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ABSTRACT

Existence of a Periodic Brake Orbit in the Fully Symmetric
Planar Four Body Problem

Ammon Si-yuen Lam
Department of Mathematics, BYU

Master of Science

We investigate the existence of a symmetric singular periodic brake orbit in the equal
mass, fully symmetric planar four body problem. Using regularized coordinates, we
remove the singularity of binary collision for each symmetric pair. We use topological
and symmetry tools in our investigation.

Keywords: four body problem, brake orbits, binary collision, topological tools
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Chapter 1

Introduction

1.1 The Four Body Problem

In the classical four-body problem we study the motion of four bodies moving according

to Newton’s law of gravitation. In the symmetric planar equal mass four body problem,

the masses of the four bodies are all equal, and they lie on the same plane with their

positions symmetric to each other along the horizontal and vertical direction. Chen [1]

has proved existence of periodic orbits in the planar equal mass four body problem with

parallelogram configuration. Bakker, Ouyang, Yan and Simmons [2] have proved the

existence and determined stability of symmetric planar periodic orbits with simultaneous

binary collision in the symmetric four-body problem.

Our main focus is on periodic brakes orbits in four-body problem. A brake orbit is a

solution to the four-body problem for which, at some instant, all four bodies have zero

velocity. Weinstein [3], Rabinowitz [4] and Chen [5] have studied periodic brake orbit

under different set ups. Here we are looking for periodic brake orbit in the symmetric

planar equal mass four-body problem.

Using numerical stimulations, we identified a potential candidate for a periodic brake

orbit. Figure 1.1 is the periodic brake orbit that we are going to study, and we give it a

name periodic brake orbit 121 because it hits the x1 axis and the x2 axis then the x1 axis

again in that order. We will give a rigorous definition of the periodic brake orbit 121 in

the Main Results in Chapter 2.

1
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Figure 1.1: Periodic brake orbit 121

In the periodic brake orbits that we study simultaneous binary collision (SBC) is involved,

meaning that four bodies would collide with each other (with infinite speed and infinite

acceleration at the collision), and bounce back to the opposite direction. The singularity

at collision creates problems while trying to analyze the orbits. When trying to prove

the existence of particular solutions to an n-body problem, the method of minimization

of action (a variational technique) is often used. However the orbit we are trying to

prove existence has a singularity at collision between our boundary conditions. Marchal

[6] showed that for the method of minimization of action to be used, singularities can

only occur at initial or final times but not intermediate times. Therefore the method

of minimization of action cannot be used to prove existence of our target orbit. As a

result we turn to topological techniques. We first need to regularize the simultaneous

binary collisions. While binary collisions are well known to be regularizable, Simó[7]

showed that simultaneous binary collision can be regularized too. After regularization we

prove the existence of our target orbit using the shooting method. Topological techniques

and regularization has been used in several instances to prove existence of solutions with

regularizable collisions. Moeckel [8] used topological techniques to prove existence of a

solution with regularizable collisions in the collinear three body problem. Duokui Yan

[9] [10] used topological techniques to prove existence of a solution with regularizable

collisions in a planar three body problem and a planar equal mass four body problem.

Regina Mart́ınez [11] gives topological proof of solutions with regularizable collisions in

several even number n-body problems. Ouyang, Yan, and Simmons [12] used topological

techniques to prove existences of periodic solutions with regularizable collisions in several

even number n-body problems.
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Besides using regularization, to apply the shooting method we used several differential

inequalities to use get estimates of time intervals and information about the orbit between

collisions. Symmetries are used to generate the full orbit from a part of the orbit. One

part of the results has not been proven analytically so we provide only numerical results

for that part. At the end we will discuss other SBC periodic brake orbits orbits that we

have found numerically. Techniques that we used here can likely be applied as we try

proving the existence of those orbits too.



Chapter 2

Main Results

Our goal is to prove the existence of a symmetric periodic brake orbit with simultaneous

binary collision (SBC) in the equal mass, fully symmetric planar four body problem.

Section 2.1 lays out the set up for the fully symmetric planar four body problem and

the resulting system of differential equations. In section 2.2 we transform the original

coordinates into regularized coordinates and gives its corresponding system of differential

equations. Section 2.3 describes the SBC periodic brake orbit we are trying to prove

existence for. Section 2.4 describes the way of generating a full periodic orbit from part

of it using symmetry. Section 2.5 shows how we can scale any solution to a particular

energy level of the same sign. Section 2.6 and 2.7 proves the existence of an orbit going

up and an orbit going down at x2 axis collision. In section 2.8 we prove the existence

of the periodic solution by Intermediate Value Theorem, using the results in all previous

sections.

4
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2.1 The Equations

We start with the equations of the equal mass planar four-body problem. Let m ∈ R+

and πk ∈ R2, k = {1, 2, 3, 4}, be the masses and positions of three particles. The motions

of the four particles are governed by the differential equations

m
d2πk
dt2

=
∂U

∂πk
, k = 1, 2, 3, 4,

where

U(π1, π2, π3, π4) =
∑
i<j

m2

|πi − πj|
i, j ∈ 1, 2, 3, 4.

Dividing these equations through by m, and carrying out the partial derivatives gives

d2πk
dt2

=
∑
j<k

m(πj − πk)
|πj − πk|3

, j, k = 1, 2, 3, 4.

Writing these out we get

d2π1
dt2

=
m(π2 − π1)
|π2 − π1|3

+
m(π3 − π1)
|π3 − π1|3

+
m(π4 − π1)
|π4 − π1|3

d2π2
dt2

=
m(π1 − π2)
|π1 − π2|3

+
m(π3 − π2)
|π3 − π2|3

+
m(π4 − π2)
|π4 − π2|3

d2π3
dt2

=
m(π1 − π3)
|π1 − π3|3

+
m(π2 − π3)
|π2 − π3|3

+
m(π4 − π3)
|π4 − π3|3

d2π4
dt2

=
m(π1 − π4)
|π1 − π4|3

+
m(π2 − π4)
|π2 − π4|3

+
m(π3 − π4)
|π3 − π4|3

.



Main Results 6

Figure 2.1: Position of the four particles

We let π1 = (x1, x2). Through an Ansätz we impose a symmetry constraint, and set the

coordinates of the four vectors to be respectively:

π1 = (x1, x2)

π2 = (−x1, x2)

π3 = (−x1,−x2)

π4 = (x1,−x2)

for x1 ≥ 0 and x2 ≥ 0.

So π1 is in the 1st quadrant, π2 is in the 2nd quadrant, π3 is in the 3rd quadrant, π4 is in

the 4th quadrant. (See Figure 2.1)

Now we can simplify the equations once we plug in the coordinates of each πi
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d2π1
dt2

=
m(−2x1, 0)

|(−2x1, 0)|3
+
m(−2x1,−2x2)

|(−2x1,−2x2)|3
+
m(0,−2x2)

|(0,−2x2)|3
d2π2
dt2

=
m(2x1, 0)

|(2x1, 0)|3
+
m(0,−2x2)

|(0,−2x2)|3
+
m(2x1,−2x2)

|(2x1,−2x2)|3
d2π3
dt2

=
m(2x1, 2x2)

|(2x1, 2x2)|3
+
m(0, 2x2)

|(0, 2x2)|3
+
m(2x1, 0)

|(2x1, 0)|3
d2π4
dt2

=
m(0, 2x2)

|(0, 2x2)|3
+
m((−2x1, 2x2))

|(−2x1, 2x2)|3
+
m(2x1, 0)

|(2x1, 0)|3
.

If we let
d2π1

dt2
= (ẍ1, ẍ2) then

ẍ1 = m

(
−

1

4x21
−

x1

4(x21 + x22)
3/2

)
(2.1)

ẍ2 = m

(
−

1

4x22
−

x2

4(x21 + x22)
3/2

)
(2.2)

and we would have

d2π1
dt2

= (ẍ1, ẍ2)

d2π2
dt2

= (−ẍ1, ẍ2)

d2π3
dt2

= (−ẍ1,−ẍ2)

d2π4
dt2

= (ẍ1,−ẍ2).
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Reduce to Studying One Particle Only

Since particles π2, π3, π4 have their position (and thus acceleration) strictly determined

by π1, it is sufficient to study the behavior of particle π1 alone.

