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abstract

Finding Torsion-free Groups Which Do Not Have the Unique Product Property

Lindsay Jennae Soelberg
Department of Mathematics, BYU

Master of Science

This thesis discusses the Kaplansky zero divisor conjecture. The conjecture states that
a group ring of a torsion-free group over a field has no nonzero zero divisors. There are situ-
ations for which this conjecture is known to hold, such as linearly orderable groups, unique
product groups, solvable groups, and elementary amenable groups.

This paper considers the possibility that the conjecture is false and there is some coun-
terexample in existence. The approach to searching for such a counterexample discussed here
is to first find a torsion-free group that has subsets A and B such that AB has no unique
product. We do this by exhaustively searching for the subsets A and B with fixed small
sizes. When |A| = 1 or 2 and |B| is arbitrary we know that AB contains a unique product,
but when |A| is larger, not much was previously known. After an example is found we then
verify that the sets are contained in a torsion-free group and further investigate whether the
group ring yields a nonzero zero divisor.

Together with Dr. Pace P. Nielsen, assistant math professor of Brigham Young Univer-
sity, we created code that was implemented in Magma, a computational algebra system, for
the purpose of considering each size of A and B and running through each case. Along the
way we check for the possibility of torsion elements and for other conditions that lead to
contradictions, such as a decrease in the size of A or B.

Our results are the following: If A and B are sets of the sizes below contained in a
torsion-free group, then they must contain a unique product.

|A| = 3 and |B| ≤ 16
|A| = 4 and |B| ≤ 12
|A| = 5 and |B| ≤ 9
|A| = 6 and |B| ≤ 7.

We have continued to run cases of larger size and hope to increase the size of B for each size
of A.

Additionally, we found a torsion-free group containing sets A and B, both of size 8,
where AB has no unique product. Though this group does not yield a counterexample for
the Kaplansky zero divisor conjecture, it is the smallest explicit example of a non-unique
product group in terms of the size of A and B.

Keywords: Group Rings, Torsion-free Groups, Zero-Divisors, Kaplansky’s Zero Divisor Con-
jecture, Unique Product Groups
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Chapter 1. Introduction

In 1956, Irving Kaplansky presented twelve important open questions in ring theory. He ex-

plains, “I expressed the hope that these problems would help to rekindle interest in the theory

of rings.” [10] In this paper, we study one of these problems—the zero divisor conjecture—

and search systematically for a counterexample. The conjecture states that the group ring

of a torsion-free group over a field has no nonzero zero divisors.

1.1 Group Rings: Definition and Examples

To begin we must understand the basic idea of a group ring. In this section we define and

explain group rings by presenting a few simple examples and noting characteristics of each.

Throughout the paper all rings are unital, but not necessarily commutative. All ring

homomorphisms are unital as well. Note that identities of groups will always be denoted 1.

Definition 1.1. Let R be a ring and G be a group. The group ring, denoted R[G], is the

set of all finite formal sums of elements of G with coefficients from R.

We see that an element α ∈ R[G] is uniquely of the form α =
∑

g∈G αgg where αg ∈ R

and only finitely many αg are nonzero. To efficiently talk about an element α of a group

ring, it is useful to collect the elements of G for which α has nonzero coefficients. Therefore,

we provide the following definition.

Definition 1.2. The support of an element α =
∑

g∈G αgg ∈ R[G] is the set

supp(α) = {g ∈ G : αg 6= 0}.

One can easily check that R[G] is a ring with addition and multiplication defined in the
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following way. Given α =
∑

a∈G raa and β =
∑

b∈G sbb in R[G], then

α + β =
∑
a∈G

(ra + sa)a

αβ =
∑
g∈G

( ∑
a,b : ab=g

(rasb)

)
g.

We will now present a few examples of group rings. The first example demonstrates basic

properties and facts of group rings.

Example 1.3. Recall that the quaternion group is

Q8 = 〈x, y : x4 = 1, x2 = y2, y−1xy = x−1〉.

Consider the group ring R[Q8]. An arbitrary element in this group ring is of the form

a01 + a1x+ a2x
2 + a3x

3 + a4y + a5y
3 + a6xy + a7yx

with ai ∈ R. In multiplying two elements in this group ring we must use care in tracking the

position of the group elements. For example (3x+ 7xy)(5y) = 15xy + 35xy2 = 15xy + 35x3,

but if we reverse the product, we get (5y)(3x+ 7xy) = 15yx+ 35yxy = 15yx+ 35y(yx−1) =

15yx+ 35x2x−1 = 15yx+ 35x which is clearly not the same.

The identity in a group ring is the identity of the ring multiplied by the identity of the

group. Therefore, 1R1G is the identity here.

If S is a subring of R, then given a group G it is easy to see that S[G] is a subring of

R[G]. In addition, if H is a subgroup of G, then R[H] is a subring of R[G]. Therefore,

Z[Q8] is a subring of R[Q8]. Also, the center of Q8 is Z(Q8) = {1, x2}. Hence, R[Z(Q8)] is

a subring of R[Q8].

Lastly, we mention that R[Q8] is an 8 dimensional real vector space.

The ring structure of the group ring often depends on some algebraic properties of the
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underlying group and ring. For instance, Maschke’s Theorem tell us that R[G] is semisimple

if and only if R is the zero ring or R is a nonzero semisimple ring, G is finite, and |G| · 1 is

a unit in R, see [12, Theorem 6.1 and Proposition 6.3]. The next example shows Maschke’s

theorem in action.

Example 1.4. Let G be the group 〈x : x3 = 1〉. An arbitary element of the group ring C[G]

is of the form r0 + r1x+ r2x
2 with ri ∈ C.

The complex numbers are a field; hence, C is semisimple. Further, |G| = 3 and 3 · 1 = 3

is a unit in C. Thus, C[G] is a semisimple ring by Maschke’s Theorem. Let ω be a cube root

of 1; then one may easily verify that

e1 = 1
3
(1 + x+ x2)

e2 = 1
3
(1 + ωx+ ω2x2)

e3 = 1
3
(1 + ω2x+ ωx2)

are central, orthogonal idempotents that sum to 1. Therefore, C[G] =
∏3

i=1 eiC[G]ei ∼= C3.

Also, note that this group ring is commutative. Recall that group ring multiplication is

defined so that group elements commute with coefficients. Therefore, since the group G is

abelian and C is commutative, the group ring C[G] is commutative. More generally, R[G] is

commutative if and only if R = 0, or R 6= 0 and commutative with G abelian.

Example 1.5. Consider the group ring C[Z]. First, notice that C[Z] ∼= C[x, x−1]. Because

Z is an infinite cyclic group, it is torsion-free and abelian. By a similar degree argument

that we do in Proposition 1.14, C[Z] has no nontrivial idempotents. However, in general it

is unknown whether a group ring over a torsion-free group yields any idempotents.

It is easy to see that this group ring is an integral domain.

Now that we have a better foundation and grasp on the concept of a group ring, we will

study the Kaplansky conjecture in more depth.
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1.2 The Kaplansky Conjecture

This section will be dedicated to understanding both Kaplansky’s conjecture and some of the

work that has been done already to prove and disprove it. The following are basic definitions

needed to understand the conjecture.

Definition 1.6. Let G be a group. If for every g ∈ G, g does not have finite order (gn 6= 1

for some n ∈ N), then G is torsion-free.

Definition 1.7. Let G be a group and R be a ring. Let α ∈ R[G]. If β ∈ R[G] \ {0} exists

such that αβ = 0 or βα = 0, then the element α is called a zero divisor.

Understanding the statement of Kaplansky’s conjecture is now within reach. This prob-

lem was the sixth problem that Kaplansky presented in 1956, and it is still open in spite of

the work that has been done.

Conjecture 1.8. (The Kaplansky Zero Divisor Conjecture) Let G be a torsion-free group,

and let F[G] be the group ring over a field F, then F[G] has no nonzero zero divisors.

While initially posing this problem, Kaplansky stated that if a group can be linearly

ordered, then the group ring has no nonzero zero divisors. The precise definition of these

types of groups is as follows.

