and Sarnak is better than that of Matomäki

and stronger in the sense that the first negative eigenvalue is smaller than some fixed negative

number for all sufficiently large weight k.

We combine and modify the proofs of Theorem 3.1 and Theorem 3.2 to prove Theorem

3.6.
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3.1 A Lower Bound for a Sum of Normalized Hecke Eigenval-

ues (Proof of Proposition 3.3)

For a newform f ∈ Snew
k (Γ0), we begin with adopting the same setting as Matomäki [16].

Let

S(f, x) =
∑[

n6x
(n,N)=1

λf (n)

where the symbol [ indicates that the sum is over the square-free integers. Let y represent

a positive real number.

Proposition 3.3. There is ε̃ > 0 such that for any ε > 0 with ε̃ > ε > 0, if λf (n) ≥ −ε for

all n ≤ y then

S(f, yκ)� yκ

for all y, where κ = 1.343461 and the implied constant depends only on ε.

We follow Ghosh and Sarnak for the construction of an auxiliary multiplicative function

and modified the proof of [1, Proposition 4] and do estimation on it using Matomäki’s proof

of [16, Theorem 1].

Here the number κ = 1.343461 will play an important role later. We first prove several

lemmas toward proving Proposition 3.3. Let ε, y be positive numbers and fix K = 100 and

assume that λ(pk) ≥ −ε for all prime powers pk ≤ y. Then by Deligne’s bound there exists

an angle θp such that

λf (p) = cos θp, λf (p
m) =

sin(m+ 1)θp
sin θp

≥ −ε

for all m ≤ K (See the proof of Lemma 5.2). This implies that θp ≤ π/(m+ 1) we have

λf (p) ≥ 2 cos

(
π

m+ 1

)
− Cε

for p ≤ y1/m with p - N , where C is a constant depending only on K. We now define
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a multiplicative function hy(n) supported on square-free positive integers with hy(p) =

γ(log p/ log y) on prime numbers, where

γ(t) =


−2 if t ≥ 1,

2 cos
(

π
m+1

)
− Cε if 1

m+1
≤ t < 1

m
, 1 ≤ m < M,

2 cos
(

π
M+1

)
− Cε if t < 1

M
.

(3.1)

The required lower bound for S(f, yκ) can be obtained by evaluating the mean value of hy(n).

Matomäki [16] studied the sum ∑
n≤x

(n,N)=1

h(n)

with h(p) = χ(log p/ log x), where χ is a function on nonnegative numbers into the set of all

real numbers such that

χ(t) = χk if xk ≤ t < xk+1

where 0 = x0 < x1 < · · · < xK+1 =∞, χk ∈ R for k = 0, 1, ..., K. Let Γ be the Euler gamma

function and Πq,κ be such that

Πq,κ =

(
φ(q)

q

)κ∏
p-q

(
1− 1

q

)κ(
1 +

κ

p

)
(3.2)

where φ is the Euler totient function.

Lemma 3.4. [16, Lemma 6] Let U ≥ 1 and let h(n) and χ(t) be as above with χ0 > 0. Let

further q ≤ xU be a positive integer. Then

∑
n≤xu

(n,q)=1

h(n) = (σ(u) + oχ,U(1))
Πq,χ0

Γ(χ0)
(log x)χ0−1xu

uniformly for u ∈ [1/U, U ], where

σ(u) = uχ0−1 +
∞∑
j=1

(−1)j

j!
Ij(u)
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with

Ij(u) =

∫
∆j

(u− t1 − · · · − tj)χ0−1

j∏
i=1

(χ0 − χ(tj))
dt1 · · · dtj
t1 · · · tj

,

integration ranging over the set

∆j = {(t1, ..., tj) ∈ [0,∞)j | t1 + · · ·+ tj ≤ u}.

The next lemma will allow us to estimate σ(u) in the previous lemma effectively. It is in

fact a solution of an integral equation.

Lemma 3.5. [16, Lemma 8] The function σ(u) in Lemma 3.4 is the unique solution of the

integral equation

uσ(u) =

∫ u

0

σ(t)χ(u− t)dt

with the initial condition σ(u) = uχ0−1 for u ∈ (0, x1].

It is also the unique continuous solution of the differential-difference equation (with the

same initial condition)

(u1−χ0σ(u))′ = − 1

uχ0

K′∑
k=1

σ(u− xk)(χk−1 − χk) when u /∈ {x2, x3, · · · , xK} (3.3)

where K ′ ≤ K is such that xK′ < u but xK′+1 > u.

We integrate both sides of equation (3.3) from u−δ to u and keep track of the derivatives

on the intervals (xi, xi+1), i = 1, 2, ..., K. Then we get

u1−χ0σ(u) = (u− δ)1−χ0σ(u− δ)−
K′∑
k=1

(χk−1 − χk)
∫ u

max{u−δ,xk}
t−χ0σ(t− xk)dt (3.4)

for any u > x1 + δ, δ > 0. We write α(u) = u1−χ0σ(u). If u0 is the first zero of α(u) then
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the function α is decreasing by (3.3) so that we may apply rectangular approximation to the

integral in (3.4) and get

α(u− δ)−
K′∑
k=1

δk(χk−1 − χk)(u− δk)−χ0(u− xk)χ0−1α(u− δk − xk)

≤ α(u) ≤ α(u− δ)−
K′∑
k=1

δk(χk−1 − χk)(u)−χ0(u− δk − xk)χ0−1α(u− xk),

where δk = min{δ, u − xk}. Starting with α(x1) = 1 and δ > 0 sufficiently small we can

estimate α(x1+lδ) recursively for l = 1, 2, .... Now we takeK = M = 100, δ = 1/(10000
√