Theorem 2.1. The mass m in differential equations 2.1 and 2.2 can be scaled to one

under appropriate time change.

Proof. Begin with differetial equations 2.1 and 2.2:

ẍ1(t) = m

(
−

1

4x21(t)
−

x1(t)

4(x21(t) + x22(t))
3/2

)
(2.3)

ẍ2(t) = m

(
−

1

4x22(t)
−

x2(t)

4(x21(t) + x22(t))
3/2

)
, (2.4)

introduce a time change
√
mτ = t,then the differential equations become:

∂2x1(
√
mτ)

∂t2
= m

(
−

1

4x21(
√
mτ)
−

x1(
√
mτ)

4(x21(
√
mτ) + x22(

√
mτ))3/2

)
∂2x2(

√
mτ)

∂t2
= m

(
−

1

4x22(
√
mτ)
−

x2(
√
mτ)

4(x21(
√
mτ) + x22(

√
mτ))3/2

)
,

use chain rule to change the partical derivative from t to τ

m
∂2x1(

√
mτ)

∂τ 2
= m

(
−

1

4x21(
√
mτ)
−

x1(
√
mτ)

4(x21(
√
mτ) + x22(

√
mτ))3/2

)
m
∂2x2(

√
mτ)

∂τ 2
= m

(
−

1

4x22(
√
mτ)
−

x2(
√
mτ)

4(x21(
√
mτ) + x22(

√
mτ))3/2

)
,

therefore we have

∂2x1(
√
mτ)

∂τ 2
= −

1

4x21(
√
mτ)
−

x1(
√
mτ)

4(x21(
√
mτ) + x22(

√
mτ))3/2

∂2x2(
√
mτ)

∂τ 2
= −

1

4x22(
√
mτ)
−

x2(
√
mτ)

4(x21(
√
mτ) + x22(

√
mτ))3/2
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sytem of differential equations with the mass scaled to one.

Since mass can be scaled away, we can study the differential equations assuming mass

m = 1.

Our system of differential equations become:

ẍ1 = −
1

4x21
−

x1

4(x21 + x22)
3/2

(2.5)

ẍ2 = −
1

4x22
−

x2

4(x21 + x22)
3/2
. (2.6)

on the open first quadrant x1 > 0, x2 > 0.

From the system of differential equations above we can obtain a Hamiltonian

H =
1

2
(p21 + p22) + (x1ẍ1 + x2ẍ2)

=
1

2
(p21 + p22)−

1

4x1
− 1

4x2
− 1

4(x21 + x22)
1/2
. (2.7)

where p1 = ẋ1 and p2 = ẋ2 (velocity of the particle in the first quadrant).

Checking that H is a Hamiltonian:
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dH

dp1
= p1 = ẋ1

dH

dp2
= p2 = ẋ2

dH

dx1
= −

1

4x21
−

x1

4(x21 + x22)
3/2

= ṗ1

dH

dx2
= −

1

4x22
−

x2

4(x21 + x22)
3/2

= ṗ2.

Notice here that as x1 → 0 or x2 → 0 (near collision), both ẍ1, ẍ2 and our Hamiltonian

H would blow up. In order to study the behavior of the particles near collision, we need

a change of coordinates.

2.2 Introducing Regularized Coordinate

We introduce new coordinates Q1, Q2, P1 and P2, from which we apply a symplectic

transformation which preserves the form of the Hamiltonian equations. As the first step

of the symplectic transformation, we define a generating function

F = p1Q
2
1 + p2Q

2
2.

Through our generating function we define

x1 =
dF

dp1
= Q2

1

x2 =
dF

dp2
= Q2

2

P1 =
dF

dQ1

= 2p1Q1

P2 =
dF

dQ2

= 2p2Q2.
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Therefore the relationship between the old coordinate and the regularized coordinate is:

x1 = Q2
1

x2 = Q2
2

p1 =
P1

2Q1

p2 =
P2

2Q2

.

(2.8)

Now replace the old coordinates by the regularized coordinates into our Hamiltonian H

(equation 2.7) to obtain Ĥ

Ĥ =
1

2

(
P 2
1

4Q2
1

+
P 2
2

4Q2
2

)
− 1

4

(
1

Q2
1

+
1

Q2
2

+
1

(Q4
1 +Q4

2)
1/2

)
(2.9)

In order to get rid of the singularity when Q1 → 0 or Q2 → 0, we introduce a time change

from t to s. As a particle approaches binary collision, we would observe that pi → ∞
as Qi → 0. Defining s by dt

ds
= Q2

1Q
2
2 means that as Qi → 0, a small change in t would

correspond to a big change in s, resulting in a time dilation in s near collision. Through

which the ’velocity’ in s, Pi is made finite at collision.

Multiply Ĥ by Q2
1Q

2
2 to get

dt

ds
Ĥ =

1

8

(
P 2
1Q

2
2 + P 2

2Q
2
1

)
− 1

4

(
Q2

2 +Q2
1 +

Q2
1Q

2
2

(Q4
1 +Q4

2)
1/2

)
.

Define a Hamiltonian Γ to be

Γ =
dt

ds
(Ĥ − E)

and we get

Γ =
1

8

(
P 2
1Q

2
2 + P 2

2Q
2
1

)
− 1

4

(
Q2

2 +Q2
1 +

Q2
1Q

2
2

(Q4
1 +Q4

2)
1/2

)
− EQ2

1Q
2
2, (2.10)

a Hamiltonian defined in the extended phase space.
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Proposition 2.2. Γ is C1 in the whole plane.

Proof. Looking at equation 2.10

Γ =
1

8

(
P 2
1Q

2
2 + P 2

2Q
2
1

)
− 1

4

(
Q2

2 +Q2
1 +

Q2
1Q

2
2

(Q4
1 +Q4

2)
1/2

)
− EQ2

1Q
2
2,

we readily see that Γ as a functions of P1, P2, Q1 and Q2 has no discontinuity except

possible when Q1 → 0 and Q2 → 0.

Consider

∣∣∣∣ Q2
1Q

2
2

(Q4
1 +Q4

2)
1/2

∣∣∣∣ when Q1 → 0 and Q2 → 0. Because

∣∣∣∣ Q2
1Q

2
2

(Q4
1 +Q4

2)
1/2

∣∣∣∣ ≤ ∣∣∣∣ Q2
1Q

2
2

(Q4
1)

1/2

∣∣∣∣
≤ |Q2

2| → 0,

there is no singularity for Γ when Q1 → 0 and Q2 → 0 or at any point in the whole plane.

Therefore Γ is C1 in the whole plane.

We are assuming a system with no energy lost (perfectly elastic collision). Therefore E

does not vary with time. Under this set up, the level curve given by Γ = 0 would give us

a system of differential equations in the regularized coordinates.

Γ = 0 is the new Hamiltonian system given by

−Ṗ1 =
∂Γ

∂Q1

−Ṗ2 =
∂Γ

∂Q2

Q̇1 =
∂Γ

∂P1

Q̇2 =
∂Γ

∂P2

.
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Therefore

Q̇1 =
1

4
P1Q

2
2

Q̇2 =
1

4
P2Q

2
1

Ṗ1 = −1

4
P 2
2Q1 +

1

2
Q1 +

1

2

Q1Q
6
2

(Q4
1 +Q4

2)
3/2

+ 2EQ1Q
2
2

Ṗ2 = −1

4
P 2
1Q2 +

1

2
Q2 +

1

2

Q2Q
6
1

(Q4
1 +Q4

2)
3/2

+ 2EQ2Q
2
1.

(2.12)

It is important to point out that in the regularized coordinate system we have a C1 system

of differential equations away from the origin, even at simlutaneous binary collision.

