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abstract

Construction and Isomorphism of Landau-Ginzburg B-Model Frobenius Algebras

Matthew Robert Brown
Department of Mathematics, BYU

Master of Science

Landau-Ginzburg Mirror Symmetry provides for the construction of two algebraic ob-
jects, called the A- and B-models. Special cases of these models–constructed using invertible
polynomials and abelian symmetry groups–are well understood. In this thesis, we consider
generalizations of the B-model, and specifically address the associativity of the multiplication
in these models. We also prove an explicit B-model isomorphism for a class of polynomials
in three variables.
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Chapter 1. Background

Part of string theory includes the formation to two algebraic objects, called the A- and B-

models. These objects, created from polynomials, have many layers of structure, including

that of graded Frobenius algebra. The methods of construction differ significantly, and

we want to understand both models. In some cases, even the method of construction is

incomplete. Descriptions of the B-model can be found in [2] and [3], and details of their

construction follow in [9], [8], and [10]. The construction of the A-model, often called an

FJRW model, was formalized more recently in [4].

In order to understand these structures, we must first define several objects and properties

required in the construction.

1.1 Definitions

Definition 1.1. A polynomial, W (x1, · · · , xn), is called quasihomogeneous, or weighted ho-

mogeneous, if there exists a vector of rational numbers q = (q1, · · · , qn) such that

W (cq1x1, · · · , cqnxn) = cW (x1, · · · , xn) for all c ∈ C. Such a vector q is called a weight

system, or even just the weights of W .

Definition 1.2. A polynomial is said to be nondegenerate if it has a unique critical point

at the origin.

Definition 1.3. A polynomial is called admissible if it is nondegenerate and quasihomoge-

neous with a unique weight system. If an admissible polynomial has the same number of

monomials as variables, it is called invertible.

Definition 1.4. A polynomial W = W1 +W2 + · · ·+Wm is called a disjoint sum if no two

Wis have any variables in common.
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Remark. It was proven in [7] that all invertible polynomials consist of disjoint sums of three

atomic types of polynomials. These are as follows.

Fermat : xa1
1 ;

Chain : xa1
1 + x1x

a2
2 + · · ·+ xn−1x

an
n ;

Loop : xa1
1 x2 + xa2

2 x3 + · · ·+ xann x1,

where ai ≥ 2 for all i.

Definition 1.5. Let W = w1 + w2 + · · ·wn be a polynomial, where each wi is a monomial.

Denote the degree of wj as a polynomial of xi by degxi(wj). Then the exponent matrix of

a polynomial, denoted AW , is defined to be AW = (degxi(wj)). For example, consider the

polynomial W = x2y + y3. Its exponent matrix is

AW =

2 1

0 3

 .
The transpose polynomial is determined by the transpose of the exponent matrix, and is

denoted W T . For the above polynomial, the transpose matrix is

AWT =

2 0

1 3

 ,
so the transpose polynomial is W T = x2 + xy3.

Definition 1.6. The maximal diagonal symmetry group, Gmax
W , of a polynomial, W (x1, · · · , xn),

is defined to be the set of all diagonal matrices g ∈ GL(n,C) such that W ◦g = W . As these

maps are diagonal, we often write them as the vector of their diagonal entries. It is shown

in [12] that these entries are always roots of unity, and thus we can write them as a vector

2



of the complex arguments of the diagonal entries.


e2πiθ1

. . .

e2πiθn

←→ (θ1, · · · , θn).

Note that this change in notation changes the group operation from matrix multiplication to

vector addition. If we consider the weights of the polynomial as a vector, J = (q1, q2, · · · , qn),

then J is always an element of Gmax
W .

Definition 1.7. The transpose of a group G ≤ Gmax
W is defined to be

GT =
{
g ∈ Gmax

WT | gAWhT ∈ Z for all h ∈ G
}
,

where G and GT are written in additive notation as subgroups of (Q/Z)n. Several nice

properties of this transpose are proven in [1], such as:

(Gmax
W )T = {0};(

GT
)T

= G;

G1 ≤ G2 =⇒ GT
2 ≤ GT

1 .

With an admissible polynomial and a subgroup of its maximal symmetry group that

contains J , we can construct an A-model. Using the transpose polynomial and transpose

group, which will always be contained in SL(n,C), we can also construct a B-model.
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1.2 Landau-Ginzburg Mirror Symmetry

The Landau-Ginzburg Mirror Symmetry Conjecture says that for any admissible polynomial,

W , and corresponding symmetry group, G:

AW,G ∼= BWT ,GT . (1.1)

This is an isomorphism of graded Frobenius algebras. This means that these models

are isomorphic as vector spaces, and that the isomorphism respects the grading, the pairing

and the muliplication that we define on the model. In [10], Krawitz proves that the A-

and B-models for an invertible polynomial and its transpose are isomorphic on the level of

graded vector spaces. He also proves that if the B-model is constructed with the trivial

group, and if all of the weights are strictly less than 1
2
, then the isomorphism holds on the

level of Frobenius algebras.

More cases of this isomorphism were proven in [6]. Let W = W1 + W2 + · · · + Wm be

a disjoint sum of invertible polynomials with symmetry group G. Suppose that for each

g ∈ G, g fixes every variable of Wi or no variable of Wi for every i ≤ m. Similarly, suppose

that each h ∈ GT fixes every variable of W T
i or no variable of W T

i for every i ≤ m. Then

Theorem 3.0.3 in [6] gives that (1.1) holds on the level of Frobenius algebras. This theorem

covers all B-models for loops and fermats, but only some chains. Work continues to prove

the remaining cases.

1.3 Generalizing B-Models

The construction of the B-model is well understood for invertible polynomials, but not in

other cases. It is natural to generalize the B-model in two ways. First, it has not yet been

proven that the multiplication of B-models for admissible but noninvertible polynomials is

associative. In his dissertation, [10], Krawitz proved that the multiplication of a B-model

constructed with an inveritble polynomial is always associative. Unfortunately, Krawitz’s
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proof of associativity in the invertible case depends heavily on something that does not

apply to noninvertible polynomials, so his method of proof cannot be used again. We will

look at one special case in Chapter 4.

Another way to generalize is to allow for more complicated symmetry groups. In the

traditional construction, we restrict our group representations to only include diagonal ma-

trices. Many polynomials admit symmetry groups with nondiagonal representations. Such

groups, which may no longer be abelian, are also of interest. In Chapter 2, we will detail the

new construction process, and look at a multiplication that can be defined for the generalized

B-model. We will also include several examples.

Fan, Jarvis, and Ruan showed that A-models can be constructed using arbitrary sym-

metry groups [5]. If mirror symmetry were to hold for these new A-models, it is reasonable

to assume that the transpose groups will also be nonabelian. Defining B-models with such

groups will then provide candidates for the mirror model.

This generalized construction is difficult from the first few steps. Finding nonabelian

symmetry groups of an admissible polynomial often requires solving large systems of non-

linear equations. As this quickly becomes untractable, we must find other ways of finding

symmetry groups. One approach is to start with a specific group representation, and find

all of the admissible polynomials for which it is a symmetry group. In Chapter 3, we will

demonstrate a technique for doing exactly that.

1.4 Group-Weights

In 2013, Julian Tay proved a conjecture concerning the A-models in [11]. His theorem, called

the Group-Weights Theorem says that if two admissible polynomials have the same weights,

and some group G is a symmetry group for both polynomials, then the A-models for these

polynomials with this common group are always isomorphic. In Chapter 5, we will look at

what this can tell us about specific B-models.
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Chapter 2. Nonabelian Construction and

Examples

The B-model is well understood in the case of invertible polynomials and diagonal symmetry

groups. Many cases of noninvertible polynomials have also been described, but it remains

to show in general that the multiplication of such models is associative. In the case of

nondiagonal groups, the B-model construction is not well understood. This case is the main

focus of this chapter, and is still a topic of current research.

Below, we explain the construction of an B-model, up to the level of Frobenius algebra,

using both diagonal and nonabelian symmetry groups. More details and examples of this

generalization can be found in Ryan Sandberg’s thesis, [13]. We highlight the differences

between the original and the nonabelian constructions. We also include several complete

examples.

In order to create a B-model, we start by picking an admissible polynomial and a group

of symmetries. In the abelian case, the polynomial must be quasihomogenous, but in our

generalization, we require the stronger condition of begin homogeneous. In both cases, we

require that the symmetry group be a subgroup of SL(n,C). We will see that this condition

is necessary for the existence of a multiplicative identity.

2.1 State Space

2.1.1 Abelian State Space. The first step is to define a basis for a vector space.

Throughout this thesis, we will refer to vector spaces as state spaces. In the abelian case, we

start by computing the restriction of a polynomial W (x1, · · · , xn) to the fixed locus of each

group. With the group elements written in additive notation, g = (θ1, · · · , θn), this amounts

to setting xi = 0 if θi 6= 0. The restricted polynomial is denoted W |fix(g).

Next, we construct the Milnor ring of each of these restricted polynomials. The Milnor

6



ring W is defined to be

QW =
C[x1, · · · , xn](
∂W
∂x1
, · · · , ∂W

∂xn

) .
Each of these rings, QW |fix(g)

, is called a sector. Each sector forms a finite-dimensional vector

space, and the unprojected state space, BW,{0}, is defined to be the direct sum of all of these

sectors.

BW,{0} =

(⊕
g∈G

QW |fix(g)

)
.

When we need to distinguish between sectors, we call QW |fix(g)
the g-sector.

Abelian Example. Consider V = x3 + y3 with symmetry group H =< h1 >, where

h1 = (1
3
, 2

3
). We can directly compute the following rings.

QV = span{1, x, y, xy};

QV |fix(h1)
= QW |

fix(h2
1)

= C.

In the abelian case, we denote a state space element as bm; ge, where m is a monomial

in QW |fix(g)
.

2.1.2 Nonabelian State Space. In the nonableian case, restricting a polynomial, W ,

to the fixed locus of a group element, g, is not as straightforward. In the diagonal case, a

nonzero polynomial was fixed by g exactly when each of the monomials were fixed. This is

not true in the nonabelian case. As an example, it is possible for a group element g to fix

x + y, and fix neither x nor y. Because of this, we cannot construct QW |fix(g)
in the same

way. Instead, we define a similar object, Hg.

Computing Hg. There are a few different ways of defining Hg. Here, we give one of the

more intuitive definitions.

Hg =
C[x1, x2, · · ·xn]

(JW , xi − gxi)
dx,

where JW is the Jacobian ideal of W (this is generated by all of the first partial derivatives

of W ), and dx is a volume form (this will be explained later on).
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Nonabelian Example. Let W = x3 + y3 + z3 + w3, and let G ∼= A4, where G acts by

permuting the variables of W . Let g1 be the identity element of G. Let g2 be the element

corresponding to (12)(34). Then

Hg1
∼=

C[x, y, z, w]

(3x3, 3y2, 3z2, 3w2, x− x, y − y, z − z, w − w)
dx ∧ dy ∧ dz ∧ dw

∼=
C[x, y, z, w]

(x2, y2, z2, w2)
dx ∧ dy ∧ dz ∧ dw

∼= span{1, x, y, z, w, xy, xz, xw, yz, yw, zw, xyz, xyw, xzw, yzw, xyzw}dx ∧ dy ∧ dz ∧ dw,

and

Hg2
∼=

C[x, y, z, w]

(3x3, 3y2, 3z2, 3w2, x− y, y − x, z − w,w − z)
dx ∧ dy ∧ dz ∧ dw

∼=
C[x(12)(34), z(12)(34)]

(x2
(12)(34), z

2
(12)(34))

dx(12)(34) ∧ dz(12)(34)

∼= span{1, x(12)(34), z(12)(34), x(12)(34)z(12)(34)}dx(12)(34) ∧ dz(12)(34).

Here, x(12)(34) is the image of x and y in the quotient, and z(12)(34) is the image of z and w.

This is then repeated for every element of G. As in the abelian case, we then define the

unprojected state space to be the direct sum of these sectors:

BW,{0} =

(⊕
g∈G

Hg

)
.

Another way of finding Hg. There is another way to do this construction using more

linear algebra. In the previous construction, we restricted to the fixed locus of g by equating

each variable with its image under g in a quotient. Alternatively, we can compute W |fix(g)

directly using a change of basis.