Definition 1.9. Let G be a group. The group G is said to be linearly ordered if there is

a total order “<” such that given a, b ∈ G, a < b implies that ca < cb and ac < bc for every

c ∈ G. In other words, the order respects left and right multiplication.

The prototypical example of a linearly ordered group is the group Z under its canonical

ordering. Thus, according to Kaplansky’s observation, Conjecture 1.8 holds when G = Z.

More generally, we restate Kaplansky’s observation as follows:

Proposition 1.10. The Kaplansky conjecture holds for linearly ordered groups.
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It is known that torsion-free abelian groups can be linearly ordered, which yields the

following corollary.

Corollary 1.11. The Kaplansky Conjecture holds for abelian groups.

Linearly ordered groups are actually part of a more general class of groups called unique

product groups. These groups are an integral part of the work we have done in this paper.

Therefore, we will define unique products groups below as well as prove that the Kaplansky

conjecture holds in this more general setting.

Definition 1.12. Let G be a group and let A,B ⊆ G. An element x ∈ G is said to be a

unique product of the pair (A,B) if there is exactly one way to write x = ab where a ∈ A

and b ∈ B.

Definition 1.13. A group G is said to be a unique product group if for any two nonempty

finite subsets A and B of G there exists a unique product for the pair (A,B).

For convenience we sometimes write A · B or just AB when the two sets are clear, to

mean the pair (A,B).

Now we will show that Conjecture 1.8 does hold for unique product groups and, in effect,

prove Proposition 1.10 and Corollary 1.11.

Proposition 1.14. The Kaplansky zero divisor conjecture holds for unique product groups.

Proof. We will show, more generally, that R[G] has no nonzero zero divisors if R is a domain

and G is a unique product group.

Let R be a domain and G be a unique product group. Let R[G] denote the group ring of

G over R. Let α, β ∈ R[G] \ {0}. Let A = supp(α) and B = supp(β). Write α =
∑

a∈A raa

and β =
∑

b∈B sbb. Then

αβ =
∑
g∈G

( ∑
a∈A, b∈B : ab=g

(rasb)

)
g.
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Since G is a unique product group, then we know that there exists some x ∈ AB such

that x = a0b0 where a0 ∈ A and b0 ∈ B are uniquely determined. The coefficient of x in αβ

is simply ra0sb0 and ra0sb0 6= 0, since ra0 , sb0 6= 0 and R is a domain. Therefore, αβ 6= 0 since

it has a nonzero coefficient for x ∈ supp(αβ).

Proposition 1.15. Linearly ordered groups are unique product groups.

Proof. Let A,B be two finite, nonempty subsets of G, a linearly ordered group. Let |A| = n

and A = {a1, a2 . . . , an}, ordered so that a1 < a2 < · · · < an. Let |B| = m and similarly order

the elements of B so that b1, b2, . . . , bm are in order from least to greatest. Let x = anbm.

Since aibm < anbm for every i = 1, . . . , n − 1, we then have aibj < aibm < anbm for every

j = 1, . . . ,m−1. Thus x is a unique product of the pair (A,B). Since A and B are arbitrary,

G is a unique product group.

Unique product groups are always torsion-free, but it wasn’t until 1987 that the converse

was proven false by Rips and Segev [16]. They produced a counterexample by showing there

exist subsets A and B of a torsion-free group such that AB had no unique product with

|A| = 4 and |B| very large. This group is complicated and non-constructive. It takes the

authors about eight pages to construct the group and one page to prove that it is indeed

torsion-free and has no unique product for the given sets. Given the non-constructive nature

of this group, it is hard to expand this work to other groups without the unique product

property. However, this finding was important because a counterexample to Conjecture 1.8

would be a non-unique product group that is torsion-free. Unfortunately, it is still unknown

whether the group they constructed provides a counterexample.

The following year, Promislow [14] proved that the group

P = 〈x, y : x−1y2x = y−2, y−1x2y = x−2〉

was a non-unique product group. This group had previously appeared in a few places in

literature, including in [5] where Burns specifically inquired if this group was a unique product

6



group. Promislow was able to produce an explicit 14 element set S ⊆ P so that S2 has no

unique product. Because the set is explicit, it is easy to check that S has no unique product

by calculating the 196 products in S2. This was another step in the direction of producing

a counterexample to Conjecture 1.8. However, it is noted in [6] by Carter that any group

ring over Promislow’s group, with coefficients from a field, is indeed a domain.

In 2013, Carter [6] was able to expand Promislow’s work to create an infinite family of

torsion-free, non-unique product groups namely:

Pk = 〈x, y : xy2
k

x−1 = y−2
k

, yx2y−1 = x−2〉,

for each integer k ≥ 1. Taking k = 1 gives Promislow’s group P , and for each k, these groups

are distinct and do not contain P as a subgroup. In addition, each Pk contains arbitrarily

large non-unique product sets. But, unlike Promislow’s example, these are not explicit sets.

This work shows that there are countably many finitely presented non-unique product groups

which are torsion-free (up to isomorphism). These groups also fulfill Conjecture 1.8.

Most recently, in 2015, Steenbock published a paper discussing the Rips and Segev group.

He defined a generalized version of the Rips-Segev presentation and constructed new torsion-

free groups without the unique product property [17, Theorem 3]. Thus, we can see that

these types of groups exist, but many of the examples produced so far have not been explicit.

We can also see that none of the examples so far have produced a counterexample to the

Kaplansky zero divisor conjecture.

1.3 Other Places the Kaplansky Conjecture Holds

In addition to unique product groups, Kaplansky’s conjecture has been proven to hold for

other classes of groups. Though not pertinent to our approach, we present a few additional

places where the conjecture holds.

First, Lagrange and Rhemtulla [11] were able to show that having a right ordering of G

7



(meaning a < b implies that ac < bc for every c ∈ G) instead of a stronger two-sided ordering

sufficed. Conrad [7] showed that there are indeed groups that can be right-ordered, but not

ordered. This showed that Lagrange and Rhemtulla’s argument truly was an improvement

over Kaplansky’s original observation.

In [9, Theorem 1] Formanek shows that when F is a field and G is a supersolvable group

that is torsion-free, then the group ring F[G] has no nonzero zero divisors. Recall that a

group G is supersolvable if there exists some chain of normal subgroups

G = Gn DGn−1 D · · ·DG1 DG0 = 1, (1.1)

where each quotient Gi+1/Gi is cyclic. His theorem depends on the work of Lewin [13] “whose

work was the first solution of the zero divisor question for groups which are not ordered or

close relatives of ordered groups” [9].

Conjecture 1.8 also holds for group rings of polycyclic-by-finite groups over fields of

characteristic zero by work of and Farkas and Snider [8]. A polycyclic group is a solvable

group where every subgroup is finitely generated. A solvable group is slightly weaker than

supersolvable with each Gi+1/Gi abelian, but not necessarily cyclic. A polycyclic-by-finite

group is a group where there exists a subgroup of finite index that is polycyclic. They

developed their proof by reworking some ideas from Brown, in [4], where he showed that

F[G] is a domain when the characteristic of F is zero and G is an abelian-by-finite torsion-free

group.

Elementary amenable groups are another class of groups for which Conjecture 1.8 holds.

These groups are “constructed from abelian and finite [groups] by extending and taking

homomorphic images and subgroups” [3]. Solvable groups and abelian groups (by the fun-

damental theorem of finitely generated abelian groups) are both examples of elementary

amenable groups.

In [3] Bardakov and Petukhova present a growing list of groups for which the conjecture

holds though some of the groups are a bit obscure.
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1.4 Related Open Questions

We now finish this chapter by studying a few conjectures concerning group rings closely

related to the Kaplansky zero divisor conjecture. These conjectures are of interest for group

rings of torsion-free groups over domains.

For the first conjecture we remind the reader of the definition of a nilpotent element in

a ring.

Definition 1.16. Let R be a ring. Then r ∈ R is nilpotent if rn = 0 for some n ∈ N.