Theorem 2.3. Under regularized coordinate, the differential equation is real analytic

except possibly the origin, even through simultaneous binary collision.

Proof. As long as Q1 and Q2 are not zero at the same time (which covers away from col-

lision and binary collision), there is no singularity in our differential equation. Therefore

our differential equation is continuous away from the origin.

Proposition 2.4. P1 = ±
√

2 when Q1 = 0 and Q2 6= 0; P2 equals to ±
√

2 when Q2 = 0

and Q1 6= 0.

Proof. We begin with Hamiltonian Γ (equation 2.10) and set Γ = 0.

0 =
1

8

(
P 2
1Q

2
2 + P 2

2Q
2
1

)
−

1

4

(
Q2

2 +Q2
1 +

Q2
1Q

2
2

(Q4
1 +Q4

2)
1/2

)
− EQ2

1Q
2
2.

Set Q1 = 0 and we get

0 =
1

8
P 2
1Q

2
2 −

1

4
Q2

2.

Since Q2 6= 0,

P 2
1 = 2

P1 = ±
√

2.
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The result for P2 equals to ±
√

2 when Q2 = 0 and Q1 6= 0 can be obtained similarly.

Note that P2 equals to ±
√

2 for multiple solution that has binary collision at the same

point does not violates the uniqueness of solution. Two different solution can have all four

coordinates the same in the extended regularized plane because Q1 = 0 forces P1 = ±
√

2

or Q2 = 0 forces P2 = ±
√

2. However this does not violates the uniqueness of solution

because the energy H is still different for the two different solutions.

Proposition 2.5. For each (P1, P2) ∈ R2, the point (Q1 = 0, Q2 = 0, P1, P2) is an

equilibrium in the regularized coordinate of the system 2.12.

Proof. Consider

∣∣∣∣ Q1Q6
2

(Q4
1+Q

4
2)

3/2

∣∣∣∣ and

∣∣∣∣ Q2Q6
1

(Q4
1+Q

4
2)

3/2

∣∣∣∣ when Q1 → 0 and Q2 → 0. Now

∣∣∣∣ Q2Q
6
1

(Q4
1 +Q4

2)
3/2

∣∣∣∣ ≤ ∣∣∣∣ Q2Q
6
1

(Q4
1)

3/2

∣∣∣∣
≤ |Q2| → 0∣∣∣∣ Q1Q

6
2

(Q4
1 +Q4

2)
3/2

∣∣∣∣ ≤ ∣∣∣∣ Q1Q
6
2

(Q4
2)

3/2

∣∣∣∣
≤ |Q1| → 0.

As a result for an fixed P1 and P2, when Q1 → 0 and Q2 → 0 we have

Q̇1 =
1

4
P1Q

2
2 → 0

Q̇2 =
1

4
P2Q

2
1 → 0

Ṗ1 = −1

4
P 2
2Q1 +

1

2
Q1 +

1

2

Q1Q
6
2

(Q4
1 +Q4

2)
3/2

+ 2EQ1Q
2
2 → 0

Ṗ2 = −1

4
P 2
1Q2 +

1

2
Q2 +

1

2

Q2Q
6
1

(Q4
1 +Q4

2)
3/2

+ 2EQ2Q
2
1 → 0.

Therefore for any fixed (P1, P2) ∈ R2, the point (Q1 = 0, Q2 = 0, P1, P2) is an equilibrium

in the regularized coordinate system.
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2.3 Periodic Brake Orbit 121

Our main goal is to prove the existence of a SBC periodic brake orbit. Using numerical

stimulations, we have generated a solution that is close to satisfying the the SBC brake

orbit criteria. The two plots below are the numerical stimulated solution in the original

coordinates and the regularized coordinates.

Figure 2.2: Periodic brake orbit 121

Figure 2.2 plotted the SBC periodic brake orbit we are looking for on both x1-x2 plane

and Q1-Q2 plane. Looking that the left plot (x1-x2 plane), the particle starts at a brake,

first collides on the x1 axis, then hits the x2 axis and bounces back under the exact same

track, hits the x1 axis at the same spot, and finally reach a brake again at the starting

position. To explain the relationship between xi and Qi, notice that as xi → 0, Qi → 0

at the same time. While in the x1-x2 plane the particle bounces back from the axis after

collision, in the Q1-Q2 plane the particle would pass through the axis in a C1 manner.

From now on we are going to refer to this particular SBC periodic brake orbit as periodic

brake orbit 121 (121 tells us the order of the binary collisions against x1 and x2 axis

between two brakes).

In Chapter 3 Future Works we will talk about other possible SBC periodic brake orbit

with a different set of collisions, and show the numerical stimulations for those potential

SBC periodic brake orbits.
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2.4 Generating the Full Periodic Orbit from Part of

it Using Symmetry

In the regularized plane, periodic brake orbit 121 can be divided into four parts that are

symmetric to each other. By symmetry and a proper time change we can generate the

full periodic orbit from one part of the orbit.

Consider periodic brake orbit 121 as illustrated in Figure 2.3.

Figure 2.3: Periodic brake orbit 121 in four segments

We can describe periodic brake orbit 121 in terms of quadrants in the Q1-Q2 plane by

the flow chart below: (I for 1st quadrant, II for 2nd quadrant, etc.)

brake at I → IV → III → brake at II → III → IV → brake at I

From the brake in the I quadrant to the brake in the II quadrant, we refer to the orbit

in I and IV quadrants as the 1st segment, the orbit in III and II quadrants as the 2nd

segment. From the brake in the II quadrant to the brake in the I quadrant, we refer to

the orbit in III and II quadrants to as 3rd segment, the orbit in I and IV quadrants as

the 4th segment.
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Let T denote the full period of the orbit.

In order for the 1st segment to be able to generate the other three segment in a continuous

way such that the other three segments satisfy the differential equations 2.12 at the same

time, we need to impose the restriction that P2 = 0 when Q1 = 0. (In other words, to use

the argument below, our 1st segment orbit must satisfy the condition that P2 = 0 when

Q1 = 0)

Suppose the 1st segment of the periodic orbit is given by

(Q1, Q2, P1, P2)(s) 0 ≤ s ≤ T

4

then we define the others segments in the following way:

2nd segment:

(−Q1, Q2, P1,−P2)(
T

2
− s) T

4
≤ s ≤ T

2

3rd segment:

(−Q1, Q2,−P1, P2)(s−
T

2
)

T

2
≤ s ≤ 3T

4

4th segment:

(Q1, Q2,−P1,−P2)(T − s)
3T

4
≤ s ≤ T

Our claim is that the 2nd, 3rd and 4th segment defined in this way does combine with

the 1st segment to form a periodic orbit.

First, we have to check that the head and tails of these segments do join together. Note

that we have the following constraints:

Q1(t) = 0 and Q2(t) = 0 when t =
T

4
or

3T

4

P1(t) = 0 and P2(t) = 0 when t = 0 or
T

2
or T
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End of 1st segment:

(Q1, Q2, P1, P2)(
T

4
) = (0, Q2(

T

4
), P1(

T

4
), 0)

Beginning of 2nd segment:

(−Q1, Q2, P1,−P2)(
T

4
) = (0, Q2(

T

4
), P1(

T

4
), 0)

End of 2nd segment:

(−Q1, Q2, P1,−P2)(
T

2
) = (−Q1(

T

2
), Q2(

T

2
), 0, 0)

Beginning of 3rd segment:

(−Q1, Q2,−P1, P2)(
T

2
) = (−Q1(

T

2
), Q2(

T

2
), 0, 0)

End of 3rd segment:

(−Q1, Q2,−P1, P2)(
3T

4
) = (0, Q2(

3T

4
), P1(

3T

4
), 0)

Beginning of 4th segment:

(Q1, Q2,−P1,−P2)(
3T

4
) = (0, Q2(

3T

4
), P1(

3T

4
), 0)

End of 4th segment:

(Q1, Q2,−P1,−P2)(T ) = (Q1(0), Q2(0), 0, 0)

Beginning of 1st segment:

(Q1, Q2, P1, P2)(0) = (Q1(0), Q2(0), 0, 0)

So we see that the heads and tails of the segments do join together.