Let k be the geometric multiplicity of 1 as an eigenvalue of g. Let [T ] be an eigenvector

matrix of g, where the first k columns are eigenvectors with eigenvalue 1. Let the new

8



variables be labeled s1, · · · , sn. Then



x1

x2

...

xn


= [T ]



s1

s2

...

sn


.

With this new basis, restricting W to the fix locus of g only requires setting si = 0 for i > k.

This gives W |fix(g), and Hg is computed by finding the Milnor ring using the same methods

as in the abelian case. This method is useful because it gives an explicit way of writing

W |fix(g), which is required for computing Hessians later in the construction.

Nonabelian Example. Let W , G, g1, g2 be defined as in the previous example.

For g1, note that 1 is an eigenvalue of geometric multiplicity 4, so T will be a square matrix.

However, we can pick our eigenvectors to be



1

0

0

0


,



0

1

0

0


,



0

0

1

0


,



0

0

0

1


.

In this case, T is the identity, so W̃ = W . Hence Hg1 is just the Milnor ring of W . This

is equivalent to what we found using the other method.

For g2, note that

g2 − I4 =



−1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 −1


.
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We can then choose the eigenvectors to be



1

1

0

0


,



0

0

1

1


.

Now, let

T =



1 0

1 0

0 1

0 1


.

Since the geometric multiplicity of 1 is 2, we need to introduce two new indeterminants. Call

them x(12)(34) and z(12)(34). Then

T

x(12)(34)

z(12)(34)

 =

(
x(12)(34) x(12)(34) z(12)(34) z(12)(34)

)T
.

Then W̃ = W (x(12)(34), x(12)(34), z(12)(34), z(12)(34)) = 2x3
(12)(34) + 2z3

(12)(34).

The Milnor ring of W̃ can then be computed as

Hg
∼=

C[x(12)(34), z(12)(34)]

(6x2
(12)(34), 6z

2
(12)(34))

dx(12)(34) ∧ dz(12)(34)

∼=
C[x(12)(34), z(12)(34)]

(x2
(12)(34), z

2
(12)(34))

dx(12)(34) ∧ dz(12)(34)

∼= span{1, x(12)(34), z(12)(34), x(12)(34)z(12)(34)}dx(12)(34) ∧ dz(12)(34)

We can see that this is also equivalent to the other method of construction. As in the other

case, this process would need to be repeated for every element in the group G.
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The direct sum of the following spaces can be shown to form the entire unprojected state

space.

H(1) = {1, x, y, z, w, xy, xz, xw, yz, yw, zw, xyz, xyw, xzw, yzw, xyzw}dx ∧ dy ∧ dz ∧ dw;

H(12)(34) = {1, x(12)(34), z(12)(34), x(12)(34)z(12)(34)}dx(12)(34) ∧ dz(12)(34);

H(13)(24) = {1, x(13)(24), y(13)(24), x(13)(24)y(13)(24)}dx(13)(24) ∧ dy(13)(24);

H(14)(23) = {1, x(14)(23), y(14)(23), x(14)(23)y(14)(23)}dx(14)(23) ∧ dy(14)(23);

H(123) = {1, x(123), w(123), x(123)w(123)}dx(123) ∧ dx(123);

H(132) = {1, x(132), w(132), x(132)w(132)}dx(132) ∧ dx(123);

H(124) = {1, x(124), z(124), x(124)z(124)}dx(124) ∧ dz(124);

H(142) = {1, x(142), z(142), x(142)z(142)}dx(142) ∧ dz(142);

H(134) = {1, x(134), y(134), x(134)y(134)}dx(134) ∧ dy(134);

H(143) = {1, x(143), y(143), x(143)y(143)}dx(143) ∧ dy(143);

H(234) = {1, y(234), x(234), y(234)x(234)}dy(234) ∧ dx(234);

H(243) = {1, y(243), x(243), y(243)x(243)}dy(243) ∧ dx(243).

Many of these spaces are isomorphic, as the fixed locus of g is equal to the fixed locus of g−1.

It is important to remember that each of these is a different sector, even if they are trivially

isomorphic. In order to to simplify notation, we will denote the volume form for each sector

as eg.

Taking Invariants. After all of the Hg’s are computed, we take a direct sum of these

spaces. This is what we call the unprojected state space. Next, we want to take G-invariants

of this whole space, which will result in the projected state space. To do this, we make use

of the map π, which is defined below. This map is called the Reynolds operator, and is a

surjection from the unprojected state space onto its G-invariant subspace. This operator is

also discussed in Chapter 3.
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π :

(⊕
g∈G

Hg

)
→

(⊕
g∈G

Hg

)G

x 7→ 1

|G|
∑
g∈G

x · g

The image of a basis for the unprojected state space will span the G-invariant space, but

it may not be linearly independent. In fact, many of the basis elements may be zero under

this map. An appropriate subset of the image of the basis of the unprojected state space

can be chosen to use as a basis for the projected state space.

One more thing to consider is the right group action of G on the unprojected state space.

If we let X represent our space, and Xg = {x|xg = x} be the g-invariants of this space, note

the following.

(Xg)h = {xh | xg = x}

= {x | xh−1g = xh−1}

= {x | xh−1gh = x}

= Xh−1gh.

So, if we act on something that is g-invariant on the right by h, we get something that is

h−1gh invariant. This will be important in many computations when using the π map.

Nonabelian Example. We will use the same polynomial and group as above. Some of

the basis elements of the unprojected state space can be shown to be 1e1, xe1, 1e(12)(34), and

ue(12)(34). We will now project each of these using the π map.

1e1:

π(1e1) =
1

12

∑
g∈G

g(1e1).

Note that this basis element came from the sector H(1). So when we act on this by

12



an element g, we should land in the sector corresponding to g−1(1)g = (1). Also, 1

is fixed by every element of G, so we really only need to consider how each g acts on

the volume form (the wedge product). As an example, consider the group element

(12)(34).

(12)(34)(e1) = (12)(34)(dx ∧ dy ∧ dz ∧ dw)

= dy ∧ dx ∧ dw ∧ dz

= −dx ∧ dy ∧ dw ∧ dz

= dx ∧ dy ∧ dz ∧ dw

= e1.

The third and fourth steps follow from the anticommutativity of wedge products. This

shows that (12)(34) fixes this volume form. In fact, all of the elements of G fix this

volume form, so

π(1e1) =
1

12

∑
g∈G

g(1dx ∧ dy ∧ dz ∧ dw)

=
1

12

∑
g∈G

1dx ∧ dy ∧ dz ∧ dw

= 1dx ∧ dy ∧ dz ∧ dw

= e1.

So 1e1 can be taken as a basis element of the projected state space.

xe1: Next, we consider the element xe1. We have already seen that every element of G fixes

the volume form, but we need to check how they act on x. We can directly compute

each of these actions.
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g (1) (12)(34) (13)(24) (14)(23) (123) (132)

xg x y z w y z

g (124) (142) (134) (143) (234) (243)

xg y w z w x x

.

This gives us that

π(xe1) =
1

12

∑
g∈G

(xe1)g

=
1

12
e1(3x+ 3y + 3z + 3w)

=
1

4
(x+ y + z + w)e1.

Since this is linearly independent of the previously calculated basis element, we can

choose (x+ y + z + w)e1 as another basis element of our projected state space.

1e(12)(34): Doing this computation is more difficult, as the group element is no longer central.

In order to see how group elements act on variables that we introduced during the

construction, it is easiest to think about them in terms of the eigenvectors. When we

constructed a matrix, T , from the eigenvalues, we fixed an ordering. The variables

that we introduced, u1, · · · , ur, can then be equated to these eigenvectors in our state

space. So, if we want to see how h acts on ui, we multiply the ith column of T on

the left by h. This will give us a vector in the eigenspace of hgh−1. This vector can

similarly be equated with some linear combination of basis elements in Hhgh−1 .

For example, consider how (13)(24) and (132) act on x(12)(34). By the above, we can
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equate u with the corresponding eigenvector, which was

(
1 1 0 0

)
. Then

x(12)(34)(13)(24) =

(
1 1 0 0

)


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


=

(
0 0 1 1

)
= z(12)(34),

x(12)(34)(132) =

(
1 1 0 0

)


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


=

(
0 1 1 0

)
= y(14)(23).

Doing the rest of these calculations, we get the following table.

h h−1(12)(34)h (x(12)(34))h (z(12)(34))h (dx(12)(34) ∧ dz(12)(34))h (e(12)(34))h

(1) (12)(34) x(12)(34) z(12)(34) dx(12)(34) ∧ dz(12)(34) e(12)(34)

(12)(34) (12)(34) x(12)(34) z(12)(34) dx(12)(34) ∧ dz(12)(34) e(12)(34)

(13)(24) (12)(34) z(12)(34) x(12)(34) −dx(12)(34) ∧ dz(12)(34) −e(12)(34)

(14)(23) (12)(34) z(12)(34) x(12)(34) −dx(12)(34) ∧ dz(12)(34) −e(12)(34)

(123) (13)(24) y(13)(24) x(13)(24) −dx(13)(24) ∧ dy(13)(24) −e(14)(23)

(132) (14)(23) x(14)(23) y(14)(23) dx(14)(23) ∧ dy(14)(23) e(13)(24)

(124) (14)(23) y(14)(23) x(14)(23) −dx(14)(23) ∧ dy(14)(23) −e(13)(24)

(142) (13)(24) x(13)(24) y(13)(24) dx(13)(24) ∧ dy(13)(24) e(14)(23)

(134) (13)(24) y(13)(24) x(13)(24) −dx(13)(24) ∧ dy(13)(24) −e(14)(23)

(143) (14)(23) y(14)(23) x(14)(23) −dx(14)(23) ∧ dy(14)(23) −e(13)(24)

(234) (14)(23) x(14)(23) y(14)(23) dx(14)(23) ∧ dy(14)(23) e(13)(24)

(243) (13)(24) x(13)(24) y(13)(24) dx(13)(24) ∧ dy(13)(24) e(14)(23)
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So projecting 1e(12)(34) gives

π(1e(12)(34)) =
1

12

∑
g∈G

(1dx(12)(34) ∧ dz(12)(34))g

=
1

12
(1 + 1− 1− 1)(dx(12)(34) ∧ dz(12)(34) + dx(13)(24) ∧ dy(13)(24) + dx(14)(23) ∧ dy(14)(23))

= 0

Hence this element projects to 0, and provides no new elements in the projected state

space basis.

ue(12)(34): We have already found all of the information we need for this computation.

π(x(12)(34)e(12)(34)) =
1

12

∑
g∈G

(x(12)(34)e(12)(34))g

=
1

12
[(2x(12)(34) − 2z(12)(34))e(12)(34) + (2x(13)(24) − 2y(13)(24))e(13)(24)

+ (2x(14)(23) − 2y(14)(23))e(14)(23)]

=
1

6
[(x(12)(34) − z(12)(34))e(12)(34) + (x(13)(24) − y(13)(24))e(13)(24)

+ (x(14)(23) − y(14)(23))e(14)(23)].

Because this is independent of the other basis elements (it lives in different sectors),

we can take it to be an element of our basis.
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This process is then repeated for every element in the basis of our unprojected state space.

The following elements can then be chosen as a basis for the projected state space.

A1 =1e1;

A2 =(x+ y + z + w)e1;

A3 =(xy + xz + xw + yz + yw + zw)e1;

A4 =(xyz + xyw + xzw + yzw)e1;

A5 =(xyzw)e1;

A6 =e123 + e243 + e142 + e134;

A7 =x(123)e123 + y(234)e243 + x(124)e142 + x(134)e134;

A8 =w(123)e123 + x(234)e243 + z(124)e142 + y(134)e134;

A9 =x(123)w(123)e123 + y(234)x(234)e243 + x(124)z(124)e142 + x(134)y(134)e134;

A10 =e132 + e234 + e124 + e143;

A11 =x(123)e132 + y(234)e234 + x(124)e124 + x(134)e143;

A12 =w(123)e132 + x(234)e234 + z(124)e124 + y(134)e143;

A13 =x(123)w(123)e132 + y(234)x(234)e234 + x(124)z(124)e124 + x(134)y(134)e143;

A14 =(x(12)(34) − z(12)(34))e(12)(34) + (x(13)(24) − y(13)(24))e(13)(24) + (x(14)(23) − y(14)(23))e(14)(23).