The following conjecture relates directly to the zero divisor conjecture.

Conjecture 1.17. If G is a torsion-free group and F[G] is the group ring over a field F,

then F[G] has no nonzero nilpotents.

It is easy to see that if Conjecture 1.8 holds, then Conjecture 1.17 is also true. For if

there aren’t any nonzero zero divisors in a group ring, then there certainly cannot be any

nonzero nilpotents. Conversely, it is also true that if there are no nonzero nilpotents, then

there are no nonzero zero divisors. Lam presents a proof in [12, Section 6], but we won’t

replicate it here. Thus, we see that Conjecture 1.17 is equivalent to Conjecture 1.8.

For the next conjecture we will briefly introduce the concept of Jacobson semisimplicity.

We note that there is a lot of theory that can be learned about this property of rings

that won’t be covered here. We will, however, provide the basic definition and a few other

important details. See [12, Section 4] for more details on Jacobson semisimplicity.

Definition 1.18. Given a ring R, recall that the Jacobson radical, rad(R), is the intersection

of the maximal left ideals of R. The ring R is Jacobson semisimple or J-semisimple if

rad(R) = 0.

If y ∈ rad(R), then 1 − xy ∈ U(R) for any x ∈ R. This implies that R is J-semisimple

if y = 0 is the only ring element that makes 1 − xy a unit for every x. Though it may not

seem intuitive, J-semisimplicity is an important property. It is a property that generalizes

9



semisimple rings when they are not artinian. In [12, Theorem 4.14] we see that a ring R is

J-semisimple and artinian if and only if it is semisimple. Below we will give an example and

a non-example of J-semisimple rings.

Example 1.19. Consider the ring Z. First, we note that the maximal left ideals in Z will be

maximal ideals since Z is commutative. Thus, rad(Z) is the intersection of all the maximal

ideals of Z.

The prime ideals of Z are exactly the zero ideal and pZ where p is a prime. Recall

that every nonzero prime ideal is maximal. Hence, we have rad(Z) =
⋂

p prime pZ = {0}.

Therefore, Z is a J-semisimple ring.

Another thing that we would like to point out is that the Jacobson radical is related

to nilpotent ideals. Any nilpotent ideal is contained in the Jacobson radical. Recall that a

nilpotent ideal I is any ideal such that In = 0 for some n ∈ N. In fact, if R is a left artinian

ring, then rad(R) is the largest nilpotent left ideal and the largest nilpotent right ideal [12,

Theorem 4.12].

Lam gives another nice proposition concerning the Jacobson radical in his book as follows:

Let I be any ideal of R lying in rad(R), then rad(R/I) = rad(R)/I. We will use this fact

and the radical’s relation to nilpotent ideals in this next example.

Example 1.20. We follow an example presented by Lam in [12, pg. 57] to give a ring that is

not J-semisimple. Let F be a field, and let R be the ring of upper triangular n× n matrices

with entries in F, with n ≥ 2. Let J be the subset of R consisting of matrices with zeros on

the main diagonal. We will show that J = rad(R).

First, we note that J is indeed an ideal of R. It is nonempty since the zero matrix is in

J . It is certainly closed under addition since addition is component-wise. It is also easy to

check that it is closed under multiplication from R.

Next, we note that Jn = 0, where n is the specific size of the matrices we are working

with. This fact can be shown using an induction proof. This means that J is a nilpotent

ideal of R.

10



Since J is a nilpotent ideal, then we know from the discussion preceding this example

that J ⊆ rad(R). Thus, by the proposition from Lam we have that rad(R)/J = rad(R/J).

If we notice that R/J is isomorphic to the diagonal matrices, then we have that

R/J ∼= F× · · · × F.

Thus, R/J is semisimple. We know that semisimplicity implies J-semisimplicity, thus rad(R/J) =

0. Thus, rad(R)/J = 0 and we have that rad(R) = J . Therefore, R is not a J-semisimple

ring.

This concludes the discussion on the definition and properties of J-semisimple rings. We

can now present the related conjecture.

Conjecture 1.21. If G is a torsion-free group and F[G] is the group ring over a field F,

then F[G] is J-semisimple.

Though not obviously related to Conjecture 1.8, it is an important question in the theory

of group rings. The last open question relates to all these conjectures. We will need the

definition of a trivial unit in a group ring.

Definition 1.22. Let R be a domain and G be a group. If α = u · g where u is a unit in R

and g ∈ G, then x is called a trivial unit.

Note that the set of trivial units form a subgroup of R[G]. Any other unit in the group

ring is called a nontrivial unit.

Conjecture 1.23. If G is a torsion-free group and F[G] is the group ring over a field F,

then F[G] contains no nontrivial units.

The following figure demonstrates the relationship between the three conjectures pre-

sented in this section and Conjecture 1.8.
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We will prove these two implications below: Conjecture 1.23 ⇒ Conjecture 1.17 and

Conjecture 1.23 ⇒ Conjecture 1.21.

Proposition 1.24. An affirmative answer to Conjecture 1.23 implies an affirmative answer

to Conjecture 1.17. In other words: Let G be a torsion-free group and F[G] be the group ring

over a field F. If F[G] has no nontrivial units, then F[G] has no nonzero nilpotents.

Proof. We follow the proof in [12]. Let R be a domain and G be a group. Suppose con-

trapositively that there exists a nonzero nilpotent r ∈ R[G]. Then rn = 0 for some n ∈ N,

n > 1 and minimal. Then it follows that α = rn−1 is nonzero and α2 = 0. Then

(1− α)(1 + α) = 1− α2 = 1.

Thus 1 − α ∈ U(R[G]). If this is a trivial unit then 1 − α = ag for some a ∈ U(R), g ∈ G.

Therefore

0 = α2 = (1− ag)2 = 1− 2ag + a2g2.

Case (1): g 6= 1. Then 1, g, and g2 are distinct elements since G is torsion-free. Therefore

2a = 0, a2 = 0, and 1 = 0. The last two inequatlities yield a contradiction because R is a

domain. Therefore, case (1) cannot happen.

Case (2): g = 1. Since α2 = 0, then (1 − a · 1)2 = 0. Hence, (1 − a)2 = 0 and thus

1 − a = 0 since R is a domain. In other words, a = 1. Then 1 − α = 1 · 1 and so α = 0,

which is a contradiction to our assumption that α is nonzero.

Thus, we see that 1 − α ∈ U(R[G]) and is not trivial. Therefore R[G] has a nontrivial

unit, as desired.
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Proposition 1.25. An affirmative answer to Conjecture 1.23 implies an affirmative answer

to Conjecture 1.21. In other words: Let G be a torsion-free group and F[G] be the group ring

over a field F. If F[G] has no nontrivial units, then F[G] is J-semisimple.

Proof. We again follow the proof given in [12]. Let R be a domain and G be a group. Assume

that R[G] has no nontrivial units. Let α ∈ rad(R[G]). Since α is an element of the Jacobson

radical then 1 − α · 1 ∈ U(R[G]). This implies that 1 − α = ag or α = 1 − ag for some

a ∈ U(R) and g ∈ G by our assumption.

Case (1): g 6= 1. Again, since α ∈ rad R[G] we have 1 − αg ∈ U(R[G]). Substituting

α = 1−ag from above we have 1− (1−ag)g = 1−g+ag2 ∈ U(R[G]). Since G is torsion-free

and g 6= 1 then we have that 1, g, and g2 are all distinct. This gives a contradiction since

1− g+ag2 has support greater than and thus cannot be a unit. So this case cannot happen.

Case (2): g = 1. Then 1 − α = a · 1 ⇒ α = 1 − a. This implies that α ∈ R. Fix

h ∈ G − {1}. Then a − αh ∈ U(R[G]) since α ∈ rad(R[G]). But then α = 0 by our

assumption.

Thus, rad(R[G]) = {0} and R[G] is J-semisimple.
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Chapter 2. Our Approach

Sections 1.2 and 1.3 illustrate the work that has been done to attempt to solve the Kaplansky

zero divisor conjecture. It has led me to believe that there is a counterexample in existence.