73),

χ0 = 2 cos (π/(K + 1)),

xk =
1

K − k + 1
and χk = 2 cos

(
π

K − k + 1

)
for k = 1, 2, ..., K. Using a Sage program [17] (see appendix) we verified that α(1.343461) >

0. Hence we obtain σ(1.343461) > 0, which is also true for the case χ = γ in (3.1) with the

same choices K = 100 and δ = 1/(10000
√

73) as above by taking sufficiently small ε > 0

because the recursive estimation just takes finitely many steps. (Notice that γ contains the

term Cε.) Fix ε̃ > 0 small enough to guarantee σ(1.343461) > 0 for all 0 < ε ≤ ε̃. Letting

M = 100 in (3.1) we have

hy(p) =


−2 if p ≥ y,

2 cos
(

π
m+1

)
− Cε if y

1
m+1 ≤ p < y

1
m , 1 ≤ m < 100,

2 cos
(
π

101

)
− Cε if p < y

1
100 .

(3.5)

We define gy to be the multiplicative function given by the Dirichlet convolution

λf = gy ∗ hy.
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Then gy(n) ≥ 0 for all square free integers n ≥ 1 such that (n,N) = 1, since

gy(p) = λf (p)− hy(p) ≥ 0

by construction for all p - N and the case p ≥ y follows from Deligne’s inequality |λf (n)| ≤

d(n). (In particular, |λf (p)| ≤ 2 for primes p.) Notice that in (3.5) if m = 1 and y1/2 ≤ p < y

then hy(p) = −Cε < 0. But since 2 cos(π/(m + 1)) ≥ 1 for m ≥ 2, we can take sufficiently

smaller ε > 0 than the previous one if necessary so that hy(l) ≥ 0 if l ≤ y1/3. Then
∑[

l≤z hy(l)

is nonnegative if z ≤ y1/3. On the other hand for z > y1/3, we can get the same result by

taking U = 3 in Lemma 3.4 since for all sufficiently large y

∑[

l≤yu
hy(l) = (σ(u) + oχ,U(1))

Πq,χ0

Γ(χ0)
(log y)χ0−1yu

uniformly for u ∈ [1/3, 3] (see (3.2) for Πq,χ0), and in particular since σ(κ) > 0 (κ =

1.343461), if y is sufficiently large

∑[

l≤yu
hy(l) ≥ cyu

for all u ∈ [1/3, κ] for some positive constant c. Hence

S(f, yκ) =
∑[

n≤yκ
(n,N)=1

λf (n) =
∑[

d≤yκ

∑[

l≤yκ/d

hy(l)

 gy(d) ≥
∑[

l≤yκ
hy(l) ≥ cyκ

since gy(d) ≥ 0 for every d and gy(1) = 1.

3.2 An Upper Bound for a Sum of Normalized Hecke Eigenval-

ues and the First Negative Hecke Eigenvalue

Now we prove Theorem 3.6 about the first negative Hecke eigenvalue.
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Theorem 3.6. Let f be a newform in Snew
k (Γ0(N)), where k is an even weight and N is a

positive integer. Then there exist ε0 > 0 and a positive integer N0 such that if k ≥ N0 then

there is a power of prime pr such that pr < k0.7444N0.3722 and

λf (p
r) ≤ −ε0.

Proof. By Proposition 3.3 if λf (n) ≥ −ε for all n < y then

S(f, yκ)� yκ

where κ = 1.343461 and the implied constant only depends on ε. On the other hand an

upper bound can be achieved using the convexity bound for Hecke L-functions and the

Perron formula (see [18, Section 2] and [19, Theorem 2.3] respectively) and we have

S(f, x)� (k2N)1/4+εx1/2+ε

for all x ≥ 1, where the implied constant only depends on ε. In particular, for x = yκ we

obtain

S(f, yκ)� (k2N)1/4+εyκ/2+ε.

Putting together the lower bound and the upper bound for S(f, yκ) we have

yκ � S(f, yκ)� (k2N)1/4+εyκ/2+ε. (3.6)

Observe that the lower bound grows faster than the upper bound as y goes to ∞. So we fix

ε = ε0 > 0 smaller than ε̃ in Proposition 3.3 and take k sufficiently large so that inequalities

(3.6) hold first and if necessary take k even larger so that

yκ ≤ S(f, yκ) ≤ (k2N)1/4+εyκ/2+ε
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and then get a contradiction by letting y →∞. Therefore a contradiction arises when

yκ ≥ (k2N)1/4+εyκ/2+ε,

or equivalently when

y ≥ (k2N)
1+4ε
2κ−4ε

where 1/2κ ≈ 0.37217. Thus if there were no negative eigenvalues up to y with y >

k0.7444N0.3722, this is a contradiction. Recall that for the estimation of the lower bound for

S(f, yκ) we just need to assume that λf (p
k) ≥ 0 for all pk ≤ y, where p is any prime number

with p - N . For the upper bound estimates there is no restriction. Therefore for sufficiently

large weight k there exists a prime power pr < k0.7444N0.3722 such that λf (p
r) ≤ ε0.
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Chapter 4. An Upper Bound for the

Central Values of Hecke L-functions

Attached to Newforms in Snew
k (Γ0)

and Their Nonnegativity

The goal of this chapter is to prove the nonnegativity of the central values Hecke L-functions

associated with the newforms (even integer weight, odd square free level) and to find an upper

bound for the values using an upper bound for the cubic moment of the central values.