Now we have to check that, suppose segment 1 satisfies the system of differential equations

2.12, then segment 2, 3 and 4 also satisfy the same system of differential equations.

Suppose segment 1 satisfies the system of differential equations 2.12
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Segment 2:

Use Q̂1, Q̂2, P̂1, P̂2 to represent the the 4 coordinates of segment 2. Let

Q̂1 = −Q1(
T

2
− s)

Q̂2 = Q2(
T

2
− s)

P̂1 = P1(
T

2
− s)

P̂2 = −P2(
T

2
− s).

Then

dQ̂1(s)

ds
=
d
(
−Q1(

T
2
− s)

)
ds

= Q̇1(
T

2
− s)

=
1

4
P1(

T

2
− s)Q2

2(
T

2
− s)

=
1

4
P̂1(s)Q̂

2
2(s)

and

dQ̂2(s)

ds
=
d
(
Q2(

T
2
− s)

)
ds

= −Q̇2(
T

2
− s)

= −1

4
P2(

T

2
− s)Q2

1(
T

2
− s)

=
1

4
P̂2(s)Q̂

2
1(s)
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and

dP̂1(s)

ds
=
d
(
P1(

T
2
− s)

)
ds

= −Ṗ1(
T

2
− s)

=
1

4
P 2
2 (
T

2
− s)Q1(

T

2
− s)− 1

2
Q1(

T

2
− s)− 1

2

Q1(
T
2
− s)Q6

2(
T
2
− s)(

Q4
1(
T
2
− s) +Q4

2(
T
2
− s)

) 3
2

− 2EQ1(
T

2
− s)Q2

2(
T

2
− s)

= −1

4
P̂ 2
2 (s)Q̂1(s) +

1

2
Q̂1(s) +

1

2

Q̂1(s)Q̂
6
2(s)(

Q̂4
1(s) + Q̂4

2(s)
) 3

2

+ 2EQ̂1(s)Q̂
2
2(s)

and

dP̂2(s)

ds
=
d
(
−P2(

T
2
− s)

)
ds

= Ṗ2(
T

2
− s)

= −1

4
P 2
1 (
T

2
− s)Q2(

T

2
− s) +

1

2
Q2(

T

2
− s) +

1

2

Q2(
T
2
− s)Q6

1(
T
2
− s)(

Q4
1(
T
2
− s) +Q4

2(
T
2
− s)

) 3
2

+ 2EQ2(
T

2
− s)Q2

1(
T

2
− s)

= −1

4
P̂ 2
1 (s)Q̂2(s) +

1

2
Q̂2(s) +

1

2

Q̂2(s)Q̂
6
1(s)(

Q̂4
1(s) + Q̂4

2(s)
) 3

2

+ 2EQ̂2(s)Q̂
2
1(s).

Therefore segment 2 also satisfies the system of differential equations 2.12.
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Segment 3:

Use Q̌1, Q̌2, P̌ 1, P̌ 2 to represent the the 4 coordinates of segment 3. Let

Q̌1 = −Q1(s−
T

2
)

Q̌2 = Q2(s−
T

2
)

P̌ 1 = −P1(s−
T

2
)

P̌ 2 = P2(s−
T

2
).

Then

dQ̌1(s)

ds
=
d
(
−Q1(s− T

2
)
)

ds

= −Q̇1(s−
T

2
)

= −1

4
P1(s−

T

2
)Q2

2(s−
T

2
)

=
1

4
P̌ 1(s)Q̌

2
2(s)

and

dQ̌2(s)

ds
=
d
(
Q2(s− T

2
)
)

ds

= Q̇2(s−
T

2
)

=
1

4
P2(s−

T

2
)Q2

1(s−
T

2
)

=
1

4
P̌ 2(s)Q̌

2
1(s)
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and

dP̌ 1(s)

ds
=
d
(
−P1(s− T

2
)
)

ds

= −Ṗ1(s−
T

2
)

=
1

4
P 2
2 (s− T

2
)Q1(s−

T

2
)− 1

2
Q1(s−

T

2
)− 1

2

Q1(s− T
2
)Q6

2(s− T
2
)(

Q4
1(s− T

2
)−Q4

2(s− T
2
)
) 3

2

− 2EQ1(s−
T

2
)Q2

2(s−
T

2
)

= −1

4
P̌ 2

2(s)Q̌1(s) +
1

2
Q̌1(s) +

1

2

Q̌1(s)Q̌
6
2(s)(

Q̌4
1(s) + Q̌4

2(s)
) 3

2

+ 2EQ̌1(s)Q̌
2
2(s)

and

dP̌ 2(s)

ds
=
d
(
P2(s− T

2
)
)

ds

= Ṗ2(s−
T

2
)

= −1

4
P 2
1 (s− T

2
)Q2(s−

T

2
) +

1

2
Q2(s−

T

2
) +

1

2

Q2(s− T
2
)Q6

1(s− T
2
)(

Q4
1(s− T

2
) +Q4

2(s− T
2
)
) 3

2

+ 2EQ2(s−
T

2
)Q2

1(s−
T

2
)

= −1

4
P̌ 2

1(s)Q̌2(s) +
1

2
Q̌2(s) +

1

2

Q̌2(s)Q̌
6
1(s)(

Q̌4
1(s) + Q̌4

2(s)
) 3

2

+ 2EQ̌2(s)Q̌
2
1(s).

Therefore segment 3 also satisfies the system of differential equations 2.12.

Segment 4:

Use Q̃1, Q̃2, P̃1, P̃2 above to represent the the 4 coordinates of segment 4.
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Let

Q̃1 = Q1(T − s)

Q̃2 = Q2(T − s)

P̃1 = −P1(T − s)

P̃2 = −P2(T − s).

Then

dQ̃1(s)

ds
=
d
(
Q1(T − s)

)
ds

= −Q̇1(T − s)

= −1

4
P1(T − s)Q2

2(T − s)

=
1

4
P̃1(s)Q̃

2
2(s)

and

dQ̃2(s)

ds
=
d
(
Q2(T − s)

)
ds

= −Q̇2(T − s)

= −1

4
P2(T − s)Q2

1(T − s)

=
1

4
P̃2(s)Q̃

2
1(s)

and

dP̃1(s)

ds
=
d
(
−P1(T − s)

)
ds

= Ṗ1(T − s)

= −1

4
P 2
2 (T − s)Q1(T − s) +

1

2
Q1(T − s) +

1

2

Q1(T − s)Q6
2(T − s)(

Q4
1(T − s) +Q4

2(T − s)
) 3

2

+ 2EQ1(T − s)Q2
2(T − s)

= −1

4
P̃ 2
2 (s)Q̃1(s) +

1

2
Q̃1(s) +

1

2

Q̃1(s)Q̃
6
2(s)(

Q̃4
1(s) + Q̃4

2(s)
) 3

2

+ 2EQ̃1(s)Q̃
2
2(s)
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and

dP̃2(s)

ds
=
d
(
−P2(T − s)

)
ds

= Ṗ2(T − s)

= −1

4
P 2
1 (T − s)Q2(T − s) +

1

2
Q2(T − s) +

1

2

Q2(T − s)Q6
1(T − s)(

Q4
1(T − s) +Q4

2(T − s)
) 3

2

+ 2EQ2(T − s)Q2
1(T − s)

= −1

4
P̃ 2
1 (s)Q̃2(s) +

1

2
Q̃2(s) +

1

2

Q̃2(s)Q̃
6
1(s)(

Q̃4
1(s) + Q̃4

2(s)
) 3

2

+ 2EQ̃2(s)Q̃
2
1(s).

Therefore segment 4 also satisfies the system of differential equations 2.12.

Now since all 4 segments’ head and tail do join together, and they all satisfy differential

equations 2.12, by uniqueness of solutions to the initial value problem, they must form a

periodic orbit.