This chapter is dedicated to describing the general strategy I have used, in joint work with

Dr. Pace P. Nielsen, to construct torsion-free groups which have no unique product, with

the hope that these groups might yield a counterexample.

2.1 Brute Force

One of the first questions that we asked was, “Does there exist a torsion-free group with

sets A and B of some small fixed size where AB has no unique product?” Without loss

of generality we may assume that m = |A| ≤ |B| = n reversing the roles of A and B as

necessary. We started with A and B as small as possible. First, we deal with |A| = 1 and

|B| arbitrary.

Proposition 2.1. Let G be a group and let A,B ⊆ G such that |A| = 1 and |B| = n, where

n ≥ 1 is an integer. Then AB has a unique product.

Proof. Let A = {a} and B = {b1, b2, . . . , bn} where a, b1, . . . , bn ∈ G. We will show all

products in AB are unique.

Any product in AB has the form abi for some i ∈ {1, . . . , n}. Thus, given two products

from AB that are equal, then abi = abj where i 6= j. But multiplying by a−1 on the left gives

bi = bj which cannot be since i 6= j. Thus, every product in AB is unique, as desired.

Next, we will increase the size of A and deal with the case where |A| = 2 and |B| is

arbitrary using a similar argument, but first we prove a useful lemma.

Lemma 2.2. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be finite subsets of a torsion-free

group G. The product set AB has no unique product if and only if the product set gA · Bh

also has no unique product for any g, h ∈ G.
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Proof. (⇒) : Let g, h ∈ G. Let A and B be finite subsets of G, a torsion-free group, with

A = {a1, . . . , am} and B = {b1, . . . , bn}. Suppose contrapositively that gA ·Bh has a unique

product. Then there must exist an x ∈ gA ·Bh such that x = ga0b0h for some unique a0 ∈ A

and b0 ∈ B. Let y = g−1xh−1 = a0b0. Since a0 and b0 are unique then y is a unique product

in AB, as desired.

(⇐) : Let A′ = gA and B′ = Bh from above. Suppose that A′B′ has no unique product.

Then using the argument above, we know that g−1A′ · B′h−1 has no unique product. But

g−1A′ ·B′h−1 = AB. Thus, AB has no unique product, as desired.

We note that this lemma is useful when choosing g = a−11 and h = b−11 so that we

have 1 ∈ a−1A and 1 ∈ Bb−1. Then, letting A′ = a−11 A and B′ = Bb−11 , we have A′ =

{1, a′2, a′3, . . . , a′m} and B′ = {1, b′2, b′3, . . . , b′n}. These sets are more convenient to work with

since we know the identity is one of the group elements in each set and we know by Lemma

2.2 that if A′B′ has no unique product, then AB has no unique product. This lemma will

aid us in this next proposition as we continue to search for non-unique product groups.

Proposition 2.3. Let G be a torsion-free group and let A,B ⊆ G such that |A| = 2 and

|B| = n, where n ≥ 2 is an integer. Then AB has a unique product.

Proof. Let G be a torsion-free group. Let A = {a1, a2} and B = {b1, b2, . . . , bn} where

a1, a2, b1, . . . , bn ∈ G. By Lemma 2.2 we can show that a−11 A · Bb−11 has no unique product.

Thus, without loss of generality, we may assign a1 = 1 and b1 = 1 without affecting any

existing unique products within the sets. Thus, we write A = {1, a2} and B = {1, b2, . . . , bn}.

Suppose to the contrary that AB does not have a unique product. We will reach a

contradiction by using the fact that ai ∈ B for all i ∈ Z≥0. We will proceed by induction to

prove this fact.

For the base case it is clear that a0 = 1 ∈ B.

For the inductive step, assume that ak ∈ B, for some k ∈ Z≥0. Then a · ak = ak+1 ∈ AB.

But since AB has no unique product, then there must exist another product in AB that is

equal to ak+1. Since the only other element from A is 1, we must have that 1 · x = ak+1 for
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some x ∈ B; hence, x = ak+1 ∈ B. Thus, B = {1, a, a2, . . .}. As B is a finite set, this implies

that a is a torsion element, contradicting the fact that G is a torsion-free group. Therefore,

AB must have a unique product.

We have now proven the more trivial cases where |A| = 1, 2; hence, we can move on to the

case when |A| = 3. It is still an open question if there is a torsion-free group that contains

A and B with no unique product for AB when A is this size. We do know, as mentioned

in chapter 1, that when |A| = 4 and |B| is very large, that there is a non-unique product

group.

Now, to motivate some of the techniques we will use in our approach to searching for

non-unique product groups, we will explicitly and pedantically deal with the case |A| = 3

and |B| = 3.

Example 2.4. Let A and B be two nonempty subsets of G, a torsion-free group, with |A| = 3

and |B| = 3. Let a1, a2, a3 ∈ G be the three distinct elements of A, and let b1, b2, b3 ∈ G be

the three distinct elements of B. Our goal is to ensure that AB has no unique product. By

Lemma 2.2 we can say without loss of generality that a1 = b1 = 1.

First, we will deal with the product a1b1 = 1 ·1. There are eight products which we could

match to a1b1 so that it isn’t unique: (1) 1 · 1 = a1b2, (2) 1 · 1 = a1b3, (3) 1 · 1 = a2b1, (4)

1 · 1 = a2b2, (5) 1 · 1 = a2b3, (6) 1 · 1 = a3b1, (7) 1 · 1 = a3b2 and (8) 1 · 1 = a3b3.

Cases (1), (2), (3), and (6) each cannot happen since we have a1 = b1 = 1. If not, then

the sets A or B would not have the right number of distinct elements.

It is not hard to see that for cases (5), (7) and (8) we can simply relabel the indices to

match case (4). (We will use this fact a few times to avoid doing more work than is necessary

in this proof and for the code we write to model this process). Thus, the only case we will

deal with is case (4).

Case (4): This is the first case that does not immediately lead to a contradiction, so

suppose that 1 ·1 = a2b2. Now we will continue to match the other products of AB together.

Next consider the product a1b2 = 1 · b2. There are eight products to which we could match
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this product: (A) 1 · b2 = a1b1, (B) 1 · b2 = a1b3, (C) 1 · b2 = a2b1, (D) 1 · b2 = a2b2, (E)

1 · b2 = a2b3, (F) 1 · b2 = a3b1, (G) 1 · b2 = a3b2 and (H) 1 · b2 = a3b3.

Again, cases (A), (B), (D), and (G) all cannot happen; otherwise, the sets A and B would

not have the right amount of distinct elements. Case (C) is the earliest case for which this

does not happen, so assume that 1 · b2 = a2b1, or b2 = a2. Then, substituting in our first

relation, we have 1 · 1 = b2 · b2, which means that b2 is a torsion element, which contradicts

our assumption that G is torsion-free. Thus case (C) cannot happen.

Notice that case (F) can be relabeled to be case (C); thus, it also yields a contradiction.

Also, case (H) can similarly be relabeled to match case (E). Thus, we move to case (E), the

earliest case that doesn’t lead to a contradiction.

Case (E): Assume that 1 · b2 = a2b3. Again, we proceed by matching other products of

AB together. Consider the product a2b1 = a2 ·1. There are eight products to which we could

match this product. (a) a2 · 1 = a1b1, (b) a2 · 1 = a1b2, (c) a2 · 1 = a1b3, (d) a2 · 1 = a2b2, (e)

a2 · 1 = a2b3, (f) a2 · 1 = a3b1, (g) a2 · 1 = a3b2 and (h) a2 · 1 = a3b3.

Again, cases (a), (d), (e), and (f) cannot happen without reducing the number of distinct

elements in A or B. For case (b) we have a2 = b2, but then a2 is a torsion element since

a2b2 = 1. Case (c) can be relabeled to reach a similar contradiction.

Thus the earliest case that does not cause an quick contradiction is case (g). We note

here that case (h) can be relabeled to match case (g). Case (g) is the only one that we have

to deal with.