4.1 An Upper Bound for the Cubic Moment of Central Values

Peng [10] shows an upper bound for the cubic moment of the central value of the L-function

associated to Hecke eigenforms for the full modular group and remarked that it is true for

arbitrary level. We look into the proof and check the level dependency of the upper bound

for higher levels.

Let F be an orthonormal basis for Snew
k (Γ0(N)) consisting of Hecke eigenforms. Then

associated to f ∈ F is an L-function

Lf (s) =
∞∑
n=1

λf (n)n−s.

Before the normalization af (n) = af (1)λf (n)n
k−1
2 (we assume af (1) = 1), one can define a

twisted L-function of the form

Lf (D, s) =
∞∑
n=1

(
D

n

)
af (n)n−s

where D is a fundamental discriminant and ( ··) is the Kronecker symbol.
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In [10] Peng proved that for SL2 (Z), the full modular group with even weight k ≥ 12,

∑
f∈F

L3
f (1/2)� k1+ε

for any ε > 0 with the implied constant being dependent only on ε. Using the nonegativity of

the central value of the L-function by Waldspurger [20] or Kohnen-Zagier [21] Peng estimated

that an upper bound for individual central values is

Lf (1/2)� k
1
3

+ε,

where the constant depends only on ε. He remarked that the result can be extended to

holomorphic cusp forms in Sk(Γ0(N)) with an additional dependency on N . But the non-

negativity of the central value for Sk(Γ0(N)) was not achieved at that time. We are able to

ensure the nonnegativity using a later version of a Waldspurger type formula.

Here we begin with Peng’s Theorem 3.1.1 [10] and outline the proof to check a level

dependency. The result of the theorem can be extended to newforms of level N (See Remark

under Corollary of Theorem 3.1.1 [10]).

Theorem 4.1. [10, Theorem 3.11] Let k be an even number ≥ 12. Then

∑
f∈F

L3
f (1/2)� k1+ε (4.1)

for any ε > 0, where F is an orthonormal basis of Sk(Γ0(1)) consisting of Hecke eigenforms

and the implied constant depends only on ε.

Proof. (Outline)

The central value of the Hecke L−function can be written

Lf (1/2) = 2
∞∑
n=1

λf (n)√
n
V (n)
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where V (y) is the inverse Mellin transform of (2π)−sΓ(s+ k
2
)G(s)s−1,

V (y) =
1

2πi

∫ i∞

−i∞
Γ(s+ k/2)G(s)(2πy)−ss−1 ds,

and G(s) is holomorphic in |<s| ≤ A, satisfying

G(s) = G(−s),

Γ(k/2)G(0) = 1,

Γ(s+ k/2)G(s)� (|s|+ 1)−2A.

Write the third power of Lf (1/2) as

L3
f (1/2) = Lf (1/2)L2

f (1/2). (4.2)

Using the multiplicative property of Hecke eigenvalues the square of the central value can

be written as

L2
f (1/2) = 4

∑
d

d−1
∑
n1

∑
n2

λf (n1n2)
√
n1n2

V (dn1)V (dn2). (4.3)

To analyze the cubic moment of the central value, consider C(k), the spectrally normalized

cubic moment

C(k) =
∑
f∈F

ωfL
3
f (1/2)

where F is a Hecke orthonormal basis of Sk(Γ0(1)), and

ωf =
12

k − 1

(
∞∑
l=1

λf (l
2)

l

)−1
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The coefficient ωf has bounds

k−1−ε � ωf � k1+ε (4.4)

for any ε > 0. The lower bound can be derived using elementary means and the upper

bound is a result of Hoffstein and Lockhart [22]. We only need the lower bound. Now we

can combine (4.2) and (4.3) to get

C(k) = 8
∑
f∈F

ωf
∑
n

∑
n1

∑
n2

λf (n)λf (n1n2)
√
nn1n2

V (n, n1, n2), (4.5)

where

V (y, y1, y2) = V (y)
∑
d

d−1V (dy1)V (dy2).

Expressing V =
∫∞

0
e−xyf(x) dx as a Laplace transform, (4.5) can be rephrased as

C(k) =
∑
d

1

d

∑
n,n1,n2

∫∫∫
V

exp(−nx− dn1x1 − dn2x2)
√
nn1n2

f(x)f(x1)f(x2) dx dx 1dx2

×
∑
f∈F

ωfλf (n)λf (n1n2). (4.6)

where V = (0,∞)3. In fact, V is viewed as the union of 27 different products of the intervals

A :

(
0,

1

k1+ε

]
B :

(
1

k1+ε
, kε
]

C : (kε,∞) .
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We let a “word” ABC represent the product A×B×C ⊂ V . The sum (4.6) can be treated

by Petersson’s formula and written as

∑
f∈F

ωfλf (n)λf (n1n2) = δ(m,n) + 2πik
∑
c

c−1S(m,n, c)Jk−1

(
4π

c

√
mn

)
(4.7)

where δ(m,n) is the diagonal symbol, Jk−1 is the Bessel function of the first kind of order

k − 1 and S(m,n, c) is the Kloosterman sum

S(m,n, c) =
∑

x (mod) c
x coprime to c

e

(
mx+ nx̄

c

)

for integers m,n, c ≥ 1, where x̄ is the multiplicative inverse of x modulo c. Then C(k)

can be estimated from three different cases. The contribution involving the interval A is

measured by

∫∫∫
f(x)f(x1)f(x2)

∑
n,n1,n2

exp(−nx− n1x1 − n2x2)
√
nn1n2

×
∑
c

1

c
S(n, n1n2, c)Jk−1

(
4π
√
nn1n2

c
dxdx1dx2

)
.