2.5 Zero Momentum Curve and Scaling Energy

In the coming sections we will consider solutions with different energy. It turns out that

finding one of those solutions would mean that we can find it with all energy of the same

sign. First we talk about what a zero momentum curve is. Then we show that any orbit

can be scaled to a chosen energy level without changing the shape of the orbit, so we can

scale one zero momentum curve to another.

While looking for a brake orbit, it is very difficult to specific the right initial position and

velocity so that the orbit would momentarily reach a brake at some point. As a result we

pick a family of orbits that starts stationary, and see whether a correctly chosen initial

position would result in an orbit that returns back to the initial position at some time.

Since energy is conserved, if the orbit returns to its initial stationary position it must

reach a brake at that point (Having a non-zero velocity would means it has extra kinetic

energy that is not present at the initial position, contradicting energy conservation).
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Now given any negative energy, we can identify a zero momentum curve for which under

zero initial velocity, all the initial positions along the curve has the same energy. Figure

2.4 showed the zero momentum curves for a few different energy levels.

Figure 2.4: Zero momentum curves

Now given energy H0 < 0, the zero momentum curve divides the 1st quadrant into two

regions, a permissible region and a impermissible region as illustrated in Figure 2.5. An

orbit with energy H0 has no way of reaching the impermissible region, and always stays

within the permissible region (except possibly being stationary at the boundary of the

permissible region).

Theorem 2.6. Any solution of our system of differential equations 2.5 and 2.6 can be

scaled to any particular energy of the same sign.

Proof. Given x1(t), x2(t) a solution to our system of differential equations 2.5 and 2.6

with energy H < 0, for a > 0, we define a new position variable

s1(t) = ax1(a
− 3

2 t) > 0

s2(t) = ax2(a
− 3

2 t) > 0.

Now s1(t) and s2(t) satisfy the exact same differential equation because
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Figure 2.5: Permissible and impermissible region

s̈1(t) =
ẍ1(a

− 3
2 t)

a2

=
1

a2

(
−

1

4x21(a
− 3

2 t)
−

x1(a
− 3

2 t)

4
(
x21(a

− 3
2 t) + x22(a

− 3
2 t)
)3/2)

= −
1

4a2x21(a
− 3

2 t)
−

ax1(a
− 3

2 t)

4
(
a2x21(a

− 3
2 t) + a2x22(a

− 3
2 t)
)3/2

= −
1

4s21(t)
−

s1(t)

4
(
s21(t) + s22(t)

)3/2,
s̈2(t) =

ẍ2(a
− 3

2 t)

a2

=
1

a2

(
−

1

4x22(a
− 3

2 t)
−

x2(a
− 3

2 t)

4
(
x21(a

− 3
2 t) + x22(a

− 3
2 t)
)3/2)

= −
1

4a2x22(a
− 3

2 t)
−

ax2(a
− 3

2 t)

4
(
a2x21(a

− 3
2 t) + a2x22(a

− 3
2 t)
)3/2

= −
1

4s22(t)
−

s2(t)

4
(
s21(t) + s22(t)

)3/2,
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which matches our system of differential equations 2.5 and 2.6.

Substitute s1 and s2 into equation 2.7, The energy Ha for s1 and s2 is given by

Ha =
1

2
(ṡ21(t) + ṡ22(t))−

1

4s1(t)
− 1

4s2(t)
− 1

4(s21(t) + s22(t))
1/2

=
1

2a
(ẋ21(a

− 3
2 t) + ẋ22(a

− 3
2 t))− 1

4ax1(a
− 3

2 t)
− 1

4ax2(a
− 3

2 t)
− 1

4a(x21(a
− 3

2 t) + x22(a
− 3

2 t))1/2

=
H

a
.

By going from x1,x2 to s1,s2 under parameter a, we can scale the energy of our orbit by
1
a
. Thus when a particular orbit exists for one energy, it exists for all energy of the same

sign.

2.6 Orbit Going Up

Conjecture 2.7. An orbit that starts at a brake, hits the x1 axis, then collides on the x2

axis with ẋ2 > 0 exists.

Figure 2.6: Four parts of showing orbit going up exist

In this section we want to prove Conjecture 2.7: the existence of an orbit that starts at a

brake, hits the x1 axis, then hits the x2 axis with ẋ2 > 0. We will simply call it an orbit
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going up. Proving the existence of an orbit going up involves 4 parts, as shown in Figure

2.6. In part 1 (section 2.6.1) we have to show that an orbit that starts at a brake on the

right side of the x1 = x2 line , then hits the x1 axis exists. In part 2 (section 2.6.2) we

have to show that there exist an orbit that extends from part 1 and cross the x1 = x2 line

with ẋ2 > 0. In part 3 (section 2.6.3-2.6.7) we estimate the time it takes from the orbit

crossing x1 = x2 to x2(t) going to zero. In part 4 (section 2.6.8) we estimate the time it

takes for the orbit from crossing x1 = x2 to hitting x2 axis. We have obtained analytical

proof for part 1, 3 and 4; We rely on numerical results for part 2.

In the following sections the existence of orbits are proved under a certain energy, but

again by Theorem 2.6 we know that we can scale the orbit to achieve all energy of the

same sign.

2.6.1 Orbit that Starts at a Brake and Hits the x1 Axis

In this section we want to show that an orbit that starts at a brake on the right side of

the x1 = x2 line , then hits the x1 axis exists. We begin with proving a lemma.

Lemma 2.8. Under differential equations 2.5 and 2.6,

x1 > x2 ⇐⇒ ẍ2 < ẍ1

x1 < x2 ⇐⇒ ẍ2 > ẍ1.

Proof. First we show that

x1 = x2 ⇐⇒ ẍ1 = ẍ2

(⇒)

If x1 = x2, then

1

4x21
=

1

4x2x

and
x1

4(x21 + x22)
3/2

=
x2

4(x21 + x22)
3/2

so obviously ẍ1 = ẍ2.
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(⇐)

Now suppose ẍ1 = ẍ2. Then

−
1

4x21
−

x1

4(x21 + x22)
3/2

= −
1

4x22
−

x2

4(x21 + x22)
3/2

(x21 + x22)
3/2 + x31

x21(x
2
1 + x22)

3
2

=
(x21 + x22)

3/2 + x32

x22(x
2
1 + x22)

3
2

x22[(x
2
1 + x22)

3/2 + x31] = x21[(x
2
1 + x22)

3/2 + x32]

x22(x
2
1 + x22)

3
2 + x31x

2
2 = x21(x

2
1 + x22)

3
2 + x32x

2
1

(x22 − x21)(x21 + x22)
3
2 = x31x

2
2 − x32x21

(x2 − x1)(x2 + x1)(x
2
1 + x22)

3
2 = x21x

2
2(x2 − x1)

0 = (x2 − x1)[(x2 + x1)(x
2
1 + x22)

3
2 − x21x22].

Now we want to show that

f(x1, x2) = (x2 + x1)(x
2
1 + x22)

3
2 − x21x22

is positive when x1 > 0 and x2 > 0

Assuming x1 > 0 and x2 > 0 we can use arithmetic and geometric mean inequality, to

get the following two relationships:

x1 + x2

2
>
√
x1x2

x21 + x22

2
> x1x2.

Combine the two inequalities to get

(x1 + x2)(x
2
1 + x22)

3
2 > 2

5
2x21x

2
2 > x21x

2
2,

therefore

f(x1, x2) = (x2 + x1)(x
2
1 + x22)

3
2 − x21x22 > 0



Main Results 30

when x1 > 0 and x2 > 0. Thus

ẍ1 = ẍ2 =⇒ x1 = x2

Now for x1 >> x2 we have

ẍ1 ≈ 0, ẍ2 ≈ −
1

4x22
< 0,

and for x1 << x2 we have

ẍ2 ≈ 0, ẍ1 ≈ −
1

4x21
< 0.