Thus far we have accumulated the following relations:

(1) 1 · 1 = a2b2

(2) 1 · b2 = a2b3

(3) a2 · 1 = a3b2

From (1) we have b2 = a−12 . Substituting this into (2), we have a−12 = a2b3; hence,

b3 = a−22 . Lastly, we can use (1) to simplify the third relation; hence, a3 = a22. Now we can
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write the sets A and B as follows:

A = {1, a2, a22} and B = {1, a−12 , a−22 }

If AB has no unique product, then a22 · 1 would need to equal at least one other product.

All other products are of the form ai2 for −2 ≤ i ≤ 1. Thus, a2 is a torsion element. But G is

torsion-free, so we have a contradiction. Therefore, we can conclude that AB has a unique

product.

We have now ruled out some of the smaller cardinalities for A and B. From Example

2.4 we see that it is possible to exhaustively match products until we conclude that there

is no torsion-free, non-unique product group that could contain sets of small fixed sizes.

In working to find a counterexample for Conjecture 1.8, this was our strategy: first, to

create a non-unique product group, ensure that it is torsion-free, and finally to see if the

corresponding group ring contains zero divisors or not. It might already be apparent that

doing these problems by hand becomes messy and tedious as we continue to increase the size

of A and B. Therefore, we turned to the help of computers to help us run through all the

possibilities quickly and accurately.

2.2 Creating the Code

This section will be dedicated to describing the code that was created and then implemented

in the computational algebra system, Magma V2.23-4. The approach is to exhaustively

perform a search for subsets A and B of fixed small sizes that have no unique product

and are contained in a torsion-free group. We will also introduce a few simplifications and

strategies that we used to increase the efficiency of the program.

First, assume A and B are nonempty finite subsets of a torsion-free group G such that

AB has no unique product. Let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} with |A| = m

and |B| = n. Because G is a group that contains these sets, we don’t necessarily care too
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much how the group looks, as long as it continues to be torsion-free. Thus, we may as well

assume that G is generated by the elements of A and B, as this has no effect on the sizes of

A and B.

In our code we use this fact and start by letting G be the free group generated the m+n

elements of A ∪ B. Then, we begin setting products equal to each other to make a set of

relations forcing AB to have no unique product. Next, we create the quotient group of G

mod those relations. Finally, we can check the quotient group for torsion.

At the cost of (temporarily) losing the torsion-free hypothesis on G, we can also assume

G is finitely presented. We can even take only the relations that force AB to have no unique

product for the presentation. One of the main benefits for this is that the number of groups

that are possibilities for containing A and B is now limited to a finite number. In fact, if we

set [m] := {1, 2, . . . ,m} and [n] := {1, 2, . . . , n} and let X be some subset, X ⊆ ([m]× [n])2,

then G can be identified with

GX := 〈a1, a2, . . . , am, b1, b2, . . . , bn : aibj = akbl for all (i, j, k, l) ∈ X〉

and the set A ∪B is the set of generators for GX .

Now that we have the jist of what the program does, there are some reductions we can

perform on the space of possibilities to increase the efficiency of the program.

First, we can use Lemma 2.2, as seen in Proposition 2.3 and Example 2.4, and without

loss of generality put a1 = 1 and b1 = 1. It is not hard to see that in this case we will always

include the relation 1 = a1b1 = a2b2 in the set of relations that allow AB to have no unique

product (see Example 2.4).

Second, we can rule out quadruples from X that would result in decreasing the size of A

or B. As seen in Example 2.4, if the quadruple (2, 3, 2, 4) is in X, then we have the relation

a2b3 = a2b4. Multiplying on the left by a−12 gives b3 = b4 which decreases the size of B.

Thus, we simply discount any set X containing an analogous element as a possibility.

Third, it can happen that two different sets X 6= Y give precisely the same group GX =
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GY . In such cases we treat X and Y as giving us the same structure on A and B. The

process of determining if these two groups are the same is hard as the word problem in

finitely presented groups is undecidable, so we don’t directly work with GX and GY here,

but rather with large partial rewrite systems. In practice we limited the rewrite system to

about 29 relations.

Fourth, we saw in Example 2.4 that some cases are equivalent up to relabeling the

elements of A or B. Because of this we can increase the efficiency of our program by

eliminating cases that are the same when we relabel elements. We can describe when two

cases are the same using permutations. Each permutation σ × τ ∈ Sm × Sn of the set [m]

and [n] induces an isomorphism GX → GY where ai 7→ aσ(i) and bj 7→ bτ(j) and

Y := {(σ(i), τ(j), σ(k), τ(l)) : (i, j, k, l) ∈ X}.

When GX and GY are isomorphic in this way, then the case when we have Y as the subset

of ([m] × [n])2 is the same up to relabeling elements. Note that Lemma 2.2 is compatible

when using these permutations.

Fifth, we can eliminate any set X that contain any quadruples that lead to torsion

elements in the group. The Adyan-Rabin Theorem [2, 15] tells us that there is no algorithm

to determine whether or not a finitely presented group is torsion-free. This adds to the

difficulty of eliminating torsion inside the group. Even if we do find torsion, after factoring

that torsion out, there may be new elements that become torsion as the structure of G easily

changes. So instead we look for a specific type of torsion that decreases the size of A or B.

In other words we look for elements of the form aia
−1
j or bib

−1
j and make sure they do not

have small order (under a partial reduction system). If a candidate group arises which passes

our initial inspection, we then use ad hoc methods to guarantee it is ultimately torsion-free.

In practice, we use these reductions to restrict the search space of subsets X ⊆ ([m]×[n])2.

First, we run through each one element subset of ([m]× [n])2 and discard those sets that fail

the torsion test or are sent to a case we considered previously, etc. For each of the remaining

20



one element sets, we consider all possible two element extensions, repeat the tests, and

continue this extension process as needed.

The search was initially performed on a single personal computer with multiple cores

which was sufficient resources to deal with smaller cases. Ultimately, we utilized the BYU

Mary Lou supercomputer for larger cases. The code can be found in Appendix A.
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Chapter 3. Results

The algorithm that we produced in Appendix A was used for over a year. It was successful

in finding a group that contained sets with no unique product. This chapter will detail the

results we have obtained and the vision we have for future work on this topic. As we continue

to run the algorithm, we hope that that it will produce other examples and that we might

even be able to find a relationship in these types of examples. Eventually, it may lead to a

possible counterexample for Conjecture 1.8 as we had originally desired.

3.1 Main Results

We will now present one of the main results we obtained through the code we produced in

Magma. This example was initially found by considering the case when the set B is restricted

to be the same as the set A, though in general this is not our approach.

Theorem 3.1. There is a torsion-free group that contains subsets A and B with |A| = |B| =

8, such that AB has no unique product.

Proof. Let

Z := {(1, 1, 2, 2), (1, 2, 2, 3), (1, 3, 3, 2), (1, 4, 2, 5), (1, 6, 2, 7), (1, 8, 4, 2), (2, 1, 5, 5),

(2, 4, 5, 8), (2, 6, 5, 3), (2, 8, 5, 7), (3, 3, 6, 6), (4, 1, 7, 5), (4, 3, 8, 6), (4, 1, 8, 2)}.

and define

GZ = 〈a1, . . . , a8, b1, . . . , b8 : a1 = 1, b1 = 1, and aibj = akbl when (i, j, k, l) ∈ Z〉.

Now let A = {a1, a2, . . . , a8} and B = {b1, b2, . . . , b8}.

If we define x := a2 and y := b4, then it is not hard to write each element of A and B in

terms of x and y. For instance, we can use the first quadruple in Z, (1, 1, 2, 2) to see that
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a1b1 = a2b2. This simplifies to 1 = xb2, and hence b2 = x−1. Further, the (1, 2, 2, 3) gives

a1b2 = a2b3 or x−1 = xb3; hence, b3 = x−2. Taking each quadruple in Z, we can solve for all

the elements of A and B; however, the quadruples (2, 8, 5, 7) and (5, 1, 8, 2) are not used in

that process and thus impose two further relations on our group. Therefore, the group GZ

is generated by x := a2 and y := b4 and is given by the presentation

GZ = 〈x, y : x−1y2xy2 = x−2yx−2y3 = 1〉.