Recall Weil’s bound for Kloosterman sums (see Corollary 11.12 in [23] for a proof)

|S(m,n; c)| ≤ (m,n, c)
1
2 c

1
2 τ(c),

where τ(c) is the number of positive divisor of c. Applying this Weil’s bound and bounding

the Bessel function (See Lemma A.2 in [10]), the triple integral over the words containing

the letter A has the contribution bounded by

O(k−(A− 3
4

)ε+C0).

33



On any “word” that contains C, the contribution is bounded by O(kC1e−kε) (see [10, Lemma

3.53]), so that C(k) is further reduced to

C(k) =

∫∫∫
BBB

f(x)f(x1)f(x2)
∑
d

1

d
C(x, dx1, dx2) dxdx1dx2 +O(k−(A− 3

4
)ε+C0) +O(kC1e−kε)

(4.8)

where

C(x, x1, x2) =
∑

n,n1,n2

exp(−nx− n1x1 − n2x2)
√
nn1n2

∑
f∈F

ωfλf (n)λf (n1n2).

Finally this is estimated as

C(x, x1, x2)� (xx1x2)−ε +
∑
c

1

c2

∑
l

∑
l1

∑
l2

exp

(
ll1l2
c

)
W (l, l1, l2 : c)

� (xx1x2)−ε + (xx1x2)−ε

and

C(x, dx1, dx2)� d−εC(x, x1, x2)

(See section 3.6 in [10]). Then the summation in d in (4.8) does not affect the final bound.

Integration with respect to x, x1, and x2 over the “middle range” then gives

C(k) =
∑
f∈F

ωfL
3
f (1/2)� kε, (4.9)

where the implied constant depends only on ε. Using the lower bound for ωf in (4.4) we

conclude

∑
f∈F

L3
f (1/2)� k1+ε.
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Remark. (1) As Peng stated in the remark under the corollary of [10, Theorem 3.1.1], because

of the generality of method of the proof the conclusion holds for Hecke cusp forms of arbitrary

level as well, but it will have additional dependency on level N . If nonnegativity of each

individual central L-value is secured, we get the same upper bound for central values for

level N with the implied constant being dependent only on ε and N .

(2) Changing to work with newforms in Snew
k (Γ0(N)), Petersson’s formula (4.7) will

change to

∑
f∈F

ω∗fλf (n)λf (n1n2) = δ(m,n) + 2πik
∑
c

c−1S(m,n, c)Jk−1

(
4π

c

√
mn

)

where

w∗f =
12

(k − 1)N

 ∑
(l,N)=1

λf (l
2)l−1

−1

� (kN)−1−ε.

This is the point where level N is embedded. (See [24] for a related topic of cubic moment

of central values.)

4.2 Nonnegativity of the Central Values and an Upper Bound

We now proceed for a nonnegativity result on the central values of Hecke L-functions.

Shimura’s theory of forms of half-integral weight of modular forms [25] gives a correspon-

dence between Hecke eigenforms f(z) of even integral weight k and half integral weight Hecke

eigenforms g(z) of weight k
2

+ 1
2
. In [20] Waldspurger showed that under the Shimura corre-

spondence there is a relation between the twisted central values Lf (D, k/2) and the Fourier

coefficients of g(z) in terms of the language of representation theory. There are many later

Waldspurger type theorems. See, for instance, Skoruppa [26] for the connection between

Jacobi forms and modular forms of half integral weight and a formula interpreting the asso-

ciated L-function as the square of a Fourier coefficients of a modular form of weight 3/2. For

our purpose we use the result of Baruch and Mao [27] who generalized the Kohnen-Zagier
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formula [21] by removing the restriction on the fundamental discriminant D. Before we state

their theorem we briefly recall basic facts about half-integral weight forms, Shimura’s theory

and Kohnen’s theory.

Following Shimura [25] we first define ( c
d
) and εd. If d is an odd prime, then let ( c

d
) be

the usual Legendre symbol. For positive odd integers d, define ( c
d
) by multiplicativity. For

negative odd d, we define

( c
d

)
:=


(
c
|d|

)
if d < 0 and c > 0,

−
(
c
|d|

)
if d < 0 and c < 0.

Also let
(

0
±1

)
= 1.

Definition 4.2. Let k be a nonnegative integer and N be a positive integer. Let χ be a

Dirichlet character modulo 4N . A meromorphic function g(z) on H is called a meromorphic

half-integral weight modular form with Nebentypus χ and weight k+ 1
2

if it is meromorphic

at the cusps of Γ, and if

g

(
az + b

cz + d

)
= χ(d)

( c
d

)2k+1

ε−1−2k
d (cz + d)k+ 1

2 g(z)

for all
(
a b
c d

)
∈ Γ0(4N). If g(z) is holomorphic on H and at the cusps of Γ0(4N), then g(z)

is called a holomorphic half-integral weight modular form. If g(z) is a holomorphic modular

form which vanishes at the cusps of Γ0(4N), then g(z) is called a cusp form. If g(z) is a

meromorphic form whose poles are supported at the cusps of Γ0(4N), then g(z) is called a

weakly holomorphic modular form.

These forms constitute C-vector spaces. We denote the C-vector space of weight k +

1
2

modular forms on Γ0(4N) with Nebentypus χ by Mk+ 1
2
(Γ0(4N), χ) and cusp forms by

Sk+ 1
2
(Γ0(4N), χ). As in the integer weight case, there are Hecke operators which act on

spaces of half-integral weight modular forms.
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Definition 4.3. Let g(z) be in the space of half-integral weight modular formsMk+ 1
2
(Γ0(4N), χ).