Thus

x1 > x2 ⇐⇒ ẍ1 < ẍ2

x1 < x2 ⇐⇒ ẍ1 > ẍ2.

Theorem 2.9. For solution (x1(t), x2(t)) with x1(0) > x2(0) and ẋ1(0) = 0, ẋ2(0) = 0,

there exist β > 0 and t∗ ∈ (0, β) such that x1(t) < x2(t) for all t ∈ [0, β) and x2(t
∗) = 0

with x1(0)− x2(0) ≤ x1(t
∗) < x1(0). Furthermore ẋ1(t) < 0 for all t ∈ (0, β).

Proof. Let (x1(t), x2(t)) be the solution satisfying

x1(0) > x2(0)

ẋ1(0) = 0, ẋ2(0) = 0

By continuity of the continuously extended solution (regularization) with respect to its

intial conditions, there exist a maximal and energy perserving β > 0 such that x1(t) >

x2(t) for all t ∈ [0, β). This implies that

lim
t→β

x1(t) = lim
t→β

x2(t),

otherwise it contradicts β being maximal. This implies that x1(t) > 0 for all t ∈ [0, β.

From our initial coniditions we know that x2(0) > 0. Let t∗ ∈ (0, β] be the largest possible

time such that x2(t) > 0 for all t ∈ [0, t∗).

Claim: t∗ < β and x1(0)− x2(0) ≤ x1(t
∗) < x1(0).
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Since x1(t) > 0 and x2(t) > 0 for all t ∈ [0, t∗), we know that ẋ1(t) and ẋ2(t) are strictly

decreasing on [0, t∗), i.e.

ẋ1(t) < ẋ1(0) = 0

ẋ2(t) < ẋ2(0) = 0

for all t ∈ (0, t∗).

Since x1(t) > x2(t) for all t ∈ [0, t∗), by Lemma 2.8 we know that

ẍ2(t) < ẍ1(t)

for all t ∈ [0, t∗). Intergration of ẍ2(t) < ẍ1(t) gives

ẋ2(t)− ẋ2(0) < ẋ1(t)− ẋ1(0)

Since ẋ1(0) = 0 and ẋ2(0) = 0 we get

ẋ2(t) < ẋ1(t) < 0

for all t ∈ [0, t∗).

From ẋ1(0) = 0 for all t ∈ (0, t∗), continuity of ẋ1 and integration gives us

x1(t
∗) < x1(0).

Now integration of ẋ2(t) < ẋ1(t) < 0 for t ∈ [0, t∗) gives,

x2(t)− x2(0) < x1(t)− x1(0)

for all t ∈ [0, t∗). So

x1(t) ≥ x2(t) + x1(0)− x2(0) > x2(t) + k

because x1(0)− x2(0) = k > 0. From the equation above we know that

x1(0) > x1(t
∗) ≥ x1(0)− x2(0)



Main Results 32

If t∗ = β, then we have

x1(β) > x2(β) + k

for k > 0, contradicting limt→β x1(t) = limt→β x2(t).

Therefore it must be that t∗ < β. (Done with proof of our claim)

Theorem 2.9 essentially means that an orbit that starts at a brake on the right side of

the x1 = x2 line , then hits the x1 axis exists.

Figure 2.7: Numerical Results for Conjecture 2.10
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2.6.2 Orbit that Cross the x1 = x2 Line with ẋ2 > 0

Conjecture 2.10. An orbit that starts at a brake, hits the x1 axis, then crosses the

x1 = x2 line with ẋ2 > 0 exists.

We provide numerical results for Conjecture 2.10 in this section. Conjecture 2.10 is

essentially part 2 of the orbit going up that we are trying to prove. Analytical results for

this part have not been obtained yet. As shown in Figure 2.7, all four orbits here crosses

the x1 = x2 line with ẋ2 > 0. Numerical simulations suggest that orbits that starts close

enough to the x1 = x2 line will cross the x1 = x2 line with ẋ2 > 0.

In the Future Work section we will mention approaches to proving Conjecture 2.10 ana-

lytically.

2.6.3 Set up for proving part 3 and 4 of the orbit going up

Assuming Conjecture 2.10 is true, we now have an orbit that cross the x1 = x2 line with

ẋ2 > 0. Scale this orbit until the particle would cross the x1 = x2 line at x1 = x2 = 1,

corresponding to energy Ĥ0 > H0.

For any energy level higher than Ĥ0, we can always find a corresponding initial x1 and

x2 such that the orbit would start at a brake, collide at x1 axis then cross the x1 = x2

line at x1 = x2 = 1. The closer the negative energy is to 0, the closer the initial position

approaches the x1 = x2 line.

Consider the case when energy level is negative and close to 0. Let E = −ε for some

ε > 0. We now define a set of times we are going to look at while proving part 3 and 4

of the orbit going up (refer to Figure 2.8).

Let 0 denote the starting time,

t1 denote the time when x1 = x2 = 1,

t 1
2

denote the time when x1 = 1
2
,

t0 denote the time when x1 = 0 (collision at x2 axis),

tm denote the time when x2 reaches a local maximum (ẋ2 = 0).
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Figure 2.8: Times labeled

2.6.4 Lower Bound on x1(0) and x2(0)

We need to first obtain a lower bound on x1(0) and x2(0) using the energy constraint.

Begin with the energy equation 2.7:

H =
1

2
(ẋ21 + ẋ22)−

(
1

4x1
+

1

4x2
+

1

4(x21 + x22)
1
2

)
.

Under H = −ε, at the initial time when ẋ1(0) = 0 and ẋ2(0) = 0 we have,

−ε =
1

2
(ẋ21(0) + ẋ22(0))−

(
1

4x1(0)
+

1

4x2(0)
+

1

4(x21(0) + x22(0))
1
2

)
−ε = −

(
1

4x1(0)
+

1

4x2(0)
+

1

4(x21(0) + x22(0))
1
2

)
ε =

1

4x1(0)
+

1

4x2(0)
+

1

4(x21(0) + x22(0))
1
2

.

All there terms on the right are positive. We get the two inequalities,
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ε ≥ 1

4x1(0)
, ε ≥ 1

4x2(0)
.

Rearrange the terms to get

x1(0) ≥ 1

4ε
, x2(0) ≥ 1

4ε
. (2.13)

2.6.5 Lower and Upper bound for ẋ21(t1)

Before crossing x1 = x2 line, we can derive the following inequalities using x2 ≤ x1:

x21 + x22 ≤ 2x21

− x1ẋ1

4(x21 + x22)
3
2

≥ − x1ẋ1

4(2x21)
3
2

. (2.14)

(The inequality sign flipped three times, the third time because ẋ1 ≤ 0)

First we get a lower bound for ẋ1(t1)
2 by integrating ẍ1 (equation 2.5):

ẍ1 = −
1

4x21
−

x1

4(x21 + x22)
3/2

ẋ1ẍ1 = −
ẋ1

4x21
−

ẋ1x1

4(x21 + x22)
3/2
,

using inequality 2.14, we get

ẋ1ẍ1 ≥ −
ẋ1

4x21
− x1ẋ1

4(2x21)
3
2

ẋ1ẍ1 ≥ −
(

1

4
+

1

8
√

2

)
ẋ1

x21

1

2
ẋ21

∣∣∣∣t1
0

≥
(

1

4
+

1

8
√

2

)
1

x1

∣∣∣∣t1
0

,
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since 1
x1(0)

≤ 4ε and x1(t1) = 1 and ẋ1(0) = 0,

1

2
ẋ1(t1)

2 ≥
(

1

4
+

1

8
√

2

)(
1− 4ε

)
ẋ1(t1)

2 ≥ 1

2
+

1

4
√

2
− 2ε− ε√

2
. (2.15)

Now we get a upper bound for ẋ1(t1)
2:

ẍ1 = −
1

4x21
−

x1

4(x21 + x22)
3/2

ẋ1ẍ1 = −
ẋ1

4x21
−

ẋ1x1

4(x21 + x22)
3/2

ẋ1ẍ1 ≤ −
ẋ1

4x21
− x1ẋ1

4(x21)
3
2

using x21 + x22 ≥ x21

ẋ1ẍ1 ≤ −
1

2

ẋ1

x21

1

2
ẋ21

∣∣∣∣t1
0

≤ 1

2

1

x1

∣∣∣∣t1
0

.