Abelian Example. In the abelian case, we can use the same projection technique.

However, with an abelian group, the group action is much simpler. Consider projecting the

elements of the unprojected state space previously found for V and H. For example,

π(bx; (0, 0)e) =
1

3

∑
h∈H

(bx; (0, 0)e)h

=
1

3
(bx; (0, 0)e+ bωx; (0, 0)e+ bω2x; (0, 0)e)

= 0.
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Note that when the monomial lives in the Milnor ring of a restricted polynomial, we omit

the components of k that correspond to the variables that were set to zero.

Doing this, we can pick a basis of the projected state space to be

B1 = b1; 0e;

B2 = bxy; 0e;

B3 = b1;h1e;

B4 = b1;h2
1e.

It can be shown that a monomial m will be H-invariant if and only if

det(h)h ◦m = m, for all h ∈ H.

Because we require that G ≤ SL(n,C), b1; 0e will always be invariant. This element is the

multiplicative identity in every B-model.

2.1.3 An Alternative Construction. Using some additional group theory, it is possible

to do a simpler set of calculations and get an isomorphic vector space. The steps are as

follows:

• Pick conjugacy class representatives in G, g1, g2, · · · , gs;

• Construct Hg1 , Hg2 , · · · , Hgs in the same way;

• Find the CG(gi)-invariants of Hgi for each i;

• Take the direct sum of all of these spaces.

After following these steps, our new formula for the projected state space is

BW,G =
⊕

(g)⊂G

(Hg)
CG(g) .

Note that this computation really is easier to do. We are taking invariants with a smaller

group and we are summing over fewer spaces. Also note that each element of the centralizer
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of g conjugates g to itself. This means that when we implement the π map to find the

centralizer invariants, an element from the sector Hg will map to another element in that

same sector. The only reason that we do not always use this simpler method is that it is

less intuitive than the other formulation. If nothing else, this means that it is unclear how

to define the pairing and multiplication on this space.

Also note that the difference in these constructions is not apparent in the abelian case.

In an abelian group, all elements form their own conjugacy classes.

2.2 Grading

Now that we have our state space constructed, the next step toward creating a graded

Frobenius algebra is defining the grading. This amounts to assigning a degree to each basis

element. While the state space is constructed in the same way for both of the A- and B-

models, the gradings are defined differently. We include only the definition for the B-model

grading below.

2.2.1 B-Model Grading. The formula for the grading on the B-model is:

deg(meg) = 2p+
∑
θi 6∈Z

1− 2qi.

In this formula, the qi are the quasihomogeneous weights of the variables. It is important to

note that in the nonabelian case we have only been working with disjoint sums of homoge-

neous polynomials. Because of this, the group representations are direct sums, and there is

a natural way to relate non-integer phases with weights. This means that this definition is

well-defined.

The θ’s are called the phases of g. These can be calculated using the eigenvalues of g. If

λi is an eigenvalue, then log(λi)/2πi is a phase of g. Special care should be taken to choose

a branch cut so that this value satisfies 0 ≤ θi < 1.
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The value of p is determined by looking at the total weighted degree of m. When using a

nonabelian group, it is possible that m is no longer a monomial. However, the total weighted

degree of each term in m will be constant, as degree is invariant under the Reynolds operator.

Abelian Example. Note that in the abelian case, the phases are just the entries of

the group elements in additive notation. We can also directly connect θi to qi, so it is not

necessary to use homogeneous polynomials. We compute the grading of each element in our

basis for BV,H .

Element B1 B2 B3 B4

Degree 0 4/3 2/3 2/3

Nonabelian Example. For this example, we will compute the degree of the element

A14. To do this, we compute the degree of one part of this element: x(12)(34) − z(12)(34).

We have already computed the eigenspace of (12)(34) corresponding to the eigenvalue 1.

This space had dimension 2. We assumed that x(12)(34) and z(12)(34) have the same weights

as the original variables of W . In this case, these are all 1
3
.

Next, we consider the phases, θi. We first need to compute the eigenvalues of (12)(34).

These are {1, 1,−1,−1}. Taking the natural log of each of these gives {0, 0, πi, πi}. Dividing

by 2πi gives {0, 0, 1
2
, 1

2
}. Because these values are in the interval [0, 1), we know that they

are acceptable values. If they were not, we would need to define a different branch cut of

the log function.

Last, we need to find the total weighted degree of x(12)(34)−z(12)(34). We define the degree

of these new variable to be the same as the degree of the variables in the original polynomial.

This means that x(12)(34) − z(12)(34) has a total weighted degree of 1
3
. Hence
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deg((x(12)(34) − z(12)(34))e(12)(34)) = 2p+
∑
θi 6∈Z

1− 2qi

=
2

3
+

2∑
i=1

1

3

=
4

3
.

Let us also consider the element 1e1. In the abelian construction of a Landau-Ginzburg

B-model, this element is always the multiplicative identity. We should check that it’s degree

is still 0 in this construction, especially since we want it to still be a multiplicative identity.

Note that p = 0, as no variables are present. Also, all of the eigenvalues of (1) are 1.

This gives that all of the phases are 0, so the sum in the formula is empty. Hence

deg(1e1) = 2 · 0 + 0 = 0.

The rest of the degrees can be computed as

Element A1 A2 A3 A4 A5 A6 A7

Degree 0 2/3 4/3 2 8/3 2/3 4/3

Element A8 A9 A10 A11 A12 A13 A14

Degree 4/3 2 2/3 4/3 4/3 2 4/3

.

2.3 Pairing

We next define a pairing function:

< ·, · >: B × B → C.
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on the basis of the state space. This pairing must satisfy properties of symmetry, linearity,

and nondegeneracy. By nondegeneracy, we mean that for every A ∈ B, there exists B ∈ B

such that < A,B >6= 0. In the abelian case, the pairing is defined by

〈meg, neh〉 =

 〈m,n〉 g = h−1

0 otherwise

Here, the pairing of m and n is found in the same manner as in the original construction,

details of which can be found in [10]. This is by solving for the pairing in the formula

mn =
〈m,n〉
µg

Hess(W |fix(g)) + lower order terms,

where µg is the dimension of Hg as a vector space, and Hess(W ) is the determinant of

the Hessian matrix of W .

Once this is done for all of the basis elements, we extend the definition linearly for

the whole space. This makes our definition respect the symmetric and linear properties of

pairings. In the case of an invertible polynomial and diagonal group representation, this

pairing has also been proven to be nondegenerate. It remains to be proven in the case of

noninvertible polynomials and in the case of nonabelian groups. We will verify that in pairing

is nondegenerate in each of the B-models that we construct.

Abelian Example. The condition that the group elements must be inverses gives us

that only < B1, B2 > and < B3, B4 > may be nonzero. We compute these using the formula

above.

1xy =
< B1, B2 >

µ
Hess(W ) + lower order terms

1xy =< B1, B2 > 9xy + lower order terms

1

9
=< B1, B2 >
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1 =
< B3, B4 >

µ|fixh1

Hess(W |fixh1)

1 =< B3, B4 > 1

1 =< B3, B4 >

We include the pairing matrix for reference. In a pairing matrix ηi,j =< Bi, Bj >.

η =


0 1

9
0 0

1
9

0 0 0
0 0 0 1
0 0 1 0


Table 2.1: Pairing Matrix for Bx3+y3,C3

Nonabelian Example. In the nonabelian case, we use the same definition of the pairing.

This computation is much more involved, as our basis elements often include several terms.

For example, let us take the element A14 and pair it with itself.

First, we will use bilinearity to simplify.

〈A14, A14〉 = 〈(x(12)(34) − z(12)(34))e(12)(34), (x(12)(34) − z(12)(34))e(12)(34)〉+

2〈(x(12)(34) − z(12)(34))e(12)(34), (x(13)(24) − y(13)(24))e(13)(24)〉+

2〈(x(12)(34) − z(12)(34))e(12)(34), (x(14)(23) − y(14)(23))e(14)(23)〉+

〈(x(13)(24) − y(13)(24))e(13)(24), (x(13)(24) − y(13)(24))e(13)(24)〉+

2〈(x(13)(24) − y(13)(24))e(13)(24), (x(14)(23) − y(14)(23))e(14)(23)〉+

〈(x(14)(23) − y(14)(23))e(14)(23), (x(14)(23) − y(14)(23))e(14)(23)〉.

Next, note that many of these correspond to pairs of group elements that are not inverses of
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each other. In each of this cases, the pairing is zero. So this simplifies further to

〈A14, A14〉 = 〈(x(12)(34) − z(12)(34))e(12)(34), (x(12)(34) − z(12)(34))e(12)(34)〉+

〈(x(13)(24) − y(13)(24))e(13)(24), (x(13)(24) − y(13)(24))e(13)(24)〉+

〈(x(14)(23) − y(14)(23))e(14)(23), (x(14)(23) − y(14)(23))e(14)(23)〉.

We have to compute each of these terms directly. We first must calculate the Hessians. To

do this, we compose the original variables with an appropriate eigenvector before computing

W . For example W |fix(123) would be 3x3
(123) +w(123). Using this method, it can be shown that

the three Hessians that we need are 144x(12)(34)z(12)(34), 144x(13)(24)y(13)(24), 144x(14)(23)y(14)(23)

respectively. Also, we have already computed Hg for each g, and we know that each has

dimension 4. This implies

(x(12)(34) − z(12)(34))
2 =
〈(x(12)(34) − z(12)(34)), (x(12)(34) − z(12)(34))〉

4
144x(12)(34)z(12)(34)

+ lower order terms.

We simplify to

x2
(12)(24) − 2x(12)(24)z(12)(24) + z2

(12)(24) =

〈(x(12)(24) − z(12)(24)), (x(12)(24) − z(12)(24))〉36x(12)(24)z(12)(24) + lower order terms.

Here, we have to use the quotient relations defined during the construction to solve for the

pairing. Recall that x2
(12)(34) = z2

(12)(34) = 0 in this ring. So

〈(x(12)(24) − z(12)(24)), (x(12)(24) − z(12)(24))〉 = − 1

18
,

by equating coefficients. Note that identical computations can be done for the other compo-

nents that we started with. Hence the pairing ofA14 with itself is 3〈(x(12)(24)−z(12)(24)), (x(12)(24)−
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z(12)(24))〉 = −1
6
.

Similar computations can be carried out for each pair of elements in the basis. We

represent these results in a matrix. The i, j coordinate is given by 〈Ai, Aj〉. Note that this

pairing is still nondegenerate as required.

η =



0 0 0 0 1
81

0 0 0 0 0 0 0 0 0
0 0 0 4

81
0 0 0 0 0 0 0 0 0 0

0 0 2
27

0 0 0 0 0 0 0 0 0 0 0
0 4

81
0 0 0 0 0 0 0 0 0 0 0 0

1
81

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4

27
0

0 0 0 0 0 0 0 0 0 0 0 4
27

0 0
0 0 0 0 0 0 0 0 0 0 4

27
0 0 0

0 0 0 0 0 0 0 0 0 4
27

0 0 0 0
0 0 0 0 0 0 0 0 4

27
0 0 0 0 0

0 0 0 0 0 0 0 4
27

0 0 0 0 0 0
0 0 0 0 0 0 4

27
0 0 0 0 0 0 0

0 0 0 0 0 4
27

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1

6


Table 2.2: Pairing Matrix for Bx3+y3+z3+w3,A4

2.4 B-Model Multiplication

2.4.1 Multiplication in Abelian Construction. In the abelian case, multiplication

is defined as follows.

bm; ge ? bn;he = εbγmn; ghe,

where

γ =
Hess(W |fix(gh))µ|fix(g)∩fix(h)

Hess(W |fix(g)∩fix(h))µ|fix(gh)

,

and ε = 1 if every variable is fixed by at least one of g, h, and gh, and ε = 0 otherwise. Note

that we still reduce in the appropriate quotient rings after multiplying.
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Abelian Example. Consider B1 ?B3. Because everything is fixed by the identity group

element, ε = 1. Also,

γ =
Hess(W |fix(gh))µ|fix(g)∩fix(h)

Hess(W |fix(g)∩fix(h))µ|fix(gh)

=
1 · 1
1 · 1

= 1.