We will show that AB has no unique product, that both A and B each have eight distinct

elements, and that GZ is torsion-free.

First, we will show that there AB has no unique product. By observing the set Z of

tuples, we can already see that 28 of the 64 products in AB are equal to another product

in AB. For instance, (1, 1, 2, 2) gives a1b1 = a2b2, and (1, 2, 2, 3) gives a1b2 = a2b3. For the

remaining 36 products it is slightly impractical to calculate by hand. Running the following

code in Magma computes enough equal products in AB to verify that it does indeed have

no unique product.

tuples:=[[1,1,2,2],[1,2,2,3],[1,3,3,2],[1,4,2,5],[1,6,2,7],

[1,8,4,2],[2,1,5,5],[2,4,5,8],[2,6,5,3],[2,8,5,7],

[3,3,6,6],[4,1,7,5],[4,3,8,6],[5,1,8,2]];

F:=FreeGroup(16);

rels:=[F.tuples[i,1]*F.(tuples[i,2]+8)=

F.tuples[i,3]*F.(tuples[i,4]+8):i in [1..#tuples]];

G:=quo<F|rels>;

r:=RWSGroup(G:MaxRelations:=2^10);

Zmax:=[[i,j,k,l]: i in [1..8],j in [1..8],k in [1..8],

l in [1..8]|r.i*r.(j+8) eq r.k*r.(l+8)];

Zmax;

We note that the first eight free group generators act as the elements of A and the second
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eight are the elements of B.

Next, we will use Magma as a tool to show that GZ is torsion-free. We will follow an

idea of Derek Holt, given in response to a question at MathOverflow. The group GZ can

be entered into Magma by running the following code (note that we use the second finite

presentation given above, but they are exactly the same group).

F<a,b>:=FreeGroup(2);

G<x,y>:=quo<F|a^-1*b^2*a*b^2,a^-2*b*a^-2*b^3>;

Using Magma we search for a subgroup of GZ of small index and with an especially easy

rewrite system. It yielded the following subgroup which met the qualifications we required.

Let H be the subgroup generated by the three elements h1 := yxy−1x−1, h2 := y2, and

h3 := x4. The group H has index 8 in GZ , it is a normal subgroup, and it is given by the

finite presentation

H = 〈h1, h2, h3 : h2 is central, and h3h1 = h1h3h
8
2〉.

These facts can be verified by running the Todd-Coxeter procedure to create a coset table

for GZ/H, as can be done by executing the code

H:=sub<G|y^-1*x^-1*y*x,y^2,x^4>;

Index(G,H);

IsNormal(G,H);

Rewrite(G,H);

We will show that the subgroup H is torsion-free. First, we claim that any element of

H can be written in the form (h1)
a(h2)

b(h3)
c for a, b, c ∈ Z. We can move any h1’s past h2

since h2 is central, and we can move h1 past h3 at the cost of adding 8 extra h2’s, (see the

presentation for H above). Now, when we take that general element to the power of n ∈ N ,

we get ((h1)
a(h2)

b(h3)
c)n. This could be a very long word, but again all h1’s can be moved

to be the first elements in the word and h3’s can be moved to the last elements in the word
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(adding more h2’s when necessary). Therefore, ((h1)
a(h2)

b(h3)
c)n = (h1)

an(h2)
bn+8m(h3)

cn

(with m = 0 if a = 0), which is not the identity unless a = b = c = 0 to begin with. Now,

we would like to note that if GZ were to have any torsion, it would contain an element of

order 2 since the index of H in GZ is 8 = 23.

Let E be the largest elementary abelian quotient of H relative to the prime p = 2, and

let ϕ : H → E be the natural surjective homomorphism. If we let K := ker(ϕ), then the

index of K in H is 8. Let T1 be a transversal for the cosets GZ/H, and assume 1 ∈ T1.

Similarly, let T2 be a transversal for the cosets H/K. If GZ were to have an element of order

2, then there would exist some t1 ∈ (T1 − {1}) and t2 ∈ T2 such that (t1t2)
2 ∈ K. We can

check directly that this is not the case by running the following code:

E, phi:=ElementaryAbelianQuotient(H,2);

K:=Kernel(phi);

Index(H,K);

T1:=Transversal(G,H);

T2:=Transversal(H,K);

exists{t1 : t1 in T1 | t1 ne Id(G) and

exists{t2 : t2 in T2 | (t1*t2)^2 in K}};

Thus, there is no (t1t2)
2 ∈ K and, hence, no element with order 2. Therefore, we can

conclude that GZ is indeed torsion-free.

Lastly, we will show that A and B each have eight distinct elements. We can use the fact

that a2 = x and b4 = y are generators and use the relations represented by the quadruples

from Z (or even quicker by the set Zmax) to solve for the elements of A and B as mentioned

earlier. This process gives:

a1 = 1 a5 = xy−1x b1 = 1 b5 = x−1y

a2 = x a6 = x−2y b2 = x−1 b6 = y−1x−1

a3 = x−1 a7 = x−2yx−1 b3 = x−2 b7 = x−1y−1x−1

25



a4 = x−1y2x a8 = x−1y3 b4 = y b8 = x−1z2.

Using the coset enumeration given previously, we can check directly that aia
−1
j 6∈ K and

that bib
−1
j 6∈ K for i 6= j. Thus, |A| = 8 and |B| = 8, as desired.

We succeeded in finding a torsion-free group with subsets A and B where AB has no

unique product and |A| = |B| = 8! The motivation for searching for such a group was

to find possible counterexamples for Conjecture 1.8. Unfortunately, this group is not a

counterexample for the Kaplansky zero divisor conjecture. We will prove this now.

Theorem 3.2. If GZ is the group from Theorem 3.1 and R is a domain, then the group ring

R[GZ ] has no nonzero zero divisors.

Proof. Let GZ be the group defined in Theorem 3.1, and let R be a domain. Assume

by way of contradiction that there exists nonzero α, β ∈ R[GZ ] such that αβ = 0. Let

α =
∑8

i=1 riai, β =
∑8

i=1 sibi ∈ R[GZ ] with ri, si ∈ R − {0} for each i. Further, let A be

the support of α and B be the support of β. Looking at the supports of elements in the

product αβ = 0 and combining terms that have equal products in AB, we have the following

thirty-one relations:

r1s1 = −r2s2, r2s1 = −r5s5, r3s1 = −r1s2 − r2s3, r4s1 =− r7s5,

r5s1 = −r8s2, r6s1 = −r3s5, r7s1 = −r6s2, r8s1 =− r4s5,

r3s2 = −r1s3, r4s2 = −r1s8, r5s2 = −r8s3, r7s2 =− r6s3,

r3s3 = −r6s6, r4s3 = −r8s6, r5s3 = −r2s6, r7s3 =− r4s6,

r1s4 = −r2s5, r2s4 = −r5s8, r3s4 = −r1s5, r4s4 =− r7s8,

r5s4 = −r8s5, r6s4 = −r3s8, r7s4 = −r6s5, r8s4 =− r4s8 − r7s7,

r1s6 = −r2s7, r3s6 = −r1s7, r5s6 = −r8s7, r7s6 =− r6s7,

r3s7 = −r6s8, r4s7 = −r8s8, r5s7 = −r2s8.
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Throughout this argument, when we write a relation in R, we treat the monomial on the

left side of the equality as the term that needs to be reduced, and we replace it with the

quantity on the right side of the equality. For example, any monomial containing the word

r5s7, we replace that string with −r2s8. Also, we can apply the augmentation map ε (which

sends all elements of GZ to 1 and is the identity on R) to both sides of the equation αβ = 0

which forces the equality (
8∑
i=1

ri

)(
8∑
i=1

si

)
= 0.

As R is a domain, one of these sums must be equal to zero. Because both cases are similar,

it is sufficient to consider when
∑8

i=1 ri = 0. Solving for r8 gives us

r8 = −
7∑
i=1

ri.