Since x1(t1) = 1 and ẋ1(0) = 0,

ẋ21(t1) ≤ 1− 1

x1(0)

ẋ21(t1) ≤ 1. (2.16)

Combining with equation 2.15 to get

1

2
+

1

4
√

2
− 2ε− ε√

2
≤ ẋ21(t1) ≤ 1. (2.17)
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2.6.6 Lower and Upper Bound for ẋ22(t)

We go back to the energy constraint (Equation 2.7) and consider the time t1 (the time

when x1 = x2 = 1). Since H = −ε and x1(t1) = x2(t1) = 1, we have

−ε =
1

2
(ẋ21(t1) + ẋ22(t1))−

(
1

4
+

1

4
+

1

4(1 + 1)
1
2

)
1

2
+

1

4
√

2
− ε =

1

2
(ẋ21(t1) + ẋ22(t1))

1 +
1

2
√

2
− 2ε = ẋ21(t1) + ẋ22(t1). (2.18)

Combine this with the bounds on ẋ1(t1)
2 (equation 2.17) to get

1

2
√

2
− 2ε ≤ ẋ2(t1)

2 ≤ 1

2
+

1

4
√

2
+

ε√
2
. (2.19)

To summarize, we now have bounds for ẋ21(t1) and ẋ22(t1) from equation 2.17 and 2.19:

1

2
+

1

4
√

2
− 2ε− ε√

2
≤ ẋ1(t1)

2 ≤ 1

1

2
√

2
− 2ε ≤ ẋ2(t1)

2 ≤ 1

2
+

1

4
√

2
+

ε√
2
.

Using above inequalities we can get a upper bound on time elapsed from crossing x1 = x2

to hitting x2 axis (t0 − t1), and also get a lower bound on the time needed for ẋ2(t1) to

go to zero (tm − t1).

2.6.7 Estimating Time Needed for ẋ2(t) to Go to Zero

Consider t1 ≤ t ≤ tm (after crossing x1 = x2, before ẋ2(t) goes to zero). Since ẋ2(t) is

positive in this time interval, we know that x2(t) ≥ 1.

Time needed for ẋ2(t) to start from t1 and go to zero is given by tm − t1.



Main Results 38

Begin by estimating ẍ2 (equation 2.6):

ẍ2(t) = −
1

4x22(t)
−

x2

4(x22(t) + x21(t))
3/2

ẍ2(t) ≥ −
1

4x22(t)
−

x2

4(x22(t))
3/2

using x21 + x22 ≥ x21

ẍ2(t) ≥ −
1

2x22(t)
,

because x2(t) ≥ 1,

ẍ2(t) ≥ −
1

2

ẋ2(t)

∣∣∣∣tm
t1

≥ −
1

2
(tm − t1)

ẋ2(tm)− ẋ2(t1) ≥ −
1

2
(tm − t1)

1

2
(tm − t1) + ẋ2(tm) ≥ ẋ2(t1) ≥

√
1

2
√

2
− 2ε by equation (2.19).

Since ẋ2(tm) = 0, we have

tm − t1 ≥ 2

√
1

2
√

2
− 2ε. (2.20)

In the case of ε = 0.01 we would get

tm − t1 ≥ 1.155. (2.21)

This estimate gets bigger as ε→ 0.
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2.6.8 Estimating Time Elapsed from Crossing x1 = x2 to Hitting

x2 Axis

Consider t1 ≤ t ≤ t0 (after crossing x1 = x2, before hitting x2 axis).

Begin with estimating ẍ1 (equation 2.5)

ẍ1 = −
1

4x21
−

x1

4(x21 + x22)
3/2

ẍ1 ≤ −
1

4x21

ẍ1 ≤ −
1

4
, because x1(t) ≤ 1

now take t1 ≤ t∗ ≤ t 1
2

ẋ1(t)

∣∣∣∣t∗
t1

≤ −1

4
t

∣∣∣∣t∗
t1

ẋ1(t
∗)− ẋ1(t1) ≤ −

1

4
(t∗ − t1)

ẋ1(t
∗) ≤ ẋ1(t1)−

1

4
(t∗ − t1)

ẋ1(t
∗) ≤ −

√
1

2
+

1

4
√

2
− 2ε− ε√

2
− 1

4
(t∗ − t1)

x1(t
∗)

∣∣∣∣t 12
t1

≤ −t∗
√

1

2
+

1

4
√

2
− 2ε− ε√

2
− 1

4

(t∗ − t1)2

2

∣∣∣∣t 12
t1

x1(t 1
2
)− x1(t1) ≤ −(t 1

2
− t1)

√
1

2
+

1

4
√

2
− 2ε− ε√

2
− 1

8
(t 1

2
− t1)2

(
1

2
− 1) ≤ −(t 1

2
− t1)

√
1

2
+

1

4
√

2
− 2ε− ε√

2
− 1

8
(t 1

2
− t1)2

0 ≥ 1

8
(t 1

2
− t1)2 + (t 1

2
− t1)

√
1

2
+

1

4
√

2
− 2ε− ε√

2
− 1

2
. (2.22)

Solving the quadratic inequality with ε = 0.01, we get

−7.01826 ≤ t 1
2
− t1 ≤ 0.570. (2.23)
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Since ẋ1 is going more and more negative as x1 → 0, the time needed to get from

x1 = 1 to x1 = 1
2

is going to be more than the time needed to get from x1 = 1
2

to x1 = 0.

Double the value of (t 1
2
− t1) to get an upper bound for (t0 − t1),

t0 − t1 ≤ 2 · 0.570 = 1.14.

Under H = −0.01, equation 2.21 gives us tm − t1 ≥ 1.155, which inturn implies that

t0− t1 ≤ tm− t1, (time it takes for the particle to hit x2 axis is less than time needed for

ẋ2 to become negative) so the ẋ2 is positive at collision.

A energy level closer to zero (less negative) would lead to tighter bound for both tm − t1
and t0− t1 (a bigger tm− t1 and a smaller t0− t1). The inequality t0− t1 ≤ tm− t1 holds

for all negative energy H > −0.01

2.6.9 Summary of Section 2.6

The goal of section 2.6 is to prove Conjecture 2.7: existence of an orbit that starts at

a brake, hits the x1 axis, then hits the x2 axis with ẋ2 > 0. The orbit is divided into

four parts. Theorem 2.9 gives us part 1 of the orbit. We provided numerical results for

Conjecture 2.10, which would give us part 2 of the orbit if assumed to be true. After

several time estimation, we showed that the time it takes from the orbit crossing x1 = x2

to ẋ2(t) going to zero (part 3) is greater than the time it takes for the orbit from crossing

x1 = x2 to hitting x2 axis (part 4). Which means when the orbit hits the x2 axis it must

have ẋ2 > 0.

With all four parts combined, assuming Conjecture 2.10 is true, then we know that

Conjecture 2.7 is true; or that an orbit going up exist.
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2.7 Orbit Going Down

Figure 2.9: Orbit going down

We call an orbit that starts at a brake, hits the x1 axis, then hits the x2 axis with ẋ2 < 0

an orbit going down. To prove the existence of an orbit going down, we are going to first

prove the existence of an orbit that bounces off x1 axis once, then ends in total collision.

After that we apply a perturbation of the initial condition of the total collision solution

to obtain an orbit going down.

Lemma 2.11. An orbit that bounces off the x1 axis once, then ends in total collision

exists.

Proof. We first show that we can begin with an orbit that bounces off x1 axis many times

before reaching x2 axis.