So,

B1 ? B3 = b1; 0e ? b1;h1e

= b1;h1e

= B3.

Consider B3 ?B4. Neither group element fixes any variables, but the product is the identity,

so ε = 1.

γ =
Hess(W |fix(gh))µ|fix(g)∩fix(h)

Hess(W |fix(g)∩fix(h))µ|fix(gh)

=
36xy · 1

1 · 4

= 9xy.

So,

B3 ? B4 = b1;h1e ? b1;h2
1e

= b9xy; 0e

= 9B2.

We include the multiplication table for the rest of the products.
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? B1 B2 B3 B4

B1 B1 B2 B3 B4

B2 B2 0 0 0
B3 B3 0 0 9B2

B4 B4 0 9B2 0

Table 2.3: Multiplication Table for Bx3+y3,C3

2.4.2 Multiplication in Nonabelian Construction. Generalizing this multiplication

to state spaces constructed with nonabelian groups is not a simple process. Now that we

have a pairing, it is at least possible to define a multiplication that is consitent with the

abelian definition. So far, there is no easy way to compute all of the products. It is also

unclear as to what conditions are necessary to make this multiplication associative. The

current method of multiplication makes use of many maps. These maps are shown in Figure

2.1.

Hg

Hg,h H(gh)−1 Hgh

Hh

H∗g,h H∗(gh)−1

[

f

f∗

]

Figure 2.1: Multiplication Diagram

The idea here is that we want to multiply an element of Hg with an element of Hh. This

should result in an element of Hgh. There is not a natural map into this space. However, all

three spaces can be projected into Hg,h (restricting the the fixed loci of both g and h). On

the diagram, we label the map from H(gh)−1 to Hg,h with f . What we need to find, however,

is a map between these spaces in the other direction. To do this, we make use of musical

isomorphisms.

It is possible to define a map from Hg,h to H∗g,h (the asterisk denotes the dual space)
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using the pairing function. If m is an element of Hg,h then this map, which we denote [, acts

by:

[ : m 7→ 〈m, ·〉.

Next, we use the adjoint of f , which is labeled f ∗, to map from H∗g,h to H∗(gh)−1 . This map

works by:

f ∗ : 〈m, ·〉 7→ 〈m, f(·)〉.

Now, suppose that H(gh)−1 has a n-dimensional basis with basis b1, · · · , bn. Then we define

a row vector

[〈m, f(b1)〉, · · · , 〈m, f(bn)〉].

There exists an element λ in H(gh)−1 such that the vector

[〈λ, b1〉, · · · , 〈λ, bn〉].

is equal to our previous vector. The ] map sends our element in H∗(gh)−1 to this λ.

Note that H(gh)−1
∼= Hgh in an almost trivial manner. This means that the last map on

the diagram is easy to compute.

It is important to note that in the diagonal case, these [ and ] maps provide the γ present

in the multiplication formula:

γ =
Hess(W |fix(gh))µ|fix(g)∩fix(h)

Hess(W |fix(g)∩fix(h))µ|fix(gh)

.

These factors appear when taking the pairings in the respective spaces.

2.4.3 Projecting into Hg,h. When projecting from Hg and Hh into Hg,h in this mul-

tiplication, we must multiply by a factor of ε. In the diagonal case, this ε is always either

0 or 1. If G is diagonal, then ε = 1 if and only if every variable is fixed by at least one of

g, h, and gh. This definition is insufficient in the nonabelian case. In the example below,
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we suppress the epsilons thoughout the computation. We will scale the final products by

choosing specific values for the different epsilons that would arise.

While insufficient, we still have a condition that forces ε = 0. If dim(R) 6= 0, with R

defined as below, then ε = 0.

R = 	X ⊕X ~m ⊕
3∑
i=1

Smi

We now define each piece of this equation.

~m = (g, h, (gh)−1).

X = Cn, where n is the number of variables in W .

X ~m =
⋂3
i=1X|fix(mi).

Si =
∑r−1

k=1
k
r
Emi,k.

r = |mi|, the order of the group element.

Emi,k is the eigenspace of mi corresponding to the eigenvalue e2πik/r.

When computing the dimension of R, we do not worry about how fractions of different

spaces are added together, we simply sum up the degrees of all of the pieces.
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Example of ε Condition. Consider e123 ? e123.

~m = ((123), (123), (123))

X = C4

X ~m = spanC





1

1

1

0


,



0

0

0

1





S123 =
1

3
spanC





1

ω

ω2

0




+

2

3
spanC





1

ω2

ω

0




.

Hence

dim(R) = −4 + 2 + 3 = 1 6= 0.

Thus e(123) ? e(123) = 0.

2.4.4 Nonabelian Example. We will compute the product of A6 and A10. First, note

that the definitions give that this multiplication is distributive. We first consider the case

where eg 6= eg−1 . We can show that our condtion for ε = 0 is not satisfied, so we must use

the multiplication diagram. If we multiply e123 and e234, it can be shown that we eventually

get a scalar multiple of )x(12)(34) + z1234)e(12)(34). While this does respect the grading, it is

not G-invariant. When we add in all of the other products, we will still have something not

G-invariant. Because of this, we set these terms to zero.

So A6 ? A10 reduces quickly to e123 ? e132 + e243 ? e234 + e142 ? e124 + e134 ? e143. We will

show how to compute e123 ? e132, and the other three products are very similar.

Note that (123)(132) = 1, so Hgh = H1. Also, note that H123 and H132 have the same

fixed locus, so the projections into H123∩132 are inclusion maps. After projecting from both
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spaces, we take the product in that space. This gives us 1 ∗ 1 = 1.

Next, we implement the [ map, and send 1 to 〈1, ·〉. The adjoint of f then maps this

element to 〈1, f(·)〉. This is still the pairing in H123∩132, even though it is a function on H1.

We now evaluate this function on each of the basis elements of H1 (Remember that this

is the unprojected Milnor ring. Don’t use only the invariant parts). We will use the same

ordering as when this Milnor ring was computed and write the results in a vector.

[
0, 0, 0, 0, 0, 0, 0,

1

27
, 0,

1

27
,

1

27
, 0, 0, 0, 0, 0

]
.

Now, we must consider the pairing matrix of H1. Again, this is not the same as the pairing

matrix that we found earlier as we have a different basis. Computing this pairing matrix

can be done using the exact same method from the abelian case. It happens to have 1
81

on the main anti-diagonal and 0 in all other places. This means that we need to find an

element that, when paired with each of 1, x, y, z, w, xy, xz, yz, xyz, xyw, xzw, yzw, xyzw is

0 and when paired with each of xw, yw, zw is 1
27

. Because our pairing matrix is nicely

anti-diagonal, this is easily computed to have the solution 3yz + 3xz + 3xy.

Notice that this is not an element of our invariant space. That is because we have only

computed e123 ? e132. When we finish out the multiplication of the other terms, we get

6(xy + xz + xw + yz + yw + zw), which is 6A3.

If we leave all values of ε as 0 or 1, it can be shown that the multiplication is not

associative. To rectify this, we replace 27
4

with 3. This is effectively setting ε = 4
9

in

several cases. The complete multiplication table is given as Table 2.4.4. The lines separate

the different conjugacy classes corresponding to the sectors. Blank entries are zero. Sage

confirms that the multiplication as presented is associative. However, this multiplication

does not respect the pairing. Namely, it does not satisfy the Frobenius property:

< Ai ? Aj, Ak >=< Ai, Aj ? Ak > . (2.1)
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2.5 Another Nonabelian Example

In order to demonstrate that in some cases, we can still get an associative multiplication by

picking ε to be either 0 or 1, we work another example. This example will also show another

problem that can arise in defining the multiplication. Let W = x2y + xy2 + z2. We use the

G ∼= S3, where

(1) =


1 0 0

0 1 0

0 0 1

 , (123) =


0 1 0

−1 −1 0

0 0 1

 (132) =


−1 −1 0

1 0 0

0 0 1



(12) =


0 1 0

1 0 0

0 0 −1

 , (13) =


1 0 0

−1 −1 0

0 0 −1

 (23) =


−1 −1 0

0 1 0

0 0 −1


We next compute the 1-eigenspaces. For (1), everything is fixed. All other group elements

have one-dimensional fixed loci, which we list bases for below.

(123), (132) :


0

0

1

 ; (12) :


1

1

0

 ; (13) :


−2

1

0

 ; (23) :


1

−2

0

 .

The unprojected state spaces for these are as follows.

H1 = {1, x, y, xy}dx ∧ dy;

H123 = {1}e123;

H132 = {1}e132;

H12 = {1, x12}e12;

H13 = {1, x13}e13;

H23 = {1, x23}e23.

Using the Reynolds operator, we next project these twelve elements in order to compute the
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basis of the projected state space. This gives us the following basis:

A1 = e1;

A2 = xye1;

A3 = e123 − e132;

A4 = e12 + e13 + e23;

A5 = x12e12 + x13e13 + x23e23.

Next, we compute the B-model degrees of these basis elements.

Element A1 A2 A3 A4 A5

Degree 0 4/3 2/3 1/3 1

We follow the same steps to define the multiplication of this model. Again, we suppress ε

throughout. These steps successfully compute the multiplication of all pairs of basis elements

except for A4 ? A4.

As in the previous example, all off the non-square terms must be zero because the products

are not G-invariant.

The square terms must also be zero, but for a different reason. The degree of A4 is 1/3,

so the degree of A4 ?A4 should be 2/3. The product of any of the terms of A4 and itself lives

in H1, but this has nothing of weight 2/3.

Setting these products to zero is justified by saying that ε must equal zero in this case.

Note that if we were to let ε be a linear combination of x and y, we would indeed get

something G-invariant of the right degree. There is no indication as to why this should

done, and at this point, setting ε = 0 is preferrable.

The multiplication table, assuming A4?A4 = 0, is given as Table 2.5, and its multiplicative

associativity can easily be verified. Note however, that

< A1 ? A4, A5 >= 1 6= 1

2
=< A1, A4 ? A5 >,
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? A1 A2 A3 A4 A5

A1 A1 A2 A3 A4 A5

A2 A2 0 0 0 0
A3 A3 0 −6A2 0 0
A4 A4 0 0 0 3A2

A5 A5 0 0 3A2 0

Table 2.5: Multiplication Table for Bx2y+xy2+z2,S3

so this algebra does not satisfy the Frobenius property. If we scale the product A5 ? A5 by

a factor of 2, the Frobenius property will be satisfied and the multiplication will still be

associative.

2.5.1 Remarks. We set some of the products above to zero because they were not G-

invariant. In most of these cases, the products looked similar to something that was G-

invariant. For example, we would get something that looked like x + z, which was not

invariant while x− z was. We could force the product to be invariant by redefining the map

f from H(gh)−1 to Hg,h in another way. Similarly, we could make the product invariant by

allowing for multiple ε values in the same product of basis elements. This is less natural

than simply setting such products to zero, which is what we have done in the examples. If

we simply wanted to define an associative multiplication, we could also define all products

to be zero, but this is not enlightening.

2.6 All Narrow Sectors

Even though much needs to be proven about this multiplication in general, there are things

we can say about special cases. We consider B-models with no non-identity broad sectors.

Definition 2.1. A sector is said to be narrow if it has trivial fixed locus, or equivalently if

1 is not an eigenvalue of the matrix representation of the group element. If a sector is not

narrow, it is called broad.

Lemma 2.2. All basis elements from narrow sectors in the same B-model have the same
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B-model degree.

Proof : Recall that the B-model degree is given as

deg(meg) = 2p+
∑
θi 6∈Z

1− 2qi (2.2)

If Aj and Ak are two basis elements from narrow sectors, then p = 0 for both. This is because

all of the variables of the original polynomial are zero when restricted to the fixed locus of

each group element.

Also, the summand in (2.2) will be equal in both cases, as θi 6∈ Z for all i. Since every

part of the formula is equal, the total degrees of Aj and Ak are equal.