Then for primes p, the half-integral weight Hecke operator T (p2, k, χ) is defined by

g(z)|T (p2, k, χ) =
∞∑
n=0

(
c(p2n) + χ∗(p)

(
n

p

)
pk−1c(n) + χ∗(p2)p2k−1c(n/p2)

)
qn

where χ∗ is the Dirichlet character given by χ∗(n) :=
(

(−1)k

n

)
χ(n), and c(n/p2) := 0 if p2 - n.

The Shimura correspondence is a family of maps which take L-functions of half-integral

weight cusp forms to L-functions of even integer weight modular forms.

Theorem 4.4. [28, Theorem 3.14] Let g(z) =
∑∞

n=1 c(n)qn ∈ Sk+ 1
2
(Γ0(4N), χ) be a half-

integral weight cusp form with k ≥ 1. Let τ be a positive square-free integer, and define the

Dirichlet character ψτ (n) = χ(n)
(−1
n

)k ( τ
n

)
. Let aτ (n) be defined by

∞∑
n=1

aτ (n)

ns
:= L(s− k + 1, ψτ ) ·

∞∑
n=1

c(τn2)

ns
.

Then

Sτ,k(g(z)) :=
∞∑
n=1

aτ (n)qn

is a weight 2k modular form in M2k(Γ0(2N), χ2). If k ≥ 2, then Sτ,k is a cusp form.

Shimura correspondences commute with the Hecke operators of integral and half-integral

weight.

Definition 4.5. Suppose that N is a positive odd square-free integer, and k is a positive

integer. The Kohnen plus space S+
k+ 1

2

(Γ0(4N)) consists of cusp forms whose n-th Fourier

coefficients vanish whenever (−1)kn ≡ 2, 3 (mod 4).

As in the integral weight case S+
k+ 1

2

(Γ0(4N)) is the direct sum of two subspaces (See [29,

Theorem 2])

S+
k+ 1

2

(Γ0(4N)) = Snew
k+ 1

2
(Γ0(4N))⊕ Sold

k+ 1
2
(Γ0(4N)).
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Kohnen showed that the space Snew
k+ 1

2

(Γ0(4N)) has a basis of cusp forms which are eigenforms

of the Hecke operators T (p2, λ, χ0) with p - N . Such eigenforms are called Kohnen newforms.

He established the connection between spaces of half-integral weight and even integer weight.

For every positive square free integer τ there is a Shimura correspondence.

Sτ,k : Snew
k+ 1

2
(Γ0(4N))→ S2k(Γ0(N))

Furthermore Kohnen proves

Theorem 4.6. [29, Theorem 2] The space of newforms Snew
k+ 1

2

(Γ0(4N)) of half-integral weight

is isomorphic to the space of newforms Snew
2k (Γ0(N)). In particular, the image of a half-

integral weight Kohnen newform in Snew
k+ 1

2

(Γ0(4N)) is a newform in Snew
2k (Γ0(N)) with the

same system of Hecke eigenvalues.

Now we state Theorem 10.1 [27] of Baruch and Mao. Recall that D is said to be a funda-

mental discriminant if it is 1 or the discriminant of a quadratic field. We define sgn(D) = D
|D| .

Let f(z) be a cusp form with odd square free level N and weight k. Let SN be the subset

of primes p | N . Let S be a (possibly empty) subset of SN . Define DS to be the set of

fundamental discriminants D such that (D
p

) = −wp if p ∈ S and (D
p

) 6= −wp if p ∈ Sn − S,

where wp is the eigenvalue of the Atkin-Lehner involution acting on f(z). Then the set of

fundamental discriminants is the disjoint union ∪S⊂SNDS.

Proposition 4.7. [27, Theorem 10.1] Let N ′ =
∏

p∈S p and let χ =
∏

p|2N χp be any

Dirichlet character of (Z/4NN ′)∗such that χp ≡ 1 when pN ′ | N , χp(−1) = −1 when

p | N ′, and χ(−1) = 1. Then there exists a unique (up to scalar multiple) cusp form

gS(z) =
∑∞

n=1 c(n)e2πinz in S k+1
2

(4NN ′, χ) which is a Shimura lift of f(z) and lies in the

Kohnen space i.e. c(n) = 0 when (1)s+k/2n ≡ 2, 3 mod 4, and c(|D|) = 0 if (−1)s+k/2D is

a fundamental discriminant that is not in DS. Moreover for this gS(z) and for D ∈ DS, if
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(−1)s+k/2 6= sgn(D), then Lf (D, k/2) = 0; if (−1)s+k/2 = sgn(D), then

|c(|D|)|2

〈gS, gS〉
=
Lf (D, k/2)

〈f, f〉
|D|

k−1
2

(k/2− 1)!

πk/2
2ν(N)−t

∏
p∈S

p

p+ 1
, (4.10)

where s is the size of S, t is the number of primes dividing both D and N , and ν(N) is the

number of prime divisors of N .

Following the notations and the setting in Baruch and Mao [27], f(z) is a newform of even

weight k, square free odd level N , and of trivial character, and g(z) is the associated newform

under the Shimura correspondence. This theorem enables us to get the non-negativity of

the central values of newforms.

Corollary 4.8. Let f(z) ∈ Snew
k (Γ0(N)) be a newform of even weight k, square free and odd

level N . Then the central value of the L-function satisfies

Lf

(
1

2

)
≥ 0.