Recall our energy equation 2.7 :

H =
1

2
(ẋ21 + ẋ22)−

(
1

4x1
+

1

4x2
+

1

4(x21 + x22)
1
2

)

Given an energy level H = H0. Set ẋ1(0) = ẋ2(0) = 0, we get

H0 = −
(

1

4x1(0)
+

1

4x2(0)
+

1

4(x21(0) + x22(0))
1
2

)
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for any large enough x1(0) there is a corresponding x2(0) that would give our energy H0

(We can show this by a simple implicit function theorem argument).

As x1(0)→∞, we have x2(0)→ −
1

4H0

, a finite value.

Looking at ẍ1 and ẍ2,

ẍ1 =
− 1

4x21
+

− x1
4(x21 + x22)

3/2

lim
x1→∞

ẍ1 = lim
x1→∞

− 1

4x21
+

− x1
4(x21 + x22)

3/2

= 0

ẍ2 =
− 1

4x22
+

− x2
4(x22 + x21)

3/2

lim
x1→∞

ẍ2 = lim
x1→∞

− 1

4x22
+

− x2
4(x22 + x21)

3/2

= lim
x1→∞

− 1

4x22

= −4H2
0 which is bounded away from zero.

Pick a large enough x1(0), the acceleration along the x2 direction would dominate the

acceleration along the x1 direction. Thus we can ensure that the particle would bounce

off the x1 axis at least twice before getting close to x2 axis. Let x1 = c2 denote the x1

coordinate of the second collision. Notice that since ẍ2 is strictly negative, x2(t) has a

unique maximum between the first and the second collision at x1 axis.

Now move the initial position to the left; That is, fix x2(0) = x∗2, and reduce x1(0). Notice

that the energy of the system would change correspondingly. We want the show that the

whole orbit before the second collision at x1 axis would shift to the left.
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Observe that magnitude of acceleration along the x1 direction gets stronger as x1(t) gets

smaller. We obtain this result by simply taking derivative of ẍ1 with respect to x1.

∂ẍ1
∂x1

=
3x1

2

4 (x12 + x22)
5/2
− 1

4 (x12 + x22)
3/2

+
1

2x13

≥ 3x21

4 (x12 + x22)
5/2
− 1

4 (x12 + x22)
3/2

+
1

2 (x12 + x22)
3/2

=
3x21

4 (x12 + x22)
5/2

+
1

4 (x12 + x22)
3/2

> 0.

Note that ẍ1 is negative while x1 is positive, so as x1 decreases ẍ1 also decreases and

becomes more negative, therefore the magnitude of acceleration would increase as x1(t)

gets smaller.

Therefore as we move the initial position to the left, the acceleration of the whole orbit

before the second collision would get stronger, leading to a smaller value of c2. We keep

moving the initial position to the left until c2 exactly reaches zero. That gives us our

orbit that bounces off x1 axis once, then ends in total collision.

Theorem 2.12. An orbit that starts at a brake, hits the x1 axis, then collides on the x2

axis with ẋ2 < 0 exists.

Proof. By Lemma 2.11 there exists an orbit that bounces off x1 axis once, then ends in

total collision. A perturbation of the orbit’s initial position to the left causes the second

collision to happen at the x2 axis. Continuity of ẋ2 gives us that the particle would

cross the x1 = x2 line with ẋ2 < 0. Because ẍ2 is strictly negative and continuous until

it reaches the second collision at the x1 axis, we can guarantee that ẋ2 is negative at

collision.

Thus we have proved the existence of the orbit that goes down after collision at x2

axis.
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2.8 Using Intermediate Value Theorem to Prove the

Existence of the Periodic Solution

Figure 2.10: Using intermediate value theorem

Theorem 2.13. The periodic brake orbit 121 exist. (An orbit that starts at a brake, first

collides on the x1 axis, then hits the x2 axis and bounces back under the exact same track,

hits the x1 axis at the same spot, and finally reach a brake again at the starting position.)

Proof. Assuming Conjecture 2.7 is true, then we have the existence of an orbit that starts

at a brake, hits the x1 axis, then collides on the x2 axis with ẋ2 > 0. Theorem 2.12 gives

us the existence of an orbit that starts at a brake, hits the x1 axis, then collides on the x2

axis with ẋ2 < 0. By Theorem 2.6, we can fix an energy level and scale those two orbit

to match the same energy level.

Now the initial position of these two orbits both lies on the zero momentum curve of

the chosen energy. Let u(t) be the orbit going up and d(t) be the orbit going down.

Since we have a C1 system of differential equations under the regularized coordinate,

under continuous dependence on initial conditions, as we slide along the zero momentum

curve to get from u(0) to d(0), at some point ẋ2 = 0 at the collision on the x2 axis

(Intermediate Value Theorem). Let this solution be (Q∗1, Q
∗
2, P

∗
1 , P

∗
2 ) in the regularized

coordinate. Looking at equation 2.8, we see that at the x2 axis collision ẋ2 = 0 implies

that P ∗2 = 0. Thus the segment of the solution (Q∗1, Q
∗
2, P

∗
1 , P

∗
2 ) from the brake to the

x2 axis collision satisfies the condition required to generate a full periodic orbit from on

part, as talked about in section 2.4 . Using the result of section 2.4 we can obtain a full

periodic orbit, that starts at a brake, collides on the x1 axis, then hits the x2 axis and
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bounces back under the exact same track, hits the x1 axis at the same spot, and finally

reach a brake again at the starting position.

2.9 Summary of Results

Using regularized coordinate we obtained a C1 system of differential equations through

binary collision. We obtained estimates on moving direction of the orbit under stationary

initial conditions and through Intermediate Value Theorem we showed existence of the

desired orbit in the 1st quadrant. Extending the orbit through symmetry to the whole

plane, and we have given a analytic existence of a symmetric periodic brake orbit with

simultaneous binary collision(SBC) in the equal mass, fully symmetric planar four body

problem.
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Future Work

In Conjecture 2.5, we proposed that an orbit that starts at a brake, hits the x1 axis, then

collides on the x2 axis with ẋ2 > 0 exists. Although numerical simulations seems imply

the statement is true, we are still working on finding an analytical prove of the result.

From the function I = x21+x22, we can obtain that Ï = T+h (the Lagrange-Jacobi identity,

see Meyer, Hall and Offing [13]). From that we know Ï is positive near the origin. If

we can prove that İ = 0 at someone point before I reaches zero, then conjecture 2.5

can be proved to be true. Proving this requires more analysis on the function I and its

derivatives.

The next step to studying periodic orbit 121 is to determine its stability. Techniques that

Bakker, Ouyang, Yan and Simmons[2] has used in studying stability of symmetric planar

periodic orbits with simultaneous binary collision in symmetric four-body problem might

be useful.

Along with periodic orbit 121, we have also numerically found other plausible periodic

brake orbits as illustrated in Figure 3.1. The orbit on the left starts stationary, hit the

x1 axis, then the x2 axis, when it crosses the x1 = x2 line the second time, the remaining

orbit is symmetric to the previous orbit. The orbit on the right starts stationary, hit the

x1 axis, then the x2 axis, then the x1 axis, and x2 axis twice. After that it traces back

its path until reaches a brake at the original position.

46
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Figure 3.1: Two other periodic brake orbit

Figure 3.2: Three periodic brake orbits on the same plot

In Figure 3.2 we plotted all three periodic brake orbits the same plane. The black dotted

line represent the constant energy level curve. It seems that as we move the initial position

further to the right under the same energy level, we could discover more periodic brake

orbits.while there are more potential periodic brake orbits undiscovered yet, numerical

stimulation seems to suggest that a 1221 periodic brake orbit does not exist.
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The two other orbits that we have not prove existence for has similarity to periodic brake

orbit 121. First, there’s regularizable simultaneous binary collision, which direct us to

using topological techniques. Second, there is useful symmetry embedded in the orbit.

The shooting method and differential inequalities we used to prove existence of periodic

brake orbit 121 will likely be useful as we explore how to prove existence of the remaining

two orbits. In future research we can try to prove the existence of the remaining two

orbits.
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