Note that if at least one weight is strictly less than 1
2
, this common degree is strictly

positive. This is, however, also required in the construction for other reasons.

Proposition 2.3. Let W be an admissible polynomial, and G ⊂ SL(n,C) a corresponding

symmetry group. If all non-identity sectors are narrow, then the B-model constructed from

W and G is associative, and requires no additional scaling, meaning ε can be chosen to be 0

or 1 in every case, in defining the multiplication.

Proof : By construction, basis elements consist of sums of elements from sectors whose

group elements are conjugate in G. Because the identity is central, no basis element can

contain terms from the identity sector and any other sector. Using this, we will show that

the following equation holds for all choices of basis elements.

Ai ? (Aj ? Ak) = (Ai ? Aj) ? Ak (2.3)

If any of the three terms in a product is the identity, associativity follows trivially, so

suppose all of them are not the identity element. Similarly, if all of Ai, Aj, and Ak are in the

identity sector, then associativity is inherited from the Milnor ring of W . Hence, it suffices
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to show that if any of Ai, Aj, and Ak are in narrow sectors, then the products on both sides

of (2.3) are zero. We start by proving existence of basis elements in narrow sectors.

We can compute the basis elements from narrow sectors in general. If eg is the volume

form corresponding to the narrow sector Hg, then the Reynolds operator applied to eg is

π(eg) =
∑
h∈G

eg · h

=
∑
h∈G

eh−1gh

= |CG(g)|
∑
h∈(g)

eh

Here, (g) means the conjugacy class of g. This last equality follows from the Orbit-Stabilizer

Theorem. Note that if h is conjugate to g, then π(eh) = π(eg). As the Reynolds operator

preserves conjugacy classes, this is sufficient to show that each narrow sector will have exactly

one basis element. This proof of existence means that we must consider a few cases.

If exactly two of Ai, Aj, and Ak are in the identity sector, then the final product is

necessarily zero, so associativity holds. This follows from that fact that either the first

or second multiplication computed in each side of (2.3) will include both a nonconstant

polynomial and exactly one nontrivial group element. Since every sector except the identity

is narrow, the restricted Milnor ring in each nonidentity sector is just C, so a nonconstant

polynomial becomes zero in the quotient.

We now consider the case where exactly one of Ai, Aj, and Ak is in the identity sector.

If this element is Aj, then the above argument gives that both sides of (2.3) are zero, so

assume without loss of generality that Ai is in the identity sector. The right hand side of

(2.3) is still zero, but we must justify why the left hand side is also zero.

By Lemma 2.2, all elements of nonidentity sectors are of the same degree, so if the

product Aj ? Ak is nonzero, it must belong to the identity sector. If this were not the case,

the multiplication would not respect the grading. Hence b1; ge ? b1;he = 0 if g and h are

both nontrivial and h 6= g−1.
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Consider the B-model multiplication of b1; ge and b1; g−1e. According to the generalized

multiplication as defined by Sandberg, this product is a scalar multiple of Hess(W ) in the

identity sector. This gives that the product of Aj and Ak is a sum of scalar multiples of the

identity and some number of zeros, and is thus a scalar (possibly zero) multiple of Hess(W ).

Because Ai is not the identity, it has strictly positive degree. Since the hessian has maximal

degree, we get that the left hand side of (2.3) is zero as desired.

If none of Ai, Aj, and Ak are in the identity sector, by the above reasoning, the first

product computed on each side will be a scalar multiple of the identity. The second product

will then include both a nonconstant polynomial and exactly one nontrivial group element.

We have already shown that any such product is zero. Therefore (2.3) holds in this case,

too.

By exhaustion of cases, this proves the proposition.

2.6.1 Example. Let W = x4 + y4, and let G by Q8 with representation

i =

i 0

0 −i

 , j =

0 −1

1 0

 k =

 0 −i

−i 0

 .

Note that all non-identity sectors are narrow, so the B-model that is constructed using this

polynomial and group is associative, and requires no additional scaling during the multipli-

cation.
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We can pick our basis to be the following:

A1 = e1;

A2 = e−1;

A3 = ei + e−i;

A4 = ej + e−j;

A5 = ek + e−k;

A6 = x2y2e1.

Then, using the definition of the multiplication without scaling, we get the multiplication

table below. Using Table 2.6, it is easy to verify that this B-model is in fact associative.

? A1 A2 A3 A4 A5 A6

A1 A1 A2 A3 A4 A5 A6

A2 A2 16A6 0 0 0 0
A3 A3 0 32A6 0 0 0
A4 A4 0 0 32A6 0 0
A5 A5 0 0 0 32A6 0
A6 A6 0 0 0 0 0

Table 2.6: Multiplication Table for Bx4+y4,Q8

By direct computation, we can see that the pairing, as defined in Chapter 2, satisfies the

Frobenius property. Hence this is actually the first example given of a Frobenius algebra

constructed using a nonabelian group.

Chapter 3. Starting from the Group

Given an admissible polynomial, it is difficult to find nonabelian symmetry groups. This

often requires solving large systems on nonlinear equations. It becomes even more difficult if

we impose restrictions such as a maximum order, requiring a real representation, or requiring

that the representation be contained in SL(n,C). To avoid this problem, we attempt to go
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the other direction.

3.1 Invariant Rings

We next look for ways to simplify the above construction using invariant theory found in

[16]. Rather than pick a polynomial and look for nonabelian symmetries, we can pick a

representation of a nonabelian group, and then pick an admissible polynomial from its ring

of invariants. If the representation for a group G is of degree n, then we define the ring of

invariants as:

C[x1, · · · , xn]G = {f ∈ C[x1, · · · , xn] | f(g · x) = f(x), ∀g ∈ G}.

WRecall the Reynolds operator on a polynomial ring:

π(x) =
1

|G|
∑
g∈G

x · g.

If x = xb11 x
b2
2 · · ·xbnn is a monomial in C[x1, · · · , xn], define β(x) = b1 + b2 + · · ·+ bn.

A theorem by Emmy Noether gives a bound on how many generators are needed to form

the whole invariant ring. As presented in [16],

C[x1, · · · , xn]G = C[π(x) | x ∈ C[x1, · · · , xn], β(x) ≤ |G|].

Hence we only have to consider the image under the Reynolds operator of the monomials of

total degree less than or equal to the order of the group. We can improve this bound even

further by Molien’s Theorem, given in [17], which tells us exactly how many generators we

need of each total degree. The Molien series is defined to be:

ΦG(t) =
1

|G|
∑
g∈G

1

det(In − tg)
,
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where In is the n× n identity matrix. Molien’s Theorem states that the coefficient of tk in

this power series is the dimension of the subspace of C[x1, · · · , xn]G consiting of all of the

homogeneous polynomials of degree k.

3.2 An example with Q8

Consider the group Q8 with representation:

i =

i 0

0 −i

 , j =

0 −1

1 0

 k =

 0 −i

−i 0

 .

The aforementioned theorem gives that we only need to look for generators with degree at

most 8. We compute the Molien series of this representation up to the t8 term.

ΦG(t) = 1 + 2 ∗ t4 + 1 ∗ t6 + 3 ∗ t8 + · · ·

This gives that we only need to compute two polynomials of degree 4, one of degree 6, and

three of degree 8. All other invariant polynomials can be formed using this eight polynomials.

We compute these six polynomials using the Reynolds operator. After scaling, we get the

following polynomials:

(i) x4 + y4;

(ii) x2y2;

(iii) x5y − xy5;

(iv) x8 + y8;

(v) x6y2 + x2y6;

(vi) x4y4.
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Note that of these polynomials, (i), (iii), and (iv) are admissible. In fact, because G ⊂

SL(2,C), we can construct a B-model using any of these three polynomials with this group.

However, the only group element that has 1 as an eigenvalue in this representation is the

identity. Because all of the non-identity sectors are narrow, we know from Section 2.6 that

the B-model will be associative.

Chapter 4. P8 B-Model Associativity

As we attempt to define an associative multiplication on these generalized models, it is help-

ful to also consider the multiplication of B-models created from noninvertible polynomials.

Krawitz’s proof in [10] that the multiplication is associative for invertible polynomials is done

by considering each atomic type separately, and then showing that sums of atomic types also

lead to associative multiplication. As no such decomposition of noninvertible polynomials

exist, this method of proof cannot work in general. Below, we explicitly show that any B-

model constructed with W = x3 + y3 + z3 + αxyz P8, where α 6= 3
√
−27, is associative. This

polynomial, classified as P8 by Vladimir Arnold, is the canonical example of a noninvertible

polynomial.

4.1 B-Model Construction

Let W = x3 + y3 + z3 + αxyz, where α 6= 0, 3
√
−27. If α = 0, then W is invertible, and thus

is included in Krawitz’s proof. If α = 3
√
−27, then W is not nondegenerate.

We consider two different groups: G = 〈g〉 = 〈(1
3
, 2

3
, 0)〉 and GJ = 〈j〉 = 〈(1

3
, 1

3
, 1

3
)〉.

Note that symmetry gives us that these two cases suffice to show that the B-model created

with P8 is associative, regardless of which nontrivial subgroup of Gmax
W ∩ SL(3,C) is used.

We exclude the trivial group, as the B-model is then just the Milnor ring, which is clearly

associative.

The Jacobian ideal of W is J = (3x2 + αyz, 3y2 + αxz, 3z2 + αxy).
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A basis for the Milnor ring of W is {1, x, y, z, xy, xz, yz, xyz}. Denote the Milnor ring by

QW , and the dimension of this Milnor ring by µ = 8.

Next, we compute the determinant of the Hessian matrix of W .

Hess(W ) = det

6x αz αy

αz 6y αx

αy αx 6z

= α3xyz − 6α2y3 + +α3xyz − 6α2z3 − 6α2x3 + 216xyz

= 2α3xyz − 2α2(3x3 + 3y3 + 3z3) + 216xyz

= (2α3 + 216)xyz − 2α2(−3αxyz)

= (8α3 + 216)xyz.

Note that the assumption that α 6= 3
√
−27 gives that Hess(W ) 6= 0.

4.1.1 Finding GJ-Invariants. Projecting our state space, we can pick a basis for BW,GJ

to be

B1 = b1; 0e;

B2 = b1; je;

B3 = b1; j2e;

B4 = bxyz; 0e;

To demonstrate that the pairing is nondegenerate in this case, we include the pairing matrix.

We next compute all of the products. Note that B1 is the multiplicative identity. Note that

η =


0 0 0 1

α3+27

0 0 1 0
0 1 0 0
1

α3+27
0 0 0


Table 4.1: Pairing Matrix for BP8,GJ
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by considering the group components of these basis elements,

B2 ? B2 = B3 ? B3 = 0.

Also, x = 0 in QW when restricted to the fixed locus of j or j2. This gives that B2 ?B4 =

B3 ? B4 = 0.

Now, we compute B2 ?B3. Note that j · j2 = 0, and that Hess(W |fix(j)) = µ|fix(j) = 1. So

B2 ? B3 =

⌊
Hess(W )µ|fix(j)

Hess(W |fix(j))µ
; 0

⌉
=

⌊
(8α3 + 216)xyz

8
; 0

⌉
= (α3 + 27)B4

Collectively, this gives the multiplication table below. Note that any nonzero product of

? B1 B2 B3 B4

B1 B1 B2 B3 B4

B2 B2 0 (α3 + 27)B2 0
B3 B3 (α3 + 27)B2 0 0
B4 B4 0 0 0

Table 4.2: Multiplication Table for BP8,GJ

three basis elements necessarily includes the identity. This means that associativity follows

from commutativity.

4.1.2 Finding the G-Invariants. Projecting our state space, we can pick a basis for

BW,G to be:

B1 = b1; 0e;

B2 = bz; 0e;

B3 = b1; ge;

B4 = b1; g2e;

B5 = bxy; 0e;
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B6 = bz; ge;

B7 = bz; g2e;

B8 = bxyz; 0e.