Proof. Notice that for D = 1, Lf (D, k/2) = Lf (1, k/2) = Lf (
1
2
). Choosing D = 1 in

Proposition 4.7, if (−1)s+k/2 = sgn(D) = 1, then Lf (1, k/2) = 0; otherwise all the factors

involved in equation (4.10) are positive so that Lf (1, k/2) > 0.

We now combine Corollary 4.2 with Peng’s estimation (4.1) on the sum of cubic moment

of central values to get the following theorem.

Theorem 4.9. If f is a newform in the space Snew
k (Γ0(N)) with k an even integer and N a

square free odd integer then

0 ≤ Lf (1/2) =
∞∑
n=1

λf (n)√
n
� k

1
3

+ε.
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Chapter 5. Real Zeros of Hecke Eigenforms

of Higher Levels

In the main approximation theorem 2.14 above we take s = k, the weight of the eigenform.

Note that Φf (k;α, y) is real valued when α = 0 or α = 1
2
, where we let z = α + iy lying on

δ1 or δ2 respectively. So the sign changes of Φf (k;α, y) depend on the product λf (l)e(αl)

and the second big O term (See also Remark 2.3). Now the idea of counting zeros of f is to

detect the sign changes of λf (l)e(αl) ensuring that λf (l) is not too small so that the big O

term O(k−δ) does not affect the sign changes once we take weights k large enough. Then we

use the bounds on the integers l and the relation between y and l in the assumption of the

theorem to get a lower bound for the zeros of f(z).

We first note that Φf (k;α, y) is real valued when α = 0 or = 1
2
, where we let z = α + iy

lying on δ1 or δ2 respectively. To get a lower bound for the number of zeros of f(z) on δj, it

is enough to get sign-changes of Φf (k;α, y) by detecting sign-changes of λf (l)e(αl). To this

end we need to ensure that λf (l) is not too small, which can be proven by applying Hecke

relations.

5.1 Sign-changes of f(z) on δ2: Lower Bounds.

We begin with the following lemmas in Ghosh and Sarnak [1].

Lemma 5.1. [1, See eqn. 20] Let f ∈ Snew
k (Γ0(N)) be a newform and assume p does not

divide N . Then either |λf (p)| ≥ β or |λf (p2)| ≥ β, where β =
√

5−1
2

.

Proof. Since p - N we have the Hecke relations for such p’s

λf (p)
2 = λf (p

2) + 1

If λf (p) = λf (p
2) then the equation gives |λf (p)| =

√
5±1
2

. If |λf (p)| ≤
√

5−1
2

then λf (p
2) =

λf (p)
2 − 1 ≤ 6−2

√
5

4
− 1 = 1−

√
5

2
. Therefore |λf (p2)| ≥

√
5−1
2

.
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The first part of the next lemma is attributed to [1, Lemma 4.1] and the second part of

the lemma comes from Atkin-Lehner theory of newforms (see Theorem 2.8(4)).

Lemma 5.2. Let f ∈ Snew
k (Γ0(N)) be a newform, and let p be a prime number. If p - N ,

then for a fixed number J ≥ 1, there is a constant B depending only on J and a number

b = b(f, p), with 1 ≤ b ≤ B such that if a = pb we have

λf (a
j) ≥ 1

10

for all 1 ≤ j ≤ J . If p | N and p2 - N then

λf (p
2) =

1

p
> 0.

Proof. Suppose p - N . Since |λf (p)| ≤ d(p) = 2, there exists a number θp = θ(f, p) with

0 ≤ θp ≤ π such that λf (p) = 2 cos θp. Since p - N , from the Hecke relation we have

λf (p
n+1) = λf (p

n)λf (p)− λf (pn−1). Using the relation and by induction on n we get

λf (p
n) =

sin((n+ 1)θp)

sin θp

for all non-negative integers n. If θp = 0 or π, then we may take b = 2 since λf (p
2j) ≥ 3 for

all j ≥ 1. By continuity, we see that b = 2 still suffices for θp near 0 or π. In other words,

there is a number θ0 > 0 depending only on J such that the conclusion of the lemma holds

unless θ0 < θp < π − θ0, which we now assume. By Dirichlet’s approximation theorem, for

any integer B ≥ 1, there are integers 1 ≤ b ≤ B and b′ such that |b θp
2π
− b′| ≤ 1

B+1
. We let

η = bθp − 2πb′; then |η| ≤ 2π
B+1

and

λ(pbj) =
sin (bj + 1)θp

sin θp
=

sin (ηj + θp)

sin θp
= cos(jη) + sin(jη) cot θp.

We shall choose B sufficiently large so that η is small enough to satisfy 0 < ηj + θp < π for
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all 1 ≤ j ≤ J . Using the Maclaurin series for the cosine function, we conclude that

λf (p
bj) ≥ 1− (jη)2

2
+ sin(jη) cot θp ≥

1

10

by choosing B sufficiently large, if necessary.

Now let p | N and p2 - N . Then it is well known that

λf (p) = −wp
1
√
p
,

where wp ∈ {1,−1} is the eigenvalue for the Atkin-Lehner involution Wp attached to p (See

Theorem 2.8). The Hecke relation with p | N is

λf (p
n) = (λf (p))

n

for all positive integers n. Thus we have, in particular,

λf (p
2) =

1

p
> 0.

Now we estimate the number of zeros of newforms on δ2. The essential idea of the proof

is the same as that of Ghosh and Sarnak (See [1, Theorem 4.2]).

Theorem 5.3. Let f ∈ Snew
k (Γ0(N)) be a newform, where N is a positive integer such 4 - N .