After using this value of r8 in the relation r8s4 = −r4s8 − r7s7 and we get

−r1s4 − r2s4 − r3s4 − r4s4 − r5s4 − r6s4 − r7s4 = −r4s8 − r7s7.

Reduce using the list of reductions and we obtain

r2s5 + r5s8 + r1s5 + r7s8 + r8s5 + r3s8 + r6s5 = −r4s8 − r7s7

Now use r8 = −
∑7

i=1 ri again and simplify to obtain

r3s5 = r3s8 + r4s8 + r5s8 + r7s8 − r4s5 − r5s5 − r7s5 + r7s7.

A short computation using the reductions given so far leads to the zero product

(r1 + r3 + r5 + r7)(s1 − s4) = 0.

Because R is a domain, we have the following two cases.
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Case (1): Assume s1 = s4. We can simplify the relation r1s4 = −r2s5 to be r1s1 = −r2s5.

But we already have the relation r1s1 = −r2s2. Therefore we can set the two relations

equal and gain that r2(s2 − s5) = 0. As r2 6= 0, we get s2 = s5. But now the relation

r3s1 = −r1s2 − r2s3 gives r2s3 = −r3s1 − r1s2 or r2s3 = −r3s4 − r1s5. Using the relation

r3s4 = −r1s5, we get that r2s3 = 0, which is a contradiction.

Case (2): Assume r1 = −r3− r5− r7. Using our assumption in the relation r1s6 = −r2s7,

we get −r3s6 − r5s6 − r7s6 = −r2s7. Using the list of reductions above, we can simplify this

to be r1s7 + r8s7 + r6s7 + r2s7 = 0. Now use r8 = −
∑7

i=1 ri and simplify to get the following

equation:

−r3s7 − r4s7 − r5s7 − r7s7 = 0.

The list of reductions then gives

r6s8 + r8s8 + r2s8 − r7s7 = 0.

Again, use r8 = −
∑7

i=1 ri and simplify to get the relation r7s7 = −r4s8. But replacing r7s7

in the relation r8s4 = −r4s8− r7s7 gives r8s4 = 0, which is a contradiction. This finishes the

proof.

For our last theorem we summarize all the sizes for A and B that we have checked through

running our code on Magma.

Theorem 3.3. Let A and B be subsets of a torsion-free group such that |A| ≤ |B|. Assuming

AB has no unique product, the follwing hold:

• If |A| = 3, then |B| ≥ 16.

• If |A| = 4, then |B| ≥ 12.

• If |A| = 5, then |B| ≥ 9.

• If |A| = 6, then |B| ≥ 7.
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Refer to Appendix A for the code and Section 2.2 for the outline of the computations

involved in proving the inequalities in Theorem 3.3. By the usual leading term argument, the

numbers in Theorem 3.3 also act as lower bounds on the sizes of supports of zero divisors

in a group ring R[G], with G torsion-free and R a domain. In particular, if α, β ∈ R[G]

with αβ = 0 and |supp(α)| = 3, then |supp(β)| ≥ 16. This not only improves the bound

|supp(β)| ≥ 10 given in a paper by Abdollahi and Taheri [1], but it applies to more general

coefficient rings. They do have the bound |supp(β)| ≥ 20, but only for the special case when

R = F2.

This concludes the results we have obtained so far in our work to find torsion-free groups

with sets having no unique product.

3.2 Final Thoughts

Now that I’ve shared the main results we have obtained through our efforts on this problem,

I will now explain some of the hopes we have for future results, work that we plan to do,

and also how our work could be used in other ways.

So far, the code in Appendix A has led to one example. We hope that the code will lead

to many other examples of torsion-free groups containing sets with no unique product of

small size. In particular, finding a such a group for |A| = 3 would be profitable. Similarly,

finding a group for |A| = 4 is profitable as it would give effective bounds on the size of the

example produced by Rips and Segev. We plan to continue to run the code for small sizes

of A and increase the size of B as we rule out smaller cases. At the very least we hope to

improve Theorem 3.3 by increasing the bounds for the set B.

Another thing that we hope to discover as we produce more of these groups is whether

there are patterns or relationships between the groups or the sizes of A and B. Perhaps the

sizes of A and B will always have a relation, or there could possibly be a lower bound for

|A|+ |B|.

The main thing that we hope in running this algorithm, as mentioned throughout this
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paper, is that we find a counterexample to Kaplansky’s zero divisor conjecture. Though

we have yet to succeed, I believe it is possible. This would be an amazing result as many

mathematicians have worked on this problems for many years.

As the sizes of the sets A and B are increased, it only makes sense that the time spent

running the code becomes longer. The time for each case has been relatively short up to

this point, but some of the larger cases we predict could possibly take many months and

perhaps even years. The code we produced has already seen many revisions for the purpose

of increasing the speed of the algorithm. However, there may still be work for us to do so

that the larger cases are plausible for us to complete.

Though we have approached finding these groups with motivation from Conjecture 1.8,

there may be other reasons that our results may be beneficial. For instance, if the Kaplansky

zero divisor conjecture is false, then proving Conjecture 1.23 is false may be easier. Therefore,

our groups could be considered as candidates for counterexamples for the other conjectures

presented in this paper.

We also hope that our work may be beneficial to any others working with non-unique

product groups and other related open questions. Perhaps the fact that we have an explicit

small example of a non-unique product group will aid others in their research.

In conclusion, there is still much to be done in learning about torsion-free groups that

contain sets with no unique product with the Kaplansky zero divisor conjecture as the main

motivation. There is also much to be gained by searching for more examples similar to the

ones we were able to produce in this paper.
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Appendix A. The Code

The code below uses |A| = M = 3 and |B| = N = 7 though these values can be changed as

we run over every possibility for the sizes of A and B.

ShiftingPairs:=[[[1,1],[2,2]]];

M:=3;

N:=7;

counter:=1;

PairSeq:=[[i,j]:j in [1..N],i in [1..M]];

staging:=0;

while ShiftingPairs ne [] do

if staging eq 0 then

if (ShiftingPairs[#ShiftingPairs,1,1] eq ShiftingPairs[#ShiftingPairs,2,1])

or (ShiftingPairs[#ShiftingPairs,1,2] eq

ShiftingPairs[#ShiftingPairs,2,2]) then

staging:=1;

else

Elems1:={ShiftingPairs[i,1,1]:i in [1..#ShiftingPairs]} join

{ShiftingPairs[i,2,1]:i in [1..#ShiftingPairs]};

mm1:=Max(Elems1);

if mm1 gt #Elems1 then

staging:=1;

else

Elems2:={ShiftingPairs[i,1,2]:i in [1..#ShiftingPairs]} join

{ShiftingPairs[i,2,2]:i in [1..#ShiftingPairs]};

mm2:=Max(Elems2);

if mm2 gt #Elems2 then

staging:=1;
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end if;

end if;

end if;

end if;

if staging eq 0 then

f:=FreeGroup(M+N);

rels:=Append(Append([f.ShiftingPairs[i,1,1]*f.(ShiftingPairs[i,1,2]+M)=

f.ShiftingPairs[i,2,1]*f.(ShiftingPairs[i,2,2]+M):i in

[1..#ShiftingPairs]],f.1=f.0),f.(M+1)=f.0);

g:=quo<f|rels>;

r:=RWSGroup(g:MaxRelations:=2^9,Warning:=false);

if #{[i,j]:i in [1..M],j in [1..M]|i lt j and r.i eq r.j} ne 0 then

staging:=1;

else

if #{[i,j]:i in [1..N],j in [1..N]|i lt j and

r.(M+i) eq r.(M+j)} ne 0 then

staging:=1;

end if;

end if;

end if;

i:=1;

while staging eq 0 and i le 20 do

j:=1;

while staging eq 0 and j le M-1 do

k:=j+1;

while staging eq 0 and k le M do

if (r.j*r.k^-1)^i eq r.1^0 then

staging:=1;

end if;
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k:=k+1;

end while;

j:=j+1;

end while;

i:=i+1;

end while;

i:=1;

while staging eq 0 and i le 20 do

j:=M+1;

while staging eq 0 and j le M+N-1 do

k:=j+1;

while staging eq 0 and k le M+N do

if (r.j*r.k^-1)^i eq r.1^0 then

staging:=1;

end if;

k:=k+1;

end while;

j:=j+1;

end while;

i:=i+1;

end while;

if staging eq 0 then

SPC:=1;