To demonstrate that the pairing is nondegenerate in this case, we include the pairing

matrix. We next consider the multiplication. Note that B1 is still the multiplicative identity

η =



0 0 0 0 0 0 0 1
α3+27

0 0 0 0 1
α3+27

0 0 0

0 0 0 0 0 0 1
3

0
0 0 0 0 0 1

3
0 0

0 1
α3+27

0 0 0 0 0 0

0 0 0 1
3

0 0 0 0
0 0 1

3
0 0 0 0 0

1
α3+27

0 0 0 0 0 0 0


Table 4.3: Pairing Matrix for BP8,G

element.

Also, note that W |fix(g) = z3, so Hess(W |fix(g)) = 6z, and µ|fix(g) = 2.

The following products are zero by considering the sectors’ fixed loci: B3 ? B3, B3 ? B6,

B6 ? B6, B4 ? B4, B4 ? B7, B7 ? B7.

The following products are zero because of the quotient relations in QW : B5?B5, B8?B8,

B2 ? B8, B5 ? B8, B6 ? B7.

The following products are zero because of the quotient relations in QW |fix(g): B2 ? B6,

B2 ? B7, B3 ? B5, B3 ? B8, B4 ? B8, B5 ? B6, B5 ? B7, B6 ? B8, B7 ? B8.

The rest of the products are computed directly. We will summarize the results in the

table below. Also, let r = α3+27
3

.

Consider (Bi?Bj)?Bk 6= 0, with 1 ≤ i ≤ j ≤ k ≤ 8. Note that we can impose this ordering

because multiplication is commutative. If i 6= 1, then (i, j, k) is either (2, 2, 2) or (2, 3, 4). If

one of i = 1, then associativity follows immediately because B1 is the multiplicative identity.

If i = j = k = 2, then associativity follows from commutativity. The last case can be checked
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? B1 B2 B3 B4 B5 B6 B7 B8

B1 B1 B2 B3 B4 B5 B6 B7 B8

B2 B2 −α
3
B5 B6 B7 B8 0 0 0

B3 B3 B6 0 rB5 0 0 rB8 0
B4 B4 B7 rB5 0 0 rB8 0 0
B5 B5 B8 0 0 0 0 0 0
B6 B6 0 0 rB8 0 0 0 0
B7 B7 0 rB8 0 0 0 0 0
B8 B8 0 0 0 0 0 0 0

Table 4.4: Multiplication Table for BP8,G

directly. Note that

(B2 ? B3) ? B4 = B6 ? B4

= rB8

This gives that

B2 ? (B3 ? B4) = B2 ? rB5

= rB8

= (B2 ? B3) ? B4

This associativity was also verified using Sage’s FiniteDimensionalAlgebra module’s

is associative() attribute. As this was the last case, we therefore have that every B-model

constructed from P8 is associative, regardless of the admissible diagonal symmetry group

used.
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Chapter 5. Using Group-Weights in Several

Variables

The Group-Weights Theorem has provided a new way to approach some problems. This

theorem gives isomorphisms between many pairs of A-models. By the Landau-Ginzburg

Mirror Symmetry Conjecture, each of these A-models should be isomorphic to a B-model.

By transitivity, these B-models should also be isomorphic. We depict this in Figure 5.1.

AW1,G BWT
1 ,G

T
1

AW2,G BWT
2 ,G

T
2

Figure 5.1: Isomorphism Diagram

We are particularly interested in cases where one of the B-models in this isomorphism has

a trivial group. The higher structure of such models is well understood, and isomorphisms to

B-models with more complicated groups will help us understand the B-model in the future.

In order to have one of the transpose groups be trivial, we require that the common group

used on the A-side be the maximal diagonal symmetry group for one of the polynomials.

In his thesis, [14], Nathan Cordner proves all relevant cases for polynomials of two vari-

ables. Here, we will consider only polynomials in three or more variables.

To begin, we list and prove several properties of invertible polynomials and their sym-

metry groups.

Property 5.1. Gmax
W , as an additive group, is generated by the columns of A−1

W

A proof of this is given in [15].
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Property 5.2. If W = W1 +W2 + · · ·+Wm is a disjoint sum, then AW is the block diagonal

matrix:

AW =



AW1

AW2

. . .

AWm


.

This follows immediately from the definition of the exponent matrix and from the fact

that the Wi are in distinct variables.

Property 5.3. If W = W1 +W2 + · · ·+Wm is a disjoint sum, then Gmax
W = Gmax

W1
×Gmax

W2
×

· · · ×Gmax
Wm

By Property 5.1, this group is generated by the columns of A−1
W . By Property 5.2, AW

is a direct sum of the AWi
. Because AW is block diagonal, A−1

W is also block diagonal with

blocks A−1
Wi

. The columns of A−1
W thus generate a group that is the direct product of the

Gmax
Wi

.

Property 5.4. Let W be a loop with maximal symmetry group, Gmax
W . For any non-identity

group element h = (h1, h2, · · · , hn) in Gmax
W , if all of the rational numbers are reduced so that

the numerator and denominator are relatively prime, then all of the hi’s will have the same

denominator.

Let W = xa1
1 x2 + xa2

2 x3 + · · ·+ xann x1. Then

AW =



a1 1 0 · · · 0

0 a2 1
. . .

...

...
. . . . . . . . . 0

0 · · · 0 an−1 1

1 0 · · · 0 an


.

Note that detAW = a1a2 · · · an + (−1)n+1. Call this value D. The inverse of this matrix is

given as Figure 5.2.
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A−1
W =

1

D


a2a3 · · · an −a3a4 · · · an a4 · · · an · · · ±an ∓1
∓1 a1a3 · · · an a1a4 · · · an · · · ∓a1an ±a1

±a2 ∓1 a1a2a4 · · · an · · · ±a1a2an ∓a1a2
...

...
...

...
...

a2a3 · · · an−1 −a3 · · · an−1 a4 · · · an−1 · · · ∓1 a1a2 · · · an−1


Figure 5.2: Inverse Exponent Matrix for a Loop

By Property 5.1, Gmax
W is generated by the columns of the matrix in Figure 5.2. The

last column of this matrix, call it g = (g1

D
, · · · , gn

D
), generates the other columns, so Gmax

W is

generated by this last column. Note that all of the gi are relatively prime to D.

Let h ∈ Gmax
W , with h = (h1, · · · , hn), where h is not the identity. Then h = kg for some

k ∈ N. Then hi = (k/ gcd(k,D))gi
D/ gcd(k,D)

, where D/ gcd(k,D) is relatively prime to k/ gcd(k,D). So

all of the hi have denominator D/ gcd(k,D).

Property 5.5. Let W be a loop with maximal symmetry group, Gmax
W . For any group element

h = (h1, h2, · · · , hn) in Gmax
W , if hi = 0 for some i, then hj = 0, ∀j, 0 ≤ j ≤ n.

Let h ∈ Gmax
W , with h = (h1, · · · , hn), with hi = 0 for some i. Let g = (g1

D
, · · · , gn

D
be

defined as in the proof of Property 5.4. Then h = kg for some k ∈ N, since g generates

Gmax
W . Since 0 = hi = k gi

D
, and gcd(gi, D) = 1, we have that D | k. Thus hj = k

gj
D

= 0 for

all j.

Property 5.6. Let W be a chain with maximal symmetry group, Gmax
W . For any generator of

this group, h = (h1, h2, · · · , hn), if the numerator and denominator of each hi are relatively

prime, then the denominator of hi is strictly less than the denominator of hi+1.
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Let W = xa1
1 + x1x

a2
2 + · · ·+ xn−1x

an
n . Then

AW =



a1 0 · · · · · · 0

1 a2 0
...

0
. . . . . . . . . 0

...
. . . . . . an−1 0

0 · · · 0 1 an


.

The determinant of this matrix is D = detAW = a1a2 · · · an. The inverse of this matrix is

given in Figure 5.3. Denote the first column the matrix in Figure 5.3 by g. By Property

A−1
W =



1
a1

0 0 · · · 0 0
−1
a1a2

1
a2

0 0

1
a1a2a3

−1
a2a3

1
a3

. . .
...

...
...

...
. . . . . . 0

±1
a1···an−1

∓1
a2···an−1

±1
a3···an−1

· · · 1
an−1

0
∓1

a1···an
±1

a2···an
∓1

a3···an · · · −1
an−1an

1
an


Figure 5.3: Inverse Exponent Matrix for a Chain

5.1, the columns of this matrix generate Gmax
W , but all of the columns are generated by g, so

Gmax
W is generated by g. As Gmax

W is cyclic of order D, if h = (h1, · · · , hn) is a generator of

Gmax
W , then h = kg for some k ∈ N such that gcd(k,D) = 1. The denominators of the entries

of h are a1, a1a2, · · · a1a2 · · · an, in that order, and k is relatively prime with each of these.

As each ai ≥ 2, the denominator of hi is strictly less than the denominator of hi+1.

Property 5.7. Let W be a chain with maximal symmetry group, Gmax
W . For any group

element h = (h1, h2, · · · , hn) in Gmax
W , if hi = 0 for some i, then hj = 0, ∀j < i.

From the proof of Property 5.6, we know tha g =
(

1
a1
, −1
a1a2

, · · · , ±1
a1···an

)
is a generator of

Gmax
W . Let h = (h1, h2, · · · , hn) be an element of Gmax

W with hi = 0. There exists k ∈ N such

that h = kg. Since hi = k ±1
a1a2···ai = 0, we know that a1a2 · · · ai | k. Therefore a1a2 · · · aj | k

for all j < i. Hence hj = k ±1
a1a2···aj = 0 for all j < i.
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Property 5.8. Let W = xa1
1 +x1x

a2
2 +· · ·+xn−1x

an
n be a chain with weights q = (q1, q2, · · · , qn).

Any weight, qi, i > 1, can be determined solely from qi−1 and ai.

Since W is invertible, there exists a unique weights vector q = (q1, · · · , qn). By definition

W (cq1x1, · · · , cqnxn) = cW (x1, · · · , xn) for all c ∈ C. This gives that

c(xa1
1 + x1x

a2
2 + · · ·+ xn−1x

an
n ) = cq1

a1xa1
1 + cq1xa1

1 c
q2a2x2 · · · cqn−1xn−1c

qnan
xann .

Equating coefficients, we get that if i > 1, then cqi+1cqi
ai = c, so qi+1q

ai
i = 1. Hence qi

can be determined solely from qi−1 and ai.

Property 5.9. If W is an invertible polynomial with exponent matrix AW , then there is an

entry in every row and in every column of A−1
W of the form ±1

k
, where k ∈ Z, k > 1.

By Property 5.2, AW is a block diagonal matrix, where each block is the exponent matrix

of an atomic type polynomial. Hence it is sufficient to show that this holds for each atomic

type.

If W = xa is a fermat, then A−1
W = [ 1

a
], and the result holds. If W is a loop, then we can

see that the result holds from Figure 5.2. Similarly, if W is a chain, the result holds from

Figure 5.3.

Property 5.10. Given a system of weights, there is at most one distinct polynomial of each

atomic type that has that weight system.

We consider the three cases. If W1 = xa and W2 = xb are both fermat polynomials with

the same weight q, then qa = 1 = qb, so a = b and W1 = W2.

Next, let W1 = xa1
1 +x1x

a2
2 + · · ·+xn−1x

an
n and W2 = xb11 +x1x

b2
2 + · · ·+xn−1x

bn
n be chains

with weights q = (q1, q2, · · · , qn). By the same argument as the fermat case, a1 = b1. From

the proof of Property 5.8, if i > 1 then qi+1q
ai
i = 1 = qi+1q

bi
i . This implies that ai = bi for

all i > 1. Hence W1 = W2.

Now, let W1 = xa1
1 x2 + xa2

2 x3 + · · · + xann x1 and W2 = xb11 x2 + xb22 x3 + · · · + xbnn x1 be

loops with weights q = (q1, q2, · · · , qn). Then by again equating coefficients, we get that
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qaii qi+1 = 1 = qbii qi+1 for 1 ≤ i < n and qann q1 = 1 = qbnn q1. Simplifying, we get that ai = bi

for all i. Hence W1 = W2.

With these properties, we now show when it is possible for W1 and W2 to be invertible

polynomials with the same weights satisfying Gmax
W1
⊂ Gmax

W2
. We do this by considering

several cases below.

Lemma 5.1. Let W1 and W2 be invertible polynomials. If If Gmax
W1
⊂ Gmax

W2
, then AW2A

−1
W1

is an integer matrix.