Then there is a constant C > 0 such that f(z) has at least C log k zeros on the line δ2 with

z = 1
2

+ iy and y ≥
√
k log k for k sufficiently large.

Proof. Take s = k, with the weight of f sufficiently large so that L =
(
β2

√
k

log k

) 1
2

is in

the interval
(
β1, β2

√
k

log k

)
in Theorem 2.14. We write [1, N ] ∪ [N,L] ⊇

R⋃
i=0

[(2a)i, (2a)i+1]

with R � log k, (2)R/2 > N and a ≥ 1 some integer. For the choice of a we use Lemma
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5.2: if 2|N we take p = 2 and choose a = p2 = 4, otherwise we take p = 2 and J = 2 and

choose a = 2b. Then λf (a) ≥ 1
10

, λf (a
2) ≥ 1

16
in either case. Then we only consider the

subintervals with R
2
≤ i ≤ R. Each such subinterval we denote by I = [m, 2am] and by I2

the corresponding subinterval [m2, (2am)2]. For each m > N the interval [m, 2m] contains

an odd prime number q > N since m ≥ (2)R/2 > N , so that both q and aq lie in I. Since we

have avoided the case q|N , Lemma 5.1 gives either |λf (q)| ≥ β or |λf (q2)| ≥ β.

Suppose |λf (q)| ≥ β. Then the product of λf (q)e(
1
2
q)λf (aq)e(

1
2
aq) with l = q and l = aq on

the right hand side of the equation (2.11) is

λf (q)(−1)qλf (aq)(−1)aq = −λf (q)2λf (a) < −β
2

10
.

Taking k sufficiently large if necessary we can ignore the big O term, which is possible since

the absolute values of the normalized eigenvalues |λf (a)|, |λf (a2)|, and for primes q, |λf (q)|

and |λf (q2)| are bounded by the number of divisors of a, a2, q and q2 respectively. Therefore

by Theorem 2.14 we use that Φf (k,
1
2
, y) has a sign-change between k−1

4πq
and k−1

4πaq
.

Now suppose |λf (q2)| ≥ β. In this case, both q2 and a2q2 lie in I2 and

λf (q
2)e(

1

2
q2)λf (a

2q2)e(
1

2
a2q2) = (−1)q

2

(−1)a
2q2λf (q

2)2λf (a
2) < −β

2

16
.

This time for sufficiently large k, we have a sign-change between k−1
4πq2

and k−1
4πa2q2

.

By considering only subintervals with R
2
≤ i ≤ R, we can ensure that all our subintervals

of the type I and I2 are disjoint, so that there are at least R
2

zeros � log k of f(z) with

z = 1
2

+ iy and y � k
L2 �

√
k log k.

5.2 Sign-changes of f(z) on δ1: Lower Bounds.

The analysis on δ1 is essentially harder than on the case of δ2 because it requires a con-

struction of negative eigenvalues that must appear soon enough to get desired number of

sign changes. To be more specific, in the main approximation theorem, the major term
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λf (l) of the approximation to Φf is related to the integer l which is bounded above by

r2

√
k/ log k (See Theorem 2.14). Therefore we should make sure the existence of a negative

Hecke eigenvalue λf (n) such that n�
√
k/ log k. In Theorem 3.6 we prove

nf < k0.7444N0.3722.

The power k0.7444 is bigger than
√
k/ log k, which is not small enough to apply the method

of Ghosh and Sarnak [1, Theorem 4.3]. Instead we assume an upper bound for nf by

kα, α < 1/2 and achieve a conditional result.

Let π(x) be the number of prime numbers less than equal to x. In 1850 Chebyshev proved

that the inequalities

c1
x

log x
≤ π(x) ≤ c2

x

log x
(5.1)

hold for all x ≥ 10, where c1 = log(21/231/351/5/301/30) ≈ 0.921292 and c2 = 6c1/5 ≈ 1.1055.

(See [30] for example).

Lemma 5.4. There are at least 20 primes p such that

√
x ≤ p ≤

√
50x

for every x ≥ 500.

Proof. By the Chebyshev estimate (5.1),

0.9212
x

log x
≤ π(x) ≤ 1.1056

x

log x

holds for all x ≥ 10. Then the number of primes between
√
x and

√
50x is estimated as

π(
√

50x)− π(
√
x) ≥ 0.9212

√
50x

log
√

50x
− 1.1056

√
x

log
√
x
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≥
(

6.513

log
√

50 + log
√
x
− 1.1056

log
√
x

)√
x

≥ 20

for all x ≥ 500.

Lemma 5.5. Given ξ ≥ max{1000, N2} there are six integers m in the interval (ξ, 50ξ)

which are relatively prime in pairs and for which

|λf (m)| ≥ 1

2
.

Proof. (We follow Ghosh and Sarnak [1, Theorem 4.2].) Consider the interval (
√
ξ,
√

50ξ).

By Lemma 5.5, it contains at least 18 primes p and since p > N , for each one either λf (p) ≥ β

or |λf (p2)| ≥ β or both by Lemma 5.1. Note that β = (
√

5 − 1)/2 ≥ 1/2. If six of these

have |λf (p2)| ≥ β, then we choose our m’s to be these p2’s. Otherwise, we can find twelve

distinct primes pj with |λf (pj)| ≥ β. We now take for our m’s the six products p1p2, p3p4,

· · · , p11p12. Then the six integers will be in the interval (ξ, 50ξ).

Lemma 5.6. Given ξ ≥ max{1000, N2} and f , there are relatively prime integers m1, m2

in the interval (ξ, 2500ξ) such that

λf (mj) ≥
1

4
, j = 1, 2.