PartialPerms:=[[]];

equalPairs:=[[[i,j],[k,l]]: l in [1..mm2], k in [1..mm1], j in [1..mm2], i

in [1..mm1]|([[i,j],[k,l]] in ShiftingPairs) or ([[k,l],[i,j]] in

ShiftingPairs) or (r.i*r.(M+j) eq r.k*r.(M+l) and i ne k)];

end if;

while staging eq 0 and SPC le #ShiftingPairs do
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PPC:=1;

NewSeqOfPerms:=[];

while staging eq 0 and PPC le #PartialPerms do

EPC:=1;

while staging eq 0 and EPC le #equalPairs do

ActivePerm:=PartialPerms[PPC];

ActiveEqualPair:=equalPairs[EPC];

canExtend:=1;

if [ActiveEqualPair[1,1],ShiftingPairs[SPC,1,1]] notin ActivePerm then

if ActiveEqualPair[1,1] in {ActivePerm[i,1]: i in [1..#ActivePerm]}

or ShiftingPairs[SPC,1,1] in {ActivePerm[i,2]: i in

[1..#ActivePerm]} then

canExtend:=0;

else

ActivePerm:=Append(ActivePerm,[ActiveEqualPair[1,1],

ShiftingPairs[SPC,1,1]]);

end if;

end if;

if canExtend eq 1 and[ActiveEqualPair[1,2]+M,ShiftingPairs[SPC,1,2]+M]

notin ActivePerm then

if ActiveEqualPair[1,2]+M in {ActivePerm[i,1] : i in

[1..#ActivePerm]} or ShiftingPairs[SPC,1,2]+M in

{ActivePerm[i,2] : i in [1..#ActivePerm]} then

canExtend:=0;

else

ActivePerm:=Append(ActivePerm,[ActiveEqualPair[1,2]+M,

ShiftingPairs[SPC,1,2]+M]);

end if;

end if;

34



if canExtend eq 1 and [ActiveEqualPair[2,1],ShiftingPairs[SPC,2,1]]

notin ActivePerm then

if ActiveEqualPair[2,1] in {ActivePerm[i,1] : i in

[1..#ActivePerm]} then

canExtend:=0;

if #({[ActiveEqualPair[2,1],i] : i in

[1..ShiftingPairs[SPC,2,1]-1]} meet {ActivePerm[i] : i in

[1..#ActivePerm]}) ge 1 then

staging:=1;

end if;

else

if #({i : i in [1..ShiftingPairs[SPC,2,1]-1]} meet

{ActivePerm[i,2] : i in [1..#ActivePerm]}) lt

ShiftingPairs[SPC,2,1]-1 then

canExtend:=0;

staging:=1;

else

if #({ShiftingPairs[SPC,2,1]} meet {ActivePerm[i,2] : i in

[1..#ActivePerm]}) ge 1 then

canExtend:=0;

else

ActivePerm:=Append(ActivePerm,[ActiveEqualPair[2,1],

ShiftingPairs[SPC,2,1]]);

end if;

end if;

end if;

end if;

if canExtend eq 1 and

[ActiveEqualPair[2,2]+M,ShiftingPairs[SPC,2,2]+M] notin ActivePerm
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then

if ActiveEqualPair[2,2]+M in {ActivePerm[i,1] : i in

[1..#ActivePerm]} then

canExtend:=0;

if #({[ActiveEqualPair[2,2]+M,i] : i in

[M+1..ShiftingPairs[SPC,2,2]+M-1]} meet {ActivePerm[i] : i in

[1..#ActivePerm]}) ge 1 then

staging:=1;

end if;

else

if #({i : i in [M+1..ShiftingPairs[SPC,2,2]+M-1]} meet

{ActivePerm[i,2] : i in [1..#ActivePerm]}) lt

ShiftingPairs[SPC,2,2]-1 then

canExtend:=0;

staging:=1;

else

if #({ShiftingPairs[SPC,2,2]+M} meet {ActivePerm[i,2] : i in

[1..#ActivePerm]}) ge 1 then

canExtend:=0;

else

ActivePerm:=Append(ActivePerm,[ActiveEqualPair[2,2]+M,

ShiftingPairs[SPC,2,2]+M]);

end if;

end if;

end if;

end if;

if canExtend eq 1 then

NewSeqOfPerms:=Append(NewSeqOfPerms,ActivePerm);

end if;
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EPC:=EPC+1;

end while;

PPC:=PPC+1;

end while;

PartialPerms:=NewSeqOfPerms;

SPC:=SPC+1;

end while;

if staging eq 0 then

staging:=2;

end if;

if staging eq 1 then

while ShiftingPairs ne [] and ((ShiftingPairs[#ShiftingPairs,2] eq [M,N])

or (ShiftingPairs[#ShiftingPairs,1] eq [M,N] and

ShiftingPairs[#ShiftingPairs,2] eq [M,N-1])) do

ShiftingPairs:=Prune(ShiftingPairs);

end while;

if ShiftingPairs ne [] then

NewPos:=Position(PairSeq,ShiftingPairs[#ShiftingPairs,2])+1;

if PairSeq[NewPos] eq ShiftingPairs[#ShiftingPairs,1] then

NewPos:=NewPos+1;

end if;

ShiftingPairs:=Append(Prune(ShiftingPairs),

[ShiftingPairs[#ShiftingPairs,1],PairSeq[NewPos]]);

end if;

staging:=0;

end if;

if staging eq 2 then

Pos:=Position(PairSeq,ShiftingPairs[#ShiftingPairs,1])+1;

end if;
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while staging eq 2 do

if Pos gt M*N then

staging:=3;

else

PairToCheck:=PairSeq[Pos];

if #{i:i in [1..#ShiftingPairs]|PairToCheck eq ShiftingPairs[i,2]} ne 0

then

Pos:=Pos+1;

else

staging:=0;

ShiftingPairs:=Append(ShiftingPairs,[PairSeq[Pos],[1,1]]);

end if;

end if;

end while;

i:=21;

while staging eq 3 and i le 40 do

j:=1;

while staging eq 3 and j le M-1 do

k:=j+1;

while staging eq 3 and k le M do

if (r.j*r.k^-1)^i eq r.1^0 then

staging:=1;

end if;

k:=k+1;

end while;

j:=j+1;

end while;

i:=i+1;

end while;
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i:=21;

while staging eq 3 and i le 40 do

j:=M+1;

while staging eq 3 and j le M+N-1 do

k:=j+1;

while staging eq 3 and k le M+N do

if (r.j*r.k^-1)^i eq r.1^0 then

staging:=1;

end if;

k:=k+1;

end while;

j:=j+1;

end while;

i:=i+1;

end while;

if staging eq 3 then

r:=RWSGroup(g);

i:=1;

while staging eq 3 and i le 100 do

j:=1;

while staging eq 3 and j le M-1 do

k:=j+1;

while staging eq 3 and k le M do

if (r.j*r.k^-1)^i eq r.1^0 then

staging:=1;

end if;

k:=k+1;

end while;

j:=j+1;
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end while;

i:=i+1;

end while;

i:=1;

while staging eq 3 and i le 100 do

j:=M+1;

while staging eq 3 and j le M+N-1 do

k:=j+1;

while staging eq 3 and k le M+N do

if (r.j*r.k^-1)^i eq r.1^0 then

staging:=1;

end if;

k:=k+1;

end while;

j:=j+1;

end while;

i:=i+1;

end while;

end if;

if staging eq 3 then

print "No Contradictions";

print ShiftingPairs;

ShiftingPairs:=[];

staging:=0;

end if;

counter:=counter+1;

ShiftingPairs;

end if;

end while;
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