Recal from Property 5.1 that the columns of A−1
W1

generate Gmax
W1

and that the columns

of A−1
W2

generate Gmax
W2

. Since Gmax
W1
⊂ Gmax

W2
, the columns of A−1

W1
must be sums of the

columns of A−1
W2

. Hence there exists an integer matrix B such that A−1
W1

= A−1
W2
B. So

AW2A
−1
W1

= AW2A
−1
W2
B = B is an integer matrix.

Lemma 5.2. If W1 is a loop in three or more variables, and W1 and W2 have the same

weights, and Gmax
W1
⊂ Gmax

W2
, then W2 does not contain a fermat or a chain.

By way of contradiction, suppose that W2 contains a chain or a fermat. Then xbii is a

monomial of W2 for some i. Thus by Lemma 5.1,

(0, · · · , 0, bi, 0, · · · , 0)A−1
W1
∈ Zn.

Since W1 is invertible, by Property 5.9, there is a column of A−1
W1

for which the ith element

is ±1/ det(AW1). Thus bi = k det(AW1), for some k ∈ Z. Equating the weights of W1 and

W2, we get

1

k det(AW1)
=
ai+1ai+2 · · · ai+n − ai+2ai+3 · · · ai+n + ai+3ai+4 · · · ai+n · · · ∓ ai+n ± 1

det(AW1)
.

with the indices taken modulo n. This implies that

1 = k(ai+1ai+2 · · · ai+n − ai+2ai+3 · · · ai+n + ai+3ai+4 · · · ai+n · · · ∓ ai+n ± 1).
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Some simple algebra shows that this can only hold if n = 2. This is a contradiction, since

W1 has at least three variables.

Lemma 5.3. If W1 is a chain in three or more variables, W1 and W2 have the same weights,

and Gmax
W1
⊂ Gmax

W2
, then W2 has no monomial of the form xbii for i > 2.

By way of contradiction, suppose xbii with i > 2 is a monomial of W2. Since Gmax
W1
⊂ Gmax

W2
,

AW2A
−1
W1

is an integer matrix by Lemma 5.1. Hence

(0, · · · , 0, bi, 0, · · · , 0)A−1
W1
∈ Zn.

This implies that for some integer k, bi = ka1a2 · · · ai

Equating the weights of xi in W1 and W2, we get

a1a2 · · · ai−1 − a1a2 · · · ai−2 + · · · ± 1

a1a2 · · · ai
=

1

ka1a2 · · · ai
.

This simplifies to

1 = k(a1a2 · · · ai−1 − a1a2 · · · ai−2 + · · · ± 1).

Algebraically, this can only hold for i ≤ 2. Since i > 2, this is a contradiction.

Lemma 5.4. If W1 is the sum of two atomic types, and W2 consists of a single atomic type,

then Gmax
W1
6⊂ Gmax

W2
.

If W2 is a fermat, this follows immediately from the fact that chains and loops each

have a minimum of two variables. Suppose that W2 is either a chain or a loop. If W1 is

the sum of two atomic types, it is clear from Property 5.3 that there exists an element of

g = (g1, g2, · · · , gn) in Gmax
W1

for which gi = 0 and for some j > i, gj 6= 0. This violates

Properties 5.5 and 5.7. Therefore, Gmax
W1
6⊂ Gmax

W2
.

Lemma 5.5. If Gmax
W1
⊂ Gmax

W2
, and W2 consists of the sum of atomic types, no two variables

that are part of the same atomic type in W2 form parts of distinct loops or chains in W1.
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Suppose Gmax
W1
⊂ Gmax

W2
. By way of contradiction, suppose that there exist variables that

form part of the same atomic type in W2, that form parts of distinct chains or loops in W1.

Reorder the variables so that if xi and xj form part of W1, then so does xk for i < k < j.

Then there exists i such that the monomial xaii xj is a monomial of W2, but xi and xj do not

form part of the same atomic type in W1. The inverse of AW1 is block matrix, where each

block is the inverse of an exponent matrix of an atomic type polynomial. Thus there exist at

least m columns of A−1
W1

such that the ith entry is zero, where m is the number of monomials

in the atomic type to which xj belongs in W1. From Property 5.9, for one of these columns,

the jth entry is of the form ±1
k

for k ∈ Z, k > 1. Call this column v. We need AW2A
−1
W1

to

be an integer matrix. However, we now have a row of AW2–the row corresponding to the

monomial, xaii xj–and a column of A−1
W1

, v, that have a product of ±1
k

, which is not an integer.

This is a contradiction.

Lemma 5.6. If we have two pairs of polynomials in distinct variables, W1, W2 and W3, W4

satisfying the conditions that both polynomials in each pair have the same weights and Gmax

of the first is contained in the second, then the polynomials W1 +W3 and W2 +W4 have the

same weights and Gmax of the first is contained in Gmax of the second.

This follows almost directly from Property 5.3. Note that strict containment of the

symmetry groups in at least one of the initial pairs is required to guarantee strict containment

for the symmetry groups of the sums.

Proposition 5.7. If W1 and W2 are invertible polynomials with the same weights satisfying

Gmax
W1
⊂ Gmax

W2
, then W1 is a single atomic type.

Lemmas 5.5 and 5.6 show that if W1 and W2 have the same weights and Gmax
W1
⊂ Gmax

W2
,

then for some atomic type in W1, call it w1, there is a subset of the monomials of W2, call it

w2, for which, when treated as polynomials in the appropriate number of variables, w1 and

w2 have the same weights and the maximal symmetry group of w1 is properly contained in

that of w2. Therefore, we can consider each of the atomic types in W1 independently.
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Lemma 5.8. Let W1 and W2 be invertible polynomials with the same weights satisfying

Gmax
W1
⊂ Gmax

W2
. If W1 is a chain, then the only non-trivial W2 is a fermat plus a chain.

From Properties 5.4 and 5.6, it is clear that if Gmax
W1
⊂ Gmax

W2
, then W2 cannot contain a

loop. From Property 5.10, we do not need to consider the case of another chain. Therefore,

we need only consider the cases of fermats, and fermats plus chains.

By Lemma 5.3, at least one variable of any chain will have a weight equal to ±1
k

, for some

k > 1. Similarly, all fermats have weights of this form. Hence, W2 cannot contain more then

one fermat, and that fermat must be of either x1 or x2.

First, we consider the case where the fermat is in x1. Let W1 = xa1
1 +x1x

a2
2 + · · ·+xn−1x

an
n

and W2 = xb11 + xb22 + x2x
b3
3 + · · · + xn−1x

bn
n . From Property 5.6, we are allowed to assume

that the relative order of the variables must remain consistent. Equating the weights of W1

and W2, we see that:

a1 = b1

a1a2

a1 − 1
= b2

In order for Gmax
W1
⊂ Gmax

W2
, we need C = AW2A

−1
W1

to be an integer matrix. In this matrix,

c22 = b2
a2

. Therefore, b2 = ka2 for some integer k. Substituting this into the weights, we see

that:

a2
a1

a1 − 1
= ka2

a1

a1 − 1
= k

This holds iff a1 = 2. Substituting this into the weights for x2, we see that b2 = 2a2. Since

the weights of x1 and x2 match, Property 5.8 gives us that the rest of the weights also match.

Also, all of the other monomials of W2 are fixed by Gmax
W1

, as they are also monomials of W1.

Now, consider the case where the fermat is of x2. Let W1 = xa1
1 + x1x

a2
2 + · · ·+ xn−1x

an
n
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and W2 = xb11 + xb22 + x1x
b3
3 + · · ·+ xn−1x

bn
n . Equating weights, we get

a1 = b1

a1a2

a1 − 1
= b2

a1a2 − a1 + 1

a1a2a3

=
b1 − 1

b1b3

Computing C = AW2A
−1
W1

, we find that c21 = −b2
a1a2

must be an integer. Therefore, b2 = ka1a2

for some integer k. Substituting this into the weights, we see that

a1a2 = ka1a2(a1 − 1)

1 = k(a1 − 1)

This is true if and only if k = 1 and a1 = 2. Therefore, b2 = 2a2. Substituting these

equalities into the weights for x3, we get

a1a2 − a1 + 1

a1a2a3

=
b1 − 1

b1b3

2a2 − 1

2a2a3

=
1

2b3

a2a3

2a2 − 1
= b3

However, c32 = −b3
a2a3

. Hence b3 = ka2a3 for some integer k. Making this substitution, we get

k =
1

2a2 − 1
.

This is never true, hence the fermat in W2 cannot be in x2.

Now consider the case where W2 consists of the sum of two chains. From Lemma 5.3, if

W1 = xa1
1 + x1x

a2
2 + · · ·+ xn−1x

an
n , then there exist monomials xb11 and xb22 in W2. Since W2

is comprised of two chains, this requires that there exist a monomial x1x
bi
i . Equating the
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weights of xi, we get:

1− qi−1

bi
=

1− q1

ai
.

From the proofs of the other sections of this Lemma, we know that a1 = 2, and thus q1 = 1
2
.

Hence,

2bi(1− qi−1) = ai.

Computing C = A−1
W1

, we find that c12 = 0 and ci2 = ±1
a2a3···ai . Thus we require bi = ka2 · · · ai

for some integer k.

Using qi−1 from W1 and substituting in this new value for bi, we get that

ai = ka1 · · · ai(1− qi−1)

ai = k(a1 · · · ai − a1 · · · ai−2 + a1 · · · ai−3 + · · · ± 1)

ai = k(a1 · · · ai−2ai + a1 · · · ai−2(ai−1 − 1)ai − a1 · · · ai−2 + a1 · · · ai−3 + · · · ± 1)

ai > kai

This is a contradiction, hence W2 cannot consist of two chains.

Lemma 5.9. If W1 is a single loop in three or more variables, then W2 does not consist of

a sums of loops.

By way of contradiction, let W2 be the sum of loops such that W1 and W2 have the same

weights, and Gmax
W1
⊂ Gmax

W2
. Reorder the variables so that if xi and xj are a part of the

same loop, xk also forms part of that loop for all k such that i < k < j. This makes A−1
W2

a

diagonal block matrix.

Let g be a column of Gmax
W1

. Then for some integer vector b,

g = A−1
W2
b.

By Property 5.9, for some m, the mth component of g is of the form ±1
l

. Since W1 is a
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loop, in this case l = det(AW1). Now consider the mth component of A−1
W2
b. Because the

numerators of the components of A−1
W2

are integers, and b is an integer vector, the numerators

of their product is also an integer.

If we do not allow the fraction to reduce, the denominator is equal to det(AWm), where

Wm is the loop in W2 that contains xm. This follows from the fact that A−1
W2

is also a block

matrix. Since g = A−1
W2
b, their mth entries must also be equal, hence for some integer l,

±1

det(AW1)
=

l

det(AWm)
.

This implies that

det(AW1) | det(AWm) (5.1)

Since W1 is a loop, the determinants of its exponent matrix is of the form

det(AW1) =
∏
i∈V

(
1− qi
qi

)
± 1,

where V is the set of indices for which xi is a part of the loop. Similarly,

det(AWm) =
∏
i∈Vm

(
1− qi
qi

)
± 1.

Because W1 is a loop, the weights of W1 are strictly less than 1
2
. Also, if 1−qi

qi
= k, then

qi = 1
k+1

. Therefore, k > 1.

Since the weights of Wm are a strict subset of the weights of W1,

∏
i∈VWm

(
1− qi
qi

)
<
∏
j∈VW1

(
1− qj
qj

)
.

But then by (5.1), det(AW1) | det(AWm) < det(AW1) which is a contradiction.

Collectively, these lemmas and propositions show that there is only one interesting case in
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three or more variables: W1 is a single chain, and W2 is a fermat plus a chain. In Section 5.1,

we provide a proof that the B-model isomorphism suggested by the Group-Weights Theorem

holds.

5.1 Explicit Isomorphism

Lemma 5.8 and the Group-Weights Theorem give an A-model isomorphism using the poly-

nomials W1 = x2
1 + x1x

a2
2 + · · ·+ xn−1x

an
n and W2 = x2

1 + x2a2
2 + x2x

a3
3 + · · ·+ xn−1x

an
n . Here,

we explicitly prove the B-model isomorphism found by transposing from A- to B-models in

the three variable case.