Proof. (See the proof of [1, Lemma 4.6]) Consider the interval (
√
ξ, 50
√
ξ). By Lemma 5.6,

there are integers n1, · · · , n6 in the interval (ξ, 50ξ) that are relatively prime in pairs such

that |λf (nj)| ≥ 1
2
. Of the three numbers n1, n2 and n3 at least two have the same sign

(we assume the first two) so that λf (n1n2) ≥ 1
4
, giving us m1 and similarly m2 using the

remaining three integers.
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Theorem 5.7. Let k be an even integer and let N be a positive integer. Consider a sequence

of newforms {fk} where fk is in Snew
k (Γ0(N)). Suppose there exist ε0 > 0 and a positive

integer N0 such that if k ≥ N0 then there is a power of prime pr such that pr < kα, α < 1/2

and

λf (p
r) ≤ −ε0.

Then the number of zeros of fk(z) on δ2 goes to infinity as k goes to infinity. More quanti-

tatively

|Z(fk) ∩ δ1| � log k.

Proof. Since α < 1
2
, we can take k greater than N0 satisfying the inequalities

max{1000, N2} ≤ kα < max{1000, N2}kα < 1

2500

√
k

log k
,

where N is the level of the newform space. We denote η = 1
2500

√
k

log k
. Then by assumption

there is a prime power pr such that pr < kα and λf (p
r) ≤ −ε0 for some fixed ε0 > 0 not

depending on the weight k > N0.

Note that the interval I = (η, 2500η) is contained in the interval (kα,
√

k
log k

), and η ≥

max{1000, N2}. Thus by Lemma 5.6, there is some m1 ∈ I such that λf (m1) ≥ 1
4
. Because

η

pr
>

η

kα
> max{1000, N2},

by applying Lemma 5.6 again to the interval (η/pr, 2500η/pr), we obtain two relatively prime

integers v1 and v2 such that λf (vj) ≥ 1
4

for j = 1 and 2. At least one of the vj’s is coprime

to p, say v1. We set m2 = prv1 so that m2 ∈ I and λf (m2) ≤ − ε0
4

. Then using Theorem 2.14

we find that f(iy) has a sign-change for a y between k−1
4πm1

and k−1
4πm2

. Since there are C1 log k

such disjoint subinterval I for some positive constant C1, we complete the proof.
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Appendix A. Sage Code for Estimation of

σ(u)

This is a Sage code for estimating lower and upper bounds for the values of σ(u) (see Lemma

3.5) recursively. The program stops running if it detects the first zero of σ(u) and prints a

value κ such that σ(κ) > 0.

import numpy as np

import math

def x_k(k, K):

if k == 0:

return 0

return 1/(K - k + 1)

def chi_k(k, K):

return 2 * np.cos(np.pi/(K - k + 1))

def findKPrime(u, K):

if u >= 1:

return K

if u < 1/(K):

return 0

return math.floor(-1/u + K + 1)#I think this works.

def estimatePrevGamma(pos, delta, K, gamVals):

if pos == 0:

return [[1,1],[1,1]]

if pos <= 1/K:

return [[1,1],[1,1]]

l = int(math.floor((pos - 1/K)/delta))

if len(gamVals) <= l + 1:
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l = len(gamVals) - 1

return [gamVals[l], gamVals[l]]

return [gamVals[l],gamVals[l+1]]

def findZeroofGamma(delta, K):

gamVals = [[0,0]]

currGamma = [1,1]

gamVals.append(currGamma)

x_kArr = [x_k(i, K) for i in range(K + 1)]

chi_kArr = [chi_k(i, K) for i in range(K + 1)]

sumTerms = [(chi_kArr[i-1] - chi_kArr[i]) for i in range(1, K + 1)]

sumTerms.insert(0,0)

l = 1

while(currGamma[0] >= 0):

l += 1

if 1/K + l*delta <= 1/K:

currGamma = [1,1]

gamVals.append(currGamma)

else:

lower = currGamma[0]

u = 1/K + l*delta

sUpper = 0

kPrime = findKPrime(u, K)

upper = currGamma[1]

sLower = 0

for i in range(1, int(kPrime + 1)):

delK = min(delta, u - x_kArr[i])

prevGamma = estimatePrevGamma(u - delK - x_kArr[i], delta, K, gamVals)

48



prevGamma2 = estimatePrevGamma(u - x_kArr[i], delta, K, gamVals)

sLower += delK * sumTerms[i] * (u - delK)**(-chi_kArr[0])

* (u - x_kArr[i])**(chi_kArr[0] - 1) * max(prevGamma[0][1], prevGamma[1][1])

sUpper += delK * sumTerms[i] * (u)**(-chi_kArr[0]) * (u - delK - x_kArr[i])

**(chi_kArr[0] - 1) * min(prevGamma2[0][0], prevGamma2[1][0])

lower = lower - sLower

upper = upper - sUpper

currGamma = [lower, upper]

gamVals.append(currGamma)

return (l-1)*delta + 1/K

delta = 1/(np.sqrt(3) * 100)

K = 100

findZeroofGamma(delta, K)

1.2455295760657992

delta = 1/(np.sqrt(3) * 10000)

K = 100

findZeroofGamma(delta, K)

1.3425244212896563

delta = 1/(np.sqrt(31) * 10000)

K = 100

findZeroofGamma(delta, K)

1.3433538411863715

delta = 1/(np.sqrt(73) * 10000)

K = 100

findZeroofGamma(delta, K)

1.3434614941202354
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