Let W = x2 + y2az + zb, V = x2y + yaz + zb, G =< (1/2, 1/2, 0) > and H = {0}. We

prove that BW,G ∼= BV,H by constructing an isomorphism. In order to do this, we will create

both models, compute all of the possible products, and then show that a system of nonlinear

equations has a solution. We follow the construction and multiplication methods described

at length in Chapter 2. We start by finding everything needed to construct BW,G.

qW =

(
1

2
,
b− 1

2ab
,
1

b

)
;

∇W = (2x, 2ay2a−1z, y2a + bzb−1);

Hess(W ) = 4ab(2ab− b+ 1)y2a−2zb−1;

QW basis:
(
{1, y, · · · , y2a−2} × {1, z, · · · , zb−1}

)
∪ {y2a−1};

(QW )G basis: {1, y2, · · · y2a−2} × {1, z, · · · , zb−1};(
QW |fix(g)

)G
= {1, z, · · · zb−2};

BW,G = (QW )G ⊕
(
QW |fix(g)

)G
;

dim (BW,G) = 2ab− b+ 1.
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So, for the appropriate exponents, a basis can be chosen as follows.

Basis Element Degree

b1 ; (0, 0, 0)e 0

by2r1 ; (0, 0, 0)e 2r1(b−1)
ab

bzr2 ; (0, 0, 0)e 2r2
b

by2r1zr2 ; (0, 0, 0)e 2r2
b

bzr2 ; (1/2, 1/2, 0)e 2ar2+ab−b+1
ab

Now, we compute everything that we will need about BV,H .

qV =

(
ab− b+ 1

2ab
,
b− 1

ab
,
1

b

)
;

∇V = (2xy, x2 + aya−1z, ya + bzb−1);

Hess(V ) = 2ab(ab+ b− 1)ya−1zb−1;

QV basis: {x, xz, · · · , xzb−2} ∪
(
{1, y, · · · , ya−1} × {1, z, · · · , zb−1}

)
;

dim (QV ) = 2ab− b+ 1;

BV,H = QV .

Let cx, cy, cz be nonzero constants in C. They will be described explicitly later on. We can

then choose a basis of BV,H to be:

Basis Element Degree

b1 ; (0, 0, 0)e 0

cr1y byr1 ; (0, 0, 0)e 2r1(b−1)
ab

cr2z bzr2 ; (0, 0, 0)e 2r2
b

cr1y c
r2
z byr1zr2 ; (0, 0, 0)e 2r2

b

cxc
r2
z bxzr2 ; (0, 0, 0)e 2ar2+ab−b+1

ab
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Define ϕ such that

b1 ; (0, 0, 0)eW 7→ b1 ; (0, 0, 0)eV ;⌊
y2r1 ; (0, 0, 0)

⌉
W
7→ cr1y byr1 ; (0, 0, 0)eV ;

bzr2 ; (0, 0, 0)eW 7→ cr2z bzr2 ; (0, 0, 0)eV ;⌊
y2r1zr2 ; (0, 0, 0)

⌉
W
7→ cr1y c

r2
z byr1zr2 ; (0, 0, 0)eV ;

bzr2 ; (1/2, 1/2, 0)eW 7→ cxc
r2
z bxzr2 ; (0, 0, 0)eV .

We extend linearly to all of BW,G. Note that b1 ; (0, 0, 0)eW and b1 ; (0, 0, 0)eV are the mul-

tiplicative identities, and they are mapped to each under ϕ.

Consider the multiplication on the basis for BW,G:

by2r1 ; (0, 0, 0)e ? by2s1 ; (0, 0, 0)e =

 by
2r1+2s1 ; (0, 0, 0)e r1 + s1 < a

−b
⌊
y2r1+2s1−2azb−1 ; (0, 0, 0)

⌉
otherwise

by2r1 ; (0, 0, 0)e ? bzs2 ; (0, 0, 0)e = by2r1zs2 ; (0, 0, 0)e

by2r1 ; (0, 0, 0)e ? by2s1zs2 ; (0, 0, 0)e =

 by
2r1+2s1zs2 ; (0, 0, 0)e r1 + s1 < a

0 otherwise

by2r1 ; (0, 0, 0)e ? bzs2 ; (1/2, 1/2, 0)e = 0

bzr2 ; (0, 0, 0)e ? bzs2 ; (0, 0, 0)e =

 bz
r2+s2 ; (0, 0, 0)e r2 + s2 < b

0 otherwise

bzr2 ; (0, 0, 0)e ? by2s1zs2 ; (0, 0, 0)e =

 by
2s1zr2+s2 ; (0, 0, 0)e r2 + s2 < b

0 otherwise

bzr2 ; (0, 0, 0)e ? bzs2 ; (1/2, 1/2, 0)e =

 bz
r2+s2 ; (1/2, 1/2, 0)e r2 + s2 < b− 1

0 otherwise
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by2r1zr2 ; (0, 0, 0)e ? by2s1zs2 ; (0, 0, 0)e =


by2r1+2s1zr2+s2 ; (0, 0, 0)e r1 + s1 < a

and r2 + s2 < b

0 otherwise

by2r1zr2 ; (0, 0, 0)e ? bzs2 ; (1/2, 1/2, 0)e = 0

bzr2 ; (1/2, 1/2, 0)e?bzs2 ; (1/2, 1/2, 0)e =

 4a by2a−2z1+r2+s2 ; (0, 0, 0)e r2 + s2 < b− 1

0 otherwise

The multiplication on our scaled basis of BV,H is computed below.

cr1y byr1 ; (0, 0, 0)e?cs1y bys1 ; (0, 0, 0)e =

 cr1+r2
y byr1+s1 ; (0, 0, 0)e r1 + s1 < a

−bcr1+s1
y

⌊
yr1+s1−azb−1 ; (0, 0, 0)

⌉
otherwise

cr1y byr1 ; (0, 0, 0)e ? cs2z bzs2 ; (0, 0, 0)e = cr1y c
s2
z byr1zs2 ; (0, 0, 0)e

cr1y byr1 ; (0, 0, 0)e ? cs1y cs2z bys1zs2 ; (0, 0, 0)e

=

 cr1+s1
y cs2z byr1+s1zs2 ; (0, 0, 0)e r1 + s1 < a

0 otherwise

cr1y byr1 ; (0, 0, 0)e ? cxcs2z bxzs2 ; (0, 0, 0)e = 0

cr2z bzr2 ; (0, 0, 0)e ? cs2z bzs2 ; (0, 0, 0)e =

 cr2+s2
z bzr2+s2 ; (0, 0, 0)e r2 + s2 < b

0 otherwise

cr2z bzr2 ; (0, 0, 0)e ? cs1y es2 bys1zs2 ; (0, 0, 0)e

=

 cs1y c
r2+s2
z bys1zr2+s2 ; (0, 0, 0)e r2 + s2 < b

0 otherwise

cr2z bzr2 ; (0, 0, 0)e? cxcs2z bxzs2 ; (0, 0, 0)e =

 cxc
r2+s2
z bxzr2+s2 ; (0, 0, 0)e r2 + s2 < b− 1

0 otherwise

cr1y c
r2
z byr1zr2 ; (0, 0, 0)e ? cs1y cs2z bys1zs2 ; (0, 0, 0)e
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=


cr1+s1
y cr2+s2

z byr1+s1zr2+s2 ; (0, 0, 0)e r1 + s1 < a

and r2 + s2 < b

0 otherwise

cr1y c
r2
z byr1zr2 ; (0, 0, 0)e ? cxcs2z bxzs2 ; (0, 0, 0)e = 0

cxc
r2
z bxzr2 ; (0, 0, 0)e ? cxcs2z bxzs2 ; (0, 0, 0)e

=

 −ac
2
xc
r2+s2
z bya−1z1+r2+s2 ; (0, 0, 0)e r2 + s2 < b− 1

0 otherwise

Next, we look at the pairings on the basis of BW,G. Allowing for exponents of zero, we

get the following.

< by2r1zr2 ; (0, 0, 0)e , by2s1zs2 ; (0, 0, 0)e >=


1

4ab
r1 + s1 = a− 1

and r2 + s2 = b− 1

0 otherwise

< bzr2 ; (1/2, 1/2, 0)e , bzs2 ; (1/2, 1/2, 0)e >=


1
b
r2 + s2 = b− 2

0 otherwise

All other pairings are zero. Now, consider the pairings on the basis of BV,H :

< cr1y c
r2
z byr1zr2 ; (0, 0, 0)e , cs1y cs2z bys1zs2 ; (0, 0, 0)e >

=


ca−1
y cb−1

z ( 1
2ab

) r1 + s1 = a− 1

and r2 + s2 = b− 1

0 otherwise

< cxc
r2
z bxzr2 ; (0, 0, 0)e , cxcs2z bxzs2 ; (0, 0, 0)e >

=

 c2
xc
b−2
z (−1

2b
) r2 + s2 = b− 2

0 otherwise

Thus, in order for ϕ to be an isomorphism on the graded Frobenius algebra level, we have
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four conditions, two from the multiplication, two from the pairings. They are:

4ca−1
y cz = −c2

x (5.2)

cb−1
z = cay (5.3)

c2
xc
b−2
z = −2 (5.4)

ca−1
y cb−1

z = 1/2 (5.5)

Combining (5.3) and (5.5), we see that c2a−1
y = 1/2, so cy = 2

1
1−2a . Again from (5.3), we

see that cz = c
a

b−1
y = 2

a
(1−2a)(b−1) . Using this value of cz, we can solve for cx in (5.4). This

gives that cx = −2
1
2

+
(2−b)a

2(1−2a)(b−1) = −2
(1−2a)(b−1)+a(2−b)

2(1−2a)(b−1) = −2
4a−3ab+b−1
2(1−2a)(b−1) . These numbers were

constructed so as to be solutions to (5.3), (5.4), and (5.5). Therefore, we only need to check

that they are also solutions to (5.2). Note that:

−c2
x = 2

4a−3ab+b−1
(1−2a)(b−1)

and

4ca−1
y cz = 22 ∗ 2

a−1
1−2a ∗ 2

a
(1−2a)(b−1)

= 2
(2b+4a−4ab−2)+(ab−a−b+1)+a

(1−2a)(b−1)

= 2
4a−3ab+b−1
(1−2a)(b−1)

= −c2
x

Therefore, if we let cx,cy,cz be defined as follows, then ϕ, as defined above, is a ring homo-

64



morphism that respects the pairing.

cx = −2
4a−3ab+b−1
2(1−2a)(b−1)

cy = 2
1

1−2a

cz = 2
a

(1−2a)(b−1)

Since ϕ is a diagonal map, with all non-zero entries on the diagonal, it is also a vector space

isomorphism. Thus, ϕ is an isomorphism on the graded Frobenius algebra level. We conclude

that BW,G ∼= BV,H .

Chapter 6. Conclusion

We have described the construction of a generalized Landau-Ginzburg B-model. In this con-

struction, we have allowed nondiagonal group representations to be used. We have demon-

strated all of the changes and allowances that must be made in this case, and have worked

on defining a multiplication. We have shown through explicit computation that this mul-

tiplication can be made to be associative in several cases. We have proven that such a

multiplication is also possible in the case of a certain type of group representation.

To avoid some of the difficulties apparent in the nonabelian construction, we have also

shown that invariant theory can be used to create less unwieldy examples. Picking a nice

group representation and then finding an admissible polynomial will facilitate future exam-

ples. These examples may be useful in determining necessary and sufficient conditions for

an associative multiplication, and reveal patterns in the requisite ε values.

We have also looked at another generalization of B-models, using noninvertible polyno-

mials. While we still do not have a proof for associativity in general, we have shown that any

B-model constructed using P8 has an associative multiplication, regardless of which abelian

group is used.

To further understand the B-model, we have also found two sets of B-models–one using
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a trivial group, one using a nontrivial abelian group–that are isomorphic. We defined a

map and proved explicitly that it is an isomorphism. As the higher structure of B-models

created with nontrivial groups is not well understood, this particular case may be of use in

the future.
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